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Abstract

In (21, Chvatal provided the tight worst case bound of the set

covering greedy heuristic. We considered a general class of set covering

heuristics. Their worst case bounds are dominated by that of the greedy

heuristic.
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1. Introduction

The Set Covering problem is notoriously hard to solve and is,

in fact, NP-complete. "i A good heuristic algorithm that gives a close

approximation to the optimum is therefore desirable. 'Ir Chvatal

found the tight worst case bound of the greedy heuristic commonly con-

sidered in the literature. In this paper, we investigate the worst case

behavior of a general class of heuristic algorithms. These worst case

bounds are found to be dominated by that of the greedy heuristic.

We consider the Set Covering problem

(i) Min {cxjAx > e, x binaryl

XT

where A - <aij> is m X n with aii- 0, 1 for all i, J; e - (,...,i) T is

m X 1; x is n X 1 and ceRn is 1 X n. For notation purposes, we define

M = {l,...,m} as the set of row indices,

N = {1,...,n} as the set of column indices,

M - {ieMla j - 11 for every JeN

and N = -JENIaij l 1} for every ieM.

Any feasible solution is said to be a cover. Any nonredundant cover is

said to be prime. If xj - 1 in a feasible solution to (1), variable j

is said to cover all rows iMcH. Without loss of generality, we assume

cj > 0 all JeN

(2) M # 0 all JcN

N 0 0 all icM.

The worst case performance is measured by the smallest bound Q

on the ratio Z heu/Z opt, i.e.

Zheu < Q

opt
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where Zheu and Zop t are the values of the heuristic and optimal solutions.

Due to our assumptions in (2), there exists at least one feasible soluton

and Zop t > 0 holds. The ratio Z heu/Zop t is well-defined.

2. Algorithm I

The class of heuristic algorithms that we consider is a generali-

zation of the greedy heuristic. In essence, the heuristic sets a value of

one variable at a time until a cover is found. Each variable is evaluated

according to its cost and the number of rows that it may cover. We let

Rr be the set of uncovered rows before the rth variable is chosen by the

heuristic, S(x) be the support of the cover to be found and k rj be the

number of additional rows variable j can cover. We call this class of

heuristics Algorithm 1.

Step 0 Let R,1  X, S(x) - 0 and r - 1. Go to 1.

Step 1 If R = 0, go to 2.

Otherwise, define krj - IlmjfRrI for all jen. Let j eN be

such that

fc*,rj) - Min f )r* JcN .j krj

In case of a tie, a fixed but arbitary tie breaking rule is used.

Set

S(x) 4- S(x) U {j*}

Rr+ 4- Rr\Mj*

r - r+l

and go to 1.
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Step 2 Let xj = 1 jES(x)

M 0 otherwise

and stop.

A function f is used to evaluate the variables. A different

function used will correspond to a different heuristic. For obvious

reasons, we require

f(cj , 0) A + . ++

Otherwise, we consider any f R+ X Z + R where R+ is the set of positive

real numbers representing cj and Z+ is the set of positive integers

representing krj*

The greedy heuristic that Chvatal considered in [21 is a special

case of Algorithm I when f(cj, krj) c cj/krj. The tight worst case bound

that Chvatal derived is

Zheu < H(d)
opt

d 1
where H(d) Z-

J-1

and d -MaxIm .
j £N

This bound is dependent on problem size, density and the distribution of

the nonzero coefficients in the matrix A. The function H(d) is, in turn,

bounded by log d for reasonably large d. Similar results for special

classes of problems were obtained previously by Johnson (4] and Lovasz [6].
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Any fixed but arbitary tie breaking rule may be used. The tie

breaker may use any data that is available, including cj and k rj Without

loss of generality, we assume that the tie breaking rule is different from

the function f used so that if there exist J1 , J2 e N with il * j2'

krjl # krj2 but f(c ji, kr) = f(c J, krJ2), the tie breaker will

break the tie. When all rules fail, we allow breaking ties arbitarily

by the location of ones so that a variable can always be chosen. A

good example will be to choose J if Jl < j2 "

In the next theorem, we show that the worst case performance of

any heuristic in Algorithm I is dominated by that of the greedy heuristic.

We also use the symbol <, when used in

f(c l' k rJ) < f(c j2, krj2

to indicate either

f(cjl, krjl' < f(cj2, k r2)

or

f(c 9 kr) f(cj , krJ but the tie breaker chooses jl"
-l rj 1  j 2  rj2  l

Theorem 1

Assume Algorithm I is used. There is no function f that gives a

worst case bound strictly better than H(d) for any d > 1.

Proof

By contradiction. Notice that the theorem is trivial when

d-l as Zheu I_ Zop t implies Zheu/Zopt > H(l). We assume f is a function,

when used in Algorithm I, that gives

(4) Zheu(4) < H(d) for some d > 2.
opt
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We consider two cases.

Case 1 We assume, for all d > 2 and a > 0,

(5) d) < f(a, J) all j=l,...,d-l.(d))

Let kj c {1,...,j} for j1l,...,d be

such that

(6) f(, d) (=,d)

Consider the problem

d di ad
Min E jx + E a Y

j . i i=l

x + Yi -- 1 i=l,...,d

x, yi=0 or 1

From (6), xd is chosen over xl,..., Xdl. If kd 0 d, Xd is also chosen

over Yl"" Yd" If kd = d, xd is identical to YI''" Yd except for the

location of ones in the matrix. The tie breaker will fail but we can

always rearrange the matrix so that xd can be chosen arbitrarily. In

either case, xd is chosen first. From (5) and (6), x dl ... xI are then

chosen sequentially for the solution xj = 1, Yi = 0 for i, j 1 1,...,d.

The optimal solution is xj = 0, yi - 1 for i,j-l,..., d with

d ad
Zhe u  Z k

opt ad
d 1

> as k <.

which contradicts with (4).



'I

-6-

Case 2 (5) does not hold for some d > 2.

Without loss of generality, let d be the smallest integer

so that (5) does not hold. We prove by induction on d.

Subcase 2.1 d = 2

The negation of (5) gives

(7) f(a, 1) < f(2a, 2) some a > 0.

(8) Let c = a if f(a, 3) < f(2a, 1)

= 2a otherwise

and consider

Min cx1 + 2a x2 + 2a x3

s.t.

xj + x3 >1 j 1,2

xj= 0,i j = 1,2,3

From (7) and (8), the heuristic chooses x first. Then, regardless of

which variable the heuristic chooses next, we have Zheu = 2a + c. The

optimal solution is x1 = x 2 = 0, x3 = 1 with

Zheu 2a+c 3a> 22a -> H(2)
z 2a -2aopt

which contradicts with (4).

Subcase 2.2 d > 3.

Since (5) holds for d-l but not for d, we have

ad

(9) f( -, d) _> f(a,p) some a > 0, some p e l,...,d-1
p

and
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(10) f(,c(d) d-l) < f(c, j) all c > 0, jul,...,d-2
3

f(-, d) > f(a(d-1), d-l). If p = d-l in (9),
p Cap

it is trivial. If p < d-1, (9) and using j = p, c - a in (10) give
ad ad

f( -, d) > f(a, p) > f(a 1), d-l).
p - - p

Let c = and (10) can be generalized toP

(11) f( c(d), d-l) < f(c, j) j=l,...,d-2, d
J

Let k. E {l,...,j} for all j=l,...,d be such that

(12) f(c(d-l) < f(-c(d-l)

k. d-l) k d-l) k=l,. ,j

Consider the problem

d d-1
Min c(d-l) x + Z c

J=l k ji=l

S.t.

x+ > 1 i=l,...,d-, j=l,...,d
except for i=l, j=d

Xx + x + Yl >

d-l Xd~y

x., Y, 0o1j, Yl - 0 or 1 i=l....,d-l, jl, .... d

where

X= 1 if kd_1 =d-1

= 0 otherwise

2.2.1 X 0 and kd_1 < d-l

From (11) and (12), xd is chosen first. From (12), Xd_ is

then chosen over x,..., x2-2 . Since all Yi'S have d-l ones left and

kd 1 < d-1,
d-ld-l

f(d , d-l) < f( --d-f , d-1) - f(c, d-l)
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and Xdl is chosen over yl,'*,yd I  From (11) and (12), the heuristic

will then choose xd_2,... ,x1 to complete the solution.

2.2.2

From (12), xd is chosen over xI .... Xd- 2 first. As xdl has

cost c, Xdl is identical to all yi's. From (11) and (12), xd is also

chosen over Xdl, .''Yd-l From (12), Xd-l is chosen over xl,...Xd_2 .

Since xdl is identical to all Yi's except for the location of ones,

all tie breaking rules will fail but we can always rearrange the matrix

so that Xd_ 1 is chosen arbitrarily. From (11) and (12), the heuristic

will choose xd- 2,...,x 1 sequentially.

In either case, the heuristic solution is x. = 1, yi = 0.

l,...,d, i = 1,...,-1. The optimal solution is xj = 0, y. = 1

for all i = 1,... d-l, j = 1,...,d with

d
Z c(d-l) d

Zheu J=l k >E a
z -j-l . sk
opt c(d-l) -

which contradicts with (4).

Q.E.D.

The cover obtained from Algorithm I is not necessarily prime.

It is possible to implement a simple procedure to derive a prime cover

from the heuristic solution. See, for example, [1], [3]. The value of the

prime cover and consequently the worst case behavior may improve. The next

theorem shows that, with some general assumption on the tie breaking rule,

the result of Theorem 1 still holds.

i I I I II II I ' . .. . . . . . i - . _ = . .. . " ' n ' I
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We assume that, if a tie exists, the tie breaking rule is

based on c. and krj only so that the tie breaker will work whenever we

have two variables j # 2 with cl #c j2. In case of a second tie,

we allow breaking ties utilizing additional data that is available,

includ-ing breaking ties arbitarily.

Theorem 2

Assume a procedure is used to strengthen a solution from

Algorithm I to prime. Assume further that the tie breaker is as

previously described. There is no function f that gives a worst case

bound strictly better than H(d).

Proof

It suffices to show that all heuristic solutions are prime.

Notice first that, with the changes in the tie breaker, Algorithm I

will give the same solutions for all counter examples in the proof of

Theorem I. Since the heuristic solutions are prime except for subcase 2.1,

it suffices to consider subcase 2.1 only. We have d=2 and

(13) f(a,l) < f(2a, 2) for some a > 0.

Let A = Min (a,2a (H(2) - Q2) ) and consiaer

3
Min c.x.

j=l

S.t.

x + x 3  1 j-l, 2

x. = 0, 1 j=l, 2, 3J
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Case 1 There exists 6 c (-A ,-) such that
Q2

(14) f (2a+O, 1) < f (2a, 1).

Let c I = a if f (a, 1) < f (2a + 6, i)

= 2a + 6 otherwise

C2 = 2a + e

c = a.

From (13), the heuristic chooses x1 first. From (14), x2 is picked next

for the prime cover x1 = x2 = , x3 =0. The optimal solution is x1 = x2 =0,

x 3 = 1 with

Zheu 3a+6-> > H(2) - -Q2
opt

which contradicts with (4).

Case 2 For all 6 e (-A,
Q2

(15) f(2a + 6, 1) > f(2a, 1)

Subcase 2.1 There exists 6 C (-A, A) so that
Q2

(13') f(2a + 6, 2) > f(a, 1)

Let c 1 = a if f(a, 1) < f(2a, 1)

= 2a otherwise

C2 = 2a

c3 =2a+6

From (13') and then (15), the heuristic chooses xI and then x2 for the

prime cover x1 = x2 = 1, x3 = 0. The optimal solution is x 1  x2  0,

x3 = I with



Zheu 3a 3a

Zopt 2a+6 2a+ A

Q2

> H(2)
H(2)-Q 2

1+
Q2

which contradicts with (4).

Subcase 2.2 f(2a+e, 2) < f(a,l)

This is case 1 in the proof of theorem 1.

Consider

Min (2a+e) x + ax2 + ay, + ay2

S.t.

Xj + Yi >- 1 i1,2, j=l,2

Xj, Yi = 0,1

The heuristic chooses x2 arbitrarily and then x1 for the prime cover

x = x2 = , Yl = Y2 = 0. The optimal solution is yl = Y2 ,

x = x2 = 0 with

Z heu 3a+e
u -- 2 > H(2 ) - =Q 2

opt

which contradicts with (4).

Q.E.D.

3. Extensions of Algorithm I: Algorithm II.

The worst case bound for Algorithm I is dependent on problem

size. We are then interested to find other heuristic algorithms that may

give a better worst case performance. Algorithm II is an extension of
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Algorithm I in that it chooses one variable at a time. The difference is

in step one where the variable is chosen only from a subset of all variables

that are available. More specifically, a row is chosen first and the

heuristic then chooses a variable with a nonzero coefficient in that row.

Algorithm II is computationally more efficient and since all rows must

be covered eventually, Algorithm II chooses one variable to cover the

row that is considered most essential first.

Step 0 Let R= M, S(x) = 0, r = 1 and go to 1.

Step 1 If Rr = 0, go to 2.

Otherwise, define krj = IM. n Rrl.

(a) Pick i rRr*

(b) Pick jr Ni so that

r

f(cj*, krj) Kin f(c, k r)

r r JeN. rr

Set S(x) - S(x) U jr}
r

r+l R\M*

r - r+l

and go to 1.

Step 2 Let xj . 1 JeS(x)

= 0 otherwise

Different rules can be used to pick the row ir in step la.

A different rule will correspond to a different class of heuristic

algorithms.
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Theorem 3

Assume f(c k)rj ) r/k rj Regardless of the rule used in step

la in Algorithm II, the worst case bound is

Zheu
T---I a(d)

opt

d 1
where H(d) = ET and d =MaxM.I.

j=l - JeN

Proof
*

Let x and x be the optimal and heuristic solutions respectively

and let S(x) = ENjx j = 11. Since x must be feasible, it covers the

rows ir, r = 1,...,k where k = IS(x)I. Then, there exists at least one

j(r)S(x*) so that J(r)eNi for every r. We have
r

cj* cj(r)
< r-l,... ,k

kr* -- rj(r)

and

kk k rj*
rZhe u  cx E c., < E cJ(r)

r=l r r-1 rj(r)

krj

JES(x*) JS. kjr )

where S - {r l j(r) - J}.

krj* < IMj*I < d implies Zheu < d c (rES )

r r d jS(*) r krj

Claim that Z - . for every JeS(x*). For JcS(x*) such that

d 1
ISjJ .1 1, rE~ k :rj - j- 1 is trivial. Suffice to consider ieS(x* such
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that >Sjj __2. Let rl, r2cS with r1 Or2 . Without loss of generality,

rI < r2. From the definitions of S and J(r), i ri r2M Since
j r1r 2 J

i Rr krj im nl Rr I aIM fR I - 1 - k - 1.r r.r Ri r 1Rj r 2  r 2J

In general, krlj # kr2J for all rl, r2 eS and r1 # r2. As

kre {l,...,IMjI1,

IMI1 1
< -- l - H(d).

reS~ i jr l -j1 j1E

Substitution yields

heu - jes(x*) cj rSi k rj

di()E C
_d(d) js(x*)  j

= dH(d) Zopt

Q.E.D.

Different rules can be used in Step la. Two specific rules are

considered here. In the first rule, we pick a row of minimum cardinality

so that a row with fewer potential candidates to be chosen from is covered

first. We call it Algorithm II.l. In the second rule, a penalty for

choosing a wrong variable is computed. The row with the largest penalty

is chosen first. The penalty for every row is the difference between the

two smallest functional values. We call this Algorithm 11.2. The details

are outlined as follows.

Algorithm 11.1

Step la INi I mn JNij
r ieR

r
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Algorithm I1.1

Step la

(i) For ieRr such that INi 1, define P(i) + s.

(ii) For ieRr such that INil >.2, define J € N

such that

i i
f(c ik i) < f(c i, k i) < f(cjkrj) jeNi\{jI,1

jl rj2 rj2

and Pi) f(c i k i - f(c i k i) .

j2 rj2  j1  rJ1

Pick i r by

P(ir) = Max P(i)
ieR

r

Remark 4 If f(c j,k rj) - J/krj is used in either Algorithm II.1

or 11.2, the bound dH(d) is tight.

Proof Let Zhe u < < dH(d). Consider, for any d > 2,
opt

c > e > 26 > 0, 6 < c(dH(d)-Qd),

2 d

d cd d+2 d+2
Kin E xj + (c+6)x + (c+c)yj + &zs.t. Jml J- Xd+l +J-1 jl

dxJ + xd+ + E Yi > 1j-i ....,d
Xj +d+l+ i l

d+2
x +. E z >1

xj, yj Zj 0, 1

The rows and columns chosen are d, d-l,...,l and xd, Xdl .... x1

in that order. An optimal solution is xj O, y j0 J-1,...,d, Xd+lw l,

Z 1 0 , zj=O0 J=2,...,d+2.
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We have d cd
Z J-Zhe j-i j

heu -cdL(d) > dH(d) Q

Zop t  c+26 c+26 dH(d)-Qd d
1+ Qd

for the contradiction.

Theorem 5

Assume either Algorithm II.1 or 11.2 is used. There is no

function f that gives a worst case bound strictly better than H(d), for

any d > 1.

Proof

The proof is the same as that of Theorem 1. The heuristic will

choose a sequence of rows such that the same variables and, hence, the

same solution in all counter examples are chosen. Notice that INil

is the same for all rows and if Algorithm 11.1 is used, the rows can be

chosen arbitrarily for the desired result.

Q.E.D.

3. Conclusion

Two general classes of heuristic algorithms were considered.

They are easy to implement as the variables are evaluated essentially

on the cost and the number of rows that can be covered. The worst case

performances of all heuristics are dominated by the function H(d) which,

in turn, is bound by log d and is dependent on problem size and distri-

bution. A different approach would be needed in order to find a heuristic

that gives a better worst case bound. From the proofs, the worst case

bounds for different functions and, hence, heuristics are attained in

different examples. A combination of some functions may improve the

average performance. A computational study is available in 11].

I_______
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