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PREFACE

The ultrasonic harmonic generction technique has been extended
to the study of the nonlinear elastic behavior and thermal properties
of the diamond-like solids silicon and germanium. A complete study of
the temperature variation of the third-order elastic constants of
siticon and germanium has been done. In order to make the technical
report intelligible, it has been divided into four chapters as follows.

The importance of the study of the nonlinear properties of

solids is emphasized in the Introduction which forms the first section
of Chapter I. A brief review of the theoretical and experimental work
done in higher-order elasticity is aiven. The remainder of Chapter |
concentrates on the theoretical basis of the work. The nonlinear wave
equation in a cubic solid is derived and its solutions along the
symmetry directions are given. The ultrasonic nonlinearity parameter
for longitudinal wave propagation along pure mode directions in cubic
crystals is defined. The relationship between the nonlinearity
parameters and elastic constants is derived.

Chapter II describes the experimental setup. A brief description
of the capacitive detector which is used for wave amplitude measurements
is given. Both room temperature and cryodenic apparatus are described
with diagrams wherever necessary. The measurement procedure is also
outlined in this chapter. The block diagrams of the room temperature
as well as cryoaenic apparatus are qiven. DNetails about the individual
parts are given wherever necessarv. Ultrasonic nonlinearity narameters

of silicon have been measured at room temperature and as a function of
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temperature down to liquid helium temperature. The numerical results
are tabulated and the temperature variation of the nonlinearity
parameters and some combinations of third-order elastic constants have
been plotted. Chapter III is made up of these results, Comparison of
the results with previous experimental and theoretical values are made
as far as possible. The strain generalized Gruneisen parameters alona
the principal directions are evaluated and reported.

Keating's central force model is cne of the most successful
and established models for diamond-like solids. We have developed a
method to isolate all the six individual third-order elastic constants
from nonlinearity parameters of diamond-1ike solids bv combinina our
measured values with this Tattice dynamical model. Expressions for the
Keating force constants are given in terms of the nonlinearity parameters.
The method is apolied to silicon and germanium and the temperature variation
of all the six independent third-order elastic constants have been
studied between room temperature and 3°K. The method and results are
qgiven in Chapter IV. Numerical knowledoe of the temperature dependent
third-order elastic constants can be related to the temperatu. . dependence
of the anharmonic parameters such as thermal expansion, Gruneisen
parameter, etc. of solids. Such a study made for silicon and germanium
also is incorporated in this chapter. Low temperature thermal expansion
measurements of diamond-like solids by various workers have shown that
they possess a negative thermal expansion at low temperatures, Gruneisen
parameters follow the same anomaly. Theoretical caiculations of Tow

temperature thermal expansion and Gruneisen parameters from room




temperature third-order elastic constants by earlier workers do not
account for the negative thermal expansion in certain temperature ranges.

We have tried to bridae this gap by evaluatina the thermal expansion and

Gruneisen parameters of silicon and germanium as a function of temperature
from temperature dependent third-order elastic constants in the aquasi-
harmonic approximation. Temperature variation of other anharmonic
parameters of silicon and germanium have been studied and the results

are presented.




CHAPTER I
INTRODUCTION AND THEORY
A. INTRODUCTION

A solid medium, in general, is nonlinear. Hooke's law is not
obeyed by solids because of this nonlinearity. Nonlinearitv arises
from the higher order terms in the eneray density expansion of the
solid. A finite amplitude ultrasonic wave nropagating throuah a non-
linear medium distorts as it proaqresses and aenerates higher harmonics.
Superposed waves generate sum and difference frequency waves. The
nonlinear effects are mainly due to the asymmetry of the interatomic
potential well; i.e., due to a nonparabelic interatomic interaction
potential which leads to anharmonic behavior of the crystal lattice.
The distortion of a finite amplitude ultrasonic wave in a solid is a
measure of the nonlinearity of the medium and measurement of the
anenerated harmonics offers a unique method for the study of anharmonicitv
of solids. Distortion of a finite-amplitude ultrasonic wave in solids
was first observed by Breazeale and Thompson] and by Gedroits and
Krasi]nikov.2 The fact that such measurements lead to the determination
of third-order elastic constants has aqiven impetus for the work to be
described in the succeeding chapters.

In describing the physical properties of solids, the elastic
constants play a central role. In the macroscopic theory of elasticity

the solid is treated as a continuum which has, in the unstrained
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equilibrium state, a constant mass densitv. The elastic cnevay density
is written as a power series in the elements of the strain tensor. tlhe
zero-order term represents the energy of the solid in eauilibrium. It
is independent of the strain and may be set equal to zero. The first-
order term is also zero in the absence of external body forces. The
coefficients of the second-, third-, and hiaher-order terms are
designated as elastic constants of order correspondina to the power of
the strain in the respective terms. In the microscopic theorv of
crystal lattices, the potential eneragy of a crystal is expanded as a
Taylor series in terms of the displacements of the atoms in the lattice
from their equilibrium positions.3 The coefficients in the series are
the derivatives of the notential enerqgy referred to the equilitrium
rositions and are called the coupling parameters. The zero-order term
may be set equal to zero; the first-order term vanishes because the

expansion is about the equilibrium positions., As in the macroscopic

theory, the higher terms stand for the corresnondina couplina parameters.

The symmetrv properties of the lattice can be used to obtain the
relations among the couplina parameters and the correspondinag elastic
constants. Measurement of the elastic constants yields information
about the lattice forces.

If only the second-order terms are retained in the elastic eneray
density and linear elasticity theory is used, a linear relationship
between stress and strain results (Hooke's law). This approximation
can be used for infinitesimal deformations; i.e., when the space
derivatives of the displacement vectors of a noint in the bodv are small

enouah that their products and sauares may be nealected in cowmparison

¥




6
to the terms themselves. Similarly, neqlectina terms beyond second
order in the lattice potential energy leads to lattice dynamics in
the harmonic approximation4 with which one can account for much of the
behavior of solids.

A number of properties of solids are related to the anharmonicitv
of the lattice potential which involves elastic constants higher than
second order. Crystals exhibit lattice thermal expansion. The
adiabatic and isothermal elastic constants are, in neneral, different
from each other and the elastic constants do vary with temperature and
pressure. At high temperatures the specific heat exhibits a temperature
dependence. A1l these anharmonic properties indicate that harmonic
theory is not sufficient for a quantitative description of the
properties of a crystal.

Even at low temperatures the harmonic theory is not correct.
Because of zero-point vibrations the influence of anharmonicity does
appear even at absolute zero. This is particularly large for small atoms
or molecules which have correspondingly large zero-point oscillations.
The eauilibrium positions therefore do not coincide with the minimum
of the potential energy. The methods of harmonic theory are no longer
applicable in the dynamic theory of elasticity because the anharmonic
terms cause a coupling between the different modes of oscillations.

In the harmonic theory the oscillator or eigenfrequencies Wy of the
lattice are independent of interatomic distance a. With the correct
potential enerqgy, the counling parameters of second order and therefore
wy are functions of a. Even if the terms higher than the auadratic

ones in the energy expansion are omitted, part of the anharmonic effects
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are already described by the dependence w; (a). This approximation is
called the quasiharmonic approximation which is conveniently used for the
evaluation of many phvsical parameters. Excellent reviews on the anhar-
monic effects in solids are available in 1iterature.5

The conduction of heat in solids depends on the transfer of
vibrational enerqy through the lattice, which is not predicted by har-
monic theory. Anharmonic terms represent the interaction between
mechanical sound waves and thermal vibrations, which leads to the
damping of high freauency (> 109 Hz) sound waves and to the damping of :
moving dislocations by phonon viscosity.6 Volume increase of an elastic ?
body associated with a change of temperature or the introduction of ’.
dislocations, ag exact description of stress and strain fields near
dislocations, the electrical resistance of screw and edge dislocaticns,
scattering of phonons from defects, etc. demand a treatment by nonlinear

elasticity theory.7’8

The elastic constants play a dual role of importance in the
theory of solids. Only a knowledge of the elastic constants enables one
to determine such important physical properties as compressibilitv, the
Debye temperature and its pressure dependence, the Grineisen parameters t
and various thermodynamic pronerties of defects in solids. These
nroperties can be found without havina any information about the inter- !

atomic forces or potentials. The second important role of elastic

constants is a result of their being amona the most accurately measurable
physical quantities. Ultrasonic techniaques have generally enabled one
to experimentally determine elastic constants to a areater deqree of

accuracy than can be obtained from theoretical calculations. Thus, the




elastic constants can serve as a useful guide in de\v .opina any
related theory. Since elastic constants describe how the eneragy
density of a solid changes with respect to various volume and shear
deformations, they are useful in determinina the nature of bindina
forces and interatomic potentials. The macroscopic nonlinear
behavior of solids is determined by the intermolecular potential
functions of solids. The relations between the force constants and
elastic constants of a cubic solid has been given by Coldwell-

10

Horsfa11.9 Ghate ~ uses the Born model of ionic solids to compute

the third-order elastic constants and their temperature variation,

1 investigate short range repulsive interactions in

Hiki and Granato
noble metals and their relationships to the nonlinearity of the solid.
Basically there are two methods for calculating the elastic
constants of a crystalline medium: the method of homogeneous
deformation]2 and the method of long waves.]3 The results obtained
from the two methods should be in agreement when the same model of a
solid is used in both cases. In the method of homoaeneous deformation
the calculation proceeds by determining how the energy density chanaes
with respect to various homogeneous deformations; i.e., deformations
for which the resulting structure remains a perfect lattice. The two
most widelv used types of deformations are those described by the
Lagranaian strain parameters and by the Fuchs strain parameters. In

the first case, derivatives of the eneray density are taken with

respect to the Lagrangian strains nij- The resulting derivatives when

evaluated in the undeformed state, are the Brugger elastic constants
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where E is the eneray of the crystal per unit undeformed volume. This
thermodynamic definition of elastic constants of any order introduced
by Bruqqer]4 is most widely used nowadavs. In the other case, one
calculates the derivatives of the eneray density with respect to Fuch-
tvpe strain parameter‘s]5 which consist of a volume deformation and of
various volume conservina shear deformations. When evaluated in the
undeformed state, these derivatives are referred to as Fuchs elastic
constants. The Fuchs constants are linear combinations of the Bruaqer
constants. The relationships between the Fuchs and Bruqger elastic

constants for cubic crvstals are]6

JZE/ny]Z = C44

12e/ W2 = % (Cqy + 2Cyp)

2 2 _

3¢,0y3 2 ) ]
VE/VT = g {Cyyq ¥ 20y + 601yp) - 3 (O * 20p) (1.2)

3 2 2 8 4
VE/ANAeT = 3 (Cyy - Gaz) + 3 (G - Gp) + g (G ¢ 20y,)

3 2 1 4
ATE/AVIYYT = 3 (Cpg + 204ge) + 3 (g ¥ 2015) + 5 Cyy

3 2
3TE/edvyT = Cygp = Crag * Cpy - Cyp + 2044

3 2 _

1 2

”35/”Y3”Y2"Y1 = Casp -

A S

v
:




10

e Y and V are the Fuchs strain parameters. For most symmetric cubic
crystals there are three independent second-order elastic constants and
six third-order elastic constants. The Voigt notation for elastic
constants is used throughout the text of this report. The relationship
hetween Fuchs and Brugqer elastic constants for hexagonal cryvstals have
been given e]sewhere.]7

The Fuchs constants are qenerally more convenient to calculate
when dealing with noncentral notentials, whereas the Brugager constants
are the preferred type for central potentials. In either case, the final
results are usually expressed in terms of the Brugaer constants to
facilitate comparison with experimental data.

The elastic strain energy for most symmetrical class of cubic
crystals, including third-order terms, but omitting terms independent

of strain was first given by Birch]8a as

2. 2. 2
Cyp(ngy +np2 +n33) +Cyolngyngy # nypngg +nggnyq)

O] =

(t):

+

2. 2. 2. 2. 2. 2 3. 3. 3
Caalmp*npy +np3+ngp +ngy +ny3) +Cyqplngy+nys +ng3)

+

2 2 2
Cry2lny7(ngg + n33) +npolngg +nyq) +ng3lngg +npp)]

+
—

2. 2 2. 2 2. 2
7 Cragln1(ng3 ¥ n33) +npplngy +ny3) +ng3(ngs +np7)]
1

+

2. 2 2. 2
7 Cre6L (M2 #1271 (177 #1p5) # (ny3 + 035 ) (npp +033)

+

2. 2
(g +m3){ng3 +ny1) ]+ Cypg npyngonas

+

Ca56ln12123737 * 12913M 4] (1.3)

where n..

ij are the Lagrangian strain components used by Birch and we

have corrected the numerical errors pointed out by Bhagavantam and

d




Suryanarayana.]Bb The relationships between Brugger and Birch third-

order elastic (TOE) constants can easily be worked out and are given by

Cin (Rirch) = %—C]]] (Brugger)

C]]2 (Birch) = %'C]IZ (Brugaer)

Birch) 2Cy 24 (BRrugger)

C1aq
C166 (Birch) = 2C166 (Bruager)

(1.4)

Cia3 (Birch) = C]23 (Brugaer)
C456 (Birch) = 4C456 (Brugger) .

The role of second-order elastic (SOE) constants in the description

of the elastic properties of solids is well established and appears in f

every work in the field and so is not repeated here. The nulse echo

technique of determining the velocity of ultrasonic waves in crystals,

first emploved by McSkimin,]9 is one of the most accurate and widely

prevalent methods of measuring the SOE constants of a cystal. It

involves the application of a series of RF pulses of about 15 to 25 MHz

to a transducer bonded to the specimen by a suijtable bond. The pulse

repetition rate is adjusted so that the pulse echoes superimpose exactly

on the signal. This pulse renetition frequency (= 100 to 500 kHz) is

directly proportional to the square of the natural wave velocity and

can be measured with an accuracy of 1 1in 105. Measurement of the

velocities of longitudinal and shear waves alona the symmetry directions

leads directly to the SOE constants. The pulse interference method]] is !

also often used for velocity measurements.

In explainina the anharmonic properties of solids, the TOE

constants play an important role. They are necessary to evaluate the




12

third-order terms of the lattice potential eneray and are needed to

evaluate the generalized Gruneisen parameters which describe the strain

dependence of the lattice vibrational frequencies. The TOE constants

can nrovide quantitative descriptions of acoustic amplification at micro-

wave frequencies besides enabling the evaluation of the Akhieser phonon-

phonon interaction mechanism which describes the attenuation of ultrasonic _j
waves in solids. The TOE constant data are needed to determine the
chanqes in the lattice parameters of the solid due to apnlication of
hydrastatic pressure.

The most common method of determinina the TOE constants is to
measure the changes in velocities of ultrasonic waves propaocating alona "
different symmetry directions with apnlied stress. Hughes and Ke]]eyzo ;s
derived exnressions for the velocities of elastic waves in stressed
solids using third-order terms in the elastic energy and finite strain

18 Einspruah and Mannian] applied finite strain }

theory of Birch.
elasticity theory to evaluate the TOE constants of anisotropic crystalline
<0lids and has presented results for cubic and uniaxial crvstals. The
first measurement of TOE constants of isotropic materials polystyrene,
iron and pyrex qlass has been done by Hughes and Ke]1y20 and those of the

4
22 The evaluation of all

anisotropic crystal germanium by Bateman et al.
the independent TOE constants involves measurement of wave velocities

when uniaxial static stress is applied to the crystal, besides measure-
ments under hydrostatic pressure. Thurston and Brugqer23 have derived

the expressions for the sound velocity and for a natural velocity and

their stress derivatives evaluated at zero stress in terme of SOE and TOF
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constants of the crystal applicable to arbitrary crystal symmetry and
arbitrary stress systems dependina on a single scalar variable.

In the pulse echo method]9

for measuring the chanaes in wave
velocity due to application of hydrostatic pressure, the specimen is
subjected to high pressure in a cylindrical bomb, using compressed
gases or liquids. Measurements under uniaxial stress are performed by
applying the stress through a 20 x 103 kg hydraulic jack operated by a
screw. The ratio of the pulse repetition freauency when the crystal

is stressed to the repetition frequency of the unstressed crystal is
plotted against the stress. From the slope of the linear portion of
the graph for different propagation directions, wave polarizations and
stress systems, an adequate number of combinations of TOE constants can
be obtained. A set of simultaneous equations are solved to obtain the
individual TOE constants. The expressions connectinag TOE constants and
stress derivatives of sound velocities in solids have been aiven by a

22,24,25

number of authors and are not reproduced here, The pressure

technique has been employed by a number of later workers to determine

7

the TOE constants of si]icon,26 atkali hah’des,2 fused sih'ca,28 noble

metals,]] etc. Salama and A1er529 used the techniaue to measure TOE
constants of cooper at low temperatures,

Graham30 has described a method of obtaining longitudinal TOE
and FOE (fourth-order elastic) constants of solids which sustain elastic
compressions under shock wave loading. The shock compression data on

sapphire and fused cuartz have been analyzed to determine C]]], C333,

CHn and C3333. The determination of the TOE constants under these
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large compressions allows one to test the applicability of the finite
strain formulation of constitutive relations. This technique can be
aprlied to materials whose etastic limits are a few percent of their
longitudinal elastic constants.

An optical technique for determining the TOE constants of
transparent crystals has been proposed3] and measurements have been

carried out32

on NaCl and C]]] has been reported, This techniaue

makes use of the fact that when an initiallyv sinusoidal ultrasonic wave
of finite amplitude is propagating in a crystal, it gets distorted due
to the generation of harmonics. The difference in intensity between
the first positive and first negative orders of the diffraction pattern
obtained when monochromatic light is transmitted through the crystal
perpendicular to he direction of propadation of the ultrasonic wave is
a function of the strain amplitude of the wave. A measurement of the

asymmetry in the intensity leads to some of the TNE constants. Not much

work has been done in this regard.

Measurements of phonon-phonon scattering have been used to
determine various combinations of TOE constants. C(lassical calculations ,?
based on the interaction of two intersecting ultrasonic beams within an
isotropic solid have been carried out by Jones and Kobett.33 Ouantum
mechanical calculations of the same experimental situation have been
treated by Taylor and Rolh’ns34 and experimental results for isotropic
materials have been given oy Ro]]ins35 and Rollins et a1.36 Dunham and ;
Huntington37 used this technique for fused silica and single crystals |

of MNaCl. A treatment of the nonlinear interaction of ultrasonic waves
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in the framework of quantum theory has been aiven by Bajak and
Breazea]e.38

The method of determining the TOE constants presented in this
technical report, viz. the ultrasonic harmonic generation technique,
involves a measurement of the waveform distortion of an ultrasonic wave
as 1t propaaates throuah a solid. Due to the anharmonic behaviar of the
solid, higher harmonics are aenerated during the passage of an initially
sinusoidal ultrasonic wave throuah the so]id.1’2 Breazeale and Ford39

studied these properties, and correlated them with the solution of the
nonlinear equation for a longitudinal wave propagating throuah a solid.
Gauster and Breazea]e40 developed a capacitive detector which is capable
of absolute measurement of the amplitudes of the fundamental and harmonics
of the waveform impinging on the end of the sample. Three linear com-
binations of the TOE constants of copper measured at room temperature
are reported by them.4] The harmonic generation techninue has the
advantage that it can be applied to soft metals as well as to solids
which undergo Tattice slips and cracks on application of pressure.
Probablyv the greatest advantage of the harmonic ageneration method
is that it can be used to determine the TOE constants as a function of
temperature. The temperature dependence of the TOE constants is very
important in the study of anharmonicity of solids. Hydrostatic and
uniaxial pressure techniques seem to have practical problems at Tow
temperatures. Harmonic generation technique has been used by Mackey
and Arno]d42 to measure TOE constants of strontium titanate and by Meeks

and Arno]d43 to measure the temperature dependence of combinations of

¥




TOE constants down to : 100 K. Peters et a1.4A developed a variable
qap capacitive detector capable of makina measurements at low temperatures.
These author§45 measured combinations of TOE constants of copper down to
liquid nitrogen temperatures. Subsequently the apparatus has been
refined and measurements have been made on qermanium,46 fused si]ica,47
and copper48 down to liauid helium temperatures.

The work presented in this report is the result of the
measurement of the ultrasonic nonlinearity parameters and some comhina-
tions of TOE constants of silicon as a function of temperature between
room temperature and liquid helium temperature. The apparatus, experi-
mental procedure and results are qgiven in the followina chapters. Our
measured nonlinearity parameters combined with a well-established lattice
dynamical model for diamond-like solids has enabled us to isolate all
the six independent TOE constants of silicon and germanium and plot them
as a function of temperature. This is the first report of the temverature
variation of all the individual TOE constants of any material as a function
of temperature. This work is explained in detail in the last chanter.

Also we have computed some anharmonic parameters as a function of

temperature.
B. THEORY

In this section we give the theory on which the ultrasonic wave
distortion measurements are based. The general eauation of motion for
plane elastic waves propagating throuah a medium is derived. {t is then
specialized to wave propagation along the symmetry directions in cubic

crvstals. Pure mode longitudinal wave pronaagation is possible along
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the [100], [110] and [111] symmetry directions of a cubic crysta].49
Including the nonlinear terms, one finds that nure transverse modes do
not exist. The transverse wave is always accompanied by a loncitudinal
wave.50 However, pure longitudinal modes continue to exist for all
three directions [100], [110], and [111] even when the nonlinear terms
are included.

The wavelength of the sound waves in the materials used in this
investication are quite large compared to the interatomic spacing.
Typically the wavelength of the ultrasonic wave is about six orders of
magnitude greater than the interatomic spacina. The number of atoms
affected by one period of vibration is of the orver of 106. So the
solid can be regarded as an elastic continuum and the theory of finite

12 in the Lagrangian formulation can readily be applied.

deformations
The equations of motion aoverning finite deformation in cubic crystal
have been aiven by Seeger and Buck,8 Bateman et a1.22 and by Holt and

Ford.S]

The equations of motion are derived here from Lagranae's
equations, the approach used bv Holt and Ford, and then they are anplied
cn r.re mode lonaitudinal wave propacation in cubic crystals. Ffrom the
solution to the resuiting nonlinear wave equations we derive expressions
for the ultrasonic nonlinearity parameters.

1. The Eguations of Motion for Plane Elastic MWaves
Propagating through a Medium

In arriving at the equations of motion of an elastic wave
propagatina through a solid crystalline medium, the solid is considered
to be a lossless, homoaeneous and perfectly elastic medium.S] The

o
elastic continuum is described with the formalism given by Murnaohan]L
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for finite deformations of an elastic solid. The eauations of motion
for long wavelength finite amplitude sound waves in a solid are derived
usina Laarange's eauations for continuous media. Let as, i=1,2,3
be the cartesian coordinates of a point in the unstrained solid and let

X s

i i =1,2,3 be the coordinates at time t of the same point in the

deformed solid. X3 depends on the initial coordinates a, and time t.
As has been aiven by Murnaahan, let the Lagranaian strain matrix & be

aiven by

(03 -1) (1.5)

n =

N —

where J is the Jacobian matrix with matrix elements

J, = ka/aag . (1.6)

k¢

J* is the transpose of J and 1 is the unit matrix. If n is the
unstrained mass density and ¢(n) is the elastic potential eneray per unit

unstrained volume, then the Laarangian of the system is

Laaranae's eauations take the form

d /sl
af'('—‘“) +

IX, k
1

1~

d ol B
1 83;'(a(axi/aaki) =0. (1.8)

Combining Egs. (1.7) and (1.8) we have

S SR —f’i—(——-—an“ ) =0 (1.9)
PRy L da T Sn.l 3 Axi/aak)' ) :

]
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from Eq. (1.5) we have
Iy, AX . X,
N L | il i
\(ﬁxi/kakT 2 Sjk ha, MR aaj ’ (1.10)

;jk being the kronecker delta. Substituting (1.10) in (1.9) we have the

equations of motion given by

3

d
—- (7
p dag oo

28 (1.11)

where

h o.M (1.12)

3 3
g iy

This way of deriving the equation of motion given by (1.11)
requires only the definition of strain and the assumption that the
elastic energy is a function of strain alone. This eauation of motion
is derived for a lossless elastic continuum and is valid for a real solid
under the conditions of negligible attenuation and dispersion.

The equation of motion aiven by Ea. (1.11) is to be simplified
to make experimental measurements and hence determine the elastic con-
stants. Let us consider plane waves propaaating along a sinale
direction and orient the ay axis along the propagation direction. Then

Eq. (1.11) simplifies to

QI

- d ¢(n)
o x24Ty, . (1.13)
Today 2y Tk ang,

il ™~

The elastic constants are defined as coefficients in an exnansion of the
elastic eneray in powers of the strain when the strain is calculated with

the a, axes narallel to the symmetry axes of the crvstal. Thus, in order
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that $(n) in Eq. (1.13) may contain the usual elastic constants, we
must determine the change in ¢ and n under a rotation of the ay axes.
Let a bar superscript denote a cuantity calculated with the a, axes
parallel to the crystal symmetry axes. Ouantities without a bar super-
script are calculated with the 2, axis parallel to the propacation
direction,
If R is the matrix which rotates the Ei axis into the a, axis
and R* the transpose of R, !*'lur'naghan]2 has shown that
n = R*n R (1.14)
The elastic potential eneray is a scalar under rotation, and so
o(n) = ¢(n) = ¢(R* n R) , (1.15)
i.e., if
C C
- 3
¢(n) = ;] 1% + ]6” my * (1.16)
then
A = ]_ * 2 l * 3
tn) =3 &y (].Zk Rig™3fk)™ * 5 G (Jfk Ry iR )™ + -
‘ (1.17)
Thus Eq. (1.13) will contain the usual elastic constants if we write it
in the form
n'x'.=i{;d 2 (RY - R (1.18)
Tooday Ly ik ML
n being the strain calculated takinng the a, axis along the oropagation

direction.
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If Uk are the components of the particle displacement,

U, = (1.19)

k= % " %
the x, axes and aj axes beina paraliel. Substituting for 6{n) from

(1.17) for the elastic enerqy appropriate to the crystal symmetry in (1.18)

and performing the operations indicated, we obtain

3 3
Uit * jz] Aij¥5,0a ¥ j’%=] BiieVj,a"%,aa (1.20)
where
Uj,a = an/aa]
Ui e ° s2u. /at?
and
Uy aa = 22U, /2a,° (1.21)

In the above equation, Aij are linear combinations of SOE constants and

B are linear combinations of SOE and TOE constants. Since we are

ijk
interested only in the Towest order of nonlinearity, the terms involving
fourth- and higher-order elastic constants are neqlected in (1.20).

Let us introduce new dependent variables Pk in order to remove

the linear coupling of the three compounds Up through the terms

) AijUj aa’ The coefficients Aij in {1.20) form a symmetric matrix so

that an orthogonal matrix S exists such that S*A S is diagonal. Hence if

we introduce the transformation

. =
LJ (1.22)

IH>~1w
w
o
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into Eq. (1.20), we obtain
3
o Ps tt “¥5P5,aa * . X_ Viem'e,a m,aa (1.23)
,m=1
where b are the eigenvalues of the Aij matrix. The “j?m form linear

combinations of SOE and TOE constants. Eauations (1.23) can be
simplified further using perturbation theory. A straightforward
perturbation calculation shows that only those terms in Eq. (1.23) for
which j = ¢ = m or for which ¢ = mand u, = u

J L
which increases linearly with propagation distance. Such terms are said

vield a second harmonic

to be resonant. Then the experimentally relevant equations of motion

for a plane wave take the form

iett T ¥3Pi.aa * 33575,a 0,00 (1.28)

where j = 1,2,3. A perturbation solution to (1.24) will be of the form

= ] - - 2 2
Pj Bj sin(wt kja) (vjjj/Suj)Bj kj a

x cos (2wt - ija) (1.25)

where « is the angular frequency and kj are the wave numbers which are

related by
W = (Uj/O)ij . (1.26)

a is the propagation distance and Bj is the amplitude of Pj at a = C,

The second harmonic amplitude sz of P. is given by

J

. 2, 2
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Holt and Ford5] have tabulated the coefficients ;5 and v for different

33d
propagation and polarization directions for a number of crystals

belonging to cubic symmetry.

2. Ultrasonic Nonlinearity Parameters

The ultrasonic nonlinearity parameter is defined as the negative
of the ratio of the coefficients of the nonlinear term to the linear
term in the nonlinear wave equation. As can be seen from Eq. (1.24),

the nonlinearity parameter can be written as

¢ o= —(ujjj/uj) . (1.28)

The magnitude of the parameter 8 is a measure of the extent to which the
waveform becomes distorted in a specific propagation distance, and so is
a direct measure of the nonlinearity of the medium. It is proportional
to the ratio of the second harmonic amplitude to the square of the
fundamental amplitude. The parameter varies for different directions of
propagation. The expressions for these parameters for longitudinal wave
propagation along symmetry directions in cubic crystals result from
considering the wave propagation along those directions as shown in the

following sections.

3. Wave Propagation in Cubic Crystals

The description of the finite deformation of an elastic solid
differs in two major respects from that of infinitesimal deformation.
Due to the large deformations involved, the initial coordinates of a
particle in the undeformed state are not interchangeable with the final

coordinates in the deformed state. Moreover, the expression for the

. o it A mﬁ.mJ

S A

o AT ceuritisay
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strain energy in terms of the strains must be chanaed. Finite elastic
strain can be treated in two different formulations. In the lLagrangian
formulation, the strain is described in the undeformed state and the
initial coordinates of a material particle ai(a,b,c) are taken as
independent variables. In the Eulerian formulation the strain is
described in the deformed state and the instantaneous coordinates of
a material particle xi(x,y,z) are taken as indemendent variables. In
the following we consider plane wave propagation along the symmetry

axes of a cubic crystal in the Laarangian formulation.

a. Plane wave propagation along [100] direction. Let us

consider first the case of plane finite amplitude waves propagating alona
the [100] direction of a cubic crystal. The displacement components in

this case become
u = ula,t) , v =v(a,t) and w = w(a,t) . (1.29)

The Jacobian matrix given by (1.€), namely

&%
:vla)
(@] ><'

Lo
N T
Q
O

l
|

54
SIN Bk

v
o
L
()

(1.30)

where Uy = w/ia, etc., takes the form52

R




1+ uy 0 0
J = Va 1 0f . (1.31)
Wy 0 1

X, ¥, z in (1.30) are the same as X1s X9s X3, respectively, in (1.6)
and similarly a, b, ¢ in (1.30) are the same as ays a5, ag, respectively,

in (1.6). The transpose of the Jacobian is

1 + ua va wa
J* = 0 1 0 . (1.32)
0 0 1_1

Substituting (1.31) and (1.32) into (1.5) we find that the only

nonvanishing strain components are

npp = Uyt %-(ua2 + vy 2 4 W 2)

21~

vy . (1.34)

[\)i._a

M2

-—

M3 T 31 T 7Y

Substituting (1.34) in the expression for elastic strain energy (1.3)

and using Birch's values for the TOE constants, we have

1 2 2 2 2 2 3
2= 2 Cynqp + Caalngp™ g™+ ngyT Fonggt) + Gy

1 2 2 2 2
t 3 Geglnp(ngy” +npp” gy +m37) ) (1.35)

Jifferentiating (1.35) with respect to the strains,

¥




29 ooc

T 44721 * Cye6™M121

24
= 2C
3n3]

gy Chim * 3%

2

48"31 * Cig6M1173

26

3
1 2 2 2 2
* 3 Geslme * gyt gyt omyT) f
!
|
l
|

|

(1.3€)

Let us introduce the engineering stress tensor which is not symmetric as

AT
T=9(59)
where
~ -
3¢ 3¢ d¢
onyp Ay ANy
3% _ | 3¢ 3 20
N 19Ny Bngy Anpy
3¢ 2¢ 20
931 ngp N33
- -

(1.37)

(1,38)

Then the equations of motion in the Lagrangian coordinate sysiem can be

written as

3T../%a. =
T1J/ aJ

DOU-

1

(1.39)

where Tij is the stress matrix, aj are the lLagrangian coordinates, ‘0

is the density in the unstrained state and u;

displacement. The stress mairix can be written in the component form

as
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To1

T3

from which

11

T2

M3

o

T92

1

T3

T3

33

23

12

22

32

we can write the

= dy

= Iy

3,
T

P,
Ny
9% +
3
ey
M
e,
‘”']2
M,
9r|.l3

Jy2

12

LF.

22

22

J

3o

32

30

o |

n

21

31

22 3n.

stress

L
Mo
oy,
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3 7

-
B
;}:]13
3¢

Moy Mo
8@ 39
dngy  3ng,

components as

E

913

913

o3

o3

o3

33

J33

33

Substituting from (1.31) and (1.36) in

following expressions for T]], TZ] and

3¢

9%
)
ng3
Be
N33
L
N3y
¢
ang3
L
137

_ad

32
i
N33

Eqs.

T31.

1.39), we obtain the

M3
)
N33

-

27

(1.38)

(1.39)

L R
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. 3 2 .1 2, 2 1 ? 7!
Ty = Cqluy + 3 07 % 5 (v, 7+ w BT+ 30,00,% + 7 Ceale,” v w”),
1
L] |
T21 = Cag¥a * U1¥a¥a * 7 CieYaa
) 1
T31 = Caa¥y + CrpUaWy + 7 Crgela%a
(1.40)

where we have neglected terms higher than quadratic in the displacement

gradients.

Since we are considering the special case of wave propagation in
the [100] or a = a, direction, we require only the three stress components

T,; and T3]. In this case the three component equations of motion

e Ty
according to Eq. (1.39) are

WT]T/la T U
Top/9a = gV (1.41)
ESYALRS nOW

because the stress components are functions of a, - a onlv and not a5 h

or a; - c. Differentiating (1.49) and substitutin~ into (1.77) ard

o e s ittt e .ennminissstiitanaiinnton

rearranning the terms we ohtain the equations of motion using Birch's

TOE constants as

1

o4 T Cypiaa B0t 60 ugugy + (Gt Gy vy, + wovy,)
.. ~ ]

0¥ - Caavaa 7 (91t 7 Cree) (UaVaa * Valaa! (1.42)
. ] ]

o cMwaa ) (Cll v '166)(uawaa * wa“aa)

Usina the relations between Rirch and Rruqgaer elastic cor .tants (fas. 1.4}

we can write these equations in terms of Bruager elastic constants as
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"ol - Clluaa - (3C11 * clll)uauaa * (Cll * C]GS)(VaVaa * wawaa)
oY - C44Vaa i (Cll * C166)(“avaa * Vauaa) (1.43)
oo = CagWaa = (Cqp * Crggllugwyy + wou,)
If we write
= Cyy
w= Cpg
(1.44)
5230+ Oy
and
v = O+ Gyge
Eqs. (1.43) become
PQU = tlag = AU, F v (Vv W) |
nOV - WVt y(uavaa + Vauaa) } (1.45)
Qi W, F y(uawaa + wauaa) J

Since we attempt to propaacate a pure mode lonaitudinal wave only,

we have

u = ula,t), v=w=20. (1.46)
Then the three equations of motion in (1.45) reduce to

FOU =gy T fUULL (1.47)

Hence we see that a pure mode longitudinal wave may propagate in a

nonlinear medium alonqg the [100) direction. However, such a wave cannot
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propagate without distortion and the generation of higher harmonics.

Let us assume that § << a and apply a perturbation solution to
(1.47) of the form

u=u’ +u' (1.48)
where u' << ug and use trial solutions

u” = A sin(ka - wt) for 6 = 0 (1.49)

u'=Ba sin 2(ka - wt) + C a cos 2(ka - wt) . (1.50)
Substituting (1.48) in (1.47), we have

o + pgU " = Al " - AUt s S(u® + u')a(u + u')aa (1.51)
From the linear elastic equation of motion, we know that

p U =-au__"=0, (1.52)

)1/2.

where the phase velocity CO = (a/oo Therefore Ea. {1.51) reduces

to

e {u'ul  ruul L) et '] L (0.53)

P = ol B 6[ua Yaa a “aa a “aa a ‘aa

Since u' << u' we may neglect the second and third terms on the riqht
hand side of (1.53) in comparison with the first term and hence to a

first approximation the eguation of motion reduces to

ooﬁ' -au_ ' = su U, (1.54)
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Substituting the trial solutions given in Eqgs. (1.49) and (1.50) into
Eq. (1.54) we obtain the relation
2 : 2 )
-4pu"Ba sin 2(ka - wt) - 4oom Ca cos 2(ka - wt)
- 2+kB cos 2{ka - wt) - 2akR cos 2(ka - wt)
+ 4.k%Ba sin ?(Ka - wt) + 20kC sin 2(ka - wt) (1.55)

+ 20kC sin 2(ka - ot) + 8ak°Ca cos 2(ka - wt)

32
2

= -5 A

— e e - = -

sin 2(ka - wt) .

Equating the coefficients of sin 2(ka - wt) and cos 2(ka - wt) we find

that
—4oom23a + 25k%Ba + 4ukC = - (:k3A%/2) |

l (1.5€)
-4O0w2Ca - 4nkR + 4ak2Ca =0 J

Recalling that » = 00602 from Eq. (1.52) and that the angular frequency
w, the wave number k, and the phase velocity CO are related by w = Cok,

Eqs. (1.56) reduce to

B=0. C=-[(kA)¢/8nC. 21

ofg ¢ - (1.57) . 4

Thus after one iteration we have the approximation solution
_ . 2 2
u{a,t) = A sin(ka - wt) - [(kA) 6/8QOC0 Ja cos ?{(ka - wt) (1.58)

which involves the second harmonic. If additional iterations are
performed, higher harmonic terms will be ohtained (but higher-order e
elastic constants would be introduced into the expression for #(n), of

course).
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Breazeale and Ford39 have apnlied the results of finite amplitude
wave analvsis, as worked out for fluids, to pure mode Tonaitudinal non-
linear elastic waves in cubic single crystals. They write the ecuation

of motion equivalent to Eq. (1.47) in the form

voure = Kolugy *3uguy,) + Kauaug, (1.59)
where for the [100] direction
Ky = Cyq and K3 = Cyyy (1.60)

using Brugger's notation for the TOE constants and subscript t denoting
time differentiation. Comparison shows that Eq, (1.47) is identical

with Eq. (1.59) if we set

a =K, and ¢ = 3K2 + Ky (1.61)

2

If we recall that 00602 = o from Eq. {1.52) and substitute this

solution along with Eqs. (1.61) into Eq. (1.58) we have

(3K
ula,t) = A sin(ka - wt) ~

+ K
8K

)
2 3 (kA)za cos 2(ka - «t) (1.62)
2

which is also the expression given by Breazeale and Ford. The nonlinearity
3K, + K

parameter g = - ~—j%(———§ can be recognized in the second harmonic
amplitude in Eq. (1.22).

The equations of motion and their solutions obtaired above can
readily be specialized to wave propagation in isotropic solids. Thus
we see that a pure mode longitudinal nonlinear elastic wave may nropagate

along the [100] axis or in an isotropic solid, but such a wave qenerates
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high-» harmonics and the waveform distorts. A pure mode transverse
nonlinear elastic wave cannot propagate without the simultaneous existence

of a longitudinal wave.

b. Plane wave propagation along [110] direction. Llet us

consider the propagation of plane finite amplitude waves along the [110]
direction, and rotate our coordinate axes from a = [100], b = [010],
c = [001] to a' = [110], b*' = [110], ¢' = ¢ = [001]. Thus the coordinate

transformation is given by

b'| = (R) |b (1.63)

where the transformation matrix is

YE r?[
R=|(-1/V2 1/v2 0| . (1.64)

0 0 1
L

With respect to the new coordinate axes, the displacement components are

u' u'(a',t)}

"

v = v'{a',t)] . (1.65)

w'(a',t)

i—
i}

Hence J' and J'* are given by (1.31) and (1.32) with the appropriate
primes inserted, and the nonvanishing Lagrangian strain components in

tne primed coordinate system are of the same form as (1.34), namely




3
SRR XUSRERPRR Rl
' T 77 Ve % (1.66)
LTRRRUEE 208 )

Since the expression for the strain energy as given by (1.3) is written
in terms of the unprimed coordinate system, we must transform the strain
components into the primed system in order to use equations (1.66).
Making use of the transformation matrix (1.64), we transform the Strain

components by

(n) = (R*)(n")(R) (1.67)
to obtain
= l( LI " l)
"M T 7'M M2 T "2
_ 1 . .
np = (gt ot - ongyt)
ﬂ~‘3 = ]/‘/_?.— n?3|
P ] ] ] []
Nay =7 (" = nyp’ #npyt)
- _]_ ' [ 1
oo =7 (" +npp" +nyy") (1.68)
023 = 7/\/2_ n]3'
nB] = 1/[2— l’]3]l
032 = ]//g T}3]'
N33 =0 . J

Substituting (1.68) into (1.3) we obtain
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2 + (ﬂ]zl + 712]|)2]

E=2
N
a—

Ciqlngy!

2

+

] ] (] ] ?
7 Colngy'™ = (gt +npy')7)

l2 ] ] 2 |2 ,2
Caalmyy'™ * (ngp" = npy" )™+ 2(ng3"" + ngy ')

N} —

|2 ] ' |2
Gyl + 3ngy gyt +npy 7]

|~

+

] |3 ] ] I2
7 G120y’ = gy nggt *+ngy )7l

-+
—

] |2 |2
7 Crag Myt (3" + gy

+

1 l3 ' ) | 2 ' |2 |2
7 Gl oy (ngpt =g )T gyt ngg"t # gy )]

1

7 Casenyy 'n3' gyt (1.69)

Differentiating (1.69) with respect to strains, and using the relations

nij T N34 and ”ijl = ”ji' we get
5%?;7'= 7 (01 + G * 20gg) " * 7 Cpplngy %+ %)
+ Caanyy 8- an®) ¢ g Cyggnyy'?
+ 4 Cap(3ny "2+ 2y5") ¢ 3 Cupanys’”
322,- = (Cyq = Cyadmpp" * 3Cqmyy g = Cyppngy 'ngp!

3 - ] ] ] [] ] ] ]
gy’ 2Caam3" * 7 Caaami '™ 7 Qe M

] L
+ 7 Casen1 M3’ - (1.70)

Substituting from Egs. (1.31) with primes inserted, and from Eqs. (1.70)

and (1.66) into Eqs. (1.39) with primes inserted, we obtain the
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following expressions for T1]‘, Tz]' and T3]':
co ) ' ivz | ],2]
T =g (G # G+ 200 (ug + 5 Ul ™ v T+ 5w
3 ' 2 v 2y L1 . 2 2
g Cplup” F v )+ g GqpQBuge” - vt |
1 1 V2,1 ., 2
* 8 Claavy * 7 Crep(Bup ™ * 2 W) * g Caggy
|_]_ Vo l - )
Top' =7 (Cp * Cpp + 20g)ugv + 5 (G - Cyplvg, (1.71)
+l(3c -C )U'W'
7 (3017 - Cypplug vy
Tl_]_ [ '
T3 =7 (G + Oy + 204 ug iy + Cagwy
1 L r
+ 7 (Craq * Cygg * Caggluy vy

where we have neglected terms greater than auadratic in the displacement
gradients. Again we use the reduced forms of the component equations of
motion given by Eqs. (1.41) with primes inserted since we are only
concerned with waves propagating along a' = [110]. After
differentiation of Eqs. (1.71), substitution into (1.41) primed, and

rearrangement, we obtain the equations of motion

. _ . .
PQU = gy = SU U F YVaVaa YW,

PoV - XVay T y(uavaa Vauaa) (1.72)
o - 2 1 = * +

oW - KWy = v (ugw,, WU,

where we have dropped the primes with the understanding that in
Egs. (1.72) u and a are along [110], v and b are along [110] and w and c

are along |001]. Again we have collected the linear terms on the left
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of the equality and the nonlinear on the right. Moreover, in Rirch's
notation,

21
.3 Vg !
§ = 3 L{Cyy + Cp + 2040 *+ {Cyyq ¥ Cypp * Cygp)d
1
v =g LGy + Cyp + 2C4) + (3Cyqy - Cyypp)d
7 o
vho= g [2(Cy + Cp + 2Ca) + (Crgp *+ Cogg * Cgsg) !
1
x =7 (7 - Cp)
x* = C44 (1.73)
or in Brugger's notation
§ = 3 (Cyy * Gy # 2C53) + & (Cypq + 3Cqan + 12C4. )
2 11 12 44 4 11 112 16
_ 1 \
v =g (G + Cyp + 20p) + 7 (Cyyy - Cyyp) (1.74]
ve =g (0 * Oyt 2Caq * Cygq * Cypp * 2Cqsg) -
Since we attempt o propagate a pure mode longitudinal wave,
Egs. (1.72) reduce to the form of (i.17) given by
ooﬁ - o, T UL (1.75)

If we rearrange Ea. (1.75) and use Egs. (1.61) we can rewrite (1.75) in

the form used by Breazeale and Ford, namely
pou = KZ(Uaa + 3“auaa) + K3uauaa (1.76)

where far the [110] direction
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+ C, + 2C

o
Kp =0 =5 (Cyy + Cyp 44

(1.77)

_ R
K3 =8 - 3u =7 (Coqq + 30y, + 120;4)

using Brugger's notation for TOE constants. Thus, we see that in this
case also a pure mode longitudinal nonlinear wave may propagate with the
generation of a second harmonic aiven by (1.62), with K, and Ky substi-
tuted from (1.77). In addition, the waveform will be distorted. As

in the linear case, two uniquely polarized pure mode transverse waves
can propagate but in the nonlinear case each of these pure transverse

waves will be accompanied by a different longitudinal wave,

c. Plane wave propagation along [111] direction. Let us

consider the propagation of plane finite amplitude waves along the [111]
direction, and rotate the coordinate axes from a = [100], b = [010],
¢ = [001] to a' = [111], b' = [112], ¢' = [T10]. Thus, the coordinate

transformation is given by

a' a
b'[ = (R) Ib (1.78)
c'. c

J

where the transformation matrix is

2 V2 2

R=-11 1 1 22
/6

(-/§ 3 0

With respect to the new coordinate axes, the displacement components

are

et
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u' =u'(a',t)
v = v'(a',t) (1.80)
w' = w'(a',t)

Hence the nonvanishing Lagrangian strain components in the primed

coordinate system are the same as those in Eqs. (1.66), namely

o Y2022
n]] = Ual + 2 (ual + Va| + wal )
1 l_]l
M2 a1 T 7 Va (1.81)
| B |=lw|
M3 T Y3 2 a' j

Since the expression for the strain energy as given by (1.3) is written
in terms of the unprimed cocrdinate system, we must transform the strain
components into primed system in order to use Eqs. (1.81)., Making use

of the transformation matrix, Eq. (1.79), and transforming according to

(1.67) we obtain

m=%“7m"ﬁwf+@%5'ﬁwf+%n“

Mo =g (gt = Bongyt + gyt + Byt 4 gy

M3 =g 02 gy = gyt - 22 myt + 2oy

1 T (gt ¢ gy # gyt - Byt b2y ) | (LR2)
g T § (g Byt gyt Byt e 2y i

937§ 2y + Byt - 22 nyt + 2ngy) |

—

31 =g (<272 npyt + 2ngyt - Byt 4 2y
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- ] 1 ' c [} '
N3o = g (-2/2 oy + /2 N2 + /6 "3 + 2r|” ) i
|
- 1 ' ' ' |
N33 = § (-2/? oy’ - 2/2 N2 + 2“11 ) i

Substituting Eqs. (1.82) into Eq. (1.3) we get the expression for strain

enerqgy as

—

_ 12 ) |2 ' 12
b =5 Ol ngy" #ngp")" 4 gyt 4 0gt))]

§ (i’ *+ np)% = g gy + 37

1,2
Crols

T L N RS PP RITAS

T R R TP L L GRS '
A R EEE I UHER N ICRER Rl
R R PO CI U (RO

* Crgalg 11> - T’ (g’ + gty

O R R THRE PN

3 gy g E ot 2y g D) g g e a0

2 3.1, .2 2 2 2
Croelg n11' " * 3 mpy (ngp ™ 4 g™+ gy 4yt

V/?T ,3 |3 12 ] l?» ]
g (ongy' T =gt T 3 Tt 3 gyt

'fz | ) |2 [l ' |2 ] l2 t ] |2
oz o (ngy"T = 2ngytiggt gyt T g (engy 1T - Zigytiggt 4 g3t 0)]

3001 2 i

1 ] ] 2 ]
=18 (g )

] ] ] ] ]
Cro3lzz "y “9g M (gt *ongst)

V2

] ] 3
53 (np1" * nyp")

{% (noy" + npp' Mngy " 4 ”13')2]

+
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3 1, 2 2
gy tlengy' - ngy )

2 ' t t
Casplng * o3y gy

—

1 l2 12 ) ]
g My gy’ =yt gy tagp)
s
E% (’2”21'3 - 2”12'3 + 3”21'”12'2 * 3”12'”21'2)

2

3 |2
18 (121" (13

|2 (] t t |2 |2 1 ]
- 2ng3y" T 2ngy i) ongptngy T - 2npgtt 4 2ngy iyt )]
(1.83)

Differentiating Eq. (1.83) with respect to strains and using the symmetry

relations n§3 = "y and ”ijl = ”ji" we have
3¢ =J ' 1 |2 |2 |2
Byt 3 (Cyy + 20y, + 80yt *+ 3 Cypplngy ' 4 gyt 4 dngy'%)
2 20 2 2 2
Y3 0"+ 3 Gyt - gyt - gy ')
2 |2 |2 02
+ 3 Cgglngy '™+ npy"™ 4 03y '0)
1 2 2 20 2 2 2
t g Oaglngy'™ = 2ngy"" - 203y "7) * g Cagg(2ngy "7 = ngy T - ngy ")
o2 _ vy 2 oy
gyt 3 (Cyy = Cyp + 2C4dn00" + 3 Cyqq(2nyytny,
2 .2 2/2 ,2 \2
- 2 npyt T A 2 ngy ') S5 Cyplngy 't - ngy ')
+ & Crag(-2nyyngy" = V2 ngpy '+ V2 ngy ')
6 “144'7°" "2 n21 3]
1 ' ' 0 2 .2
+ 5 Crgeldngy'ngy’ + V2 nyy 'S - V2 ng' )
2 1 ) |2 '2
+§ Crpglonyyingy = Y2y 4 20y
+ _]_C (-2r ' 'ty /2_n v /? 12)
18 “456'"°"11 "21 21 31
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n"p _ 2 - s 1 4 . [ 1 ! , v, oy
gyt 3 (Crp - Gt Gy * 3 Gyl gy #02 pytegy
_ 82 .
3 "2’ "'
+]—( (=119 1oy '+ v2 rgy ' ')+]( (2o e )
31144711 '3 21 31 3166 11 73] ' S RS
+ ? C - "'+ 2V2 naa ' “)
9 M123V"" N "N 21 "N
+J»C (-v 'r '+ »’?-' 'ty oo 2,? T ' ") (1.848)
a “456'""11 "31 21 '3 M2 I IR .

Substituting from Eqs. (1.31) with primes inserted and from fqs. (1.84) and

from Eqs. (1.81) into Eas. (1.39) with primes inserted, we obtain

T =

1 (

wj—

11

+
w
(g}
—_—
—
-_—
—
o
[~ VRN

pa—

©of —
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l_.] ) ] t o1
Tap' = 3 (G = Cyp + Coggdwye + 3 (Cq #2015 + 8C440ujiwy,
s ) C (2u',w!, + V2 viw',) - 2 Cyiqnv! W'
3 4171 ¢ Wy a'"a 3 “112Ya %y
1 - 2 1 - 2
* g Crag(rugowg 5 viog ) 4oy Cggludowy = 70 vamg)
o Comal-ul W', + 02 viw! ) + 1 Coppel-ut W', - 2 viw!,) (1.85)
g Uqp3ttUgrWar Pl Vv 18 Va5 "UaWar T 0 VaiWa -

where we have neglected terms higher than the auadratic in the displacement

gradients.

We can use the reduced forms of the component equations given by (1,41)

with primes inserted because we are only concerned with waves propagatina

along the a' = [111] direction.

After differentiation of Eq. (1.85),

substitution into Egs. (1.41) primed, and rearranqgement, we obtain the

equations of motion as follows:

paU - = u.. + (u

0 Yaa Ya'aa 3 a
v - = u.v + v_u
0 Vaa ( a aa

oW o= W= W+ w.u
n aa '(“a aa = Ya

\
+ |
aa wawaa) |
l
+ - !

aa) s(wawaa Vavaa) ‘ (1.86)
|

+ +

aa) (Vawaa wavaa) J

where we have dropped the primes with the understanding that in Eas. (1.86) u

and a are alonq [111], v and b are along [112] and w and ¢ are along [110].

As before, we have collected the linear terms on the left of the equality and

the nonlinear on the riaht. In Birch's notation of TOE constants
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o = %—(c]] +2C), + 4C,,) ]
|
21
S =g [9(Cyq + 20y, + 4C4,) + 6Cqyq + 1203, + 604y
- |
v = g [6(C)) + 2Cq5 + 4C4q) + 120171 = 304 + 60 cc = 20155 = Cygc]
I
1 !
x =3 (C -Gy v Cyy)
[
e . ) . |
= g5 (120499 - 120995 + 3Cyqq - 3Cygg *+ 4Cyp3 - Cyug) j
(1.87)
or in Brugger's notation
- ]
5= (Cyy * 20y, + 8Chy) + g (Cyqq *+ 6Cqpy + 120y, + 28040 | ¥
!
+ 20qp3 + 16056
1 1
v o= 3 Gy 200, + 404 + g (Cyqy - 3Cpgq * 6Cyg6 - Cppg - 20456)
£ = KZ (C - 3C + 3C - 3C + 2C - 2C ) “
’ 18 111 112 144 166 123 456
(1.88)
If we attempt to propagate a pure mode longitudinal wave only,
Eqs. (1.86) reduce to the form of Ea. (1.47) aiven by
ooﬁ - T AU (1.89)
If we rearrange Eq. (1.89) and use Fas. (1.61), we may rewrite Eq. (1.86)
in the form used by Breazeale and Ford, namely,
pou = K2(uaa +3ugu )+ Ky uyu_ (1.90)

where for the [111] direction |
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T
Kp = n = 3 (Cgq * 20y + 4Cy,)

rS

\
|
2] |
8 -3n = g (Cypy + 60yqp + 1204 + 20C1gq + 20155 + 16C4c) ]

~
i

(1.91)

using Brugger's notation for TOE constants, Thus, we see that in this case
also a pure mode longitudinal nonlinear wave may propagate with the
generation of a second harmonic qiven by Ea. (1.62) with K2 and K3 substituted
from (1.91). Due to the presence of ¢ terms, transverse wave propagation is
more complicated than the previous [100] and [110] cases.

Summarizing the results obtained in the above three sections we can say 1

that in the principal directions in cubic crystals the equations of motion ¥

for plane finite amplitude longitudinal waves are described by equations of

motion of the form (Eags. 1.47, 1.75 and 1.89)

DU = MUy, = AU {1.92)

or in the form (Egs. 1.59, 1.76 and 1.90)

Py = KZ(uaa + 3uauaa) + K3uauaa {1.93)
given by Breazeale and Ford. 1In the above two eauations the constants are
related by

K2:l \?
and | (1.94)

|

K3f - 3

The values of K2 and K3 along the three pure mode directions are given in

Table 1 (fgs. 1.61, 1.77 and 1.91).
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Table 1. Values of the quantities Ko and ¥4 for lonqitudina].wave
propagation along the pure mode directions in a cubic crystal

1 e —— —_——— -
Direction | |
of Wave ] K | K
Propagation 2 1 . 3 e
| .
(100} Gy, S
3 !
1 1
(o145 (6 +C12+2C44)}4 (Cyyq #3Cy15 #1720 ¢¢)
| |
P g
5 (e, +C12+4C44)‘;§ (Chq7 #6019+ 1204 *+ 28016 + 203 + 160, )

The ultrasonic nonlinearity parameter, as defined in Section 2, is the
negative of the ratio of the nonlinear term to the linear term in the wave
equation (1.92 or 1.93), namely,
3K, + K
N A B (1.95)
2
For an initially sinusoidal disturbance at a = 0, the solutions are of

the form (Eqs. 1.62)

A]Zkzaﬂ

u = A] s1n(ka - mt) + *“-3?——-

Cos 2(ka - mt) (].96)

A]Ekzaﬁ

where A] is the fundamental wave amplitude and A2 =~ - 1s the

second harmonic amplitude. A2 contains the nonlinearity parameter ¢,

in terms of A1 and A2, P is given by

b=
~N

2);}*=-1§(3+K§), (1.97)
d

(

I
w)| oo
b=

1
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Obviously a is the pronagation distance and k = 2x/3 is the wave vector.
So a measurement of A1 and A2 leads to ¢ which can be used to evaluate

K3 which are combinations of TOE constants.




CHAPTER 11
APPARATUS AND MEASUREMENTS

The ultrasonic nonlinearity parameters are determined by measuring
the amplitudes of both the fundamental component and the generated second
harmonic component of a longitudinal wave propagating along the three
symmetry directions of the sample. In the theory of finite amplitude
distortion in solids the ratio (AZ/A]Z), as given in (1.97), is independent
of A] only in the limit of infinitesimal amplitude. So the smallest
amplitude consistent with useful signal to noise ratio are used. The
proportionality between the second harmonic amplitude and sauare of the
fundamental amplitude holds strictly true39 for infinite discontinuity
distance which is eauivalent to infinitesimal amplitude. So measurements
with the smallest fundamental amplitude most exactly satisfy the
assumptions made in the theory.

The frequency of the fundamental signal is chosen as 30 MHz as
a compromise between the two following considerations: The aeneration
of the second harmonic amplitude A2 is directly proportional to the
square of the frequency. So higher frequencies produce an improvement
in the signal to noise ratio. At the same time, attenuation and effects
of nonparallelism of the sample faces also increase with frequency.

30 MHz frequency is found to be most favorable. In the nonlinearity
measurements the pulse-echo technique is used, allowing one wave pocket
to die out before the next one is introduced. The pulse repetition rate
is kept down to about 60 Hz to minimize sample heating. The laragest

ultrasonic displacement amplitudes attained at 30 Mhz are of the order

48
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of 10 A°. From Eq. (1.96) it can be estimated that the second harmonic
amplitude will be about 1 percent of that of the fundamental. Thus a
detector is needed of sensitivity sufficient to measure displacement

amplitudes of the order of 1072 cm.

1. Room Temperatire Apparatus

(a) The Lapacitive Detector. A capacitive detector has been

developed40 to measure displacement amplitudes as small as 10-]2 cm

(: ]0'4 A°). A simplified diagram of the capacitive detector assembly

is shown in Fiqure 1. The assembly consists of a detecting electrode
held in place by a fused silica optical flat so that it is insulated

from the outer ground ring which forms the ground of the electrical
system. The detector and ground ring are made optically flat to an
accuracy of half a wavelength of helium discharge 1ight. The dete. .or
electrode is positioned at the center of the qround ring, It is

recessed slightly with respect to the surface of the ground ring, The
sample faces are also made optically flat to the same accuracy. The
sample rests on the outer ground ring. The assembly is aligned properly
so that the sample face and the electrode surface form a parallel plate
capacitor. Typical qap spacing hetween the sample face and the electrode
is of the order of 5-10 microns, resulting in a capacitance of 100-75 PF
for a detector diameter of 0.916 cm. A bias voltage of the order of 100-
150 volts is applied to the electrode, producing very high electric field
(1000 kV/cm) in the capacitor gap. When a plane lonaitudinal wave
impinges on the sample face, causino it to vibrate, the gap spacina is
chanqed correspondinaly and an alternating voltage is induced between

the electrode and around. The exact alianment of the sample, electrode
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Figure 1. Cross sectional view of the room temperature apparatus.
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button and ground ring is very important because a sliaht misalignment
can result in shorting between the sample face and the electrode. Ffor
perfect alignment, the electrode is fixed at the center of the ground
ring, and an optical flat is used in monochromatic 1ight to produce
fringes on the ring and electrode. Alignment of the frinaes assures
parallelism of the ground ring and the electrode.

Onto the top of the sample a piezoelectric X-cut quartz transducer
of fundamental frequency 30 MHz is attached with stopcock qrease as the
bonding material. The transducers used are of diameter 1.27 cm. A
copper electrode separated (electrically insulated) from the outer
portion of the assembly by a teflon ring is pressed against the transducer
by a spring. The spring provides electrical connection btetween the
electrode and the BNC connector through which the electrical pulse is
applied. The entire system is aligned and held in position by steel
pins. The outer parts of both the detector and the generator transducer
assembly make good contact with the sample surfaces so that electrical
shieldinq is obtained which is very essential for accurate measurements,
A photograph of the assembled room temperature apnaratus is shown in
Figure 2.

b. Calibration Procedure. Calibravion of the capacitive detector

and subsequent absolute amplitude measurements are done by introducing a
substitutional signal in place of the acoustical signal. Provision is
made in the experimental setup to connect a substitutional sianal
generator and an RF voltmeter to the detector button. The assembly is
made in such a way that the capacitive detector need not be removed from

the circuit during calibration measurements. The equivalent circuit for

|
|




Fiqure 2.

The room temperature apparatus,

P
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the detector is the Norton equivalent. The equivalent circuit for the
detector is shown in Fiqure 3. When the acoustic sianal is turned off,
the imaginary switch S] is opened, and the switch 52 is closed by connect-
ing the substitutional siqnal generator to the detector assemblv, The
series combination of the inductance L, the amplifier input impedance
in parallel with the detector capacitance CD and stray capacitance CS
form the total impedance of the detector circuit. The substitutional
signal current is flows through the same impedance as the acoustical
signal current is' The inductance L is the inductance of the wire
leading from the banana jack to the BNC connector (see Fiqure 1). The
inductance of the connector between the banana jack and the bottom of
the detector can be nealected due to the larce diameter of this
connector.

If the end of the sample vibrates sinusoidally at an anaular
frequency « with amplitude 2A, where A is the acoustic wave amplitude
in the sample, then the qap spacing changes with time accordina to the

relation

S = S, + 2R sin .t . (2.1

0

The factor ? enters in the amplitude because the vibration amplitude

of the sample is twice the wave amplitude inside the sample. This
results from reflection of the wave at the stress-free surface of the
sample. Thus, the capacitance of the detector, considered as a parallel

plate capacitor, responds as

176 = 01+ 2A sin t) (2.2)

N
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where CO is the static capacitance of the receiver which is qiven by
[
= (2.3)
0 S0
where o is the area of cross section of the electrode button, ¢ is the
dielectric constant of the medium (=1 in our case hecause the medium

is air) and SO is the static gap spacing. If Vb is the bias voltace

applied to the detector, the equivalent voltace V of the detector can

easily be obtained as

_ AV

V=< (2.4)

0

where A is the amplitude of the ultrasonic wave. The derivation of
this expression with the help of an equivalent circuit is given in
Appendix Al.

In the equivalent circuit given in Figure 3,GD and GS represent
the ultrasonic and substitutional signal generators. Since the voltaqe
V is related to iD by iD = VmCD where w is the anqular freauency of the
ultrasonic wave, we have

} ZAV ’UCD

T (2.5)
D" s,

The substitutional current generator Gg is adjusted to aive the same

output from the amplifier as with the acoustic signal. When this

conne-tion is satisfied




L.

Practically, voltages are much easier to measure thar currents
and so the voltage across GS is measured and the current iS is calculated
from this voltage and a knowledge of the impedance through which the
current flows. The resistor R does not act as a pure resistance at hiqh
frequencies. So the impedance of the resistor R must be measured at each
freauency used in the calibration measurements. These measurements are
made with a vector voltmeter. The sample, detector assembly and bottom
plate are removed from the apparatus and a 5C¢ precision terminator is
placed on the "signal out” BNC connector as shown in Figure 4. Both
vector voltmeter probes (with isolator tips) are placed at point 1 and
the phase angle between the signals is zeroed and the amplitudes are
measured. Probe A of the voltmeter is then left at point 1 while probe B
is moved to point 2. The dgenerator is readjusted to obtain the same
reading of the A channel amplitude as before, and the amplitude of the B
channel and the phase between the probes are recorded. This is done at

each freguency used in the calibration measurements, The impedance 7

of the resistor R can be calculated from

|
—--1V - Vpae
B?
BB (2.7) A
V82€

r 1
!l = ;j.C+ S e |

where VB] is the amplitude measured by probe B at point 1, VR? is the
amplitude measured by probe B at point 2, C is the stray canacitance
which appears at point 2 (this includes the probe tip capacitance), w] ‘

is the resistance of the precision terminator (measured to 0.1 with an

impedance bridge), . is the anqular freauency, ! is the phase anale
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between VB] and V82 and j2 = -1. A plot of the real and imacinary
values of Z versus frequency, around the fundamental and second
harmonic frequencies are shown in Figure 5.

The substitutional current iS is then calculated by
i = s - (2.8)

. 1 -1
r ) AT T
2+ Liw(CyrCs) + gy
where VS is the voltage across the current generator GS' The resistor R
has a value of approximately 10 Ko; therefore 7 is much laraer than the
other impedances in the apparatus, so that the other impedances do not

have to be known very accurztely in order to calculate 15 accurately.

Also, the large value of Z gives a Targe voltage VS which can be easily

measured.

c. The Experimental Setup. The block diaaram of tiic experimental

setup for the room temperature nonlinearity measurements is given in
Figqure 6. A stable RF oscillator is used to drive a aated amplifier.
The pulses are passed throuah a matchina network and a 30 MHz bandrass 1
filter which insures spectral purity of the ultrasonic wave even if the
quartz transducer is driven off resonance. The transducer has been
well bonded to the sample with nonaq stopcock arease. The signal from
the capacitive detector is fed to either the 30 MHz or 60 MHz bandpass
amplifiers and the amplitudes of the signals are measured accuratelv
with the boxcar intearator and vector voltmeter. The silicon sampies
not beina qood conductors, do not sufficiently shield the RF pulse at
the transducer from the detector so that a 30 MHz direct feedthrounh

pulse is received at the detector bv radiation before the ultrasonic
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1

i signal reaches the detector. This feedthrough pulse is oftentimes much
larger than the echo of interest and although it can be separated in time

from the echo to be measured, it can overload the 30 MHz amplifier and the

boxcar integrator. The recovery time of the 30 MHz amplifier and the
boxcar integrator would be too long to allow proper measurement of the
first echo if they are overloaded by the feedthrouah pulse. Whenever
the feedthrough is excessive to make measurements difficult, an RF
gate is used to detect the acoustic echo and a MOSFET aate is used to
prevent overloadinag of the boxcar intenrator. Descriptions of the RF

gate and MOSFET gate along with their circuits are given in Appendix A2,

2. Room Temperature Measurements f

The 30 MHz fundamental and the 60 MHz second harmonic signals )
have been measured by the boxcar integrator and then the continuous
wave 30 MHz substitutional signal is introduced at the detector. A
30 MHz filter is used between the generator buffer amplifier and the
detector to insure spectral purity of the signal. The sianal amplitude
of the substitutional signal is adjusted with attenuators so that the
readings on the boxcar inteqrator coincides with the readings correspond-
ing to the acoustical signal. The 60 MHz substitutional signal is .
derived by doubling the 30 MHz signal with a ring bridge mixer and
filtering the output with a 60 MHz bandpass filter, The circuit and
description of the frequency doubler are also given in Appendix A2. The
continuous wave substitutional signals in both cases are measured
accurately with an RF voltmeter. The bias voltaae applied to the

detector is noted and the gap spacing of the receiver is measured hy

'
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measuring its capacitance with an impedance bridge. From these the
amplitudes of the fundamental and second harmonic signals are determined.

The measurements have been repeated for different values of
fundamental signal amplitudes, the measurements being done on [100],

[110] and [111] silicon samples.

3. Velocity Measurements

In order to determine the K2 values aiven in Table 1 (p. 46) or
the SOE constants of silicon, measurements of velocity of lonaitudinal
waves along the three symmetry directions have been made usina the
pulse overlap technique with the capacitive receiver described before
as the detector. A typical experimental setup for pulse overlap technique
is shown in Figure 7. The gated amplifier produces a series of pulses
that overlap in the sample. As the freauency of the CW generator is
chanqged the echoes go through interference maxima and minima, The
number of minima (or maxima) are counted and their frequencies noted. A
typical interference pattern obtained usina this technigue is aiven in
Figure 8. Interference minima are preferred rather than maxima in order
to minimize envelope effects in shift in the position of the peaks due
to nonconstant amplitude response of the electronic equipment as a
function of frequency. The velocity C is then calculated from

- eAfl

¢ An

(2.9)

where Af is the change in frequency corresponding to a change in peak
number An and L is the length of the sample. The velocities of longitu-

dinal waves along the three symmetry directions are qiven by
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c[100] = C;y = K, [100] |

C110] = 3 (Cpq + Cpp + 2C44) = K, [110] ! (2.10)
!

CTIT] = 1 (Cyy + 26y, + 4C4,) = K, [111] J

So a measurement of velocities leads directly to the K2 values given in
Table 1 (p. 46). The measured values are compared with the values
reported by McSkiminS3 and are found to aaree very well within experi-

mental uncertainties.

4. _Samples

The samples used in the measurements are sinale crystals of
silicon cut along the [100], [110] and [111] symmetry directions having
lengths 2.5171 ¢cm, 2.5222 cm and 2.5248 cm, respectively. The sample
ends are made optically flat to less than 15" of arc by hand lapping
and polishing. The end faces are then made electrically conductive
by coating a copper coating of apnroximately 1000 A thick onto them

by vacuum evaporation.

5. The Cryogenic Apparatus

A qeneral cross sectional view of the cryogenic system is shown
in Figure 9. The dewar used is a conventional nalass type incorporating
two vacuum chambers with silver coated surfaces. The cryoqgenic fluid
chambers are shown as V] and V2 in the figure. For operation between
room temperature and 77K, Tiauid nitrogen is used as the cooling agent
in both the chambers. Near room temperature, it is convenient to

operate with liquid in V2 only and have dry nitrogen aas in the usually

it i PIEA --lIIIﬁlﬂiiii-ih-i-ﬁ-u.ll“
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evacuated space between V] and V?. To operate between 77 and 3K,
Tiquid helium is used as the cooling aaent, maintaining 1iquid helium
in V] and keeping V2 filled with liquid nitrogen. It has been observed
that by pumping on the liquid nitroaen in the inner chamber, the
temperature can be brought down to about 65°K thus avoiding the use of
expensive liquid helium between 77 and 65K.

The sample assembly is surrounded by two stainless steel cans,
The inner one surrounds the sample and control assemblies, and the
outer one which is concentric with the inner one provides a means of
controlling the amount of heat transfer between the system and the
coolant. The outer can is in immediate contact with the coolant. The
space between the two cans is evacuated to provide an insulating jacket
around the inner can. The cans are well polished to reduce radiation
losses. The cans are supported by three thin-walled cupro-nickel tuhes,
each of which serves multiple purposes. Two of the tubes have smaller
thin-walled cupro-nickel tubes inside them to form a coaxial transmission
line: one for the signal input to the transducer and the other for the
output from the detector. The tube sizes are chosen to make a 50
transmission line. These two tubes are also used as vacuum lines. The
tube that houses the transmission line connector to the transducer is
the vacuum line for the space surrounding the sample (the inside space
of the inner can). The tube that houses the transmission line connector
from the detector is also the vacuum lining to evacuate the space surround-
ing the detector button of the capacitive detector. Photoaraphs showing

the cryogenic apparatus are given in Fiaure 10.
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Fiqure 10. The cryoaenic apparatus. (a) The complete apparatus:
(b) apparatus with outer can removed; {c) apparatus with hoth cans
removed.
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The capacitive detector used for low temperature measurements
is similar to that used in the room temperature apparatus, with the
additional feature that the gap spacing between the detector button
and sample surface can be controlled pneumatically, The cross sectional
view of the variable gap capacitive detector is shown in Fiagure 11,
The lapped ground ring against which the sample rests is undercut to
make it a flexible diaphragm approximately 0,04 cm thick. The detector
space is evacuated through the tube which houses the transmission line
for the signal from the detector. The gap spacing is controlled
pneumatically by regulating the pressure in the inner can. A cut-away
view of the sample assembly is shown in Figure 12. The capacitive
receiver, the inner can and the outer can are bolted in place with indium
0-ring seals so as to have good vacuum in the detector space, inner
can and outer can. Dry nitrogen or helium gas can be admitted into the
space surrounding the sample which helps to prevent unwanted precipita-
tion in the sample space. The gap spacing is adjusted pneumatically
by letting in or pumping out nitrogen or helium gas in the sample space.
The variable gap capacitive detector makes it possible to have a constant
detector capacitance for the detector when t .e temperature is varied,
The effects due to differential therm-* ox -.ion of the sample and the
associated assembly are thus compensated by regqulating the pressure in
the inner can.

Once the sample has been cooled to Tiquid nitroaen or liquid
helium temperature, the temperature can be increased with an electrical
heater. Two sets of heater coils are wound, one above and one below the

sample so that uniform heating of the sample takes place. The temperature
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ot the sample 15 measured with a germanium or plalinum sensor, A
aqermanium sensor with necative temperature coefficient of resistance
1< used helow 20 K and a platinum sensor with positive temperature
coefticient of resistance is used at higher temperatures. The
eclectrical output from the sensor controls the power delivered to the
meater, this being accomplished with an Artronix temperature controller.
“hee temperature controller contains a bridge circuit., One of the arms
ot the bridae is the temperature sensor. If the bridge is unbalanced,
the controller provides more or less power to the heater which tends
to balance the bridge. The deviation of the temperature from the set
point, and the voltaae on the heater are monitored on a dual pen strinp
chart recorder. Monitoring the heater voltage allows one to determine
when thermal equilibrium has been established in the sample chamber,
The system allows one to increase the temperature slowly and measure
it accurately. A block diagram of the temperature measurement and control
system is given in figure 13,

fo facilitate accurate temperature measurements, the measurements
are done with different sensors than the temperature control sensors,
A constant current generator, shown in Fiaure 14, supplies a current
to the sensor (either platinum or germanium), and the voltaqe..is
measured across the sensor. A four-wire connection is made to the
sensors so that the voltage measurement is made by a path which does
not carrv current. This prevents lead resistance from affecting the
sensor resistance measurement. A voltmeter which has an input impedance

of © 1000 m is used for measurement so that neqliaible current is

drawn. The voltmeter is also used to measure the current by measurine
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fiaqure 13. Temperature measurement and control svystem.
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the voltaage across a known resistance in series with the current-carrving
lead. The constant current generators is required because the heater
current also flows through the ground of the apparatus. lhen a <imple
resistive network is used to supply current, the noisy heater current is
large enough to change the voltage with respect to ground which changes
the sensor current by a noticeable amount. The resistance measurement
can suvill te made, in principle, as the sensor voltage chanqge< when the
sensor current is changed, but since the measurements cannot be made
simultaneously the heater noise makes measurements difficult. The
single transistor constant-current generator is very effective in
holding the current constant regardless of voltage changes with respect
to ground. The voltages measured are of the order of 1 mV so that
contact potentials and thermal potentials need be taken into account,

An effective way to do this is to take two or more resistance measure-
ments usinag different currents. Then the sensor resistance R is found

by

R= 2] (r.11)

where V] ond V2 are two voltages and I] and I? are the corresponding

currents.

6. Cryogenic Nonlinearity Measurements

The block diagram of the apparatus used for lTow temperature
ultrasonic nonlinearity measurements is shown in Fiqure 15, The <sianal
path is the same as that for room temperature measurements with the

exceptions that (1) the substitutional siqnal capability is absent
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because only relative amplitudes need be measuved and () a 00 ML
broadband filter is introduced between the capacitive detector and the
60 MHz amplifier in addition to themostat gates. The feedthrough
problem is much worse in the cryogenic measurements than in the room
temperature measurements. In the room temperature apparatus, the
sample could be adjusted manually until proper sample seatina,
principally on the transducer end, is achieved resulting in the reduction
of feedthrough signal. In the Tow temperature apparatus, the sample is
inaccessible to such adjustments and so the two qates are important in
the cryogenic measurements to insure that the amplifiers are not over-
loaded. Under these severe conditions the 60 MHz amplifier can be
overloaded by the 30 MHz feedthrough. So the 6C MHz filter is used to
attenuate the feedthrough while passing the 60 MHz signal. Since the
filter is a completely passive network, harmonics cannot be generated
by it. In Figure 16 a photoaraph of the entire low temperature system is
given.

The low temperature nonlinearity measurements are done using a
comparison technique because the 30 MHz and 60 MHz amplifiers have
gains which can be functions of the signal amplitude. The procedure
is to set the capacitance of the detector to a chosen value. As the
temperature is varied, the variations in the capacitance (or spacina)
is nullified very conveniently by adjusting the pressure in the inner
can with a requlator valve. The bias voltage on the detector is set
to some predetermined value (% 150 volts). The RF power applied to the
quartz transducer is adjusted to obtain some predetermined readinq of

the 30 MHz signal on the boxcar inteqrator. The detector hias voltaae







79 |
is then changed until the €0 MHz second harmonic signal reaches the

predetermined boxcar integrator reading. The pulse repetition rate,

pulse lenqgth and gains of the 30 MHz and 60 MHz amplifiers should be
kept undisturbed during the entire experiment. In order to avoid the
trouble of considering the frequency denendence of the eauipment,

the frequency of the CW generator is also kept constant.

Always the bias voltage of the fundamental sianal remains the

same and any deviation of the fundamental signal amplitude from the

predetermined boxcar integrator reading is compensated by adjustina

the input signal to the transducer. The second harmonic bias voltaae

is then varied to obtain the predetermined second harmonic boxcar f
integrator reading. So the only variable in the entire temperature

cycling is the second harmonic bias voltage. The output of the 60 MHz

amplifier is proportional to the amplitude of the second harmonic A2

and the detector bias voltage Vb' If this output is held constant and

the measurements are made at two temperatures T] and TZ’

v = A v (2.12)

where the different subscripts indicate the temperature corresponding

to the value. Therefore

Ay © = Ry (7.13)

The measurements are made relative to the room temperature values, The

relative nonlinearity parameters of silicon along the three symmetry
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directions have been measured between room temperature and 3°K by this

technique.

7. _Transducer Bonding for Low Temperature
Nonlinearity Measurements

The nonlinearity measurements are made with X-cut 30 MHz transducers
of diameter 1.27 cm bonded to the sample. For room temperature measure-
ments nonaq stopcock grease is used as the bonding material. This bond-
ing material fails at Tow temperatures. So for low temperature measure-
ments a cellulose tape adhesive is used as the bonding material. A
cellulose tape manufactured by Technical Trade Corp., Carbondale,

I1linois, under the designation 7510-551-9818, LT90C Type 1, Class A is
used for the purpose. The adhesive is applied as follows. A piece of
plastic film with a hole slightiv larger in diameter than the trans-

ducer is centered over the sample end and a piece of the cellulose tape

is applied which sticks to the sample through the hole. The tape is i
smoothed down to remove all air bubbles and a drop of water is applied

to the back of the tape. When the tape turns cloudy (3-5 minutes), the
water is blotted away and the plastic film is gently 1ifted. The backing
of the tape separates cleanly from the adhesive everywhere except at '
the edge of the hole. The adhesive stretches between the sample face

and the plastic film at the edge of the hole and is very carefullv

severed with a sharp blade so that the backina is aently 1ifted away

without disturbing the adhesive bonded to the sample. A1l traces of

moisture on the bond are removed by keepina the sampie in vacuum for

approximately three hours. The transducer is then carefully placed

IR |
on the adhesive and all air bubbles are removed by firm but careful 1
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rubbing with the eraser at the end of a pencil. This bond is found to

work very well over the entire temperature range.




CHAPTER TTI!

RESULTS AND DISCUSSION

In this chapter we report the results of the measurements made
on silicon samples to determine their ultrasonic nonlinearity parameters
at room temperature as well as the temperature dependence of the non-
linearity parameters between room temperature and liquid helium
temperature. Temperature variation of some more combinations of TOE
constants are also determined and reported. The strain generalized
Griuneisen parameters of silicon calculated along the symmetry directions

from nonlinearity parameters are also evaluated and presented.

a. Room Temperature Nonlinearity Measurements of Silicon

The results of the absolute amplitude measurements at room
temperature for silicon along the three principal directions are given
in Table 2. In order to satisfy the theoretical assumption of infini-
tesimal amplitudes, these measurements are made at low amplitudes which
give good signal to noise ratio. Irrespective of the value of A], it
may be noted from the table that the value of AZ/A]Z is a constant. The
variation of the absolute amplitude of the second harmonic with the
square of the fundamental amplitude for all the three orientations are
plotted in Fiqure 17. The straight lines show a well-defined linear
variation of A2 with Alg. The lines do not pass throuah the oriqin
because of the residual noise of the experimental setup. The slope ot

the Tines, in the Teast square sense, is the best fit to the value of

the quantity
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Table 2. Amplitudes of Ultrasonic Wave Components for Silicon at Room
Temperature
r Second
Fundamental Harmonic i 2 A
‘ Frequency " pnotitude | meplitude | f2/M <82y )
ample Used 10 13 7 3 A 2 k?a )
Orientation {MHz) A] x 10 M A2 x 10 M|x 10" M 1 +
7.1677 16.5192 0.321536 0.6657
7.0557 15.7156 0.315683 0.6536
6.7944 14.7334 0.319154 0.6608
6.5704 12.9475 10.299918 1 0.6210
6.0105 12.3224 0.341094 0.7062
[100] 30.41 5.6745 10.8937  10.338314 0.7005
5.3385 9.3758 0.328980 0.6812
4.5918 6.9649 0.330331 0.6839
4.2558 5.8933 0.325384 0.6737
3.6585 4.7325 0.353577 ! 0.7321
. N e o *
] 3.1279 6.0989 0.623370 | 1.5303
[ 3.0614 5.9663 0.636579 1.5184
2.9282 5.3034 10.618519 1.5997 i
2.7508 4.9056 0.648297 ; 1.5628
2.7064 4.7731 0.651653 1.5944
(110] 30.24 2.6842 4.7731 0.662477 ' 1.5915
2.5955 4.3753 0.649480 ! 1.6263
2.3958 3.5798 0.623674 ! 1.5311
2.1296 2.8373 0.625618 ! 1.5358
| 2.1075 2.7843 0.626875 } 1.5389
3.4860 5.9676 0.4910717" 1.2555
3.4442 5.8433 0.492585 | 1.2594
3.3190 5.3460 0.485305 | 1.2408
; 3.2563 | 5.1719 0.4877545; 1.2470
3.2150 | 5.0973 0.493149] 1.7608
(13 30.30 3.0267 | 4.4757 0.488565 | 1.7491
| 2.9015 4.1027 0.4873316| 1.72460
2.7345 3.6054 0.482167 ' 1.2378
} 2.6301 3.3568 0.4852672! 1.2407
2.3590 2.7352 10.491520 | 1.2567
; 2.1918 2.3622 J0.4917165i 1.2577




84

— N NP OO N O

O 10 20 *2350’ 40 50 6O
Al(lo_ao )

Fiqure 17. Variation of A2 with A17 at room temperature for
silicon.
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3K, + K
ok%a = kla[-2---3] (3.1)

3
8 8K,

which involves the nonlinearity parameter . The role played by the
power lost from the fundamental to the second harmonic is examined in
Appendix 3. If this effect is taken into account, the quantity % ukza

is given by

rather than AZ/A]Z. For the entire range of amplitudes given in Table 2,
the difference between AZ/A]2 and the quantity calculated from Eq. (3.2)
is negligible.

In Figure 18 we have plotted the dimensionless parameter
calculated for various values of the fundamental amplitude, The scatter-
ing of points in Figure 18 is well within experimental error in view of
the fact that the measurements depend on absolute measurements of displace-

3 A. In Table 3 we tabulate the values

ment amplitudes of the order of 10~
of r obtained by a least squares fit to the data from all the plotted
points for all the three principal directions. The standard deviation

from the least square fit calculated by

is included in the : values.
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Table 3. Values of the

87

Nonlinearity Parameter P (Least Square fit)

Sample
Orientation

[100]
(110]
]

Sample
Length

(cm) e
2.5171 2.0336
2.5222 4.6887

2.5248 3.7500
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The parameters K3, which are combinations of TOE constants, alona

the three directions are evaluated from the g8 values by Eq. (1.95)
Ky = (3 + 8)K, (3.4)

and are tabulated in Table 4. The Ko values used in the calculation
are evaluated from the SOE constants of silicon reported by McSkimin and

Andreatch.54

We have measured the velocities and verified that our
values of SOE constants agree very well with those of McSkimin and
Andreatch.54 The K2 values used in the evaluation of K3 are also given
in Table 4. The room temperature TOE constants of silicon have been
measured earlier by hydrostatic and uniaxial pressure technique by
McSkimin et a].26 The Ky values calculated from their TOE constants

are also tabulated in Table 4 for comparison. It may be noted that the
L) values obtained from these two entirely different techniques agree
very well within experimental inaccuracies, Keating55 has theoretically
evaluated all the six TOE constants of both silicon and germanium in
terms of three anharmonic first and second neighbor force constants and
two harmonic force constants on the basis of central potential. We have
calculated the Kq values from these theoretical TNE constants and these
values are also presented in Table 4. The agreement between experimental

and theoretical K3 values shows that Keating's model is a very good

approximation for silicon and other diamond-like solids.

b. Strain Generalized Griuneisen Parameters of Silicon

In this section we derive the relationship between the strain

generalized Gruneisen parameters and ultrasonic nonlinearity parameter

E—
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Table 4. The Kg and K8 Values of Silicon Along the Principal Directions
r

at Room Temp&rature

K3 x 1012 dynes/cm2
K. x ]011 Experimental Theoretical '
Sample 2 2 Present Values of a Values of 7
Orientation | (dynes/cm”)! Experiment McSkimin et al. KeatingP ‘
[100] 16.5779 -8.34:0.1 - 8.25 - 8,21 ;
[110] 19.4470 -14.95+ 0,22 -14.75 -15.68 )
id
[111] 20.4031 -13.77 £ 0.12 -13.31 -13.58 V
Reference 26. '

C ey
i ol

bReference 55.

s,

Plvarmno o SV
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aC
for solids. Since the medium is not stressed in the determination or
nonlinearity parameter by harmonic generation technique, the generalized
Griineisen tensor calculated from the nonlinearity parameters is purely
isentropic.
Let us rewrite Eq. (1.24) in the form
asz u oP BZP.

. Vesos .
e e W _dy ) (3.5)
2t> o R aa]2

J

When the ultrasonic nonlinearity parameter Bi defined by (1.28) is zero,
Ea. (3.5) reduces to a linear differential eouation describina

infinitesimal amnlitude wave propagation of velocity

1/2 )

CJ- = (Uj/oo) (3.6)

For finite amplitude waves Bj is nonzero and it is convenient to define

the natural wave velocity by23

U. v... 9P,
NN = [ (e 3l 3172 20y L
P aa] J

aP.
SHle (3.7)
0 Hj 4

J
So Bj is a direct measure of the nonlinearity of the solid with respect
to elastic wave propagation.

The isentropic generalized Grineisen parameter yis(j,ﬁ) describing

the frequencies w(j,ﬁ) are defined by
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<0 (3.8)

aw(i,N))

S -
Y ( ) = _(w(J N)) o

rs

where n refers to the original coordinate system and s is the entropy.
The strain derivatives in the original coordinate system may be
expressed in terms of the derivatives with respect to the displacement
gradients apj/aa] in the transformed coordinates by using chain-rule

differentiation. Hence, we may write

a(auk/aa]) a(ap /aa )

3
3Mhq ‘(éuk/aa ) 515pj/3a,) )s,H ’ (3.9)

(—2) =(—E‘-‘~

3
rs an

Using Egs. (1.14) and (1.22) and the relation

(a(auk/aa])

21
Mg s,n=0 2 (kaéjq + qud]p) (3.10)

where 8;5 are Kronecker deltas, we can express Eq. (3.9) in the form

1
=7 5k (RRis * R RS G (apJ/aa1))s ap;/32,=0 ° (3.11)

an
rs

3
0——“-)5’;;0

Substituting (3.11) into (3.8) we obtain
R ) ] X Bu) ',N)
(3.12)

In the Debye model, the lattice vibrational frequencies w(j,N) are related

for any state of strain to the natural velocity by56

+ R (—— ) P
krls 1r ks m(j,ﬁ) ) apj/aa] s,apj/aa]—o
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w3, N) = W(3,N) . (3.13)

Hence, using Eqs. (3.7) and (3.13) we may write

( ] am(:j,N) ) = ] ( BW(- N ) ]
w(j,N) a(bpj/aa1) s,apj/aa1=0 W(i,Ny ‘2 apj/aa] s,apj/aa]=0 = -k

(3.14
Substituting (3.14) into (3.12) we obtain the general relationship

between the (y,s) component of the isentropic strain generalized Grineisen

tensor and the solid nonlinearity parameter Bj to be

S . _ 1
Yrs(J’N) - E'Bjskj(erR1s + R]sts) : (3.15)

From this equation we find that the (1,1) components of the isentropic

strain generalized Gruneisen tensors for the case of longitudinally

polarized (j=1) waves propagating in the symmetry direction557 are

v3;(1, [100]) = 3 8, for the [100] direction )
v31(1, [1101) = 3 8, for the [110] direction, and (3.16)
v3;(1, [1112) = 1 8, for the [11] direction.

In Table 5 we 1ist room temperature values of the (1,1) components

of the experimentally measured isentropic strain generalized Grineisen
tensors for the pure mode directions of silicon and germanium crystals.
The corresponding mixed state strain generalized Gruneisen parameters

58

parameters calculated from the theory of Brugger™ using experimental

values of elastic constants are also given in the table. For silicon

5
)
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the TOE constant data of McSkimin et a].s4 and our measured nonlinearity
parameters are used. For germanium the TOE constant data of Bateman

22 and nonlinearity parameters data of Bains et a1.46 are used.

et al.
It must be pointed out that exact agreement between the

icentropic strain generalized Gruneisen parameters Yis and the Brugger-
Gruneisen parameters YES isnot to be expected because the former are of
a pure thermodynamic state whereas the latter are of a mixed thermo-
dynamic state. The difference between the two may be of the same order
as the difference between adiabatic and isothermal elastic constants.
An examination of Table 5 reveals that for the [100] direction for both
silicon and germanium the agreement between Yis and YES is good. They
agree reasonably well for the [110] direction but do not agree for the
[111] direction for either silicon or germanium. Further work in this

direction is underway to trace the reason for the disagreement in the

results along the [111] direction.

c. Temperature Dependence of the Nonlinearity of Silicon

The measured values of |B| down to approximately 3°K are given in
Table 6 along with the ratio of |g8] to the room temperature |g|. The
room temperature value is the most probable average value obtained from
Table 3. These data for all the three directions are listed. The K3
values calculated from g are also tabulated in Table 6 between 300 and
3°K. In Figure 19 we have plotted the data obtained for the parameter
K3 for the three orientations as a function of temperature. The SOE

constants of silicon as a function of temperature have been plotted by

McSkimin53 from room temperature to 77°K. We measured the velocities
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Table 6. Measured Relative Values of 8 and the K3 Values of Silicon as
a Function of Temperature
Bias Voltage
K of the Second K
Temperature 12 2 » Harvon1c PR 12 3 2
T°K x10" " dyn/cm b R x10°“ dyn/cm
[100] direction
3.10 1.6755 150.01 1.1086 0.7509 8.8005
4.02 1.6755 150.05 1.1087 0.7508 8.8004
6.00 1.6755 150.15 1.1079 0.7503 8.7994
10.57 1.6755 150.85 1.1028 0.7468 8.7803
16.14 1.6755 152.51 1.0908 0.7387 8.7396
20.1 1.6755 153.00 1.0873 0.7363 0.7275
24.93 1.6755 153.00 1.0873 0.7363 8.7275
35.08 1.6753 153.55 1.0833 0.7336 8.7129
47.82 1.6753 155.12 1,0725 0.7263 8.6762
59.25 1.6752 158.80 1.0477 0.7095 8.5913
66.33 1.6750 160.88 1.0343 0.7004 8.5445
77.60 1.6747 163.21 1.0195 0.6904 8.4927
86.84 1.6743 163.45 1.0177 0.6892 8.4847
101.57 1.6740 163.58 1.0163 0.6882 8.4781
119.92 1.6732 163.82 1.0140 0.6867 8.4666
131.51 1 6723 164.08 1.0118 0.6852 8.4545
147.89 1.6713 164.05 1.0113 0.6849 8.4479
167.99 1.6700 164.22 1.0093 0.6835 8.4343
181.11 1.6689 164.25 1.0083 0.6828 8.4253
197.93 1.6674 164.35 1.0067 0.6817 8.4122
216.08 1.6654 164.62 1.0051 0.6807 8.3971
231.91 1.6637 164 .41 1.0042 0.6800 8.3859
250.29 1.6617 164.42 1.0031 0.6793 8.3715
266.30 1.6601 164.41 1.0022 0.6787 8.3604
272.48 1.6594 164.45 1.0017 0.6784 8.3554
Room temp. 1.6566 164.48 1.0000 0.6772 8.3353
[110] direction i

2.98 1.9641 150.05 1.2742 1.9922 17.6286
4.02 1.9641 150.08 1.2740 1.9913 17.6256
4.90 1.9641 152.55 1.2534 1.9591 17.3915
8.41 1.9641 155.65 1.2284 1.9200 17.2055
10.57 1.9641 156.48 1.2219 1.9098 17.1454
14.00 1.9641 157.85 1.2113 1.8933 17.0482
16.14 1.9639 158.38 1.2072 1.8869 17.0087
24.93 1.9639 161.22 1.1858 1.8534 16.8114
35.08 1.9637 165.55 1.1547 1.8048 16.5234
47.82 1.9635 170.08 1.1241 1.7570 16.2401
56.82 1.9634 174.66 1.0946 1.7109 15.9686
64.58 1.9633 177.12 1.0796 1.6874 15.8285
77.79 1.9629 178.65 1.0704 1.6730 15,7405

sttt A i M
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Table 6 (continued)
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Bias Voltage
of the Second

K - -K
Temperature 12 2 2 Harvon1c |§il || 12 3 9
T°K x10°" dyn/cm b R x10° "~ dyn/cm
[110] direction (continued)
84.02 1.9627 179.92 1.0627 1.6610 15.6682
94.75 1.9623 180.89 1.0564 1.6512 15.6073
107.28 1.9618 181,55 1.0520 1.6443 15.5628
118.77 1.9614 182.46 1.0464 1.6355 15.5078
129.77 1.9606 182.78 1.0441 1.6319 15.4803
136.76 1.9602 183.21 1.0414 1.6277 15.4525
147.89 1.9594 183.56 1.0389 1.6238 15.4232
160.87 1.9585 184 .52 1.0329 1.6144 15,3609
173.35 1.9575 185. 21 1.0284 1.6074 15.3120
184.10 1.9563 185.98 1.0235 1.5997 15.2574
194.9 1.9552 186.38 1.0206 1.5952 15,2224
206.38 1.9542 186.78 1.0179 1.5910 15.1900
223.37 1.9522 187.24 1.0145  1.5857 15.1434
241.70 1.9501 187.98 1.0084 1.5777 15.0803
260.13 1.9480 188.66 1.0074 1.5746 15,0460
272.48 1.9464 188.86 1.0031 1.5678 14,9939
Room temp. 1.9433 189.18 1.0000 1.5630 14.9420
[111] direction
3.97 2.0601 150.12 1.0575 1.3219 14.3500
4.90 2.0601 150.08 1.0577 1.3221 14.3513
7.03 2.0601 150.03 1.0581 1.3226 14.3544
10.08 2.0601 149.89 1.059° 1.3239 14,3624
17.00 2.0600 150.26 1.0565 1.3206 14,3413
24.50 2.0600 150.58 1.0543 1.3179 14.3246
30.70 2.0599 150.81 1.0526 1.3158 14,3109
36.99 2.0599 150.98 1.0513 1.3141 14,3004
43.55 2.0598 151.77 1.0459 1.3074 14,2583
50.47 2.0596 152.585 1.0406 1.3008 14,2162
59.25 2.0595 152.76 1.0394 1.2993 14,2062
66.33 2.0593 152.81 1.0390 1,2988 14.2018
70.15 2.0592 153.81 1.0323 1.2904 14,1492
77.79 2.0592 155.00 1.0245 1.2806 14,0886
86.84 2.0587 155.62 1.0199 1.2749 14,0500
92.49 2.0585 155.82 1.0185 1.2731 14,0375
103.85 2.0581 156.02 1.0166 1,2708 14.0206
114.16 2.0576 156.44 1.0136 1.2670 13.9637
129.77 2.0566 156.68 1.0113 1.2641 13.9690
139.68 2.0561 156.48 1.0121 1.265) 13.9718
147.89 2.0553 157.08 1.0080 1.2600 13.9349
157.32 2.0546 156.83 1.0093 1.2616 13.9400
167.99 2.0537 156.45 1.0111 1.2639 13.9481
174.54 2.0532 156.45 1.0109 1.2636 13.9429
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Table 6 {continued)
Bias Voltage
K2 of the Second - K3
Harmonic B
Temperature 12 2 v |§—| |&] ) )
T°K x10"" dyn/cm b x10 ™ dyn/cm
[111] direction (continued)
181.71 2.0525 156.45 1.0105 1.2631 13.9350
197.93 2.0508 156.48 1.0092 1,2615 13.9137
212.44 2.0492 156.48 1.0086 1.2608 13.8985
227.03 2.0476 156.75 1.0061 1.2576 13.8680
244 .15 2.0457 156,66 1.0057 1.2571 13.8520
260.13 2.0436 156.89 1.0034 1.2543 13,8207
272.48 2.0421 156.82 1.0032 1.2540 13.8087
Room temp. 2.0388 157.11 1.0000 1.2500 13.7619
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and hence the K2 values at different temperatures belo. 77 K and found
that these values agree with the curves of McSkimin extrapolated to 0°K.
For calculations uf K3 as a function of temperature the K2 values have
been evaluated as a function of temperature. They are also tabulated in
Table 6.

From Figure 19 it may be noted that the K3 values undergo
noticeable temperature variation below 77 K especially Ky (110]. Between
room temperature and 3°K, the Ky values for the [100], [110], and [111]
directions vary by 5.3%, 15.2%, and 4.1%, respectively, The data for
the [100] and [111] directions are quite smooth and are nearly parallel
to the temperature axis. The variation is maximum for the [110]
direction between 77 and 3 K, the variation being as high as 117, Since
8 is a direct measure of the anharmonicity {(nonlinearity), a large change
in 8 (and therefore K3) at Tow temperatures is not surprising in view of
the thermal expansion data which shows that there is a large change in
the anharmonicity of silicon and other diamond-Tike solids below liquid
nitrogen temperature (thermal expansion becomes negative).

The TOE constant C]1] appears in the K3 values along all the
directions. It can be subtracted out from Ky [110] and Ks [111]. In
this way we can get two more combinations of TOE constants, namely
(C”2 + 4C]66) and (C]23 + 6Cqgy t 86456) and their temperature variation
can be studied. The temperature variation of these two combinations
along with that of C]]] are plotted in Fiqure 20. As can be seen from
Figure 20, the variation of these combinations as a function of

temperature is not very great down to 77 K. But between 77 and 3 K,

there is a considerable variation in some of them. In particular, the

il i
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combination (C]23 + 6Cipq t 8C456) crosses zero at about 8°K and becomes
positive below that temperature. Since these are the TOE constants which
would play a significant role in the propagation of transverse modes, the
lack of agreement between the theoretically calculated value of thermal
expansion from elastic data and measured thermal expansion values miaht
be attributed to the theoretical assumption that the TOE constants are

independent of tempeiature.

d. Temperature Dependence of the Nonlinearity of Germanium

In order to supplement the necessary data for the waork to be
described in the next chapter, we reproduce here the data on the
temperature variation of the K3 values of germanium. In Table 7 we
present the measured values of the nonlinearity parameter ¢ and calculated
values of K3 of germanium between 300 and 3°K. These data are adopted
from the Ph.D. dissertation of J. A. Bains.59 In Figure 21 we have

plotted the temperature variation of the parameters K3 of germanium

along the pure mode directions between room temperature and 3°K.
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Table 7. Measured Values of Ky of Germanium as a Function of
Temperature (Ref. 59
K, x 10 2

Sample Temperature 3 2
Orientation °K dyn/cm
2.94 - 8.47

9.01 - 8.47

19.30 - 8.47

27.81 - 8.47

43,28 - 8.46

56.72 - 8.46

68.66 - 8,46

77.40 - 8.22

} 100.51 - 8.29
(100] 124.35 - 8.34
148.48 - 8.38

h 160.53 - 8.36
184.52 - 8.28

196.55 - 8.30

220.51 - 8.30

245.16 - 8.17

270.27 -7.88

Room temp. ~-7.78

3.00 -17.21

9.01 -16,32

19.30 ~-15.89

27.81 -15.54

43.28 ~-14.91

56.72 -14.35

68.66 -14.57

77.68 -14.62

[110] 100.51 -14.54
124,34 -14 .45

148.43 -14.46

160,50 -14.27

184,57 -14.24

196.52 -14.13

220.51 -14.15

245.11 -14.20

270.28 -14.15

Room temp. -14.10

3.01 -13.28

9.11 -13.61

19.38 -13.84

[111] 27.78 -13.72
43.22 -13.59

56.78 -13.56

68.69 -13.28
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Table 7 (continued)
12
Sample Temperature K3 x ]g
Orientation °K dyn/cm
77.48 -13.52
100.53 -13.3]
124.33 -13.71
148.46 -13.49
(1111] 160.53 -13.40
(continued) 184.54 -13.53
196.58 -13.44
220.51 -13.47
245.15 -13.51 ;
270.28 -13.73 |

Room temp. -13.40 f
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CHAPTER TV

TEMPERATURE VARIATION OF THE TOE CONSTANTS
OF SILICON AND GERMANIUM

The SOE constants of a number of solids have been measured as a
function of temperature by a number of authors. The first measurement

of this kind has been done by McSkimin53

on silicon, germanium and

fused silica from room temperature to liquid nitrogen temperature. Later
the measurement has been extended to liquid helium temperature by Fine60
on germanium. Subsequently measurements have been reported on a number
of solids. The results have been reviewed by Hearmoéﬂ and are not
reproduced here.

The measurement of the TOE constants as a function of temperature
is much more difficult than in the case of SOE constants. If one uses
the McSkimin technique, changes in sound velocity need be measured
with the application of pressure and as a function cf temperature., Due
to experimental difficulties not much work has been done in this
direction. Salama and A]er529 measured the TOE constants of conper
at 295, 77 and 4.2°K. Sarma and Reddy62 measured the TOF constants of
nickel at 298 and 80°K. In both cases the technique aave results in
which the inaccuracies of the measurement entered at every temperature
at which measurements were made. The effect of temperature on TQt

constants are found to be comparatively small. The normal tendency is

for the stiffness to increase, i.e., to become less negative as the

temperature rises. Some authors have reported the results of calculations

105
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based on theoretical considerations. These are also reviewed by
Hearmon.6] As already has bheen pointed out in the introduction, the
ultrasonic harmonic generation measurements can readily be undertaken
at Tow temperatures but until now this technique allows one to measure
only three combinations of TOE constants as a function of temperature
and not individual TOE constants.

In this chapter we have combined the results of our measurements
of the nonlinearity parameters of silicon and germanium with an
established lattice dynamical model to arrive at expressions for
individual TOE constants in terms of nonlinearity parameters and have
studied their variation with temperature. The model used is the central

63,55 introduced by Keating for diamond-like solids. For

potential model
the first time in literature we have studied the temperature dependence
of the individual TOE constants of a solid between 300 and 3°K. The
highlights of Keatina's theory are aiven in the next section and in the
following section the Keating force constants are expressed in terms of
the K3 parameters alona principal directions and expressions for TOE
constants are arrived at. Section ¢ is devoted to results. Graphs
showing the temperature variation of the TOE constants of silicon and
germanium are plotted.

As is well known, the diamond-like solids silicon and aermanium
exhibit an anomaious thermal expansion behavior at low

64.65,66 Thermal expansion of silicon is neaative between

temperatures.
120 and 20°K and is again positive below that. temperature.67 Thermal
expansion of germanium is negative between 40 and 16°K and is positive

below that temperature.68 The works done have been reviewed by

[
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Carr et a].e“ The Gruneisen parameter follows a similar behavior as
thermal expansion.70 Theoretical calculations based on the quasiharmonic

.7z using room temperature values of TOE constants do not

73,74

approximation
predict this behavior. We have evaluated the Gruneisen parameter
at low temperatures using our temperature dependent TOE constants for
both silicon and aermanium. Results are compared with previous publi-
cations. Temperature variation of some more anharmonic pronerties Tike
pressure derivatives of the SOE constants, the Anderson-Gruneisen

parameter,etc. arealso studied and the results are reported. The final

section constitutes discussion and some concluding remarks.

a. Keating's Model for the Lattice Dynamics of Diamond-Like Solids
63,55

The Keating model for the diamond-like solids is basically
equivalent to the Born-Huanq]3 approach of imposing the invariance
requirements on the elastic strain enerqy of the crystal. Keatina's
theory provides additional insight into the interatomic forces in this
group of solids and has more operational advantaqes over the Born-Huano
method. The method demonstrates that all purely first-neighbor inter-
actions are central onlv. Keating's approach confirms that in the
harmonic approximation there are no noncentral purelv first-neiahbor
interactions present in any nonmetallic crystal. In the harmonic
approximation treatment to derive expressions for SOE constants,
Keating's model involves only two types of interactions, a nearest-
neighbor central term and a noncentral second neighbor term.

The basic unit cell of the diamond structure is a rhombohedron

with two atoms, atoms 1 and O in Figure 22, on its major axis which is

h

A
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Fiqure 22. The crystal model of diamond-like solids. The open
and filled circles represent the atoms in the two different sublattices.
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directed along the [111] direction. The three neighboring unit cells of
interest contain atoms 2 and 5, 3 and 6 and 4 and 7, respectively. The
expression for thn microscopic strain energy in terms of the central
first neiahbor constant « and the noncentral second neiahbor constant i
has been written63 and after imposing crystal symmetry reauirements,

the expression in the harmonic approximation becomes

.o u' v v+ w2
Y'° 3% {[(ed * €yz et ey * a )
u' - v' - w2
* (ed ¥ ®z  €2x T Exy * a )
u' +v' - w2
+ {ey - ez~ Cax t By " 3 )
v e, -e +e, -e -4 TV ¥,
d vz Zx Xy a
b _ . _ u'y2
¥ 16a {[(exx eyy €.z eyz a)
w' 2 u'y2
G Cyy ~ €2z T &y * '5_) * (exx T ey T8 T ey T 2
v',2 v',2
* (exx BT T T ?f) * (exx Sy et eyt ?f)
+{e. +e -e._+e - EL)Z]} (4.1)
XX yy zz Xy a ’ '

where a is the lattice parameter and eij's are the strain parameters

with €4 = €,y + eyy + e, - u', v', w' are the atomic displacement compo-

nents. By imposing the condition

U du g (4.2)

¥

et

i,
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one obtains

u = -alf e

vz
vi=-a e, (4.3)
and w' = -a ¢ eXy
where
.= (u-g)/ (atg) . (4.4)

After substitution for u', etc., and comparing the resulting expression
with the well-known macroscopic expression for strain enerqy for cubic

crysta]s75, namely

_ 1 2 2 2
u= §'C11(exx ¥ eyy * 82 )+ C12(eyyezz t et exxeyy)
1 2 2 2
¥ ?’C44(€yz tex T ey ) (4.5)
we obtain
Cyq = (v + 3R)/4a ‘
C.‘,Z = ((‘. - !"\)/48 (4-6)

af/alo + R)

These form the expressions for the SOE constants in terms of the harmonic
force constants « and 8. It can easily be seen that the parameter ¢ is
given by

o~ R - LC]Z
R (G * Cyp)

(4.7)

A calculation of the TOE constants of silicon, aermanium and

other diamond-like solids has been presented by Keatinq55 which is an
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extension of the above method of setting up the expression for the
strain enerqgy including the anharmonic terms. Expressions for the six
TOE constants are derived in terms of three anharmonic first and second
neighbor force constants and the two previously determined harmonic
force constants. As has been done before, expressions for the strain
energy are set up in the microscopic and macroscopic reaimes, Including
the anharmonic terms, the expression for macroscopic strain enerqgy can

be written as

a—

) 3 3 3. 2 2
uye =g Crppler” ey +eg™) + 5 Cypoleyle, +eg) + ey (eg + ey)

2 1 2 2 2
+eyi(ey +ey)] + Gy egepes + 5 Cygplere,”™ + ejeg” + eqep”)

]

* ?’Clss[elz(esz * e62) * ez(eez * e42) * e3(942 +egt)]

1

. 346340

1 2
+ Cyop €4058 1ple” + 8" +eg) + 5 Cpolet(e, +oeg)

+e, ey + ey) + esey + ey)] (4.8)

where ey = €, €y = eyy’ ey = e,,, € = exy’ e = € . and eg = eyz.
Considering the microscopic energy density, it shouid be pointed

out that the most important forces between atoms in diamond-like solids

are apparently short-range forces mainly due to shell-shell and shell-

. , 7
core interactions. Cochran 6

has obtained a good fit between theoretical
and experimental phonon dispersion and elasticity data with the shell
model and only short range forces. The shell model reduces to a rigid-

ion formulation if only the elasticity is to be considered and excellent

aqreement has been obtained between theory and experiment usina only a

.....
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nearest neighbor interaction and a noncentral second neiahbor interaction,
Since the shell-shell and shell-core effects give only small contributions
for third and more distant neighbors, we include interactions out to
second neighbors only.

Including the anharmonic terms, the expression for the microscopic

. . 55
strain enerqy can be written as

uy = DOt = 60+ 30)/3 4 (o + 38)/8ag](ey” + e, + )

+2{y' + 38" - el)ejesey v [yt -5t 40 /3 4 (a - P)/8an][e]z(e2 +ey)

2 . 3
e22(e3 + e]) + ey (e] + e2)] + 2y (1 - ¢) €,8c8

T S L L Y O R L Y | e T

T I R I LN T E I
% 2
+ *2(1 - k)/8ao][e](e52 + eﬁ?) + e2(e62 + e42) + e3(e42 t eg ).
(4.9)
v~ and ' are the anharmonic force constants. The details of the

derivation are not given here as it is alreadv available in 1iterature.55
fomparini the expressions (4.8) and (4.9), the expressions for the TOE

constants of diamond-1ike solids are obtained as




‘ i 3

(']]] =y - & 4 a, ;

Cug=y-8+r :

C]23 =y + 3& - 3? % 4
, B o 1 (8.10)

Cigg = Y(1 = )7 + 6T+ )7+ (Vs 0)(3r - 1) + 0
2 2

Cigr = ¥(1 - )7 - s+ 6)" (b r)(3 - 7)) + 0yt :
; \

Cage = Y1 - 7) )

+

where v = 2y', & = 28" and ¢ = ¢' are the redefined anharmonic force

WP

constants.

Feating's model has been used to evaluate the TOE constants of
silicon and germanium and it is found that the results are in very aood
aqreement with the room temperature experimental values. This aareerment
is quite remarkable owing to the fact that the model involves only three
acjustable parameters and it sungests that the anharmonic force constant
model used is a fairly realistic one. The introduction of additional
interactions into the strain eneray will, of course, allow a much better
fit but such a fit then miaht not be sianificant physically. The fact
that Keating's model involves only three anharmonic parameters has
enabled us to isolate all the TOE constants of silicon and germanium
from our measured ultrasonic nonlinearity parameters and study their
variation as a function of temperature, The Keating model has been
applied by Nandanpawar and Rajagopa]an77 to predict the temperature
dependence of C]66 and 3C]44 + 4C456 between 73 and ?93°K of germanium,

Their results agree reasonably well with available experimental values.
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b. _TOE Constants in Terms of the K, and K; Parameters
The expressions for the K2 and K3 parameters which are

combinations of SOE and TOE constants given in Table 1 are reproduced

here for the ease of further derivations. These parameters are obtained

directly from harmonic generation experiments.

K2[100] =0 }
)
K,[110] = 5(Cqp + Cpp + 2C4,) @ (4.11)
e |
X
N |
K3 (110 = (Cyqq + 3Cyyp + 12C¢6)
|
2] | :
KyL1T] = §lCqyq + BCqqp *+ 120144 + 28Cy5q + 20153 + 160;5¢) |

(4.12)

Substituting for the SOE and TNE censtants from Eas. (4.6) and
(4.10) in (4.11) and (4.12), respectively, we can express K2 and K3
along the principal directions in terms of the harmonic force constants

« and 8 and the anharmonic force constants vy, & and ¢.

k,[100] = (a + 37)/4a
K,L110] = S[(x + 38)/8a + (x - #)/8a + 2/ (n + 8)a] (4.13) |
K,[111] = %[(m + 3R)/4a + 2(a - R}/4a + 4ui/(a + p)a] ;

!
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A knowledae of the parameter ¢ = (a - £)/a + ¢ is enouah for our
calculations and so individual ~ and B are not evaluated. As has been
shown in Ea. (4.4)

T T
T+ B C”+C

. (4.14)
12

The X, parameters can be expressed in terms of v, & and ¢ as follows:

3
K3[100] = v - & + 9¢ (4.15)
ky[110] - 3¢, £2 2Dy - Es 4 Fe (4.16)
where
D=1+3(1-r)?
E=1+3(1+¢5)2
and
2
F=3[4+27-+¢"]
2
K3[111] - 4C]2 £ = Hy - P& + Qe (4.17)
vhere
H=1+80-0)%+18 053
p = % + % (1 + {)2
Q=1+ %»(sz + 66 +5) .,

Solving between (4.15), (4.16) and (4.17) we get expressions for ¢, & and

y as follows:
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(Kg[]OOJ - E - G) (K3[]00] - D - G)

R () B () (4.12)
where
2
G = K3[110] - 3C]2 £
and
2
R = K3[1]]] - 4C]2 £
(K3[100] - 0 -G) (9D - F
§ = (E-D) o D% £ (4.19)
and
Yy = K3[100] +6 - 9¢ . (4.20)

Substituting these force constants in Eq. (4.10) leads to the six
independent TOE constants for diamond-like solids. Evaluation of ¢,

v and § as a function of temperature results in the TOE constants as a
function of temperature.

C. Results - Temperature Variation of the TOE Constants of Silicon
and Germanium

As described in Chapter IIl, we have measured the nonlinearity
parameters and hence the K3 parameters along the three principal directions
of silicon as a function of temperature from room temperature to 3°K
using the ultrasonic harmoni- 7eneration technioue. The results areaiven in
Chapter III. Using the same technique,the nonlinearity parameters and Ky

46,59

parameters of germanium have been measured by Bains in the same

temperature range. The SOE constants of silicon and germanium have also
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been measured in the entire temperature region., From these measured
K2 and K3 values, substituting in (4.14), (4.18), (4.19) and (4.20) we
have evaluated the force constants £, ¢, y and & as a function of
temperature for both silicon and germanium. In Table & we have tabulated
the results.

In Figures 23 and 24 we have drawn the temperature variation of
the anharmonic force constants of silicon and aermanium. It may be
noted from the figures that the force constants are susceptible to con-
siderable temperature variations at low temperatures assumina nearly
constant values at higher temperatures. The harmonic force constants do
not vary much with temperature. The quantity ¢ which is defined by
(4.7) appearing in the set of equations (4.10) is almost independent of
temperature, as can be seen from Table 8.

The force constants at various temperatures have been substituted
in Eqs. (4.10) to evaluate all the six independent TOE constants of
silicon and germanium as a function of temperature between 300 and 3°K.
In Table 9 we tabulate the results. In Fiqure 25 we draw the TOE
constants C]]], C”2 and C166 of silicon as a function of temnerature.
Temperature variation of C]23, C]44 and C456 of silicon are drawn in
Figure 26. Similarly, in Figures 27 and 28 we have drawn the TOE
constants of germanium as a function of temperature.

In the figures we have plotted both calculated data points and
a best fit curve through them to show the effect of error propaqation.
Lven in the curves showing greatest scatter of data, namely the C]23

curves, the temperature dependence seems very clear. As can be seen
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Table 8. Temperature Variation of the Force Constants of Silicon and
Germanium
2C
12 -€ A -y
Temperature £ = 7—0F—
o G1* G2 x 10'2 x 10'° x 10"?
Silicon
4.02 0.5594 0.5630 0.6273 3.1061
10.57 0.5594 0.5327 0.5614 3.424¢
16.14 0.5593 0.5174 n.5510 3.5320
24.93 0.5593 0.5089 0.5246 3.A778
35.08 0.5593 0.4940 0.4856 3.7813
43.49 0.5592 0.4926 0.4557 3.8137
51.78 0.5592 0.4742 0.4420 4.0031
61.04 0.5592 0.4434 0.4192 4.1697
77.61 0.5591 0.4342 0.4220 4.1629
100.42 N.5589 0.4364 n.3998 4,151
118.77 0.5588 0.4378 0.3927 24,1344
131.51 0.5586 0.4343 0.3877 4,1581 '
147.89 0.5585 0.4396 0.384n 4.1075
167.99 0.5582 0.4301 0.3760 4.1874
197.93 0.5579 0.4254 0.3¢08 4.2228
223.37 0.5575 0.4268 0.3536 4.1992
241.70 0.5573 0.4233 0.3474 4.2214
260.13 0.5571 0.4247 0.3452 4.1969
272.48 0.5570 0.4225 0.3392 4.2137
Room temp 0.5567 0.4244 0.3357 4.1800
Germanium
3.0 0.5476 0.6893 0.6154 1.6509
9.0 0.5475 0.5985 0.4839 2.5996
19.3 0.5472 0.5401 0.4169 3.192?
27.8 0.5471 0.5494 0.3637 3.1617
43.2 0.5469 0.5476 0.2699 3.2617 !
56.7 0.5466 0.5331 Nn.183¢ 3.8783 '
68.6 0.5464 0.5932 0.2186 2.9026
77.4 0.5463 0.477¢ 0.2822 3.6394
100.5 0.5460 0.5356 0.2539 3,2157
124.3 0.5459 0.4745 0.2258 3.8437
148.4 0.5458 0.5279 0.2186 3.4103
160.5 0.5458 0.5319 0.1948 3,3781
184.5 0.5458 0.4550 0.1627 4.0228
196.5 0.5458 0.5029 1,1948 3.5791 ;
220.5 0.5457 0.4968 0.1896 3.6392
245.1 0.5455 0.4522 0.2276 3.8726
270.2 0.5454 0.3221 0.2875 4 ,6935
Room temp. 0.5459 0.3496 0.3054 4 .3302
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from the fiqures, the temperature variation of the TOE constants of
silicon and germanium are similar, as can be exnected. The room
temperature values are in agreement with those obtained by McSkimin

et al.26

The greatest disagreement is found in C]23. The constants
which show maximum sensitivity to temperature changes are C]23 and C144.
They take on positive values at very low temperatures for both
materials.

It should be mentioned that in the above calculations one
obviously has to make the assumption that the thermal effects in elastic
constants are solely due to chanages in force constants. Thi< assumption
is open to question. Temperature dependent terms in the internal
energy also might contribute to the elastic constants. Such effects, we
believe, would be negliagible compared to the variations occurring from
changes in force constants.

d. Temperature Dependence of the Gruneisen Parameter, Thermal
Expansion and Other Anharmonic Parameters of Silicon and

Germanium

As is well known, the Gruneisen parameter represents the strain
derivative of the lattice vibrational freausncies and is an important
quantity in describing the anharmonic properties of solids. The method

of evaluating the Gruneisen parameter using quasiharmonic theory is

well established in 11‘terature.7]’72 The Gruneisen parameter - 1is
defined by
83 1
Y = o T = (4.20)
KTCV KSCp

where  is the thermal expansivitv, KT and KS are the isothermal and
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adiabatic compressibilities and CP and CV are the isochonic and isobaric
heat capacities. Generalized v's measure the strain denendence of the
phonon freauencies and are no lonoer freauency dependent in the Debve
model where the lattice vibrations are renlaced by standina wave modes
of a dispersionless elastic continuum. Their relationship with SOFE and
TOE coefficients have been derived earlier by Brquers8 for arbitrarv
crystal symmetry and have been specialized to cubic point groups.

In the quasiharmonic approximation, the Griuneisen v can also be expressed
as the weiqhted average of the aeneralized Gruneisen parameters T by the ‘

relation

(4.21)

where r; expresses the volume dependence of the lattice vibrational
frequency for the ith mode and Ci is the Einstein heat capnacity associated ,
with that mode. If the sound speeds and their stress derivatives or the
SOE and TNE constants are known, Eqg. (4.21) can be evaluated in the
continuum model even if the dispersion curves alona many directions in
the stressed and unstressed crystal are not known.

We follow the method due to Brugaer and Fritz72

to determine the
Gruneisen v's and thermal expansion of silicon and germanium. If p stands
for the branch index and o for the wave vector, Fq. (4.21) can be

written in the form

v = ) v(p,q)C(p,a)/ ) C(p,a) (4.22)
nq pPq .
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The continuum model has been introduced for the evaluation of Y with
the following assumptions:
(i) The excitation of the optic modes may be neglected, so that
the branch index p takes only the values 1, 2 and 3.
(ii) The acoustic modes obey the Debye distribution function

(per unit volume) given by

g{p,q)dad: = (f]~3)q2dqdm ) (4.23)

(ii1) The maximum value of the wave vector a along anv direction

is equal to the Debye radius

?
ap = (6\;‘0)”3 (4.24) ¥

where VO is the volume of the primitive cell.
(iv) The acoustic modes are either nondispersive or they obey

the sinusoidal disnersion relation

wo = S~ln(zr~ -g_) (4.?5)

of the Born-von Karman model.
(v) The generalized Gruneisen parameter is independent of the
wave number and is aiven by their Tong wave limits.
Applying the above assumptions, Ea. (4.22) takes the form

_— éde(P,N)C(P,N)/X q;dQC(P,N) (4.26)
p P

with

(4.27)

)2
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ap is the Debye radius and in the Debye model the function 0 is given

by
0(P,N,¢) = [o(P,N)/T]r (4.28)

where £(P,N) is the Dehye characteristic temperature of the pth mode
along the direction of q specified by the unit vector N. If S(P,N) is

the elastic wave velocity of the pth mode, then78

hqD
8(P,N) = (=)S(P,N) . (4.29)

For cubic crystals with a fourfold axis of symmetry, the

expressions for y(P,N) have been derived ear]ier72 and are given by

Y(P,N) = - g%‘[38 + 24 + K] (4.30)
where

W(P,N) = C]]K] + C44K2 + C]2K3 (4.31)
and

K(P,N) = C]K] + C2K2 + C3K3 . (4.32)

The unknown gquantities appearing in (4.31) and (4.32) are

N 2,2 2, 2 2, 2
K, (PoN) = (NoUs + NaUL)2 + (NaUy + NoU )2 + (NyU, + NU )2'(4 33)
PAM 2°3 7 "3%2 3 13 172 7 "o ~
K3 (PN = 2(NpNsU,Us + NoNgUyUs + NyNoU, U, j

and

ot G st i s o

——
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Cy = Gy + 200
—_ /
Co = Cian * 2Cq66 4.34)
C3 = Cyaz3 ¥ 20qy2
Cij's and Cijk's are the SOE and TOE constants of the solid. Also

_ 1
B = §(C]1 + 2C (4.35)

]2)

is the bulk modulus. The N's and U's appearing in Egqs. (4.33) ave the
direction cosines for the direction of propagation and direction of
polarization characterized by the branch index P.

The thermal expansion is given by

« =K ] v(p,q)C(p,a)
04 (4.36)

where K is the isothermal compressibility. The thermal expansion of
cubic crystals is isotropic and hence only the scalar v of Eq. (4.26)
need be evaluated for its determination.

Following the above procedure we have determined the Gruneisen
parameter of silicon and germanium as a function of temperature from
300 to 3°K using the temperature dependent SOE and TOE constants that
we have determined in the previous section. In Fiaures 29 and 30 we
plot the Gruneisen parameter results obtained as a function of temperature
for silicon and germanium respectively. The computations have been
done with the help of a computer, OQur curves are desianated as "present
work” in the figures. With the same computer program we have also

evaluated the temperature variation of Y usina room temperature values

of TOE constants. This is the method adopted by Brugger and Fritz72 who
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have assumed that TOE constants are independent of temperature. These
curves designated as “Bruqaer and Fritz Method” are aiso given in the
fiqures along with the oriainal curves drawn by Pruager and fritz
themselves for comparison. The curves drawn by Brugger and Fritz are
denoted by "Brugger and Fritz Curves." The small difference between our
curves drawn by the Brugger and Fritz method and the curves drawn by
Brugger and Fritz are due to slight difference in the numerical values
used. We have used the room temperature values of the TOE constants

26

reported by McSkimin et al. for both silicon and germanium, whereas

Brugger and Fritz used the pressure derivatives of the SOE constants
reported by McSkimin et a].54 for silicon and McSkimin et a1.79 for
germanium. In the figures we have also drawn the experimental curves
of v obtained from thermal expansion measurements.69 These curves are
denoted by "Thermal Exp" in the curves. It can be seen from the curves
that our curves which take into account the temperature variation of
the TOE constants are in better agreement with experimental curves,
even though they also do not show any negati—e values for the Gruneisen
parameter which has been calculated from thermal expansion data. A
realistic physical reasoning for this disaqreement is included in the
discussion section.

In the quasiharmonic approximation, the thermal expansion is
proportional to the Gruneisen parameter (Eq. 4.36) and so thermal
expansion follows a similar temperature variation as the Gruneisen
parameter. Since the thermal expansion curves are similar to the

Gruneisen parameter curves, they are not reproduced. In the

L 2
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high temperature limit the value of vy calculated from thermal expansion
agrees well with measured values.

We have determined and drawn as a function of temperature the
isothermal first pressure derivatives of the adiabatic SOE constants
from the temperature dependent TOE constants. The relationships

between pressure derivatives of the SOE constants and TOE constants are

well known80’8]
A A | W e KA IR 12
a C ¥ 2,
A | i “2 * Giz3 * Hipy
p Cyy * 261,
(4.37)
|
Cag - E1 * 202 * Cag " Craa ¥ 2r66
dp T+ 2y,
a8 _ (C111 Ot 26123)
dp 36,7+ 26;,)

where B = %(CH + 2C]2) is the bulk modulus. The above pressure
derivatives drawn as a function of temperature for silicon and aermanium
are reproduced in Figures 31 and 32 respectively.

Anderson82 stated that the adiabatic bulk modulus of a material
varies with temperature according to

TO/T

Be = By - bT e (4.38)

S 0

where BS is the bulk modulus at temperature T and B0 is the bulk modulus
at absolute zero. b and TO are empirical parameters characteristic of

the solid. Anderson showed that the constant b is given by




' SILICON

50+ ‘r_ng3ﬁ]

////////”/”————7 dP
4oy~ é 1
3-0 ‘,/’//
2:07
IO L
0-0
5:0f ,z'S%E?EF

RN T dp
11.()-’/’ ‘g\\\gjlel |
dp

3.0t
0 dCaq4
1Of T el [_(_j'f
00 ' _

O 40 80 120 160 200 240 280
TEMPERATURE (°K)

4B dC d(‘,]2 d

Fiqure 31. Temperature variation of ., iy

of silicon. dp* dp > dP

C44
dp

and «

136




GERMANIUM.

GOr \d__Cll
dpP _
5'0“1 ———’_,,”"/’T\é
4-0t " -7
/
/I
3.0,_//
l{
207 dC44 1
» dP
I-01 ]
OOL 1 y— 1 s L 1 1 ]:
40 80 120 60 200 240 280
TEMPERATURE ('K)
Fiqure 32. Temperature variation of g—g, ij(:—;l, d-;:%.z, d;:ga

of germanium.

and &




b - 3R/, (4 39)

where VO is the specific volume per atom at absolute zero, I' is the na-
constant, y is the Gruneisen parameter and © is a constant :alled the
Anderson-Gruneisen parameter and it plays an imnortant role in descrihinno
the temperature denendence of the bulk modulus and related anharmonic
properties. Chanq83 showed that ° is related to the pressure derivative

of the bulk modulus as

e G R (4.40)

Using this definition, the relationshin between : and TNE constants has

been obtained by Rao84 as

Cyqq * 6Cyq, + 2C
s -+ 12 123y

(4.41)
3(Cyy + 2Cy,)

This expression has been used to determine the temperature variation of
“ using temperature dependent TOE constants. © as a function of tem-

perature for silicon and germanium are also drawn in Figures 31 and 32.

e. Discussion and Conclusion

An elegant method of combining an experimental result and a
successful theoretical model has enabled us to determine the temperature
dependence of the TOE constants of silicon and germanium from liquid
helium to room temperature for the first time. It is a remarkable
step towards understanding the low temperature anharmonic properties
of these solids even thouah the results do not fullv account for some

of the anomalous thermal properties exhibited by them at low temperatures.
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Our assumption that the temperature variation of the elastic constants
are due to thermal effects in the force constants is justifiable as we
see that our Gruneisen parameter curves aaree with the curves of others.
As a matter of fact, our curves are in better aareement with curves
derived from experimental thermal expansion curves than any nrevious
results.

The Gruneisen parameter and thermal expansion of silicon and

gqermanium are neaative at certain temperatures in the low temperature

reqion. This anomalous property has attracted a areat amount of attention.

But none of the calculations based on the ani<otropic continu.m mode}
could predict or fully account for this anomalous hehavior, Now it

is more or less well established that the neaative thermal properties
are a result of some ¢f the mode Grune’sen parameters aoing neqative or
the phonon frequencies decredasing with stress., A straightforward
calculation based on anisotropic continuum model in the quasiharmonic

approximation cannot account for the<e neanative mode +'s. The ove -all
temperature dependence of 15 explained as follows: At very low
temperatures, the reaion in which . is positive, the elastic portion

of the lattice spectrum dominates aivina positive ., As the temperature
is increased, the entire transverse acoustic modes (TA) contribute
anpreciably to +v. The mode .'s for the tran<verse modes decrease with
temperature. In the negative . temperature reqgion, the contribution
from TA modes dominates over the ovher mode< makina the net effect

neqative. As the temperature is increased further, the remainder of the

acoustic branches coupled with the optic modes make . positive aqain, In
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the high temperature region all the theoretical calculations agree
with experimental results. A complete understanding of the situation
demands complete experimental data on the volume dependence of the
frequencies of the individual branches in the dispersive reqion in the
entire temperature region. Since such data are not available,
Bienenstock85 has done a calculation for germanium based on a modified
she + model using the volume dependence of the elastic moduli and
pnonon frequencies reported by Brockhouse and Iyenqar.86 Bienenstock
introduces an induced dipole term sz which varies as V" where n is an
adjustable parameter nearly equal to 1 and includes the optic modes in
the Einstein approximation. He has calculated the Gruneisen parameters
Y5 for a number of acoustic modes and has found that the transverse
modes are rapidly varying functions of the wave vector q. They are
assumed to be positive for small a and neagative near the Brillouin zone
surface. The calculated vy is in agreement with experiment at all
temperatures when ontical modes are included. Studies on phonon
assisted tunnelling under pressure and measurements of the stress-
induced shifts of the threshold energv for tunnellina in germanium and
subsequent calculation of Y5 for TA modes near the the Brillouin zone

boundary by Pyne87 confirms the existence of negative Y4 for TA modes.

General Conclusion

The work presented in this technical report forms a nearly
complete study of the temperature dependence of the third-order elastic

constants of the typical diamond-like solids silicon and aermanium.
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The harmonic generation techniaue has found new application to the
study of the anharmonic properties of these solids. Similar works
applied to other groups of solids might lead to an understanding of

the temperature variation of their third-order elastic constants and

other anharmonic properties.
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APPENDIX A.1
THE DETECTOR ENUIVALENT CIRCUIT

Fiqure 33 shows the detector as it is connected for measurements
of nonlinearity. It is assumed that the detector load is an ideal
resistive load R. A large coupling capacitor Cb provides dc blocking
for the amplifier. Its effect on the RF sianals can be ignored. Rb is
a large (s 1 to 10 m.) resistor used to prevent large current discharges
in the event of arcing in the detector. [t is very large compared to ;
R so that no appreciable current fiows through it and Vb. If one
considers the sample end vibrating sinusoidally at frequency « with
amplitude 2A, where A is the acoustic wave amplitude in the sample,

then the gap spacing changes with time according to

S = SO + 2R sin wt . (A1-1) :

The factor 2 enters because the reflection of the wave at the stress-

free surface leads to a vibration amplitude of the samnle end which is

twice the wave amplitude inside the sample. Thus the capacitance of the ¥

detector, considered as a parallel plate capacitor, is aiven by

2A

1/C = 1/C(1 + & sin wt) {(A1-2)
0 SO ]
where CO = %1 is the static capacitance of the detector, ., . and S0
0 .
being the dielectric constant of the medium (=1 for air), area of the i

electrode and static spacing of the detector, respectively. Summing
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Figure 33.

General detector circuit.
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voitaqes around the outside loop of Figure 33, we get

(t) - .pdq
Lt - v = -RGE=v(b) . (A.1-3)

Substituting (A.1-1)and (A.1-2) in (A.1-3) and assuming a steady-state

solution of the form
qQ =9y +a sin wt (A.1-4)

one obtains

2AVb
V(t) = =——Ruw C cos{wt + ¢) (A.1-5)
So 0 777
T+ RwC
0
where
s = tan V(R w ¢y - (A.1-6)
2AV
Consider a signal generator of amplitude V = —3Tm-feedinq R
0

through a capacitance of value Co. The voltage across R can be shown

to be precisely the same (in both amplitude and nhase) as Eq. (A.1-5). A
complex load of impedance Z, rather than R, can also be treated. One has
simply i%; sinwt feeding CO and 7 in series. This situation more
accurately represents the experimental case because of stray line
capacitance shunting the input to the amplifier. For most experimental
situations this stray capacitance is sufficiently large to reauire that

during the calibration to determine V, one feeds through a substitutional

capacitor of value CO’ even if R is chosen to be quite large.

ke
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APPENDIX A.2
RF GATE, MOSFET GATE AND FREQUENCY DOUBLER

To prevent overloading of the amplifiers due to the feedthrough
signal, two gates have been built. An RF gate, shown in Figure 34, is
used between the capacitive detector and the 30 MHz amplifier to pass
only the echoes of interest. A slower MOSFET gate, shown in Figure 35,
is used between the detected output of the 30 MHz or 60 MHz broadband
amplifier and the boxcar integrator. The RF gate is able to handle the
RF pulses, but the on-to-off ratio is not very great. However, if a
x10 attenuator is placed between the gate and the 30 MHz amplifier,
and the amplifier is operated at higher gain (to prevent overloading of
the first stage, which has fixed gqain), the attentuation of the feed-
through is sufficient to prevent overload of the 30 MHz amplifier.

The MOSFET gate is used to protect the more sensitive boxcar
integrator from overload. The on-to-off ratio of the MOSFET aqate is
very high, but the gate is useful only for low frequency signals. Both
gates are driven by a pair of complementary pulses from a GR1398-A pulse
generator. A delayed trigaer output from the boxcar integrator allows
the gating pulse to be positioned in time.

The frequency doubler used in the calibration eauipment durinq
room temperature measurements is essentially a ring bridge modulator-
phase sensitive detector followed by a tunable series resonant filter

shown in Figure 36. It provides a signal which is precisely twice the
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frequency of the fundamental used in the study. The diodes D]~D4 shown

in the fiqure are RCA type CA3039. The doubler has been tested for

spectral purity with a spectrum analyzer.
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APPENDIX A.3
ATTENUATION AND HARMONIC LOSS EFFECTS

As the ultrasonic wave propagates in the sample, the second
harmonic amplitude A2 changes as a function of distance. There is a
growth of A2 proportional to the square of the first harmonic amplitude
A] and there is a decay of the wave due to attenuation of Ro. Therefore
the amplitude of the second harmonic as a function of distance in the
sample a is qiven by the differential eauation

i%? = aph, ¥ % K2 e Ay (A.3-1)
where "t is the attenuation coefficient of AZ' [f one assumes that the
change in A] as a function of a is due only to the attenuation of A1 and
the loss of power into the second harmonic, neglectina the power loss

into third and higher harmonics, one obtains

da M gk RN (A.3-2)

where ., is the attenuation coefficient of A].

The simultaneous solution of Eqs. (A.3-1) and (A.3-2) has not
been obtained, but two special cases can be solved. The first special
case is the one for which we can nealect the term due to power loss from
the fundamental into the second harmonic. Equation (A.3-2) then becomes

‘aé* = '(l-lA-, . (A'3-3)
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Equations (A.3-1) and (A.3-3) can be solved simultaneously to give
‘2(8 - ~a
A , 2ua C% T
q@z:%kme e e (A.3-)
A 27"
1
88

The attenuation coefficients for silicon have been measured.
For a 30 MHz fundamental, the coefficients are of the order of
& ~ 0.09 db/cm and ty ~ 0.27 db/cm. For a 5 cm sample (which is longer
than any of the samples used in the present measurements) A2/A12 gives
a value for (3/8)k2€a which is approximately 2.6% low, Since this is
much smaller than the other sources of error in the absolute measurements,
no attenuation correction is necessary.

The second special case is that for which Ny T oy = 0.

Equations (A.3-1) and (A.3-2) then reduce to

dA

2 3,2, ,2
G2 " 8 k™ i A] (A.3-5)
and
dA
1. 3.2
dha— = - g k | A2A1 B (A3-6)
Equations (A.3-5) and (A.3-6) have tho simultaneous solution
sin h'](A JAL)
; kz(“a = 2’
8 ST 7
on (A2 +V A22 + A]Z) - on A]
= (A.3-7)

7
VAT A
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This equation is the same as Eq. (3.2) of Chapter I11. for the entire
range of amplitudes used in the room temperature measurements of

silicon, the difference between (AZ/A]Z) and the quantity calculated

from Eg. (A.3-7) is very small.
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