AD-A097 741  SYRACUSE RESEARCH CORP NY F/6 1
ELECTROMAGNETIC SYSTEM TRADE--OFFS AND DATA BASE MANAGEMENT FOR-=ETC(U)
FEB 81 D AUCKLAND» R WALLENBERG N0001u-75.c_°515
UNCLASSIFIED SRC-TR=81-1084

i l........




K

iy

@ Final ﬂ‘epgt,

ce ¥

Electromagnetic System Trade —Offs and
Data Base Management for
Advanced Composite Aircraft Study .

Composite Coupling Analysis .

DTIC

;%’}‘:LEC:T L f‘f,: :

« - APR 1 5 1981

y bs/
A

i) )

m M o

g @ Febmmmmns1 |
T

10 D. //}ubk(ahcf
| | iQ /w.au/l &:—be'ra

490 002 m

lY’HAcUII REGRARCH CORPORATION

81 3 20 012



r——rr———

UNCLASSIFIED
SECUMTY CLASNPICATION OF TWIS PAGE ("hen Dase Enteced)
REPORT DOCUMENTATION PAGE . BEP O e e
1. AUPORY NUaSR GOV ACCEIHION WOJ L RECIPIENT'S CATALOG NUMBER |
SRC TR 81-1084 4D. Ao 747Y/

& TITLE (end Subtitie) S, TYPg OF REPOART & PENMICOO COVERED

ELECTROMAGNETIC SYSTEM TRADE~OFFS AND DATA Final Report

BASE MANAGEMENT FOR ADVANCED COMPOSITE - 08/01/78 - 12/31/80

AIRCRAFT STUDY -~ Composite Coupling Analysis | & PERFOMMNG ORG. ACAORT NUMEER
SRC TR 81-1084

7. Ay THOR(S) %. CONTRACT OR GRANT WUMBER(T)

Dr. D. Auckland

Dr. R. Wallenberg N00014-78-C-0673

e —————————————
3. PROGAAM ELEMENT, PROJECTY, TASK

——— e ——————————————
5. PERFONMMING ORGANIZATION NAME AND ADORESS
AREA & WORK UNIT NUMBERS

Syracuse Research Corporation
Merrill Lane
Svracuse, New York 13210

1%, CONTROLLING OFFICE MAME AND ACONRESS 12. REPORY DATE
Office of Naval Research February 1981
800 N. Quinecy St., Arlington, VA 22217 3. NUMGER OF RAGES
Attn: Code 221 (R.A. Nichols, CDR, USN) 168

&L3 nom? Wing AE!NEY ‘Ml & ADOW! 1t difovent (rem Comrelling Oftfice) 18, SECURITY CLASS. (of tihfe repert)
Navaf Air Systems Comman

Washington, D.C. 20361 Unclassified
Attn: Code AI_R-5181 (Dr. J. Birken) Toe DECLASHFICATION/ DOVNGRAGING
SCHEDULE

T E——
18. NSTRIGUTION STATEMENT (odﬂ(.m ST e L
: fr)-r ne Tre . ;

17. HSTRIGUTION STATEMENT (of the sbetroct sntored in Blesk 20, I dilerent trom Repors)

et Dol By
8. SUPPL EMENTARY NOTES iﬁ—

19. XEY WOROS {Centt on sige If y ond fy oy block number)

electromagnetic coupling
composite materials

20. ABSTARACT (C an re olde i y ond | by Meck manber)

" The problem of electromagnetic interference which couples to the
interior of composite material shell enclosures is studied. Inter-
ference sources considered are a distant nuclear electromagnetic pulse,
near~-strike lightning, and direct-strike lightning. The electromag-~
netic properties of the composite material shell wall are simplified
by assuming a constant bulk conductivity ¢. Several models for the.

UNCLASSIFIED
. SECURITY CLASBIFICATION OF THIS PAGE (Phen Dora Entered)

. i

0D ,:2,."” 1473 eoimiow or 1 nOV 88 13 ORsOLETE




UNCLASSIFIED

SECUMTY CLAINFICATION OF TiNg P AGEWhe Date Ssesved)
”’—.

20. ABSTRACT (Continued)

coupling mechanism are analyzed including integral equation formulations,
exact series solutions, and a diffusion coupling model. Several computer
programs are presented to determine the interior fields over a large
range of frequencies when the shell is modeled as an infinitely long
two-dimensional cylinder of arbitrary cross section. A user-criented
interactive computer program is also described which is used to deter-
mine the response of circuits situated inside the shell.

~

JINC

MCUMTY CLASIIFICATION OF THIS PAGEPhen Dete Snvernd)
ii




TABLE OF CONTENTS

INTRODUCTION . . . . . . . &

PERFECTLY CONDUCTING CYLINDERS OF ARBITRARY CROSS
SECTIONAL SHAPE . . . . e e e e

2.1 Introduction . . . .

2.2 E=Field Formulation . e e e e e e e e e e e e

2.3 H-Fileld Formulation . . . + « « o+ ¢ o« o « o & o o =

2.4 Combined Field Formulatiom . . . . . . . . .

2.5 Formulas for Scattering Cross Section . . . .

2.6 Exact Series Solution . . . . . « . . . . .

2,7 Oblique Incidence .

2.8 Current Distribution on Conductor Due to Impressed
Longitudinal Current

2.9 References . . « « « ¢ v o o o o o &

THIN SHELLS OF ARBITRARY CROSS SECTION AND
FINITE CONDUCTIVITY . e e e e e

3.1 Introduction . . . . .. e e e e e

3.2 Impedance Sheet Approximation e

3.3 Traveling Wave Approximation .

3.4 Computation of Fields Due to Two-Dlmensional
Current Distributions . . . . . . . + « « « .

3.5 References . . « + + & o o o ¢« s o o o« o

SHELLS OF CIRCULAR CROSS SECTION AND FINITE
CONDUCTIVITY e e e e e e e e e e

Introduction . .

General Solution . . . .

Low Frequency Approximation . .
T™ Line Source Excitation . . .
References

F N S
e s e
Ul B

DIFFUSION COUPLING MODELS FOR LIGHTNING AND NUCLEAR
ELECTROMAGNETIC PULSE e e e e e e s e e e

Introduction . . . e e
Near-Strike Lightnlng .

Nuclear Pulse Excitation .
Direct-Strike Lightning Attachment
References e e e .o

VRV RV IRV, )]
* e o
v S wN

N
'
—

PR =00

NN

(Yol N ]




Section

Appendix

TABLE OF CONTENTS (Continued)

INTERIOR FIELD RESULTS AND APPLICATION OF LOW FREQUENCY
COUPLING MODELS . . . C e e e e e e s s e

6.1 Results and Application of Models
6.2 References . e e e e e

PROGRAMS FOR FERFECTLY CONDUCTING CYLINDERS OF

ARBITRARY CROSS SECTION . . . . . . . . « . . . .
A.l1 E-Field Program . . . . . . . . .

A.2 Combined-Field Program .

A.3 Exact Series Program . . . c . .

A.4 Program to Compute Current Distribution Due to

Impressed Longitudinal Current .

PROGRAMS FOR THIN SHELLS OF ARBITRARY CROSS SECTION
AND FINITE CONDUCTIVITY . . . . ¢« v v ¢ o ¢« « « o o & «

B.l Impedance Sheet Approximation Program
B.2 Exact-Series Program . . . . « « + o o « o « o

CAD HOMOGENEOUS SHELL COUPLING ANALYSIS PROGRAM .

A-6
A-11
A-17

A-22




5-5

5-6

Original Problem:

LIST OF ILLUSTRATIONS

Arbitrary Polarized Plane Wave

Normally Incident Upon Infinite Cylinder .

The Contour C Approximated by NC Straight Line Segments
Contour C Carrying Total z-Directed Current Iz .

Original Problem:
Uniform Thickness d

Approximation of Shell by Contour C

Incident Field Causing Normal Component of Polarization

Current

Plane Wave Illuminating a Shell of

.

.

.

.

.

Infinite Slabh Representation of Shell Subsection .

Geometry Relating to the Computation of 6 and P
Plane Wave Incident Upon a Circular Shell

Interior Fields
Thin Shell in the Presence of a Line Source
Near-Strike Lightning Situation

Normalizea Spectrum of Double Exponential Lightning

Waveform .

NEMP Excitation

Normalized Amplitude Spectrum of the NEMP Double

Exponential Waveform .

Direct-Strike Lightning Attachment to Aircraft

Shell Secticn

Contour in Complex z Plane for Cowmputation of Integral

in Equation (29)

Contour in the Complex 2z Plane Used to Compute the
Integral in Equation (35)

.

.

.

.

.

Page

2-4

3-16
4=2

4-8

5-4

5-10

5-11

5-13

5-15

5-16

RPN




LIST OF ILLUSTRATIONS (Continued)

Figure Page
6-1 Free Space Longitudinal Current Distribution on Conducting
Cylinder Contour, 1 = 20kKA . . . . s e e e e e e e 6-5
total
6-2 Electric Shielding Effectiveness (TM Case) at Center of
Lossy Circular Shell, Radius = 0.5m, Thickness = lmm . . . . 6-6
6-3 Magnetic Shielding Effectiveness (TE Case) At Center of
Lossy Circular Shell, Radius = 0.5m, Thickness - lmm . . . . 6-7
6-4 External and Internal NSL Magnetic Field for Circular
Shell . . . & & v v vt e e e e e e e e e e e e e e e e e e 6-8
6-5 Time Derivatives of Internal and External NSL Magnetic
Fields for Cylindrical Shell A of Figure 6-4 . . . . . . . . 6-9
6-6 Open-Circuit Voltage and Short-Circuit Current Induced on

Transmission Line Inside Shell of Figure 6-5 . . . . . . . . 6-10

6-7 Upper Bound on Induced Power Available in Transmission Line
of Figure 6-6 . . . . . ¢ . ¢ v 4 ¢ v i e e e e e e e e e e 6-11
6-8 Log of V5. and Ige Versus Transmission Line Length for
Shell A of Figure 6-4 . . . . + . « ¢ v v ¢ ¢ ¢ v ¢ v v 0 .. 6-12
6-9 Log of Ppax and Wunsch Constant Versus Transmission
Line Length for Shell A of Figure 6-4 . . . . . . . . .« . . . 6-13
6-10 Log of Voe and Igc Versus Normalized Load Impedance
for Shell A of Figure 6=4 . . . ¢ ¢« v ¢« ¢ ¢« ¢« v ¢ ¢ o o & o - 6-14
€-11 Log of Pmax and Wunsch Constant Versus Normalized Load
Impedance for Shell A of Figure 6-4 . . . . . . . . . . . . . 6-15 ;
6-12 External and Internal NEMP Magnetic Field for Circular
) 1 =3 6~-16
6-13 Open-Circuit Voltage and Short-Circuit Current Induced
on Transmission Lines Inside Circular Shells of ,
Figure 6-12 . . . . . ¢ v ¢ ¢ 4 o s v v e s e v e e e e e e 6-17
6-14 Upper Bounds on Induced Power Available in Transmission

Line Cases of Figure 6-13 .




LIST OF ILLUSTRATIONS (Continued)

Cutaway View of Infinitely Long Homogeneous Cylindrical
Shell with Loaded Transmission Line Circuit Inside .

CAD Block Diagram

LIST OF TABLES

Input Data Card Sequence . . . . . . . .
Subroutines Corresponding to Computation . . .

Common Block Variables . . . . .« ¢« « ¢ ¢« v v & o 4 &

1




SECTION 1

INTRODUCTION

A major concern with the increasing use of composite materials and
low voltage electronics is the amount of electromagnetic (EM) coupling to the
interior of an aircraft and to the cables and electronic devices within it.
The introduction of boron/epoxy, graphite/epoxy, and Kevlar/epoxy composite
materials as structural elements in modern airframes will result in a substan-
tial reduction in airframe weight, due to the high strength-to-~weight ratios
of these materials. The use of these new composite materials has raised ques-
tions relative to the aircraft vulnerability resulting from the effects of
lightning, high power radar, nuclear electromagnetic pulse (EMP), and precipi-
tation static. The problems are further compounded by the fact that these
materials are relatively easy to construct, and have resulted in a prolifera-

tion of available composite materials.

This final report on Office of Naval Research Contract N00014-78~C-~ 'q
0§73 describes methods for determining the shielding provided bv an aircraft's
exterior surface and the coupling of the interior fields to cables and trans-~
mission lines within aircraft cavities. This data is used to determine whether

devices commonly found on aircraft will be subject to upset or burnout.

The penetration of an external electromagnet:.c field into the in- 3
terior of a homogeneous shell enclosure has been widely studied and various
formulations can be found in the open literature. Analytical solutions are
available for the canonical geometries of twin parallel plates, a spherical

shell, and an infinitely long circular shell. The utility of these solutions

P

is manifested in a transfer function re.ating the interior field at a point to
the field that would exist there in the absence of the shell. This result is
usually presented in the frequency domain and, for low frequencies, obviates

a relatively simple relationship between the interior field and the excitation
field. For canonical shell geometries, this low frequency transfer function
is written in terms of shell wall conductivity and thickness and shell enclos-

ure volume~to-surface ratio. Application to noncanonical geometries can be
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made as long as volume-to~surface ratios are known. As the frequency content
of the excitation spectrum becomes large enough so that the electrical size of
the shell cross section becomes resonant (on the order of a free-space wave-
length), then the low frequency transfer function is no longer adequate to
describe the penetrability of the shell. In this case it is necessarv to

resort to approximate numerical techniques.

In this report, several models of the shell coupling mechanism are
analyzed with frequency regions of validity from dc¢ to several gigahertz
depending on shell cross section dimensions. Two-dimensional shell enclos-
ures of infinite extent in one dimension are considered in order to facilitate
the computer program solutions. Results from these theoretical enclosures are
applicable to physically realizable three-dimensional enclosures which are
long compared to their cross section dimension (i.e., some airplane fuselage

and wing sections).

In Section 2, various integral equation formulations are outlined
for determining the induced current density on perfectly conducting two-
dimensional cvlindrical shells having an arbitrary cross section. Though
no penetration occurs if the shell wall is a perfect conductor (0 = ®), the
current density on the exterior surface caused by an incident field is much
the same as that on a highlyv conducting (but finite 0) shell. The various
integral equations are solved bv the method of moments, and specific matrix
operators are defined for later use. A user-oriented computer program is

given in Appendix A with sample input/output data.

In Section 3, two approximate shell coupling formulations are pre-
sented for two-dimemsional shells having an arbitrary cross section. The
matrix operators defined in Section 2 are used in the moment method solution
of the resulting integral equations. Comparison with the exact series solu-
tion for the circular cross section is used as a check. A user-oriented com-

puter program is given in Appendix B with sample input/output data.
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The exact series solution for a normally incident plane wave exciting
a shell of circular cross section is summarized in Section 4. Simple low-
frequency formulas are derived for the interior fields. The case of axial
electric current line source excitation is also analyzed for later application

to the case of near-strike lightning.

The preceding analysis is presented only in the frequency “omain.
However, if the excitation spectrum is sufficiently band limited and the
transfer functions for the canonical geometries are valid over that frequency
range, then analytical expressions for the interior field may be derived in
the time domain. This is done in Section 5 for near-strike lightning, direct-

strike lightning, and a nuclear electromagnetic pulse.

These techniques may be integrated to provide an accurate descrip-
tion of the penetration fields inside a homogeneous two-dimensional enclosure.
The effect of this interior field on circuits situated inside the enclosure is

of primary importance and an interactive computer program was written for this

purpose which utilizes the results of Section 5. This program is described in

Appendix C.
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SECTION 2

PERFECTLY CONDUCTING CYLINDERS OF ARBITRARY
CROSS SECTIONAL SHAPE

Although no field penetrates an enclosure with perfectl;y conducting
walls, the electric current density induced on th2 wall exterior due to an
external field will not differ greatly from that in the case of walls having
a finite conductivity of 0 = 1000. In fact some shell coupling formulations
require a "short-circuit current" which is used to excite an equivalent prob-
lem for the shell. This is simply the current flowing on the outside surface

of the shell when the walls are perfectlv conducting (0 = =).

The purpose of this section is to present the E-field, H~field, and
combired-field integral equation formulations for perfectly conducting cylinders i
of infinite length and arbitrary cross section illuminated by a normally inci-
dent plane wave, The E-field equation is obtained by requiring that the total F
tangential electric field be zero on the contour C defining the cvlinder cross
section. The H~field equation is obtained by requiring that the total tan- 1
gential component of magnetic field equal zero just inside C. The combined-
field equation is obtained by taking a linear combination of the E-field and i

H-field equations. These integral equations are written in matrix form by

using a method of moments Galerkin procedure. The unknown electric current on

C is then solved for by standard matrix methods. The exact series solution is
also presented for comparison purposes when C is a circle. Generalization to
oblique incidence is also outlined but not programmed. Computer programs are )
documented in Appendix A for the E-field, combined-field, and exact series )

solutions.
2.1 INTRODUCTION

The E-field and H-field formulations for this problem are well known
{1,2] and some E-field computer programs have been documented [3,4]. The cross
section of the cylinder is defined by the contour C, which will be approximated
by straight line segments. For each formulation, an integral equation is written

involving an equivalent electric current which replaces the conducting contour C.

2-1




The integral equation is then solved for the electric current by a method of
moments Galerkin procedure {2,5]. Once this electric current is determined,
quantities such as the scattered far field pattern and radar cross section

may be easily computed.

For a normally incident plane wave, as discussed in the next sub-
section, the total field may be expressed as the superposition of a TE (trans-
verse electric to z) part and a TM (transverse magnetic to z) part. Since it
is not the purpose of this section to rigorously derive the different formula-
tions, they are presented with brevity in Subsections 2.2 through 2.4 where
explicit formulas are given as an aid in understanding the programs. Formulas
for the scattered field pattern are given in Subsection 2.5. For comparison
purposes, one may check the programs against the exact series solution pre-
sented in Subsection 2.6. A generalization to oblique incidence is given in
Subsection 2.7 for the E-field integral equation. The special problem cf a
longitudinal impressed current excitation is considered in Subsection 2.8.
Finally, detailed instructions for using the computer programs are included

in Appendix A.
2.1.1 Excitation

The cylinder is assumed infinite in the z direction and is defined
bv the two-dimensional contour C lving in the x-v plane. The shape of C is

independent of z. For simplicity, the cvlinder is illuminated by a normally

incident (kz = 0) uniform plane wave. A time dependence of &%t s implicit
throughout. This excitation gives rise to a scattered field which is also
independent of z. Thus the TE case (magnetic field parallel to z) and the M
case (electric field parallel to z) may be treated separately. The source of
the scattered field is postulated to be an electric current gc which takes the
place of the perfect conductor and which is defined on C. It is separated
into a z component (TM case) and a transverse component (TE case) directed
along C. For the more general excitation, where 6 # m/2, the two components

of electric current are coupled and thus both polarizations must be treated

together as indicated in Subsection 2.7.

2-2
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In terms of its TE and TM parts, the incident field may be expressed

as

gl = pfe 4 gl (1)

and

o]
1
s =1
+
o
~~
~
N

The superscripts e and h denote TM and TE, respectively. These parts are

written explicitly as

£ - 2nael® e_jk(E $D (3)
EN - - @xz)nb B e'jf‘(E "D %)
E%e = (kx2 a e e-jk(g "D (5 '
g? = 3 p &P e’jké "B ()

in terms of the coordinate system of Fig. 2-1.

In the above, k and n are the wave number and impedance, respectively,

of the space surrounding the cylinder. The unit vector E is defined by
-k = % cos ¢i + i sin @i (7)

where ¢l is the angle of incidence measured counterclockwise from the x axis.

The vector r is from the origin to a point on the x-y plane. The real numbers

2 2 jo

a and b are chosen so that a~ + b~ = 1 and choices of ae and beJB determine

the polarization of the incident field, which is elliptical in general. For

example, a choice of ae?® = 1 and beJB = 0 gives the linearly polarized T™
case. A choice of aeJa = 1//2 and bejB = j//f gives a left-hand circular
polarization. For simplicity, aeJa and bejB are taken to be equal to unitv

here.
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Figure 2-1. Original Problem: Arbitrary Polarized Plane
Wave Normally Incident Upon Infinite Cvlinder




The total field inside C is zero and the total field outside C is

. i S i S i
written as (E” + E°, g} + H”) where (gi, g}) is the field which exists every-
where without the cylinder present. The scattered field (E?, gs) is written

in terms of an electric current gc as [6]:

S _ a8 _ . 1
E o= B ) = -jnfka+rv9-a (8
B o= By - Txa 9)
where the magnetic vector potential A is given by
= 1 (2)
A = W fgc(t') H k |r -z} ae’ (10)
C

The symbols E and E denote electric and magnetic field operators,
respectively. The domain of integration in Equation (10) is restricted to C,
where ic is defined in terms of t', the arc length variable along C. The
vectors r and r' denote field and source points, respectively, in the x-y

(2)

plane and Ho denotes the Hankel function of the second kind, order zero.

2.1.2 Specification of Contour C

To proceed with a numerical solution, the contour C is approximated
by a finite number (NC) of straight line segments as shown in Fig. 2-2. This
is done by specifying the x-y coordinates of the end points of each segment
ch+l). In the E-field

formulation, it is not necessary for the contour to be closed. A closed contour

starting with (xl,yl) and proceeding clockwise to (ch+1,

is one for which (xl, yl) = (ch+l, ch+l). This requirement must be met, how-
ever for the H-field formulation and hence for the combined-field formulation.
Each straight line segment ACn has length An’ a normal unit vector ﬁﬂ, and a
tangent unit vector gﬂ for integers n = 1,2,..., NC. These unit vectors are
related by

xn = 2 (11

~ ~
t n
-n " -n

2~5
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for a closed contour

Figure 2-2. The Contour C Approximated by NC
Straight Line Segments




The parameter t is introduced to represent the arc length along C
measured from the point (xl, yl) to any point on C. Subscripted values of t

are given by the formula

?Sf
t = A (12)
n {=1 i

for n = 2, 3, ..., NC and with t 0.

1

2.1.3 Definition of Expansion Functions and Symmetric
Product

As mentioned earlier, ic may be separated into z-directed and
transverse-directed components. This is written as

Joo= L. +3, (13)

Since there is a charge associated with J,, it is desirable that its represen-
tation in terms of a set of expansion functions be differentiable. There is
no charge associated with gz, however, but iz does become unbounded near sharp
edges of perfect conductors. With this in mind, we define a set of triangle

functions as

t—t-l'
r o - for t <t <t
t -t ~m-1 m-1 — " — "m
m-1
t~-t
ml -
T (t) -4 t for t_ <t <t (14)
—m a7t T mee = o
k_ 0 for t elsewhere

L 3
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and a set of pulse functions as

1z f°rtmititm+1
. gm(c) = (15)
0 for t elsewhere
for integers m = 1, 2, ..., NC and with to = -ANC and £° z ENC'
The electric current gc is then expanded as
NC h e
J () = nZ-l I T (e) + 1 P (0) (16)

where I: and Ig are complex coefficients to be determined for the TE and TM

cases, respectively, For the TM case, it = 0 and for the TE case, 12 = 0.

In the Galerkin procedure, the testing functions are chosen to be
identical to the expansion functions. Hence, to carry out this procedure, a

symmetric product is defined by

<A,B> = fé - B dt (in

with A and B defined on C.

2.2 E-FIELD FORMULATION

The E-field integral equation is obtained bv setting the tangential t4

component of the total electric field equal to zero on C. This is written as

3=
|m
o

on C (18)




where the extra factor of k/n was multiplied through for later convenience.
The operator ES is defined by Equations (8) and (10) and the subscript t

denotes tangential component found by the usual -ﬁ_x n x operation. After
expanding ic in terms of Equations (14) or (15), depending on the polariza-
tion considered, and testing Equation (18) with the same functions used for

expansion, one obtains the following sets of matrix equations:

[z%1 1¢ = vie (19)
for the TM case, and
2" I . yib (20)

re 2z P .
for the TE case. The vectors I and Ib contain the coefficients of expansion

in Equation (16).
2.2.1 Formulas for [Z]

The elements of the matrices [ZeJ and [Zh] are given by the follow-~

ing formulas, where 1 Sm<NCand 1 <n < NC. For the TM case, we have

~S
P EL @)V

4
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After transforming both source and

(-1,1] and letting Pl kAi, we obtain

Y. Y ! ! Y

mn (2>].m; T -

16 /fHo (zuﬁm
-1 “-1

field intervals to the interval

u'

NID-<

t + R' l) du' du
-0 -m,n|,

ifm#n
e
20 (22)
Y t Y
—m. _E _m { - { =
8 [[Ot (2 (1+u)) +a(2 (1 u))} du ifm=n
-1
where g; n is k times the vector from the midpoint of ACn to the midpoint
of ACm. The function a is defined by
z
a(z) =f B W (23)
0

which is computed using Struve functions [7].

The integrals in Equationm (22

are readily approximated by a Gaussian quadrature integration rule {8,9]. For

the TE case we have

x<1+%33-> (24)
N

t
[ (2) 1 v vy ! 4
* T (t') H (k'r(t) - £'(t")]) dt’ dt
- o L




where the unit vector :_1 resides on the field interval Acm—l U ACm. It is
convenient to break the above integral up into four parts. Considering the
contribution from each part separately, Equation (24) is rewritten as

h h h

z = 2 (@-1,n-1,1,1)+5s2 (@-1,n, 1, -1)

(25)

+ SZI’1 (my n -1, -1, 1) + SZh (m, n, -1, -1)

where the function SZh is defined by

1 1
( 'n'n pu Ll)fau' ,1\7 , 7 _p o
16 2 2 2 2/=m -0  Y_ Y
A m 'n

sz! (m,n,p,q) =4 (26)

y

+ a(z—m - u))] + q(%ﬂ +%>
@) (Ym '

'Hl (T(l-u))-<

Y
\ . Hl(z) <-2—E (1 + u))] du ifm=n

P
+
ole
S ——_——

PN -




e e T e

2
where Hl(' denotes the Hankel function of second kind, order one. Note that

[Ze] and [Zh] are both symmetric matrices so that one need only compute the

upper right triangle portion of each.

>1
2.2.2 Formulas for V

. >ie >ih .
The elements of the excitation vectors V and V are given by the

following formulas where 1 < m < NC. For the TM case we have

ie _ k ie
vm S <£m’ -t >
(27)
A Y ~
N |
Jk C Ryosin 5= (kv or)
= 'Y e
m Yy ~ -~
7 (k- t)

PN

where 5& is k times the vector from the origin to the midpoint of ACm and k is

defined bv Equatior (7). For the TE case we have

ih k ih
= = S
Vm n O Iﬂl, Et Ve
. [3 . .
Yool 2m-1 jk - R'pq) by sinb s
= — - e e - (28)
= 3 -1
Ym am ik - 5& sin bm _jbm]
+ 3— J b e b - e j
m m

where a = -n_ * k ana b = (Ym/2) k -

o




2.3 H-FIELD FORMULATION

The H-field integral equation is obtained by setting the tangential
component of the total magnetic field equal to zero just inside C. This is
written as

i -

on C (29)

= ol

I) = knx

where C~ denotes a contour just on the -ﬁ side of C. The factor of k has been
multiplied through for later convenience. The magnetic field operator, é»,

is defined by Equations (9) and (10). After expanding ic in terms of Equa-
tions (13) or (14), depending on the polarization considered, and testing
Equation (29) with the same functions used for expansion, one obtains the

following sets of matrix equations:

(r®] ¢ = 1*° (30)
for the TM case, and
() - 1id (31)

h

ze Es . . .
for the TE case. The vectors I and I again contain the coefficients of

expansion in Equation (16).




2.3.1 Formulas for [T]

The elements of the matrices [Te] and [Th] are given by the follow-~

ing formulas, where 1 <m<NCand 1 < n < NC. For the TM case we have

T° = k(P ,nxH (P)D
mn -m’ = —= ‘-n
Tl R S 1
- 1 kZ
= kf 2gm(t:)-g’_n(t) dt'Ajf gm(t) (32)
t t
m m
tn+l
. f xf(t)xj———T l()(kEE—E'!) dt' dc
t
n

The first term is simply the Ampere's law contribution to the inte-
gral when the field point is on C . Again, after some algebra, one mav
obtain

(

-

m

2
&

ifm=~

° = < ) (33)

ET“‘ (2) -\v | L
- 163 l Hl (‘gm,n‘) du Y

if m#n

~

In the above, R' is given by
~m,n

’




B STy T—

SR i

o s e e i e

where B; a is k times the vector from the midpoint of ACn to the midpoint of
bl

ACm. For the TE case we have

T:m = -k (1, £x§S (x)?
Fmkl ,
=%[ r(t)-*(t)dt-z—/ a0 (35)

Cm-1 “oe

n+l ~ (_r__ rl) (2)
. Exjﬂ(t')XE_E H, (klr - £']) dt' dt
t
n-1

The first term is again the Ampere's law contribution when the field and
source interval coincide. It is also convenient to break the whole integral
in Equation (33) into four parts. Considering the contribution from each

part separately, Equation (35) is rewritten as

h h h

T = ST m-1, n- 4,1, 1) +ST (m-1, n, 1, -1)
mn
(36)
h h
+S8T (myn-1, -1, 1) + ST (m, n, -1, -1)
where the function STh is defined by
u 1 _u_'_ }_ + '
- 163 f f 5 2\<q 7t 2) ¢ (m,n) du' du
if m# n
st (m,n,p,q) = (37
IE L,.m9 if m=n
4 2 6
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where
(myn) = Dm0, (2) (IR' D (38)
—m
2.3.2 Formulas for fi

. . +ih *i
The elements of the excitation vectors, I and Ile, are given bv

the following formulas where 1 < m < NC. 1In the TM case we have

1% = k (P, nxHD
m -m’ =" -
(39)
Yoo .
~ ~ jk « R! SinTQ(‘t)
(n_» k) v e "“’ D
= — m Ym ~ -
7 Ut &)
For the TE case we have
ih o i
I, = kI, nxHD
. . (]
Y ik Bm—l jb sin b
_ m-1 e m- m-1
= 5 e pl (40)
-1 m-1

<
[
=
=
—_

m
L _ m
+2 e

2.4 COMBINED FIELD FORMULATION

It can be shown [10] that the E-field or H-field equations are not
sufficient by themselves to uniquely determine the electric current distribu-

tion, gc' That is, thev each may have non-trivial homogeneous solutions at

)




frequencies which correspond to internal eigenfrequencies of the closed con-
tour C. To illustrate this correspondence, consider the TE interior problem,

where the total electric field E inside C must satisfy

(Vi + kz) E =0 inside ¢ (&)

subject to the boundary condition

E. =0 on C (42)
This is mathematically identical to the external problems:

° H-field formulation, TM case

° E-field formulation, TE case

Thus, these problems have the same eigenfrequencies. Similarly, for the T™™M

interior problem, the total electric field, Ez’ inside C satisfies
w2+i®)E, = 0 inside C (43)
subject to the boundary condition
E =0 on C (44)

This problem is mathematically identical to the external problems

° E-field formulation, TM case

° H-field formulation, TE case

Thus, at or near these internal resonant frequencies, the E-field and H-field
matrices become ill-behaved. To remedy this situation, a linear combination
of the E- and H-field equations is formed:

-k n x HS (

J (J)=1<nxﬂi+351:l (45)
- - -C -C - n
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This equation is referred to as the combined field formulation and it can be
shown [10] that Equation (45) has a unique solution for gc for any contour C
at all frequencies as long as 3 is a positive real number. In matrix form,
Equation (45) is written as

[T® + 8 28] 1 = 1'%+ g yie (46)

for the TM case, and

"+ gz I - R4 g iR )
for the TE case. The formulas for these matrix elements are given in Sub-

sections 2.2 and 2.3.

2.5 TFORMULAS FOR SCATTERING CROSS SECTION

Once the electric current Jc is found, the scattered field (g?, ﬂs)

is readily computed from Equations (8) through (10). In the far-field,
[r| >> A, there are two quantities of interest which are computed from I,
One is the normalized scattered field pattern. This is simply a plot of
|ES /e 5
z' "z max z max
The denominator is the maximum value of scattered field. The second quantity

| versus ¢ for the TM case and [Hi/ﬂ versus ¢ for the TE case.
of interest is the scattering cross section. For the TM case, this is defined

by the equation [2]

lim 2mr (48)

o E

o(¢)

Using Equation (3) with aeja = 1 and specializing Ho(z) (k{z - 5'1) to

large r, we obtain

Vol = —% k/J LIS S D (49)
V 8n c 2
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After Equation (15) is used for Jz, this may be rewritten as

ome e

vV I (50)

\/0/>\. = -——l—

Van

Jme

where the tilda denotes transpose and V = is a ''measurement' vector whose ele-

ments are defined by

t

m+l ~
. Lo
VP (¢) = kf p (1) eIFE D 40 (51)
m m
t
m
For the TE case we have
2
B (r,0)
o(¢) = 1lim 2mr S (52)
r® Hz

Using Equation (6) with bejB = 1 and again specializing H () (klr - ')
° r-=z

to large r we have

Voir = —* k[it(t')(é . ;> IRk ') g (53)
C

This is also written in terms of a TE measurement vector, V , as

Vo = —A | i (54)
V 8n
where the elements of §mh are defined by
Cmtl .
~ A . ]
VoL ok f T (e - k) ed¥E I 4o (55)
m m = =
t

m-1
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Note that V and V"’e are identical to the E-field excitation vectors Wh and
o
vt , respectively, for measurement angle ¢ = ¢i.

2.6 FXACT SERIES SOLUTION

Here the cylinder is defined by a contour C which is a circle of

radius a. The angle of incidence will be chosen at d)i = 0. Thus for the

™ case, the incident field at a point r is expanded as [6]

Py 'kx
El a n e.‘]

jkr cos ¢
e

= (56)
= n Y
= $70 J
n n§0 e J n(kx:) cos no
! Neumann's number €0 is defined by
1 forn =0
e = (37)
n
2 for n > 0

For the TE case, the incident field on € is expanded similarly as

i jkx
Hl = eJ

(58)
o«
,n
= E €, 3 Jn(kr) cos nd
n=0

Writing ic in Equation (13) in terms of its components on C we have

= J z+J, 0 (59)
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where Jz and J, may be expanded in a Fourier series on C of the form

¢
2 o
Jz(¢) * Tka [ao + 2 5;& a_ cos n¢] (60)
and
23 -
J¢(¢) = F&E [co + 2 n§1 ¢, cos nd)] (61)

The coefficients are obtained by enforcing the boundary conditions

on the tangential components of _Igl + £ and _}ii + ES at r = a. They are given

by [6,11]

1 1
a = ——T c. = =
° 5 @ (ay ° 5 @7 a)
o o
(62)
N} I
a = S G2 D N c = N G D
n ?) (xa) oy @7 (g
Hn a n a
Note that, in the above expansion for J¢, 9 = -t.

Formulas for the normalized scattered field pattern are givep by

o
Vo/x = \2/m |b_+2 ¥ b_ cos no (63)
o] r:l n
for the TM case and
Vo/h = \2/m d, + 2 nz=:1 d_cos no (64)




for the TE case. The coefficients are given by

J  (ka) J' (ka)
b = —9'—_— d = _0_'__
o B P (ka) ° g @D
[o] 0
(65)
J  (ka) J' (ka)
by = (DT =y 4y = (DY
i D () H (ka)

2.7 OBLIQUE INCIDENCE

A plane wave which is incident at an angle ¢i from the x axis and

6" from the z axis of Fig. 2-1 is written in the form

jk(e +k_ 2z) e x
; -t
Bl = E e (66) LE

where the argument of the exponential is defined by

k = 2m/A = wAJUuEe

= sin 8" cos ¢ & + sin 6" sin ¢ 3
(67)
k. = cos 6

r o= x

{2

+yv 3

e o el

The z dependence of the incident field gives rise to a z-dependent scattered
field and it is no longer possible to decouple the z-directed and transverse-

directed components of gc' The E-field integral equation is now written as

Ei(r,z) = -Ei(r,z) r on C for all z (68)




which must be satisfied everywhere on C. We define the Fourier transform

pairs
1 g jkzz
E(r,z) = - f‘_o‘_(r, kz) e dkz (69)
il
and
1 > -jkzz
€(r, k) = \/z_f E(r,z) e dz (70)
m

-0

Taking the transform of Equation (68) gives

S i
g._t (r, k.z) = -_€_t (r, kz) on C (71)

The scattered field E_S is caused by an equivalent electric current J(r', z'")

v - f/ic dt'dz'] (72)
c 2z

and is written as

ES(r,z) = -jn [k [fg_c dt'dz' +
c 72!

where G is the Green's function defined by

bl Lol

Y
G(r,z,r',z') = = (73)

lm‘/E-E'{Z +(z~2")?

The V - operator in the second term is taken inside to give

Es(r,z) = -jn [k ffgc dt'dz' +%gffy_' - JG dt'dz'] &
c "z 9

z!
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The transform of Equation (74) is

xR
a ; -jk_z
€(rk,) = -~ “f/‘i [ Ge ° dz]dt'dz’
2
VA.TY I
i z

C -0
(75)
1 z
+E/f(2'-£) T/Ge dz | dt'dz’
c z' -
To do the first integral, note that G satisfies
9% + k% = -8(r - £') (76)

This is rewritten in the form '
| {
{ 2 2 2
| 76+ 224k’ = -8(R) 6z - 2") an

3z

where R = (x - x') X + (y - y') §. The transform of Equation (77) with respect

to (z - z') is

i ~ P
@ +1k% 6 = -5®) (78)
t t —
where
i
~ > ~jk_(z - z")
c = [Ge z iz - 2') (79)
| V2w -




The solution to Equation (78) is

c = Lg@ (81)
G = g7, &IRD
Thus we have
o0 ‘k
-3Kk,z -jkz'~
fc e Fdz = %G (82)

-Q0

The second integral in Equation (75) is aided bv the identity

>
2

Lo
-jk zZ -ik 2°' ~
v d’. Ge 2 dz = e V. G- 3k Gz (83)

-0

Thus we have, after writirg J =J + 2 J ,

S : ~ -jk, 2z
< (r,k ) = - 1 kf f g, +zJ3,) e G dt'dz'
C

(84)

Now let




and

'

(e \/l _fméz( ' Ty? (86)
J(t',z = t',k) e dk
- 27T 2 z

-0

Expanding the divergence of J gives

Tl = gk d (e, 4 J (2h,2Y) (87)

Substituting Equation (87) into Equation (84), one obtains
S . SRR | 3 . :
A (r.k) in [k f}t G dt' + = / (Bt’ft (t',k)) '
C C

. ] [} . ™ ~ [
*szf: (t ,kz)) 7.6 dtJ

(88)
- - v o, 1 ; '
+5[k /ﬂzcdt +k/<1kz,¢z(t,kz)
C C
s ﬁ (-3 k) TS
t’ 2 z
Thus putting Equation (71) into matrix form would vield the following:
z z 1 v
zz zt z z
= (84)
'l‘tz Zie It \t

where the elements of the submatrices, Z, are found from Equation (88).




2.8 CURRENT DISTRIBUTION ON CONDUCTOR DUE TO IMPRESSED
LONGITUDINAL CURRENT

In the preceding sections, formulations were presented for determin-
ing the induced surface current distribution on perfect conducting cvlinders
of arbitrary cross section and infinite length. The excitation was taken to
be a uniform plane wave. Here we consider a different type of excitation,
namely, that of a steady-state current which flows axially along the cylinder.
If the cylinder contour C is not circular, the current density on C is dis-
tributed around the contour due to inductive effects. It is this current

redistribution which is solved for here by an integral equation formulation.

The perfect electric conductor C is infinite in the z direction and

carries a total current Iz amp. Let the surface current density on C be

fJ de = 1 (90)
2
c

where dc is the elemental arc length on C. Since I is independent of fre-

denoted by Jz amp/m. Then

quency, there is no electric field. Thus the magnetic field satisfies the

equations:
V *H = 0 evervwhere 9
J onC
=,
z X _[i = (92) //
0 in R_ and R, /
2 ° i /

Since C is a perfect conductor, H= 0 in the internal region, Ri’ shown in J

Fig. 2-3. For the region, Ro, H mav be written as [from Equation (92)] ;
H = 7 xA 093)




EE

de

Figure 2-3., Contour C Carrying Total z-Directed Current IZ

[
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e e U,

where A satisfies

TxTxa = 3 = 9@ -4 -7 4 (94)

-2

A is in the z direction only and independent of z so

o
VA = =J (95)

>

“H = 0 oncC (96)

This is rewritten in terms of A as

— = 0 on C (97)

where we have used the fact that n x t = z. The solution to Equation (95) may

be written as

J (") In lr - r'l de' (98)

b=
N
#
[}
Nl =
=
0’\

where r is a point in Ro and r' = r'(c') is a point on C. Now Equation (97)
implies that Az = constant on C. Thus the integral equation that Jz satis-

fies is
——Z—T?—/Jz(c’) in [r-r'| de’' = K (99)

subject to the constraint of Equatior- (90). K is a constant which depends on

the geometrv of C. For a circle of radius a,

K = — {100)




Equation (99) may be solved by choosing K = -1/2%. Proceeding as in the pre-
vious sections, we break C up into N subsections. Over each subsection, Jz
is assumed constant. This is equivalent to using the pulse basis defined

bv Equation (15). Thus we have

N
Jz=2

lj Pj(t) (101)
j=1

where a, are unknown coefficients. This is substituted into Equation (99) to
J

obtain

a./2
N 3 ~
IR tnfle -z -cel)de o= 1 (102)
j=l J - - —J
=A,/2
J
For computational simplicity, a point-matching procedure is used where the

impulse functions

1 if r is on Aj
§,(x) = (103)

0 if is elsewhere on C

{re

are used for testing. The resulting matrix equation is given by

Ml & = K (104)

where

A, A,
= - - -t Lt ! 105
M, . 5 [ tn |r, -ty Eylde (105)
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Equation (105) can be evaluated analytically and is given by

- 8,
Ai[zn—-l] if 1 =3

A, t, - R
—L gn (RU . RL) - =—= 2n (RU/RL) - A,
4 2 3

M. =< - (106)
i oo S

~ -t *R -t. R
+ |n, - 5] t:an-l Z_T__:]_____ -tan-l Z—;—-J————

3 |n. RI !n R[

=3 - -1 =

if 1 # j
\

where the following notation is used:

I = vector from origin to midpoint of Ai
Zi‘lj =Rx§+RyX=5
tx = n;
t1 xn, = z ====%
t = -n
v p 4
t = t,_ x+ ¢t
=] Jjx = 3y
A 2 5 2
RU = R, -3te. ] +lr -35L
% jx v jv
A, ¢ A, 2
RL = \Ro+=Le, )+ (R +5L¢,
X 2 ix v 2 iy
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SECTION 3

THIN SHELLS OF ARBITRARY CROSS SECTION
AND FINITE CONDUCTIVITY

Two approximate methods are presented here for computer-aided analy-
sis of field penetration into cylindrical shells. The first method effectively
replaces the shell by an equivalent impedance sheet boundary condition which
results in a modified E~field integral equation. The second method utilizes a
transmission line analysis to derive a surface load impedance to be used in a
loaded body E-field integral equation. The E-field operator developed in
Section 2 for both polarizations is used. The adjective "thin", as used here,
means the shell thickness is small with respect to a wavelength in the sur-
rouding medium but may be appreciable with respect to the shell material

wavelength,

3.1 INTRODUCTION

The primary purpose of this section is to develop some approximate
techniques for computing the electromagnetic scattering and penetration prop-
erties of two-dimensional shells of an arbitrary cross section and having
finite conductivity. Quantities of interest are thus scattering cross section
and near fields inside the shell. The latter are characterized by the '"shield-

ing effectiveness" of the shell which is defined here as [1]

pNS
SE = 20 log|— |(dB) (1)
S
£
where EFS and g? are fields computed at a point without and with the shell

present, respectively.
The original problem is shown in Fig. 3-1 where a plane wave illumi-
nates a shell of thickness 4. The shell is made up of material with consti-

tutive parameters uo, €, 0 and the surrounding material is free space (uo, eo).
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Incident
Plane wWave

Figure 3-1. Original Problem: Plane Wave Illuminating
a Shell of Uniform Thickness d

The conductivity 0 may also be a function of position in the shell. The
thickness d is assumed to be much less than the wavelength of free space, AO
Thus, as far as the surrounding medium is concerned, the shell may be replaced
by a single contour, C. This contour is further approximated by a finite
number of straight line segments ACi for i =1, 2, ... , NC. This is shown

in Fig. 3-2. The original properties of the shell are accounted for by
assigning to each segment ACi a value of d and 0. Each line segment has
length A; and unit vectors t, and A, such that £, x 8, = 2. The excitation
consists of two types of plane waves, each to be considered separately. These
are the TE case (z component of magnetic field only) and the TM case (z com~

ponent of electric field only).

A general formulation of the problem in Fig. 3-1 requires the use

of equivalent electric and magnetic currents on the inner and outer surfaces




Figure 3-2. Approximation of Shell by Contour C

of the shell. This is given in [2] and will not be discussed here. Instead,
some approximate formulations will be developed which are valid for certain
types of shells. As a starting peint, the shell material is assumed to be a
fairly good conductor. If d is also much less than the wavelength in the
shell, Ab’ then an impedance sheet approximation may be used [3]. The deriva-
tion of this formulation is summarized in Subsection 3.2 for use in computer
program 1. If the frequeucy is higher, so that d is then comparable to Xb’
the shell material may be assumed to support traveling waves. Here a trans-
mission line analysis is presented in Subsection 3.3 for use in computer pro-
gram 2. Lastly, if the shell is circular then an infinite series solution is
possible using Bessel functions [4]. This is preserted in Section 4 for

use in computer program 3. The desired quantity in all three formulations

is the field at points interior to the shell. This may be expressed as an
integral over electric and magnetic currents on C and procedures for this
computation are given in Subsection 3.4. Descripticns of the computer pro-

grams as well as sample input/output data are given in Appendix B.
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3.2 IMPEDANCE SHEET APPROXIMATION

The total field everywhere in Fig. 3-1 is the sum of the incident
field (Ei, El) and a secondary field (ES, E?) due to the presence of the shell.
This secondary field may be generated by an equivalent electric polarization

current which effectively replaces the shell. This current is given by (5]
[jw(e -e) +0] E in§

0 outside §

where E is the total electric field (E} + E?). Equation (2) may be rewritten
as

J .

= i

~S i
-ET () + B ey o " E in S (3)

where i? is an electric field operator defined by Equation (8) of [6]. If the
shell thickness d is much less than the wavelength in region b, Xb, then one
may approximate Equation (3) by specializing it to the contour C in Fig. 3-2
and replacing the volume current J with a surface current gc. One then obtains

the loaded body equation [7]

S
t

jr1>

3' =~
o |o

Et on C (4)

[}
OJIOF

SRIEAES

where the factor of ko/n° has been multiplied through for later convenience.

The subscript t denotes tangential component evaluated on C.

The normalized impedance load ZL is given by




which, if ¢ = Eo’ reduces to

2. = 53 (6)

This is the low frequency limit used in [1l]. Equation (4) is solved by a
moment method procedure as in Section 2 (6] where the matrix equations are

written as

[ze + zf] It = V€ %)
for the TM case and
[zh + 72} o= ik (8)

\ e h >ie =ih
for the TE case. The matrices [2 ], (2] and vectors V' . V are exactly
-
the same as those in Section 2. The vectors 1€ and Th contain the coeffi-

cients of expansion for Jc in the ™ and TE cases, respectively, which is

the same as that used for gc in [6]. For the TM case, the elements of Zi
are given by
k A
o ifm=n
g
e
z) = 9)
mn
0 ifm#n

where B is defined by

Ao




—r B e

For the TE case, the elements of Zh are given by

L
1 ko
38 (Am—l + Am) ifm=n
h ko Am
(ZL) = §— . if m = n-1 (1D
m or n+l - NC
koAn
36 if m = n+l

or n-1 + NC

Note that in this formulation J is assumed tangential to C. Any
normal component which the actual polarization current may have has been neg-
lected. This is probably acceptable for the TM case since J is z directed.
For the TE case, however, this assumption is no good unless kbd << 1 and even
then depends upon the incident field. For example, the configuration in
Fig. 3-3 would produce erroneous results bv the above formulation. A more
accurate solution could be obtained by allowing both components of the polari-

zation current [8,9].

Figure 3-3. Incident Field Causing Normal Component
of Polarization Current
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3.3 TRAVELING WAVE APPROXIMATION

The problem in Fig. 3~1 may also be looked at as a three-region
problem, where equivalent electric and magnetic currents are assumed to exist
on surfaces Co and Cl' [2]. This formulation will not be presented here, but
for the purposes of discussion, let '"a", '"b", and "c¢'" denote the regions out-
side Co, between CO and Cl’ and inside Cl’ respectively. The total field in
region "a" now may be expressed as the sum of the incident field and a sec-
ondary field arising from electric and magnetic current sources on Co' Now
if the shell is a good conductor, then the magnetic current on C0 will be
negligible. Secondly, if the shell surface has no abrupt changes in curvature
(10) one may assume that an impedance relationship exists between the total

tangential component of the electric field in region "a'" and the electric cur-

rent on Co. Again, since kod << 1, we replace Co and C, by C in Fig. 3-2. The

1
condition that del<< 1 as in Subsection 3.2 need not apply here. Hence, we ¥
write
a
= 2
Et ZLio on C (12)

where Eé is the total electric field in region a. Equation (12) is rewritten

as
~a _
—Et(J ) + ZL(J ) = E on C (13)

which is again the loaded body equation of Subsection 3.2.

The load impedance, ZL’ this time will be determined by assuming
that, inside region 'b", each subsection of C appears locally planar. Travel-
ing waves are then assumed to exist in region "b" which reflect the impedance

seen at C1 looking into region 'c¢" back to region "a Standard transmission .

line techniques may thus be used to obtain ZL' 1

First consider the infinite slab shown in Fig. 3-4 where a local
(u,v,w) coordinate system is used. The electric surface current 20 exists i

evervwhere on the plane u = 0 and is constant over all v. This gives rise to
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plane waves in all three regions which have no u components. The electric

field is written as

jkau
EE = Acte (- u traveling plane waves) (14)

. o=iku o~ dku
b t e kb + C kb

E. t te (+ u traveling plane waves) (15)

. =ik _(u-d) N
= Dte © (+ u traveling plane waves) (16)

(]

E
~t

The transverse unit vector t lies in the v-w plane. The magnetic

field is obtained from the Maxwell curl equation

3E,
Aoxost = -3k B (17

which has been specialized to + U traveling plane waves. Thus we obtain

. R jk_u
#os - @b e ? (18)
a
> A ~-jk u ik u
_P (nrx £ lg e v - Ce “ ] (19)
t - 4
. N -k (u=d)
H o= =— pe ° (20)

= ] at u =90 (21




= = 2
EL o at u = 0 (22)
b ye -
Hoo= H at u = d (27)
b c _
E. = E at u = d (24)

- H = nxJ at u =0 (25)
-0

Solving Equations (22) through (25) simultaneously for the coeffi-

cients A, B, C, and D, one obtains

n J

A = _33_25 [— 2] r, sin kbd - 2 cos kbd] (26)
n_J jkbd
a ot .

B = --—A——(l+r2) e 2N
nJ -jkbd

= . _a& ot - 5

C 5 1 rz) e (28)
2n.J

D = - —2 ot (29)

A

where & is given by

= 2(1 +r,r,) cos kd+2j (r)+ r,) sin igd (30)

>




: o ot="

applicable:

The tangential componments of field at surface C1 are given by the

expressions

| = =
‘ and ry na/nb, T, nb/nc. In the above, Jo

J =J t. 1n the actual problem, E

and Et must be continuous across CO

the load impedance Z. is determined by the ratio

cos kbd + j r, sin kbd

N
0

The following limiting cases of Equation (31) may be used when

1+ 3 r, kbd
r, + j kbd

|

sin kbd + r, cos kbd

lkbd] >0

lk,d! = 0 and [n

Iny i << ng

‘;kbdl - = gnd ‘nbl <L Y’]C

is in the t direction so that




These fields mav be thought of as arising from surface electric and

magnetic currents at u = d defined by

n
C ~ ~ a -
M, = E 3 = >
L (n x £o> (1 + rlrz) cos kbd + j(rl + rz) sin kbd (35)
and
n
-7 -2 1
gl B Jo N, 1+ rer) cos kbd + j(rl + r2) sin kbd (36)
Again, as ﬂb << na or nc, we have
-~ “'b
] (n > J) 351 k d (37)
"y
J, » J -— (38)
1 -0 nc j sin kbd

In the above,
wave. This, of course,
fail unless region c is

n used here is opposite

we have assumed that the field in region ¢ is a plane
is not exactlv true so the approximation will probably
electrically large. Note that the normal unit vector

to that used in Figs. 3-1 and 3-2.
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3.4 COMPUTATION OF FIELDS DUE TO TWO-DIMENSIONAL CURRENT
DISTRIBUTIONS

Expressions are presented here for the field at points interior to
the shell, denoted by region ¢ in [2]. For the formulation of Subsection 3.2,
the total field in region ¢ is due to an incident field plus a secondary field
which is caused by a two-dimensional electric current distribution on C. For
the formulation of Subsection 3.3, the total field in region c is due to elec-
tric and magnetic currents on C. In both cases these current distributions
radiate in unbounded space filled with uc, ec. Hence, we represent the fields

by a potential integral formula [14].

The actual fields computed are the z components of electric field

in the TM case and magnetic field in the TE case. These are written as

ES E ¥
=2 = Z2_.7. [ Kk A+VYV x F) (39)
n n, = = =
c c
and -
B = H +2 . [(TxA-3kE] (40)
z © Tz % (L x4-7] c—
where the electric and magnetic vector potentials are defined by
l_ ' (2) - ! ' '
A 43 fg(t ) Hy (k, lr - " (£"]) dt (41)
C
F o= — [uey e @ « jr-z @) de (42)
- 4, . = o c = = ' .

c

In the above, the electric field and magnetic current have been
normalized by n. for computational convenience. Both terms in Equations (39)

and (40) are used in the formulation of Subsection 3.2 and the last terms
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only are used for the formulation of Subsection 3.3. Equations (39) and (40)
at a point r in region ¢ where r'(t') is a point on C where arc length is para-
metrically expressed in terms of t'. The electric and magnetic currents are

expanded as

Ne o .

3= 2 I T ()+1 P(t) (43)

n=1
NC

1 h e
Mo 2 VR () +V T () (44)

c n=1

h h

where Bn and I, are defined by Equations (14) and (15) of [6]. In and Vn are
complex coefficients for the TE case and Ii and Vi are complex coefficients
for the TM case. Equations (39) and (40) may be conveniently rewritten in

terms of near-field measurement vectors as

c i
E EX . .
£ = EZ4+31%+P7° (45)
r‘lC nC
W = Hl - P L3 (46)

where the tilda (~) denotes transpose.

3.4.,1 Formulas for Near-Field Measurement Vector, 6

Each element Qn of 5 actually represents the electric (magnetic)
field due to a z directed electric (magnetic) current of amplitude l/nc (nc)
with a pulse function distribution on subinterval, ACn. The field point is

denoted by r and r' denotes a point on ACn. Thus one may write

tn+l
= - = P (t') H
Q = 4 n o

=

@D e fr-x' D] ae (47)

n c

L Y




Let r, be a vector from the origin to the midpoint of ACn and define Eﬂ(t') as

>

n ~
R (¢') = - -5t (48)

Aﬂ

which is shown in Fig. 3-5, where ~1 < t < 1. Then Equation (47) may be trans-
formed to

1

ko & (2)
o, = - H 'O Gk, R (e)]) de! (49)
-1

The integrand of Equation (49) becomes singular when fgn(t’)[ - 0.
To remedy the numerical difficulty encountered when this happens, we rewrite

Equation (49) as

1
kA
- (o] n (2) 1 []
% = -3 [Ho (kg R (eD) de
-1
. vk, R (e")]
+ &4 gp —C—;“———] de! (5C,
kil 2
kA Yoo vk, R (e
+ <1 L) g B gyt
8 b 2
-1

\

whenever lgn(t‘)| < ¢ for some small number € > 0 and subinterval An. The
first integral can be done accurately by a quadrature rule as long as the
integrand is never evaluated exactly where Igﬂ(t')l = 0. The second inte-

gral can be done analytically and the following substitutions are made:

r = xx+y§y

nx -
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(Xn’ yn)

i

Origin

Figure 3-5, Geometry Relating to the Computation of 5 and P
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I, T X 2y, y
_ 2
a, = (8,/2)
ba = Thy (G - xn) fax ¥ O - yn) tny]
= 2 + 2
¢, = - xn) (y - yn)
D = b’-64ac =9A2(x-x)(v-y)t t
n n nn ““n n’ n’ nx nv
Then fgﬂ(t')[ becomes
L} - |2 \J
an(t y|o= ‘/ant +b t' + ¢y

and the second term in Equation (50) is written as

kdy 3 Yk, 2
4 T Zn T V(an + bn + cn) (an - bn M Cn)

bn a_ + bn + cn
+ en -2
a -b +c¢ ‘

n n n

(51)
n

- -1
for Dn < 0., If Dn > 0, Dn is replaced by —Dn and tan 1 is replaced bv tanh
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3.4.2 Formulas for Near-Field Measurement Vector, P

The element Pn represents the magnetic (electric) field due to a
-t (t)-directed electric (magnetic) current of unit amplitude with a triangle

function distribution over the interval ACn_ U Acn. Thus we have

1

I : (2) N ,
Fa 4y ¢ foln(t)ﬂo (k. lx-x'(tH]) de
C
(52)
k T (t') n * R(t")
= -—C n - ha (2) | 1y ! '
43 f R(c")] H070 (k_ [R(eD D) de
C
where R(t') = r - r'(t'). This may be rewritten as
1 /1 Yy o~
o= - i K¢ Pa-1 (2 T3 >5n—1‘—ﬂ—l(t ) B ) IR (e)!) ae!
n 43 2 Tgﬂ_ (e")! 1 ¢ Sn-1 :
-1
1/1 t'y ~
k & =« =—\n R (")
C 2 2 2 ,
* ; : ( [2 I:.){ Hl( ) (k. lgn(t)l) dt (53)
-

The integrand of Equation (53) becomes singular when EBnt +~ 0. The
singularitv is integrable, however, and after a similar manipulation to that

done in Subsection 3.4.1 one obtains




The § and S terms are defined by

l -~
I By (% * %)Eﬂ-—l xR1(®)
Sn-]. = - - )R (t)|2 dt
-1 —n-1 t
_ kA 1(—15-%)§an(&
Pa T TR_(0)T
_.l -0

(55)

(56)

(57

(58)




AN ~

The terms Pn and Pn may be integrated bv a quadrature rule with no

-1
difficulties as !Rn{ ~ 0. The terms Sn-l and Sn may be integrated analvtically

to give
; 1
5 . 331 (1 +¢t) dn_l for
a-1 T N .- ¢
-1 %1 -1 8T
4
/ 2
J An-l bn * dn-l -1(° %n-1 * bn-l
S T T -3 tan
n-1 Dn—l Dn-l
+
* dn-l ‘ln al’l—l M bn-—l Cn—l (59) ;
2 an—l an-l T “n-1 M Cn—l 1
where d_ = [t (v - v") -t (x - x")], and *7
n nx ny
B 4 2
s J “n bn * dn tan-l an * bn
n = 2n 2 a
n Dn \ /Dn
(60)
d a +b +c¢
_ 'a n n n
2 a a -b +c¢
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SECTION 4

SHELLS OF CIRCULAR CROSS SECTION AND i
FINITE CONDUCTIVITY

When the shell has a circular cross section, the Helmholtz wave
equation is separable in cylindrical coordinates. An expansion of the fields
in each region is then possible in terms of the solutions to the hcmogeneous !
wave equation. The unknown coefficients of expansion are found by ensuring

continuity of tangential fields across the inside and outside shell surfaces.

4.1 INTRODUCTION

An exact-series solution [1l, 2] for the penetration fields inside
circular shells is presented here. This is useful in testing the approximate
solutions developed in Section 3. This solution 1Is especially useful in de-
veloping low-frequency approximations to the interior penetration fields, i.e.,
when the overall dimension of the shell cross section is small with respect to
a wavelength. The interiorlfields are shown to be uniform in this limit and

a convenient equivalent circuit model is valid for the coupling mechanism.

4.2 GENERAL SOLUTION

Consider the problem shown in Fig. 4-1. For the TE case, the inci-

dent field is
. jk x jk r cos ¢
H = e ° = e 0

(1)

]
(Y
=)
[
3
~~
=
o}
la]
~
™
[
jo
©




incident
Plane Wave

Figure 4-1. Plane Wave Incident Upon a Circular Shell




The z component of magnetic field in each region is expressed as

o

i Ha = Z jn aTE H (k r) ejn¢ + Hl
‘ z oot n n o z
i < TE TE ' (2)
b _ .0 jno
H, Z_;m j [bn J G r) +c ¥ (kbr)] e
< E ino
HS = 3 3" dF U (kr) ed™
z et n “n o
where Hn(x) = Jn(x) -] Yn(x).
The ¢ component of electric field is obtained from ‘
n 3Hz
E@ = - 3—1; 3r (3)
Hence
- TE Sné
a _ . g el ] ' jn
E‘-D = ing ;@ j [an Hn(kor) + Jn(kor):l e
b < TE TE ino
= . .0 [} vt jn 4)
E{b in, ‘_‘:m j [bn Jp(kr) + ¢ .‘n(kbr)] e (4
< TE ino
c _ . .n ' jn
E¢ = ] noz j dn Jn(kor) e

4=-3




Matching tangential components of E and H at r = a, a leads to
i T €] [
- - - 1
Hn(koao> Jn(kbao) Yn(kbao) 0 2 Jn(‘oao)
e |
0 Jn(kbal) Yn(kbal) -Jn(koal) bn 0
= (5)
H'(k a ) =2 I'(ka) -ZY¥'(ka) 0 TE “3'(x a)
n oo * n kb o > 'n kb o n n oo
0 5 J' (k. a,) SY'(ka,) -J'(k_a,) dTE 0
| > “n ol > "n kb 1 n o lJ | n | L i

where £ = ﬂb/

where

nll

nl2

n2l

n22

WO4 This svstem has the determinant:

-

fkbal

RAUSRRAUER

11058, 05,8

[Jn(kbal) Yn<kbao)

{{n(kbao) Yé(kbal)

R vt
- Jn<kba1) Xn(kbao)

- Jé<kbal) Yn(kbao)

L] ol
Hn(koao) [Jn(koal) Tnll I Jn(koal) Tnll]

(6)

Jé(kbao> Yn<kbal)

(M)

Jn(kbao) Yn(kbal)

| SRR B U R v— e G |




Solving for azE and dEE, one obtains

. TE _ _ 2% \ . )
; an - TE | Jn(koao) [Jn(koal) Tnll + 3 Jn(koal)TanJ
- WHﬁli
n
(8)
1
+ I (kgay) [E Jolkgap) Toop + Jp(kap) Tn22}
TE _ 43 5
dy = TIE 2 9

An b koao kbal

These coefficients allow one to compute the total fields external to and in-

ternal to the shell.

In a similar procedure for TM excitation, one obtains:

i jkoX < n jng
E = e = Z j Jn(kor) e (10)

-QO

The z component of electric field in each region is expressed as

jne

° 4

a < .n >
ET = Z 3 [a Hn(kor) + Jn(kor):’ e

x
b _ .0 |, T™M ™ . jnd
Ez - 2& J [bn Jn(kbr) * n \n(kbr)] € (11)
c < .n ™ jin®
Ez B zi J dn Jn(kor) €

The » component of magnetic field is obtained from:

—
[

(12

o
e
=~
3
@
o}




|
|
i
|
‘ Hence:
1 « ™
a n .
H = = . B ', ' Jno
bl ?]D zi J [an ankor) * Jn(kor)] €
b 1 < ™ ™
= .n ' S ine
HQ jﬂb 2; J [bn Jn(kbr) * Cn \n(kbr)] € (13
I < ™ '
C . A noe
= — v ' J
HD Tn. & dn Jn(kor) e
0 -0
Again, matching tangential components of E and H at r = a, a leads to
r R — TM-‘ [
Hn(koao) - Jn(kbao) - Yn(kbao) 0 a - Jn(koao)
™
0 3 (qap) ¥_(kga) -3 (x_ap| | b 0 ¥
1 l 1 - l v ¥ TM - 1 ,
Hikgay) - £ Inlkyay) £ o (Kyay) 0 “n Jakgay)
_l. ! l rt = ' ™
i 0 5 Ik ay) : vk a;) Jn(koal)J -dnJ i 0 ]

(14)

where again £ = nb/no. Comparison with Equation (5) leads to the result that

AEM, azM, and dEM are given by Equations (6), (8), and (9) with £ replaced
by 1/%.
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1

!

i 4.3 LOW FREQUENCY APPROXIMATION

! Of particular interest is the case when the shell geometryv of

; Fig. 4-1 is '"quasistatic'". This is the case when koao << 1. After using

the first few terms in the series for Jn(kor) and neglecting terms of order
o
{ (kor)' and higher, one obtains the following formulas for the fields interior

| to the shell:

¢ - ,TE TE
Hz do + Jdl kor cos ¢
kr k r
c 3 , TE o _ TE _ TE "o
E¢ ing d0 > nodl cos ¢ nodz —5 cos 29
c
g = "o BHz
T Jkor ad
k r
~ _ . JIE . JTE o0
nodl sin ¢ + Jnodz 5~ sin 20
c  ~ ™ ., TM
E, d~ +3d]" k_r cos ¢ (15)
. i ™ kor dTM dgM k r
2 _ + = — 2
H@ = dO > + cos o A 5~ oS o]
o) )
c
g = 1 aEz
r Jkonor 3d
™
d , k r
» 1oin ¢ - - dgM —%— sin 24
no no
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are uniform and are given by:

for the TE case [Fig. 4-2(a)] and

kb =
nb =
OO ,
Ei
s
fa} TE Case
Figure 4-2.

° g

the coefficients do’ dl‘ and hence the determinants A.

ourselves to shells which are good conductors, i.e.,

|/—jwu0

Wy
c

[OOO

{(b) T™ Case

Interior Fields

4-8

We see from the above that, when kor << 1, the fields interior to the shell

(16)

(17)

for the ™ case [Fig. 4-2(b)]. It is now necessary to examine expressions for

To do this, we confine

(18)




Thus, in general, Fb]>> k_ and kl<< 1 and hence lkbalf and !kbaoi will be
quite large. The following limiting forms for the Bessel functions are then

quite useful {3]:

As x > 0,
2
I - 1~(§)
3
X 1 X
Jp x> 7'2—:(7)
o - -
2
' 1_3(x
&~ 4(2)
(19)
_d2 g, ¥x
Ho(x) - 1 - fn 5
- 2,2
Hl(x) 2 + TX
' L _x_ ]2
Ho(x) 2 ™
' 1_2 yx 1
B > 3-3 (9“2 *3
X
as |x] >> 1 and |x| >> n, we have
T T
Jn(x) cos < -5 - A)
(20

2 :
X

\

‘/2 ; ar _ 7

Yn(x) - =% sin <x -3 4)
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The Tn matrix elements become:

g
Tnll = ;; cos kbd

<y
‘/al
TnZl = P sin kbd
o
41
Tn22 = ;; cos kbd

where d = a, -3 is the shell thickness. To simplifv the results we assume
that d << a, or a; and hence a, = a; = b. This can be taken as the mean radius

of the shell. After using Equations (19) through (21) in the formulas for the
TE ™

coefficients d and d we obtain V
TE 1
-~ (22
do kob
cos kbd -3 sin kbd
TE 2 kob "
dl - 1 (23)
2 kob cos kbd + E sin kbd
for the TE case and
™ 1 s
g = Kb vy kb (24)
cos kbd + —/— In —5— sin khd
™ 1 oe
d1 . ; kob (2%)
cos kbd + 35 kjb - —— }sin kbd
2 o -

for the TM case.

TR

R TAT U J
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P

If the thickness d is such that ]kbdl << 1, then the following low=-

frequency behavior for the interior field coefficients is obtained:

dTE N 1 (26)
° 1 - juub X
JWH, 2
TE _ 1
d;” = [ od 1 (27)
2 jwe b
o
™ 1
do - Ykob (28)
1+ jw uob n 5 ad
™ 1
= 2
d1 ud weob (29)
1+ EE;E-- 3j > od

Using Equations (16) and (17), the electric and magnetic shielding

ratios for the two polarizations can be written as

C
H
2 - dgE (30)
H
VA
C
E
2o gE (31)
i 1
E
y
for the TE case and
C
E
_:_ - dZM (32)
E
pA
c
H
= - dIM (3
H
v

PR




for the TM case. The low-frequency behavior of shielding effectiveness can
then be inferred from Equations (26) through (29). Of particular interest is
the relationship between the interior electric and magnetic fields as the

frequency w becomes small. For the TM case we find that

Ei dgM ud
— —l —_— ~ iz
c 0% Tm S ol t 5 (34)
H d o
v 1
Similarly, for the TE case we have
Es nodliE
—_ = . = < (35)
HC w0 dTE
z 0

4.4 TM LINE SOURCE EXCITIATION

Consider the thin circular shell of mean radius a in the presence of
an electric line source as shown in Fig. 4-3. The thickness of the shell d
is much less than the free space wavelength and also As’ the wavelength inside
the shell material. 1If the latter is true then we assume an impedance rela-
tion between the total electric field E} + g? and the electric current J at
r = a where:

ES = the secondary field due to J

{ra

J&

field due to the line source in free space

unknown electric polarization current




)RS, 0)
- x

d<<xo

Figure 4-3. Thin Shell in the Presence of a Line Source
This relation is expressed as
s
- yA =
ES(D) + 2,0 = E (36)

where Zgr is the surface transfer impedance given by 1/(jw(e - Eo) + C)d for

this case. The secondary fields are defined by

2T
“o"o (2)
E2Q) = - Tf a J(0") H ' (k |x - ') do
0
(37)

q
- °_ 77 . .[. aJ»" H(z) (k 'v -~ ¢']) as’
2 o o LT L
0




and

27
85 = Lfo a 3o B

e (k lr-z'D ©(38)

o

Equation (36) will be solved by expanding J(¢') in a Fourier series
in $' and specializing the result to the quasi-static case (w = 0). The

incident fields are given by

A

Hi = - E—;EZ HiZ) (k fx - R.D)

H; _ 1 ko(i R) Hiz) &k |r - R >
R = v/(x - Rs)2 + y2

with respect to the coordinates of Fig. 4-3. Equation (36) becomes:

kn 2m
jj°f a gy B (k |z - x']) do’
0

[
(40)




The following addition theorem is now useful [3]:

(5 B ) 3 k) M7 e

8 e fe -2 D = ¢ (41)

Y oo G 8w 0
k-oo

The Fourier series representation for J is written as

I = X o (42)

Substituting Equations (41) and (42) into Equation (40) and using the orthogo-

nality of eJn¢ we obtain:

Ik
7
- 521 R I (e a)
¢ = n o's n o (43)
n ko aT (2)
+ 2!
> Hn (koa) Jn(koa)
where Z2' = Zst/no' The total field inside the shell is of interest and is
obtained by adding ES and El for r < a. Thus we have
I s i L kono - (2) )
E, = E +E = —}/— EO e H ™ (kR J (k1)
(44)
k a 9
° 5 ka8 @ a)
2 n o n o .
. - 1} cos n¢

-
o 4@ wa) I ka) + 7
n Q n (o]




This gives the correct result as <

~ (0 for a perfect conducting shell ({q = 1
for n = 0 and 2 for n > 0). <Using the formula
(" » . .
D kK r' x r) eIf® < !
2 Bl ( R ) Jn( of) r r
-l
(2) '
H k r - ' =< .-
1 ( o L r ) (45)
X Al
v l ! ; -, B ' J,‘n“ '
- H“_A KT . KT e r r
we obtain the total H-field inside the snell s
c I ko (x = R '
H = > S H S " r
v +j R 3 - g
n=
Cat)
-2' cos ao¢
elk a T
0 2 \
5 H( ) (k ay J (k. a) + 7'
C n O
Ik W )
HC = - o v oo -
X 4 RO~ ) -
n=t)
(47
-2 soson 7‘___.]
. kO a 2y s . "'|l
5 H (k) (g al) =
2 n o n oo ]
As the frequency w ~ 0, the current is approximately given ov
/ N L. a
L. 2 \ Jos
‘«_'(1".4,_'“ ‘S} ."'R~ or
J > nd hd - P (43
z . . T ) -
ezl__.l;,n__e>+bt Sow L st
2 - 2 : 2
A-1h




where
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SECTION 3

DIFFUSION COUPLING MODELS FOR LIGHTNING AND
NUCLEAR ELECTROMAGNETIC PULSE

In this section, models for the threats of nearbv and direct light-
ning strikes as well as nuclear electromagnetic pulse (NEMP) radiation are
postulated. The diffusion coupling formulas derived bv Kaden [1,2] are used
to obtain internal penetration fields for homogeneous shells. Modeling the
excitation time waveform as a double exponential, an inverse Laplace trans-

form is performed as in [1l] to obtain the interior fields as a function of

time, These fields are then used to excite transmission lines which reside

inside the shell and form the basis of the computer-aided design (CAD) pro-

gram discussed in Appendix C.
5.1 INTRODUCTION

In the near strike case, the lightning is modeled as a tube of
current parallel to the axis of the shell. It produces a transverse magnetic
field which penetrates the shell by a diffusive coupling mechanism. The time
derivative of this penetration magnetic flux densityv interacts with a circuit
loop area or an equivalent transmission line area to produce a voltage drop

across the circuit. At sufficient distances from the lightning current column,

the electric and magnetic fields are related byv the impedance of free space.

For the case of radiation from a nuclear electromagnetic pulse (NEMP),
the incident field is taken to be an incident plane wave. This is exactlv what
the near strike excitation produces far from its source. The main difference
between the two is the frequencvy content in the spectrum of the incident fields
where that of NEMP is much higher. Thus the same diffusion coupling formulas
apply for NEMP fields as for the near lightning strike case as long as the

shell cross section is electricallv small for all frequencies of siznificance.

In the direct strike case, the lightning curren. waveform is assumed
to distribute itself uniformly about the outside of the shell surface and is

in a direction parallel to the axis. 1t gives rise to an electric {ield on




the interior of the shell via the surface transfer impedance which is in the

same direction as the lightning current and uniform throughout the shell.
his electric rfield gives rise to voltage drops along current paths which lie

along ir.
5.2 NEAR-STRIKE LIGHTNING

The situation of a lightning bolt striking near an aircraft is shown
in Fig. 5-1. The bolt is modeled bv a cvlindrical tube of current whose time

dependence is assumed to be given by

r_ _ |
I(e) = I Le O‘t-egtJ (1)
Q
where

4 -
% = 1.7 x 10% st
3 = 3.5 x10% st

5

I = 2x 107 amp

Sheil axis

Aircrafe

Figure 5-1. Near-Strike Lightning Situatien
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which are nominal values. The physical length of the bolt will be assumed
much longer than the aircraft and the end effects of the clouds are neglected.
The bolt, now considered as an infinite tube of current as far as the aircraft
is concerned, gives rise to ¢ directed magnetic field lines (because of svm-
metrv) with respect to an axis along the bolt. At a point R in the absence

of the aircraft, the magnetic field is given by

which is actuallv nonuniform. If the aircraft shell is small, however, the
external field is usually considered to be uniform over the shell cross sec-

tion and R is some mean radius from the lightning bolt to the shell.

The spectrum of Equation (1), and hence Equation (2), is shown in
Fig. 5-2. It is flat out to approximately 2.7 kHz where it rapidly decreases.
Thus, a low-frequency analysis (neglecting the term jw eOE in relgtion to gE)
may be applied to the shell to find the internal magnetic field ﬂ}nt(t). The

result is given inm the frequency domain by

ey = Hos) L (3)
ext cosh z + %z sinh 2z
H (s)
where
giot (s) = spectrum of the magnetic field inside shell
goxt (s) = spectrum of the magnetic field in the absence
of the shell
z = s ty
. . P d2
td = diffusion time = Wy O

Y

= 1/d x volume to surface ratio for nonmagnetic
(u = UO) shells

o]
|
W
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The spectrum of the incident field is given by

ext (g 3 ~ua

o (o +s)(B + 3) (4)

H = H

where Ho = IO/ZWR. The spectrum of the internal field is

int
H0(s) = T(s) B (s) (5)
and Hlnt(t) can be found by simply taking the inverse Laplace transform of
Equation (5). Thus, we have
K+jo
t
By - o (8 - o) e ds (6)
273 (cosh z + £z sinh z)(a + s)(B + s)
K-jo
where K is an arbitrary constant. It is simpler in Equation (6) to use the
transformation
z = sty (7)
to obtain
2
. z” t/t
t
B () B8 - a) z e d 4z
H = 2% T 7 3
o J 0 (cosh z + £z sinh z)(atd + z )(Btd + 27)

(8)

where ! is a closed contour in the complex plane [1]. The integrand in Equa-
tion (8) has simple poles at

z = ijkn (9)

where cot A = £A
n n

z = +j ot (e
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and

z = +j /8t (11)

d
The poles along the negative Im(z) axis are discarded due to physical reasons
and the contour of integration is the same as that in [1]. Thus Equation (8)

may be computed bv computing the residues:

int e
B 2(8 - a) ty|R +Ry+R ¥ > Rn] (12)
HO n=1
2

z t/td

lim (z -3 ‘/utd> z e

o >3V 2 2
4 zzjvaty (cosh z + £z sinh z)(z™ + atd)(z + Btd)
(13)
-t
B e
2td(8 - a){(cos ‘/atd -z /atd sin atd)
2
z°t/t
. d
o - lim (z - ‘/Btd )z e
/ = '/ 2]
3 z73 Btd (cosh z + £z sinh 2)(z" + atd)(z2 + Btd)
(1a4)
—Bt
- e
th(a - B) (cos ‘/Btd - £ /Btd sin Btd)
zzt:/td
, (z - jA ) z e
R = Lim ° (15)
o

3 A 5
3% (cosh z + iz sinh z)(z° + 16 ) (27 + Sty




Using L'Hospital's rule, the limit in Equation (15) becomes

2
\ e—koc/td
- 0
Ro (at, = XZ)(Bt - Az)(l + £+ (EX )2) sin A (o)
d o d o > o o

v

The same thing is done for Rn' Now, usually, £ >> 1 for the shapes to be

considered. In this case

Ao x —lt;
Ve
an
An = qr (n # 0)
This allows us to simplify Ro and Rn, thus giving:
Hint(tl_ ) oot e—Bt
T = -
- F i - 1
o cos aty g /atd sin /atd cos \/Btd 2 JStd sin /Std
- -C/itd
(B - a) t4 ©
+ — (18)
(1 - 2o td)(l -8Bty
2.2
, -n"TT ot/t
2(8 - a)td o0 (_l)n e d

-+

-
>

o=l (1% - gt ) (a Tl - 8t.)
d d




For voltages induced in loops or transmission lines located at
points inside the shell, it is actually the time derivative of the internal

magnetic field which is important. This is given by

-3t -2t

_ 8 e X e
; H - - . - . .
2 o cos V‘Btd - ,‘/Btd sin /Std cos /atd - 7 /atd sin /atd
—t/itd
(B ~a) e (19)
(1 - %o td)(l - &8 td)
o n —nznz t/td
. 2(B - ) (-1) e

vl b

Alternatively, one may obtain Equation (18) by convolving the im-

pulse response h(t) [1] of the shell with the excitation of Equation (2).

This is written as

int(t) ext(t)

H = h(t) * H 20 b
where
H -t/&t o 2
h = 2 d -(om)~ t/¢
* gy [0 *22 D" d (21)
n=1
i
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The result is given by

, H ~t/ft -t/it
Hlnt(t) - o t__ L f.ort_ ay __ 1 R Bt e d
gtg | (L L
dl{+— - o o ]
(Qtd ) (Q d )
®© n -(nTT)Z t/t
PP M G Sy L d (22)
n=1 ((nn) _ a)
t4
(_1)n Bt -(nﬂ)z t/td
- e - e

which is equivalent to Equation (18). From Equation (22) the initial valucs
are easily seen to be

Hlnt

L}
(@]

(0)

(23)
'int(

H 0)

[}
o

5.3 NUCLEAR PULSE EXCITATION

The situation of an incident plane wave radiated by a NEMP is shown
in Fig. 5-3. The external field time dependence is assumed to be of the
form [3]:

H = H (e - e ) (24)

where typical values are given by

H = 154 amps/meter
5] = 6.3 x lOb s-l
3 = 1.89 x 10% s71
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Figure 5-3. NEMP Excitation

This is essentially the same as Equation (1) except that x and { here are much
larger. This accounts for the substantial increase in spectral content of a
NEMP waveform compared to the lightning case. The spectrum of Equation (24)
is shown in Fig. 5-4. Although the frequency content in EEXt here is much
higher for the near-strike lightning case, the formulas in Subsection 5.2

can still be used if the overall dimension of the shell is small.
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5.4 DIRECT-STRIKE LIGHTNING ATTACHMENT

We assume here, for simplicity, that the attachment current dis-
tributes uniformly around the shell cross section shown in Fig. 5-5. The
actual distribution can be found by the method of Subsection 2.8. Thus, the
surface current density Js is approximated by

I(t)

Js(t) = =2 (25)

~

where C is the shell outside circumference and I(t) is given byv Equation (1).
Coupling to the inside is effected through the surface transfer impedance ZSt
Thus, the internal electric field is in the same direction as Js and is given
by

Eint(s) = Js(s) Z,c(s) (26)

in the frequency domain. Zst(S) is given by

n(s) -
z = —D8) 2
st(s) sinh v(s)d @7
where
n(s) =/ (s = jw)
Y(s) = sSuo
Now we let ty = uod2 and the inverse transform of Equation (26) is written as
1 37 10e) Sty st
E, (ty = ds (28)
int

—_— —_— e
ad C 27j . X
K- joo sinh ‘/std

where K is an arbitrarv real constant and Equation (25) has been used.
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‘ To find the step response, let

b |
[ms
| v
o

Then I(s) = Io/s. Equation (28) then becomes

I ) d
Eine® = Facm sinh z 942 (29)

. . 2 - .
where the substitution s = z /td has been used and - is the contour shown in

Fig. 5-6. The ’sntegral in Equation (29) has simple poles at zero and at

2n = jn7 ; n=1,2,... “
The integral in Equation (29) is thus equal to
‘ 273 [E-R + ‘; R ] (30)
2 7o —t n
n=1
where
R = 2
o
-(am" t/t
R = 2¢-1)%e d
n
Thus the step response is given by
step Io {; n -(am)” c/td
= 2 - (31)
Eint (e) zd C L+2 ;:& (-1)" e




Im 2

Figure 5-6. Contour in Complex z Plane for Computation
of Integral in Equation (29}

The impulse response, obtained by differentiation, is given by

B 2
-{(nm, t/t

imp ) o an 2 d
Eine(®) = TgdCt Z 17 ()7 e (32)

Equation (31) is the same as that abstracted in Apoendix B of [4]
which was for the voltage measured between longitudinally spaced points on

the interior surface of the tube due tc a current step function.

Now the lightning waveform is modeled bv

I(e) = I [e "~ -2 , t>0 (33
o Z
whose spectrum is given bv
I(s) = 1 ——2 (340
’ o (1 + 8)(3 + 38)
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To get the response to Equation (33), we substitute Equation (34)
into Equation (28) and obtain

2
21, (8- f 27
E,_(t) = ———emp—t dz (35
int gd C 2m} d . sinh z (t,a + zz)(t B+ 22)
r d d
where simple poles occur at
zn = 4fnm , n=1,2,...
z, = i tda
zg = 3 tdB
and T'' is shown in Fig. 5~7.
Im z
Re z

Figure 5-7. Contour in the Complex z Plane Used to
Compute the Integral in Equation (35)
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The integral in Equation (35) is given by the sum of its residues:

2m] [Ra + RB + 5;1 Rn]

where
-0t

R - e 1 |/a7:-_
o 2 sin ‘/atd (B -a) d

RB = B q f ) |/B/td
2 sin !/Btd o

2
-(om)° t/t
- D" @m?e

(aty = @M @Bty - am?)

d

Thus Equation (35) can be written as

od C sin /_OTEE sin /-BTd

(36)

~(am)? t/t

o n 2
S22 (B-w o, 3 SR (am e :
n=1 (aty - (nm) )(Btd - (om?7)

d

From [5], we have the sum:

=)
cos nx i cos (x -7 a

s = === —_= - =

1
= n2 _ a2 2a2 a sin ma

so that

das _ _ﬁ n sin nx _ am sin (x - T) a
2

dx 2 2a sin ma
n=l n~ - a
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and
2 =)
ng_Encosnx_aﬂcos(x-Tr)a
2 2 2 2 sin ma
dx n=l n - a
Now let x = 7 and we have
am - - i n2 <"
2 sin 7a 2 2
n=l n" - a
or
_u - ., 3 DY @n?
sin u - 2 2
n=l (nm)° - u

Thus we also have

Ven a

4 ., v @m® ey
sin /ou:d n=1 atd - (mr)2

and

Btd ., § - (mzz
sin Btd n=1 Btd - (mr)2

Now let X ™ aty - (n'rr)2 and X8 " Btd - (mr)2 then Equation (25) becomes

-(am)? t/ty
21 -at -Bt (x =-x.) e
FRCTELCD ST Cuagy i A
nt o n=1 na nB noa “nf
(am? ¢/t -am? /e
T 2\ ot e- T d Bt _
=-—2 2 (D" @M (= -
od C =] Xna an
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This can also be derived by convolution and is identical to the

voltage response derived in [4]. Thus the voltage drop per unit length

inside the tube wall along the tube axis is given by

. \/@_ \/g—g
0 g -at g -8t
—_—e - —e

E (t) = —_—

int ¢ sin J;;; d sin yBuo d
(38)
o n -(am? t/ty
+2(@-8)t, > 1) e 5

d at
nl o2 fy 4 <1 _ d2>
(nm) (nm)
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SECTION 6

INTERIOR FIELD RESULTS AND APPLICATION OF LOW
FREQUENCY COUPLING MODELS

6.1 RESULTS AND APPLICATION OF MODELS

Computer programs were written for the E-field and combined-field
formulations presented in Section 2 of this report. These are documented in
Appendix A where sample output is given for a cylinder of circular cross sec~
tion with a radius of 0.3828m. The frequency of the incident plane wave is
300 MHz. The TE and TM surface currents of the two formulations are in excel-
lent agreement at all points on the cylinder contour. An additional check is
provided by the exact series solution where a computer program along with
sample output is also documented in Appendix A. Electric surface currents
and scattered far-field patterns for all three methods are in excellent agree-
ment. Several examples of surface current density and scattered field patterns
may be found in {1], (2], and [3], so no plots of these quantities are pre-
sented here, The main purpose of Section 2 is actually to provide the various
E-field impedance operators necessary for the shell penetration formulations

of Section 3.

An excitation other than an incident plane wave is considered at the
end of Secticn 2 in which a longitudinal~directed current is assumed to exist
on the contour C. This is used as a first-order simulation of a direct-strike
lightning (DSL) excitation. If the contour C is not circular, the surface cur-
rent density 1s not constant and distributes itself around C inductively. A
computer program is documented in Appendix A which is used to compute this
distribution. An example of a computation for this excitation is shown in
Fig. 6-1 where the cross section of a fuselage station [4] is considered. The
numbers near the dots on the contour identify the center of each Aj, j=1, 2,
veey 28 (see Fig. 2-2) and the numbers with arrows pointing to the contour
indicate surface currents computed at that point. Numbers in parentheses indi-
cate currents computed in [4] by solving Laplace's equation in a finite region

surrounding C with the effects of three symmetrically placed return conductors
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included. The integral equation solution of Section 2 in effect has the return
path at infinity. This accounts for the difference in results obtained by the
two methods. Note that the current distribution is symmetric about a vertical
centerline of the fuselage section so that only half of the data is shown in

the figure.

Computer programs using the impedance sheet approximation of Sec-
tion 3 and the exact-series solution of Section 4 for a lossy shell (i.e., a
shell wall material having finite conductivity 0) are documented in Appendix B.
Thes~ programs compute an internal z-directed electric field for the TM case
and magnetic field for the TE case. Some sample plots of shielding effective~
ness (defined by Equation (1) of Section 3) are shown in Figs. 6-2 and 6-3
for a shell of circular cross section. As expected, the impedance sheet
approximation gives excellent results in the TM case when compared to the
exact-series soluticn. This comparison is shown in Fig. 6-2 for different
conductivities and over a large frequency interval. Here the exact-series
solution is represented by the solid lines and the impedance-sheet integral
equation solution is represented by circles. The latter becomes suspect at
frequencies much higher than 108 Hz because the number of subsections with
which the circular contour was approximated was held constant (NC = 16 for
all frequencies). The TE comparison shown in Fig. 6-3 is not as good because
for this case there are transverse-directed components of polarization current

which are aeglected in the impedance sheet formulation.

The results for the TM case indicate that the Z-directed incident
electric field is effectively not shielded at all as the frequency becomes
low. This can be seen from the impedance sheet integral equation where the
vector potential term becomes negligible as w0 and hence Jz -+ Ei/ZL. The ™
case 1s somewhat pathological at low frequencies because theoretically no
charge separation can occur to create a wcattered electric field which tends to
produce zero total electric field inside the shell as occurs in the TE case. A
physically realizable shell will always have a quasi-static charge separation
at low frequencies and thus will tend to shield an incident electric field
(more than the TM infinite cylinder result would indicate). As expected, the
magnetic field is essentially not shielded at low frequencizs regardless of

the polarization considered.




Results for the traveling wave approximation to shell penetration
developed in Subsection 3.3 are not presented here. A computer program was
written which incorporated this formulation but was found to give questionable
results at low frequencies. This is because the relationship between the tan-
gential electric and magnetic fields just inside the shell is not given by the
characteristic impedance of the material inside the shell. This assumption
essentially neglects the inductive reactance caused by the shell geometry which
is seen by the electric current used to excite the equivalent transmission line
model. The traveling wave approximation, however, does give reasonable results
for higher frequencies at which the shell cross section dimension is electri-

cally large.

The various computational methods presented so far allow one to ade-
quately determine the interior fields which penetrate a shell at particular
frequencies of an external steady-state electromagnetic field. Thus if the
spectrum of the excitation is known, one can characterize the spectrum of the
interior field. 1In Section 5, some expressions are derived for the interior
field spectrum, given an assumed external field or excitation. If a low fre-
quency assumption can be made concerning the excltation spectrum, then the
interior field can be obtained as a function of time. It is also assumed to
be uniform in space over a region which encompasses the shell cross section.
The computation of these interior fields which are due to a nuclear electro-
magnetic pulse (NEMP), near-strike lightning (NSL), or direct-strike light-
ning (DSL) as they are modeled in Section 5 are performed by the computer pro-

gram subroutines which are briefly described in Appendix C.

Figure 6-4 shows plots of internal magnetic fields for various lossy
cylinders when exposed to an NSL excitation. The lightning current is 100m
from the shell and is parallel to the shell axis. As expected, as 0, d, or
the volume~to-surface ratio is increased, the rise time of the responding
interior field increases. This can be seen from the equivalent circuit ana-
logues to the coupling mechanism., Inside the shell, a circuit or transmission
line .3 exposed to the interior field. A worst-case situation is assumed where

the effective area of the transmission line or circuit is maximally coupled to

6~3
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the transverse component of magnetic flux density. Time derivatives of in-

terior and exterior NSL fields are shown in Fig. 6-5.

Using the transmission line excitation formulas developed in [5],
the open-circuit voltage and short-circuit current measurements made for a
given loaded transmission line configuration may be computed. An example of
these results is shown in Fig. 6~6 where the interior circuit consists of 10m
of RG8-A along the cylinder shell axis terminated in a 20-ohm load. The product
of the above quantities as a function of time gives an upper bound on the instan-
taneous transient power possible across the terminals of the load. An example
of this is shown in Fig. 6-7. Various parametric curves are of interest from
a computer-aided design (CAD) standpoint so that elementary circuits may be
constructed which minimize the possibility of component burnout. Examples
of these are shown in Figs. 6-8 through 6-11. This type of parametric repre-

sentation is discussed in more detail in [5].

As mentionad previously, the main difference between NSL and NEMP
excitation is the spectral content of the two, that of NEMP being much higher.
Some representative interior field coupling examples for NEMP are shown in

Figs. 6-12 through 6-14. Note that the time scales are now different and the

high~frequency resonance on the transmission line is visible.
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"t (a/m)

TIME (us)

RADIUS THICKNESS

SHELL (m) (ply) g
A 0.5 8 104
B 1.0 8 2 x 10%
c 1.0 20 2 x 104

Figure b6-4. External and Internal NSL Magnetic Field for
Circular Shell
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Figure 6-12, External and Internal NEMP Magnetic Field for
Circular Shell
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APPENDIX A

PROGRAMS FOR PERFECTLY CONDUCTING CYLINDERS OF
ARBITRARY CROSS SECTION

The purpose of this appendix is to define the necessary data cards
required by the E~field and combined-field programs. The main program seg-
ments are listed in Subsections A.l and A.2. A program to calculate the
exact series solution is included in Subsection A.3. The function subprograms

and matrix element subroutines are not explained in detail.

The first thing one must do is approximate the contour C of the

cylinder by a finite number of straight line segments. Best results are

usually achieved when A < 0.1A which puts a limit on the electrical size of
the objects considered since matrix methods are being used. An example of
approximating C is given in Fig. 2-2. Note that the contour need not be
closed for the E-field formulation but must be closed for the combined-field
formulation. The excitation is such that the incident magnetic field, Eé, is

equal to unity at the origin. This is done for both polarizationms.

Data is read from data cards in the main program according to the
format statements:
100 FORMAT(6I5)
101 FORMAT(2E20.7)
102 TFORMAT(6Ell.4)

The data cards appear in the sequence shown in Table A-1 and are defined as

follows:
NGQ = Order of Gaussian quadrature formula
used to approximate integrals
A(1), T{) for = Weights and nodes, respectively, of
i=1,2,..., NGQ Gaussian quadrature formula

(divided by 2)
ITM = integer option = 1 for TM case

0 bypass TM case

. . a |l | . % . s anthtbiiaibeahintbigiitn.: ¢ Foi: MK WAt 20t e -



ITE = integer
option = 1 for TE case
= 0 bypass TE case

ISC = integer
option = 1 for normalized scattered field !
pattern to be computed {

NX = Number of angles at which plane
wave 1s incident

NP = Number of points at which scattered
far field is computed

PHIO = First angle at which scattered far
field is computed

DPHI = Increment, in degrees, at which far ]
field pattern is computed

PHII (i) = i=1,2,...,NX = Angle of plane w
wave incidence measured in degrees :
counter-clockwise from x-axis

AMU = Permeability of material in which
cylinder is imbedded

EPS = Permitivity of material in which

cylinder is imbedded .
BETA = Used only for combined-field

program L
(xi,yi) for |

i=1,2,...,NC+1

X,y coordinates of end points of
straight line segments

NFR = Number of frequencies of incident
plane wave to be considered

FMC = Frequency in MHz (read NFR times)

The three programs were run for a cylinder of circular cross section with a

radius of 0.3828m at 300 MHz. The results follow each program listing.




Table A-l1. Input Data Card Sequence

Format Number Data Punched on Card
100 . NGQ
101 A1), T(
101 A(NGQ), T(NGO)
100 IT™, ITE, ISC, NX, NP
102 PHIO, DPHI
102 PHII (1)
102 PHI (NX) *
102 AMU, EPS, BETA (only for
combined-field program) :
4
100 NC
102 X1 Y1
102 Xy Yy
102 e+l INe+l
100 NFR
102 FMC (NFR times)
|
A-3




The various subroutines and function subprograms needed bv each
program will not be described in detail. Instead, thev are shown in Table A-2
corresponding to the computation for which they are used. The variables which

are stored in common blocks are defined in Table A-3.

Table A-2. Subroutines Corresponding to Computation

Equation Number H
in Section 2 Computation Subroutine
PP 2-5 to 2-7 X-y components of CDATA for E-field
~ CDATACF for combined-
Lt Yo R field
(22) elements of [Ze] ZMNE
(26) elements of [Zh] SZH
27) elements of ve T™X f:
>ih
(28) elements of V TEX
(33) elements of [Te] TMNE
(36),(37) elements of [Th] STH

(46) gvie + fie TMXCF (for \
combined~field) {

47) gyibh 4 Tih TEXCF (for )
combined-field)
2503 o/ TMS for TM case
54 TES for TE case .
- n D HANKO2 (X) |
— Hl(z) (x) HANK12 (X)
(23) o(z) ALPHA (z) ;
N !
- Solve Ax = b DECOMP and SOLVE
for ;
- Solve AX = b GELS 5

-5
far x when
A is symmetric

J, Y BES for exact
series solution




Table A-3.

Common Block Variables

Block Variable Meaning
GQIL NGQ Order of G-Q integration
A Weights, 2
T Nodes/2
cuv ULX t -
ta T X
ULY t, 0 Y
NC NC
c RCX R - X
_m —
RCY Bm 4
DC A
m
CK RKX k - RCX
RKY k « RCY
DK k + DC




A.l1 E-FIELD PROGRAM

1e
2.
e
o
Se
(X
7
[
9‘
13
11
12
13,
14
15
156
17
18,
19.
2D
21
22
23
24,
25
26+
27
2R
29.
30
31
32
33
34
35.
36
37,
3R
39.
[ YeX]
41
42.
43
LY X
45
46.
47
485

CeamavaaeMA[N PROGOAM FIR CAMMYTING [MOUCESN CLECTRIC Z'QREVTS
C N TABSDIVENSIANAL CHNDUCTING 3HAPES,
C USES E=FIrLD INTEGRAL EQUATIAN
DIMENSIBN PHIT(1Q)
CBMPLEX Z(10120),VvM(300)
COMPLEX ZMNE,SZH
COAMMAN /CUVZULX(680)aULY (AN aNC/C/REX(40)2RCY (D) D0 amy
COHMMBN /GQIZA(10),T(19)sNGN
CBMMAN /CK/RUX(60)2KY(80),0K(4D)
DATA Pl/3¢144593/
Caame=ecsarEAD IN ANMD RRINT 8SUT INPUT DATA
107 FHRMAT(S415)
101 CORMAT(ZE2Qe7)
122 FORMAT({AEL{Lsu4)
READ (1055100 \NGQ
READ (1052101 (A1) T(1)ala4aN0RY)
UTPUTINGQ
READ(1052100) ITMsITE,ISCLNX NP
SUTPUTSITM, [TE, ISCaNX, NP
READ(105s102) PHIQsDPHI
FUTPYT,PHIQaNPHI
N8 4 Is1aNX
READ(105,102) PHII(I)
QUTPUT2IPHITI(T)
4 CANTINVUE
READ (105,102 AMULERS
AUTPUT»AMU,ERS
CALL CDATA(INC)
READ (105,100 \FR
28 50 [YFs1svFR
READ(105s102y FMC
NRITE(1D08,305) FMC
AKE2 (#P | #FMCLSQORT(AMUREPS ) w1 ,F 6
28 S Is1.NC
RKX(])aRCX(I)nAK
RKY(1)8RCY([)»AK
OK(I)=DC] Y *aK
9 CONTINUE
IF(ITMeNE.y) G® TB 30
CammeweeeafF3RM UJPPED RT, TRIANGLE 3F TU 7 “ATRIX,
Ksq
N 1 INst,NC
N8 1 IMal,s 1IN
Z(K)mZMNE( T, "N)
KaK+1
1 CUNTINUVE
CweeceasesFARM TM EVCITATION VECTHRS,
CALL TMX(VMaDHIL,NX)

A-6




“G,
3Ce
31
bY-A
53.
Sk
35
36
37
38,
39.
50
41
LA
63
54,
5.
K6
57
58
59,
7C e
71
72
73.
7o
75
76
77
78
79
3Ce
2l
22
43
B4
35
RAe
87«
2R e
19
30
Il
32
93
b
935
350
97
I8
39.

CescomeeaSALVE FAR NIIMALIZED T ELECTRIC 7JRIENTS.
wrRaNes(NCce1) /2

CALL GELS(VM,Z,NCaNX,MR)

K21

D0 2 [s1,NX

wRITE(12R8,200) 2HIIL(T)

wRITE(1J3R,204)

28 3 J=1.NC

VMMeCABS (VM)

ARITE(10R,202) JyVHM() VM

KsK+q
3 CANTINUVE
2 CONTINUE

TFCISCeETng) CALL TMS(VMu,NX4PHTIT,PHI S, 2HT )N,
229 FORMAT('01,18X,'TM CURRENTS FOR P e'3E11a4p3Xs 'IEGRFCTT Y
2, FORMAT(! ! ,AXY, 'PULSE NB o', 11X, 1REAL", 11X, P IMASY 11X MAT, 1)
202 FARMAT( 1,145,5X23E15¢6)

3¢ IFCITESNES1) GO T8 60

CeemweewesFBRM UPPER RT. TRIANGULE AF TE Z “ATRIX,
<=1
1821+10DC

n® 31 INslRaNC
"8 31 IMsIBsIN
Z(K)aSZH(IMee, IN®121,1)*SZH(TMe1sINI1 =1 )+
{1SZH({IMI INa1 )1 1) +SZH{IM, INsel, 1)
KEK$4
3 CONTINUE
Cowmeana=eFARM TE EXCITATIBN VLCTARS.,
CALL TEX(VM,oHII,NX,1DC?
Comeaemee=eSBLVE FBR NBRMALIZED T CURRENTS,
NFasNCe]3+1
MRENF® (NF41) /2
CALL GELS(VM,Z,NF,NX,MR)
K=l
N 32 IstanX
WRITE(1082307) PHII(!)
WRITE(128,301)
DA 33 JslB,Nr
VMMaCABS (VM w))
WRITE(17285202) JsavM(K)pvMM

KaK+1
33 CONT INUE
32 CONTINUE

IF(ISCeENe1) CALL TES(VMINXIPHIL,PHTIA,IPRTIZND, IDC)
4C CBNTINVE
e} TONTINUE
379 EORMAT(101,18X, ' TE CURRENTS FOR PHI a1,511e¢4,2X, 100530050
01 CORMAT (' ' ,3Y,'TRIANGLE NO, ', 12X, 'REAL'»11Xa " TMAGY, 19, MAG, ")
302 EBRMAT{ "1, 'CREJUENCY 8F PLANE XNAVE at,F15e7,3Xs "Ml
ST8P
END




Sample output data is:

RUN
NGQ
IT™
ITE
1sC
NX s §

NP & &

PHI? = 43000090
DPHI = 90.00C90
1 =1
PHII(]) =
AMU =
EPS =

[T I I ]
L ol o =

+ 000000
1¢2550005=06
83e¢350000E«12

«NBe IF STRAIGHT [ INE SEGUENTS ADPRAXIWATING

ULy
=299415¢
. e9236E
®e7935EF
= 6QR5E
=+ IRIIE
=¢1301€

+1301F
*«3I833E
s HORSE
*+ 79365
«9235E
*+9915¢
¢9913%
e 92348¢%
e7936F
v6NRDE
«3Z23E
+1301¢
=e1301E
=+3333%
..6CQ5E
¢ 79734C
¢3833E (1 =+3236F
¢+ 1321E 0n =e9911E
«CLHSED CBNTRUR,

Y X
=e1301%
®¢3R33E
®s6085E
*e7936E
*e¢3236E
®¢9915E
=¢991SE
®49235E
~e7936E
®*s6085E
®¢ 3833E
*+1301E

«1301F
+3833E
¢ 6085E
v+ 7936E
0 9236E
¢9915E
¢ 9915E
+9236€
e 7936E
*6435E

co
ce
30
0o
30
0¢
29
a0
el
a2
9
(0e]
toly)
30
20
pha
3¢
20
20
20
ke

27

oC
00
00
00
oV
oo
00
00
02
QU
00
00
Q0
0Q
Qo
o0
00

[2C =

RCY
= s 43855FE="n1
= 1482€E 10
=+2310% 20
=¢3211E "0
=+3506E 90
=e3763E 20
=e3763E D0
=e3506E 00
=+3341E 90
*3011E 30 =+2310E 920
*3504E 00 =e1452E 20
¢«3763E DO =«4955E*n}
¢3763E 00 +4355E"nt
¢3806E 00 «1452E 90
*3011E Q0 +2310% 00
*2310t 00 *3011E N0
2 1452E 30 ¢3506E )1
*4955Ea01 ¢3763E 10
+4955E.01 «3763€ 22
*1452E 00  +33n6&E 90
*+2310E 20 +3211E 00
*3011E 20 +2310E 70
¢3506E D20 +1452E 00
«3763E QO 43858E=9H4
0

RCx
*3763E 20
*#3506E 27
*3011E 20
+2310E 00
+1452€ 09
'49556-01
*4955E«01
*1452E 00
«2310E 20

= 24

pJe
+3995F e
«99933F=01
*+ 93993 =21
«9993F =Ny
¢9993F =01
« 3995F e
*»3995F
¢ 3993001
+3993F =N+
«J9933E=N1
+»9993F =014
«2995C N1
+3I995F a1
«9993F =3
¢J993C =01
¢ 3993F Ny
¢3993F =01
+9995E e
+9995C« )1
¢ 9093wy
¢3993C "¢
«J933Fent
*3393F e
UEELLTE oLl




FREJQUENCY 3F PLANT WAVE =

PULSE N®.

Mo OU F W

RE AL
=+125255E
=+3825.7¢F
®+182352F

«604287E
¢10731%¢E
09164722E
°»323797E
=e178457E
®e2905834E
1427508
0 157029¢€
+86n208E
v 3609316E
¢ 157045F
®e142748€
"+23)436E
*.178457F
+323791E
*916426E
+107337¢
«604223E
*+1883g1€
*¢382598¢
=+ 1252558

TV CURRENTS £39 DH]

o1
20
cC
00
21
00
20
ce
jole}
00
n01
001
.01
.Ol
00
00
00
00
00
01
00
co
co
01

*3000000E

03 wMz

«J020F 29
IMAS
2147993 91
0 17827UE 1
11781645 71
e1407245 21
e6n3434F 292
©e2252175 22
=e5397965 29
«e826260E 290
*s7§1856RE=]1
e102149E 0O
o 76441%E<D1
e2)1291Ee)2
+291503Ee02
0 764405EFEeN1
2102147 00
ne741544Fen]
= o 424262F 70
«¢598795€ 00
«e 225217 20
¢508135 20
e14032%E 01
e17816RE 31
«178233E 91
¢167994E D1

01311 42N

“A%,
«2n95493€ N1
e 1 ARATIE 91
1791397 2%
152784 91
01233665 914
«943701% 22
«60731% 20
46212095 910
¢320640% 99
«175533% 99
« 78038021
860533201
«RA0552% 01
780374591
«175%31c 90
«330641 91
«442110F 92
«620732E In
«943694F 9D
«1233%872 31
« 152783 Q1
«179161% 21
«198978E 21
0 209549F 91




-4
£

SCATTERED FIELN DATTERN £0AQ OWHIl

Pl SIRTI(S/L)
+GCO2E 00 «1132€ 91
«90C0E 02 ¢ 1 UR9E N4
«{R32E 03 +2600E N1
e 2720E 913 «1D089E 91
TE CURRENTS £32 pw] s DUNGE 70 NESREES
TRAIANGLE \Aa,. REAL IMaG MAG
1 *e154673C 01 ¢ 191532 91 « 1751037 21
2 *e145044E Q1 «ll4na3E 21 «1R4509% 91
3 *e112389% 01 e 1444723E N1 «1R3140F ¢
& *+508792€ 22 e 172797 ny «13%0131¢ 21
5 «3198=2¢ 1o e 1478385 =1 «17088658 21
6 «105135¢€ 21 1798413 71 +1351162F ]t
7 21285878 D1 e 1928174 10 «122243F 91
8 *+90n289€ 29 «e 7454375 20 «1181648E 91
E) 220425 020 ee1953%1E 21 «1976625
10 *+2782495F 00 =e713143E 22 «768820F 22
11 *+¢3878558 00 “e6948R41Fen} +«3340005 1 '?
12 *e260197E 00 e 483124 00 «S48736F 3N
13 *s174323% 00 0693457 10 «715047% 29 i
14 *e2602n1E 00 24831258 20 «S48733C 92
15 ®¢387%82>7E 00 =0694R11Fe01 +«394202% 97
16 *.2782a8E 10 =e713135F 20 e 745513€ In 4
17 +220427E 00 *e195330% 31 177661 01
18 +9002%8E 90 =e765431E 09 118167 91 ]
19 1289557 01 +102R%0%E 20 «128968F 21
20 ¢105135€ 01 0 1908612E 21 18116258 91
21 ¢3198xg4% (0 »1A7834F 01 «170R578 24 4
22 *eH0R785E Q0 e 172798FE 01 «1R0133F 921
23 *+112359¢€ Q1 01444255 D1 1831428 91
24 *+145345% D1 «114044E D1 +1R4510% 21
.
1
t-
TE SCATTERED FIELD PATTERN FAR PHT] 3 «r9)0aZ 20 :
O] SIRT(S/L) i
«+cNJJE 00 «1226F 21 1
«9032E Q2 «H614E 0O
¢ 1RJJE 33 1476E A1 1
e2779E 03 e6h14E N0 iy
»STRPs O 1
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A.2

2o
3.
Qe
ER
Se
7
2,
Qe
13,
11.
12.
13,
14,
15.
16,
17
1“0
19.
20
21,
22
23.
24
25.
26,
27
28,
29
30,
31.
32,
33.
34,
3%.
36
37
38,
35,
4l
“10
42
3
L1
S
X
47 e
g,

690

COMBINED-FIELD PROGRAM

G-.-.-
c

c

Comonse

139
101
122

caeCAMBINER 101D TURMULATIIN FR3 C9wRUTING 21 ANT 4AvE
SCATTFRINA AN PEQFECTLY CANNIETIVY ZYLINDCRS ar
ARBI[TRADY SwaPF,

IIMENSIIN 2RI (10)2IPS(5A)

THMPLEX Z(1270),VMIS00),DUMISI0) ,xXC(8)) ,CUR(ISA)

~OMPLEX TMAE ,ZWNE ,STw,SZw

ZAMMAN ,CUVZILX (R s JLY LR s M /0 /RTX (402 aRCY D), D0 (47

TAMMAN SOK/RUX{A0)1RXY (61, 2K (41)

ZHMMAN /G5QIZA017) s THLD) NG

NATA Pl/3e49593/

aeeREAD IN AND PRINT BUT INMPUT DATA

CORMAT(615)

FORMAT(2E20+7)

FORMAT(AEL e 4)

READ(105,190) N32

READ (105,101 (A (DI »T(1)21a12NGY)

SUTPUTINGG

READ(105s1173Y ITUMITE, ISCINX, NP

QUTPUTHITM,ITE, ISCaNX,NP

QEAD(105,102y O410,0PHI]

AUTPYT P A APHT

D8 3 Is1,NX

EAD (105,192 PHITI(])Y

IYTPYT2.P=ITILT)

CANT INUE

READ (105,102 AMUSEPGS,8ETA

AUTPUTIAMU,,EPS,3ETA

CALL CDATACF

READ{105,100y \NFR

UTPUTNFR

N9 50 INFs1vFR

READ (105102 FMC

ARITE(1DR2302) FMC

AKS2 , 8Pl FMCLSART(AM j4EPS ) u]eC A

9uTPYTsAK

2% 7 Is1,NC

XX (T)BRCX([yvax

QKY{(T)sRCY([y=a<L

DK [)sDC(])*aK

CONTINUE

IF([TMeNEe«t) GR T9 39

ensaFARM TM CaMQINED ClELD MATRIYX

Ksq

78 1 INs{,MNC

La(IN=1)sNC+y

028 1 IMat, N

MUMIK)sBETARPMNE (TM, IN)

Z(L)sTMNE( M, IN) $DUM(K)

CaK+q

A-11




T7hs
77
7R

79

Q.

31
K2
13,
CA
2S5
35
R7e
IR
39.
alCe
3.
2
33
b
IS
6
27 .
IR e
3.

LT
1 CINTINUVE
o8 2 [Ms2,MC
[Mls]Mey
Ls[MeIM1 /241
28 2 IN=mt{, v
ZOIMONCo ([NVea ) Yo TUINE ( [Ms TNV RNUMLY
Ll
? CONTINUE
~PALL TMXCF . Vu,PeIlsaNX,BETA)
TALL DECIMP(NC,IPS,L)
CaeceneeeSILVE FOR NSRVMALIZEN T™ gLECTIIC ~ DRENTS,
Lel
<sl
78 4 IXxXsmi,NMX
ARITE(10R,209) PWITI(IX)
ARITE(1D82201)
28 5 [s1,NC
XC([)ysvr(K)
CasKeq
5 TONTINUE
CALL SOLVE (N2 1PS»ZsXC,CURY
28 6 1%1,NC
TMeCABS(CURI(Y)Y))
vMiL)sCUR(T)
ARITE(108,209) 1,CUx{(1)s0M

Leley
4 Z9NTINUE
4 CANTINUE

IF(ISCeRT0e) CALL TUS(VY,uXyP=]1,P<4]A,03M],2,
279 FYRMAT('I',1ax,'TV CURRENTS FOQ Pul 41,F1144)
2 FBRMATI! ', 6v, 2 LSE NAe ', 11X "5 AL, 11X P IMARI 9 ys t e
202 FORMAT(! 1, [45,85¥,3E15¢6)

32 IF(ITEeNE 1) G/ TR 4~
CoamacawsFARM JPOED T, TRIANGLE ¢ T&5 72 “aTRIX,
<=}

D8 31 INai,nNr
LI(IN.}).NC#Q
59 31 I[¥ay, v X
VUMK ) SIETA® (SR IM=q ) INey, 11 )+S72H (T e s N2t ey
16SZH (M2 INal,=121)14S25 (YT Nselr=t))
ZIL)aUMIKY ST (™ol s IN® 1,40 ) ST T aty ] piral
1e¢STH(IMIINe],2121)14STH(1YsINrels=1)
s+
LlLoi
ER! CUNTINUE
o8 32 1“s2,\~
{Mielve
La]1eM1 /241
S8 32 INal,[ny

A-12




120 ZOIMeNCa (INea ) ) aDUM(L ) ST TVat TN @], 101 ) eSTH(IVay, v ,0,=1)
4131 1¢STH(IMsINel,e1s1)+STH(IVM,1Nse1se)

132, LsL+l

123. 32 ~aNTINYE

134 CowecesenF3dR™M TE EvCITATION VECTRRS,

139 TALL TEXCF (vv,2411,NX,8ETA)

134 CALL DEC®Me(vC, [PS»2)

127, CoeveoweeaSRLVE Far NIQMALIZED TC CURRENTS,

128, s}

1335, sl

11Ce 28 34 [XalaNvy j
111 WRITE(13R230A) RPHIT(IX)

112, wRITE(1082,301)

113. n3 35 I=1s2NC

116 XC(I)svv(K)

115 Kel+y

116 35 TONTINUE

117 cALL SOLVE(NF,IPS,Z,XCsCURY

1%, 08 36 Is1.nC

119 CMeCABSICUR(Y)) '
12C. Vi )sCiot )

121, R ITE(LIRIZ2U2)Y 15CUR(I)sCM

122 Lal ey

123 36 CUNT [NUE

1344 e SHNTINUE

129, IF(ISCeETeq) CALL TES(VMINXHPHIT,PHTA,IPHIZN2, My

126 L%} CANT INUE

127 9 CONTINUE

128 393 FIRMAT( !0, 18X, 'TE CURKRENTS 93 Pu] 1,71 e¢4)

129, IC1 FORMAT(! 0,3y, VTRIANGLE NO, ', 12X, 'REAL L 11X TMATY T, 1 ¥aT, )
137, 27?2 FARMAT(11 1, ' CREJUENCY BF INCIDENT PLANE wAVE ' yF15e7,3X, 1M~421)
131 sSTHR

$32 END




m.‘*»hk o

Sample output is given byv:

UN
NGG = &
IT™ a ¢
ITe =
IsCc = |
NX s
NP 2 4
PUID = «300029
VPRI = 92,2037
I =
PHIT(1) s «n2o002
AMU a 14283079805
EPS 3 4350070E-12
BETA « 12.0000
N8+ 95 POINTS SPECIFYING CYMTaUR a2 24
ULX JuY Cx RCY oC
®¢1321% 09 =+9945% Q0 #3763 30 =e495BEvqy  +I995F -,
Se3833E o~ =925 gy ¢3I59KE 4p ee145pF AN +3933F e
®e6085E Ir =e7936T 00 ¢3711E 37 42315 91 «2093Fan.
*+733€6% 5 2050838 00 2319k 30 =e3311F 95« 39235 .50
*e9236E 07 =«3833T 37 14828 30 =433196E 37 +3933F e
®e99152 T3 13018 00 4995EeDl *e3I763F 99  +3I995C ey
“+9915E 30 +1341E QU =e4955keD] *e3743E 15 .N3IETeny
®e9236F 37 +3873T Q0 =e1452E 5D «e3506F 13 «39530L0
®e7936% 37 46283E Q0 #2317k 30 Se3IT11E 77 4393307
Se6ZEBE 30 +7976% Q0 =e3711E IO =e23I10E )3 +39337any
®e3R3I3E 70 432768 0 ~e3506E 31 ©e188528 47 439935 <"y
*e13318 52 099155 Q0 *¢3762E 0 ee4I55FEeY]  +39IECars
*1301% °0 429138 JC *¢3763E I3 e635REeny L 7938Can.
¢3833E 4~ +92352 QJ ~¢I504E 20 «1452E€ N 4 3033C el
¢6045E 22 +793€T Q0 *e3C1tk 00 +2310F N4 +33730e"
¢7936E I 4£3ZR5Z 00 «¢2317E 59 e3I11F A° 432337 ece
#9236 T «383I3E JC *e14952k D7 «3308F A~ 4I97IC e
¢3913E Sn +13°1Z QU =ve355E.D1 ¢3743E )+ 3093Ce
¢39132 07 ee1371E QU #4958EL1 +3743C 77 428980
¢9236Z °7 «03333T 00 e1652E N7 433968 721 . 3973Cens
079365 "~ eegZR5C 00 e231AE 27 e 3011E N3 39330
*62ABE T2 2e7336T 3, e3N11E 2~ e230nE i e 30V IT e e
¢38338 T~ 432307 30 039CkE ST 1482€ A~ L 30733F e
¢1331% 17 =e7305% 30 e3763E 17 eeIEICeny  LI3IRCeA.

NEROs




FREQUENCY HFE [INCIDENT PLAME w~ave » +3000590E 23 M2
A & £e2%:98

TM CURRENTS Fdo o<1 s ,0CN0F 00

BYLSE %R REAL IMAG MAGe
1 ©s124978E 91 e16372%E )1 ,279973F 91
2 3318245 00 ¢178897% 31 «199451F 91
3 =e1916495 20 + 1784975 11 0179715 21
4 +5978278 00 elu11962 1 +153330F Ot
5 «106931% 21 e62201565 20 «123706% D1
A +918747% 00 ~e211561% 20 «342790% 00
7 .3283;55 C -0591191€ 20 0676257q 29
2 ee1784835 10 ~e422296E 70 «438433E 20
3 ~e2951272 92 ~e635467 37551 «373232% 27
13 ev144421E OO +112A35E 22 «124373F 39
HY v147271%=31 08637357E-91 R76221% 01
12 0 R65343801 +1938155=01 R72044% 201
13 +865842€ =71 +173797F =91 «872061% =21
™ 1472455 =71 eBK3IV7T4T e «876237F 3
15 e 1464205 7D +112~545 9D «1R43775 95 ¥
‘<5 ~¢298123C 20 “e696438C =] +3332490% 22
*7 *+1784372 00 .e42299%% 30 +458456% 27
13 3223565 ©¢991193€ 79 «67626028 20
19 ¢9187456F 00  ~e211559% 90 +942789€ 27
23 +106971E (1} 6220118 30 +1237065 0%
21 8597858 o1 «l4119568 21 «133331F 2
52 =e1916%6E 72 e1784207% 4 ¢1797138 21
23 = ¢RR{RDLE 77 017382737 1 «17943CT D1
24 *e124979% 01 +148729% 91 «2799745 31




TRIANGLE \®

*STeRe )

SCATTERED

Dwr
«C0Q2€ Q0
+9NQ2E C2
« 12302 03
+27028 03

FIELD oATTERN r£aR Pl s

-

SIRT(S5/0)
«1131€
+1288¢E
¢ 26C1E

17

L1123

TE CURRENTS Mo D] a

[

WONOCUE Wi

TE SCATYERED FleLn DATTERN F9R PuTl 4

Pei]

SEaL
*+154648%
Se145042¢
®*112346F
*+3508978¢%

*3196x2C
+12%141¢
+12R4A8T
«901037¢
s 220995¢F
*es275208¢F
®s38R444¢C
=e261184C
=01754a5F
®e268152F
®¢3884A3F
v e27R2Q4C
+22094a93¢
*901¢29¢
*12R645C
*105141%
¢319647C
*+50RIYRE
»e112346%
*s 1450438

+COCJE CO
+Sn02E 22
+1R02E Q3

2757

E 23

DA OOHOO

C) r* 42 () (D4 pe pa

QODOVOOODOGOHOQ D
[oNeNoNS) OO0

Q
(@]

(@]

o1
c1
<o
Ca

~
-

91

c1
01!
21
21

+0C00CFE "2
1vag
s1n14&38C
elians2c
elsssunc
-17293=;
e« lA7anac
12874912
*173K/40C
= s 7A5D0KE
*s135425¢C
’.713566;
*s729233€
e422qQ41 ¢
+593445¢
*4R2944¢
*e 72391458
*v7138545
=+ 19354242
*s755137¢
01736465
e198710<
e 1467908t
s172235¢
slassgupc
e1140%1F

SART(S/LY

e 1226 91

eRHIRE 1D
«1475E 21
*+6618E 20

A-16

pb
B!
21
21
21
21

olo)
- o

~ A
P

21

~
4

-
.4
an
an
pRe
A
o3
~
-
pie!
1
-~
[
22
1
21

-~
4

o1

-
~

WM N N Wi o
O
O
n
£
n

\D v
O N
o w
0~
M

«118212F
«177717¢
+766195¢
e 3344757
.549029?
«718294¢
e849232F
¢« 34L69F
+746184r
e1237716¢
«11RP127
«129n28¢
«+13%1237¢
«1729245
«130173¢
«1R33358¢c
»184513¢

*0N0AE 0T




T

o el SN ety

A.3 EXACT SERIES PROGRAM

why
..

be
Se
L)

3.

Fe
13
1l
12«
13-
19
1S
16.
17s

P aaeacesaPBBGRAN Te =ewRyTE TLECTRIC ~ypaEnTg [MDUCED N
PERFECTI Y 2NOUCTING CIRCULAR 2y INDERS USING
Tug [NF{NeTE SERIES SALUTIAN. THE NAOMALIED
SCATTERED F1ELD AaTTEQN 1S ALSe CaMRUTED.
2amMPLEX A(50153(501C(S0) 250
FIMENS AN ¢ouy (5012CPH2I3T)
AIMENSIIN a41129),3Y(100)
29mp EX AOISC'C:IQO‘Hﬂl'HPI*'JZIJpOS?q'S?MAUDQV
SIMMEN v3(2312212:P14,R17
EAL LM P
SATA I/ avs1a) 2aP1/30141592/
13¢ FARMAT(SEL4.7)
131 TARMAT(S1S)
122 FARMAT (4Z1 va)
QEAO(&OSIlOO’(YO(I)11'11331
212=2.,/°1
Dl4aR[/4e
2{79.75eP!
FacnaveneNd & a8, ofF 3ESSEL PUNECTYIONS TAXEM
2eA0¢105.180) N3 ,NEGNT
a TRYTINBANG,NT
SEAD(105s122) AR, PH5,DPH!
AUTPUT AR, PHA, IPHL
AKEARS2 0P
CTIVALMILS
T3eSQRT (24 /P%)
sall AES NI+, 44,8442
“MieBJ(LIeysaY (L]
AQw ] e/HM]
3088J¢1) /WML
wPueB t2)eyeay(2)
28 le/nP
S0eegl2)/uP
UNsY
ViNsel
S8 1 [s1sN\B
weBJ([+11nyedyr(let]
A1y syNs
(1) sMINeBU( P s1 ) /M
“PenMy V] em/AK
2113 eUN/WP
2({)lHtV’(BJrX)-I'BJ(IOII/A<)/HP
LB L)
JNByeyUN
‘1N1-H1V
~SNTINUE
ARITE(108,10M AQ,32
CAITE(138,139) C$2.03
38 10 el
ZRITE(L3R,20) 12ACD),BUD
#2[TE(108,201) 1.800)-0t1y
P SENTINUE
reveseeeCAMPTE Tw ZURRENTSS
#R[TECL108,202)
PECTERT LA A
OHue)PH/2,
28 3 l=1sNC
42840
28 » 4s10N8

(R XALh]

-

1
c




Q. 2B U2+2e0A (10 S(Puey)
| 51 . 2aNTINUE
EY-0 SeRedPw
53 2nFl1eJ2
A4 JZMeCABS (42!
55, wRITE(1084201) [,42ayZ™
56 k] 2ONT INUE
i 57, feeccweesCAMPUTE T2 CURRENTS.
: 38, ARITE(138:202)
: 39. S,
; 70 12 3 ls1,Ng
71 wPeC2
72 30 4 Jui,NB
73. P Pe2,9C i) eSS (PHay)
Tae [ SONTINUE
7S OkigPuUeOPY
76 JPe e e P
77 JPMeCABS(UP)
78, ARITE(108,201) 1,47, Pv
79 2 TINTINUVE
3Q. " evvecaselIMBUTE Tu AND TZ NBRML 128D SCAT =REDd FIsLD 2avtsans
31 aRITT(138,20M)
32. ARUTE(139,208)
33 SHePuQ#R /18,
6. COwlRw[eR] /120,
9S. J% 7 Isei,N] f
36 STwe0
37. STESCO
38, 2% 3 JeisNB
39. 2PeCIS( JePw) 1
30. STMaSTY+$2e43¢J) (P
EAR STEsSTE+2.e0¢ ) eCP
32 3 ZENTINUE
33, SEsF2eCABS(STE)
ELR) SMeF2eCABS(S"™)
3%. #RITE(108:204) PWOs5M,SE
36, PO sPHGADPH [
37. OHePHeDR
38. 7 ZONTINUE
39. 2390 TARMAT( 111 ,'PM CURQENTSeeet )
120, 221 TARMAT( 1, 110,6815+4)
121, 202 FARMAT( 171, '"C ZURRENTSes ')
122, 293 FIRMAT(11r1,r TY AND TE NARMALIZ22D SCATTIOED TroLN 0atroaNgy
123, 2Cs TORMAT(' ',3clt.4)
106. 20%  CORMAT(191,3x, 10WI,RX, 1 Tut, 8%, 1T
12S. 379P
126« ZND

A-18




Sample output is given byv:

RUN

N 3 13
NC s 24
NY a 35
AR s +382820

PWO 2 +0000N2
OPHT1 a2 10400920
«s 75608425203 41961226E 01 L14842275«06 =,3255141Fen73
©e{B33659F A1 =e3L75S14E ND  «9621708FE 00 «1997R373E N4

«45925/E=02 =e349651c~07 «e579638E=1) 07413408
«4359554E%03 *4220967E .02 +415758E«13 =e223991F

ik I IS N6 R 1 IING IR TS B0
[ 213 I8 IS SNV V) IV ) EVE IRV INY Y I

1 «e2567551E 00 +183366E 01 ©e942171E A~ «e19A7RIE 1A

1 «e176372E 01 *,815625& 0N 1741 %1E 99 «3%2~9737 9~

2 «+117822€ 01! «1157728 o1 «8SN8775E An  =e49292335 9

2  «.485802E 00  *.195346E 0Of ¢179727€ A 0312549 179

3 =+116608E 01 =«287091E 00 ©1571517%%9 0232131E 397

3 +135797E 01 =,483399E 9 =eR3213nEwny “e223314E I

4 +254945E=01 . 6268165 00 +145154E=02  =e42405%E 71

& +269038E-01 «542070E 00 e245724Een> ¢ 493794F N

o} «222761E 00 «813R62C 03 ee13348nFeny, ¢3AS347C 02

5 »e129210E 00 e512326Ee03 «e157214Een, =+3943591F

6 =e1159356E=04 «585782E=01 ¢398494Cen7y =0 129623F

& e s R44304E=05 = 262491E=01 1429588 en7 e2773423E

7 ve123943E~0Q1 »,923732E=07 we 553548400 4 «74827RE

7

)

8 *145061E-09 + 701962803 s427044E =173 +2766%1Z

S ¢341316E£-03 e146022E=11 we{R3)3nE=14 4272247

Q e Q31 423F 04 s 410734E=12 =0135369Em1 4 »ed17V47 "

19 «¢331304E=14 W 4636865 =04 ¢576134E=2" we71143151

19 «eR29195E~15 *«113807E=n4 «S12A73E =21 e 71401201
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TM CURRENTS e

1 ¢ 126455E 01 «18778RE oy $218104F
2 =eRI&445E 00 «177994E 91 ¢139294F A1
3 ee2)7342E 02 «177R82E 01 «179987C Ay
4 «S57942CE 00 «140637E 01 «132152
) ’13“805E 01 052518“6 0C 01 22934F A
-] +901943E 09 =,196249E 99 +933344E D0
7 +?25969E 00 *«563256E 00 +43597QC A4
8 e 156396 00 * 4074635 n e440129E A4
9 = P82348E OC *685472E=01 ¢ 2386075 29
10  =¢139286E 00 «106374E o ¢175260E A1
| «139867€=01 N kLYY LIRX TR} sRuauuFeny
1?2 «R25951E-01 122661201 *+ 235009511
13 «R25952E=01 «127P841E=n1 +R33907E =21
14 +1399Q4E-01 +8343358 01 eR4pn33E Ny
15 »¢139280E 09 «1063762 00 «178254F An
16  «e2B0346FE Q0  =+685377Eeny «PRE02F A4
17  =e166407E 00  =.407451E 00 445122E ~q
18 ¢32S948E 00  =.569257E 00 ¢£5597AC 1
19 «+951928E 09 *.196271E (0 «Q23734F 1H
20 v 104806E 01 +625153E ¢ 0122A35F A1
21 «S79447E 00 +140685E o *1521512 91
22 2073128 092 «177822E 1 11790845 Ay ¢
23 ««R96417E 00 ¢177994E 01 ¢199293F 4
24 we126454F 01 «167788E 01 0210104 21

TE CURRENTSess

1 ¢154852E 01  <~4101437E o1 ¢135118E A4
2 e144972E 01 =+s113488E 01 ©1341909C 9y
3 «111826E 01 ~,143071E 01 +s13{3RRE 94
4 +506173€ 00 *.169R20E 01 *177203€ 91
5 «¢395532€ 00 =.164074E 91 +146894F Ny
6 «e101326E 01 «,10%239E 01 1448126 Ay
7  =412380%4E 01 *.113352E 00 «1243228 9y
8 =« R69856F 09 «724165E 00 11131848 2y
9 =+218R83E 00 «1008B26E 01 «113178F 91
10 e251561E 00 «6834528 00 +7384658 An
11 +369950€ 09 «721736E=01 ¢ 74924E 35
12 «249369€ 09 = 462950E 20 +5240383F N
13 +167391E 00  *.664501E 20 A35260F 19
14 +249365E 00  =.460963E 00 +S524290E 99
15 +369948E 09 ¢ 721528Ee01 ¢2176918F AA
16 «261571E 02 «688433E 00 ©734451€ 21
17  =4P218865E 09 +1097826E 01 v 1931745 Ny
18 *«R49833E 03 «724425€E o0 01131845 94
19  «.123804E 01 ©*.113319¢ 00 01243245 A4
£ =e101328€ 01 1062365 01 s146R11E A1
21 =e305561E 00  =,164073Z o1 © 1563948 4
22 +R06146E 0N =.169821E 01 1772932 9%
23 ¢ 111824E 01} 1430745 o4 «1213Rat Ay
24 144971 01 ~.113489F o1 e134117E Ay




T AND TE NARMALIZED SCATTERED FIELD PATTERNS

o] T™ TE
*0200E © +1134E 01 «1020F 01
¢130CE 02 #1133 Q01 +19530% Ot
«2700E 02 +1129F 01 10577 0ol

+30CCE €2 L1122E C1 +1082¢ 01
«4J00E 02 +1112E 01 +1082F 0!
«S000E 02 +1099€ O1 1033F 01
+6000E 02 +1087E 01 9214C 00
«7000E 02 +1083F 31 +7639F 00
+3000E 02 +1087E Q1 «6332¢ 00
¢9000E 02 +1092E 01 +6539F Q)
«1000E 03 +1978E 01 +8261F 00
+1100E 03 +103%E 01 +1014F 01
*1200E 03 +9R78E 00 +1120° Ot
¢130GE 03 +1048E 01 #1122 01
«1400E 03 +1315E 01 «1080¢F 0O}
+150CE 03 +1737E 01 +1110F 01
e1600E 73 +2174E Q1 «1255c 01
*1700E 03 +2438E 01 «1421F 01 ¥
«1300E 03 +2614E Q1 14912 01
¢1900E 03 +2498E 01 1421F Q1
e2000E 03 +2174E 01 +1255¢ 01
e2100E 03 +1737E 01 +1110F 0%
«2207E 03 +1315E 01 +1080F 0}
+2300E 03 +1n48E Q1 +1122¢ 01
'2400E N3 +IR78E 00 +1120F O!
«2500E 03 +1534E 01  «1014c 01
v2500E 03 +107RE 01 «8261F 00
+2700E 03 +1092E Q1 +6539c 0D
+2800E 03 J1087E 01 #6332 02
*2900E 03 +1083E 01 +7639F 00
+3000E 03 +1087E 01 +9214c 00
*3100E 03 +1999E 01 +1033% 0t
¢3200E 03 +1112E 01 +1082¢ 01
+3300E 03 +1122E 01 +1082c 01
¢3400E 03 #1129 Gl +1057% 01
+3500€ 03 +1133E 01 +1030% 01
*ST8Ps O
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A.4 PROGRAM TO COMPUTE CURRENT DISTRIBUTION DUE TO
IMPRESSED LONGITUDINAL CURRENT

A computer program is presented here for the special excitation
considered in Subsection 2.8. Subroutine CDATA is used to specifv the con-
tour C as was done in the E-field program. The data cards needed for this are
exactly the same. The total axial current Iz is stored in the FORTRAN vari-
able ZI. DO loop 1l forms the matrix given by Equation (105) of Section 2.

The system of linear equations is solved by RDECOMP and RSOLVE.

The example given here is for the cross section of a fuselage sta-
tion as shown in Fig. 6-1. A total of 28 subsections were used to approximate
the contour. The subsection number and the total current flowing axially on

that subsection is printed out.

1. Coenenea=PROGRAM FaR COMPUTING CURRENT DISTRIIUTIEY °N
2o C PERFECTLY CAONDUCTING CYLINMDRIZaAL SWrlLlL CARRYING
3. od TATAL LONAITUDINAL CURRENT 21,
4o CAMMBN ZCUV/ZULXIA0) sULY (8D s NC/C/RTXL1LI)4RCY12D) 5,20 (4N
Se IMENSISN £M(2520)sVK(S0),ALP4(30)Y,1P3(5C)
6o 100 CHRMAT(515)
7 11 FARMATI(2E207)
e 102 FORMAT(4C11e4)
EX) 103 FORMATI(110,215.7)
10+ 1046 FARMAT(215,E45e672213,E1%9¢7)
11' CFI.?EEISS
12 READ(105,102) 2!
13, UTPUT,Z!
1b. CALL CDATA(INC)
i%. "8 {0 Ia1sNC
16 RCX(1)®CX([y#CF
17. RCY(I)sRCY (1) #CF
18. AC(1)sDCHL L) erF
1S, 19 CANTINUYE
20 LE B!
21 28 1 Js1,NC
22, 22sDC(JY /2,
23 VRS DY-ZIVIIR SOND
284 JYsD2sUL V()

A=22




r'"'"-———'—"————_"

25,
26
27 .
28,
29.
3Q0.
31.
32.
33.
34
35.
36.
37
38,
3G
4Q
*1
42
43
Y0
45
460
“7.
48
49,
3C.
51
52
33
Sboe
55
560
57
S8
39
60
51.
82

Ahe
£5.
b6
A7

[ory

J8 1 1s1,NC

IF(LeEQed) G TR/ 7
RXsRCX(I)eRCYX(J)
RYsSRCY{[)eRCY ()

QU (RX*UX ) #4324 (QYeY ) ws?
RLS(FIX+*UX) w42+ (RYSUY ) ua?
ITJsULX(J) eRYSULY (J) #RY
ONJ®ABS LY (J) aRXeJLX(J) #RY)
THLsATAN(D2«nT J,DNJ)
TH2sATAN(eD2=DTJyDNJ)Y
CM(K)aD2#0 (ALAGIRURRL ) /20w JaDTJ#ALAG(RI/RL) /20
1+DNJa(T=H1wTHD)

L4 1.4 31

59 79 8
CMU(K)aDC(J) 0 (ALRG(D2)wie)
vaKey

CINTINUE

CONTINYE

28 3 lai,NC

vK({l)s10o

CONTINUE

CALL RDECOMP(NC,IPS.CM)
CALL RSILVE(NC, IPS,CM, VK, ALPH)
S1=Q.

S=0+

D% 4 1s1,NC
5:S¢ALPH(I)0HC(T,
S1a51+0C( 1)

~ANT INUE

UTPUT,S

BUTPUT»SY

CsS/21

28 5 [=1,NC
ALPH(T)Y®sALPH(T)/C
WRITE(10R4109) 1,ALPH(T)
COANTINUE

SC=Q.

2% A Ja{,NC
SCasSCeALPH(T)eDC(])
CONTINUVE

QUTPUT,SC

sTeP

END
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Sample output is given by:

RUN
21 = 20000.0
eNB, 3F STRAIGHT LINE SEGMENTS APPRIXIMATING C = 28

uLX uLyY RCX RCY e
«QO00E 20 «N000E OC
=9 1000E 01 «00N0E 00
*s1000F 01 «D0O00% 00 *«5S000E 00 «0D00E 20 +1920F 71
=4 2000E 01 +S000E=01
e 9988E GO +4994E=01 «e¢1500E 01 «23500E*91 +1021F 91t
»¢3000FE 01 +1000E 0O
*s9988E Q0 +4994E=01 =*2800F 01 +7500Q0E=01 1921 01
“o4000E C1 +2000% 00
«49950E 00 +9980E+=01 *¢3500E 31 «1500E 20 +¢1935F
»sSC00E 21 +3500E OO
©o9B89E N0  «1483E Q0 =¢4500E 91  «2750E 00  ¢1511F 01
=460005 01 +4500E 0OC
®e9950E 00 +998QE=Q1 =~¢5500E 01 s4200E 20 +12325F 1
*¢H300E 01 +5000E 0O '~
®sIBBULE Q0 16445 Q0 =6150E 91 «4750E No  e3)4iF 29
=e6000E 01 +6900CE 00
29487E N0 31625 00 =*6150E Q1 +5500E 2n 31522 00
«s5000F Q1 «1000E 01
2 J285FE CO 37145 0Q =+5500F 01 «B8000FE 00 +1077% 0%
“o4000E 01 +1600E 01
+857SE Q0 +5145E Q0 =*4S00E 01  «1300E 21 1166 04
#»¢3000E 01 +2700E 01
06727E 30 ¢7399E 00 =+3S500E 51 2150E 01  «14%7F 94
«32000E 01 «4000E 01
06097E NQ 79265 00 =¢2500E 01 «3350E 01 +1440% 01
»e100CE 01 +4600FE 01
¢8575E 00 +5145E Q00 =+1500E 01 «4390E 21 11665 "
¢Q0D0E 00 +4750F 0O}
¢9889FE 0N +1483E 00 <+5000E 00 +4675E 21 e1911F 3t
+1000F 01 +4400E 01
¢ IB89E GO =+1423% 00 +5000E 00 «4675E 31 13117 M
«2000E 91 +4000% 0%
+8575E Q0 =+5145% Q00 +1500E 01 4390E N1 11468 01
¢3000E 31 +270CE J1
26037E QO <7925 Q0 *25Q0E 01  «3380FE 91 «1640F 2
e 40008 01  +1600E 01 ]
067275 Q0 =7399C 00 +I8Q0E 01 2150 91 «14R7F O}
+50020E 21 «1000¢c 01
+8575E 09 *¢S14355 Q00 +450CE 91 «1300FE 21 11668 1
¢ 6CI0E 01 60008 Q0
0 I285E 00 =+3714E O e3500E 21  «8392E 20 «10277F Q01
¢6300E 01 +5000E




e 3437E
«8000E
s IRELE
+5000E
*¢49950E
«4000E
=49889E
+3090E
*¢9950E
+2000E
«¢9938F
«1000E
'09938E

+Q000%
=e1000E

20 =
21
Q0 =
o1
00 =
01
00 =
01
Q0 =
C1
co =
01
00 =
elo)
01

=CLOSED CONTRUR,
S s «e6%¢7375
S1 s 632543

[ S A N
WONPIPAFWNOWMNPUILE WN -

20

VA VIV EAVE VR VIV
NI EFE WM

28
SC s 27000.0
«ST8Ps

«3162€ QO
«4S500E 00
2 1644E 0O
«3500% 0C
¢9950E«01
«2000¢ 00
«1483E 00
«1000t 00
+9950E+-01
«5000E=01
+4994E-01
«00005 00
4994E 01
«A0N0E 00
«0000E 00
IC =

«2200409E
e2247948E
«2354470E
e 2594063E
+2857402E
«4112020E
«1187918E
«1033439E
«35n2833¢E
«2170148E
«2087922E
0 2678784E
«35R751{ 7€
«3763301E
+3763308E
¢ 35R7514E
e 2678781E
«2087230L
¢2170130E
«3502849€
¢1033443E
«1187915¢€
«4112912E
v2887416E
e 2594952
«23R4471E
02247945E
e 22N0424E

*6150E
*4150E
*5500E
*4500E
*«3500€
*«2500E
*+1500E

*5000E
0

A=25

01
a1
o1
01
o1
o}
01

00

«5500F

olo}
s4750E 920
+4000E N0
«2750E 920
+1500E 20
+7500E=01
+2500E=91

+0000E 30

+3142F
+3041F
*1008E
10112
*1095¢%
*1001F
+1991¢

*1000F

ple)
20
N1

031

01

01

01




APPENDIX B

PROGRAMS FOR THIN SHELLS OF ARBITRARY CROSS
SECTION AND FINITE CONDUCTIVITY

Two computer programs are presented here for the determination of
the field interior to electrically thin, lossy shells. The formulations used
are the impedance sheet approximation derived in Section 3 and the exact series
solution of Section 4. The required data cards are described and a sample of

the program output is given.

B.1 1IMPEDANCE SHEET APPROXIMATION PROGRAM

The input data card sequence needed for this progr=am is almost
exactly the same as that used in the E-field program of Appendix A. In fact,
Table A~1 may be used here where the card containing AMU and EPS is replaced

by the card sequence:

ST = shell thickness in meters

SEPS = normalized (to free space) permittivity of
shell material

SIG = conductivity of shell material in mhos/meter

vCo = velocity of light in medium outside and inside
shell

NMP = number of near-field measurement points inside
shell at which shielding effectiveness calcula-
tions are to be made

M(i) = X-Y coordinates of interior field measurement

YM(1) points in meters, i = 1,2,..., NMP

Also, FHZ is the frequency of the incident plane wave in hertz.

The main program is much the same as in the E-field case. The two
polarizations are handled separatelv and the upper right triangle of the
E-field impedance matrix is created first. To this an impedance load is

added using Equation (9) or (11) of Section 3. The E-field excitation vector




is then formed and the resulting system of equations is solved. The interior
field due to the equivalent polarization current alone is computed bv sub-
routines QNFMS for the T case or PNFMS for the TE case. These computations
are defined bv Equations (50) and (52) of Section 3, respectivelv. To find
the total interior field, then, the incident field must be added to these
“scattered" fields at each interior point. The shielding effectiveness cal-

culation mav then be done according to Equation (1) of Section 3.

LE




e :-----.-.’HI\ Smf OS8TQAv !

2. l: u‘xw :Qe’;gAu rFow :quﬂ'vv Fis] :1;1,/{»:\‘ :“\.‘:!"'Y“‘

3. c CURRENT FaR 4 TwiIn GmC_  R5ING TwD ToF1E T TATM  avent
“e o LIV VAN SN Sok N ICTA AT SRR Nal el a-Loh SR RIS Jol NG

S COMMABN /MG /XM D2 YN ITUT) XM 1D7 ) YAt DT e

X CRAMMAN /P /RAX (L) 1LY (67) %[ 4"

7. caMMaN /50174 {17Y, (13050

2, NIMENS I Pt (D)

9. CAMBLEX 211222 s vM(300))eCUtR™M,527 (8
pRe ) TOMPLEX s ZMNESSImaZSSRT,BFETA,ZIXP, T, 1T
1l YATA Pl/33¢140593/,0/(Certe)/

12 1232 CARMAT(ATS)

13, 171 EAR4AT(2€2047)

14 122 FRRIVAT (4114

1€ 123 CARMAT(]C15es)

16, READ(105,12C0y N33

17 SEAD (105, 101v (A s Tl Ys a1 aN3E)

1R, 8 TRYTHNGT

19. READ(108s10%) 1TV, ITE, ISC,NX,N?

2C, 9UT9UTDIT“51'E‘ISC1\X;NH

21 READ (1052102 O, IPHY ¥
22. QUTPUT ) =10, "PH]

23. 9 & laiaNX

Q4. READ (105,122 °<11¢(1)

25 AUTPUT» L sPRIT(])

26, & CANTINUVE

27 READ(105,1C2 ST,RERPS,SIG,VECY

28 QUTPYT,STHSEPS,SIGAVEID

2%, READ(105,100) \uuP

30. JUTPUT NP

31 N9 6 lsi,\mP

32. READ(105,1C2y XM(1)a¥Y™(I)

33, A CANTINUE

Jé. TALL CDaTA(I~C)

38, SEAD (105,100 \FR

36. Do 80 [NEs{,VER

37 READ (109,102 FwWZ

38. wRITE(108,309) FwZ {
3g. aF82 sPleFK?

4Ce AKQaswF /VCO

'S STKaAKQ#ST

42, AMUCe4oe®Plel Fad? h
43 EPSQOsl e/ (AMyAayCleVLD)

bio 3ETASTK e (U (SEPSeie) oSl /(aFZPSA))
5. 2UTPUT»AMURIEPS s WE

"X 78 S lessNC

“7. AKX (1)®RCX (1) eALD

8 IKY(1)ery(Iyea<O




4
0
* e o

[PINVINV IRV

& W e ()
.

EP LN VIRV TR B
e o e e

JSror g )
W N)es () D B J PN
L]

LAwe

79,

a2,

RAue
Qg
ak.
a7,
AR,
RO,
7
.
a2,
33,

Jeo
A,
Jé.
27,
Ik,
30

feaces

Yoo

~
e eeew

} 3. i
raNTI\ T
28 7 lsyyNwR

XM Yy CM Y ) AT
YMK (TYavM(Y) gAKD
TANTINLE
s]
2% 3 1s,NYX
TS58CRS(P~IT(Yad] /1 20,)
SENBSIN( 2] (1 )eRP]/an,)
':Q A .‘.'.,MUD
SI1I 8CEXRP! o (MK Yol SeVYMC! oS )
(S 1LE 3]
TANTINUE
IF{IT¥eNCey) G 7B 3~
aneb QM PPfFD o7, TQVA\'JL:_' AL T 7 “ATITX,
=]
2% 1 INet 0 C
¢

23 L Tvet N

AL B E DA TE B ARES

L L 3}

CANTINLE

..-AQj L“‘T 'MDE:A\:F WAL T Y
<a}

2% 10 lseanC

(XK mZ(< oK) /7357
Cakelel

TANT NS

ceasFAQM TM FyC1TAT][3v yeTalg,

TALL TMY (VMO ],NX)

eee39_ Ve FAR \NBIvA_17¢0 YV D _EC2TRYS 2 2300 TS,
“Qe\Cs(“Ter) /2

TALL SELSIVM, 2, CoNnX,vR)

L DY

_xs]

2% 2 leisNy

«RITE(17Ry27Ay Pl (1)

aRITE(LIZR, 220

28 3 U= ,NC

V““l:AES(VV(())

Tdls)asv™i<y

aRITE 1R, 209) LaVV(€) ,Vum

(s e+

SANTINGE

ALTE172,229)

TR 9 1vs At

ThA_L INTMST STIZ N Ty vt T

LA AL &

a T2 _v,I7C
Sfe27sea_951ar22a%;

MRITE 13,0 (v

'S

-

’!{—‘\/:1"‘\
\

p YT Y, G

= e

.




LXaLX+l
9 CINTINUE
CANT INYE
IF(ISCeERet) CALL TMS(yMyNYaPHTIT,PHTA, DRI, N2
219 FORMAT (191 ,18X, 'T™ CURRENTS FAR Pul 1,7 11ek,3X,')832c09" )
271 TORMAT(! *,6X, 'PULSE NBat , 11X, 1 REAL T, 114 " IMAGY ;11X 4pTe )
202 CARMAT(' 1,115,5%X23E15e6)
203 TIRMAT( 101, 'eHIELDING EFFECTIVEVESS AR T™ CASEY)

i

390 IFCITEWNESL) 39 79 50

Ceeeeme=efdRM [PPER RTe TRIANU|FE 9F TC 7 “ATRIX,
<{=)
13e1+10C

28 31 INalRB,vuC
28 31 [“1a]BstN
Z(K)aSZH({IMey,INwls1,1)+S2H(IMelsINI,=1)s
18ZM(IMaIN® sl p 1) +SZH(IMyINsmy ey
s+
31 CANTINUE
CeaaannesADD LRAD IMPEDANCE MATRTIX
NUsNCe INC
IF(IDCeCNe1Y G2 T 34
DLsDC(NC)
dU=DK (1) '
G8 T8 35
34 NDL=DK (1)
DUSDK(2)
35 <s}
7% 36 lat.NU
Z(K)sZ(K)*(DI_+DU)/3e/BETA
oLsDY
JUSDK([+13)
Kak+l+l
34 CANTINUE
=2
NUL aNU=y
28 37 Isi1,NUA
Z(K)sZ(K)SDK(1+IDNCI/(be*RETA)
<sK+]42
37 CONTINUE
IF(IDCeERes) G TO 38
KasNC*(NCel)/2+]
Z(K)aZ(K)+DK(NC)/E6e/RETA
3R ZONTINUE
Ceeeesec==FB3RM TE EXCITATIIN VECTARS,
CALL TEX(VM;PHII,NX,1DC)
D8 40 Isg,nNU
40 CINTINUE
Come=e=eeSBLVE FAR N9RYALIZED TE CURRSNTS,
MRaNUe (NU+1) /2
CALL GELS({VM,Z,NUMNX,MR)
LXe]
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e pa pa
[SINSTS N
W n) »-
- - -

15“.
13%.
1356
137
15%.
139.
16C
161
1652
143,
144
1463
156&.
167,
158
159.
17C.
171
172
1730
17“0
175
176
177
178
179

<=}

N8 32 lstsNX

ARITE(108,30m) PHIT(L)
wRITE(19%2304)

78 33 Jsl!B,Nrm

VMM3rABS (VM (e ) )

Tdl{Jd)yseyM(Kk)

ARITE(LIQRI202) Ly VMK ) VMM

<ak+y

CONTINUE

ARITE(12%2,3C)

59 39 [Maei,NuP

CALL PNFMS(C,=ZC, XM IM), Y1 (14))
HZCaRZC+EZ () X))

JUTPUTs~2C

SE =2De#a| A5 N (CARS(EZI(LXY/=22))
«RITE(122,107) xM(IMy,YM(Iv),SE
LxXalX+1

ZANTINUE

CONTINUE

TF(ISCeETety CALL TES(VM,NXsPH]I1,PHT2,NPHT, N2, 107,
CANTINUE

CANTINUE

FARMAT (12!, 18X, 'TE CURRENTQ FO3 Pul 21,5114, 136535

F]RMAT(! Ve3Ys I TRIANGLE Va1 ) 12X 'RFAL 21 IXat TSy,
CARMAT('1', 'FREQUENCY 8F PLANE WAVE s1,015¢7,3X, =)
FORMAT( 11!, 18~N]ELDING EFFE~TTVECESS £oR TE CASE")
578D

END

B~6
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1 Sample output is given byv:

. UN

| NGG
j IT™
ITE
| IsC
‘ NX 8

NP s g

PHIS 3 ,300000

OPHI 3 3.00000

[ =1

PUTICI) a «020000

ST 2 5¢999999C«(C4

SEPS s 1.00002

SIG = 109200.C

VvCO s 3+Q0C000E 28

NMP s ¢

NBe 3F STRAIGNHT LINE SEGMENTS APPQAXIWATING £ = 15

¢

O

JLX ULy 2Cx :CY 3¢ i
+S000E CO  +QQO00E 00 ;
¢ 4620E 200 =+191CE 00
“e1951E€ GO0 =+98085 00 <*4810E 00 =+955GE=AL 13478 39 B

«3540E 00 ~e354CE 00 ¥
<45523E 00 =+8336E 0C +4080E 0p =+2725E 30 +1955%F 232

¢1910E Q0 =«462CE 00
«98336E JQ <+5523E 00 +2725E Q0 =+4720E 00 1355F 9

+0C00E 37 =+5000F 00
©49808E 00 =<1961F 00 ¢I550E=01 =<4810E 00 +1947€ 39
©11310F 70 =+4620E 00
<+9808E 37 +1951F Q0
«¢3540E 00 =«3540E 00
©48336E 30 5523 QQ ~e272SE
*s4620E 00 =+1310E 00
«e5523E 30 «8336E 00
<+S000E 00 «000CE 0O
©119512 30  «2308E 00
© 4620 00 «1940% 0O

19550E el =s4810E DO +1947F 09

(@]

O =«4C8CE 95 +1355€ 30

*4n80QE 90 =+2725E N0 1955¢

Q
(® )

*4R10E 00 =+3550E*21 +1547C

O
O

*1351€ 00 «9808E Q0 =+421Q0E (0 +955CE=01 13472 27
=+3540E 20 35408 0O

+5523E 00 +8336E Q0 =+4080E 00 +272%5E 00 19557 39
“«1910E 3 +46208 00

08336F 00 «5323E Q0 =+2723E D0 +40BOE 30 +195%5% o9

+Q00CE CO0 35000 QQ

+9808E 00 «1951E 00 <*9550E.01 +4810E 20 19472 29

¢1910E 00 +4620F 00
+3808E 00 =+1381€ Q0 +9CSOEL +4340E 20 +4947T N0
03540 JC 35408 Q0
083365 00 55238 QQ «2725E Q0 4082E NC 19358 29
'462CE 20 «194¢CE Q0
¢3523E Q0 «+8336E Q0 408CE 00 2725E 230 19558 27
¢300CE Q0 «2QnCE QC
019512 20 «+9803E€ QC 4RIQE 230 +3S5C0E=01 19472 137
«CLOSED CONTBUR, I2C 1 o)




3 FREZJUENCY AF 2 ANE AAVE a DK
AMUQ ® 1.25K637F=05

EPSQO s 8.R41948Fe12

wF 8 6.2331864E 07

(@]
(o]

wl

Q)
o
QO
(&)
m
(@]
n

TV CURRENTS FHn PHl s ,0000F 97 ~e30eccs

PULSE A REAL IMAG MAG,
1 +378525¢ C1 ve243114E 31 14”464 JE 21
2 + 350129 1 «s 2756245 21 4435599 9%
3 +295942F 91 e 2844015 D1 4104165 ¢
4 ¢224L299€ 1y «e29n&28E 1 +367023%C 3
5 *147543F 01 *«s291841F N1 «3256761C O
é6 + 76525828 00 ©e 2837334 71 «”373508 3¢
7 0221245 CN «s28~N14E e P2RQRRTT 29
8 *¢7069A0EC1 «e274259C ~4 27473525 0%
9 *e706921E°0 ~e274259C A1 274350 3¢
10 +221276€ N0 =e280009E 21 +2RQRB2E 1
i 11 2 7652854E np ~e2873345 91 «293735CE 91
12 1147548 1 =e291841F D1 e3246750% ¢
13 +2243808 91 «e¢290528C A4 e IRTNIEF 1
14 e295942E 21 *e2R44 725 21 «41D4185 91
; 15 +350128F 01 ~e275424E 01 4456008 D1 ¥
16 +378525F 51 =e2A9119 M k64415 I

SHIELDING EFFECTIVENESS F9R Tw CASE
EZC = (44007816F°0bs*8e1265608=04)
«200000E 00 +000000E 00 «608581E 92

TE CURRENTS F3a Pw! = ,0000F 09 NEGRFES

L o A it <

TRIANGLE N9, REAL IMAG MAG .
1 +981393€ 00 02249322 70 «170684E 231
? +3932820E 00 220900°E 72 «17C4R65 It
3 +986443€ 003 «1631582 70 «993R653E 12
4 +989882€ 00 +943094%a01 +994333€ 9n
5 *990797% 00 +134543C 01 +990R89F 94
3 +988479€ C0  =e673963E-91 «99Q774E In
7 +9383917E C0  =e136243% 32 ¢933304E 21
a8 «979%581E Q0 *e1820345 20 «996333€ )7
9 0977791 00  »e19R8021E 20 «9376415 93

16 +9795852¢€ 00 =e182095€ 00 0996334 )7
11 +9839914F Q00  *¢1362473€ 90 +993304F 2N
2 *988479E 00  «e673963Ce)1 «930774F A
3 *993799E 00 v 1345855Fe11 «990899F 37
1a +989354¢€ (0 ¢ 943103F =11 «974336F 34
15 + 9864425 00 +163159 730 ¢ 99ORKLE
16 +982890F 00 +299008E 29 «173Cu86E 1

SHIELDING EFFECTIVENESS FAR Tc CASE
HZC 8 (44711151 Ee04,=54401962E«33)

+DJ0NJ00E 20 «0C0000E 100 «453160€ 22
»ST80s )

B-8




B.2 EXACT-SERIES PROGRAM

The computer program listed here computes the longitudinal component
of an interior field at the center of a lossy shell of circular cross section.

The formulas of Section 4 are used. The input data is defined byv:

AD = outer radius of shell in meters

Al = 1inner radius of shell in meters

EPSB = normalized (to free space) permittivity of
shell material

SIG = conductivity of shell material in mhos/meter

FO = 1initial frequency in hertz

DF = frequency-run increment (hertz)

NF = number of frequencies at which computation is
desired

The required Bessel functions are computed by the following

subroutines:

Jo(z), Yo(z) - CBESQ
3(2), ¥;(z) - CBESL
ugz) (x) - HANKO2
HJ(_Z) (x) - HANK12

In the above, z is a complex number and x is a real number. The variables
T1l, T12, T21, and T22 are computed according to Equation (7) if Ikbao] < RM.
Otherwise, Equation (21) is used. Equations (6) and (9) are thus evaluated

for n = 0 and the shielding effectiveness according to Equation (1) in Sec-

tion 3 may be determined.
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13.
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16+
17.
18
19
20
2le.
22
23.
24
25.
26
27
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29.
30.
31
32.
33.
Jbe

35«

36
37.
38
39.
40
LB
42
43
bbe
45,
46
47
4R,
49,

—- rrr————— - Bk

Feaecee-ePRBGRAM Te CIMPUTE SMIELDING EFFECTIVEMESS AT
c CENTER 8F LASSY CYLINNRICAL SHell., 38TH
¢ PALARIZATIANG AT NARMAL [NCIDENCE,

COMPLEX BJOO.BJOi,BJI1'5J101RY9919V01lsviﬁlavii
COMPLEX HANKAR,)HANK12,ETB,KBsHY N, STK

COMPLEX T11sT12sT21,7222E78,'1,CSART

CeMPLEX €CB8S,CSIN,CysC24C3,70,A53,00, TE,TH

REAL KO

SATA U/UQes1e)/2P1/30141593/2C/3%E 08/2ET0/377/
SATA EPSD/8¢R4194E®12/,RM/3/

170 FARMAT(6T157)

191 FBRMAT(515)

192  FBRMAT(107,6X, 'FIETs ' ,8X, 'ABS(KBAL) Y, gX, 'KOALY, 12X, ' TESEY, 11X
», 'TMSE')

103 FORMAT(' ', I5,4E157)

c Al s INNE® RADIUS (IN METERS)

c AQ ® BUYE® RADIUS (IN METFRS)

c KB = WAVENUMBER BF SHEL| REGIBN

c AK s WAVENUMBRER 8F FREE SPACE

c ETB « RELATIVE IMPEDANCE BF SHELL VATER[AL

PEAD (105,100 AN,AL,EPSH,S1G

3UTPUT2AQsAL,EPSB,SIG

nNaAQ=Al ]

READ(105,100) FJ.DF

READ(105,1C1) NF

SUTPUTIFQIDF ) NF

S1GNsSI3/EPSH
CaveaesesPERFARYM FREQUENCY RUN

WRITE(1D28,107)

N8 1 IxalsNF

FHZaFQ

WFa2 #P1eFKHZ

KO=WF/C

KB®CSART(EPSReUsSIGN/WF ) #KN

ETBsK0O/KR

STKeKB#D

AKQaxO#AD

AKY aKDQ#AY

CiaPleK3eA1/2,

C282.%U/ (P1%4KO)

C3aSQRT(AL/AN)

HOSHANKO?2 ( AKA)

H1aHANKL{2{AKD)

HOR3REAL (HANKD2 [ AKL))

W{RaREAL (HANWKL2(AK]))

NABSsCABS(KHaeAl)

1F(DABST,RM) 38 T8 2

CALL CBESO(XR#A0,R8J00,8Y00)

CALL CBESO(Xasai,8J31,8Y01)




5C. CALL CBES1(<R3#A0s»BJ19,8Y10)
51 CALL CBES1(KR#A1,B8J11,83Y11)
32. T11lsCl#(«BJO1#RY10+83J10%BYN1)
53. T122C1#(RJ10#8Y118J1188Y10)
54, T213C10(3J01BY00800sBY0Y)
55. T223C1#(*BJCA*BY11+BJ11%8Yn0)
564 G9 18 3
57 2 CONTINUE
58. T11sC3#CCRS(RTK)
59 T128wC3#CSIN(STK)
50. TR1=aT12
51 T22sT11
YD 3 CONTINUE
53 Cemeee=eeCBMPUTE DETERMINANT FBR T™ CASE
6be DOsHO® (*H1R#T11+HORSTI2/ETR)+H {4 (eH1R4T21#ET3aHNR&T22)
55, DosC2/02
660 BUTPUT,DO
67 SE2«20+#A BGI10(CARS(NO))
58, LaswacaeesCAMPUTE DEeTERMINANT FAR TE £ASE
89. DDs= AQ# (oHIR*#TI1+ETR*HOR* T2 )+ 14 (L1 R*T21/ETRemNR4T22)
70 DO=C2/0D
71 9UTPUTIDD
72, SHE=20e#ALBG10({CABS(ND))
73. WRITE(108,104) FHZ,DABS»AKYsSH,SE
Ta, FHZ3FHZ+DF
75 1 CONTINUE
74 sSTBP
77 END
B-11




Sample output is given by:

AN

AQ s +500C00

Al e +429CC0

EPSE s 1.00020
SIG = 10CCCed

FO s 1.300000QE 07
DF & 1400C003€ 7
NF o |

FRED. ABS(KBAY)
£O s (3¢9213508ChasvB8.023640E04)
D0 » (5486381 4E=24s°4+9506872-03)
*12000CCE 38 +4433989€ 3 +1045403E 9n
»STBPs O

KoAl

B-12

TESE TMSE

1604617 32 0467982388 02




APPENDIX C
CAD HOMOGENEQUS SHELL COUPLING ANALYSIS PROGRAM

An interactive computer program was written to determine the coupling
of 4an exterior electromagnetic disturbance to a circuit situated inside a
closed homogeneous thick shell. The low~frequency formulas of Section 5 are
used for the interior penetration fields. The purpose of this appendix is to
briefly describe the CAD program logic. This consists of descriptions of the
following:

® User-specified input data for a given problem

-]

Computations performed

° CAD results

A typical problem is illustrated in Fig. C-1 where the interior cir-
cuit consists of a two-wire transmission line of length L and spacing h. The
line is loaded at one end with an impedance ZL' The excitation shown could
result from a NEMP or NSL threat. The quantities of interest for computation
are the open circuit voltage and short circuit current at the terminals shown
in Fig. C-1. From this, the maximum power coupled to the circuit may be deter-~
mined and thus various parametric design curves may be plotted to facilitate

a CAD solution based on given burnout data for the load.

A block diagram of the computer program logic is shown in Fig. C-2.
The various subroutines required are listed with capital letters inside
blocks which identifv the various program segments. Subroutine THREAT allows

the user to define the threat as one of the following:

NMEMP - Nuclear electromagnetic pulse, plane wave excita-
tion given by Equation (24) of Section 5.
Input HO.

NSL - Near-strike lightning, low-frequencv line source

excitation whose magnetic field is given by
Equation (2) of Section 5. Input R.

DS, - Direct~strike lightning, impressed longitudinal
current densitv.

N i i
= iz C - A . o i b i mme
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Figure C-1. Cutawav View of Infinitelv Long Homogeneous

Cylindrical Shell with Loaded Transmission
Line Circuit Inside




1
REQUIRED USER INPUT COMPUTATION QUTPUT
ul
THREAT
(Define
Excitation)
C]] 01
OSLTG
N NSLTG PLGRPH
Compute internal =i Plot internal
fields versus and external
THKMAT time fields
u2 SHPMAT
(Geometry de-
scription, mate-
rial specifica- t
tion) ,
c2 E FIELD r
K FIELD
Compute trans-
mission line
excitatign
HEIGHT
us3 TRANS
(Transmission
line speci- Y
fication) c3l YoC 02 VOCISC :
SCCUR POWER
v WNCH
El T LOGPLOT
Compute load
currents and Plot resuylts
voltages

Subroutines appear in CAPS.

Figure C=2., CAD Block Diagram




N
given by Equation (25) of Section 5. Once the threat is specified, subroutines
THKMAT and SHPMAT are used to define the shell enclosure part of the problem.
Data required here is
a = shell wall conductivity
d = shell wall thickness (several units
acceptable)
VSR = volume to emface ratio of enclosure (meters)
Conductivities of various materials are tabulated in a data file.
The interior fields may now be computed for the empty homogeneous
shell according to the formulas of Section 5. This is done in subroutines
DSLTG and NSLTG as follows:
NEMP excitation - Use NSLTG where internal field is given
by Equation (18) with % and B defined F
following Equation (24) ;
NSL excitation - Use NSLTG where internal field is given 4
by Equation (18) with a and 3 defined
following Equation (1)
DSL excitation - Use DSLTG where internal field is given
by Equation (36) with a and £ defined .

following Equation (1).

To complete the specification of the sample problem illustrated in
Fig. C-1, the user must input data which defines the circuit under considera-
tion. This is done in subroutines HEIGHT and TRANS. Data required here is:
h = spacing of transmission line or effective |
area of standard cable (tabulated according :
to cable RG number)
L = length of line in meters

Z = characteristic impedance of line

A = load impedance




Finally, the open circuit voltage and short circuit current at the
transmission line terminals shown in Fig. C-1 may be computed. This is

accomplished by the following subroutines:

voc - Computes V,. according to Equation (15) of

Reference [4], p 6-6, in Section 5

SCCUR -~ Computes Isc according to Equation (16) of

Reference [4], p 6-6, in Section 5.

Once these computations have been made, various optional CAD curves for a
given problem may be plotted. A sequence of typical plots for a problem is

given by Figs. 6~5 through 6-11 of Section 6.







