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coupling mechanism are analyzed including integral equation formulations,
exact series solutions, and a diffusion coupling model. Several computer
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SECTION 1

INTRODUCTION

A major concern with the increasing use of composite materials and

low voltage electronics is the amount of electromagnetic (EM) coupling to the

interior of an aircraft and to the cables and electronic devices within it.

The introduction of boron/epoxy, graphite/epoxy, and Kevlar/epoxy composite

materials as structural elements in modern airframes will result in a substan-

tial reduction in airframe weight, due to the high strength-to-weight ratios

of these materials. The use of these new composite materials has raised ques-

tions relative to the aircraft vulnerability resulting from the effects of

lightning, high power radar, nuclear electromagnetic pulse (EMP), and precipi-

tation static. The problems are further compounded by the fact that these

materials are relatively easy to construct, and have resulted in a prolifera-

tion of available composite materials.

This final report on Office of Naval Research Contract N00014-78-C-

0673 describes methods for determining the shielding provided by an aircraft's

exterior surface and the coupling of the interior fields to cables and trans-

mission lines within aircraft cavities. This data is used to determine whether

devices commonly found on aircraft will be subject to upset or burnout.

The penetration of an external electromagnetic field into the in-

terior of a homogeneous shell enclosure has been widely studied and various

formulations can be found in the open literature. Analytical solutions are

availaLle for the canonical geometries of twin parallel plates, a spherical

shell, and an infinitely long circular shell. The utility of these solutions

is manifested in a transfer function re.ating the interior field at a point to

the field that would exist there in the absence of the shell. This result is

usually presented in the frequency domain and, for low frequencies, obviates

a relatively simple relationship between the interior field and the excitation

field. For canonical shell geometries, this low frequency transfer function

is written in terms of shell wall conductivity and thickness and shell enclos-

ure volume-to-surface ratio. Application to noncanonical geometries can be
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made as long as volume-co-surface ratios are known. As the frequency content

of the excitation spectrum becomes large enough so that the electrical size of

the shell cross section becomes resonant (on the order of a free-space wave-

length), then the low frequency transfer function is no longer adequate to

describe the penetrability of the shell. In this case it is necessary to

resort to approximate numerical techniques.

In this report, several models of the shell coupling mechanism are

analyzed with frequency regions of validity from dc to several gigahertz

depending on shell cross section dimensions. Two-dimensional shell enclos-

ures of infinite extent in one dimension are considered in order to facilitate

the computer program solutions. Results from these theoretical enclosures are

applicable to physically realizable three-dimensional enclosures which are

long compared to their cross section dimension (i.e., some airplane fuselage

and wing sections).

In Section 2, various integral equation formulations are outlined

for determining the induced current density on perfectly conducting two-

dimensional cylindrical shells having an arbitrary cross section. Though

no penetration occurs if the shell wall is a perfect conductor (a = -), the

current density on the exterior surface caused by an incident field is much

the same as that on a highly conducting (but finite 0) shell. The various

integral equations are solved by the method of moments, and specific matrix

operators are defined for later use. A user-oriented computer program is

given in Appendix A with sample input/output data.

In Section 3, two approximate shell coupling formulations are pre-

sented for two-dimensional shells having an arbitrary cross section. The

matrix operators defined in Section 2 are used in the moment method solution

of the resulting integral equations. Comparison with the exact series solu-

tion for the circular cross section is used as a check. A user-oriented com-

puter program is given in Appendix B with sample input/output data.
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The exact series solution for a normally incident plane wave exciting

a shell of circular cross section is summarized in Section 4. Simple low-

frequency formulas are derived for the interior fields. The case of axial

electric current line source excitation is also analyzed for later application

to the case of near-strike lightning.

The preceding analysis is presented only in the frequency domain.

However, if the excitation spectrum is sufficiently band limited and the

transfer functions for the canonical geometries are valid over that frequency

range, then analytical expressions for the interior field may be derived in

the time domain. This is done in Section 5 for near-strike lightning, direct-

strike lightning, and a nuclear electromagnetic pulse.

These techniques may be integrated to provide an accurate descrip-

tion of the penetration fields inside a homogeneous two-dimensional enclosure.

The effect of this interior field on circuits situated inside the enclosure is

of primary importance and an interactive computer program was written for this

purpose which utilizes the results of Section 5. This program is described in

Appendix C.
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SECTION 2

PERFECTLY CONDUCTING CYLINDERS OF ARBITRARY
CROSS SECTIONAL SHAPE

Although no field penetrates an enclosure with perfectly conducting

walls, the electric current density induced on th2 wall exterior due to an

external field will not differ greatly from that in the case of walls having

a finite conductivity of a z 1000. In fact some shell coupling formulations

require a "short-circuit current" which is used to excite an equivalent prob-

lem for the shell. This is simply the current flowing on the outside surface

of the shell when the walls are perfectly conducting (a = -).

The purpose of this section is to present the E-field, H-field, and

combired-field integral equation formulations for perfectly conducting cylinders

of infinite length and arbitrary cross section illuminated by a normally inci-

dent plane wave. The E-field equation is obtained by requiring that the total

tangential electric field be zero on the contour C defining the cylinder cross

section. The H-field equation is obtained by requiring that the total tan-

gential component of magnetic field equal zero just inside C. The combined-

field equation is obtained by taking a linear combination of the E-field and

H-field equations. These integral equations are written in matrix form by

using a method of moments Galerkin procedure. The unknown electric current on

C is then solved for by standard matrix methods. The exact series solution is

also presented for comparison purposes when C is a circle. Generalization to

oblique incidence is also outlined but not programmed. Computer programs are

documented in Appendix A for the E-field, combined-field, and exact series

solutions.

2.1 INTRODUCTION

The E-field and H-field formulations for this problem are well known

[1,2] and some E-field computer programs have been documented [3,4). The cross

section of the cylinder is defined by the contour C, which will be approximated

by straight line segments. For each formulation, an integral equation is written

involving an equivalent electric current which replaces the conducting contour C.
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The integral equation is then solved for the electric current by a method of

moments Galerkin procedure (2,5]. Once this electric current is determined,

quantities such as the scattered far field pattern and radar cross section

may be easily computed.

For a normally incident plane wave, as discussed in the next sub-

section, the total field may be expressed as the superposition of a TE (trans-

verse electric to z) part and a TM (transverse magnetic to z) part. Since it

is not the purpose of this section to rigorously derive the different formula-

tions, they are presented with brevity in Subsections 2.2 through 2.4 where

explicit formulas are given as an aid in understanding the programs. Formulas

for the scattered field pattern are given in Subsection 2.5. For comparison

purposes, one may check the programs against the exact series solution pre-

sented in Subsection 2.6. A generalization to oblique incidence is given in

Subsection 2.7 for the E-field integral equation. The special problem of a

longitudinal impressed current e,.citation is considered in Subsection 2.8.

Finally, detailed instructions for using the computer programs are included

in Appendix A.

2.1.1 Excitation

The cylinder is assumed infinite in the z direction and is defined

by the two-dimensional contour C lying in the x-y plane. The shape of C is

independent of z. For simplicity, the cylinder is illuminated by a normally

incident (kz = 0) uniform plane wave. A time dependence of ej t is implicit

throughout. This excitation gives rise to a scattered field which is also

independent of z. Thus the TE case (magnetic field parallel to z) and the IN

case (electric field parallel to z) may be treated separately. The source of

the scattered field is postulated to be an electric current J which takes the-- C

place of the perfect conductor and which is defined on C. It is separated

into a z component (TM case) and a transverse component (TE case) directed

along C. For the more general excitation, where 8 # 7/2, the two components

of electric current are coupled and thus both polarizations must be treated

together as indicated in Subsection 2.7.
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In terms of its TE and TM parts, the incident field may be expressed

as

E = Ei e + Ei h  (1)

and

Hi = Hi e + Hih (2)

The superscripts e and h denote TM and TE, respectively. These parts are

written explicitly as

Eie = ja e j C e-jk(k • r) (3)

E _ (z x ) b e j  e - j ( k " r)  (4)

Hie = (k ) a Jeit e -jk(k - ) (5)

Hi h  zb ej a e- j k (  " r)  (6)

in terms of the coordinate system of Fig. 2-1.

In the above, k and n are the wave number and impedance, respectively,

of the space surrounding the cylinder. The unit vector k is defined by

-_ = x cos i + i sin t (7)

where i is the angle of incidence measured counterclockwise from the x axis.

The vector r is from the origin to a point on the x-y plane. The real numbers

a and b are chosen so that a2 + b2 = I and choices of aejo and be j  determine

the polarization of the incident field, which is elliptical in general. For

example, a choice of aeja = 1 and bej S = 0 gives the linearly polarized TM

case. A choice of aeja = i//2 and beia = j/v2 gives a left-hand circular

polarization. For simplicity, ae and bej  are taken to be equal to unity

here.
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10,

Figure 2-1. Original Problem: Arbitrary Polarized Plane
Wave Normally Incident Upon Infinite Cylinder
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The total field inside C is zero and the total field outside C is

written as (E + E S, Hi + H S) where (E , H i) is the field which exists every-

where without the cylinder present. The scattered field (E , H ) is written

in terms of an electric current J as [6]:

E E i (J) j k: + (8)
- -C k-- -

H' = S (J) = x A (9)

where the magnetic vector potential A is given by

1 (,' 2
SJ(t') H°  (k Ir - r'(t') dt' (10)
4j j-C 0

C

The symbols E and H denote electric and magnetic field operators,

respectively. The domain of integration in Equation (10) is restricted to C,

where J is defined in terms of t', the arc length variable along C. The

vectors r and _' denote field and source points, respectively, in the x-y

plane and H (2) denotes the Hankel function of the second kind, order zero.0

2.1.2 Specification of Contour C

To proceed with a numerical solution, the contour C is approximated

by a finite number (NC) of straight line segments as shown in Fig. 2-2. This

is done by specifying the x-y coordinates of the end points of each segment

starting with (xlY I ) and proceeding clockwise to (xNC+l, yNC+l ) . In the E-field

formulation, it is not necessary for the contour to be closed. A closed contour

is one for which (xl, yl) = (xNC+l, YNC+I ) • This requirement must be met, how-

ever for the H-field formulation and hence for the combined-field formulation.

Each straight line segment AC n has length A n  a normal unit vector ai , and a

tangent unit vector t for integers n = 1,2,..., NC. These unit vectors are--n

related by

t x n = z (11)
n-
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y

- straight line segment (X ,qYn

n

__________(Xl, yl) or (xNC+l' YNC+l)

for a closed contour

Figure 2-2. The Contour C Approximated by NC
Straight Line Segments
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The parameter t is introduced to represent the arc length along C

measured from the point (xl, yl) to any point on C. Subscripted values of t

are given by the formula

n-i
t n (12)

i-ii

for n - 2, 3, .... NC and with tI = 0.

2.1.3 Definition of Expansion Functions and Symmetric
Product

As mentioned earlier, J may be separated into z-directed and-c
transverse-directed components. This is written as

J J - t + J (13)
-c - -z

Since there is a charge associated with Jt it is desirable that its represen-

tation in terms of a set of expansion functions be differentiable. There is

no charge associated with J, however, but I does become unbounded near sharp

edges of perfect conductors. With this in mind, we define a set of triangle
functions as

t -tmI for t < t < t

t tm --

tn (t- tmn t n for t < t < ti+l (14)tm -tn+ _ m .

0 for t elsewhere
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and a set of pulse functions as

12 for tm < tm+ I

-P (t) (15)

(0 for t elsewhere

for integers m 1, 2, ... , NC and with to = -o and t "
o NC -o-

The electric current J is then expanded as

NC

(t) h T (t) + Ie P (t) (16)
c n -n n nn-l

where Ih and Ie are complex coefficients to be determined for the TE and TM
n n

cases, respectively. For the TM case, Jt = 0 and for the TE case, J = 0.

In the Galerkin procedure, the testing functions are chosen to be

identical to the expansion functions. Hence, to carry out this procedure, a

symmetric product is defined by

<A,B> fA • B dt (17)

C

with A and B defined on C.

2.2 E-FIELD FORMULATION

The E-field integral equation is obtained by setting the tangential

component of the total electric field equal to zero on C. This is written as

- is Q E E- on C (18)

2-8



where the extra factor of k/n was multiplied through for later convenience.

The operator E is defined by Equations (8) and (10) and the subscript t
denotes tangential component found by the usual -n x n x operation. After
expanding J in terms of Equations (14) or (15), depending on the polariza---c
tion considered, and testing Equation (18) with the same functions used for

expansion, one obtains the following sets of matrix equations:

,,e, -e -ie (19)

for the TM case, and

h _'.h -ih
[Zh Ih V (20)

for the TE case. The vectors e and I contain the coefficients of expansion

in Equation (16).

2.2.1 Formulas for [Z]

The elements of the matrices [Z e and [Z h  are given by the follow-
ing formulas, where 1 < m < NC and 1 < n < NC. For the TM case, we have

ZSe k S )>
mn"- <- -Et -n

t

k 2~ f +P (t)ef X ̂

t
m21

t(n+l
f P (t') H (2) (klr(t) - r'(t') I) dt' dt

t
n
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After transforming both source and field intervals to the interval

[-1,1] and letting yi "kAi we obtain

16 ] \ 2- m 2-n du' du

16 f ~ ~-fl 2 -n M,f

- 1

if m n

ze ,(22)
mn

m l, L (I + U)+ -u) du if m - n

where R' is k times the vector from the midpoint of AC to the midpoint
mn n

of AC . The function a is defined by

z

ci(z) = H (2) (u) du (23)

0

which is computed using Struve functions [7]. The integrals in Equation (22)

are readily approximated by a Gaussian quadrature integration rule (8,9]. For

the TE case we have

zh k s
n - < ,-(T

tm 1l

- k2 T (t) + - 7 (24)
innk

ttn+ 1.

f t T(t') H (k r(t) - r'(t')!) dt' dt

t

2-10



where the unit vector 11 resides on the field interval ACm I U AC m . It is

convenient to break the above integral up into four parts. Considering the

contribution from each part separately, Equation (24) is rewritten as

Zh  SZ h (m - 1, n - 1, 1, 1) + SZh (m - 1, n, 1, -1)mn

(25)

+ SZ h (m, n - 1, -1, 1) + SZh (m, n, -1, -1)

where the function SZh is defined by

1 1

16 fl f[( .21) (iL2 +~ 2)-m -n PMqn

.(2) Lm,, ! 'n ,. . )
H o (i- u - u + + R') du' du

ifim#n

SZh (m,n,p,q) =(26)

* H (2) (1 - u - L +

(2 (1 + I du if m n
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where H (2) denotes the Hankel function of second kind, order one. Note that

[Ze] and [ZhI are both symmetric matrices so that one need only compute the

upper right triangle portion of each.

2.2.2 Formulas for V
1

The elements of the excitation vectors V and V are given by the

following formulas where I < m < NC. For the TM case we have

vie k (P E ie >m -- - -t

(27)

jk R' sinmm (k t 
ym ym

2 - t)

where R' is k times the vector from the origin to the midpoint of AC and k is
--n m -

defined by Equatior (7). For the TE case we have

v ih k < E ih'

a r- jk • _m- bm- sin bm-

2m- a-b e e b (28)

Ym am eJI. sinb m  -ibm

2 j b[m b m

where a -n kana b =(y/2) k t -
m - -- m-1
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2.3 H-FIELD FORMULATION

The H-field integral equation is obtained by setting the tangential

component of the total magnetic field equal to zero just inside C. This is

written as

-k x _(J = k n x H on C (29)

where C- denotes a contour just on the -n side of C. The factor of k has beenS

multiplied through for later convenience. The magnetic field operator, HS
is defined by Equations (9) and (10). After expanding J in terms of Equa-

-- C

tions (13) or (14), depending on the polarization considered, and testing

Equation (29) with the same functions used for expansion, one obtains the

following sets of matrix equations:

IT e]e I = Ii e  (30)

for the TM case, and

h -~h -ih
[T] h = i (31)

for the TE case. The vectors I and I again contain the coefficients of

expansion in Equation (16).
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2.3.1 Formulas for (T]

The elements of the matrices [T e I and ITh I are given bv the follow-

ing formulas, where 1 < m < NC and 1 < n < NC. For the TM case we have

Te -kPmnx S (p)
n - - ,-. (

tm+l tM+l

k 1 P (t) P (t) dt P (t) (32)
f 2- -n4j f --n 32

t m m

Sn x pn(t') × (r _ r'H (kr - r'l) dt' dt

t
n

The first term is simply the Ampere's law contribution to the inte-

gral when the field point is on C . Again, after some algebra, one may

obtain

if m

Te (33)mn
1 i~ 

-"nf f n R1
- -- ,n i(2) ( R' du' duT6 j f flIR, ' I -M, n

if m n

In the above, R' is given by
-n, n

m " YnR'1 = R' + -- u t u t (34)
-a,n -mn- 2 -n
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where R' is k times the vector from the midpoint of AC to the midpoint of
m ,n n

1C . For the TE case we have
m

h S

T h  = -k T nx (Tn)>

tm+l ? tm+l
= k (t) T (t) dt K - (t) (35)

2 f -m -n 4jf

tin-1 tm- 1

(r r') (2)

x (t')x H2 (klr - r' ) dt' dtf -n ! r r- -
tn-i

The first term is again the Ampere's law contribution when the field and

source interval coincide. It is also convenient to break the whole integral

in Equation (35) into four parts. Considering the contribution from each

part separately, Equation (35) is rewritten as

T = STh (m - 1, n - 1 , 1) + STh (m - 1, n, 1, -1)
am

(36)

+ STh (m, n - 1, -1, 1) + STh (m, n,

where the function STh is defined by

1 1
- 1----P + 1 - +  

t (re,n) du' du

-1f -1

if m n

STh (m,n,p,q) = (37)

I + if m n
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where

n R' (2)
P(m, n) - -- n H (38)

-in n 2. -rn

2.3.2 Formulas for Ii

The elements of the excitation vectors, i and Ie, are given by

the following formulas where 1 < m < NC. In the TM case we have

ieI m k ,n x H

(39)

(kk "R' sin - (m t-)
( -i k) y e 2

m"( kY

(k m t)m

For the TE case we have

ih ilhm k < T m , n x R' >

S--m- sin b

2 jb e - -1 (40)

e sin b -ib
+ e m ml+2 jb m b m e

2.4 COMBINED FIELD FORMULATION

It can be shown [10] that the E-field or H-field equations are not

sufficient by themselves to uniquely determine the electric current distribu-

tion, J . That is, they each may have non-trivial homogeneous solutions at
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frequencies which correspond to internal eigenfrequencies of the closed con-

tour C. To illustrate this correspondence, consider the TE interior problem,

where the total electric field E inside C must satisfy

(V + k2) E - 0 insideC (41)
t(1

subject to the boundary condition

E = 0 on C (42)-t

This is mathematically identical to the external problems:

o H-field formulation, TM case

o E-field formulation, TE case

Thus, these problems have the same eigenfrequencies. Similarly, for the TM

interior problem, the total electric field, E , inside C satisfies

(V2 + k2 ) Ez = 0 insidq C (43)
tz

subject to the boundary condition

E = 0 on C (44)
z

This problem is mathematically identical to the external problems

o E-field formulation, TM case

o H-field formulation, TE case

Thus, at or near these internal resonant frequencies, the E-field and H-field

matrices become ill-behaved. To remedy this situation, a linear combination

of the E- and H-field equations is formed:

-k nx kS (J - ( k x + i k 1i (45)
- --c n-t -c 9 t
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This equation is referred to as the combined field formulation and it can be

shown [10] that Equation (45) has a unique solution for J for any contour C

at all frequencies as long as a is a positive real number. In matrix form,

Equation (45) is written as

e Be le lie0 l'ie (6
[T + Z+ (46)

for the TM case, and

[T + 3 Zh I I = I + S i (47)

for the TE case. The formulas for these matrix elements are given in Sub-

sections 2.2 and 2.3.

2.5 FORMULAS FOR SCATTERING CROSS SECTION

S SOnce the electric current J is found, the scattered field (E , HS )

is readily computed from Equations (8) through (10). In the far-field,

lrW >> X, there are two quantities of interest which are computed from J .

One is the normalized scattered field pattern. This is simply a plot of

' ES/ES I versus for the TM case and H S/H z I versus t for the TE case.
z zmax z znaax

The denominator is the maximum value of scattered field. The second quantity

of interest is the scattering cross section. For the TM case, this is defined

by the equation [2]

E (r, 
)2

G = lim 2Trr z (48)

z

Using Equation (3) with aej' = 1 and specializing H (2) (kir - r'l) to
O

large r, we obtain

1 f jk(k
k /f k J e -t (49)
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After Equation (15) is used for J this may be rewritten as

V I-~Me (50)

where the tilda denotes transpose and Vme is a "measurement" vector whose ele-

ments are defined by

t M+l

v me W¢  = k P m(t) e Jk(k • r') dt' (51)

t
m

For the TE case we have

H 2

a(O) = lim 2Trr z (52)
Hz
z

Using Equation (6) with bej  = 1 and again specializing H° (2) (k)

to large r we have

S k fJ (t')( "n -) ejk(k- r') dt' (53)

This is also written in terms of a TE measurement vector, V
m h , as

= 1r8T T (54)

where the elements of Vmh are defined by

tm+l

mh k ^ ^ jk(k r') dt'
V (t')(n k) e (55)

inn_
t -
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Note that V and M are identical to the E-field excitation vectors Vih and
- iei
V , respectively, for measurement angle =

2.6 EXACT SERIES SOLUTION

Here the cylinder is defined by a contour C which is a circle of
i

radius a. The angle of incidence will be chosen at i = 0. Thus for the

TM case, the incident field at a point r is expanded as [6)

i jkxE i

Z

= T) Ejkr cos (56)

= r E (kr) cos n(
n=O

Neumann's number en is defined by

1 for n = 0

r(57)

2 for n > 0

For the TE case, the incident field on C is expanded similarly as

Hi  jkx

H ez

(58)

= C n jn j(kr) cos nO
nO

Writing J in Equation (13) in terms of its components on C we have

J = j z +J (59)
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where Jz and J may be expanded in a Fourier series on C of the form

Jz(2) a 2- Za a cos no (60)

and

+ 2 kaccos no (61)
n=l

The coefficients are obtained by enforcing the boundary conditions

on the tangential components of Ei + ES and Hi + HS at r = a. They are given

by [6,11]

a c
0 H (2) (ka) 0 H (2)' (ka)

o o

(62)

a ( jcn 
( j)n

n H (2) (ka) n H (2)' (ka)
n n

Note that, in the above expansion for Ji, = -i.

Formulas for the normalized scattered field pattern are giver by

/V/7 b + 2 b cos no (63)
A0 n
n= 1

for the TM case and

13 = V do + 2 dn cos n4 (64)

n=1
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for the TE case. The coefficients are given by

J (ka) J' (ka)b = od = o

0 H (2) (ka) 0 H (2)' (ka)0 O

(65)

J (ka) J' (ka)
bn (l)n n d (-l) n

H (2) (ka) n H (2)' (ka)
n n

2.7 OBLIQUE INCIDENCE

A plane wave which is incident at an angle i from the x axis and

6i from the z axis of Fig. 2-1 is written in the form

A *

jk(K + k z) r
E E e (66)
_- -- O

where the argument of the exponential is defined by

k = 27r/X = \/T-

k = sine@ cos 'i+ sin ei sin 'I
(67)

k = cos i

r = x +_

The z dependence of the incident field gives rise to a z-dependent scattered

field and it is no longer possible to decouple the z-directed and transverse-

directed components of J . The E-field integral equation is now written as

Si
ESt (r,z) - Ei(r,z) r on C for all z (68)
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which must be satisfied everywhere on C. We define the Fourier transform

pairs

00

E(r,z) = (j k z ) e dk (69)

and

00

S-jk zz
-(rk) \ f E(r,z) e dz (70)

Taking the transform of Equation (68) gives

S
Sr, k,) (r, kz) on C (71)

The scattered field ES is caused by an equivalent electric current J(r', z')

and is written as

ES (r,z) = -jn kJ J G dt'dz' + IV V G dt'dz' (72)

fk kttdzY
C Z, C Z,

where G is the Green's function defined by

jk r r + (z - z ) 2

G(r,z,r' ,z') = e (73)

41T Vr- r2 + (z - Z')2

The V • operator in the second term is taken inside to give

ES (rz) = -JrI k J G dt'dz' + - ffV' J G dt'dz' (74)
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The transform of Equation (74) is

-jk z

CS(r,k) = - -f - ( G e Z dz dt'dz'

V C Z' 00

(75)

+ ( G"I G e dz dt'dz'
C z'

To do the first integral, note that G satisfies

7 G + G -- (r - r') (76)

This is rewritten in the form

72 I!G 272G + + k G - -6(R) 5(z - z') (77)
t a2_az2

where R - (x - x') + (y - y') Y. The transform of Equation (77) with respect

to (z - z') is

(V2 + kt ) G = -5(R) (78)
t t

vhere

Co

l--- oo G e jk z (z  - Z')
G 2 f G e d(z - z') (79)

and

k2 k 2 k 2 (80)
t z
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The solution to Equation (78) is

G H (2) (k (81)
4j 0

Thus we have

f G -JkzZ e-jkz'a (82)
Ge dz = (82)

The second integral in Equation (75) is aided by the identity

j -Jkz -jRkz' ^ ^

Vf G e dz = e V G - j k G z (83)
-) -t z -

Thus we have, after writirg J = J + J J,- -t -

S(r,k) = _ jr' k (Jt + Jz J ) e Gjkz' C dt'dz'

(84)

+ f q Iz G - j k G -]dt'dz'
C -M --

Now let

(t,,k) 1 f J(t',z') e-kz dz' (85)

2-25



and

J(t',z') f- (t',k ) e dk (86)

Expanding the divergence of J gives

7' J (t',z') = j k J (t', z') + (t',z') (87)
z

Substituting Equation (87) into Equation (84), one obtains

_(r~k) = -jn [k f dt' + f (- Z (t',k z)

C C

+ j k z ( t ' k )) -S t G d t 'J( 
8(88)

+z k f Gz 'dt' + f (kf. (t',k
k f z

C C

+ T (-j k) G dt]

Thus putting Equation (71) into matrix form would yield the following:

zz - I -

tz tt --

where the elements of the submatrices, Z, are found from Equation R8).



2.8 CURRENT DISTRIBUTION ON CONDUCTOR DUE TO IMPRESSED
LONGITUDINAL CURRENT

In the preceding sections, formulations were presented for determin-

ing the induced surface current distribution on perfect conducting cylinders

of arbitrary cross section and infinite length. The excitation was taken to

be a uniform plane wave. Here we consider a different type of excitation,

namely, that of a steady-state current which flows axially along the cylinder.

If the cylinder contour C is not circular, the current density on C is dis-

tributed around the contour due to inductive effects. It is this current

redistribution which is solved for here by an integral equation formulation.

The perfect electric conductor C is infinite in the z direction and

carries a total current I amp. Let the surface current density on C beZ

denoted by J amp/m. ThenZ

C z dc = I (90)

where dc is the elemental arc length on C. Since I is independent of fre-

quency, there is no electric field. Thus the magnetic field satisfies the

equations:

7 0 H = 0 everywhere (91)

J on C
/

7 x H (92) /

0 in R and R. (2

Since C is a perfect conductor, H= 0 in the internal region, Ri, shown in

Fig. 2-3. For the region, Ro t H may be written as [from Equation (92)]

H = 7 x A f93)
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Figure 2-3. Contour C Carrying Total z-Directed Current I
z
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where A satisfies

9

7 x 7 x A = J = 7(7 • A) - 7 A (94)

A is in the z direction only and independent of z so

7'A = -J (95)

The boundary condition that H satisfies is [from Equation (91)]

H = 0 on C (96)

This is rewritten in terms of A as
z

= 0 on C (97)

where we have used the fact that n x t = z. The solution to Equation (95) may

be written as

A - - Jz(') Zn Ir- r'! dc' (98)

C

where r is a point in R and r' = r'(c') is a point on C. Now Equation (97)-- O - -

implies that A = constant on C. Thus the integral equation that J satis-Z Z

fies is

_ f J (c) Zn r- r' dc' = K (99)

C

subiect to the constraint of Equatior, (90). K is a constant which depends on

the geometry of C. For a circle of radius a,

I - 00)
27 a" Zn 2a
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Equation (99) may be solved bv choosing K = -1/27. Proceeding as in the pre-

vious sections, we break C up into N subsections. Over each subsection, J

is assumed constant. This is equivalent to using the pulse basis defined

by Equation (15). Thus we have

IN
Jz = I. P (t) (101)

where Y. are unknown coefficients. This is substituted into Eqiation (99) to
-J

obtain

N./2

• / Zn r. t t. ) dt = 1 (102)
j-l f -1

-/2

For computational simplicity, a point-matching procedure is used where the

impulse functions

1 if r is on A.

(r) (103)

(0 if r is elsewhere on C

are used for testing. The resulting matrix equation is given by

[MI = K (104)

where

M Zn r- - t - - dt (105)
ij 2 f i  j 2-

--3

2-30



Equation (105) can be evaluated analytically and is given by

A i [Zn- 2 ~1 if i =j

-Zn (RU RL) - ~---Zn (RU/RL) -A
4 2

M. +j [A___ (106)

if i # j

where the following notation is used:

r. vector from origin to midpoint of A.

r.- =Rx x+R yy= R

-Jx x- y

tt. x +z,

(2 2

RL R + it )+ (Ry + t,)2
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SECTION 3

THIN SHELLS OF ARBITRARY CROSS SECTION
AND FINITE CONDUCTIVITY

Two approximate methods are presented here for computer-aided analy-

sis of field penetration into cylindrical shells. The first method effectively

replaces the shell by an equivalent impedance sheet boundary condition which

results in a modified E-field integral equation. The second method utilizes a

transmission line analysis to derive a surface load impedance to be used in a

loaded body E-field integral equation. The E-field operator developed in

Section 2 for both polarizations is used. The adjective "thin", as used here,

means the shell thickness is small with respect to a wavelength in the sur-

rouding medium but may be appreciable with respect to the shell material

wavelength.

3.1 INTRODUCTION

The primary purpose of this section is to develop some approximate

techniques for computing the electromagnetic scattering and penetration prop-

erties of two-dimensional shells of an arbitrary cross section and having

finite conductivity. Quantities of interest are thus scattering cross section

and near fields inside the shell. The latter are characterized by the "shield-

ing effectiveness" of the shell which is defined here as (1]

FNS
SE = 20 log --- (dB) (1)

FS

where FN S and FS are fields computed at a point without and with the shell

present, respectively.

The original problem is shown in Fig. 3-1 where a plane wave illumi-

nates a shell of thickness d. The shell is made up of material with consti-

tutive parameters w 0, c, a and the surrounding material is free space ("ot Co)
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pd

Incident
Plane Wave

Outer Surface CC

(;;0, 0 'te o urae)

(P 0e, e0

Figure 3-1. Original Problem: Plane Wave Illuminating
a Shell of Uniform Thickness d

The conductivity a may also be a function of position in the shell. The

thickness d is assumed to be much less than the wavelength of free space, "
0

Thus, as far as the surrounding medium is concerned, the shell may be replaced

by a single contour, C. This contour is further approximated by a finite

number of straight line segments ACi for i = 1, 2, ... , NC. This is shown

in Fig. 3-2. The original properties of the shell are accounted for by

assigning to each segment AC. a value of d and a. Each line segment has
i

length Ai. and unit vectors t- and fi such that -i x ni. = . The excitation

consists of two types of plane waves, each to be considered separately. These

are the TE case (z component of magnetic field only) and the TM case (z com-

ponent of electric field only).

A general formulation of the problem in Fig. 3-1 requires the use

of equivalent electric and magnetic currents on the inner and outer surfaces
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c) i I NC

y y

LX

Figure 3-2. Approximation of Shell by Contour C

of the shell. This is given in (2] and will not be discussed here. Instead,

some approximate formulations will be developed which are valid for certain

types of shells. As a starting point, the shell material is assumed to be a

fairly good conductor. If d is also much less than the wavelength in the

shell, Xb9 then an impedance sheet approximation may be used [31. The deriva-

tion of this formulation is summarized in Subsection 3.2 for use in computer

program I. If the frequeaicy is higher, so that d is then comparable to Xb'

the shell material may be assumed to support traveling waves. Here a trans-

mission line analysis is presented in Subsection 3.3 for use in computer pro-

gram 2. Lastly, if the shell is circular then an infinite series solution is

possible using Bessel functions [4]. This is presented in Section 4 for

use in computer program 3. The desired quantity in al three formulations

is the field at points interior to the shell. This may be expressed as an

integral over electric and magnetic currents on C and procedures for this

computation are given in Subsection 3.4. Descripticns of the computer pro-

grams as well as sample input/output data are given in Appendix B.
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3.2 IMPEDANCE SHEET APPROXIMATION

The total field everywhere in Fig. 3-1 is the sum of the incident
i i S S

field (Ei, Hi) and a secondary field (E , H ) due to the presence of the shell.

This secondary field may be generated by an equivalent electric polarization

current which effectively replaces the shell. This current is given by [5]

[jw(c - 6 ) + a] E in S

J =(2)

0 outside S

where E is the total electric field (E + E S). Equation (2) may be rewritten

as

_= + -- 0 E in S (3)

where ES is an electric field operator defined by Equation (8) of [6]. If the

shell thickness d is much less than the wavelength in region b, Xb then one

may approximate Equation (3) by specializing it to the contour C in Fig. 3-2

and replacing the volume current J with a surface current J_. One then obtains

the loaded body equation (7]

k Sk
-E (j) + Z j = oE onC (4)
- t -c --c no -t

where the factor of k /nh has been multiplied through for later convenience.

The subscript t denotes tangential component evaluated on C.

The normalized impedance load ZL is given by

ZL = 1((5)
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which, if C - eo' reduces to

ZL E (6)
L t

This is the low frequency limit used in [1]. Equation (4) is solved by a

moment method procedure as in Section 2 (61 where the matrix equations are

written as

[Ze + z] L e I Vi (7)

for the TM case and

[zh + zh- Th = ih (8)

e h -ie -ih
for the TE case. The matrices (ze], [Z ] and vectors V V are exactly

the same as those in Section 2. The vectors I and h contain the coeffi-

cients of expansion for J in the TM and TE cases, respectively, which is-- c

the same as that used for J in [6]. For the TM case, the elements of ZLe

-c
are given by

kA

0om if m=n

mn

0 ifm#n

where 8 is defined by

6 = Jkd - (10)

3-5



h
For the TE case, the elements of ZL are given by

Ik

3T (Ilm- I +  if m = n

h k A~om
(Z) = 6 if m = n-i (11)

or n+l - NC

k Aono6 nif m = n+l

or n-i + NC

Note that in this formulation J is assumed tangential to C. Any

normal component which the actual polarization current may have has been neg-

lected. This is probably acceptable for the TM case since J is z directed.

For the TE case, however, this assumption is no good unless kbd << I and even

then depends upon the incident field. For example, the configuration in

Fig. 3-3 would produce erroneous results by the above formulation. A more

accurate solution could be obtained by allowing both components of the polari-

zation current [8,9].

T

Figure 3-3. Incident Field Causing Normal Component
of Polarization Current
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3.3 TRAVELING WAVE APPROXIMATION

The problem in Fig. 3-1 may also be looked at as a three-region

problem, where equivalent electric and magnetic currents are assumed to exist

on surfaces C and CI. [2]. This formulation will not be presented here, but

for the purposes of discussion, let "a", "b", and "c" denote the regions out-

side Co, between C and CI, and inside CI, respectively. The total field in

region "a" now may be expressed as the sum of the incident field and a sec-

ondary field arising from electric and magnetic current sources on C . Now0

if the shell is a good conductor, then the magnetic current on C will be0

negligible. Secondly, if the shell surface has no abrupt changes in curvature

[10] one may assume that an impedance relationship exists between the total

tangential component of the electric field in region "a" and the electric cur-

rent on Co . Again, since k d << 1, we replace C and C by C in Fig. 3-2. The
o 1 byCi. i.32 h

condition that Kdl<< d as in Subsection 3.2 need not apply here. Hence, we

write

Ea = ZJ on C (12)

-t :L-o

where Ea is the total electric field in region a. Equation (12) is rewritten

as

_Ea(j)+ZL(j) E on C (13)
-t -t

which is again the loaded body equation of Subsection 3.2.

The load impedance, Z this time will be determined by assuming

that, inside region "b", each subsection of C appears locally planar. Travel-

ing waves are then assumed to exist in region "b" which reflect the impedance

seen at C looking into region "c" back to region "a". Standard transmission

line techniques may thus be used to obtain ZL '

First consider the infinite slab shown in Fig. 3-4 where a local

(u,v,w) coordinate system is used. The electric surface current J exists~--0
everywhere on the plane u = 0 and is constant over all v. This gives rise to
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plane waves in all three regions which have no u components. The electric

field 4s written as

jk au

Ea = A t e(- u traveling ?lane waves) (14)

b jkbu pjk buE = B t e + C t e _+ u traveling plane waves) (15)

I-jk (u-d)

Et . D t e c (+ u traveling plane waves) (16)-t -

The transverse unit vector t lies in the v-w plane. The magnetic

field is obtained from the Maxwell curl equation

E t
n -x-i - -jk T) H t (17)h u

which has been specialized to + L traveling plane waves. Thus we obtain

jk uH aa I ~
H _ __ (n i) e (18)

a

Hb ( t t e-Bj b - C e (19)-t hb L
-jk (u-d)

HC =n t D e (20)-t

.he boundary conditions which must be satisfied are

at
ILb - H] = at u = 21)



E a Eb  at u = 0 (22)
-t -t

Hb = c  at u= d (? )

Eb c
E = E at u = d (24)
-t

Now, s1- e H = - x nx H, Equation (20) is rewritten as

a Hb 

(
-t -t -0 at u = 0 (25)

Solving Equations (22) through (25) simultaneously for the coeffi-

cients A, B, C, and D, one obtains

A = a ot - 2 j r2 sin kbd - 2 cos kbd (26)

a 'ot j~
B - A (1 + r2) e (27)

C n a (1 - ra2  e (28)

D = 0 a t (29)A

where A is given by

= 2(l + r1 r 2) cos kbd + 2 j (r1 + r2) sin kbd (30)
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and r = ra/flb, r2 = nblnc
.  In the above, -J is in the t direction so that

J = J t. In the actual problem, E and H must be continuous across 2 so
--O Ot- -t

the load impedance Z is determined by the ratio
L

n xE [cos kd + i r, sin %d

L Hb sin kbd + cos dJ (31)
-t lu=O 2 os r2

The following limiting cases of Equation (31) may be used when

applicable:

" 1+ j r2 k-bd

rb lr2 + j 2kd kbd - 0

1__ "d - 0 and b <

ad 7b < c

ZL - (32)

-j nb cot kbd Ib< nc

1b !kbdl - and 'nb l <
< r c

The tangential components of field at surface C are given by the

express ions

2 a J e -jk (u-d)Ec = a ot c e 33)

-t -

and

2 jk (u-d)
H c _(nxt) a ot C 34)

-t nC
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These fields may be thought of as arising from surface electric and

magnetic currents at u = d defined by

c a
M E xn(nx J)(5
-i c - - (1 + r1 r2 ) cos kbd + j(r I + r2 ) sin k bd

and

a (36)
- o (1 + rlr 2 ) cos kd + j(rI + r2) sin kbd

Again, as n b << a or ic, we have

bb (3a
MI - ( ×J--) b in

-i J  jsin d (37)

-- -on icsin kbd

In the above, we have assumed that the field in region c is a plane

wave. This, of course, is not exactly true so the approximation will probably

fail unless region c is electrically large. Note that the normal unit vector

n used here is opposite to that used in Figs. 3-1 and 3-2.
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3.4 COMPUTATION OF FIELDS DUE TO TWO-DIMENSIONAL CURRENT
DISTRIBUTIONS

Expressions are presented here for the field at points interior to

the shell, denoted by region c in [2]. For the formulation of Subsection 3.2,

the total field in region c is due to an incident field plus a secondary field

which is caused by a two-dimensional electric current distribution on C. For

the formulation of Subsection 3.3, the total field in region c is due to elec-

tric and magnetic currents on C. In both cases these current distributions

radiate in unbounded space filled with Ii c' Hence, we represent the fields

by a potential integral formula [14].

The actual fields computed are the z components of electric field

in the TM case and magnetic field in the TE case. These are written as

Ec 
Ei

= - • [j k A + 7 x F] (39)lc T1c -- c- -

and

Hc = Hi + Z x A - j k F] (40)Z Z - -_-

where the electric and magnetic vector potentials are defined by

SJ(t') H. (2) (kc  r - r' (t')I) dt' (41)4 j- - o c
C

c C, J ~' H 0 2 ) (k c Ir '(t)) dt' (42)

In the above, the electric field and magnetic current have been

normalized by n for computational convenience. Both terms in Equations (39)

and (40) are used in the formulation of Subsection 3.2 and the last terms
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only are used for the formulation of Subsection 3.3. Equations (39) and (40)

at a point r in region c where r'(t') is a point on C where arc length is para-

metrically expressed in terms of t'. The electric and magnetic currents are

expanded as
!NC he

= Ih T (t) + l e P (t) (43)
n 2l n -n n -n
n=1

NC h e

-n M T, V (t)+V T (t) (44)
c n=l

where P and T are defined by Equations (14) and (15) of [6]. Ih and Vh are
n n n n

complex coefficients for the TE case and Ie and Ve are complex coefficients
n n

for the TM case. Equations (39) and (40) may be conveniently rewritten in

terms of near-field measurement vectors as

c i

E E + (45)
c c

Hc Hi  h + Q h (46)
Z z

where the tilda (-) denotes transpose.

3.4.1 Formulas for Near-Field Measurement Vector, 0

Each element Qn of Q actually represents the electric (magnetic)

field due to a z directed electric (magnetic) current of amplitude 1/nc (n )

with a pulse function distribution on subinterval, C n . The field point is

denoted by r and r' denotes a point on AC . Thus one may write

k fn+l

Q = - c-t) Hn 2 ) (k ir - r' (t'){) dt' (47)

t n
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Let r be a vector from the origin to the midpoint of AC and define R (t') as

IA

R (t') = r -r -- tt (48)n- -n 2 -n

which is shown in Fig. 3-5, where -1 < t < 1. Then Equation (47) may be trans-

formed to

Qn c8 n f H(2) (k c  (n ) ) dr' (49)

-l

The integrand of Equation (49) becomes singular when R (t') - 0.

To remedy the numerical difficulty encountered when this happens, we rewrite

Equation (49) as

Qn =  c8 n f H(2) (kc IRn(t,)ll) dr'

fykc IR n(t' t

+ 2j Zn c 2 dt' (5C;7 2

+ c n f1 Zn Rk c  (t')!

8 T 2
-l

whenever IR(t')I < c for some small number c > 0 and subinterval An The

first integral can be done accurately by a quadrature rule as long as the

integrand is never evaluated exactly where IRn(t')l = 0. The second inte-

gral can be done analytically and the following substitutions are made:

r = xx+y i

= t X + t
-n nx - nV
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Figure 3-5. Geometry Relating to the Computation of Q and P
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• , ~~&-- -
'19I 

... _, : . _ _

r = x x-+ y v
- n n

a = (A n/2) 2

b = -An [(x -x n ) tnx + (y - yn) tny ]

9 2
cn = (x -x n 

) + (y - Yn
)

D =b2 2
-a =2A ( x)(y-yt tn bn nn 2n n n x nv

Then IRn(t')j becomes

IR (t')j = at'2 +bt'+ c

and the second term in Equation (50) is written as

-c An +b +c )(a - b + c
4n n n

b ra +b + c

21 n n -1 n

-i-tann (tan- 
)

for D < 0. If D > 0, D is replaced by -D and tan is replaced by tanhn n n n
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3.4.2 Formulas for Near-Field Measurement Vector, P

The element P represents the magnetic (electric) field due to an

-t (t)-directed electric (magnetic) current of unit amplitude with a triangle

function distribution over the interval AC 1 U 6C . Thus we have

p = 1Z' z xj -(t') H 2 ) (k Ir - r'(t')!) dt'
n - 4 •_n ' 0 .

(52)

k f T n(t') n R(t') (2)C --

R(t) H (k IR(t') dt'

C

where R(t') r r'(t'). This may be rewritten as

( 4 1 + R (tln I (finn~t)l)dt

= 1 c n-l f 2% • t')' H (2) (k !R (t ) dt'

+ -2 -n H(2 (kc IR(t) ) dt' (53)
2 (Rtn ))1

-1

The integrand of Equation (53) becomes singular when !R - 0. The

singularity is integrable, however, and after a similar manipulation to that

done in Subsection 3.4.1 one obtains

S Pn-I 1 Sn-i + P n  Sn(SA
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The P and S terms are defined by

n-i f + R (it)
p -I 2 -7R l- t)

-1

(55)

[, (k, R--i, d
-r c ' -R R (t),

J ;n-1+ x Rn-

Sn-i I n - ( R- !2 - dt (56)

-n-

1

Pn 2 f IR(t)i

(57)

* HJ(2 (k, !R(t);) -()ldt

I ~ -- c --n__ _ _ _

n 3 --n
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The terms P n-i and Pn may be integrated by a quadrature rule with no

difficulties as IR n 0. The terms Sn I and Sn may be integrated analytically

to give

A n-i (1 + t) d n I
Sn-i 2 J 2d'- anI t + b t + dn_

1 n-i n-l n-i

+-l _, _b n -- - (i2 a bnn + cn-

+ d _1n (aI n____l + b n if + n (59)

2 a -l an-i b n-i n1

where d n [t (v - ') -t nyx(x x')], and

n nn ta-y

n\a n -l /2 an

(60)

n Zn b +
n n _n n
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SECTION 4

SHELLS OF CIRCULAR CROSS SECTION AND
FINITE CONDUCTIVITY

When the shell has a circular cross section, the Helmholtz wave

equation is separable in cylindrical coordinates. An expansion of the fields

in each region is then possible in terms of the solutions to the homogeneous

wave equation. The unknown coefficients of expansion are found by ensuring

continuity of tangential fields across the inside and outside shell surfaces.

4.1 INTRODUCTION

An exact-series solution [1, 2] for the penetration fields inside

circular shells is presented here. This is useful in testing the approximate

solutions developed in Section 3. This solution is especially useful in de-

veloping low-frequency approximations to the interior penetration fields, i.e.,

when the overall dimension of the shell cross section is small with respect to

a wavelength. The interior fields are shown to be uniform in this limit and

a convenient equivalent circuit model is valid for the coupling mechanism.

4.2 GENERAL SOLUTION

Consider the problem shown in Fig. 4-1. For the TE case, the inci-

dent field is

jk 0 kr cosHi  e =e

z
(I)

= J jn Jn(kor) e jn

4-1



r]

I-l

incident

EC ,  HC  Plane ,ave

"0 ' '0 O

Ea , H

Figure 4-1. Plane Wave Incident Upon a Circular Shell



The z component of magnetic field in each region is expressed as

H a n aTE j nt i
z n~ H n(k or) e + H

HD b j" in jTE Jn(kD ) + c' Y TE (r]e j n0  (2)

HC c TE J(r)ejnt
z I id n nr en n

where H Wx J W x j Y Wx.

The ( component of electric field is obtained from

E n - z (3)
jk 3 r

Hence

E a j i)I i n (a T H'(k r) + J'( r Iejn

-00

E b nL bTE itTE. .Y(kbr)1 e t(4
b in n kr + cn

Ec = n TE 'kr n
Et o~ d n Jn 0r

4-3



Matching tangential components of E and H at r =al, a0leads to

H (k a -J (k -Y (kba.) 0 aT i(

CJ (k.bal) Y (k-ba) -J (k a b T 0

(5)

H'(k a ) 3'(k,a) - Y'(kbao) 0 c T J( o
nl 00 nlD nO f

0J'(ka ) Y'(ka) -J'(ka) d TE K 1ika
n Dl nj no n

where n b /, 0' This system has the determinant:

\TE = 2 'H(k a ) [J (kal)T +J(kal T~i
nl -tka 1 l 00 o no nil nol' n 12

-Hk a J'(k a1) T2 + 3n (koal) T __

where

T 1  b TkaJ(bl Y'(k a - J'(k a) Y (kbal)
nl 2 KLon l n ba0 n bo 1

T9 Tka (kbao) Y'(k-bal) -j'(k 0 al) Y'(kba)]

(7)

Tn~ = Tka J(kba1 ) y ka) - 3 (k) Y(kba]

Tn) = rkbal ~j(kao) Yn(k,0 al) V J(kbal) n(a)

n22~~~~ 2/j nka)



TE TE
Solving for a nand d n one obtains

Va J-( a [J'(ka) T n (ka,)
nE 7kaa E n o l nll n12

(8)

+i 1)ka J~ol I(ol 2n 0 0 nol T Jnk) I

dTE 4i ; (9)
d TE -r2 k a l ann

These coefficients allow one to compute the total fields external to and in-

ternal to the shell.

In a similar procedure for TM excitation, one obtains: V
jkx C

E- 0 = ~n (k r) iny (10)

The z component of electric field in each region is expressed as

E a n aTIMH n(k or) + i kr]ejnb
z n o nko) e

-z n nn

Ec J T jn?E jn J (k r)ezn n o

The component of magnetic field is obtained from:

3E
H = l2)

jkn r
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Hence:

ajn T. Hk .r) + J'(k r)] e n

0 o n nn

Hb = 1 jn bTM Jn(kbr) + c 1nY'(kbr) e nc (13)

H c = 1 n dTM J'(k r) eJnD
jfln n oo -

Again, matching tangential components of E and H at r a, a leads to
- -

Hn (ka J (kao) - Y(ka) TM

n "a) -3ao )  an Jn(koao)

0 Jn(kbal) Y(kbal) - J (k a b TM 0
nnn ol n -

H'(koa) J -1. Yn(kao) 0 - J'(k a)

n 0 0 n-1 ka n n oonfl0

0i1 1 Y'(kbal) - Jn(koal) dTM L
LJ0n L l , Jn(aL

where again = n/ o .  Comparison with Equation (5) leads to the result that

A ,T an, and d T  are given by Equations (6), (8), and (9) with replaced
n n n

by 1/".
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4.3 LOW FREQUENCY APPROXIMATION

Of particular interest is the case when the shell geometry of
Fig. 4-1 is "quasistatic". This is the case when k a << 1. After using

00
the first few terms in the series for Jn(kor) and neglecting terms of order

n(kor)- and higher, one obtains the following formulas for the fields interior

to the shell:

Hc  dT E + jd E k r cos
z o 1 o

kr kr
Ec -jo dTE k o TE TE oE¢o qdl cos ¢ o2---cos 2¢

o 2 o - d 2  2co

mc  0 z

r jkor ;¢

kr
_ TE TE o 2
nd sin p + jnod T sin2
ol1 o 2 2

Ec  d T M + jdT k r cos ¢ (15)z 0 1 0

k d TM d r  k
Hc o 2 + 1 cos + 2t

0o o  co2 r) 0  2

DEc
Hc =_ 1 z

r jkonr

dTM kor
s T sin 2t

0o2 2
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We see from the above that, when k r << 1, the fields interior to the shell
0

are uniform and are given by:

Hc TE

= dz O

Ec  - d TE (16)

y o0

E =0
x

for the TE case [Fig. 4-2(a)] and

Ec  d dTM
z o

HC = 1_ TM (17)Y no

Hc =0
x

for the TM case [Fig. 4-2(b)]. It is now necessary to examine expressions for

the coefficients do$ dl and hence the determinants A. To do this, we confine

ourselves to shells which are good conductors, i.e.,

(18)
nb  7

COO H1

y

(6) 7E Case Kb) -M Case

Figure 4-2. Interior Fields
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Thus, in general, >> k 0and Kl<1 and hence Jkball and !kbao! will be

quite large. The following limiting forms for the Bessel functions are then

quite useful (31:

As x -~0,

J~x W 
(x)2

x 1 3

J l(x)2

J'(x) -x -

(19)

H (x -2 k~Ln i

+ 2

H 1 2x -T

H'(x) - j

0 2 ,rx

As lXI >> 1 and IxI >> n, we have

(x) - Cos - -(0

y (xW - sin x- -1
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The T matrix elements become:n

Tnl al cos kbd

n12 ya
Tn2  -aolsn d (21)

T n -sin kbd
n21 ya b

Tn22  al cos kbd

where d = a - a1 is the shell thickness. To simplify the results we assume
that d << a or a1 and hence a a1 - b. This can be taken as the mean radius

of the shell. After using Equations (19) through (21) in the formulas for the

coefficients dTE and dTM we obtain

dTE 1
0 k b

COS kd - 2--sin k1 d

TE2 2kb
d 1 (23)
1 2 k b cos kbd + 1 sinld

for the TE case and

TM 1
o k b k b (

0, 0

cos kbd + sin n-2 in

M -- I

-cos k d + kb sin(25

for the TM case.

4- 10



If the thickness d is such that kbdl << 1, then the following low-

frequency behavior for the interior field coefficients is obtained:

dTE I d (26)
0 1-jwo b -

o 2

d Td 1 (27)1 1 d 11+-
2 jwc b

d1TM k (28)0 + Lkb n-- od
I+ ji ( 0b Zn 2 _i

TM 1__ _ _ _d 1 _ b (29)
d~ 0+ 1' - J-T-ad2obj o-- bd

Using Equations (16) and (17), the electric and magnetic shielding

ratios for the two polarizations can be written as

~Hc
H TE

- = d (30)
H i 

0

z

Ec
-- = d E (31)

for the TE case and

E
c

= dTM (32)
E 
i  0

z

Hc
= dTM (33)

y1
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for the TM case. The low-frequency behavior of shielding effectiveness can

then be inferred from Equations (26) through (29). Of Particular interest is

the relationship between the interior electric and magnetic fields as the

frequency , becomes small. For the TM case we find that

Ec  d TM
z o0 n 0 ( 3d

H c r*O0 dTM 0 ib

Similarly, for the TE case we have

Ec TE
--- __--' 0 (35)

H c W-O dTE
z 0

4.4 TM LINE SOURCE EXCITIATION

Consider the thin circular shell of mean radius a in the presence of

an electric line source as shown in Fig. 4-3. The thickness of the shell d

is much less than the free space wavelength and also Xs , the wavelength inside

the shell material. If the latter is true then we assume an impedance rela-

tion between the total electric field Ei + Es and the electric current J at

r = a where:

E = the secondary field due to J

E i field due to the line source in free space

J = unknown electric polarization current
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INV-

K

Figur 4-3 Thi Shel inthe resneo ieSuc

ThisurelationTi exSed astePeec o ieSuc

-E S(i) + Z E (36)
-t - s ti -t

where Z tis the surface transfer impedance given by 1/(jw~(c - ) + 7~)d for

this case. The secondary fields are defined by

E s(Q) -) 0 I a JWP) 11 (2 (k Ir - r'I) dt'
--4 f o o0

0

(37)

2I.
ri 77a JW) H (2 (k 'r - r'I

0
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and

2,r
s _ 1(2)
H(j) 7 . cxf a J(P') H (kr-rI)38

0

Equation (36) will be solved by expanding J( ') in a Fourier series

in p' and specializing the result to the quasi-static case (W - 0). The

incident fields are given by

Ei = 11 n0H(2) (k Ir - R 'z 4 0 0'- --

Hi = - k 11 H(2) (k RI1)
x - R (k - _

(39)

Hi = 0 S 1(2 (klr-R )

Ry( R 1 2-+y

with respect to the coordinates of Fig. 4-3. Equation (36) becomes:

kOo 21f a J(W) H1(2) (k_ db'

0 (40)

+ Z 1Gw 1 -2)~I (k r R)
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The following addition theorem is now useful [3]:

00 H(2)(kor') J (k r) e jn(- r < r'
n 0 n o

H( 2 ) (k_ - r (41)
0 0

J Jn (kor') H(2 ) (kor) ejn( 0 
- ¢')r > r'

The Fourier series representation for J is written as

0= c e j n '  

(42)
In

_co

Substituting Equations (41) and (42) into Equation (40) and using the orthogo-

nality of e j n  we obtain:

0I k H(2) (k R ) J (K a)
4 n 0s no (43)

Cn k aT

02 H (2)n (k a) J n(k oa) + Z'

where Z' = Z /qo . The total field inside the shell is of interest and is
st 0

obtained by adding Es and E for r < a. Thus we have

Ec  Es +i I k 0 r) H (2 )

E E = E H (k R ) J (k r)
z z z 4 n n os n on=o

(44)

k a

0 ( ) H 2  ka
H (k a) J (k a) + Z'

n 0 n o
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This gives the correct result as Z' - 0 for a perfect conducting shell
for n = 0 and 2 for n > 0). Using the formula

i (k r') J (k r) e r

(o)H- (ko r- r') = (j4S)

H (2 (k Ik -' r',
0

we obtain the total H-field insid, the -,nc1

I k (x-
Hc = ")

n = ,

[ ~ Z cos no~

H ( (k a) Jn(k a) + 7

nl 0 nl

I k

(:7

[ka

As the frequency 0, the current is approximat1' c''(2,T

1c 
_ ______

4 - S
z-

2 - n o n)4

- 7 - - " 1 h'

a 72 +' s - t d __ s t
I. -- - -- 7- - - -n



where

Ta C o
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SECTION 5

DIFFUSION COUPLING MODELS FOR LIGHTNING AND
NUCLEAR ELECTROMAGNETIC PULSE

In this section, models for the threats of nearby and direct light-

ning strikes as well as nuclear electromagnetic pulse (NEMP) radiation are

postulated. The diffusion coupling formulas derived by Kaden [1,2] are used

to obtain internal penetration fields for homogeneous shells. Modeling the

excitation time waveform as a dcuble exponential, an inverse Laplace trans-

form is performed as in [1] to obtain the interior fields as a function of

time. These fields are then used to excite transmission lines which reside

inside the shell and form the basis of the computer-aided design (CAD) pro-

gram discussed in Appendix C.

5.1 INTRODUCTION

In the near strike case, the lightning is modeled as a tube of

current parallel to the axis of the shell. It produces a transverse magnetic

field which penetrates the shell by a diffusive coupling mechanism. The time

derivative of this penetration magnetic flux density interacts with a circuit

loop area or an equivalent transmission line area to produce a voltage drop

across the circuit. At sufficient distances from the lightning current column,

the electric and magnetic fields are related by the impedance of free space.

For the case of radiation from a nuclear electromagnetic puilse (NEMP),

the incident field is taken to be an incident plane wave. This is exactly what

the near strike excitation produces far from its source. The main difference

between the two is the frequency content in the spectrum of the incident fields

where that of NEMP is much higher. Thus the same diffusion coupling formulas

apply for NEMP fields as for the near lightning strike case as long as the

shell cross section is electrically small for all frequencies of significance.

In the direct strike case, tie lightning curren- waveform is assumed

to distribute itself uniformly about the outside of the shell surface and is

in a direction parallel to the axis. It gives rise to an electric field on
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I 4 the interior of the shell via the surface transfer impedance which is in the

sav-e direction as the lightning current and uniform throughout the shell.

This electric field gives rise to voltage drops along current paths which lie

along it.

5.2 NEAR-STRIKE LIGHTNING

The situation of a lightning bolt striking near an aircraft is shown

in Fig. 5-1. The bolt is modeled bv a cylindrical tube of current whose time

dependence is assumed to be given by

I(t) = I° [e - e ()

where

4 = 1.7 x 10
4 S -1

3 = 3.5 x 10 6

I = x 10 amp

Shell Axts

A;rcraft -- -
Shel 

/,_

_/7-nt,

Figure 5-1. Near-Strike Lightning Situation
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which are nominal values. The physical length of the bolt will be assumed

much longer than the aircraft and the end effects of the clouds are neglected.

The bolt, now considered as an infinite tube of current as far as the aircraft

is concerned, gives rise to ¢ directed magnetic field lines (because of svm-

metry) with respect to an axis along the bolt. At a point R in the absence

of the aircraft, the magnetic field is given by

H(ext (t) I(t) (2)

2r R

which is actually nonuniform. If the aircraft shell is small, however, the

external field is usually considered to be uniform over the shell cross sec-

tion and R is some mean radius from the lightning bolt to the shell.

The spectrum of Equation (1), and hence Equation (2), is shown in

Fig. 5-2. It is flat out to approximately 2.7 kHz where it rapidly decreases.

Thus, a low-frequency analysis (neglecting the term jw c E in relation to oE)0 int
may be applied to the shell to find the internal magnetic field H (t). The

result is given irt the frequency domain by

Ts = Hi n t (s) 1 (3)
Hext (s) cosh z + ,z sinh z

where

Rin t (S) = spectrum of the magnetic field inside shell

He x t (s) = spectrum of the magnetic field in the absence

of the shell

td = diffusion time = vo 2

= l/d x volume to surface ratio for nonmagnetic

= vo) shells
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The spectrum of the incident field is given by

Hext (S) = H (s) s0 (cc + s)(o + s) )

where H. = 1 /27TR. The spectrum of the internal field is

H int(s) = T(s) He x t (s) (5)

and H in(t) can be found by simply taking the inverse Laplace transform of

Equation (5). Thus, we have

HHint (t) H f- e ds
2rj (cosh z + 'z sinh z)(cc + s)(5 + s) (6)

K-j-

where K is an arbitrary constant. It is simpler in Equation (6) to use the

transformation

Z = t(7)

to obtain

2mt Z t/td

H in(t) ( - a) z e dz
Ho (cosh z + rz sinh z)(atd + z)(3td + z-)

~(8)

where 2 is a closed contour in the complex plane [1]. The integrand in Equa-

tion (8) has simple poles at

z = J n (9)

where cot X =
n n

z= +. (1 )
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and

z -- +j

The poles along the negative Im(z) axis are discarded due to physical reasons

and the contour of integration is the same as that in [1]. Thus Equation (8)

may be computed by computing the residues:

Hi(nt't) 2(3- a) td [R. + RS + Ro + R ] (12)

2

lira (z- j V~d~z e z t/t d

zj ed (cosh z + z sinh z)(z 2 + td)(z + Std )

(13)

-at
e

2t d ( - )(Cos V d- sin ad

e2
lim - j V t e z2 t/t d

R 3 = jva--
d (cosh z + Fz sinh z)(z 2 + td)(z + t d)

(14)

e

2td(a- 6)(cos St d - sin fTtd )

2

R l im 
(z - j 0 ) z e 

z  

1
t  t

)
d

0 z- JXo (cosh z + :z sinh z)(z 2 + t d )(z + 5td
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Using L'Hospital's rule, the limit in Equation (15) becomes

-2ot/t
d

e 0 d

R 0 0 (16)
(cXtd X2)( 5td - X-)(l + + (CA)2) sin X

The same thing is done for R . Now, usually, >> 1 for the shapes to be

considered. In this case

1

(17)

X = nT (n # O)n

This allows us to simplify R and R , thus giving:O fl

Hin t (t) e e3t

0 cos Vd - V d sin td cos V~d - si

+ a) td (18)
(1 - 'O t t d ) ( l - t d )

2 2

2 *a) t (-1) -n 27 t/td
_ _ _ e

+ 1 2-

n=l (n TT - Ottd)(n TT - 3td)
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For voltages induced in loops or transmission lines located at

points inside the shell, it is actually the time derivative of the internal

magnetic field which is important. This is given by

H int(t) eBt ie

Hcos - sin cos - / d sin

(Ba) ed( - t)( e (19)

22-nT t/t d

2(a -±) (1) n d

n~l n 2 2 2 nd2 1 -- 2

n n

Alternatively, one may obtain Equation (18) by convolving the im-

pulse response h(t) [1] of the shell with the excitation of Equation (2).

This is written as

int extH (t) = h(t) * H (t) (20)

where

h(t) 0 d fe-t/Etd + 2 (-)n e )2 t

Etd  - (21)
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The result is given by

intH 0I t
H (t) = ee) -e d i)) 1- e

d 2

+ 2 n n n  -e t - e d(22)

0n 2r2 11
( n =1) (n)(e ) - 04 eed

td

which is equivalent to Equation (18). From Equation (22) the initial values

are easily seen to be

H int(0) = 0

(23)
in tH (0) = 0

5.3 NUCLEAR PULSE EXCITATION

The situation of an incident plane wave radiated by a NEMP is shown

in Fig. 5-3. The external field time dependence is assumed to be of the

form [3]:

He x t  = H (e - e-  ) (2/4)
0

where typical values are given by

H - 154 amps/meterO

b0 -i
A = 6.3 x 10 s

3 = 1.89 x 108 s
-1
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H ext

Eext

E: f

Aircraft Shell Cross Section

Figure 5-3. NEMP Excitation

This is essentially the same as Equation (1) except that i and f here are much

larger. This accounts for the substantial increase in spectral content of a

NEMP waveform compared to the lightning case. The spectrum of Equation 24)

is shown in Fig. 5-4. Although the frequency content in Hext here is much

higher for the near-strike lightning case, the formulas in Subsection 5.2

can still be used if the overall dimension of the shell is small.
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5.4 DIRECT-STRIKE LIGHTNING ATTACHMENT

We assume here, for simplicity, that the attachment current dis-

tributes uniformly around the shell cross section shown in Fig. 5-5. The

actual distribution can be found by the method of Subsection 2.8. Thus, the

surface current density J is approximated by
S

J (t) = I(t) (25)
s C

where C is the shell outside circumference and 1(t) is given by Equation (1).

Coupling to the inside is effected through the surface transfer impedance Zst

Thus, the internal electric field is in the same direction as J and is given
S

by

E int(s) = Js (s) Z st(s) (26)

in the frequency domain. Z (s) is given by
s t

z (s) = (s) (27
st sinh y(s)d

where

n(s) = (s = jw)
V/a

Y(s) = sTIa

2
Now we let td = wad and the inverse transform of Equation (26) is written as

i K+j I(s)

E int(t) = ud C 27j f e ds (28)

where K is an arbitrary real constant and Equation (25) has been used.
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To find the step response, let

I t>O

I(t) =

0 t < 0

Then I(s) = I Is. Equation (28) then becomes

I f (t) = 2 e dz (29)
int c d C 27j sinh z

where the substitution s = z2/t d has been used and - is the contour shown in

Fig. 5-6. The 'ntegrai in Equation (29) has simple poles at zero and at

z = jn ; n = 1,2,.,.n

The integral in Equation (29) is thus equal to

2,7j R (30)

where

R = 2
0

-(nr) t/t dR = 2(-i) n  e
n

Thus the step response is given by

stept 0 i 2 (_()n 31
int t) C 1 + .23

n=l

~~ ~5 I1!," '



Im z

Re z

Figure 5-6. Contour in Complex z Plane for Computation

of Integral in Equation (29)

The impulse response, obtained by differentiation, is given by

2 -(n)- t/td

Eimp(t) ()n (n) e (32)
int (d C tddn=l

Equation (31) is the same as that abstracted in Apoendix B of [41

which was for the voltage measured between longitudinally spaced points on

the interior surface of the tube due to a current scep function.

Now the lightning waveform is modeled by

1(t) = I [e -  
-

-  
, t 0 (33)

whose spectrum is given bv

1(s) = I (34
js)+S + S)
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To get the response to Equation (33), we substitute Equation (34)

into Equation (28) and obtain

E. (t) 2 1C0n( td zh 2+ 2 2/ dz (35)
int adCr' fsn (tda + )(2 tda + z 2

where simple poles occur at

Z n =Jn7T n 1,,.

and r' is shown in Fig. 5-7.

IM z

Re z

Figure 5-7. Contour in the Complex z Plane Used to
Compute the Integral in Equation (35)
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The integral in Equation (35) is given by the sum of its residues:

r 1
27rj R + R + 2 Rn

n-1 J

where -citRe -&t1
=2 sin 0- a)Vxlt

e-R t 1

2 sin - (a - )

e- (nt) 2 t/td

R(nit) e2
(C td - (nw)2 )(td - (n7)2)

Thus Equation (35) can be written as

E () = '~e-t et

mt dC sin sin

L (36)

2

2 a ) t (-1) (n)2 -(nt) t/td 

ni (atd - (nt) )($td (nTr) I
From [5], we have the sum:

S cos nx = IT cos (x- iT) aS n~ 2 - 2  
2 2a sin T'a

n-l n a 2a

so that

dS n sin nx aiT sin (x-7_) a

dx 2 2 2a sin 7a
n-l n - a
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and

d2S n2 cos nx ar cos (x- 7t) a
2  n 2 2 2 sin ra

dx n-i n a

Now let x = Tr and we have

ar - C n2 (_)n
2 sinira 2 - 2

n-l n - a

or

O n 2U ( (nr)
sin u 2n-l (nir) 2 u2

Thus we also have

_ad0 2 n
-2 T, (n") (-i)2

sin itd n-i Oltd - (nit)

and

- 2 C (-i)n (nT
r) 2

sin rn- td - ( 2

2 2Now let x na a td - (nr) and xn$ =td - (niT) then Equation (25) becomes

-(n )2 t/t
2 1 2 e-at -Bt (x -xn)e dEin(t) od- (_,)n (n r)2  + Xa X

n-l Xna XnB Xna n8

2  -at -(n7T)2 t/td -at -(nT)2 t/t
n 2 -- e e -- '- 1 (-1)n ( n 7t ) 2

d nl X na xnS

(37)
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This can also be derived by convolution and is identical to the

voltage response derived in [4]. Thus the voltage drop per unit length

inside the tube wall along the tube axis is given by

E e - eEnt) C sin vr-w d s in yrlad

mt ~ d(38)

(nT) 2 t/td
+ 2 -B~ d I -) t

n-1 (nT)2  1 'td 1 -
(nr) (n)

2
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SECTION 6

INTERIOR FIELD RESULTS AND APPLICATION OF LOW
FREQUENCY COUPLING MODELS

6.1 RESULTS AND APPLICATION OF MODELS

Computer programs were written for the E-field and combined-field

formulations presented in Section 2 of this report. These are documented in

Appendix A where sample output is given for a cylinder of circular cross sec-

tion with a radius of 0.3828m. The frequency of the incident plane wave is

300 MHz. The TE and TM surface currents of the two formulations are in excel-

lent agreement at all points on the cylinder contour. An additional check is

provided by the exact series solution where a computer program along with

sample output is also documented in Appendix A. Electric surface currents

and scattered far-field patterns for all three methods are in excellent agree-

ment. Several examples of surface current density and scattered field patterns

may be found in (11, (2], and [3], so no plots of these quantities are pre-

sented here. The main purpose of Section 2 is actually to provide the various

E-field impedance operators necessary for the shell penetration formulations

of Section 3.

An excitation other than an incident plane wave is considered at the

end of Section 2 in which a longitudinal-directed current is assumed to exist

on the contour C. This is used as a first-order simulation of a direct-strike

lightning (DSL) excitation. If the contour C is not circular, the surface cur-

rent density is not constant and distributes itself around C inductively. A

computer program is documented in Appendix A which is used to compute this

distribution. An example of a computation for this excitation is shown in

Fig. 6-1 where the cross section of a fuselage station [4] is considered. The

numbers near the dots on the contour identify the center of each Aj, j=l, 2,

28 (see Fig. 2-2) and the numbers with arrows pointing to the contour

indicate surface currents computed at that point. Numbers in parentheses indi-

cate currents computed in [4) by solving Laplace's equation in a finite region

surrounding C with the effects of three symmetrically placed return conductors
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included. The integral equation solution of Section 2 in effect has the return

path at infinity. This accounts for the difference in results obtained by the

two methods. Note that the current distribution is symmetric about a vertical

centerline of the fuselage section so that only half of the data is shown in

the figure.

Computer programs using the impedance sheet approximation of Sec-

tion 3 and the exact-series solution of Section 4 for a lossy shell (i.e., a

shell wall material having finite conductivity a) are documented in Appendix B.

Thes, programs compute an internal z-directed electric field for the TM case

and magnetic field for the TE case. Some sample plots of shielding effective-

ness (defined by Equation (1) of Section 3) are shown in Figs. 6-2 and 6-3

for a shell of circular cross section. As expected, the impedance sheet

approximation gives excellent results in the TM case when compared to the

exact-series solution. This comparison is shown in Fig. 6-2 for different

conductivities and over a large frequency interval. Here the exact-series

solution is represented by the solid lines and the impedance-sheet integral

equation solution is represented by circles. The latter becomes suspect at

frequencies much higher than 108 Hz because the number of subsections with

which the circular contour was approximated was held constant (NC = 16 for

all frequencies). The TE comparison shown in Fig. 6-3 is not as good because

for this case there are transverse-directed components of polarization current

whizh are neglected in the impedance sheet formulation.

The results for the TM case indicate that the i-directed incident

electric field is effectively not shielded at all as the frequency becomes

low. This can be seen from the impedance sheet integral equation where the

vector potential term becomes negligible as w0 and hence J - E /Z . The TM
z zL

case is somewhat pathological at low frequencies because theoretically no

charge separation can occur to create a icattered electric field which tends to

produce zero total electric field inside the shell as occurs in the TE case. A

physically realizable shell will always have a quasi-static charge separation

at low frequencies and thus will tend to shield an incident electric field

(more than the TM infinite cylinder result would indicate). As expected, the

magnetic field is essentially not shielded at low frequencies regardless of

the polarization considered.
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Results for the traveling wave approximation to shell penetration

developed in Subsection 3.3 are not presented here. A computer program was

written which incorporated this formulation but was found to give questionable

results at low frequencies. This is because the relationship between the tan-

gential electric and magnetic fields just inside the shell is not given by the

characteristic impedance of the material inside the shell. This assumption

essentially neglects the inductive reactance caused by the shell geometry which

is seen by the electric current used to excite the equivalent transmission line

model. The traveling wave approximation, however, does give reasonable results

for higher frequencies at which the shell cross section dimension is electri-

cally large.

The various computational methods presented so far allow one to ade-

quately determine the interior fields which penetrate a shell at particular

frequencies of an external steady-state electromagnetic field. Thus if the

spectrum of the excitation is known, one can characterize the spectrum of the

interior field. In Section 5, some expressions are derived for the interior

field spectrum, given an assumed external field or excitation. If a low fre-

quency assumption can be made concerning the excitation spectrum, then the

interior field can be obtained as a function of time. It is also assumed to

be uniform in space over a region which encompasses the shell cross section.

The computation of these interior fields which are due to a nuclear electro-

magnetic pulse (NEMP), near-strike lightning (NSL), or direct-strike light-

ning (DSL) as they are modeled in Section 5 are performed by the computer pro-

gram subroutines which are briefly described in Appendix C.

Figure 6-4 shows plots of internal magnetic fields for various lossy

cylinders when exposed to an NSL excitation. The lightning current is 100m

from the shell and is parallel to the shell axis. As expected, as a, d, or

the volume-to-surface ratio is increased, the rise time of the responding

interior field increases. This can be seen from the equivalent circuit ana-

logues to the coupling mechanism. Inside the shell, a circuit or transmission

line -9 exposed to the interior field. A worst-case situation is assumed where

the effective area of the transmission line or circuit is maximally coupled to
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the transverse component of magnetic flux density. Time derivatives of in-

terior and exterior NSL fields are shown in Fig. 6-5.

Using the transmission line excitation formulas developed in [5],

the open-circuit voltage and short-circuit current measurements made for a

given loaded transmission line configuration may be computed. An example of

these results is shown in Fig. 6-6 where the interior circuit consists of lOim

of RG8-A along the cylinder shell axis terminated in a 20-ohm load. The product

of the above quantities as a function of time gives an upper bound on the instan-

taneous transient power possible across the terminals of the load. An example

of this is shown in Fig. 6-7. Various parametric curves are of interest from

a computer-aided design (CAD) standpoint so that elementary circuits may be

constructed which minimize the possibility of component burnout. Examples

of these are shown in Figs. 6-8 through 6-11. This type of parametric repre-

sentation is discussed in more detail in [5].

As mentiored previously, the main difference between NSL and NEMP

excitation is the spectral content of the two, that of NEMP being much higher.

Some representative interior field coupling examples for NEMP are shown in

Figs. 6-12 through 6-14. Note that the time scales are now different and the

high-frequency resonance on the transmission line is visible.
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APPENDIX A

PROGRAMS FOR PERFECTLY CONDUCTING CYLINDERS OF

ARBITRARY CROSS SECTION

The purpose of this appendix is to define the necessary data cards

required by the E-field and combined-field programs. The main program seg-

ments are listed in Subsections A.1 and A.2. A program to calculate the

exact series solution is included in Subsection A.3. The function subprograms

and matrix element subroutines are not explained in detail.

The first thing one must do is approximate the contour C of the

cylinder by a finite number of straight line segments. Best results are

usually achieved when A < O.l which puts a limit on the electrical size of

the objects considered since matrix methods are being used. An example of

approximating C is given in Fig. 2-2. Note that the contour need not be

closed for the E-field formulation but must be closed for the combined-field
• Hi

formulation. The excitation is such that the incident magnetic field, H , is

equal to unity at the origin. This is done for both polarizations.

Data is read from data cards in the main program according to the

format statements:

100 FORMAT(615)

101 FORMAT(2E20.7)

102 FORMAT(6E11.4)

The data cards appear in the sequence shown in Table A-I and are defined as

follows:

NGQ = Order of Gaussian quadrature formula
used to approximate integrals

A(i), T(i) for = Weights and nodes, respectively, of
i = 1,2,..., NGQ Gaussian quadrature formula

(divided by 2)

ITM - integer option 1 1 for TM case

= 0 bypass TM case
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ITE = integer

option 1 for TE case
0 bypass TE case

ISC = integer
option 1 for normalized scattered field

pattern to be computed

NX Number of angles at which plane
wave is incident

NP Number of points at which scattered
far field is computed

PHIO First angle at which scattered far
field is computed

DPHI = Increment, in degrees, at which far
field pattern is computed

PHI1 (i) i - 1,2,... ,NX = Angle of plane
wave incidence measured in degrees
counter-clockwise from x-axis

AMU Permeability of material in which
cylinder is imbedded

EPS = Permitivity of material in which
cylinder is imbedded

BETA Used only for combined-field
program

(xiY i) for

i = 1,2,... ,NC+l = x,y coordinates of end points of

straight line segments

NFR Number of frequencies of incident
plane wave to be considered

FMC = Frequency in MHz (read NFR times)

The three programs were run for a cylinder of circular cross section with a

radius of 0.3828m at 300 MHz. The results follow each program listing.
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Table A-I. Input Data Card Sequence

Format Number Data Punched on Card

100 NGQ

101 A(l), T(1)

101 A(NGO), T(NGO)

100 ITM, ITE, ISC, NX, NP

102 PHIO, DPHI

102 PHI1 (1)

102 PHI (NX)

102 AMU, EPS, BETA (only for
combined-field program)

100 NC

102 xl yl

102 x 2 Y2

102 'NC+l YNC+1

100 NFR

102 FMC (NFR times)
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The various subroutines and function subprograms needed by each

program will not be described in detail. Instead, they are shown in Table A-2

corresponding to the computation for which they are used. The variables which

are stored in common blocks are defined in Table A-3.

Table A-2. Subroutines Corresponding to Computation

Equation Number

in Section 2 Computation Subroutine

pp 2-5 to 2-7 x-y components of CDATA for E-field
CDATACF for combined-

tm '-m R mfield

(22) elements of [Ze ]  ZMNE

(26) elements of [Z SZH

(27) elements of ie TMX

(28) elements of Vih TEX

(33) elements of [Te ] TMNE

(36),(37) elements of [T STH

(46) Vie + ie TMXCF (for
combined-field)

(47) 6Vih + ih TEXCF (for

combined-field)

50 VITT TMS for TM case
54 TES for TE case

-- H (x) HANKO2(X)
0

-- Hl(2)(x

H H1  () WHANKI2(X)

(23) a(z) ALPHA (z)

-- Solve Ax = b DECOMP and SOLVE

for x

Solve Ax = b GELS

for x when
A is symmetric

J n Yn BES for exact

series solution
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Table A-3. Common Block Variables

Block Variable Meaning

GQI NGQ Order of G-Q integration

A Weights/2

T Nodes/2

cuv ULX •

ULY

NC NC

C RCX R x

RCY R--u

DC A
m

CK RKX k RCX

RKY k RCY

DK k DC
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A.1 E-FIELD PROGRAM

1* C -------- MAIN PRI(iOAM r1 CIMW'JTYNG !NOUCE~i ELCT~e

2. C 5N TA wI-ENSIPNAL. CINOUCT!NG -)A~S
3. C USES E-rICLD INTEGRAL EI'JATTIN

5. COMPLEX Z(lO!0)pVM(500)
6. C-9MPLEX ZMNE.SZH
7o C5MMIN /CUV/yjLX(6O)PULY(t6o)eNC/C/qCXc O),'CY(r') .C(4-t

9. COMMON /CK/RWX(60).#RKY(60)jO ,)
10 DATA PI/3* 1 4i593/
11 0 C -------- READ IN A,,1 PRINT qUr INPUJT DATA
12. ioo r5RMAT(6I5)
13. 101 CORMATr;? 2 02Q.
14. 1102 P1MAr(6Ell*k,
15. READ.)1O5*1CO) NODQ
160 READCIO5,lClflA(I),T( I)sPlujs'0)
17o 9UTPUTiNGO

19 UTPUT, ITM, I1E I SCNX, Nw
200 REAU105s102) PWIOADPHI
21. 1UTPUTPHI3,"nPHI
22.* D 4 Is1aNX

25. 4 CONTINUE
?6. qEAD(105#1021 A"UEPS
27. JUTPUTPA'lUpEDS

2se CALL CtATA(ImC)
?9. REAU(1O5P1Q00 NFR
30. D5 50 'u1'F
31o qEAL)(lO5s1o2) r-C
32o wITE(l09p3J,)) F4'C
33. A~u2.*PI*FCSRTAM1U*EHS)*1 .-- 6
34. DO 5 I.1sNC
35o cI(X(I)uRCXCI,*A<

37. D(~D()a
39o 5 CONTINUE

40.# C-------- F5RM UFPPEP RT. TRIAN(.iE '3; T%1 7 -'r!?IX.
41- u
42o DO 1 INwulNC
43. 09 1 IMSI,!N
44. Z(K)uZMNEC?!. "J)
45. al
4~6o CONTINUE
'+7. C-------FIRM TM EvCITATI'k' VECT5'RS,

48. CALL TMXVMOWIIPNX)
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49, ------ -S!LVE FI N13 4"AL.IZE Ym ELECT~R: --JP-lE\TS.

31* CALL GELS(VM,Z#NCPNX#MR2

53. 0 2 IsINX

55. ARITEC109s20i)
56. ') 3 JnlNC
:570 VmMuCAS(VM(<))

-3g. ARLTE(j0gp20,P) JVM(K)pV4
59. ul

60 3 C5NTINUE
610 2 CONTINUE
'S20 IFISC*El~olI CALLTM vMNi ,N1, 1N,

64, 201 CURMAT( ' ',6y,' 0ULSE .,1X
659 2.02 Frl RAT(l ',Ii5*5X,3EI596)
56. 30 IF(ITEeNE*1) '05 TO 60

68. <81
69. IS*leIDO
7C* :)a 31 I\N. I3,\C
710 7) 31 I~muI3,!N

75. ? C5NrINUE
76o COP------- F R TE EXCITATIIN V LCTIRS.
77o "ALL TEX(V"#OHII,NX,1DC)
784 C -------- SeLVE FOR N53MALIZED TE CURRENTS.
79o NFaNCoI9.*1

~1'-*ALL GELS(v",Z,NJPNX,MR)

~3. d 32 Ia1lhX

960 'Ile 33 ix 15,Nc
87. v/mmxsS(V4(4))
;* WRI rEc 1182U,3) J,V' IiK,,M

49. KaK"1

g. 33 CtNTINUE
91. ; CNTINUE

92. IFC ISCoEq.i) CALL rES(VMpNXPHIIDHTn#.H!,N2,!,o,
939 050 CONTINUE
934. 0 ;0 CNTINUE

97- 3c? C5lT'''rR;EC 13 PLANE AAVE a.,I~j5o7#lY,,M1wZL'

98. TO
99. END
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Sample output data is:

RUN
NGG a 4
ITM a 1
ITE a I
ISC a1
NX aI
NP a 4
PH[3 a .000000
UPHI a 90*0000

PHIICI) a .00o0o0
AMU a 1.2550OOE-06
EPS - 8*950003E-1?
-Net .9F STRAISWT ..INE SEG'IENT$ AMPPfIXI".ATING C 24

JL~X LLY RC ;CY D

:*13011: Co -99t5E oc o3763E n0 -*49555E M .19 O
*3833E CC -99216E 00 03506E. 03 -e1452E 00 *93E.00
*.6685E 00 --7916E 00 e301JE 30 --2310E 10 *q9931 -0 i
007936~E 00 -.6oR5E 00 *231QE 00 -93011E 10 oq993E-r)I
we9?36E 0 -938?3S~ 00 614'52E 00 --3506E 00 #9993F-01
.09915E 00 -.13o1E 00 *4955E.01 -93763E In .995F-l
009915E 00 *13P)IE 00 -94955E.01 oo3763E 00 *9957-il
099236E 00 *38?3E 00 -014+52E 00 -@3506E 00 93993F-0!
.7936E Cc *f6095E 00 e*2310E 30 -*3311E no -9993F-01

0#6095E on 97936Eo 00 *3011E 30 w*31oE 00 *9993E-ni
w.3833E 00 -9216E 00 -03506E 00 -*1452E 00 9993-014
0,1301E 03) .9915F 00 -%3763E 30 --455EOO1 *995E- 0

e13j1E 0t3 -9915E 00 w*3763E 00 *4955E01l *19En
93833E 00 *9236E 00 a*3506E 00 914~52E 00 *9993P_-0i
*60SSE 30 -7916E 00 -'3011E 00 -231CS 00 @1993E-""
97936E !,, 609'E 00 00231O0. 00 e30JIE 00 e99r43E"11
99236E on *38?3E 00 -01452E 30 93506E 03 eq993E-O!
s9915E )o s1301E 00 -.4955E-31 *3763E 00 *9995E-l!
#9915E 30 -.123f~lE 00 *4955E-01 *3763E )0 *1995r.31
-9236E 0,1- .38?37E 00 01'.DE 30 -3506E 00*99Fn
*7936E -0 096CR5E 00 0231CE 00 #3011E 00 *?993S-''%4
.6o35E 3- o*0916E 00 *3o1jE 00 -2310oE 30 -9993;7-01
#3833E oo -*9216E 00 *3506L 00 e1452E 00 9993;7-01
*1301E 01 *.99 )F 00 o3763E 30 t495E-1 *1995P-o

*CLOSED Cl %QTIUR, IDC a 0
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FREOUENCY IF PLANS WAVE * looD 013 %""4!

O'JLSE Nee. REAi- A-)*

1 *292c5E ol .167Q93E l * ?n5 4 9E :)
2 0989257E 00 0179114E '1 *iqR979E It
3 0-188392E oo '178t66E oi .795r':
4 .604297E 00 *1401?6 '1 .1527840' 01
5 *107315E C1 *6091347 1 *1?3366F 01
6 *916412E 00 *.2?5?l7E 010 .943701E 00
7 .3237Q7E 00 mob91796E 00 -670731F :)I
8 0,178'497E co -*426P-60E 00 -462139F 00
9 0929C814E 00 .. 76196RE-01 *300640E 00

10 0*14P750E 00 #102149E 00 o175533E 00
11 01570P9E-01 o76441FE-01 *7203001
12 9860208Eool oe0l?91E0 2 9860533E-01
13 *86o3i '6E-ol *21503E-02 GR60552; -O1
14 91570~,5E*,Ol *76440E-oo 97S03745 -I1
15 ool42748E 00 *102147E 00 .175531E on
16 09?906'16E 00 o*761544Ew01 .300641E 31
17 o*178457E 00 0*426P6?F 00 -41 2110r 00
18 93237131E 00 -5875 00 .620732E ol
!9 *9164')6E 00 4902252?17E 00 e9436945 00
120 9107317E 01 *608135E 00 *123367r 01
2-1 9604293E 00 #140325E 01 .152783E 01
22 0.1883F1E CO *17816RE 01 *179161S 01
23 .49825sk8E C0 ol?9133F it *10979E 01
24 -@125255E 01 #167994E 01 ?2 0 9549r 01
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Tu SCATTERED FIEL!* MATTEPRN 7*eQ QW!I*.J-~:

0,41 S"PT(S/L)
sOCOE 00 41132E 01

.IR32E 03 *260TE 11
*2700E 03 s1389E 01

TE CUriENTS rl! ow a s0u00o. o rE";7
T:RIAN,L7- %A* rDEAL PAGr "A36

1 00154673S 01 o1l4,28? 11 .1251037 T!
o*1450&44 01 *114n43E "1 oJA4509F 01

3 001123q9E 01 *1446?3E 11 *19314t0E 0%
4 '5087Q2E on, 9172797E olI .lSO131FE 31

5 *31913=2r nO *167FI5PF '1 .170S~56F 01
6 *10513?5E 01 *109613F 31 *151152F 3,
7 o1285c7E 01 0.1~6q 00 *1n96E 01
8 *qo2c;9E 00 -9/65437E 00 .l11i66F 01
9 92204p5E 00 -91053' IE 31 .107662F D!

10 oo2792q5E 00 -7?131J43E 00 97651-0c 00
11 *93878',5E 00 -9694g4JE-01 .394000)E 01
12 09260107E 00 *49312?+E 00 .548736E 00
13 o@1743R3E 00 q693457E 00 -715047C 01I
14 oo260211E 00 048312SE 00 9548739E 00
15 -*387?3p7E 00 -9694AIIE-11 *394002E 00
16 0-278208E 00 *9713135E 00 *765513E on

17 92204'>7E 00 -*105380E 01 .117661E 01
18 *90o2r,8E 00 -9765431E 00 *113167r 01

20 -105115E 01 s11861PE .01 .151162E 01
21. *319854E 00 #167136EF 01 .170.Q57: 31
22 0*.50795E 00 s172799E 11 -120133F 01

? *.112399E 01 *144625E 01 PIR3142F 01

24.145Q)45E 01 *114n44E 01 eIR4510T 01

Tr SCATTERED FIEL.O CATTERN OA Pw I 0 '10

o0nOOE 00 o1'026E 01
* 90'00E 02 *6614E 00
*IQo0E 03 .1476E '%1
.2700OE 03 *6614E 00
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A.2 COMBINED-FIELD PROGRAM4

e. CATTrR!N- 14 2ERPECTLY ClNJTk,! :LI%'rs4c
3 ARt3ITPA*Y 364APF9

6. :!iPLEX T".\E,Zm.NE,#ST6pSL6.4

1C. 3ATA PI/3.I'*qSQ3/

12 10 CORMATC615)

13. 1031 rRMAT(2E23.7)

15. REA0c105,100) N30
16. READ(10Osl 101(AC I) pT (I) 'Tat. l))
170 ?!UTPUTPNGO

19. 4TUj~jTSsXN
20. qEAD(105P102) I 40#:Pw-I

22,.,' 3 J'1,NX

250 1 CNTINUE
?6. REA0(j(Q5,1C2j A'!U*EPSx9ETA
2~7s 5UTPUT,A"UpEn~SpiETA

299 CALL CUATACF
?9. qEAOC105#1031 NC'
3 )0 'UTPUT NPR

33. AITE(109*3O ) FmC
34, A~2*IF *~TAM ~E'E;) *1.:: 6
35. 9UT~UrA<
36. ')9 7 IslaNC

39. 3hK( I 1)2C z c1
3.O 7 :'INTINUE

42o ..... F!4RM TM C049INED) CIEL' vktT"RIX

46. De~ 1 ImulolC

%go Z( 1 ImuI(,IN DlK

-'9. Kl
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51. 1 5%TINUE
*)5 2 IM82,"c

64. laUo1 l/+

56.

67. ;? :N IU

69.

65. NRITE1~?1 2~(X
7160 mALTES1o.VEC'i)PDC:J
67, li 6 11,ONC

69. VMC~luC(1

77. 5 PNT1NUE

45j. CMCBSCq1)

719* oUM R I T 3 A SE- ( 10 9 s 2 U> ) I 7 C j -q ( I C'

77. :5N1,N*,'. NVUE

79- C5NTINUE
79. IF~ C2 ISC ,';o A L r s(" ", -

9c. tR A (10 , m fT J t*!T q: ow aIC*. 4

31 9RMN

4pe 7I~mA (I 'o~q~9Y,3 i51 6



::3* 1P !NT!NuE
11249 c - .- wF5RM TE EyCIrATI5N ECqR~S.

1'6. :ALL rEC 4mock,CIPSoZ)

1 ) 8 . K l

113. D N35 mN i4r

1160 ;S :NTINUE
1.170 ALL SeVE(%rlPSATCCJR

)1 36 aI

131' srCAo(CQ~)
vm (I

?I mq TE( IC A-lI



Sample output is given by:

RUN
NT G [.

ITM

Isc
NX*1

UPHI 9 0C~O

B3E TA 1 )

N5* Pqlf TS 3OPEI FYI\3 Ci~lL~'R a

'JL X JLY r

*e96oj5E :r--794:6E Oj @3011E ,n w*231-E I- *O3
0,7936-- -- j5 DQ *231 I -*3D11E 1, I'oj,-

009915;7 oz 13C E 00 049b5.1 -.3763E 10991c'

*09?36E OJ936 -01456E CO' *.1'52 6.F3~

s 6 ~E 2' C 7916-- OQ -*3 111- EO I *-?3 E )3

w#9A33E .326E )0 -3506E 0- -1452E ' Iqr

#38'33E :- .2'1E 00 _9D,: *145E

*6 4 E. 9 6 aoo ,j t C 2 1 ,



r: E3JE'.CV 'I fNC17ENT PLA',E AAVE v3*00003 03

TM CURRENTS Pdq 0.1a Qc0

PJL.SE ,iO. REAI_11 !AG (32AG*

1 00124978E 01 916A??Qc- 01 .21'9973C 01

2 oa884 00 *179897 Z 11 .j.99451C o1

.3 0@1916495? 00 *1A9 1 .179715C DI

4 *578,D7E 00 *141196E -'1 *153330C 0.
5 *106911 01 *b22016E 00 .1?3706E o1

6 oql87 4 7E 00 -*211561E 00 .94279or 00

7 *3283c;5E OC 00591191 : 00 *676257C 00

3 0,178493E 00 -9'32296E 7O *458453F 00

9 oo?95*7r 00 .6967J7E-T1 .33239r o"

11 9147271E-^Q 9863737E-11 *S76221F.01

t2 @m65443Ew01 *103A15E01l 097PO4'4:01

13 1 6562E^ *10'379Pr-11 R72L-61c-0l

,4 ej72a0E-1 *8637747.-01 .076237r- 01
14641,2"0E 00 0112^547- 00 .1437Cn

?951'.5 00 -.9'0 30324QC: 00

47 01784c57E 00 -. 29 -,J -458456c- on

*32F~a6 00 -*~~I !I -676260E 0

19 9918746E 00 "42119q 10 .942789r -
?, -lo6931E c1 @b;?PO 11E 00 *1?3706E 01

1 0*597818 -"" 0141!9",J :: :1 i3 3 31c 01



-000.1E 00 -1131E 01.
s9lOOE Q? *108E 01
olgncOE Q3 -?6CIE 01l
-270:E 03 ol10gE n1

TE CURREN1q r *o.,o. '

1 154 6 cgr 01 1AQC

3 @14444'1C 1 *35* ~

*15~0~2 .1709247 016 *10S141E 01. .1R7117 21 .923jo7 *12R6'-Ngr -i ol123~n -0 e 2928 #9010,47E -. 5O i9 42C9E00 "' 1 )54?SE,) 1 ".771 7c oi10 -?soE c * 7 13RKA: 11 *766195rI I 38Q4 1 4-") CO '3I:-2 'l .147512 eoP6115s4E 10 . 20 5'.9?9-13 -e1 7 5"=5E 00 o934E O -715298E o1402611c 2E 00 *' 4 Rq 4 4W -%0 *-0~
15 -- 3884-9E 00 *' 7 0016E-9'

16 ? 782124 E n., o97i3A56r 23) .7' 6194' o17 * 2 2 C93 9E 00 0' 1054247 ' 1 *1 :771 6r 0118 *90 1 Q-; 00 007651-)7EC 1 18?2t ,i9 *1 2 S6 19E 01 *113644E 00jo9O5 020 015141F 01 *10 7 1 -X 1 .1 1 ?37c V21 #319647E :0 *1679 0FE 01 17 :924~ C1?2 0#508978E CC *17?Q3r) 21 .1R0173E
? 4 s1 c 50 3E 01 1~14( 5 1 E C1 .18 4 513F 01

7'~ SCATTEREO FIEL' OATTE9N C5 P64 1 y

*OCQOE O 12E01
s3onoE 02*'618E o
0 1 00 E 03 *1'475E 01
.270CE 0 3 -6618E 00

OSrTO# 0
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A.3 M *TSERIES PROGR:M ~ ;;~

SCAT!EE PIL PATTRqN IS AL.SA ,mT3

IMENSVJN CQ~u5Oj*CP2~o
7. itmENSII'N sjl 1o)#ylQ)

REAL~ jZpJ
'ATA

12. Ilia r5M~5I 7

i13. 1012 5MTSS

to. 1 rjR -AT(4E~S 
TA"'

1. 1 2.o

,7. 04-0/4

Is. P17 .7*P

32.R2.P

38. 4mjqq(%UN. jY~l

29. Av . q

35. -N.

37. , ~I- 0~qv Ao,5

39. A T).N/E

43.

47. A0,30~.~

5..
59. 0

30-1



60. *Z ,Z 2 * A (,I C'IS C 6oj

62. 4p4o6
63. z- J

65. mR7TC18P201 r,.jz,.z'4
66. :5rIU
)7. ..... CaMPUS rr :uC'JRTS.

69. 26,60.

70. e 5 ttD'NC
71. PUCC

72. le6 .J't48
73.*;*P2*t)CSO*J
716. 6 NTMEU
75. WL4Od
76.
77. JPMOCASCJP)

79. :NIU

S1. p-ciia?

13- mw Z.D!2/18.

is- ' 7 SN

57- ST'~sC0

90. T*T+?*f)C

92. 8 ,!NTINUE
93. SEvF2*C&SSE)
9db. S'1sF2.CA3S(Sl"C
95. ARI?(%Oae2i& MW0,5'PSE
96. 00 PWCOP.

98. 7 C: NT!NUE

1)2- 20 rlMTOf,7 ANO TE Njq-ALIZT SCAT~racO 7''- 04T:;

1"3. ?C N0
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Sample output is given by:

NC a 24

AR a*3?0

PLQ x .0000000
DOHI a1000

-*7560g42F-03 *1961226E 01 o14F62?7E-06 -.32510 E-w1
w*1853659 ri nj 3675514E 00 *96217ORE 00 e1qI7R3E 01

I -*367551E 00 e185366E 01 -996,71E *.1l--721E-~
-*176372: 01 -0915625E 00 *.1761qnE 01j o32971E J

2 --117822E 01 .115772E 01 *r51779E oo e4 'q9'.- " O
2 *.685802E 00 -,195346E 01 *119727E Yi #312549E 00
3 -*116608E 01 -9?87091E C0 .57191' 023,131E 00,
3 ei55797E 01 -.4893q9E 00 -oR?13nw:)i *.2Rs:lJ3 VE

4 *254945E-01 a.626F16E 00 *1A-StS6E-op -e4?605 0 E.0Ji
4 .!569038E-01 954: n7oE 00 eP45724E*O)' e44O6F'n
5 .222761E 00 .813F6?E.03 -. 33S48io !4 6F47F'
5 -*129210E 00 *512326E-03 -*157P16E0do4 ~ jj.
6 -9116936E-04 .585782E-01 *199494 F-17 12 -
6 *.F44304E-05 --262491E-01 4>9rO7 213)E3
7 mol23943E-01 *.923732E-o7 -*~5554l' _7=QR.:

-45925/E-o2 -.349651E-o7 -*579639Eii .7-4; ..
k4 .450554E-09 ,9220967E-o2 -415758El-13

8 9145061E-09 0701962E-03 *4-04Ei
9 *?41316E-03 9146022E-11 -. I303^E-jc

1.3 *.R29195E-15 -.11538c7;-04 *512671E.- *
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1 *.126455E 01 .1677 !E cl *'lo310p 11
;? -. R96445E 00 0177994E o1 *1'99E 3!
3 -*P07342E 03 .177892E 01 *!793I-7C 01
4 .57942CE 00 9140687E 01 *1.i2152E 31
5 -*1)4805E 01 962594E 00 0 ? *1233E I!
6 0901943E 03 *9196249E 00 -'3346E 01
7 9125q%9E 0,1 0*569?56E on, .A5597P0 -
8 -9166396E 00 0.4o7463E CC 0440129E3
9 .. P83k8E 00 -. 695472E-01 -?98607E I~

13 -*!39286E 00 l1o6374E co 0175?60E ol
.61 ol39867E-01 9834404E-C01464r-j
12 *0259SIE-01 @122661E.-Cl 0419~l
I? -025952E-01 .12P641E-O1 *235007E-ct
14 -139904E-01 *8343A5E-Cl 163ET
15 -*139280E 03 s106376E 30 *175256E 11r
16 -*280346E 00 -9685377E.11 oP96^,>r
17 -9166407E 03 -.407451E 00 '4 4012;? -

18 9125948E 00 w-569257E 00 e$.9597'^ Z
19 001928E 0n *.1q6271E 00 eo'37361 0
20 ,lud'806E 01 *625153E C0 *122139E Ii
21 *579447E 00 *140685E 01 -152151E 31
22 *.2Q7312E 03 *177992E 01 1 79ogicE !3
23 oeR96417E 00 #177994E ol 0199291E It
24 ool26454E 01 *167788E 01 *?I104E 01

TE CUqENTS...
1 9154852E 01 -.101437E 01 0'35l11E OII
2 o±l44972E 01 -911348E 01 sl14139E it
3 *111826E 01 09143071E 01 s*1l53sz n1
4 *506173E 03 q.6FO 01 -177203E 31
5 -*305532E 00 -. 164074E 31 9166894E n1

6 *.131326E 01 e.106239E 01 *146 JPC*3

7 o*123804E 01 -. 113352E 00 -143? oi
9 -eQ69856E 00 .724165E 00 -113194c it
9 -*218988E 00 .1008P6E 01 011317ciE it

10 *?61561E 03 *688452-E 00 97364.65E 3'
11 *?69q53E 03 *721736E-01 *3760?4E I.1)
12 -249369E 00 -*460950E 30 45 ?409^ZE 3r
13 -167391E 00 vo664S01E 30 of,9526oE o3
14 *?49365E 00 0.460963E 00 -524090E 33
15 *369948E 03) *7?1528E-ol 017691I c
16 ?261571E 003 *69S433E 00 *7 IS 451 33c
17 moP15865E 03 *100926E 01 611317, It
18 o*969933E 03 .724195E 00 -113194F 31
19 --123804E 01 *.11?319E Co 013?i. ,li
2~ .. 131328E 01 "o136236E 31 *1 4 6 t1IE 0!
P1 -.305561E 00 -9164073r- o1 0166194 II
22 FO36146E 00 f169FIE 01 o177'30! 1
23 *111824E 01. -. 1430747E ci I115 i~o
244 9144971E 01 m.113489E Cl -IR4113F ':I
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'T-' AND~ Tr YARMALIZED SCATTQC 71ELD PArTEQNF

*ooooE no .1!34E 01 -102OF Ol
-13ocE 02 .1133E 01 o1030 : 01
*2000E 02 *1129E 01 *1057r 01
s3OCCE 02 *112?E Cl *1082C 01
*4000E 02 *112?E 01 *1082S 01
s5300E 02 .1099E 01 91033r 01
96000E 02 oIO37E 01 90214C 00
-7oooE 02 slca3Ei 31 *7639F Of"
*8000E 02 -1037E 01 .6332! 00
*9000E 02 91092E 01 s6539! 00
*iOOOE 03 eil7SE 01 98261C 00
91100E 03 s1o34E 01 91014r 01
91200E 03 s9R7SE 00 *1120v 01
*13coE 03 *1o0.E 01 .1122F 01
91400E 03 *1315E 01 s1080! 01
,150CE 03 *1737E 01 al11Or 01
s16COE 03 *2174E 01 *1255 : 01
*1700E 03 *2496E 01 *14.21F 01
slS00E 03 *2614E 01 91491q 01
*1900E 03 s2496E 01 e1421F 01
e2300E 03 o2174E 01 91255C 01
*2100E 03 #1737E 01 *111OF 01
-2200E 03 91?15E 01 *108097 01
.2300E 03 ejV 49E 01 oI122r- 01
*2400E 03 *9R78E 00 *11201 01
e2500E 03 .10,34E 01 *1014C 01
*2600E 03 9107RE 01 9826l! 00
*2700E 03 el109?E 01 o6539r 00
o23C0E C3 .1087E 01 96332T 03
@2900E 03 *1083E 01 '7639F. 00
v3000E 03 *1c S7E 01 99214. 00
*3100E 03 *1099E 01 91033r 01
o3200E 03 9111?E 01 .1082! 01
*3300E 03 o112?E 01 .1082T 01
*3400E 03 #1129E 01 .1057r 01
*3500E 03 .1133E 01 sl1030! 01

*ST5P* 0
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A.4 PROGRAM TO COMPUTE CURRENT DISTRIBUTION DUE TO
IMPRESSED LONGITUDINAL CURRENT

A computer program is presented here for the special excitation

considered in Subsection 2.8. Subroutine CDATA is used to specify the con-

tour C as was done in the E-field program. The data cards needed for this are

exactly the same. The total axial current I is stored in the FORTRAN vari-
z

able ZI. DO loop I forms the matrix given by Equation (105) of Section 2.

The system of linear equations is solved by RDECOMP and RSOLVE.

The example given here is for the cross section of a fuselage sta-

tion as shown in Fig. 6-1. A total of 28 subsections were used to approximate

the contour. The subsection number and the total current flowing axially on

that subsection is printed out.

1. -- .... PRGRAM FOR C1MPUTING CUR 4T rI!T9 YT1e1 1

2. C PERFECTLY CONDUCTING CYL?4'OTRrAL 5,rLL CAVYTKI3
3. r TOTAL LgNIITUDINAL CURRrNT ZT.
49 COMMON /CUV/JLX(60)bULY(60)Nc/c/p x{ )oRcyf O)AD (I
5, DIMENS15ki CM(2500)sVK(50} ALPL4(50)pipl(501

6. too raRMAT(615)
7. I'M FfRMAT(2E20.7)
8. t02 r'RMAT(6Ejj.4)

9. 103 r9RMAT(t11O2C15.7)
100 104 r5RAT(2T5PEi.57,215,E15,7)
11" CFa.22215S
12. READ(105PI02) ZI

13. 9UUTUZT
14. CALL COATA(IjC}
15. !)0 10 IIA4C
16@ RCX(1),qCx(I)*Cr
17- RCY(1)8RCY(1)*CC=

19. 10 C9NTINUc

?10 De 1 j*lNC
22. )28OC(J)/2,
23. UX*02*ULY(J)
?4. JYI02*ULV(J)
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259 Df 1 TmI1DNC
26. !F(I.EQ.J) GO T9 7

?7. RY*RC CI)-RCYc(j)

30. L(XU)41(YU)*
31@ DTIJqLX(J)*RY4LJLY(J)*RY
32. DNJwJABS('J4Y.(j) .RXwLX(J)*RY)
33. TH~vATAN(D2*'TJ.0NJ)
34s TH2mATAN(uD2.DTJ#DNJ)

36. 1*DNJ*(T641.THP)
379 KsK41
?8. -J5 Tl 8
39. 7 CMC<)wDC(J)*AL G(D2)-l*)

42. 1 CONTINUE
430 De 3 JvlNC

44. VK(I)alOo
4f50 3 CONTINUE
46. CALL RDEClPtC,,IPS.CM)
47. CALL RSLr(CI~oMVLH
48@ SiUo.
499 sm0.
30. D' 4 IwjNC

32. SuS+LC (1)*PC

53. 4 CONTINUE
349 'IUTPUTPS
55. !!UTPUTPSI
56. CaS/ZI
57. DO 5 IxlpNC

580 ALPH(I)OALPH(I)/C

59* wR!TEd10#10.1 1.AL.PwcI)
60. 5 CON TI NU%:
61. scoD.
62. Dl A I'AISNC
63. SCxSC+AL2HCI,.0C(I)
";4. 6 CNINU
65. 4UTPUTPSC
66. STOP
67. END
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Sample output is given by:

9UN
ZI a 20000.0

.Nee IF STRA!3HT L.INE SEGMPNTS APOR-RXI4ATING C

IJLX ULY c qY

@OOOOE 00 .OOOE00
M*1000E 01 *00OOOE 00
-.000E 01 .300O,0 e 00 *.5 000E 00 elooooE i0t3~3*3
002000E 01 *50C0E-01
'.9998E C0 94 9 q4 E- 0 1 -. 1500E 01 *2500E*01 *1001F 31
*03000E 01 91000E 00
999988E 00 949q4E-01 -" 500E 01 *75OOE"01 -1001E 01

604000E 01 -200'3E 00
*@9950E 00 *9990E-01 -3500E 31 *1500E 30 *1035C it
045000E 31 e35COE 00
099889E 00 91'4P3E 00 -04500E 031 o2750E 00 *l31.1E i1
10460ooE 01 *'isooE 00W
a,99950E 00 *99=nE"01 we590CE C1 .'4 IOOE 030 -1005E 11
eo4300E 01 *5000E 00
009864iE 00 164'4E 00 -9615 0E 01 *4750E .30 *1041F 0
'.6000E 01 .600CE 00
OW4~E 00 *3162E 00 -.615CE 01 95500E 10 *3162q 00

e*5000E 01 .1000E 01
*9285E 00 *3714E 00 *.550cE of *8000E 00 #1077F 01

'.'*000E 01 @1600S 01
*8575E 00 *5145E 00 -e4500E 01 13O0E 031 -1166E 1

0*3000E 01 92700E 01
*6727E 00 @7399E 00 -93500E 31 -?150E 31 atOK7E !71,

e,.2000E 01 *4.oo0E 01
-6097E 1o -7926E 00 *'2500E Cl *335oE 01 *164Oc 01

1*IOOCE 01 e4600E 01
98575E 00 95145E 00 -.1500E 01 943.30E 01 @1166-- "It
90000E 00 -4750E 01
*9839E Co .14R3E 00 we50OOE 00 *4675E 11 *1011c n1
s1000E 01 *4600E 01
*9889E c0 -*143E 00 *5000E 00 *467SE 31 *10117 '14
.aoooE 01 .4300C 01
*8575E 00 -. 5145E 00 9t5OOE 01 *43.3cE 01 -1166r I1
e3000E 01 -270CE 01
o6c97E 00 -7>6 00 9250CE .1 *335CE 01 *16A4cr f1
*4000 01 9l6nOC 01
e6727E 00 -*73Q9E 00 e3900E 01 0215( 01 *14R7r 01
9500E 01 1locOE 01
.8575E ol -95145E 00 e40cCE 01 .1300E 31 *1166E It
e6000E 01 96000E 00
992'85E 00 --371*E 00 *550CE 31 *9000E 30 o10777 01
96300E 01 *5000C 00
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*9447E 00 *.3162E 00 *6150E 01 *5500E 10 *1162c 10

,6000E 01 .4500E 00
0,9864E 00 -- 1644E 00 ,6150E 02 *4750E O0 3o041F 0
,5000E 01 ,3500E 00

",9950E 00 -,9950E-01 *500E 01 ,4000E O0 ,105OE It
4000E 01 *2000E 00

-,9839E 00 -,1493E 00 4S500E 01 *2750E O0 *1o11E 01
,3000E 01 ,IO00E 00

0,9950E 00 -"99FOE-01 *3500E 01500E o0 ,1015r 01
*2000E 01 *5000E-01
-,998E 00 -"49 0 4Ewo1 *2500E 01 "75OOE01 ,loi0 01
•.00E 01 ,0000E 00

-*9938E 00 -,49q4E-Q1 ,1500E 01 o2500E0t ,olool 01

*OOE 00 O000E 00
091000E 01 *O000E 00 @5000E 00 O.000E 00 ,1000r 01

-CL9SED CeNTqUR, IOC a 0
S " "6g'7375
SI a 6"30543

1 *2200409E 04
2 @2247948E 04
3 .2354470E 04
4 ,2504063E 04
5 *2857402E 04
6 ,4112020E 04
7 *1157018E 05
a .1033439E 05
9 .35m2833E 04

10 *.170148E 04
11 ,2097022E 04

12 92679784E 04
13 *3597517E 04
1" ,3763301E 04
15 ,3763308E 04
16 ,35P7514E 04
17 ,2671781E 04
1R *207330E 04
19 *2170130E 04
20 .3502049E 04
21 *1033443E 05

22 .1197015E 05
23 .i12ol2E 04
24 ,2897416E 04
25 .2594052E 04
26 .2394471E 04
27 *22147945E 04
28 .220424E 04

SC * 20000.0
OST5P* 0
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APPENDIX B

PROGRAMS FOR THIN SHELLS OF ARBITRARY CROSS
SECTION AND FINITE CONDUCTIVITY

Two computer programs are presented here for the determination of

the field interior to electrically thin, lossy shells. The formulations used

are the impedance sheet approximation derived in Section 3 and the exact series

solution of Section 4. The required data cards are described and a sample of

the program output is given.

B.l IMPEDANCE SHEET APPROXIMATION PROGRAM

The input data card sequence needed for this progrqm is almost

exactly the same as that used in the E-field program of Appendix A. In fact,

Table A-1 may be used here where the card containing AMU and EPS is replaced

by the card sequence:

ST - shell thickness in meters

SEPS = normalized (to free space) permittivity of

shell material

SIG = conductivity of shell material in mhos/meter

VCO = velocity of light in medium outside and inside

shell

NWP - number of near-field measurement points inside
shell at which shielding effectiveness calcula-

tions are to be made

XM(i) = X-Y coordinates of interior field measurement
YM(i) points in meters, i = 1,2,..., NMP

Also, FHZ is the frequency of the incident plane wave in hertz.

The main program is much the same as in the E-field case. The two

polarizations are handled separately and the upper right triangle of the

E-field impedance matrix is created first. To this an impedance load is

added using Equation (9) or (11) of Section 3. The E-field excitation vector

B-I



FT__

is then formed and the resulting system of equations is solved. The interior

field due to the equivalent polarization current alone is computed by sub-

routines QNFMS for the TM case or PNFMS for the TE case. These computations

are defined bv Equations (50) and (52) of Section 3, respectively. To find

the total interior field, then, the incident field must be added to these

"scattered" fields at each interior point. The shielding effectiveness cai-

culation may then be done according to Equation (1) of Section 3.
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2. " AIN 2RRIOA-' rQ qiAPJ, T vjY A A n

3. :C C'~kTFPO A S !\ --CE§ -

* ~ %"A X'PE fS ESNC z

76. VE0(051 M \;'301) 1
i7*~~~~- I -E 9.101 I AC! , )Imla 0

23. 13C AI Al.Nx!5

46 o 9T!U

30.

39. READ(10"5*,0 ) IT#'joIS,,,,%

37. 0qEADjC19s1o2, 0"IZIjk
39. 5~U2P,ICP

:24*~ ~ ~ PEA10,,2 0-.ST(

;?6. 4 SC9NT AUINUEaC0

?86 !T~lu~ST.Cu.SS.1.,S,C4. o

30. 5'JTPUTAQN' S.
31. 15 6Iul,NmR

.48. RE'( )' Cf i.A(Q )V

33o~B 39TIU



s3 1 7 ' - a %

-k .

72. <

75.<K I*

79. --- - -Ar SI - WA~ .q'

72. ~12
73. L6

7'.

5'5.
77. ~ ~ T a ~ U I ~

47. 3 So

E

9

A - ;*U

40~ Z



131. q CINTINUE
1 12. ClNTINUE

106o 2021 '9RMATC' ',t15#5Xp3El596)
107- ?3 rlMTtl-HEDN E crfTTVE'JS C4R T" CAqEf)

1 38.0 30 IF(ITE@NE*I) 3 T5 60
109. C---- wFIRM1 U IEP RT* TRIANULE RrTr 7 Aq

110. -<.01

112. 'D 31 Ikj*IB,pkjC
113. DO 31 I'luI8,!N

115. -H ~~?-s1 )SIJ M Na,1
116.<6+
117. 31 CINTINUE
i18. C ---- ADO L9IAD T4PEOANCE M-ATR!X
119, 'NUNNC.IOC
1?0. IF(I'DC-Flj.) -I! Te 34

121. n3uDK(N)

123. G9 TF9 35
124. 34 O)LuDK(l)
12-5. DUmOK(2)
126. 35 <81
1279 !)' 36 1ul,kjU
128. ZCK) .ZcKQ+cDL+DU)/3*/BETA
1290 OLmDU
130. )BK(+5
131- a.~
13?- 30A C5NTINUE
133- 2
134* 'U1UNU-1
135s De 37 Ia1,NU

1370 Kut(+1+2
138. '37 CeNTINUE
139. !FiIDC*E!Dvl) 39 Te 38
1400 KNC*(NC.1)/P4j
141 * ZC(K) Z(K)*OK(NC) /69/,TA
142. 5k CNTINUE
1430 C -------- F5Rm TE E'YC!TATIlki VECTI S.

144* CALL TEXcVmsPHT!,NX*TDC)
1,450 Dl- 40 I1s1U
146o I&0 fCNTINUE

1479 C---------SeLVE FRR N!!QM.AIZED TE CuJRNTS*
11.8. RwNU*J.CYj./2
4 49 . CALL GELS(VmZ,'U#NX,'O)
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153. *RT<l.3O1Pw.l

155. l 33 JaIBP,%\-
1560 V4Mm-A8S(V-d(e)

1sse ,,RTEclO~o2O'3 Jf,V'lW,)VM
1359.<al
1^ 33 5NTIJNUE

1650 UTPUTj-ZC

168. 'XnLX+l
159. '39 C5NTINUE
1700 32 :5NTINUE
171. !F (I SC*El I) CAL.. TES vm*NYPII m64I P, T,,U-
172o 0 CNIU
173o )r CINTINUE

176. 302 C0RMAT('1'lElJC - PLE AV F ~ 5.,X,4

179- END
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Sample output is given by:

;UN

PEaI

ISC a 0
14X
NPa

PHI VQC0000
DPHI B 5O0000
I a.

P4111) .000000
ST a 9-999999E-C*
SEPS *1.00000
SIG *10000.0
VCO a39000000E 08
NMP I

-Nee 5P STRAIG4- LINE SE3mc:NTS APPX1~mATING C 46

JLX ULY qCX RcV D
*5oo0E co *oocoSOE0
@4620E CC -91910E 00

: 1951E ^0 --98085 00 *4A10E 00 -055CEo1 -1947E 11
3540E. 00 -0354CE 00

0,5523E 00 --8326E OC *9408CE 00 --2725E 00 91955F .00
e1910E 00 *."62CE 00
8336E 00 -. 55?3E: 00 *2725E 00 -41OROE 00 *1955F 00

"'COCE 00 -9500CE 00
*9080BE 00 -1951E 00 o955CE-ol -*4810E 00 #1947E 00

.1910E 00 ."4620E 00
::9808 Oo 951 00 -950oE.01 -. 481CE 00 *2.9"7E 00

-*3540E 00 -9354OE 00
*o8336E 00 *5523E 00 qe.?725E 00 -*4Z%0E 00 .'.955E 00
0,4620E 00 .-19tOE 00
-R.5523E 00 8336E 00 e*'08E 00 -. 272SE 00 @1955E CC

5000E 00 *0000E 00
::1951E 00 *98C8E 00 -94810E 00 -9955001 *194'7c CC
w*462CE 00 e19i0E 00
*1951E 00 .9808E 00 %04810E 00 9955CEOOI *1947T :'

0*3540E 00 9354'0E 00
95523E 00 98316E 00 -94.080E 00 *272SE 00 *1955z 'do
1110E 00 -46POE 00
#83367- 00 .55P3E 00 *.?725E 00 *4080E 00 *'.955CE0
*000CE 00 #5000E 00
9980SE 00 *1951E 00 *.995oE.01 *4810E 0:0 *1947r 'M
.'.910E 00 4~6POE 00
#980SE 00 -1951E 0OW 4955OEn01 s4813E 00 %*19471 10
.3540E 00 -3540E 00
:3336E 00 --55?3E 00 o272SE 00 *'4080E 00 *1955E )0
94620E C0 -19114E 00

5~523E 00 --2316E 00 *"08CE 00 e27215E 00 *'.995
*B00CE 00 .OOOmO 0
*'951E 00 *.9803E 00 04RICE 00 *995CE0'. e1977 7

.CLISED C4T!P I C 0
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qr.E.UE\-"Cy !c* ML E A~AVE sl * IOOE C8 W
AMU1LC a 1.25656371 -O6
EOSOa -193-J

*6.29~3196E 07

T"1 CURRENTS 7t:Z P'4! .OOOCr 0,. 0ElcF-
"ULSE '-40. RrAL IMAI 4AG.

I *37985'5E m01 092691i.6E I1 946440~E it
2 -35C1'9E Oi -*27562'E It .445599E I1
3 0?95902E 01 -s294411E I1 .410416E It
4 P~242q9E oll -0o202E --I 367035E -1
5 v147509E o, -029141E 01 .326761F 31
6 -765252E C0 -*2734& 01 oP9735OF
7 0?21265E CO -028-n~ It -?0,997
8 ..706900CE.C!, -#27429QC- -1 a274150F 3i

9. *.09i*1 274P59E it .27435,VE It
to -?21276E 00 *.Vq~l0~r "1 *'20882F 01
It *765294E 00 -*2734 11 .217?5CE 11
12 *l'4758E O01 oo291941E 01 -326760S 0!
13 * ?24300E :1 -. 9)5 11, .3',7036P 01

14 @95912E 01 -.dM44)?c 01 -4!0418F 31
15 *3S01?8E .-, -@275626E 01 .4456001 01
16 *3785o5E 01 .2691a "1 *464441c: 01

SH4IELDING ErFECTIVENESS F R Tv CASE
EZC (4*oo7416004008124560E-04)

eOOOQE 00 q000000E 00 *6085glE 0?

TE CURRENTra Fl ,Nriorr0cr3
TRIANGLE N . REAL I'm.AG VAG*

I -981393E 00 2?4q3?E 00 .1,70684r It
2 -982890E 00 .209000C 00 *l00 496 01
3 *986463E 00 ol63159:E 00 q9qqA65E 00
4 0989852E 00 $943096E-1-1 *99433BE 0
5 999o7q7E 00 01341543S-01 ,9qcps9F Oi
6 0989479E 00 -0673961E-11 *990774E Ol
7 -9397 CO 136p43q 00 #993304E7 3i
a o979551E 00 061 2094c* 00 .9Q6333E I,%
9 99777q1E 00 ..198C021E 00 *9q7 6 4 1t 0:

10 *q79552E 00 aql8?n99E 00 *996334r 0-1
11 -983916E 00 00136241c: on 4993304C 0-)
2 9988479E 00 *.b7?06~3T-l .0 741o'
A*Q90799E 00 013'459FIE-01J 090,990E 0

14 *989954E -C 994310F1P.1336 0

15 0986462E 00 9163159r 10 s9 q9j 6 r
16 oq82BR3E 00 e2jqjo E 00 e.100496E 01

SWIELOING EP7C?!VENESS P9R Tr CASE
HZC a (-4.711151EwO4#.5'4oj96?E.03)

*0OOOCE 10 .0O0O00E 03 .453160E .0P
*ST!O* 0
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B.2 EXACT-SERIES PROGRAM

The computer program listed here computes the longitudinal component

of an interior field at the center of a lossy shell of circular cross section.

The formulas of Section 4 are used. The input data is defined by:

AO = outer radius of shell in meters

Al = inner radius of shell in meters

EPSB = normalized (to free space) permittivity of
shell material

SIG = conductivity of shell material in mhos/meter

FO = initial frequency in hertz

DF = frequency-run increment (hertz)

NF = number of frequencies at which computation is
desired

The required Bessel functions are computed by the following

subroutines:

Jo(Z), Yo(z) - CBESO

J1 (z), YI(z) - CBESI

H ( 2 (x) - HANK02
0

H(2 ) x) - HANK12

In the above, z is a complex number and x is a real number. The variables

Tll, T12, T21, and T22 are computed according to Equation (7) if lkbao < RM.

Otherwise, Equation (21) is used. Equations (6) and (9) are thus evaluated

for n = 0 and the shielding effectiveness according to Equation (1) in Sec-

tion 3 may be determined.
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1. .... aPR5GRAm To '"PJTE SHIEL"IN3 EFTECT!'VEIESS AT

2. CENTER eF Ue'SY CVLINORTCAI. SwrLL.. 3eTW

3. P' LAR!ZATYRNS AT NIP~mAL ~C~\~

5 9MPLEX -IAN~f,2D '4AN'(12,ETr~DK.A5HOI H'oi' r<

6. CIMPLEX T1 1 1?1 2'T21,T 2sETR#'1#C9Q*T
7sCeMPLEX CCeSCS!NC1,C2aC3,IIAA.

3 .'JCa TE,THr

B. REAL KO0
94 )ATA U/(oQ.,j/,F'!/3*j4j593/#C/3*E CS/A

T O/377*/

1.0. ATA EPSO/8.2194E12/sm/39'

14% *#'TmSE')

1.6. c Al 0 TNNEP PADIJS (IN mrTIF!S)

17. C AO a 1UTEO RADIUS (IN NWTC*S)

18. C KB WAVEkhOumBSRP r SHELL PE3!03,
1.94 C AK( a WAVEk'UmriER EIF FREE SPACE
20. C ETF3 a RELATIVE I'IEDANCF eF 5 4'L U MATER IAI-

21. OEAD(105,1.O01 A0,Al,-EPSdpSIG
22. 5uTPuTpAOjA1,EPS5pSIG
23. IuAO.Al

240 READ(l09,100) FOADF
25. READ(105plCll NP
?69 5tTPUTarFpFN~r
27. SIGNmSI3/EPSn
?8. c ... OEF9 FOEOIJEN'CY RUN

30e Do I. IXu1,'F

31. VHZSF0
32. wF.2**PI*FWZ
33s 1(0ai~r/C
349 1(8CSRT(EPSRUSG'4/WF)<'1
35.* ErTaI</K
36e STKoKB8D
37. AI(Oa1(*AO
380 A1(lm1(*Al

40o C2m2**U/(PIA(0
41. C3mSQRT(A1/An)

43. 414HANK2(AKO)

44. I4oRmREAL(HANI~o2fAI(1))

46- DABSwCABS(hQ23iAl)

47. 1P(DA9S.s3T*Rm) 3e T5 2
451 CALL CBESO(1( *A0,~jOS~yO)

4.9 CALL C99(c*l#Jj~1l
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30. CALL C5ES1c<KAABJ1jByjo)
51. CALL C9ESj(KR.AlBj11,By11,
52. Tlul(BO*YOBI*YI

53. T121ac1(9JC1.5Ylla8Jll.dV01)

55. T22mC1*(wBJ0, *Byl1+9J11*9Yo0)
36s GO Te 3
57. 2 CONTINUE
58. TllaC3*CCUSSTK)
59. TI2owC3*CS!N(ST)
60. T21u-TI?
61. T22aTll
62. 3 CONTINUE
63. C--...---COMPUJTE DrTERMINANT FOR Tm CASE
640 :DDUHO*( Wl .T11+H0R*T12/ET9)+Hj*.H 21EB*I*T?
65o DomC2/Do
66o DUTPUTDC)
67. SEx-20-*ALeG10(CABS(~o))
68. c --- COMPU.TE DcTERMINANT FOM TE CAS7
69. DD i*WI*l+T*O*l)+ *.I*2/T+O;T?
70. D0uC2/DD
71. JUTPUTDOO
72. SHw-20**AL5GI0(CA8SUn0))
73o ARI TE Clogploo0) rHZPABSA A~jS , SE
7'4, F)4ZaFHZ+DF
75o 1 CONTINUE
76-. STOP
77o.N
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Sample output is given by:

;UN
AO 9 500O
Al 4CC

EPSB * lOO000C
SIG * I.COc0.
Fa l.-COCOE 07
OF 1.00000 07

00 a39j5E0j%*26C~4

91^00000E 38 *'*33989E c3 -1.145103E Om 94604617E 102 96,J98?36 02
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APPENDIX C

CAD HOMOGENEOUS SHELL COUPLING ANALYSIS PROGRAM

An interactive computer program was written to determine the coupling

of an exterior electromagnetic disturbance to a circuit situated inside a

closed homogeneous thick shell. The low-frequency formulas of Section 5 are

used for the interior penetration fields. The purpose of this appendix is to

briefly describe the CAD program logic. This consists of descriptions of the

following:
o User-specified input data for a given problem

0 Computations performed

o CAD results

A typical problem is illustrated in Fig. C-1 where the interior cir-

cuit consists of a two-wire transmission line of length L and spacing h. The

line is loaded at one end with an impedance Z The excitation shown could

result from a NEMP or NSL threat. The quantities of interest for computation

are the open circuit voltage and short circuit current at the terminals shown

in Fig. C-I. From this, the maximum power coupled to the circuit may be deter-

mined and thus various parametric design curves may be plotted to facilitate

a CAD solution based on given burnout data for the load.

A block diagram of the computer program logic is shown in Fig. C-2.

The various subroutines required are listed with capital letters inside

blocks which identify the various program segments. Subroutine THREAT allows

the user to define the threat as one of the following:

NEMP - Nuclear electromagnetic pulse, plane wave excita-
tion given by Equation (24) of Section 5.
Input H .

0

NSL - Near-strike lightning, low-frequency line source
excitation whose magnetic field is given by
Equation (2) of Section 5. Input R.

DSL - Direct-strike lightning, impressed longitudinal
current density.
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Figure C-1. Cutaway View of Infinitely Long Homogeneous
Cylindrical Shell with Loaded Transmission
Line Circuit Inside
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REQUIRED USER INPUT COMPUTATION OUTPUT

U1
THREAT
(Define

Excitation)

I DSLTG PLGRPH
NSLTG

Compute internal o- - Plot internal
fields versus and external

THMTtime fields
THKMAT

U2 SHPMAT
(Geometry de-

scription, mate-
rial specifica-

tion)-
C2 E FIELD

H FIELD
Compute trans-
mission line
excitation

U3 HEIGHT
TRANS

(Transmission
line speci-
fication) C- 02 VOCISC

VOC VCS
SCCUR POWER
V WNCH

El -0- LOGPLOT
Compute load
currents and Plot results

voltages__ _

Subroutines appear in CAPS.

Figure C-2. CAD Block Diagram



given by Equation (25) of Section 5. Once the threat is specified, subroutines

THKMAT and SHPMAT are used to define the shell enclosure part of the problem.

Data required here is

= shell wall conductivity

d - shell wall thickness (several units
acceptable)

VSR = volume to emface ratio of enclosure (meters)

Conductivities of various materials are tabulated in a data file.

The interior fields may now be computed for the empty homogeneous

shell according to the formulas of Section 5. This is done in subroutines

DSLTG and NSLTG as follows:

NEMP excitation - Use NSLTG where internal field is given
by Equation (18) with ri and 8 defined
following Equation (24)

NSL excitation - Use NSLTG where internal field is given
by Equation (18) with a and 3 defined
following Equation (1)

DSL excitation - Use DSLTG where internal field is given
by Equation (36) with o and E defined

following Equation (1).

To complete the specification of the sample problem illustrated in

Fig. C-1, the user must input data which defines the circuit under considera-

tion. This is done in subroutines HEIGHT and TRANS. Data required here is:

h spacing of transmission line or effective
area of standard cable (tabulated according

to cable RG number)

L - length of line in meters

Z - characteristic impedance of line0

ZL  = load impedance
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Finally, the open circuit voltage and short circuit current at the

transmission line terminals shown in Fig. C-1 may be computed. This is

accomplished by the following subroutines:

VOC - Computes Voc according to Equation (15) of

Reference [4], p 6-6, in Section 5

SCCUR - Computes Isc according to Equation (16) of

Reference [4], p 6-6, in Section 5.

Once these computations have been made, various optional CAD curves for a

given problem may be plotted. A sequence of typical plots for a problem is

given by Figs. 6-5 through 6-11 of Section 6.
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