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Abstract

In [2], Chvatal provided the tight worst case bound of the set
covering greedy heuristic. We considered a general class of set covering

heuristics, Their worst case bounds are dominated by that of the greedy

heuristic.
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1. Introduction

\\\\iéiThe Set Covering problem is notoriously hard to solve and is,
in fact, NP-complete.\{qﬂ\ A good heuristic algorithm that gives a close
approximation to the optimum is therefore desirable. \Tn\SRl*\Shvatal )
found the tight worst case bound of the greedy heuristic commonly con-
sidered in the literature. In this paper, we investigate the worst case
behavior of a general class of heuristic algorithms. These worst case

bounds are found to be dominated by that of the greedy heuristic.

We consider the Set Covering problem
(1) Min {cx|Ax > e, x binary}

where A = <a,.> is m x n with a,, = 0, 1 for all 1, j; e = (1,...,1)T is

ij i3

myX l; xis n x 1 and ceR® 1s 1 x n. For notation purposes, we define

M=1{1,...,m} as the set of row indices,

N

{1,...,n} as the set of column indices,
M.:l = {ieM|aij = 1} for every jeN

and N, = {jeN[a1j = 1} for every ieM.
Any feasible solution is said to be a cover. Any nonredundant cover is

said to be prime. If x, = 1 in a feasible solution to (1), variable j

3
is said to cover all rows ieMj. Without loss of generality, we assume
cj >0 all jeN
(2) Mj #0 all jeN

N1 # ¢ all ieM.

The worst case performance is measured by the smallest bound Q

on the ratio Z, /Z i.e.

heu’ “opt’

zheu <Q
2
opt
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where Zheu and zOpt are the values of the heuristic and optimal solutions,
Due to our assumptions in (2), there exists at least one feasible solution

and zopt > 0 holds. The ratio zheu/zopc is well-defined.

2. Algorithm I

The class of heuristic algorithms that we consider is a generali-
zation of the greedy heuristic. In essence, the heuristic sets a value of
one variable at a time until a cover is found. Each variable is evaluated
according to its cost and the number of rows that it may cover. We let
Rt be the set of uncovered rows before the rth variable is chosen by the
heuristic, S(x) be the support of the cover to be found and krj.be the
number of additional rows variable j can cover. We call this class of
heuristics Algorithm I.

Step 0 Let R, = M, S(x) =@ and r = 1. Go to 1.

Step 1 1f Rr =@, go to 2.

*
Otherwise, define krj - |Mjr]Rr| for all jen. Let j €N be

such that

Ecgur Kpga) = P U

In case of a tie, a fixed but arbitary tie breaking rule is used.

Set

S(x) + S(x) U {j*}

Reel © Re\Mya

r + r+l

and go to 1.
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Step 2 Let X, = 1 jeS(x)
=0 otherwise

and stop.

A function f is used to evaluate the variables., A different
function used will correspond to a different heuristic. For obvious
reasons, we require

f(c, , 0) A + =,

J
+ .
Otherwise, we consider any f : R+ X Z -+ R where R+ is the set of positive

real numbers representing cj and Z+ is the set of positive integers
] representing krj'

The greedy heuristic that Chvatal considered in [2] is a special
case of Algorithm I when f(cj, krj) = cj/krj. The tight worst case bound

that Chvatal derived is

£ ’:3) Zheu

< H(d)
zopt -
d 4
where H(d) = T <=
s=1 3
and d = Max|Mj|. ‘
. {eN

This bound is dependent on problem size, density and the distribution of
the nonzero coefficients in the matrix A. The function H(d) is, in turn,

bounded by log d for reasonably large d. Similar results for special

classes of problems were obtained previously by Johnson [4] and Lovasz [6].




=

Any fixed but arbitary tie breaking rule may be used. The tie

breaker may use any data that is available, including c, and kr Without

3 3°
loss of generality, we assume that the tie breaking rule is different from

the function f used so that if there exist jl’ jz e N with jl # j2’

K

krj rj., but f£(c ) = f(c, , k_. ), the tie breaker will
1 2 jz rj2

3, ey
break the tie, When all rules fail, we allow breaking ties arbitarily
by the location of omes so that a variable can always be chosen, A
good example will be to choose jl if jl < jz.
In the next theorem, we show that the worst case performance of :

any heuristic in Algorithm I is dominated by that of the greedy heuristic.

We also use the symbol <, when used in

fCe, , k_ ) < f(c, , k_. ),
S PR Y ip* 'ri,
to indicate either
f(e k ») < f(e, , k. )
iy’ iy 3,7 ti,
or
f(cjl, krjl) = f(cjz, krjz) but the tie breaker chooses j;.

Theorem 1

Assume Algorithm I is used. There is no function f that gives a
worst case bound strictly better than H(d) for any d > 1.
Proof

By contradiction. Notice that the theorem is trivial when

d=1 as Zheu Z-Zopc implies zheulzopt > H(l). We assume £ is a function,

when used in Algorithm I, that gives

) Zheu
z

2Q4 < H(d) for some d > 2.
opt




We consider two cases,

Case 1 We assume, for all d > 2 and a > 0,
ad ;
(5) f(3—3 d) < f(a, J) all j=1,...,d-1.
Let kj e {1,...,j} for j=1,...,d be
such that
. d
(6) £@, o) < £E%,4) k=1,...,].
j .
Consider the problem
d d d
Min I -:—- xj + 3z a yi
=173 i=1
xj + vy >1 . i=1l,...,d
xj, yi =0orl i=1l,...,d
From (6), x4 is chosen over Xyseees Xg_pe If kd # d, X4 is also chosen

OVer yyse-.5 Ygq- If kd = d, X4 is identical to Yyseers ¥gq except for the
location of ones in the matrix. The tie breaker will fail but we can
always rearrange the matrix so that X4 can be chosen arbitrarily. In
either case, Xy is chosen first; From (5) and (6), Xq_pse+es Xp are then
chosen sequentially for the solution xj =1, ¥y = 0 for i, j=1,...,d.

The optimal solution is xj = 0, vy = 1 for i,j=1,..., d with

d ad
Zheu z k,
—Z-——= j=1 1
opt ad

d

1
i Z ‘3‘ as kj i jo
=1

which contradicts with (4).
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Case 2 (5) does not hold for some d > 2.
Without loss of generality, let d be the smallest integer
so that (5) does not hold. We prove by induction on d.

Subcase 2.1 d =2

The negation of (5) gives

) f(a, 1) < f(2a, 2) some a > 0,
(8) Let c=a if f(a, 1) < £(2a, 1)
= 2a otherwise

and consider

Min cx1 + 2a x2 + 2a x3

s.t.

+ x,>1 j =12

= 0,1 ji=1,2,3

From (7) and (8), the heuristic chooses Xy first. Then, regardless of
which variable the heuristic chooses next, we have Zheu = 2a 4+ ¢. The

optimal solution is X =X, = o, Xy = 1 with

Zheu o 2ate _ 3a _
Z 22 2%a = H(2
opt

which contradicts with (4).

Subcase 2.2 d > 3.

Since (5) holds for d-1 but not for d, we have

9 f(:—d, d) > £(a,p) some a > 0, some p € {1,...,d-1}

and




st oy
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(10) 2, 6 < £e, ) alle >0, fu1,...,d22
Claim f(?—, Q > (a(d L) 4.1). If p = d-1 1n (9),

it is trivial. If p < d-1, (9) and using j = p, ¢ = a in (10) give
(3%, @) > £(a, p) 2 s, 4y,

Let ¢ = %ﬂ and (10) can be generalized to

(11) f(

d- . . .
513—11, d-1) < f(c, j) j=l,...,d-2, d

Let kj e {1,...,3} for all j=1,...,d be such that

c(d—l)
(12) G e < e @ gy ke,
Consider the problem
d d-1
Min I Eég:£l x. +2Z ¢y
j=1 54 J i=1
s.t.
xj + Yy >1 i=1,...,d-1, j=1,...,d
except for i=1, j=d
Axd_l txy; vy 21
xj, vy = Oorl i=1,...,d-1, j=1,...
where
A=1 if kd—l = d-1
=0 otherwise
2.2.1 A =0 and kd-l < d-1

From (11) and (12), X4 is chosen first. From (12), X4-1 is
then chosen over x,..., Xy oo Since all yi's have d-1 ones left and

kg < d-1,

(555—11 d-1) < f(“(d 1), d-1) = f(c, d-1)




-

and X3-1 is chosen over Yyseeos¥goqe From (11) and (12), the heuristic

will then choose xd—Z""’xl to compliete the solution.

2.2.2

From (12), X4 is chosen over XypseeesXy o first. As X4_1 has

cost ¢, X431 is identical to all yi's. From (11) and (12), X4 is also

chosen over X412 yi""yd—l' From (12), X4_1 is chosen over XpseeesXy oo
Since X4_1 is identical to all yi's except for the location of ones,
all tie breaking rules will fail but we can always rearrange the natrix
so that X4-1 is chosen arbitrarily. From (11) and (12), the heuristic
will choose xd-2""’xl sequentially.

In either case, the heuristic solution is Xj =1, y. =0.
j=1l,...,d, i =1,...,%-1. The optimal solution is x, =0, y, =1

for all 1 = 1,...,d-1, j = 1,...,d with

d
Ly, E1 C(li—l) > g L

Z_eg=J- 1.3 as k, < j
opt c(d-1) J J

which contradicts with (4).
Q.E.D.

The cover obtained from Algorithm I is not necessarily prime.
It is possible to implement a simple procedure to derive a prime cover
from the heuristic solution. See, for example, [1], [3]. The value of the
prime cover and consequently the worst case behavior may improve. The next

theorem shows that, with some general assumption on the tie breaking rule,

the result of Theorem 1 still holds.
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We assume that, if a tie exists, the tie breaking rule is
based on cj and krj only so that the tie breaker will work whenever we
have two variables jl # j2 with cjl # cjz. In case of a second tie,
we allow breaking ties utilizing additional data that is available,
including breaking ties arbitarily.

Theorem 2

Assume a pro~edure is used to strengthen a solution from
Algorithm I to prime. Assume further that the tie breaker is as
previously described. There is no function f that gives a worst case
bound strictly better than H(d).

It suffices to show that all heuristic solutioms are prime.
Notice first that, with the changes in the tie breaker, Algorithm I
will give the same solutions for all counter examples in the proof of

Theorem 1. Since the heuristic solutions are prime except for subcase 2.1,

it suffices to consider subcase 2.1 only. We have d=2 and

(13) £(a,1) < £(2a, 2) for some a > 0.

Let A = Min (a,2a (H(2) - QZ) ) and consiaer

3
Min T ¢ x,
j=1 7
s.t.
xj + X3 £ 1 j=1, 2
x, =0, 1 j=1, 2, 3
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A

Case 1 There exists 6 ¢ (-4, 6—9 such that
2
(14) f (2a+9, 1) < £ (2a, 1).
Let ¢; = a if £ (a, 1) < f (2a + 9, 1) |
|
=23 + 8 otherwise '
c, =2a+8
¢, = a.
2

From (13), the heuristic chooses X first. From (14), Xy is picked next
for the prime cover X =X, = 1, Xq = 0. The optimal solution is X} = Xy = 0,

Xy = 1 with

A >
72 > B - 37 2Q,

Zheu N 3a+ 6
Zopt -

which contradicts with (4).

A

Case 2 For all 6 € (-4, 6;9
(15) £(2a + 8, 1) > £(2a, 1)
Subcase 2.1 There exists 8 e (-4, -g—z-) so that
(13") f(2a + 9, 2) > f(a, 1)
Let ¢, =a if f(a, 1) < £(2a, 1)
= 2a otherwise
c, = 2a
Cq = 2a + 9

From (13') and then (1%), the heuristic chooses X, and then Xy for the

prime cover X =X, = 1, Xg = 0. The optimal solution is X; = Xy = o,

Xy = 1 with




which contradicts with (4).

Subcase 2.2 l f(2at+e, 2) < f(a,l)
This is case 1 in the proof of theorem 1.
Consider
Min (2a+8) X, +ax, + ay, +ay,
s.t.
Xy + Yy >1 i=1,2, j=1,2
xj, y; = 0,1

The heuristic chooses X, arbitrarily and then x, for the prime cover

1
X =X, = 1, Yy =Y, = 0. The optimal solution is Yy =¥, = 1,

X, = X, = 0 with
Zheu 3a+6 A
=2 = > H(2) - 55 =Q
Zopt 2a 2a 2

which contradicts with (4).

Q.E.D.

3. Extensions of Algorithm I: Algorithm II.
The worst case bound for Algorithm I is dependent on problem
size. We are then interested to find other heuristic algorithms that may

give a better worst case performance. Algorithm II is an extension of




Algorithm I in that it chooses one variable at a time.

in step one where the variable is chosen only from a subset of all variables

-12~

that are available. More specifically, a row is chosen first and the

heuristic then chooses a variable with a nonzero coefficient in that row.

Algorithm II is computationally more efficient and since all rows must

be covered eventually, Algorithm II chooses one variable to cover the

row that is considered most essential first.

Step 0
Step 1

(a)
(b

Step 2

Let Rl =M, S(x) =0, r =1 and go to 1.

If Rr = 0, go to 2.
Otherwise, define krj = lef1 Rr[.
Pick i _eR_.

rr

*
Pick jrsN so that

i
r

f(c = Min f(cj, k

)
jeNir r]

Set S(x) « S(x) U {j:}

%
R « RE\M

r+1 3.

r « v+l
and go to 1.
Let xj =1 jeS(x)

= otherwise

Different rules can be used to pick the row ir in step la.

A different rule will correspond to a different class of heuristic

algorithms,

The difference is




Theorem 3

Assume f(cj’krj) = cr/krj. Regardless of the rule used in step
la in Algorithm II, the worst case bound is .

Zheu

opt

< dH(d)

where H(d) =

Z
d 1

z ;-and d = Male
=1 - jeN

j=1
Proof

Let x* and x be the optimal and heuristic solutions respectively
and let S(x) = {ieN]xj = 1}. Since x* must be feasible, it covers the

rows ir’ r=1,...,k where k = |S(§)|. Then, there exists at least one

*
j(r)eS(x ) so that j(r)eNi for every r. We have

r
‘% S3(o)
P r=1,...,k
rif  “ri(r)
and
_ k k rj*
Z o =cx= . <
heu r=l j r=1 j(r) krj(r)
k
z ( ek
jeS(x ) 3 ris, kj
where 5 = {r]3(x) = j}.
k o < M| <d implies 2, <d I e, (I
ri* . % p heu jes(a%) 4 \TESy kl.j)
Claim that I k. = 'z 1 for every jeS(x*)., For jeS(x*) such that
rsSj rj j'l j
d 1
I 1<y *
[S | <1, res_ k j=1" 1is trivial. Suffice to consider jeS(x ) such

jorl
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that |Sjl.l 2. let r), ryeS, with r;#r,. Without loss of generality,

r, < rz. From the definitions of Sj and i(r), iriirzeMj. Since

i ¢R_, k
Ty Ty Ty

In general, kr

- 1.

Ly IMjn erl 2| My N Rr2| - 1=k

2]

3 # kr i for all T, rzesj and r, # r,. As
1 2

krja {l""’IMjI}’

d
1 o< -;-: I E=H().
reSj rj j=1 j=1 3
Substitution yields
1
Zheu = ¢ jEs(xx) Sy (résj krj)

< @ gEs(an) ©

= dH(d) Zopt

Q.E.D.

Different rules can be used in Step la., Two specific rules are
considered here. In the first rule, we pick a row of minimum cardinality
so that a row with fewer potential candidates to be chosen from is covered
first. We call it Algorithm II.l. In the second rule, a penalty for
choosing a wrong variable is computed. The row with the largest penalty
is chosen first. The penalty for every row is the difference between the
two smallest functional values. We call this Algorithm II.2, The details

are outlined as follows.

Algorithm I1.1

Step la IN = Min [N

N

g |

i
'




Algorithm II.1

Step la

(i) For ieR such that |N1l = 1, define P(i) = + =,
L

(11) For ieR_ such that |N| > 2, define i, 312 e N,

such that

fe k) S E(e g k)< Eleky) GeNN{ITLIZ)

jl rjl jz rj2
and P(i) = f(cji,krji) - f(c i,krji).
2 Ty 1 ™
Pick 1i_ by
P(it) = Max P(i)
ieR
T
€3/
Remark 4 ILf f(cj’krj) = krj is used in either Algorithm II.1

or II.2, the bound dH(d) is tight.

Zheu

z
opt

Proof Let < Qd < dH(d). Consider, for any d > 2,

c>¢ > 28 > 0, § < C(du(d)-Qd)p

ZQd
d cd d+2 d¥2
Min I = x, +(c+8)x, . + L (cte)y, + L 4z
s.t. j-l j j d+1 j-l j j-l j
+ g 1 d
xj xd+l+iEj yizl J secey
+ dgz 1
. >
17 a1 f =
xj! YJ, zj = o’ l

The rows and columns chosen are d, d-1,...,1 and Xqr XgoprereoXg

in that order. An optimal solution is x, =0, yj-o i=1,...,d, xd+1-l’

3

21-1, zj-O j=2,...,d42,




Proof

We have d

g &
z jup 3
heu _ - cdi(d) | dH(d) = Q
z c+28 426 di (1) -q d
opt 1+ d
Qd

for the contradiction.

Theorem 5
Assume elther Algorithm II.1 or II.2 is used. There is no
function f that gives a worst case bound strictly better than H(d), for

any d > 1.

The proof is the same as that of Theorem 1. The heuristic will
choose a sequence of rows such that the same variables and, hence, the
same solution in all counter examples are chosen. Notice that [N, |
is the same for all rows and if Algorithm II.l is used, the rows can be
chosen arbitrarily for the desired result.

Q.E.D.

3. Conclusion

Two general classes of heuristic algorithms were considered.
They are easy to implement as the variables are evaluated essentially
on the cost and the number of rows that can be covered. The worst case
performances of all heuristics are dominated by the function H(d) which,
in turn, is bound by log d and is dependent on problem size and distri-
bution. A diiferent approach would be needed in order to find a heuristic
that gives a better worst case bound. From the proofs, the worst case
bounds for different functioms and, hence, heuristics are attained in
different examples. A combination of some functions may improve the

average performance. A computational study is available in {1].
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