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PREFACE

The ultrasonic harmonic generation technique has been extended

to the study of the nonlinear elastic behavior and thermal properties

of the diamond-like solids silicon and germanium. A complete study of

the temperature variation of the third-order elastic constants of

silicon and germanium has been done. In order to make the technical

report intelligible, it has been divided into four chapters as follows.

The importance of the study of the nonlinear properties of

solids is emphasized in the Introduction which forms the first section

of Chapter I. A brief review of the theoretical and experimental work

done in higher-order elasticity is given. The remainder of Chapter I

concentrates on the theoretical basis of the work. The nonlinear wave

equation in a cubic solid is derived and its solutions along the

symmetry directions are given. The ultrasonic nonlinearity parameter

for longitudinal wave propagation along pure mode directions in cuhic

crystals is defined. The relationship between the nonlinearity

parameters and elastic constants is derived.

Chapter II describes the experimental setup. A brief description

of the capacitive detector which is used for wave amplitude measurements

is given. Both room temperature and cryogenic apparatus are described

with diagrams wherever necessary. The measurement procedure is also

outlined in this chapter. The block diagrams of the room temperature

as well as cryooenic apparatus are qiven. Details about the individual

parts are given wherever necessarv. Ultrasonic nonlinearity narameters

of silicon have been measured at room temperature and as a function of



temperature down to liquid helium temperature. The numerical results

are tabulated and the temperature variation of the nonlinearity

parameters and some combinations of third-order elastic constants have

been plotted. Chapter III is made up of these results. Comparison of

the results with previous experimental and theoretical values are made

as far as possible. The strain generalized Gruneisen parameters along

the principal directions are evaluated and reported.

Keating's central force model is one of the most successful

and established models for diamond-like solids. We have developed a

method to isolate all the six individual third-order elastic constants

from nonlinearity parameters of diamond-like solids by combining our

measured values with this lattice dynamical model. Expressions for the

Keatina force constants are qiven in terms of the nonlinearity parameters.

The method is apolied to silicon and germanium and the temperature variationi

of all the six independent third-order elastic constants have been

studied between room temperature and 3°K. The method and results are

qiven in Chapter IV. Numerical knowledge of the temperature dependent

third-order elastic constants can be related to the temperatui,- dependence

of the anharmonic parameters such as thermal expansion, Gruneisen

parameter, etc. of solids. Such a study made for silicon and nermanium

also is incorporated in this chapter. Low temperature thermal expansion

measurements of diamond-like solids by various workers have shown that

they possess a negative thermal expansion at low temperatures. Gruneisen

parameters follow the same anomaly. Theoretical calculations of low

temperature thermal expansion and Gruneisen parameters from room
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temperature third-order elastic constants by earlier workers do not

account for the negative thermal expansion in certain temperature ranqes.

We have tried to bridge this gap by evaluatina the thermal expansion and

Gruneisen parameters of silicon and germanium as a function of temperature

from temperature dependent third-order elastic constants in the Quasi-

harmonic approximation. Temperature variation of other anharmonic

parameters of silicon and germanium have been studied and the results

are presented.



CHAPTER I

INTRnDUCTION AND THEORY

A. INTRODUCTION

A solid medium, in general, is nonlinear. Hooke's law is not

obeyed by solids because of this nonlinearity. Nonlinearitv arises

from the hioher order terms in the eneray density expansion of the

solid. A finite amplitude ultrasonic wave nropaqating throunh a non-

linear medium distorts as it proresses and enerates higher harmonics.

Superposed waves qenerate sum and difference frequency waves. The

nonlinear effects are mainly due to the asymmetry of the interatomic

potential well; i.e., due to a nonparabolic interatomic interaction

potential which leads to anharmonic behavior of the crystal lattice.

The distortion of a finite amplitude ultrasonic wave in a solid is a

measure of the nonlinearity of the medium and measurement of the

nenerated harmonics offers a unicue method for the study of anharronicitv

of solids. Distortion of a finite-amplitude ultrasonic wave in solids

was first observed by Breazeale and Thompson and by Gedroits and

Krasilnikov. 2  The fact that such measurements lead to the determination

of third-order elastic constants has qiven impetus for the work to be

described in the succeeding chapters.

In describinq the physical properties of solids, the elastic

constants play a central role. In the macroscopic theory of elasticity

the solid is treated as a continuum which has, in the unstrained

4



equilibrium state, a constant mass den~itv. lhe elatic( (, ner1 ,hs',itv

is written as a power series in the elements of the strain tensor. ihe

zero-order term represents the enerqy of the solid in ecuilibrium. It

is independent of the strain and may be set equal to zero. The first-

order term is also zero in the absence of external body forces. The

coefficients of the second-, third-, and hioher-order terms are

designated as elastic constants of order correspondina to the power of

the strain in the respective terms. In the microscopic theory of

crystal lattices, the potential enerqy of a crystal is expanded as a

Taylor series in terms of the displacements of the atoms in the lattice
3

from their equilibrium positions. The coefficients in the series are

the derivatives of the notential energy referred to the equililrium

positions and are called the couDlinq parameters. The zero-order term

may be set equal to zero; the first-order term vanishes because the

expansion is about the equilibrium positions. As in the macroscopic

theory, the higher terms stand for the corresnondino couplina parameters.

The synvietrv properties of the lattice can be used to obtain the

relations amonq the coupling parameters and the correspondinq elastic

constants. Measurement of the elastic constants yields information

about the lattice forces.

If only the second-order terms are retained in the elastic enerny

density and linear elasticity theory is used, a linear relationship

between stress and strain results (Hooke's law). This approximation

can he used for infinitesimal deformations; i.e., when the space

derivatives of the displacement vectors of a point in the body are small

enounh that their products and squares may be neolected in comparison



to the terms themselves. Similarly, neqlectinn terms beyond scfl(i

order in the lattice potential energy leads to lattice dynamics in

the harmonic approximation4 with which one can acco?nt for much of the

behavior of solids.

A number of nroperties of solids are related to the anharmonicitv

of the lattice potential which involves elastic constants hioher than

second order. Crystals exhibit lattice thermal expansion. The

adiabatic and isothermal elastic constants are, in neneral, different

from each other and the elastic constants do vary with temperature and

pressure. At high temperatures the specific heat exhibits a temperature

dependence. All these anharmonic properties indicate that harmonic

theory is not sufficient for a quantitative description of the

properties of a crystal.

Even at low temperatures the harmonic theory is not correct.

Because of zero-point vibrations the influence of anharmonicity does

appear even at absolute zero. This is particularly large for small atoms

or molecules which have correspondingly large zero-point oscillations.

The enuilibrium positions therefore do not coincide with the minimum

of the potential energy. The methods of harmonic theory are no lonqer

applicable in the dynamic theory of elasticity because the anharmonic

terms cause a coupling between the different modes of oscillations.

In the harmonic theory the oscillator or eigenfreouencies of the

lattice are independent of interatomic distance a. With the correct

potential energy, the coupling parameters of second order and therefore

.. are functions of a. Even if the terms higher than the nuadratic

ones in the enerqy expansion are omitted, part of the anharmonic effects
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are already described by the denendence wj (a). This approximation is

called the quasiharmonic approximation which is conveniently used for the

evaluation of many physical Parameters. Excellent reviews on the anhar-

monic effects in solids are available in literature.
5

The conduction of heat in solids depends on the transfer of

vibrational enerqy through the lattice, which is not predicted by har-

monic theory. Anharmonic terms represent the interaction between

mechanical sound waves and thermal vibrations, which leads to the

damping of high freauency (> 109 Hz) sound waves and to the damping of

6moving dislocations by phonon viscosity. Volume increase of an elastic

body associated with a change of temperature or the introduction of

dislocations, an exact description of stress and strain fields near

dislocations, the electrical resistance of screw and edge dislocatirns,

scattering of phonons from defects, etc. demand a treatment by nonlinear

elasticity theory.
7'8

The elastic constants play a dual role of importance in the

theory of solids. Only a knowledge of the elastic constants enables one

to determine such important physical properties as compressibility, the

Debye temperature and its pressure dependence, the GrUneisen parameters

and various thermodynamic pronerties of defects in solids. These

properties can be found without havinn any information about the inter-

atomic forces or potentials. The second important role of elastic

constants is a result of their being among the most accurately measurable

physical quantities. Ultrasonic techniques have generally enabled one

to experimentally determine elastic constants to a greater degree of

accuracy than can be obtained from theoretical calculations. Thus, the



elastic constants can serve as a useful guide in de% ,opinn any

related theory. Since elastic constants describe how the enerqy

density of a solid changes with respect to various volume and shear

deformations, they are useful in determining the nature of bindinn

forces and interatomic potentials. The macroscopic nonlinear

hehavior of solids is determined by the intermolecular potential

functions of solids. The relations between the force constants and

elastic constants of a cubic solid has been qiven by Coldwell-

Horsfall.9 Ghate 10 uses the Born model of ionic solids to compute

the third-order elastic constants and their temperature variation.

Hiki and Granato investigate short range repulsive interactions in

noble metals and their relationships to the nonlinearity of the solid.

Basically there are two methods for calculating the elastic

constants of a crystalline medium: the method of homogeneous

deformation 1 2 and the method of lonq waves. 1 3 The results obtained

from the two methods should be in agreement when the same model of a

solid is used in both cases. In the method of homoqeneous deformation

the calculation proceeds by determining how the energy density channes

with respect to various homogeneous deformations; i.e., deformations

for which the resulting structure remains a perfect lattice. The two

most widely used types of deformations are those described by the

Lagranian strain parameters and by the Fuchs strain parameters. In

the first case, derivatives of the energy density are taken with

respect to the Lagrangian strains nij. The resulting derivatives when

evaluated in the undeformed state, are the Bruqger elastic constants
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Cijk v... . (:nE/ nij nk '" ) 1=O (1.I)

where E is the eneroy of the crystal per unit undeformed volume. This

thermodynamic definition of elastic constants of any order introduced

by Brugger 14 is most widely used nowadays. In the other case, one

calculates the derivatives of the eneray density with respect to Fuch-

type strain parameters 15 which consist of a volume deformation and of

various volume conservino shear deformations. When evaluated in the

undeformed state, these derivatives are referred to as Fuchs elastic

constants. The Fuchs constants are linear combinations of the Bruaqer

constants. The relationships between the Fuchs and Bruqger elastic
16 ,

constants for cubic crystals are

2 2 C4 4

2 E/WV2 1 (C + 2C
S(11  2 12)

I2E/P 2 I= 2(C1 1 - C1 2)

I 3 (C + 2C + 6C112) (C1 + 2C12)
3E/ll =9(I +2123 112) 1 1 2 (1L

2 2 2(Ci11 - C1 23 ) + 8 (C11 - C12) + 4 (C11 + 2C12)

2=) 1 1 4 1 2

-1E/ V~y2 (C144  2C166) + (C11 + 1 C12) + - C44

3 E/ 2c2 = C16 6 - C144 + C11 - C1 2 + 2C144

SE/i1 2F2 = Cll1 + 2C12 3 - 3C112 + 7(C11 - C12)
1

J 3E Y3: 2 I C456 •
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'i Yi and V are the Fuchs strain parameters. For most symmetric cubic

crystals there are three independent second-order elastic constants and

six third-order elastic constants. The Voigt notation for elastic

constants is used throuqhout the text of this report. The relationship

between Fuchs and Prugqer elastic constants for hexagonal crystals have

17
been given elsewhere.

The Fuchs constants are qenerally more convenient to calculate

when dealing with noncentral potentials, whereas the Brugger constants

are the preferred type for central potentials. In either case, the final

results are usually expressed in terms of the Brugoer constants to

facilitate comparison with experimental data.

The elastic strain energy for most symmetrical class of cubic

crystals, including third-order terms, but omittinq terms independent

of strain was first given by Birch 18 a as

I1 2 2 2)+
21 r~ 2 n33)+12 ('lln 22 +n22n33 ' 33nll1

2 2 2 2 2 2 3 3 3+ C 44 ( 1 2 + + + l 3) + + n

2 2 2

2 141r 1("2 +n3 ) + 2(n + n3)+ r 33(nl+11 21

+1 C 2~ 2 2 2
+ 1T 661(912 + 2l ) (r'l1 + 12)+ (r23 + n32 (r22 + r'33)

+ (r'3 + n 13)(r33 + 1)] +c ll22"33

+ C4 56 Er12n2 3n3 1 + "21n3 2n1 3] (1.3)

where nij are the Lagrannian strain components used by Birch and we

have corrected the numerical errors pointed out by Shagavantam and
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1 8b
Suryanarayana. The relationships between Brugger and Birch third-

order elastic (TOE) constants can easily be worked out and are qiven by

CIII (Birch) = C (Brugger)

C111 (Birch) = C111 (Brugaer)

C112 (Brh - 112 (rue)

C14 4 (Birch) = 2C14 4 (ruqger) (1.4)

C166 (Birch) = 2C166 (Brugqer)

C1 23 (Birch) C12 3 (Bruger)

C4 56 (Birch) 4C4 56 (Bruqger)

The role of second-order elastic (SOE) constants in the description

of the elastic properties of solids is well established and appears in

every work in the field and so is not repeated here. The nulse echo

technique of determininq the velocity of ultrasonic waves in crystals,

first employed by McSkimin, 19 is one of the most accurate and widely

prevalent methods of measuring the SOE constants of a cystal. It

involves the application of a series of RF pulses of about 15 to 25 MHz

to a transducer bonded to the specimen by a suitable bond. The pulse

repetition rate is adjusted so that the pulse echoes superimpose exactly

on the siqnal. This pulse renetition frequency (z 100 to 500 kHz) is

directly proportional to the square of the natural wave velocity and

can be measured with an accuracy of 1 in lO5 . Measurement of the

velocities of longitudinal and shear waves alonq the symmetry directions

leads directly to the SOE constants. The nulse interference method11 is

also often used for velocity measurements.

In explaininn the anharmonic properties of solids, the TOE

constants play an important role. They are necessary to evaluate the
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third-order terms of the lattice potential enermv and are needed to

evaluate the generalized Gruneisen ratameters which describe the strain

dependence of the lattice vibrational frequencies. The TOE constants

can nrovide quantitative descriptions of acoustic amplification at rmicro-

wave frequencies besides enabling the evaluation of the Akhieser phonon-

phonon interaction mechanism which describes the attenuation of ultrasonic

waves in solids. The TOE constant data are needed to determine the

chanqes in the lattice parameters of the solid due to application of

hydrastatic pressure.

The most common method of determinino the TOE constants is to

measure the chanqes in velocities of ultrasonic waves pronaaatinn alonn

different symmetry directions with applied stress. Huqhes and Kelley20

derived expressions for the velocities of elastic waves in stressed

solids usinq third-order terms in the elastic enerqy and finite strain

theory of Birch. 18 EinsDruah and Manning2 1 applied finite strain

elasticity theory to evaluate the TOE constants of anisotropic crystalline

,.olids and has presented results for cubic and uniaxial crvstals. The

first measurement of TOE constants of isotropic materials polystyrene,

iron and pyrex glass has been done by Hughes and Kelly 2 0 and those of the

anisotropic crystal aermanium by Bateman et al. 22 The evaluation of all

the independent TOE constants involves measurement of wave velocities

when uniaxial static stress is applied to the crystal, besides measure-
23

ments under hydrostatic pressure. Thurston and Brugcer have derived

the expressions for the sound velocity and for a natural velocity and

their stress derivatives evaluated at zero stress in termnF of SOE and TOF
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constants of the crystal applicable to arbitrary crystal symmetry and

arbitrary stress systems dependina on a single scalar variable.

In the pulse echo method 19 for measuring the channes in wave

velocity due to application of hydrostatic pressure, the specimen is

subjected to high pressure in a cylindrical bomb, using compressed

gases or liquids. Measurements under uniaxial stress are performed by

applying the stress through a 20 x l03 kg hydraulic jack operated by a

screw. The ratio of the pulse repetition frequency when the crystal

is stressed to the repetition frequency of the unstressed crystal is

plotted against the stress. From the slope of the linear portion of

the graph for different propaqation directions, wave polarizations and

stress systems, an adequate number of combinations of TOE constants can

be obtained. A set of simultaneous equations are solved to obtain the

individual TOE constants. The expressions connecting TOE constants and

stress derivatives of sound velocities in solids have been given by a

number of authors 22 ,24 ,2 5 and are not reproduced here. The pressure

technique has been employed by a number of later workers to determine

the TOE constants of silicon,26 alkali halides, 27 fused silica, 28 noble

metals, l etc. Salama and Alers 2 9 used the techni'ue to measure TOE

constants of copper at low temperatures.

Graham 30 has described a method of obtaining longitudinal TOE

dnd FOE (fourth-order elastic) constants of solids which sustain elastic

compressions under shock wave loading. The shock compression data on

sapphire and fused ouartz have been analyzed to determine Cill, C3 33,

C ll and C3 33 3. The determination of the TOE constants under these
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large compressions allows one to test the applicability of the finite

strain formulation of constitutive relations. This technique can be

aprlied to materials whose elastic limits are a few percent of their

longitudinal elastic constants.

An optical technique for determining the TOE constants of

transparent crystals has been proposed 31 and measurements have been

carried out 32 on NaCl and CII1 has been reported. This technioue

makes use of the fact that when an initiallv sinusoidal ultrasonic wave

of finite amplitude is propagating in a crystal, it gets distorted due

to the generation of harmonics. The difference in intensity between

the first positive and first negative orders of the diffraction pattern

obtained when monochromatic light is transmitted through the crystal

perpendicular to he direction of propaqation of the ultrasonic wave is

a function of the strain amplitude of the wave. A measurement of the

asymmetry in the intensity leads to some of the TOE constants. Not much

work has been done in this regard.

Measurements of phonon-phonon scattering have been used to

determine various combinations of TOE constants. Classical calculations

based on the interaction of two intersecting ultrasonic beams within an

isotropic solid have been carried out by Jones and Kobett. 33 Ouantum

mechanical calculations of the same experimental situation have been

treated by Taylor and Rollins34 and experimental results for isotropic

materials have been given oy Rollins 35 and Rollins et al.36 Dunham and

Huntington 37 used this technique for fused sflica and single crystals

of NaCl. A treatment of the nonlinear interaction of ultrasonic waves
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in the framework of quantum theory has been civen by Bajak and

Breazeale.

The method of determining the TOE constants presented in this

technical report, viz. the ultrasonic harmonic generation technique,

involves a measurement of the waveform distortion of an ultrasonic wave

as it propaoates through a solid. Due to the anharmonic behavior of the

solid, higher harmonics are generated during the passage of an initially

sinusoidal ultrasonic wave throuoh the solid. '2 Breazeale and Ford
39

studied these properties, and correlated them with the solution of the

nonlinear equation for a longitudinal wave propaqating throuah a solid.

Gauster and Breazeale 4 0 developed a capacitive detector which is capable

of absolute measurement of the amplitudes of the fundamental and harmonics

of the waveform impinging on the end of the sample. Three linear com-

binations of the TOE constants of copper measured at room temperature
41

are reported by them. The harmonic generation techninue has the

advantage that it can be applied to soft metals as well as to solids

which undergo lattice slips and cracks on application of pressure.

Probably the greatest advantage of the harmonic generation method

is that it can be used to determine the TOE constants as a function of

temperature. The temperature dependence of the TOE constants is very

important in the study of anharmonicity of solids. Hydrostatic and

uniaxial pressure techniques seem to have practical problems at low

temperatures. Harmonic generation technique has been used by Mackey

4?and Arnold to measure TOE constants of strontium titanate and by Meeks

and Arnold 4 3 to measure the temperature dependence of combinations of
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TOE constants down to 1 100 K. Peters et al. developed a variable

qap capacitive detector capable of makina measurements at low temperatures.

These authors 4 5 measured combinations of TOE constants of copper down to

liQuid nitroqen temperatures. Subsequently the apparatus has been
46 4

refined and measurements have been made on germanium, fused silica,4 7

and copper4 8 down to liquid helium temperatures.

The work presented in this report is the result of the

measurement of the ultrasonic nonlinearity parameters and some comhina-

tions of TOE constants of silicon as a function of temperature between

room temperature and liquid helium temperature. The apparatus, experi-

mental procedure and results are qiven in the followina chapters. Our

measured nonlinearity parameters combined with a well-established lattice

dynamical model for diamond-like solids has enabled us to isolate all

the six independent TOE constants of silicon and qermanium and plot them

as a function of temperature. This is the first report of the temoerature

variation of all the individual TOE constants of any material as a function

of temperature. This work is explained in detail in the last chapter.

Also we have computed some anharmonic parameters as a function of

temperature.

B. THEORY

In this section we give the theory on which the ultrasonic wave

distortion measurements are based. The general equation of motion for

plane elastic waves propagatinq throuoh a medium is derived. It is then

specialized to wave propagation along the symmetry directions in cubic

crystals. Pure mode lonqitudinal wave pronaaation is possible alonq
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the [100], [110] and [1111 symmetry directions of a cubic crystal.
4 9

Includinq the nonlinear terms, one finds that pure transverse modes do

not exist. The transverse wave is always accompanied by a longitudinal

wave. However, pure longitudinal modes continue to exist for all

three directions [100], [110], and [111] even when the nonlinear terms

are included.

The wavelength of the sound waves in the materials used in this

investigation are quite larqe compared to the interatomic spacinq.

Typically the wavelength of the ultrasonic wave is about six ordprs of

magnitude greater than the interatomic spacing. The number of atoms

6
affected by one period of vibration is of the oruer of 10 . So the

solid can be regarded as an elastic continuum and the theory of finite
12

deformations in the Lagrangian formulation can readily be applied.

The eouations of motion governing finite deformation in cubic crystal

have been given by Seeger and Ruck,8 Bateman et al. 22 and by Holt and

Ford.51  The equations of motion are derived here from Lagranne's

eOuations, the approach used by Holt and Ford, and then they are anplied

co r:re mode longitudinal wave propanation in cubic crystals. From the

'olution to the resulting nonlinear wave equations we derive expressions

for the ultrasonic nonlinearity parameters.

1. The Eouations of Motion for Plane Elastic Waves

Pronaatinq through a Medium

In arriving at the equations of motion of an elastic wave

propaqating through a solid crystalline medium, the solid is considered
51

to be a lossless, homoneneous and perfectly elastic medium. The

elastic continuum is described with the formalism given by Murnaahanl 2
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for finite deformations of an elastic solid. The eouations of motion

for lonq wavelength finite amplitude sound waves in a solid are derived

usina Laqranqe's eouations for continuous media. Let ai , i = 1,2,3

be the cartesian coordinates of a point in the unstrained solid and let

xi, i = 1,2,3 be the coordinates at time t of the same point in the

deformed solid. xi depends on the initial coordinates ai and time t.

As has been aiven by Murnaahan, let the Laqrannian strain matrix he

given by

S (j* j - I)

where J is the Jacobian matrix with matrix elements

Jk =  Xk/ 9, * (1.6)

J* is the transpose of J and I is the unit matrix. If P is the

unstrained mass density and (n) is the elastic potential enerqy per unit

unstrained volume, then the Laarangian of the system is

1 3 .2

L xi (1.7)

Lanranne's eouations take the form

d _ A d ) = 0. (1.8)

dxi  k=l k

Combining Eqs. (1.7) and (1.8) we have

3 d 3 
0k 1lj k ( ,(x/ k)
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From Eq. (1.5) we have

j 1 1xi 1 1x.taj +Xj a ka ', a -,0

being the kronecker delta. Substituting (1.10) in (1.9) we have the.j k
equations of motion given by

X 3 d 3

l k=1 k J ai .k

where

___ ____ (1.12)
k n 9 n k

This way of deriving the equation of motion given by (1.11)

requires only the definition of strain and the assumption that the

elastic energy is a function of strain alone. This eauation of motion

is derived for a lossless elastic continuum and is valid for a real solid

under the conditions of negligible attenuation and dispersion.

The equation of motion a iven by En. (1.11) is to be simplified

to make experimental measurements and hence determine the elastic con-

.tants. Let us consider plane waves propanatina alonq a sinqle

direction and orient the a1 axis along the propagation direction. Then

Eq. (1.11) simplifies to

3a ( (1.13)
1aX kal ik Tlk

The elastic constants are defined as coefficients in an expansion of the

elastic enermy in powers of the strain when the strain is calculated with

the ak axes narallel to the symmetry axes of the crystal. Thus, in order
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that ,(n) in Eq. (1.13) may contain the usual elastic constants, we

must determine the change in and n under a rotation of the ak axes.

Let a bar superscript denote a auantity calculated with the ak axes

parallel to the crystal symmetry axes. fluantities without a bar super-

script are calculated with the aI axis parallel to the pronapation

direction.

If R is the matrix which rotates the a1 axis into the a1 axis

12
and R* the transpose of R, Murnaghan has shown that

,i = R* n R . (1.14)

The elastic potential energy is a scalar under rotation, and so

( T(-) = -(R* n R) , (1.15)

i.e., if

C11  2 Clll + 
(1.16)

-2 nll + 6 ll "

then

t I -- (n)R R ) C2 + C 1 ( R1  )3+2 11 R *rjkkl I l 2i Rkl) +

(1.17)

Thus Eq. (1.13) will contain the usual elastic constants if we write it

in the form

x=df3 j _)_ R* I
r xi  dal1 k Y l i ;T'Ik

beinq the strain calculated takinq the a axis along the oropaaation

direction.
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If Uk are the components of the particle displacement,

Uk = xk - ak 9 (1.19)

the x k axes and ak axes being parallel. Substituting for f(n) from

(1.17) for the elastic enerqy appropriate to the crystal symmetry in (1.18)

and performing the operations indicated, we obtain

3 3
t A (I + B U IJ (1.20)

jitt l J ,aa ,= ja ,aa

where

Uj,a = U /a 1

U i'tt 2 Ui/ t 2

and

U , = 2U/aa2 (1.21)9.,aa 9, 1

In the above equation, A.. are linear combinations of SOE constants and

B are linear combinations of SOE and TOE constants. Since we areijk

interested only in the lowest order of nonlinearity, the terms involvinq

fourth- and higher-order elastic constants are neqlected in (1.20).

Let us introduce new dependent variables Pk in order to remove

the linear couplinq of the three compounds Uk through the terms

> A.jU. a The coefficients A.. in (1.20) form a symmetric matrix so
ij j,aa' 13

that an orthogonal matrix S exists such that S*A S is diagonal. Hence if

we introduce the transformation

3
Uj = k SijPk (1.22)

_- k=l
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into Eq. (1.20), we obtain

3
P. I+P ,P (1.23)Pj,tt lijPj,aa Zm=l \)j z~a maa

where P, are the eigenvalues of the Aij matrix. The v.jQm form linear

combinations of SOE and TOE constants. Equations (1.23) can be

simplified further usinq perturbation theory. A straightforward

perturbation calculation shows that only those terms in Eq. (1.23) for

which j = z = m or for which z = m and Iij = v'9k yield a second harmonic

which increases linearly with propagation distance. Such terms are said

to be resonant. Then the experimentally relevant equations of motion

for a plane wave take the form

v .=+ ... P. P. (1.24)

j,tt ij j,aa VJJj J,a j,aa

where j 1,2,3. A perturbation solution to (1.24) will be of the form

P. B sin(wt - kja) - (.jjj/8ij)Bj 2kj2a

x cos(26)t - 2kja) (1.25)

where ,, is the angular frequency and k. are the wave numbers which are

related by

2 (j/ )kj 2  (1.26)

a is the propagation distance and B. is the amplitude of P. at a = 0.

The second harmonic amplitude H2j of Pj is given by

H = -( . j /81)j)B2 k 2a . (1.27)

33i
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Holt and Ford 51 have tabulated the coefficients pi and ,,jj, for different

propagation and polarization directions for a number of crystals

belonginq to cubic symmetry.

2. Ultrasonic Nonlinearity Parameters

The ultrasonic nonlinearity parameter is defined as the neqative

of the ratio of the coefficients of the nonlinear term to the linear

term in the nonlinear wave equation. As can be seen from Eq. (1.24),

the nonlinearity parameter can be written as

= - jj/ j) .(1.28)

The magnitude of the parameter B is a measure of the extent to which the

waveform becomes distorted in a specific propaqation distance, and so is

a direct measure of the nonlinearity of the medium. It is proportional

to the ratio of the second harmonic amplitude to the square of the

fundamental amplitude. The parameter varies for different directions of

propagation. The expressions for these parameters for longitudinal wave

propagation along symmetry directions in cubic crystals result from

considering the wave propagation along those directions as shown in the

followinq sections.

3. Wave Propaqation in Cubic Crystals

The description of the finite deformation of an elastic solid

differs in two major respects from that of infinitesimal deformation.

Due to the large deformations involved, the initial coordinates of a

particle in the undeformed state are not interchanqeable with the final

coordinates in the deformed state. Moreover, the expression for the
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strain energy in terms of the strains must be chanqed. Finite elastic

strain can be treated in two different formulations. In the Lagranqia

formulation, the strain is described in the undeformed state and the

initial coordinates of a material particle ai(a,b,c) are taken as

independent variables. In the Eulerian formulation the strain is

described in the deformed state and the instantaneous coordinates of

a material particle xi(x,y,z) are taken as independent variables. In

the following we consider plane wave propaqation along the symmetry

axes of a cubic crystal in the Lagranqian formulation.

a. Plane wave propagation along [100] direction. Let us

consider first the case of plane finite amplitude waves propagatinq alono

the [100] direction of a cubic crystal. The displacement components in

this case become

u = u(a,t) , v = v(a,t) and w = w(a,t) (1.29)

The Jacobian matrix given by (1.6), namely

X, x x ~x
Fil 1 12 13 la b T

"J21 '22 J23 = ^,b i
2z z

L31 J32 J33j 3 T

f +u u u1

Va 1 + vb Vc (1.30)
- va lvb 1 + wj

L wa Wb

52where u = utia, etc. , takes the form
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1 + u 0 0

J= va  1 0 (1.31)

wa 0 I

x, y, z in (1.30) are the same as x1, x2, x3, respectively, in (1.6)

and similarly a, b, c in (1.30) are the same as a1, a2, a3, respectively,

in (1.6). The transpose of the Jacobian is

l+u V Wi

J*= 0 1 0 (1.32)

0 0 1j

Substituting (1.31) and (1.32) into (1.5) we find that the only

nonvanishing strain components are

'Ill Ua + I (ua
2 + V 2 + W 2

= = va (1.34)

13= n31 Wa

Substituting (1.34) in the expression for elastic strain energy (1.3)

and using Birch's values for the TOE constants, we have

2 + 2  2 2 2 3= Cllnll + C 44(n I 2 + n21 + n31 + "13 + C lllnll

+ 2-C2 2 2 2 )] .( . 5
+2 l66 [l(n2 + n21 + 231 + n13 (1.35)

ifferentiating (1.35) with respect to the strains,

A
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_Ci + 3Ci 11  
2  + 12 + r121 2 + 231 + r 3)

2 2C44n21  66lln21

"'21

_n31 = 2C44n31 + C16 6n11,n31

(1 .3f)

Let us introduce the enqineerinq stress tensor which is not symmetric as

T = J( ) (1.37)

where

n, '1, 3

Tn 3n21 ;122 'n23

1n3,1 32 " 33]

Then the equations of motion in the Laqranqian coordinate system can be

written as

Tii /a j = Pou i  (1.39)

where Tij is the stress matrix, a. are the Lagranqian coordinates, f'0

is the density in the unstrained state and ui = xi - ai is the

displacement. The stress matrix can be written in the component form

as
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T11  T12  3 J11 12 J13 Thr1  13
I 3 (1 .38)

T2 1  T2 2  T23 = 21 J22 J23 n21  22 .?3

T3 1  T3 2  T33  J31 J32 J333

31 '31  "32 "h33

from which we can write the stress components as

- + 2,1 - + J __

II ll in11  J12 n2 1  13 @n31

T12  11 +12  12 , r22 + J3 Dn3 2

T 1 4- J 4 + J
13 11 in13  12 "n?3 13 n3 3
T .i. + j ___ . j

T2 1 = J21 n1l J 22 21 J23 'n 31

T 2 +2 + I2 (1.39)
T22 J21 12 22 "23 i 3 2

T = 3 L ++ j _
23 21 'n13  22 in23  J23 in 3 3

T j + + j - )
1 3 1 J 1 32 1r21 333 " 3 1

32 31 12 32 >22 33 32

T _.3 +j --

33 31 (4 13 32 r2J3 33 33

Substituting from (1.31) and (1.36) in Eqs. (1.39), we obtain the

followinq expressions for T11 , T2 1 and T3 1.
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3 2 1 2 2 +2 1 2 ?
T = 1 CI[Ua + - Ua2 + (Va + Wa )]+ 3 Cilllua + 4 C166(va  f Wa

T2 1 = C44Va + C11UaV a + 1 166UaVa

T Cw GCuyw C uvw
T31 = 44wa + a a  166 a a

(1 .40)

where we have neglected terms higher than quadratic in the displacement

gradients.

Since we are considering the special case of wave propaqation in

the [100] or a = a1 direction, we require only the three stress components

Tll, T2 1 and T3 1. In this case the three component eouations of motion

according to EQ. (1.39) are

)T 11/,a 0 ou

T 2 1 / .;a = 0 ( 1 .4 1 )

ST3 1/')a r o

because the stress components are functions of a1 = a onlv and nnt a?

or a, - c. Differentiatinq (.,)) and substitutin- into (I.,") and

rearranqinq the terms we obtain the equations of motion usinq Pirch's

TO[ constants as

u-(C *6)(( 1 )( v) wv

ou  Cll1aa V 11 l6(l)u a uaa + 11 +? 116( ) a Vaa Waaa

.v C -( + ) ( 1 .4 ?)
- C44Vaa (C11 + C166)(uavaa + vauaa

-- (C + C M + w )
0- C44waa ( 11 + C 66)(UaWaa aUaa

Uisina the relations between Pirch and Bruqner elastic coi tants (Ins. 1.V

we can write these equations in terms of Brunqer Plastic constants a,
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Pou - C1lUaa= (3C11 + Clll)UaUaa + (Cll + C165)(vavaa + wawaa)

O#"- C44Vaa (C + C166)(Uavaa + VaUaa) (1.43)

00w- C4 4Waa = (C11 + C166)(Uawaa + WaUaa)

If we write

= CI

= C44
(1 .44)

a = 3C11 + C111

and

Y= C11 + C16 6

Eqs. (1.43) become

O - tU aa = Uauaa + Y(vavaa + wawaa)

O - Vaa = Y(UaVaa + vaUaa) (1.05)

W :Wa = Y(uaw + wU)

Since we attempt to propaaate a pure mode lonqitudinal wave only,

we have

u = u(a,t), v = w = 0. (1.46)

Then the three equations of motion in (1.45) reduce to

0u U- uaa u au .a (1.47)

Hence we see that a pure mode lonqitudinal wave may propaaate in a

nonlinear medium alonq the [100J direction. However, such a wave cannot
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propagate without distortion and the qeneration of hiqher harmonics.

Let us assume that 6 < and apply a perturbation solution to

(1.47) of the form

u=u +u' (1.48)

where u' << u0 and use trial solutions

u" = A sin(ka - wt) for 6 = 0 (1.49)

u' = B a sin 2(ka - wt) + C a cos 2(ka - ,t) . (1,50)

Substituting (1.48) in (1.47), we have

+ 0 ruaa - uaa = '(u + u')a (u ' + u')aa

From the linear elastic equation of motion, we know that

PO - uaa = 0 , (1.52)

where the phase velocity CO  WO/2. Therefore Eq. (1.51) reduces

to

0o0 ' - Uaa = 6[Ua" uaa + (ua'uaa' + ua uaa' ) + ua uaa ] .(1.53)

Since u' <- u' we may neglect the second and third terms on the riqht

hand side of (1.53) in comparison with the first term and hence to a

first approximation the equation of motion reduces to

DO'- YUaa uauaa (1 54)
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Substitutinq the trial solutions given in Eqs. (1.49) and (1.50) into

Eq. (1.54) we obtain the relation

-4oOw 2Ba sin 2(ka - wt) - 4r W2 Ca cos 2(ka - A)

- 21kB cos 2(ka - t) - 2kB cos 2(ka - A.t)

2+ 4Ak2Ba sin 2 (ka - t) + 2rkC sin 2(ka - ,t) (1.55)

+ 2AkC sin 2(ka - t) + 4ck 2 Ca cos 2(ka - wt)

k A 2 sin 2(ka - t)
2

Equating the coefficients of sin 2(ka - wt) and cos 2(ka - A) we find

that

-4o0w2Ba + 4,xk 2 Ba + 4akC = -(6k3A2/2)
-(kA 2 (1 .56)

-4pow2Ca - 4akR + 4ak 2 Ca = 0

Recalling that x = LoCo 2 from Eq. (1.52) and that the angular frequency

Gi, the wave number k, and the phase velocity CO are related by w = Cok,

Eqs. (1.56) reduce to

B = 0, C = -[(kA)2/3OC 21 (1.57)

Thus after one iteration we have the approximation solution

u(a,t) = A sin(ka - (t) - [(kA) 2/8 0oC 2]a cos 2(ka - ,t) (1.58)

which involves the second harmonic. If additional iterations are

performed, higher harmonic terms will be obtained (but hiqher-order

elastic constants would be introduced into the expression for 1(n), of

course).



Breazeale and Ford 3 9 have applied the results of finite amplitude

wave analvsis, as worked out for fluids, to pure mode lonqitudinal non-

linear elastic waves in cubic sinqle crystals. They write the eouation

of motion eauivalent to Eq. (1.47) in the form

outt = K2(uaa + 3uaUaa) + K3uauaa (1.59)

where for the [100] direction

K2 = C11 and K 3 = C1 11  (1.60)

using Brugger's notation for the TOE constants and subscript t denoting

time differentiation. Comparison shows that Eq. (1.47) is identical

with Eq. (1.59) if we set

= K2 and 6 = 3K2 + K3 . (1.61)

If we recall that poCo = 2 from Eq. (1.52) and substitute this

solution along with Eqs. (1.61) into Eq. (1.58) we have

(3K2 + K(3) )2

u(a,t) = A sin(ka - (t) - ( K (kA) a cos 2(ka - .t) (1.62)8K 
2

which is also the expression given by Breazeale and Ford. The nonlinearity
3K2 +1K3

parameter P - K can be recognized in the second harmonic

amplitude in Eq. (1.62).

The equations of motion and their solutions obtained above can

readily be specialized to wave propagation in isotropic solids. Thus

we see that a pure mode lonqitudinal nonlinear elastic wave may nropaqate

along the [100] axis or in an isotropic solid, but such a wave qenerates
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high '- harmonics and the waveform distorts. A pure mode transverse

nonlinear elastic wave cannot propagate without the simultaneous existence

of a longitudinal wave.

b. Plane wave propagation along [110] direction. Let us

consider the propagation of plane finite amplitude waves along the [110]

direction, and rotate our coordinate axes from a = [1001, b = [010],

c = [001] to a' = [110], b' = [110], c' = c = [001]. Thus the coordinate

transformation is given byata
IJ (R) b (1.63)

where the transformation matrix is

71 /~' t /_2 1 2-

1Rr= /2 1/ (1.64)

L 00
With respect to the new coordinate axes, the displacement components are

u' u'(a',t

v' = v'(a',t) (1.65)

w' = w'(a',t)

Hence J' and J'* are given by (1.31) and (1.32) with the appropriate

primes inserted, and the nonvanishing Lagrangian strain components in

the primed coordinate system are of the same form as (1.34), namely
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=U' + 1 (u;,2 + v;.2 + 2)
12 a' a (Waa

I 1nl?'= n? = ?Va'(1.66)

n13' = r31' 2 a''

Since the expression for the strain energy as given by (1.3) is written

in terms of the unprimed coordinate system, we must transform the strain

components into the primed system in order to use equations (1.66).

Making use of the transformation matrix (1.64), we transform the strain

components by

(9) = (R*)(n')(R) (1.67)

to obtain

n I , (n1 ,l

nll 2 ( l' - n1 2 ' n21')

1 +"21 (I'll n12? 21'

21 (71 + n12' + n2l') (1.68)

r23 1/v2 n13 '

31= 1/ n31'

n32 =I'[ n31 '

n33  0 . j

Substituting (1.68) into (1.3) we obtain
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1 C 2 2
T 11[n11  + ("12 + "21') 2

+ 1_2 11 ' (12, + ,)1 ]

, 2 2 ,222 44[11 + (r2 - r21 + + 31 )]

,2 ,(n12 + ,,2+ Cllll + (912il+ 921)

3 ,1+ ,32]

+ I C l [ l '(' ll3 2 3 ' 2 1

+ C14 4 n11  2

,3 1 ,3 2' 2 + r 2

+-C 16 6 [nli + -1 (n12 r2 + rl, ( 23 +131 ]

+ I C (1.69)
2 456rl l 3 '3"31

Differentiating (1.69) with respect to strains, and using the relations
nij = nji and nij' = nji we get

= 1 3+ 2C 3 C ,2 ,2
__ll' 2 11 + C12 + 44) 1 + 4 C111(n11  + 4 12  )

+ i C 1 (3,111' 
2 - 4 2 12

4C121 2 12 + C144"13

SC 166 (3nli'2 + 213 2 + I C45 2

=(C 1  - C12 )n12 ' + 3C1 nI n12' , C1 1 '1I

3 = 2C44n13 + C14 4n11 'n'13' + 1 C166nll'n 13'' T31 403 216l '3

+ I C (1.70)

Substituting from Eqs. (1.31) with primes inserted, and from EQs. (1.70)

and (1.66) into Eqs. (1.39) with primes inserted, we obtain the
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following expressions for T11 , T2 1 ' and T31

T 1 (C + + 2C4 4 )(U' + 1 2 + 2 1
1 2 1 Cl2  2 Uu2 ' + a'.a a'

+ (u 2 + ,'2) + 1 Ci(3u 2 v,, 2
4 Va 4 a

+ 1 C w' 2 +1 C3 2 + 1 W,2 + I
8 144 a' T W166(3u + 456Wa'

21  + 2C4 4)u;.va, + 11 (C1  - C12)va, (1.71)

+ (3C 
alll Cl2)Ua'a'

31 = 2 (C11 + C12 + 2C4 4 )ua w' + C44wa'

+ (C14 4 + C1 66 + C45 6 )uawa,

where we have neglected terms greater than ouadratic in the displacement

gradients. Again we use the reduced forms of the component equations of

motion given by Eqs. (1.41) with primes inserted since we are only

concerned with waves propagating along a' = [110]. After

differentiation of Eqs. (1.71), substitution into (1.41) primed, and

rearrangement, we obtain the equations of motion

0Ou aa = 6Uauaa + YVaVaa + Y*Wawaa

Po- XVaa = Y(uavaa + vauaa) (1.72)

0,Ow - X*waa = Y*(uawaa + WaUaa)

where we have dropped the primes with the understanding that in

Eqs. (1.72) u and a are along [110], v and b are along [Ti1] and w and c

are alonq LOO]. Again we have collected the linear terms on the left
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of the equality and the nonlinear on the right. Moreover, in Pirch's

notation,

2 n + + 2C44)
21C C12 4)

2- [(C11 + C12 + 2C44 ) + (r,11 + C112 + C1 66 )j

11 + C + 2C44 ) + (3C11l - C112 j

y = 4 [2(C 11 + C12 + 2C4 4) + (C14 4 + C166 + C4 5 6)j

(11  C12)

= C44  (1.73)

or in Brugger's iotation

= (C~1  + C12 + 44 ) + I (Cll + 3C112  r l2cir 6)

=1 1
2(C 1  + C12 + 2C44 ) + .4 (C 11 - C112 ) (1.74)

* (C + C12 + 2C + C144 + C1 66 + 2C45)

Since we attempt t& propagate a pure mode longitudinal wave,

Eqs. (1.72) reduce to the form of (i.47) qiven by

0Ou QUaa = 6uaUaa (1.75)

If we rearrange Ea. (1.75) and use Eqs. (1.61) we can rewrite (1.75) in

the form used by Breazeale and Ford, namely

00  = K2 (uaa + 3uauaa) + K3uaaa (1.76)

where for the [110] direction
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K C + C 2 + 2C44 )
(1.77)

K3  - (C111 + 3C112 + 12C166)

using Brugger's notation for TOE constants. Thus, we see that in this

case also a pure mode longitudinal nonlinear wave may propagate with the

generation of a second harmonic aiven by (1.62), with K2 and K3 substi-

tuted from (1.77). In addition, the waveform will be distorted. As

in the linear case, two uniquely polarized pure mode transverse waves

can propagate but in the nonlinear case each of these pure transverse

waves will be accompanied by a different longitudinal wave.

c. Plane wave propagation along [111] direction. Let us

consider the propagation of plane finite amplitude waves along the [111]

direction, and rotate the coordinate axes from a = [100], b = [010],

c = [001] to a' = L111], b' = [112], c' = [TI]. Thus, the coordinate

transformation is given by

a'

b' = (R) (1.78)

C ''

where the transformation matrix is

R 1 1 -2

With respect to the new coordinate axes, the displacement components

are
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u' = u'(a',t)

v' = v'(a',t) (1.80)

w' = w'(a',t)

Hence the nonvanishing Lagrangian strain components in the primed

coordinate system are the same as those in Eqs. (1.66), namely

I' = u; + I (u; 2 + v;,2 + w' 2)

, 1 VI (1.81)2 21 2

q13  Y3 1 1 = a-

Since the expression for the strain energy as given by (1.3) is written

in terms of the unprimed coordinate system, we must transform the strain

components into primed system in order to use Eqs. (1.81). Making use

of the transformation matrix, Eq. (1.79), and transforming according to

(1.67) we obtain

= ' 6 nI ' + V 1 ' - /-n I ' + 2nI ')

l= (2 n2 1  6 r31' + n1 2 ' + r n1 3 ' + 2111'
1 , _ / - , 2+ /2 + 2 n , 1 2) l,

r1 = 6 (Yr2 n21  r n 31, n 1 2  +

r'21 , 6 '21 vr6 r3 + v122' - /6 r13' + 2,111

122 ,(/7 r 2 1 ' + , + vr? + 1' + +6 n 13' + 2ii') (.

r122 = (-2/- n21 + - n31 + /26 n1 + 2 n13')+2l'r 12 6 r ,' + 6 r3, 2 2 n121 + 2il 1, )

r 1 r2 2 r 2' Y/6 n1 3 '
+ 2nl'1
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"32 (-2 ' + /2 n1 2 ' + /6r'131 + 2rill )

1 (-2'- 22r2 + 2 +2 )

r'33 = - n21 " 1 21

Substituting Eqs. (1.82) into Eq. (1.3) we get the expression for strain

energy as

I2 , )2 2 + 1 ,2]6 = 11[r I I , + (n'21 '+ "12' + nT31 + 1~l3 )I

. 1 2 12+ C 2E il l - 6 + r2l 2' -6 (31 + 13 )]

C44 [ 2 + 2 ,2 - 2 + 2 ,

+r + '31 + 13 n31 3 '21 - 2  1 2 ]

,3 + 1 + ,) 2 1 2(31 13,)
+ I 1 l 3I1'T2 + I12 + 3 ' I '3 TI13

3 -V -
T8 (rT21 ' + ni2' + T ('21 + n12')("31 + r13 )

2 ± 2 + 1 ,3 22 , ++~~~~~~ ~ ~ C 11(' rl, + 8(21+212T + !'12' )"31 + " ' 2

1 .3 1 ,, ,
+ C 144[- I - 3 _ 11' (n21'n1 2 ' + n31 '"13

r+ f 2  - 2 1 2 ] 2 r 2+ v ,T 3 ,3 ,2 3 n22
36 ('21 + 12' -3n 1 1 121

+ 2 + 2 2 , ,2 + ,2 + 2 2+ - "r21 13' T '31 ' "13 n31 + r'12' ("31 + 2 31 "l 33 - "13 )

+ C [2 '3 1 ,2 2 3 2 + 2)+ 166E r"lI + 1 "111' ("21 + "!12' + "131 ' + "13'

+ ,3 , 3 2 + ,
(-r21 - r1 ' 1 2 12 12 '21 ' )

+ .12 2 ,2 , 2 + ,2 2 2
T- "21 ("31 - 2 r 3 1 "' 1 3  '"13 ) i (12 ' 31 ?T31 "'1 3  13.

+ 2 1  3 1 , 1 )2,+ 123L2 "II T-8 nII'1(" 21 + n1 2' )2 lI' " 1 + 1

r- 3 + 2-  .2
5-4 (r21' + r'12') + ( 1 + l 2 )(rl 31 + 1 3 1



41+, 1 , 3 + 12 2,
+ C4 56[ 1 I - .2 - nl13  + '31 '"13 '

1 ,2 ,2+ 9 -n 21 " 12 + " 21 r12)

r2 ,3 2, ,3 , 2 , 2
+ - (-2n 2 1  2r12' + 3n21 1122 + 3,12 '21 2)

r2 2 2, + 22 2,I ,2 ,2

8 ,(21'13,2 - 2n31'
2 + 2n31'13' ) + "12' ("3 1  13' + 2 1r13')

(l1.83)

Differentiating Eq. (1.83) with respect to strains and using the symmetry

relations nij - nji and ij = nji, we have

1  (C + 2C + 4Cajnll + C111( 
2 + 4T21 + 4 31

3n(l 11  12 _ +,

2 T 112 1 .2 _ 2 2+ Cll2Tll + C14 4 (Tli I r 2 1  - i3 1

+, C2 2 2
+ 2 66("l + n21 + T31 )

1 2 21 ,2 2 2 2 )C123 (i - 2 - 2n31  + C (2 -

) (- 1 4 56  II 1  31 21

2 +2 C 2
S (C11 - C12 + 2C44 )n2 1 ' 

+ I Cl 11(2ll "21

2 2) 2,/2 2 2?
- r21 + r T3 1 ') + 3 '- C11 2(n2 1 2 n3 1 )

+ C144 (-2ri I n21' - T21' + 2 n31

1 ,- ,2 -' ,2
+ - C16 6 (4,i11 T i21' + '2 r21 - rn 3 1 )

+ - ,, ,2 , 2

SC 12 3(_11 n2 1  - ' T2 1  + V' r 3 1 )

+ - C456 (-2r1i ' 2 1 ' + 2 T21  - ,/2 n .218 46 '2, + 2 2, r r3



,, 2 + 4 c
rI3 1 ' 3 C11  - '1 2  + C :4 4 ) 3 1  3 11 1 1 31 + ? 1 1

-T C112 C 21 31

1 . .. 1( ., " . ' /
+ 14 4 (-" 1 1  ' 3 1  + '2 21 '131 + 3 16f6 11 1 1 1 :

+ C123 (-" 1 1 'T131 + 2 r1 r21 IT131 )

+ 4 5 6(-ri 1 3 1 + 2 21 '31 21 2)

Substitutinq from Eqs. (1.31) with primes inserted and from Hqs. (I 4 and

from Eqs. (1.81) into Eas. (1.39) with Drimes inserted, we obtain

T11 - 3 (C11  + 2C12  + 4C44  (U; + U;,2 + I V + I w 2)

I (Ua2 + v;,2 2 + U 2+3 Clllu; a' a- 3 112 a'

+ 1 c2 1 v'l 2 _ 1 w ' 2) + 2 c (u;. ? + l v', + I w' '
3 C144 (ua ; 4a 4w a' 3 C1 6 6  + 4 a 4  ',

+ _ c13 V l _ ,w w, 2)+ q wPuP 2'123 (u; 2 2 -2 4 1 2 1 a

, 1 1
T21 :,(Cll C12 + C44 )va, + I (C11 + 2C 1 2 + 4C 4 4)ua v'

1 3 1 - 2 1 +2 44 2)
+ 2 Cll ( ' 2 a -' 2 12 + 2i 11u a' - '4- a -

'( 2 -w' + 1+ - Cll2(V;' a'l + 44 aU 'V' a ' d ; 4 a' a

+ 1 Ca av + v '  2 - '2- w' 2)

+ 1  ' 2 4P9 123(-Ua ' a'- a' + wa'

+ 1- C + ¢2  v '  2 " w'1 2)
1 i C456(-Ua',Va' ' + -a
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T I , + + 2C + 4C
31 3 (CI1 - C12 + C 44 )w;, + 3 (C11  12  44)uww

+ I c (2u;,w' + ." v' w,) - C v' w
3 ill ' 12

+ C144(-u w , + k2 v' w ) + C 166 (u ,' v' ,w ,)6 144 ;W 3'Wa6 a' a 4- a

+ , (-Ua 1 , 1- ' w ;9l 1 ,w' + +) 1w8 6 56(-u2,w Vaa+ 9 H3 a V~ ~~a ' 2 6 -u.' ,~ ,a ) (1.85)

where we have neglected terms higher than the ouadratic in the displacement

gradients.

We can use the reduced forms of the component equations qiven by (1.41

with primes inserted because we are only concerned with waves propaoatinn

along the a' L1111 direction. After differentiation of Eq. (1.85),

substitution into Eqs. (1.41) primed, and rearranqement, we obtain the

equations of motion as follows:

;0 -uaa u aa + (ua vaa + ww )

* 0v - .vaa (ua vaa + va uaa) + (waw - vaVaa) (1.86

= (u w v +w v )"o aa a aa a aa a aa a aa

where we have dropped the primes with the understanding that in Ens. (1.86) u

and a are alonq [111], v and b are along [112] and w and c are along L110].

As before, we have collected the linear terms on the left of the equality and

the nonlinear on the rinht. In Birch's notation of TE constants

-~ U
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= (C1  + 2C1 + 4C44)

S[(C + 2C12 + 4C44) + 
6 Cli I + 12CI 2 +

+ 12C 16 6 + 2C1 23 + 4C4 56]

18 6(C + 2C + 4C 44 ) + 12C 111 - 3C 144 + 6C166  2 1

x 1 (C -C l  +
x = ~ 1 2  C4 4 )

= - (12C 1  - 12Cll 2 + 3C144 -3C + 4C12 3 - C4 56)

(1.87)

or in Bruqger's notation

S (C11 + 2C12 + 4C44) + 1 (CI1 l + 6C112 + 12C 144 + 24C 166

+ 2C123 + 16C 456

= 3 (CI I + 2C12 + 4C44 ) + (C1 1 1  3C14 4 + 6C16 6  C123  2C4 56 )

- (C - 3C1  + 3C1  3Cl  + 2C1  - 2C4 5 6 )=T8 iCll 112 144 166 123 45

(1 .83)

If we attempt to propagate a pure mode longitudinal wave only,

Eqs. (1.86) reduce to the form of En. (1.47) qiven by

n06 - Quaa = U aUaa . (1,89)

If we rearrange Eq. (1.89) and use Ees. (1.61), we may rewrite Eq. (1.86)

in the form used by Breazeale and Ford, namely,

0oU = K2(uaa + 3 uaUaa) + K3 uauaa (1.90)

where for the [111] direction
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K 2 C1 + 2C12 + 4C4 4 )

K -3x = (CI11 + 6C112 + 12C 144 + 24C 166 + 2C123 + 16C456)

using Brugger's notation for TOE constants. Thus, we see that in this case

also a pure mode longitudinal nonlinear wave may propagate with the

generation of a second harmonic given by En. (1.62) with K2 and K3 substituted

from (1.91). Due to the presence of c terms, transverse wave propagation is

more complicated than the previous [100] and [110] cases.

Summarizing the results obtained in the above three sections we can say

that in the principal directions in cubic crystals the equations of motion

for plane finite amplitude longitudinal waves are described bv equations of

motion of the form (Eqs. 1.47, 1.75 and 1.89)

r 0  - luaa = .Uauaa (1.92)

or in the form (Eqs. 1.59, 1.76 and 1.90)

O0u K2 (uaa + 3u u aa) + K3UaUaa (1.93)

given by Breazeale and Ford. In the above two equations the constants are

related by

K 2

and (1.94)

K3  34

The values of K2 and K3 along the three pure mode directions are given in

Table I (Eqs. 1.61, 1.77 and 1.91).
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Table 1. Values of the quantities K2 and K for lonnitudinal wave

propagation alonq the pure mode directions in a cubic crystal

Direction
of Wave K K
Prrgqation K2 K3

[100] C 1 Cl11

[110] 1 (Cl + C + 2C44I 1 ( C 2
[j0] 2 11 12 44 iCll + C1212 C166 )

[1ll] - (Cll±Cl 2 +4C 4 )! (Cll I +6CI 1 2 +12C 14 4 +24C 1 66 +?Cl12 3 + 16 4 56 )

The ultrasonic nonlinearity parameter, as defined in Section 2, is the

negative of the ratio of the nonlinear term to the linear term in the wave

equation (1.92 or 1.93), namely,

3K2 + K3
K ( .

For an initially sinusoidal disturbance at a 0, the solutions are of

the form (Eqs. 1.62)

u A1 sin(ka - t) + 1  cos 2(ka - wt) (1.96)

A1 
2 k2 aP

where A1 is the fundamental wave amolitude and A2 = 8 - is the

second harmonic amplitude. A2 contains the nonlinearity parameter F.

in terms of A1 and A2, P is given by

8 A 2 1 1 (3 + k3) (1.97)

A 2 i 2.2 3 K
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Obviously a is the pronaqation distance and k = Iv/ is the wave vector.

So a measurement of A1 and A2 leads to &, which can be used to evaluate

K3 which are combinations of TOE constants.



CHAPTER II

APPARATUS AND MEASUREMENTS

The ultrasonic nonlinearity parameters are determined by measuring

the amplitudes of both the fundamental component and the generated second

harmonic component of a longitudinal wave propagating along the three

symmetry directions of the sample. In the theory of finite amplitude

distortion in solids the ratio (A2/A1 2), as given in (1.97), is independent

of A1 only in the limit of infinitesimal amplitude. So the smallest

amplitude consistent with useful signal to noise ratio are used. The

proportionality between the second harmonic amplitude and square of the

fundamental amplitude holds strictly true 39 for infinite discontinuity

distance which is equivalent to infinitesimal amplitude. So measurements

with the smallest fundamental amplitude most exactly satisfy the

assumptions made in the theory.

The frequency of the fundamental signal is chosen as 30 MHz as

a compromise between the two following considerations: The neneration

of the second harmonic amplitude A2 is directly proportional to the

square of the frequency. So higher frequencies produce an improvement

in the signal to noise ratio. At the same time, attenuation and effects

of nonparallelism of the sample faces also increase with frequency.

30 MHz frequency is found to be most favorable. In the nonlinearity

measurements the pulse-echo technique is used, allowing one wave pocket

to die out before the next one is introduced. The pulse repetition rate

is kept down to about 60 Hz to minimize sample heating. The largest

ultrasonic displacement amplitudes attained at 3n Mhz are of the order

48
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of 10 A'. From Eq. (1.96) it can be estimated that the second harmonic

amplitude will be about 1 percent of that of the fundamental. Thus a

detector is needed of sensitivity sufficient to measure displacement

amplitudes of the order of l0- 9 cm.

1. Room Tempcrar Apparatus

(a) The Lapacitive Detector. A capacitive detector has been

developed40 to measure displacement amplitudes as small as 10- 12 cm

(- l0-4 A'). A simplified diagram of the capacitive detector assembly

is shown in Figure 1. The assembly consists of a detecting electrode

held in place by a fused silica optical flat so that it is insulated

from the outer ground ring which forms the ground of the electrical

system. The detector and ground ring are made optically flat to an

accuracy of half a wavelength of helium discharge light. The dete or

electrode is positioned at the center of the ground ring. It is

recessed slightly with respect to the surface of the ground ring. ThE

sample faces are also made optically flat to the same accuracy. The

sample rests on the outer ground ring. The assembly is aligned properly

so that the sample face and the electrode surface form a parallel plate

capacitor. Typical gap spacing between the sample face and the electrode

is of the order of 5-10 microns, resulting in a capacitance of 100-75 PF

for a detector diameter of 0.916 cm. A bias voltage of the order of 100-

150 volts is applied to the electrode, producing very high electric field

( 1000 kV/cm) in the capacitor gap. When a plane longitudinal wave

impinges on the sample face, causina it to vibrate, the gap spacina is

changed correspondingly and an alternating voltage is induced between

the electrode and qround. The exact alignment of the sample, electrode
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Capacitive Detector

Figure 1. Cross sectional view of the room temperature apparatus.



button and qround ring is very important because a sliciht misalignment

can result in shorting between the sample face and the electrode. For

perfect alignment, the electrode is fixed at the center of the ground

ring, and an optical flat is used in monochromatic light to produce

fringes on the ring and electrode. Alignment of the frinoes assures

parallelism of the ground ring and the electrode.

Onto the top of the sample a piezoelectric X-cut quartz transducer

of fundamental frequency 30 MHz is attached with stopcock qrease as the

bondinq material. The transducers used are of diameter 1.27 cm. A

copper electrode separated (electrically insulated) from the Outer

portion of the assembly by a teflon ring is pressed against the transducer

by a spring. The sprinq provides electrical connection between the

electrode and the BNC connector through which the electrical pulse is

applied. The entire system is aligned and held in position by steel

pins. The outer parts of both the detector and the generator transducer

assembly make good contact with the sample surfaces so that electrical

shielding is obtained which is very essential for accurate measurements.

A photograph of the assembled room temperature apnaratus is shown in

Figure 2.

b. Calibration Procedure. Calibration of the capacitive detector

and subsequent absolute amplitude measuremenits are done by introducing a

substitutional signal in place of the acoustical signal. Provision is

made in the experimental setup to connect a substitutional signal

generator and an RF voltmeter to the detector button. The assembly is

made in such a way that the capacitive detector need not he removed from

the circuit during calibration measurements. The eqiuivalent circuit for
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Finure 2. The room temperature apparatus.



the detector is the Norton equivalent. The equivalent circuit for the

detector is shown in Figure 3. When the acoustic signal is turned off,

the imaginary switch Sl is opened, and the switch S2 is closed by connect-

ing the substitutional signal generator to the detector assembly, The

series combination of the inductance L, the amplifier input impedance

in parallel with the detector capacitance CD and stray capacitance CS

form the total impedance of the detector circuit. The substitutional

signal current is flows through the same impedance as the acoustical

signal current is. The inductance L is the inductance of the wire

leading from the banana jack to the BNC connector (see Fiqure 1). The

inductance of the connector between the banana jack and the bottom of

the detector can be nealected due to the larqe diameter of this

connector.

If the end of the sample vibrates sinusoidally at an anoular

frequency ., with amplitude 2A, where A is the acoustic wave amplitude

in the sample, then the gap spacing chanaes with time accordinn to the

relation

S - S + 2A sin ,t . (2.1)

The factor ? enters in the amplitude because the vibration amplitude

of the sample is twice the wavP amplitude inside the sample. This

results from reflection of the wave at the stress-free surface of the

sample. Thus, the capacitance of the detector, considered as a parallel

plate capacitor, responds as

1/C = 1/C (l + ?A sin t) (2.?)
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where C0 is the static capacitance of the recoiver which is (iven hy

Co  (2.3)

0S0

where a is the area of cross section of the electrode button, c is the

dielectric constant of the medium (=l in our case because the medium

is air) and S0 is the static gap spacing. If Vb is the bias voltaae

applied to the detector, the equivalent voltane V of the detector can

easily be obtained as

V=2AV b (24V - SO(2.a)
S 0

where A is the amplitude of the ultrasonic wave. The derivation of

this expression with the help of an equivalent circuit is niven in

Appendix Al.

In the equivalent circuit given in Figure 3, GD and GS represent

the ultrasonic and substitutional signal generators. Since the voltaqe

V is related to iD by i 0  VwCD where ,o is the angular frenuency of the

ultrasonic wave, we have

iD 2AV D (2.5)

The substitutional current generator GS is adjusted to aive the same

output from the amplifier as with the acoustic signal. When this

connection is satisfied

iD s (?.6)



Practically, voltages are much easier to measure than current,,

and so the voltage across GS is measured and the current iS is calculated

from this voltage and a knowledge of the impedance through which the

current flows. The resistor R does not act as a pure resistance at hiqh

frequencies. So the impedance of the resistor R must be measured at each

frequency used in the calibration measurements. These measurements are

made with a vector voltmeter. The sample, detector assembly and bottom

plate are removed from the apparatus and a 50, precision terminator is

placed on the "signal out" BNC connector as shown in Figure 4. Both

vector voltmeter probes (with isolator tips) are placed at Point 1 and

the phase angle between the signals is zeroed and the amplitudes are

measured. Probe A of the voltmeter is then left at point 1 while probe B

is moved to point 2. The qenerator is readjusted to obtain the same

reading of the A channel amplitude as before, and the amplitude of the B

channel and the phase between the probes are recorded. This is done at

each freqcjency used in the calibration measurements. The impedance 7

of the resistor R can be calculated from

+ 1 1 V BI VB2e(2Z =  j C + (2.7)
R + J VB e i

- - B2

where VBI is the amplitude measured by probe B at point 1, V 2 is the

amplitude measured by probe B at point 2, C is the stray canacitancp

which appears at point 2 (this includes the probe tip ,-apacitance), I1

is the resistance of the precision terminator (measured to M7l with an

impedance hridqe), is the anqular frenuency, ,, is the phase annie
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between VBI and VB2 and j= -1. A plot of the real and imaninary

values of Z versus frequency, around the fundamental and second

harmonic frequencies are shown in Figure 5.

The substitutional current iS is then calculated by

V s

S = [i--ID+ --)I + "' (2.8)
z + [j)(CD +CS) + 50+j(, LJ

where Vs is the voltage across the current generator Gs. The resistor R

has a value of approximately 10 KQ; therefore Z is much laraer than the

other impedances in the apparatus, so that the other impedances do not

have to be known very accurately in order to calculate is accurately.

Also, the large value of Z gives a large voltage Vs which can be easily

measured.

c. The Exoerimental Setup. The block dianram of lke Pxperimental

setup for the room temperature nonlinearity measurements is given in

Figure 6. A stable RF oscillator is used to drive a qated amplifier.

The pulses are Dassed through a matching network and a 30 MHz handpass

filter which insures spectral purity of the ultrasonic wave even if the

quartz transducer is driven off resonance. The transducer has been

well bonded to the sample with nonag stopcock grease. The signal from

the capacitive detector is fed to either the 30 MHz or 60 MHz handpass

amplifiers and the amplitudes of the signals are measured accurately

with the boxcar intearator and vector voltmeter. The silicon samples

not being nood conductors, do not sufficiently shield the RF pulse at.

the transducer from the detector so that a 30 MHz direct feedthrounh

pulse is received at the detector by radiation before the ultrasonic
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signal reaches the detector. This feedthrough pulse is oftentimes much

larger than the echo of interest and although it can be separated in time

from the echo to be measured, it can overload the 30 MHz amplifier and the

boxcar integrator. The recovery time of the 30 MHz amplifier and the

boxcar integrator would be too long to allow proper measurement of the

first echo if they are overloaded by the feedthrouqh pulse. Whenever

the feedthrough is excessive to make measurements difficult, an RF

gate is used to detect the acoustic echo and a MOSFFT qate is used to

prevent overloading of the boxcar integrator. Descriptions of the RF

gate and MOSFET gate along with their circuits are given in Appendix A2.

2. Room Temperature Measurements

The 30 MHz fundamental and the 60 MHz second harmonic signals

have been measured by the boxcar integrator and then the continuous

wave 30 MHz substitutional signal is introduced at the detector. A

30 MHz filter is used between the generator buffer amplifier and the

detector to insure spectral purity of the signal. The signal amplitude

of the substitutional signal is adjusted with attenuators so that the

readings on the boxcar integrator coincides with the readings correspond-

ing to the acoustical signal. The 60 MHz substitutional signal is

derived by doubling the 30 MHz signal with a rinq bridge mixer and

filtering the output with a 60 MHz bandpass filter, The circuit and

description of the frequency doubler are also given in Appendix A2. The

continuous wave substitutional signals in both cases are measured

accurately with an RF voltmeter. The bias voltane applied to the

detector is noted and the gap spacing of the receiver is measured by



6?

measuring its capacitance with an impedance bridge. From these the

amplitudes of the fundamental and second harmonic signals are determined.

The measurements have been repeated for different values of

fundamental signal amplitudes, the measurements beinq done on [100],

[110] and L111] silicon samples.

3. Velocity Measurements

In order to determine the K2 values given in Table 1 (p. 46) or

the SOE constants of silicon, measurements of velocity of longitudinal

waves along the three symmetry directions have been made usinn the

pulse overlap technique with the capacitive receiver described before

as the detector. A typical experimental setup for pulse overlap technique

is shown in Figure 7. The gated amplifier produces a series of pulses

that overlap in the sample. As the freouency of the CW aenerator is

chanqed the echoes go through interference maxima and minima. The

number of minima (or maxima) are counted and their frequencies noted. A

typical interference pattern obtained usino this technioue is given in

Figure 8. Interference minima are preferred rather than maxima in order

to minimize envelope effects in shift in the position of the peaks due

to nonconstant amplitude response of the electronic equipment as a

function of frequency. The velocity C is then calculated from

C 2AfL (2.9)
An

where Pf is the change in frequency correspondinq to a change in peak

number An and L is the lenqth of the sample. The velocities of lonqitu-

dinal waves along the three symmetry directions are given by
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C[100] = C 11  K2 [100]

C(1lO] = (Cll + C + 2C K (?.10)2 C112  C44  K2 [10

Cll] = l (C + 2C12 + 4C44) K2 [111]

So a measurement of velocities leads directly to the K2 values qiven in

Table 1 (p. 46). The measured values are compared with the values

reported by McSkimin 53 and are found to aoree very well within experi-

mental uncertainties.

I. SamplIe s

The samples used in the measurements are sinqle crystals of

silicon cut alonq the [100], [110] and [111] symmetry directions havinq

lengths 2.5171 cm, 2.5222 cm and 2.5248 cm, respectively. The sample

ends are made optically flat to less than 15" of arc by hand lapping

and polishing. The end faces are then made electrically conductive

by coating a copper coatinq of approximately 1000 A" thick onto them

by vacuum evaporation.

5-._The Cryoqenic Apparatus

A qeneral cross sectional view of the cryoqenic system is shown

in Figure 9. The dewar used is a conventional qlass tyne incorporating

two vacuum chambers with silver coated surfaces. The cryoqenic fluid

chambers are shown as V1 and V2 in the figure. For operation between

room temperature and 77K, linuid nitrogen is used as the cooling agent

in both the chambers. Near room temperature, it is convenient to

operate with liquid in V2 only and have dry nitrogen Qas in the usually
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evacuated space between V1 and V2. To operate between 77 and 3K,

liquid helium is used as the cooling aaent, maintaininq liquid helium

in V1 and keeping V2 filled with linuid nitroqen. It has been ohserved

that by pumping on the liquid nitronen in the inner chamber, the

temperature can be brought down to about 65'K thus avoiding the use of

expensive liquid helium between 77 and 65K.

The sample assembly is surrounded by two stainless steel cans.

The inner one surrounds the sample and control assemblies, and the

outer one which is concentric with the inner one provides a means of

controlling the amount of heat transfer between the system and the

coolant. The outer can is in immediate contact with the coolant. The

space between the two cans is evacuated to provide an insulatino jacket

around the inner can. The cans are well polished to reduce radiation

losses. The cans are supported by three thin-walled cupro-nickel tubes,

each of which serves multiple purposes. Two of the tubes have smaller

thin-walled cupro-nickel tubes inside them to form a coaxial transmission

line: one for the signal input to the transducer and the other for the

output from the detector. The tube sizes are chosen to make a 50

transmission line. These two tubes are also used as vacuum lines. The

tube that houses the transmission line connector to the transducer is

the vacuum line for the space surrounding the sample (the inside space

of the inner can). The tube that houses the transmission line connector

from the detector is also the vacuum lining to evacuate the snace surround-

inq the detector button of the capacitive detector. Photooraphs showinq

the cryogenic apparatus are given in Finure 10.
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(b)

(a)(

Fiqure 10. The cryooenic apparatus. (a) The complete apparatus,:
(h) apparatus with outer can removed; (c) apparatus with both cans,
removed.



The capacitive detector used for low temperature measurements

is similar to that used in the room temperature apparatus, with the

additional feature that the gap spacing between the detector button

and sample surface can be controlled pneumatically. The cross sectional

view of the variable gap capacitive detector is shown in Figiure 11.

The lapped ground ring against which the sample rests is undercut to

make it a flexible diaphragm approximately 0.04 cm thick. The detector

space is evacuated through the tube which houses the transmission line

for the signal from the detector. The gap spacing is controlled

pneumatically by regulating the pressure in the inner can. A cut-away

view of the sample assembly is shown in Figure 12. The capacitive

receiver, the inner can and the outer can are bolted in place with indium

0-ring seals so as to have good vacuum in the detector space, inner

can and outer can. Dry nitroqen or helium gas can be admitted into the

space surrounding the sample which helps to prevent unwanted p~recipita-

tion in the sample space. The gap spacing is adjusted pneumatically

by letting in or pumping out nitrogen or helium qas in the sample space.

The variable gap capacitive detector makes it possible to have a constant

detector capacitance for the detector when F .P temperature is varied,

The effects due to differential therm- o x .-Ion of the sample and the

associated assembly are thus compensated by regulating the pressure in

the inner can.

Once the sample has been cooled to liquid nitrogen or liquid

helium temperature, the temperature can be increased with an electrical

heater. Two sets of heater coils are wound, one above and nne below the

sample so that uniform heating of the sample takes place. The temperature
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ot the ',ample i, measured with a germanium or iplatiiiu senser. A

iermanium sensor with nec3tive temperature coefficient of resistance

1, '"e'd helow ?0 K and a platinum sensor with positive temperature

i int of resistance is used at hiqher temperatures. The

,,i,, tri(al output from the sensor controls the power delivered to the

vilatr, this being accomplished with an Artronix temperature controller.

i ttir ip(rature controller contains a bridge circuit. One of t hr arms

(,t the hridne is the temperature sensor. If the bridge is unbalanced,

the controller provides more or less power to the heater which tends

to balance the bridge. The deviation of the temperature from the set

point, and the voltane on the heater are monitored on a dual pen strin

chart recorder. Monitoring the heater voltage allows one to determine

when thermal equilibrium has been established in the sample chamber.

The system allows one to increase the temperature slowly and measure

it accurately. A block diagram of the temperature measurement and control

system is given in Figure 13.

To facilitate accurate temperature measurements, the measurements

are done with different sensors than the temperatlre control sensors.

A constant current generator, shown in Fiqure 14, supplies a current

to the sensor (either platinum or germanium), and the voltaqe.is

measured across the sensor. A four-wire connection is made to the

sensors so that the voltage measurement is made by a path which does

not carry current. This prevents lead resistance from affecting the

sensor resistance measurement. A voltmeter which has an input impedance

of 1000 m' is used for measuiement so that neqlinihle current is

drawn. The vol tmeter is also used to measure the current by mnauri n
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the voltaae across a known resistance in series with the ( Inriint-carrvinj

lead. The constant current generators is required because the heater

current also flows through the ground of the apparatus. When a simple

resistive network is used to supply current, the noisy heater current is

large enough to change the voltage with respect to qround which changes

the sen-or current by a noticeable amount. The resistance measurement

can ,Lill :e made, in principle, as the sensor voltaqe chanqes when the

sensor cur'rent is changed, but since the measurements cannot be made

simultaneously the heater noise makes measurements difficult. The

ingle transistor constant-current generator is very effective in

holding the current constant regardless of voltage chanqes with respect

to ground. The voltages measured are of the order of I mV so that

contact potentials and thermal potentials need be taken into account.

An effective way to do this is to take two or more resistance measure-

ments usinq different currents. Then the sensor resistance R is found

by

R= V 2 - Vl-R-. . 1 (;'.ll )
12 1 I

where V1 ond V2 are two voltages and II and 12 are the corresponding

currents.

6.. Cr°_qenic Nonlinearity 'easurements

The block diagram of the apparatus used for low temperature

ultrasonic nonlinearity measurements is shown in Figure 15. The sional

path is the same as that for room temperature measurements with the

exceptions that (1) the substitutional siqnal capability is absent

i.,
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hecause only relative ampl itudes need be ,,asIrd and (2),a ((1 MlI,

broadband filter is introduced between the capacitive detector and the

60 MHz amplifier in addition to themostat gates. The feedthrough

problem is much worse in the cryogenic measurements than in the room

temperature measurements. In the room temperature apparatus, the

sample could be adjusted manually until proper sample seating,

principally on the transducer end, is achieved resulting in the reduction

of feedthrough signal. In the low temperature apparatus, the sample is

inaccessible to such adjustments and so the two Qates are important in

the cryogenic measurements to insure that the amplifiers are not over-

loaded. Under these severe conditions the 60 MHz amplifier can be

overloaded by the 30 MHz feedthrough. So the 60 MHz filter is used to

attenuate the feedthrough while passing the 60 MHz signal. Since the

filter is a completely passive network, harmonics cannot be Generated

by it. In Figure 16 a photograph of the entire low temperature system is

given.

The low temperature nonlinearity measurements are done usinq a

comparison technique because the 30 MHz and 60 MHz amplifiers have

qains which can be functions of the signal amplitude. The procedure

is to set the capacitance of the detector to a chosen value. As the

temperature is varied, the variations in the capacitance (or spacing)

is nullified very conveniently by adjusting the pressure in the inner

can with a regulator valve. The bias voltage on the detector is set

to some predetermined value (", 150 volts). The RF power applied to the

quartz transducer is adjusted to obtain some predetermined readinq of

the 30 MHz signal on the boxcar integrator. The detector bias voltage
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is then chanqed until the 60 MHz second harmonic signal reaches the

predetermined boxcar integrator reading. The pulse repetition rate,

pulse lenqth and gains of the 30 MHz and 60 MHz amplifiers should be

kept undisturbed during the entire experiment. In order to avoid the

trouble of considering the frequency denendence of the eouipment,

the frequency of the CW generator is also kept constant.

Always the bias voltage of the fundamental signal remains the

same and any deviation of the fundamental signal amplitude from the

predetermined boxcar integrator reading is compensated by adiustinn

the inpit signal to the transducer. The second harmonic bias voltage

is then varied to obtain the predetermined second harmonic boxcar

integrator reading. So the only variable in the entire temperature

cycling is the second harmonic bias voltage. The output of the 60 MHz

amplifier is proportional to the amplitude of the second harmonic

and the detector bias voltage Vb. If this output is held constant and

the measurements are made at two temperatures T1 and T2,

T1  TI T2  T2
A2  Vb 

1 A 2 Vb  (2.12)

where the different subscripts indicate the temperature correspondinq

to the value. Therefore

T1
T2  T1 Vb

A2 = A2 1 T (2.13 )

2 hVb2

The measurements are made relative to the room temperature values. The

relative nonlinearity parameters of silicon alonq the three symmetry
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directions have been measured between room temperature and 30K by this

technique.

7. Transducer Bonding for Low Temperatur-e

Nonlinearity Measurements

The nonlinearity measurements are made with X-cut 30 MHz transducers

of diameter 1.27 cm bonded to the sample. For room temperature measure-

ments nonaq stopcock grease is used as the bondinq material. This bond-

ing material fails at low temperatures. So for low temperature measure-

ments a cellulose tape adhesive is used as the bonding material. A

cellulose tape manufactured by Technical Trade Corp., Carbondale,

Illinois, under the designation 7510-551-9818, LT9OC Type 1, Class A is

used for the purpose. The adhesive is applied as follows. A piece of

plastic film with a hole slightly larger in diameter than the trans-

ducer is centered over the sample end and a piece of the cellulose tape

is applied which sticks to the sample through the hole. The tape is

smoothed down to remove all air bubbles and a drop of water is applied

to the back of the tape. When the tape turns cloudy (3-5 minutes), the

water is blotted away and the plastic film is aently lifted. The backinq

of the tape separates cleanly from the adhesive everywhere except at

the edge of the hole. The adhesive stretches between the sample face

and the plastic film at the edqe of the hole and is very carefully

severed with a sharp blade so that the backinn is nently lifted away

without disturbinq the adhesive bonded to the sample. All tracew of

moisture on the bond are removed by keepina the sample in vacuum for

approximately three hours. The transducer is then carefully placed

on the adhesive and all air bubbles are removed by firm but. careful



rubbing with the eraser at the end of a pencil. This bond is found to

work very well over the entire temperature range.

........... . ..... ......................~~~~ ~~~.... . II . .... .. . ..III l ' '......... .. .. 
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CHAPTER III

RESULTS AND DISCUSSION

In this chapter we report the results of the measurements made

on silicon samples to determine their ultrasonic nonlinearity parameters

at room temperature as well as the temperature dependence of the non-

linearity parameters between room temperature and liquid helium

temperature. Temperature variation of some more combinations of TOE

constants are also determined and reported. The strain generalized

Gr~neisen parameters of silicon calculated alonq the symmetry directions

from nonlinearity parameters are also evaluated and presented.

a. Room Temperature Nonlinearity Measurements of Silicon

The results of the absolute amplitude measurements at room

temperature for silicon along the three principal directions are qiven

in Table 2. In order to satisfy the theoretical assumption of infini-

tesimal amplitudes, these measurements are made at low amplitudes which

give qood signal to noise ratio. Irrespective of the value of A1, it
2.

may be noted from the table that the value of A2/A1 is a constant. The

variation of the absolute amplitude of the second harmonic with the

square of the fundamental amplitude for all the three orientations are

plotted in Figure 17. The straiqht lines show a well-defined linear

2variation of A2 with A1 . The lines do not pass throijh the oriqin

because of the residual noise of the experimental setup. The slope ot

the lines, in the least square sense, is the best fit to the value of

the quantity

F,2
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Table 2. Amplitudes of Ultrasonic Wave Components for Silicon at Room
Temperature

SSecond

Fundamental Second A
Frequency Harmonic A 1? 8 A2

Sample Used Amplitude Pmlitude 2 3( 2) 2
Orientation (MHz) A1 x 10-MI 2 x -13 x 107 M-  I k a

7.1677 16.5192 0.321536 0.6657
7.0557 15.7156 '0.315683 0.6536
6.7944 14.7334 0.319154 0.6608
6.5704 12.9475 0.299918 0.6210
6.0105 12.3224 0.341094 0.7062
5.6745 10.8937 0.338314 0.7005
5.3385 9.3758 0.328980 0.6812
4.5918 6.9649 0.330331 0.6839
4.2558 5.8933 0.325384 0.6737
3.6585 4.7325 0.353577 0.7321

3.1279 6.0989 0.623370 1 .5303
3.0614 5.9663 !0.636579 1.5184
2.9282 5.3034 0.618519 1.5997
2.7508 4.9056 0.648297 1.5628
2.7064 4.7731 0.651653 1.5944
2.6842 4.7731 0.662477 1.5915
2.5955 4.3753 0.649480 1.6263
2.3958 3.5798 0.623674 1.5311
2.1296 2.8373 0.625618 1.5358
2.1075 2.7843 0.626875 1.5389

3.4860 5.9676 0.4910717' 1.2555
3.4442 5.8433 0.492585 1.2594
3.3190 5.3460 0.485305 1.2408
3.2563 5.1719 0.4877545' 1.2470
3.2150 5.0973 0.49314911 1.2608
3.0267 4.4757 0.488565 I 2.?4q1
2.9015 4.1027 0.48733161 1.246n
2.7345 3.6054 10.482167 1 1.2328
2.6301 3.3568 10.48526721 1.2407
2.3590 2.7352 0.491520 1.2567
2.1918 2.36?? 0.4917165 1.2572
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3 2 2 3K2 + K3' k a k a[- -8K (3.1)8' 2

which involves the nonlinearity parameter i. The role played by the

power lost from the fundamental to the second harmonic is examined in

Appendix 3. If this effect is taken into account, the quantity 3 ik2a

is given by

3 k 2  = n(A2 + A1  + A 2 ) - (A1
8~a -(3.2)

8 /2A 2 + A 2
1 2

2
rather than A2/Al . For the entire range of amplitudes qiven in Table 2,

the difference between A2/A, and the quantity calculated from Eq. (3.2)

is negligible.

In Figure 18 we have plotted the dimensionless parameter

calculated for various values of the fundamental amplitude. The scatter-

ing of points in Figure 18 is well within experimental error in view of

the fact that the measurements depend on absolute measurements of displaco-

ment amplitudes of the order of 10- 3 A. In Table 3 we tabulate the values

of r obtained by a least squares fit to the data from all the plotted

points for all the three principal directions. The standard deviation

from the least square fit calculated by

j!i<2 1 - .)

,n i (3 "3)

is included in the values.

,,
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of A1 for silicon at room temperature.
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Table 3. Values of the Nonlinearity Parameter (Least Square Fit)

Sample
Sample Length

Orientation (cm) -

[100] 2.5171 ?.0336

[110] 2.5222 4.6887

[111] 2.5248 3.7500

*1
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The parameters K3, which are combinations of TOE constants, alono

the three directions are evaluated from the 8 values by Eq. (1.95)

K3 = (3 + B)K2  (3.4)

and are tabulated in Table 4. The K2 values used in the calculation

are evaluated from the SOE constants of silicon reported by McSkimin ar0A

Andreatch.54 We have measured the velocities and verified that our

values of SOE constants agree very well with those of McSkimin and

Andreatch. 54 The K2 values used in the evaluation of K3 are also qiven

in Table 4. The room temperature TOE constants of silicon have been

measured earlier by hydrostatic and uniaxial pressure technique by

McSkimin et al. 26 The K3 values calculated from their TOE constants

are also tabulated in Table 4 for comparison. It may be noted that the

K3 values obtained from these two entirely different techniques agree

55very well within experimental inaccuracies. Keating has theoretically

evaluated all the six TOE constants of both silicon and germanium in

terms of three anharmonic first and second neighbor force constants and

two harmonic force constants on the basis of central potential. We have

calculated the K3 values from these theoretical TOE constants and these

values are also presented in Table 4. The agreement between experimental

and theoretical K3 values shows that Keating's model is a very good

approximation for silicon and other diamond-like solids.

b. Strain Generalized GrUneisen Parameters of Silicon

In this section we derive the relationship between the strain

generalized Gruneisen parameters and ultrasonic nonlinearity parameter
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Table 4. The K and K Values of Silicon Along the Principal Directions
at Rogm Tempirature

K3 x 1012 dynes/cm
2

K2 X 10 11Experimental Theoretical
Sample 2  Present Values of Values of2ab

Orientation (dynes/cm Experiment McSkimin et al Keatingb

[100] 16.5779 - 8.34 ±0.11 - 8.25 - 8.21

[110] 19.4470 -14.95 ±0.22 -14.75 -15.68

[111] 20.4031 -13.77 ±0.12 -13.31 -13.58

aReference 26.

bReference 55.

I
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for solids. Since the medium is not stressed in the determination oT

nonlinearity parameter by harmonic qeneration technique, the generalized

Grineisen tensor calculated from the nonlinearity parameters is purely

isentropic.

Let us rewrite Eq. (1.24) in the form

322 P V +jjj _ a2 (35)

-j -a I (1] 4"-1

When the ultrasonic nonlinearity parameter P) defined by (1.28) is zero,

Eq. (3.5) reduces to a linear differential eouation describinn

infinitesimal amnlitude wave propagation of velocity

Cj G /0o) 112 (3.6)

For finite amplitude waves 6j is nonzero and it is convenient to define

the natural wave velocity by
23

II
W(j,N) [J(14+a !)]1 - Pi j 12(37

So Bj is a direct measure of the nonlinearity of the solid with respect

to elastic wave propagation.

The isentropic generalized Grneisen parameter yrs(j,N) describinq

the frequencies w(jN) are defined by
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YS s(J,N) n 0r(3.8)
anrs

where n refers to the original coordinate system and s is the entropy.

The strain derivatives in the original coordinate system may be

expressed in terms of the derivatives with respect to the displacement

gradients apj/aaI in the transformed coordinates by using chain-rule

differentiation. Hence, we may write

sn=C (an a(auk/aal) p/aal (apaa T 's (3.9)

rs rs

Using Eqs. (1.14) and (1.22) and the relation

( lp )s,n=O 2 kp p) (310)

pqkqp

where 8ij are Kronecker deltas, we can express Eq. (3.9) in the form

6- 6(Rk RS R R X (3.11)

a 'On = S 2kRkrl RlRks)(a(Pj/aa) sapj/aal=0
rs

Substituting (3.11) into (3.8) we obtain

1 I (u(j ,N)

Yrs(jN) = - j 6(RkRis + RlrRks)( l x (Ipj/-al))s,

(3.12)

In the Debye model, the lattice vibrational frequencies w(j,4) are related

for any state of strain to the natural velocity by
56

IL
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,(j, ) W(j,N) (3.13)

Hence, using Eqs. (3.7) and (3.13) we may write

1 aw(j,N) 1) I W (j,N)
-(jN- (apj/aal) s.apj/aal=0 11 N 4.pj/a ap ,/3 /aaa1  s -ap/a -=0

(3.14)

Substituting (3.14) into (3.12) we obtain the general relationship

between the (y,s) component of the isentropic strain qenerilized GrUneisen

tensor and the solid nonlinearity parameter to be

Ys(jN) - BjS(RkR + RlsRks) . (3.15)

From this equation we find that the (l,l) components of the isentropic

strain generalized Grineisen tensors for the case of longitudinally

57polarized (j=l) waves propagating in the symmetry directions are

1i

y 1~, £100]) = sI for the [100] direction

y1 lol, [110]) = 1 l for the [110] direction, and (3.16)

Y(1, [111]) = a for the [11] direction.

In Table 5 we list room temperature values of the (l,l) components

of the experimentally measured isentropic strain generalized Grineisen

tensors for the pure mode directions of silicon and germanium crystals.

The corresponding mixed state strain generalized Gruneisen parameters

58parameters calculated from the theory of Brugger using experimental

values of elastic constants are also given in the table. For silicon
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the TOE constant data of McSkimin et al. 54 and our measured nonlinearity

parameters are used. For germanium the TOE constant data of Bateman

et al.22 and nonlinearity parameters data of Bains et al.46 are used.

It must be pointed out that exact agreement between the

icentropic strain generalized Gruneisen parameters yrs and the Brugger-

Griineisen parameters yB isnot to be expected because the former are of

a pure thermodynamic state whereas the latter are of a mixed thermo-

dynamic state. The difference between the two may be of the same order

as the difference between adiabatic and isothermal elastic constants.

An examination of Table 5 reveals that for the [100] direction for both

silicon and germanium the agreement between ys and -B is good. TheyYrs Yrs

agree reasonably well for the [110] direction but do not agree for the

[111] direction for either silicon or germanium. Further work in this

direction is underway to trace the reason for the disagreement in the

results along the [ill] direction.

c. Temperature Dependence of the Nonlinearity of Silicon

The measured values of 1I down to approximately 30K are given in

Table 6 along with the ratio of JBj to the room temperature JBI. The

room temperature value is the most probable average value obtained from

Table 3. These data for all the three directions are listed. The K3

values calculated from are also tabulated in Table 6 between 300 and

3K. In Figure 19 we have plotted the data obtained for the parameter

K3 for the three orientations as a function of temperature. The SOE

constants of silicon as a function of temperature have been plotted by

McSkimin 53 from room temperature to 770 K. We measured the velocities



Table 6. Measured Relative Values of 6 and the K3 Values of Silicon as

a Function of Temperature

Bias Voltage
of the Second -K 3

Temperature K2  Harmonic ,~I12 3 2
TOK X10 12 dyn/cm 2 V b R X10 dyn/cm

[100] direction

3.10 1,6755 150.01 1.1086 0.7509 8.8005

4.02 1.6755 150.05 1.1087 0.7508 8.8004

6.00 1.6755 150.15 1.1079 0.7503 8.7994

10.57 1,6755 150.85 1.1028 0.7468 8.7803

16.14 1.6755 152.51 1.0908 0.7387 8.7396

20.11 1.6755 153.00 1.0873 0.7363 0.7275

24.93 1.6755 153.00 1.0873 0.7363 8.7275

35.08 1.6753 153.55 1.0833 0.7336 8.7129

47.82 1.6753 155.12 1,0725 0.7263 8.6762

59.25 1.6752 158.80 1.0477 0.7095 8.5913

66.33 1.6750 160.88 1.0343 0.7004 8.5445

77.60 1.6747 163.21 1.0195 0.6904 8,4927

86.84 1.6743 163.45 1.0177 0.6892 8.4847

101.57 1.6740 163.58 1.0163 0.6882 8.4781

119.92 1.6732 163.82 1.0140 0.6867 8.4666

131.51 1 67?3 164.08 1.0118 0.6852 8.4545

147.89 1.6713 164.05 1.0113 0.6849 8.4479

167.99 1.6700 164.22 1.0093 0.6835 8.4343

181.11 1.6689 164.25 1.0083 0.6828 8.4253

197.93 1.6674 164.35 1.0067 0.6817 8.4122

216.08 1.6654 164.62 1.0051 0.6807 8.3971

231.91 1.6637 164.41 1.0042 0.6800 8.3851)

250.29 1.6617 164.42 1.0031 0.6793 8.3715

266.30 1.6601 164.41 1.0022 0.6787 8.3604

272.48 1.6594 164.45 1.0017 0.6784 8.354
Room temp. 1.6566 164.48 100 .72 835

[110] direction

2.98 1.9641 150.05 1.2742 1.9922 17.6286

4.02 1.9641 150.08 1.2740 1.9913 17.6256

4.90 1.9641 152.55 1.2534 1.9591 17.3915

8.41 1.9641 155.65 1.2284 1.9200 17.2055

10.57 1.9641 156.48 1.2219 1.9098 17.1454

14.00 1.9641 157.85 1.2113 1.8933 17.0482

16.14 1.9639 158.38 1.2072 1.8869 17.0087

24.93 1.9639 161.22 1.1858 1.8534 16.8114

35.08 1.9637 165.55 1.1547 1.8048 16.5234

47.82 1.9635 170.08 1.1241 1.7570 16.2401

56.82 1.9634 174.66 1.0946 1.7109 15.9686

64.58 1.9633 177.12 1.0796 1.6874 15.8285

77.79 1.9629 178.65 1.0704 1.6730 15.7405
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Table 6 (continued)

Bias Voltage

K of the Second - K
Temperature 2 Harmonic .1 12 2

T0K X10 12 dyn/cm 2  V b NX10O1 dyn/cm2

[110] direction (continued)

84.02 1.9627 179.92 1.0627 1.6610 15.6682
94.75 1.9623 180.89 1.0564 1.6512 15.6073
107.28 1.9618 181.55 1.0520 1.6443 15.5628
118.77 1.9614 182.46 1.0464 1.6355 15.5078
129.77 1.9606 182.78 1.0441 1.6319 15.4803
136.76 1.9602 183.21 1.0414 1.6277 15.4525
147.89 1.9594 183.56 1.0389 1.6238 15.4232
160.87 1.9585 184.52 1.0329 1.6144 15.3609
173.35 1.9575 185.21 1.0284 1.6074 15.3120
184.10 1.9563 185.98 1.0235 1.5997 15.2574
194.91 1.9552 186.38 1.0206 1.5952 15.2224
206.38 1.9542 186.78 1.0179 1.5910 15.1900
223.37 1.9522 187.24 1.0l145 1.5857 15.1434
241.70 1.9501 187.98 1.0fl94 1.5777 15.0803
260.13 1.9480 188.66 1.0074 1.5746 15.0460
272.48 1.9464 188.86 1.0031 1.5678 14.9939
Room temp. 1.9433 189.18 1.0000 1.5630 14.9420

[111] direction

3.97 2.0601 150.12 1.0575 1.3219 14.3500
4.90 2.0601 150.08 1.0577 1.3221 14.3513
7.03 2.0601 150.03 1.0581 1.3226 14.3544

10.08 2.0601 149.89 1.059- 1.3239 14.3624
17.00 2.0600 150.26 1.0565 1.3206 14.3413
24.50 2.0600 150.58 1.0543 1.3179 14.3246
30.70 2.0599 150.81 1.0526 1.3158 14.3109
36.99 2.0599 150.98 1.0513 1.3141 14.3004
43.55 2.0598 151.77 1.0459 1.3074 14.2583
50.47 2.0596 152.55 1.0406 1.3008 14.2162
59.25 2.0595 152.76 1.0394 1.2993 14.2062
66.33 2.0593 152.81 1.0390 1.2988 14.2018
70.15 2.0592 153.81 1.0323 1.2904 14.1492
77.79 2.0592 155.00 1.0245 1.2806 14.0886
86.84 2.0587 155.62 1.0199 1.2749 14.0500
92.49 2.0585 155.82 1.0185 1.2731 14.0375
103.85 2.0581 156.02 1.0166 1.2708 14.0206
114.16 2.0576 156.44 1.0136 1.2670 13.9937
129.77 2.0566 156.68 1.0113 1.2641 13.9690
139.68 2.0561 156.48 1.0121 1.2651 13.9718
147.89 2.0553 157.08 1.0080 1.2600 13.9349
157.32 2.0546 156.83 1.0093 1.2616 13.9400
167.99 2.0537 156.45 1.0111 1.2639 13.9481
174.54 2.0532 156.45 1.0109 1.2636 13.9429
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Table 6 (continued)

Bias Voltage
K2  of the Second - K3

Temperature 01 2  Harmonic I dRn0c2
TK x1 dyn/cm 2  Vb x10 12 dyn/cm2

[111] direction (continued)

181.71 2.0525 156.45 1.0105 1.2631 13.9350
197.93 2.0508 156.48 1.0092 1.2615 13.9137
212.44 2.0492 156.48 1.0086 1.2608 13.8985
227.03 2.0476 156.75 1.0061 1.2576 13.8680
244.15 2.0457 156.66 1.0057 1.2571 13.8520
260.13 2.0436 156.89 1.0034 1.2543 13.8207
272.48 2.0421 156.82 1.0032 1.2540 13.8087
Room temp. 2.0388 157.11 1.0000 1.2500 13.7619

1'

I
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anid hence the K2 values at different temperatures belo.. 77 K and found

that these values agree with the curves of McSkimin extrapolated to OK.

For calculations uf K3 as a function of temperature the K2 values have

been evaluated as a function of temperature. They are also tabulated in

Table 6.

From Figure 19 it may be noted that the K3 values undergo

noticeable temperature variation below 77 K especially K3 [110]. Between

room temperature and 3°K, the K3 values for the [100], [110], and [111]

directions vary by 5.3Z, 15.2%, and 4.1%, respectively. The data for

the [100] and [111] directions are quite smooth and are nearly parallel

to the temperature axis. The variation is maximum for the [110]

direction between 77 and 3 K, the variation being as high as ll. Since

is a direct measure of the anharmonicity (nonlinearity), a large change

in r& (and therefore K3) at low temperatures is not surprising in view of

the thermal expansion data which shows that there is a large change in

the anharmonicity of silicon and other diamond-like solids below liquid

nitrogen temperature (thermal expansion becomes negative).

The TOE constant C 11 appears in the K3 values along all the

directions. It can be subtracted out from K3 [110] and K3 [111]. In

this way we can get two more combinations of TOE constants, namely

(C11 2 + 4C166 ) and (C12 3 + 6C144 + 8C4 5 6) and their temperature variation

can be studied. The temperature variation of these two combinations

along with that of C 11 are plotted in Figure 20. As ran be seen from

Figure 20, the variation of these combinations as a function of

temperature is not very great down to 77 K. But between 77 and 3 K,

there is a considerable variation in some of them. In particular, the
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combination (C12 3 + 6C144 + 8C4 56 ) crosses zero at about 8°K and becomes

positive below that temperature. Since these are the TOE constants which

would play a significant role in the propagation of transverse modes, the

lack of agreement between the theoretically calculated value of thermal

expansion from elastic data and measured thermal expansion values might

be attributed to the theoretical assumption that the TOE constants are

independent of tempe-ature.

d. Temperature Dependence of the Nonlinearity of Germanium

In order to supplement the necessary data for the work to be

described in the next chapter, we reproduce here the data on the

temperature variation of the K3 values of germanium. In Table 7 we

present the measured values of the nonlinearity parameter F and calculated

values of K3 of germanium between 300 and 3°K. These data are adopted
59

from the Ph.D. dissertation of J. A. Bains. In Figure 21 we have

plotted the temperature variation of the parameters K3 of germanium

along the pure mode directions between room temperature and 3K.
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Table 7. Measured Values of K3 of Germanium as a Function of
Temperature (Ref. 59)

Sample Temperature K 3 x 1012

Orientation K dyn/cm 2

2.94 - 8.47
9.01 - 8.47
19.30 - 8.47
27.81 - 8.47
43.28 - 8.46
56.72 - 8.46
68.66 - 8.46
77.40 - 8.22
100.51 - 8.29

[100] 124.35 - 8.34
148.48 - 8.38
160.53 - 8.36
184.52 - 8.28
196.55 - 8.30
220.51 - 8.30
245.16 - 8.17
270.27 - 7.88
Room temp. - 7.78

3.00 -17.21
9.01 -16.32
19.30 -15.89
27.81 -15.54
43.28 -14.91
56.72 -14.35
68.66 -14.57
77.68 -14.62

[110] 100.51 -14.54
124.34 -14.45
148.43 -14.46
160.50 -14.27
184.57 -14.24
196.52 -14.13
220.51 -14.15
245.11 -14.20
270.28 -14.15
Room temp. -14.10

3.01 -13.28
9.11 -13.61

19.38 -13.84
[111] 27.78 -13.72

43.22 -13.59
56.78 -13.56
68.69 -13.28
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Table 7 (continued)

Sample Temperature K3 x 1012

Orientation OK dyn/cm 2

77.48 -13.52
100.53 -13.31
124.33 -13.71
148.46 -13.49

[ill] 160.53 -13.40
(continued) 184.54 -13.53

196.58 -13.44
220.51 -13.47
245.15 -13.51
270.28 -13.73
Room temp. -13.40
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CHAPTFR IV

TEMPERATURE VARIATION OF THE TOE CONSTANTS

OF SILICON AND GERMANIUM

The SOE constants of a number of solids have been measured as a

function of temperature by a number of authors. The first measurement

of this kind has been done by McSkimin 53 on silicon, germanium and

fused silica from room temperature to liquid nitrogen tnmperature. Later
60

the measurement has been extended to liquid helium temperature by Fine

on nermanium. Subsequently measurements have been reported on a number

of solids. The results have been reviewed by Hearmon6  and are not

reproduced here.

The measurement of the TOE constants as a function of temperature

is much more difficult than in the case of SOE constants. If one uses

the McSkimin technique, chanoes in sound velocity need he measured

with the application of pressure and as a function cf temperature. Due

to experimental difficulties not much work has been done in this

direction. Salama and Alers29 measured the TOE constants of cooper
62

at 295, 77 and 4.2°K. Sarma and Reddy measured the TOF constants of

nickel at 298 and 80'K. In both cases the technique cave results in

which the inaccuracies of the measurement entered at every temperature

at which measurements were made. The effect of temperature on TO[

constants are found to be comparatively small. The normal tendency is

for the stiffness to increase, i.e., to become less negative as the

temperature rises. Some authors have reported the results of calculations

105
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based on theoretical considerations. These are also reviewed by

Hearmon. 61 As already has been pointed out in the introduction, the

ultrasonic harmonic qeneration measurements can readily be undertaken

at low temperatures but until now this technique allows one to measure

only three combinations of TOE constants as a function of temperature

and not individual TOE constants.

In this chapter we have combined the results of our measurements

of the nonlinearity parameters of silicon and germanium with an

established lattice dynamical model to arrive at expressions for

individual TOE constants in terms of nonlinearity parameters and have

studied their variation with temperature. The model used is the central

63,55
potential model introduced by Keating for diamond-like solids. For

the first time in literature we have studied the temperature denendence

of the individual TOE constants of a solid between 300 and 3K. The

highlights of Keating's theory are given in the next section and in the

followinq section the Keating force constants are expressed in terms of

the K3 parameters alona principal directions and expressions for TOE

constants are arrived at. Section c is devoted to results. Graphs

showinq the temperature variation of the TOE constants of silicon and

qermanium are plotted.

As is well known, the diamond-like solids silicon and nermanium

exhibit an anomalous thermal expansion behavior at low

temperatures. 64'65'6 6 Thermal expansion of silicon is necative between

120 and 20'K and is again positive below that temperature.67 Thermal

expansion of germanium is neqative between 40 and 160K and is positive

68below that temperature. The works done have been reviewed by
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Carr et al. 69 The Grineisen parameter follows a similar behavior as

thermal expansion. 70  Theoretical calculations based on the quasiharmonic

approximation 7 1,72 using room temperature values of TOE constants do not

predict this behavior. We have evaluated the Grtneisen parameter

at low temperatures using our temperature dependent TOE constants for

both silicon and germanium. Results are compared with previous publi-

cations. Temperature variation of some more anharmonic pronerties like

pressure derivatives of the SOE constants, the Anderson-Gruneisen

parameter,etc. arealso studied and the results are reported. The final

section constitutes discussion and some concluding remarks.

a. Keating's Model for the Lattice Dynamics of Diamond-Like Solids

The Keatinq 6 3'55 model for the diamond-like solids is basically

equivalent to the Born-Huanq approach of imposing the invariance

requirements on the elastic strain energy of the crystal. Keating's

theory provides additional insight into the interatomic forces in this

group of solids and has more operational advantages over the Born-Huano

method. The method demonstrates that all purely first-neighhor inter-

actions are central only. Keating's approach confirms that in the

harmonic approximation there are no noncentral purely first-neiahbor

interactions present in any nonmetallic crystal. In the harmonic

approximation treatment to derive expressions for SOE constants,

Keating's model involves only two types of interactions, a nearest-

neighbor central term and a noncentral second neighbor term.

The basic unit cell of the diamond structure is a rhombohedron

with two atoms, atoms 1 and 0 in Figure 2?, on its major axis which is

II
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K---- 48

Fiqure 22. The crystal model of diamond-like solids, The open
and filled circles represent the atoms in the two different sublattices.
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directed along the [111] direction. The three neighboring unit cells of

interest contain atoms 2 and 5, 3 and 6 and 4 and 7, respectively. The

expression for the microscopic strain enerqy in terms of the central

first neiqhbor constant a and the noncentral second neichbor constant

has been written 63 and after imposinq crystal symmetry renuirements,

the expression in the harmonic approximation becomes

(u' + VI + w) 2
u -_ ( {[(ed + ez +  +e +32 z x eXxy a

+ (e + e e + u ' - V ' - w )2
+ (ed + eyz - ezx - exy + a

Ul + V I - W' 2

+ (ed - e - e + e - V' WI )2

(ed yz - exy - a

+ y [(exx - eyy - zz -

w' 2 u'_2
+ (e +e e e +.--) +(e e e + e

xx yy zz xv a xx yy zz yz a

+ ev' )2 + _ + + v' 2
+(exx eyy ezz -ezxz a o  (exx eyy ezz ezx a

(exx + e - -+-) e , (4.1)exyy ezz exy a

where a is the lattice parameter and ei 's are the strain parameters

with ed = exx + e + e 2. u', v', w' are the atomic displacement compo-

nents. By imposing the condition

u _ ) u u = 0(4.?)
;I - v ' 6
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one obtains

u' = -a i. eyz

v' = -a F e (4.3)

and w' = -a exy

where

= (,_)/( +6) . (4.4)

After substitution for u', etc., and comparing the resulting expression

with the well-known macroscopic expression for strain energy for cubic

75
crystals , namely

=1 2 + 2)+
u 2C1 1 (e A

2 + eyy+ ezz 2 + Cl2(eyyezz + ezzexx +exxeyy)

+ C + e 2 +xy , (4.5)

we obtain

Cll = (, + 3 )/4a

C12  = ( - t. )/4a (4.6)

C44 = +/a( +

These form the expressions for the SOE constants in terms of the harmonic

force constants , and . It can easily be seen that the parameter . is

given by

_- - 2 4.)

+ T {Cll + C12)

A calculation of the TOE constants of silicon, nermanium and

other diamond-like solids has beer! presented by Keatinn
55 which is an
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extension of the above method of setting up the expression for the

strain energy including the anharmonic terms. Expressions for the six

TOE constants are derived in terms of three anharmonic first and second

neighbor force constants and the two previously determined harmonic

force constants. As has been done before, expressions for the strain

energy are set up in the microscopic and macroscopic reaimes. Includinq

the anharmonic terms, the expression for macroscopic strain energy can

be written as

= 1 (, e 3 + + e 3)  + 1 2 (2
a '  6 C e2  3  2 112[e1  e2  e3 ) + e2 (e3  e )

2 1 2 2 2

+ e3 (el + e2)] + C123 ee 2e3 + - C144(ee4 2 + e2e5 2 + e3e6 )

+ C166[e1 
2 (e 2 + e 2 ) + e(e 2 + e 2 ) + e(e 2 + e

23 5 
e 4+ 

e3
+ C4 5 6 e4 e5 e6 + I C (e+3  3 1 C1  2 [e 2  e

+ e2 2(e3 + e ) + e32 (e + e2 )1 (4.8)

where eI  = exx e2 = eyy, e3  
=  ezz, e4 = exy, e5  = exz and e6  = eyz.

Considering the microscopic energy density, it should be ointed

out that the most important forces between atoms in diamond-like solids

are apparently short-range forces mainly due to shell-shell and shell-

core interactions. Cochran 76 has obtained a good fit between theoretical

and experimental phonon dispersion and elasticity data with the shell

model and only short range forces. The shell model reduces to a rigid-

ion formulation if only the elasticity is to be considered and excellent

agreement has been obtained between theory and experiment usina only a
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nearest neighbor interaction and a noncentral second neinhhor interaction.

Since the shell-shell and shell-core effects give only small contributions

for third and more distant neighbors, we include interactions out to

second neighbors only.

Including the anharmonic terms, the expression for the microscopic
55

strain energy can be written as

ua = [(y' - + 3,')/3 + (a + 3f)/8a0](e I + e2
3 + e3

3)

+ 2(y' + 36' - c')ele 2e3 + [ - ' + -'/3 + (a - )/8a0 ][e2 (e2 + e3)

2 2 3 3
+ e2 2(e3 + eI) + e3 2(el + e2 )] + 2y'( - 3 e 4e 5e6

+['(l - 2 + '(l + + 1 (1 + )(3 - I)

3'

72 2 2 2) 2 2

+ .( ;-)/8ao][el(e 52 + e62) + e2e 6  + e4 2) + e3 (e4 2 + e5 2)]

(4.9)

and are the anharmonic force constants. The details of the

derivation arm not qivPn here as it is alreadv available in literature.

lompar' ,i the expressions (4.8) and (4.9), the expressions for the TnF

(-ongtants of diamond-like solids are obtained as



Cll - +9

112  -

C = 1 2 + t + 2 + + 3 1) +

C144  12

y(l - 2 - ,(1 + 2 + 2+ )(3 ) + 21
= (I + 1)3

C166 = (l - ) ( ) ( ) 3 - 12

C4 56 = -

where y = 2y', = 2' and r = ' are the redefined anharmonic force

constants.

Keating's model has been used to evaluate the TOE constants of

silicon and qermanium and it is found that the results are in very nood

aqreement with the room temperature experimental values. This aareement

is quite remarkable owing to the fact that the model involves only three

adjustable parameters and it sungests that the anharmonic force constant

model used is a fairly realistic one. The introduction of additional

interactions into the strain energy will, of course, allow a much better

fit but such a fit then mioht not be sianificant physically. The fact

that Keating's model involves only three anharmonic parameters has

enabled us to isolate all the TOE constants of silicon and qermanium

from our measured ultrasonic nonlinearity parameters and study their

variation as a function of temperature. The Keatinq model has been

77
applied by Nandanpawar and Rajagopalan to predict the temperature

dependence of C166 and 3C1 44 + 4C4 56 between 73 and 2g3°K of germanium.

Their results agree reasonably well with available experimental values.
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b. TOE Constants in Terms of the K2 andK 3 P aramete rs

The expressions for the K2 and K3 parameters which are

combinations of SOE and TOE constants qiven in Table 1 are reproduced

here for the ease of further derivations. These parameters are obtained

directly from harmonic generation experiments.

K2[1001 = Cll

K2 [IIO] = 1(C + C + 2C (4.11)

K2[lII] I (CII + 2CI 2 + 4C44)

K31110] = C111

K3 (llO] = (C + 3C + 12C

3 ill 112 + 2 166)

K3[III] = (Cll I + 6Cll 2 + 12C 144 + 24C 166 + 2C123 + 16C456)

(4.12)

Substituting for the SOE and TOE crnstants from Eqs. (4.6) and

(4.10) in (4.11) and (4.12), respectively, we can exoress K2 and K3

along the principal directions in terms of the harmonic force constants

ct and # and the anharmonic force constants y, and c.

K2[IO0] = ( + 3P)/4a

K2[llO] = [(c + 3r,)/4a + ( - F)/4a + 2 /(, + ti)a] (4.13)

K2[lll] 1 + 3P)/4a + 2(x - )/4a + 4cr/(i + f)al
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A knowledle of the parameter = (t - + i, is enounh for our

calculations and so individual q and 3 are not evaluated. As has been

shown in Ea. (4.4)

( - - 2C12  (4.14)

+ B C11 + C12

The K3 parameters can be expressed in terms of y, 8 and c as follows:

K3 [lO0] =y - + 9F (4.15)

2

K3 [l1O] - 3C12 . = Dy - E6 + FE (4.16)

where

D I 1 + 3(l 2

E = 1 + 3(1 + 2

and

F = 3[4 + 2, - 2

2

K3 [l1l] - 4C12  2 Hy - P6 + Qc (4.17)

where

H = 1 + 4(1 - F)2 + 16 -

31 + 4 + 5)

Solving between (4.15), (4.16) and (4.17) we get expressions for -, 8 and

y as follows:
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(K3[10OJ E - G) (K3[100] • D - G)

+R - H E- T + -D (4. 1 )
[P (9D - F) H(9E - F)(E D)_ + Q - H (E - ) ]

FE--7 (E - 0)

where

G = K3[IIO] - 12 2

and

R = K3[11] - 4C12 r
2

(K3[lO0] •D- G) (90-F)
(E- D) (E - ) (4.19)

and

y = K3[100] + 6 - 9E . (4,20)

Substitutino these force constants in Eq. (4.10) leads to the six

independent TOE constants for diamond-like solids. Evaluation of F,

y and 6 as a function of temperature results in the TOE constants as a

function of temperature.

c. Results - Temperature Variation of the TOE Constants of Silicon

and Germanium

As described in Chapter III, we have measured the nonlinearity

parameters and hence the K3 parameters along the three principal directions

of silicon as a function of temperature from room temperature to 3K

using the ultrasonic harmoni, leneration technioue. The results are liven in

Chapter III. Using the same technique, the nonlinearity parameters and K3

parameters of germanium have been measured by Bains 4 6'5 9 in the same

temperature range. The SOE constants of silicon and germanium have also



117

been measured in the entire temperature region. From these measured

K2 and K3 values, substituting in (4.14), (4.18), (A.19) and (4.20) we

have evaluated the force constants , c, y and 6 as a function of

temperature for both silicon and germanium. In Table 8 we have tabulated

the results.

In Figures 23 and 24 we have drawn the temperature variation of

the anharmonic force constants of silicon and aermanium. It may be

noted from the fiaures that the force constants are susceptible to con-

siderable temperature variations at low temperatures assumina nearly

constant values at higher temperatures. The harmonic force constants do

not vary much with temperature. The quantity r which is defined hy

(4.7) appearing in the set of equations (4.10) is almost independent of

temperature, as can be seen from Table 8.

The force constants at various temperatures have been substituted

in Eqs. (4.10) to evaluate all the six independent TOE constants of

silicon and germanium as a function of temperature between 300 and 30K.

In Table 9 we tabulate the results. In Figure 25 we draw the TOE

constants Cll1 , C1 1 2 and C1 66 of silicon as a function of temnerature.

Temperature variation of C1 23, C14 4 and C4 56 of silicon are drawn in

Figure 26. Similarly, in Figures 27 and 28 we have drawn the TOE

constants of germanium as a function of temperature.

In the figures we have plotted both calculated data points and

a best fit curve through them to show the effect of error propagation.

Even in the curves showing greatest scatter of data, namely the C12 3

curves, the temperature dependence seems very clear. As can be seen
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Table 8. Temperature Variation of the Force Constants of Silicon and
Cermanium

Temperature 2 C12  20

OK C 2 x 10 x 10 x 10

Silicon

4.02 0.5594 0.5630 0.6273 3.1061
10.57 0.5594 0.5327 0.5614 3.4246
16.14 0.5593 0.5174 n.5510 3.5320
24.93 0.5593 0.5089 0.5246 3.622P
35.08 0.5593 0.4940 0.4856 3.7813
43.49 0.5592 0.4926 0.4557 3.8137
51.78 0.5592 0.4742 0.4420 4.0031
61.04 0.5592 0.4434 0.4192 4.1697
77.61 0.5591 0.4342 0.4220 4.1629
100.42 0.5589 0.4364 0.3998 4.1511
118.77 0.5588 0.4378 0.3927 4.1344
131.51 0.5586 0.4343 0.3877 4.1581
147.89 0.5585 0.4396 0.384n 4.1075
167.99 0.5582 0.4301 0.3760 4.1874
197.93 0.5579 0.4254 0.3608 4.2228
223.37 0.5575 0.4268 0.3536 4.1992
241.70 0.5573 0.4233 0.3474 4.2214
260.13 0.5571 0.4247 0.3452 4.1969
272.48 0.5570 0.4225 0.3392 4.2137

Room temp. 0.5567 0.4244 0.3357 4.1800

Germanium

3.0 0.5476 0.6893 0.6154 1.6509
9.0 0.5475 0.5985 0.4839 2.5996
19.3 0.5472 0.5401 0.4169 3.1922
27.8 0.5471 0.5494 0.3637 3,1617

43.2 0.5469 0.5476 0.2699 3.2617
56.7 0.5466 0.5331 0.1838 3 17P3
68.6 0.5464 0.5932 0.2186 2.9026
77.4 0.5163 0.4776 0.2822 3.6394
100.5 0.5460 0.5356 0.2539 3,2157
124.3 0.5459 0.4745 0.2258 3.8437
148.4 0.5458 0.5279 0.2186 3.41n3
160.5 0.5458 0.5319 0.1948 3.3781
184.5 0.5458 0.4550 0.1622 4.0228
196.5 0.5458 0.5029 0.1948 3.5791
220.5 0.5457 0.4968 0.1896 3.6392
245.1 0.5455 0.4522 0.2276 3.8726
270.2 0.5454 0.3221 0.2875 4,6936
Room temp. 0.5459 0.3496 0.3054 ".3302
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from the figures, the temperature variation of the TOE constants of

silicon and qermanium are similar, as can be expected. The room

temperature values are in agreement with those obtained bv McSkimin

et al. 26 The greatest disagreement is found in C12 3. The constants

which show maximum sensitivity to temperature chanaes are C1 23 and C144 .

They take on positive values at very low temoeratures for both

material s.

It should be mentioned that in the above calculations one

obviously has to make the assumption that the thermal effects in elastic

constants are solely due to chanqes in force constants. This assumption

is open to question. Temperature dependent terms in the internal

energy also miqht contribute to the elastic constants. Such effects, we

believe, would be negligible compared to the variations occurrinq from

changes in force constants.

d. Temperature Dependence of the Grtneisen Parameter, Thermal
Expansion and Other Anharmonic Parameters of Silicon and
Germanium

As is well known, the Gruneisen parameter represents the strain

derivative of the lattice vibrational frequnncies and is an important

quantity in describing the anharmonic properties of solids. The method

of evaluating the Gruneisen parameter usinq quasiharmonic theory is

71,72well established in literature. 7
' The Gruneisen parameter, is

defined by

- T C K C (4.2o)

where is the thermal expansivitv, KT and Ks are the isothermal and

... ... .....I ~ i I .. . i I i ...... Il I li II I
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adiabatic comoressibilities and C and C are the isochoric and isoharic

heat capacities. Generalized 's measure the strain dependence of the

phonon frenuencies and are no lonoer frenuency dependent in the Debve

model where the lattice vibrations are replaced by standino wave modes

of a dispersionless elastic continuum. Their relationship with SwE and

TOE coefficients have been derived earlier hy Bruqger for arbitrary

crystal symmetry and have been specialized to cubic point qroups.

In the quasiharmonic approximation, the GrUneisen -y can also be expressed

as the weiqhted average of the aeneralized Gr~neisen parameters .i by the

relation

YiCi/'Ci (4.21)
11

where i expresses the volume dependence of tie lattice vibrational

frequency for the ith mode and Ci is the Einstein heat caoacity associated

with that mode. If the sound speeds and their stress derivatives or the

SOE and TnE constants are known, Eq. (4.21) can be evaluated in the

continuum model even if the dispersion curves alona many directions in

the stressed and unstressed crystal are not known.

We follow the method due to Brugger and Fritz 7 2 to determine the

Gruneisen-'sand thermal expansion of silicon and qermanium. If n stands

for the branch index and o for the wave vector, Eq. (4.21) can be

written in the form

V = y(p,q)C(n,a)/ X C(p,o) (4.22)
pq pq
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The continuum model has been introduced for the evaluation of N with

the following assumptions:

(i) The excitation of the oDtic modes may be neglected, so that

the branch index p takes only the values 1, 2 and 3.

(ii) The acoustic modes obey the Debye distribution function

(per unit volume) given by

g(p,q)dqd - (1)q 2dqdQ! (a.23)

(iii) The maximum value of the wave vector o alonq any direction

is equal to the Debye radius

q 6 ?) (4.24)

where V0 is the volume of the primitive cell.

(iv) The acoustic modes are either nondispersive or they obey

the sinusoidal dispersion relation

', i' n 0 .)25)

"max q sinD--

of the Born-von Karman model.

(v) The generalized Grluneisen parameter is independent of the

wave number and is aiven by their long wave limits.

Applying the above assumptions, Ea. (4.22) takes the form

y = Y dpy(P,N)C(P,N)/X fdFC(PN) (4.26)
P p

with

C(P,N)q= (D)3 0 d3 ,2Q2e(C(e) r 0_l) 2 .(4.27)
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qD is the Debye radius and in the Debye model the function 0 is given

by

Q(P,N, ) = [o(P,N)/T]r (4.2P)

where F(P,N) is the Debye characteristic temperature of the pth mode

along the direction of q specified by the unit vector N. If S(P,N) is

78
the elastic wave velocity of the pth mode, then

hqD- (P,N)- ( )S(P,N) (4.29)

For cubic crystals with a fourfold axis of symmetry, the

72
expressions for y(P,N) have been derived earlier and are qiven by

y(PN) =- [3B + 2W + K] (4.30)y(P, ) - 6W

where

W(P,N) = C11KI + C4 4 K2 + C12K3  (4.31)

and

K(P,N) = C K1 + C2 K2 + C3 K3 . (4.32)

The unknown quantities appearinq in (4.31) and (4.32) are

K(P,N) = N 1U1 22+U2 2 2 +N32 2

K2 (P,N) = (N2U3 + N3U2
)2 + (N3UI + NIU 3 )

2 + (NIU 2 + N2U 1 ) (4.33)

K3(P,N) = 2(N2N3U2U3 + NlN 3U1 U3 + NN 2UIU 2

and
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C1 = Cll1 + 2C112

C2 C144 + 2C1 66  '4.34

C3 = C12 3 + 2Cii 2

Ci's and C ijk s are the SOE and TOE constants of the solid. Also

B = (C1 l + 2C12) (4.35)

is the bulk modulus. The N's and U's appearing in Eqs. (4.33) are the

direction cosines for the direction of propagation and direction of

polarization characterized by the branch index P.

The thermal expansion is given by

= K 7 y(p,q)C(p,a) (4.36)

pq

where K is the isothermal compressibility. The thermal expansion of

cubic crystals is isotropic and hence only the scalar y of Eq. (4.26)

need be evaluated for its determination.

Followinq the above procedure we have determined the Gruneisen

parameter of silicon and germanium as a function of temperature from

300 to 3"K usinq the temperature dependent SOE and TOE constants that

we have determined in the previous section. In Figures 29 and 30 we

plot the Gruneisen parameter results obtained as a function of temperature

for silicon and germanium respectively. The computations have been

done with the help of a computer. Our curves are designated as "present

work" in the figures. With the same computer program we have also

evaluated the temperature variation of Y using room temperature values

of TOE constants. This is the method adopted by Brugger and Fritz 72 who
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have assumed that TOE constants are independent of temperature. These

curves designated as "Bruqaer and Fritz Method" are also qiven in the

figures along with the oriainal curves drawn by Pruaqer and Fritz

themselves for comparison. The curves drawn by Brugqer and Fritz are

denoted by "Brugger and Fritz Curves." The small difference between our

curves drawn by the Brugger and Fritz method and the curves drawn by

Brugger and Fritz are due to slight difference in the numerical values

used. We have used the room temperature values of the TOE constants
26

reported by McSkimin et al. 6 for both silicon and qermanium, whereas

Brugger and Fritz used the pressure derivatives of the SOE constants

reported by McSkimin et al. for silicon and McSkimin et al. 7 9 for

germanium. In the figures we have also drawn the experimental curves

of Y obtained from thermal expansion measurements. 69 These curves are

denoted by "Thermal Exp" in the curves. It can be seen from the curves

that our curves which take into account the temperature variation of

the TOE constants are in better agreement with experimental curves,

even though they also do not show any negat4"e values for the Gruineisen

parameter which has been calculated from thermal expansion data. A

realistic physical reasoninq for this disagreement is included in the

discussion section.

In the quasiharmonic approximation, the thermal expansion is

proportional to the Gruneisen parameter (Eq. 4.36) and so thermal

expansion follows a similar temperature variation as the Griineisen

parameter. Since the thermal expansion curves are similar to the

Gruneisen parameter curves, they are not reproduced. In the
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high temperature limit the value of y calculated from thermal expansion

agrees well with measured values.

We have determined and drawn as a function of temperature the

isothermal first pressure derivatives of the adiabatic SOE constants

from the temperature dependent TOE constants. The relationships

between pressure derivatives of the SOE constants and TOE constants are

well known
80'8 1

dC_11  2C11 + 2C12 + Clll + 2CI 12

dP Cll + 2C1

dC12  -C11 - C12 + C123 + 2CI12)

dP C 11 + 2C1 2
(4.37)

dC44  C11  2C12 + C44 + C144 + 2C166
=C11 + 2C 12

dB C il l + 6C + 2C123
- 3(C 11 + 2C1 2)

where B (C + 2C12 ) is the bulk modulus. The above pressure

derivatives drawn as a function of temperature for silicon and aermanium

are reproduced in Figures 31 and 32 respectively.
82

Anderson stated that the adiabatic bulk modulus of a material

varies with temperature according to

To/T

BS = B0 - bT e (4.38)

where Bs is the bulk modulus at temperature T and B0 is the bulk modulus

at absolute zero. b and T0 are empirical parameters characteristic of

the solid. Anderson showed that the constant h is given by

i
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where V0 is the specific volume per atom at absolute zero, P is the qa.,

constant, is the Grutieisen parameter and ' is a constant :alled the

Anderson-Gruneisen parameter and it plays an imnortant role in descrihinc

the temperature denendence of the bulk modulus and related anharmnnic

83
properties. Chanq showed that is related to the pressure derivative

of the bulk modulus as

BT _,B

- 1) ~ (7p 1) .(4.4n)

Using this definition, the relationship between " and TOE constants has

been obtained by Rao 84 as

C111 + 6C1+ 2C+ 2C12 3
(

1 = ( + -- 3 I (4.41)

3TC11 + "C12 )

This expression has been used to determine the temperature variation of

* using temperature dependent TOE constants. as a function of tem-

perature for silicon and qermanium are also drawn in Fiqurcs 31 and 3?.

e. Discussion and Conclusion

An elegant method of combining an experimental result and a

successful theoretical model has enabled us to determine the temperature

dependence of the TOE constants of silicon and germanium from liquid

helium to room temperature for the first time. It is a remarkable

step towards understanding the low temperature anharmonic properties

of these solids even though the results do not fully account for some

of the anomalous thermal properties exhibited by them at low temperatures.
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Our assumption that the temperature variation of the elastic constants

are due to thermal effects in the force constants is justifiable as we

see that our Gruneisen parameter curves anree with the curves of others.

As a matter of fact, our curves are in better aareement with curves

derived from experimental thermal expansion curves than any nrevious

results.

The Gruneiser parameter and thermal expansion of silicon and

qermanium are nenative at certain temperatures in the low temperature

reqion. This anomalous property has attracted a areat amount of attention.

But none of the calculations based on the anisotropic continum model

could predict or fully account for this anomaluijs behavior. Now it

is more or less well established that the nelative thermal properties

are a result of some of thr mode rrr-,esen parameters noinq neqative or

the phonon frequencies decri-isinn with stres, A straiqhtforward

calculation based on anisotropi( continuum model in the quasiharmonic

approximation cannot account for these nenative mode ,'s. The ove'all

temperature dependence o" . is explained as, follows: At very low

temperatures, the reaion in which is positive, the elastic portion

of the lattice spectrum dominates uivinui positive . As the temperature

is increased, the entire transverse acoustic modes (TA) contribute

anpreciably to -,. The mode 's for the transverse modes decrease with

temperature. In the neqative , temperature reqion, the contribution

from TA modes dominates over the other modes makinq the iet effect

neqative. As the temperature is increased further, the remainder of the

acoustic branches coupled with the optic modes make positive aqain. In
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the hiqh temperature region all the theoretical calculations agree

with experimental results. A complete understanding of the situation

demands complete experimental data on the volume dependence of the

frequencies of the individual branches in the dispersive region in the

entire temperature region. Since such data are not available,

Bienenstock 8 5 has done a calculation for germanium based on a modified

sh , model using the volume dependence of the elastic moduli and

phonon frequencies reported by Brockhouse and Iyengar.86 Bienenstock
2 -nwhrnisa

introduces an induced dipole term (D which varies as V where n is an

adjustable parameter nearly eQual to 1 and includes the optic modes in

the Einstein approximation. He has calculated the Grineisen oarameters

-y for a number of acoustic modes and has found that the transverse

modes are rapidly varying functions of the wave vector q. They are

assumed to be positive for small Q and negative near the Brillouin zone

surface. The calculated y is in agreement with experiment at all

temperatures when ontical modes are included. Studies on phonon

assisted tunnelling under pressure and measurements of the stress-

induced shifts of the threshold energy for tunnellinn in germanium and

subsequent calculation of yi for TA modes near the the Brillouin zone
87

boundary by Pyne confirms the existence of negative yi for TA modes.

General Conclusion

The work presented in this technical report forms a nearly

complete study of the temperature dependence of the third-order elastic

constants of the typical diamond-like solids silicon and nermanium.
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The harmonic qeneration technique has found new application to the

study of the anharmonic properties of these solids. Similar works

applied to other groups of solids miqht lead to an understandinq of

the temperature variation of their third-order elastic constants and

other anharmonic properties.



BIBL IOGRAPHY



BIBLIOGRAPHY

1. M. A. Breazeale and D. 0. Thompson, Appl. Phys. Lett. 3, 77 (1963).

2. A. A. Gedroits and V. A. Krasilnikov, Sov. Phys. JETP 16, 1122 (1963).

3. D. C. Wallace, Thermodynamics of Crystals (John Wiley and Sons, Inc.,
New York, 1972).

4. A. A. Maradudin, E. W. Mantroll, G. H. Weiss, and I. P. lIatova,
"Theory ofLattice Dynamics in the Harmonic Approximation," in Solid
State Physics (Academic Press, New York, 1971), Suppl. 3.

5. G. Leibfried and W. Ludwiq, in Solid State Physics, edited bv F. Seitz

and D. Turnbull (Academic Press, New York, 1961), Vol. 12.

6. W. P. Mason, J. Acoust. Soc. Am. 32, 458 (1960).

7. J. Holder and A. V. Granato, in Physical Acoustics, edited by W. P.
Mason and R. N. Thurston (Academic Press, New York, 1971), Vol. VIJI.

8. A. Seeger and 0. Buck, Z. Naturforschg. 15a, 1056 (1960).

9. R. A. Coldwell-Horsfall, Phys. Rev. 129, 22 (1963).

10. P. B. Ghate, Phys. Rev. 139, A1666 (1965).

11. Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

12. F. D. Murnaghan, Finite Deformation of an Elastic Solid (John
Wiley and Sons, Inc., New York, 1951).

13. M. Born and K. Huanq, Dynamical Theoryof Crystal Lattices (Oxford

University Press, London, 1954T.

14. Brugger, K., Phys. Rev. 133, A1611 (1964).

15. K. Fuchs. Proc. Roy. Soc. (London) A153 , 622 (1936); A157, 447 (IQ36 ).

16. T. Suzuki, '. Granato, and J. F. Thomas, Jr., Phys. Rev. 175, 766
(1968).

17. E. R. Naimon, T. Suzuki, and A. V. Granato, Phys. Rev, B 4, 4297
(1971).

18. (a) F. Rirch, Phys. Rev. 71, 809 (1947); (b) S. Bhanavantam and
D. Suryanarayana, Nature Thondon) 160, 750 (1947).

143



144

19. H. J. McSkimin, J. Acouwt. Soc. Am. 33, 1? (1961); 34, 6n (1%6).

20. D. S. Huqhes and J. L. Kelly, Phys. Rev. 9?, 1145 (1953).

21. N. G. Einsprugh and R. J. Manninq, J. Appl. Phys. 35, 560 (1964).

22. T. Bateman, W. P. Mason, and H. J. McSkimin, J. Appl. Phys. 32, 928

(1961).

23. R. N. Thurston and K. Bruqaer, Phys. Rev. 133, A1604 (1964).

24. G. R. Barsch and Z. P. Chang, J. Appl. Phys. 39, 3276 (1968).

25. K. Bruqqer, J. Appl. Phys. 36, 768 (1965).

26. H. J. McSkirnin and P. Andreatch, Jr., J. A nnl. Phvs. 35, 31? (19611)

27. Z. P. Chang, Phys. Rev. 140, A1788 (1965).

28. E. H. Bogardus, J. Appl. Phys. 36, 2504 (1965).

29. K. Salama and G. A. Alers, Phys. Rev. 161, 673 (1967).

30. R. A. Graham, J. Acoust. Soc. Am. 51, 1576 (1972).

31. J. Melngailis, A. A. Maradudin, and A. Seeger, Phys. Rev. 131, 1972
(1963).

32. J. H. Parker, Jr., F. Kelley, and D. I. Bolef, Apo1. Phys. Lett. 5,

7 (1964).

33. G. L. Jones and D. R. Kobett, J. Acoust. Soc. Am. 35, 5 (1963).

34. L. H. Taylor and F. R. Rollins, Jr., Phys. Rev. 136, A591 (1964).

35. F. R. Rollins, Jr., Apnl. Phys. Lett. 2, 147 (1963).

36. F. R. Rollins, Jr., L. H. Taylor, and P. H. Todd, Jr., Phys. Rev.

136, A597 (1964).

37. R. W. Dunham and H. B. Huntinqton, Phys. Rev. B 2, 1098 (1970).

38. I. L. Bajak and M. A. Breazeale, J. Acoust. Soc. Am. 68, 1?A5 (1980).

39. M. A. Breazeale and J. Ford, J. Appl. Phys. 36, 3486 (1965).

40. W. B. Gauster and M. A. Breazeale, Rev. Sci. Instrum. 37, 1544 (1966).

4'. W. B. Gauster and M. A. Breazeale, Phys. Rev. 168, 655 (1968).

42. J. E. Mackey and R. T. Arnold, J. App]. Phys. 40, 4806 (1969).

43. E. L. Meeks and R. T. Arnold, Phys. Pev. B 1, 982 (1q72).



145

44. R. D. Peters, M. A. Breazeale, and V. K. Pare', Rev. Sci. Instrum.
39, 1505 (1968).

45. R. D. Peters, M. A. Breazeale, and V. K. Pare, Phys. Rev. B 1, 3245
(1970).

46. J. A. Bains, Jr., and M. A. Breazeale, Phys. Rev. B 13, 3623 (1976).

47. J. H, Cantrell, Jr., and M. A. Breazeale, Phys. Rev. B 17, 4864
(1 C "

48. W. 1. Yust, J. H. Cantrell, Jr., and M. A. Breazeale, J. Appl. Phys.,
scheduled for publication December 1980.

49. F. E. Borqnis, Phys. Rev. 98, 1000 (1955).

50. Z. A. Goldberq, Sov. Phys.-Acoust. 6, 306 (1961).

51. A. C. Holt and J. Ford, J. Appl. Phys. 38, 42 (1967).

52. R. E. Green, Jr., in Treatise on Materials Science and Technol .ov
(A cademic Press, New York, 1973), Vol. 3.

53. H. J. McSkirnin, J. Apol. Phys. 24, 988 (1953).

54. H. 1. A",4 in and K. .ndratch, Jr., J. AppI. Phvs. 35, 2161 (1964).

55. P. N. Keatin(i, lhv'. Pev. 149, 674 (1966).

56. R. N. Thurston, in Handhuch der Physik, edited by S. Fluqqe (Snrinoer-
Verlaq, Berlin, 19/4), Vol. VI a/4, p. 279.

57. 1. H. antroli, Jr., Phys. Rev. D 21, 4191 (1980).

5R. K. Prtq(er, Phys. Pev. 137, A1826 (1965).

59. J. A. Bains, Jr., Ph.D. dissertation (The University of Tennessee,

1974).

60. M. E. Fine, J. Appl. Phys. 26, 862 (1955).

61. R. F. S. Hearmon, in Landolt-Bbrnstein, edited by K. H. Hellweqe
(Sprinqer-Verlag, Berlin, 1979), Vol. 11, Ch. 1 and 2 and references
therein.

62. V. P. N. Sarma and P. J. Reddy, Phil. Maq. 27, 769 (1973).

63. P. N. Keatinq, Phys. Rev. 145, 637 (1966).

64. 0. F. Gibbons, Phys. Rev. 112, 136 (1958).

65. S. I. Novikova and P. G. Strelkov, Sov. Phys. Solid State 1, 1687
(1960).

-- - - - . . . . . . . I .. . . . .. . ll llI i 
': - "

' i -. . . . .. . ii .. ... A



146

66. S. I. Novikova, Sov. Phys. Solid State 2, 37 (1960).

67. P. W. Sparks and C. A. Swenson, Phys. Rev. 163, 779 (1967).

68. R. D. McCammon and G. K. White, Phys. Rev. Lett. 10, 234 (1963).

69. R. H. Carr, R. D. McCammon, and G. K. White, Phil. Mao. 12, 157
(1965).

70. W. B. Daniels, Phys. Rev. Lett. 8, 3 (1962).

71. F. W. Sheard, Phil. Mag. 3, 1381 (1958).

72. K. Brugger and T. C. Fritz, Phys. Rev. 157, 524 (1967).

73. J. G. Collins, Phil. Mag. 8, 323 (1963).

74. K. C. Sharma and S. K. Joshi, Phil. Mag. 9, 507 (1964).

75. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons,
New York, 1956).

76. W. Cochran, Proc. Roy. Soc. (London) A258, 260 (1959).

77. M. Nandanpawar and S. Rajagopalan, Phys. Rev. B 19, 3130 (1979).

78. S. L. Ouimby and P. M. Sutton, Phys. Rev. 91, 1122 (1953).

79. H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 34-, 651 (1963).

80. G. R. Barsch and Z. P. Chang, J. Appl. Phys. 39, 3276 (1968).

81. J. F. Thomas, Jr., Phys. Rev. B 7, 2385 (1973).

82. 0. L. Anderson, Phys. Rev. 144, 553 (1966).

83. Y. A. Chang, J. Phys. Chem. Solids 28, 697 (1967).

84. R. R. Rao, Phys. Rev. B 10, 4173 (1974).

85. A. Bienenstock, Phil. Maq. 9, 755 (1964).

86. B. N. Brockhouse and P. K. Iyenqar, Phys. Rev. 111, 747 (1958).

87. R. T. Payne, Phys. Rev. Lett. 13, 53 (1964).

88. R. Truell, C. Elbaum, and B. B. Check, Ultrasonic Methods in Solid
State Physics (Academic Press, New York, 1969).



APPENDIXES



APPENDIX A.l

THE DETECTOR EnUIVALENT CIRCUIT

Figure 33 shows the detector as it is connected for measurements

of nonlinearity. It is assumed that the detector load is an ideal

resistive load R. A large couplinq capacitor Cb Provides dc blockinn

for the amplifier. Its effect on the RF sinnals can be ignored. Rb is

a large (R 1 to 10 m,,.) resistor used to prevent larqe current discharqes

in the event of arcing in the detector. It is very large compared to

R so that no appreciable current flows throuqh it and Vb. If one

considers the sample end vibrating sinusoidally at frequency ') with

amplitude 2A, where A is the acoustic wave amplitude in the sample,

then the gap spacing chanqes with time according to

S = S0 + 2A sin wt (A.1-1)

The factor 2 enters because the reflection of the wave at the stress-

free surface leads to a vibration amplitude of the samnle end which is

twice the wave amplitude inside the sample. Thus the capacitance of the

detector, considered as a parallel plate capacitor, is niven by

1/C = I/Co(l + 2A sin wt) (A.1-2)
S0

where C0 - is the static capacitance of the detector, , and Sn

being the dielectric constant of the medium (=I for air), area of the

electrode and static spacinq of the detector, respectively. Sunninn

14P
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Cb

C b vM R (inpUt to
C v~t) amplifier)

Vb

Figure 33. General detector circuit.
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voltaqes around the outside loop of Figure 33, we get

!, t) - Vb = R 9t =  V(t) (A.1-3)

c b dt

Substituting (-.ll)and (A.l-2) in (A.l-3) and assuminq a steady-state

solution of the form

q = q0 + a sin wt (A.l-4)

one obtains

VW = -2AVb 1 + (A.1-5)
v Rt) C , ____ _ cos( t a -5

0 v/l+ R22C 02

where

tan-I(R , C0 ) (A.1-6)

2AVb
Consider a signal generator of amplitude V - feedinq R

So

through a capacitance of value C0. The voltage across R can be shown

to be precisely the same (in both amplitude and phase) as Eq. (A.1-5). A

complex load of impedance Z, rather than R, can also be treated. One has
AVb

simply -S- sin,,t feeding C0 and Z in series. This situation more
0

accurately represents the experimental case because of stray line

capacitance shuntinq the input to the amplifier. For most experimental

situations this stray capacitance is sufficiently large to reauire that

durinq the calibration to determine V, one feeds through a substitutional

capacitor of value C0 , even if R is chosen to be quite large.

-OW



APPENDIX A.2

RF GATE, MOSFET GATE AND FREOUENCY DOUBLER

To prevent overloading of the amplifiers due to the feedthrouqh

signal, two gates have been built. An RF g3te, shown in Figure 34, is

used between the capacitive detector and the 30 MHz amplifier to pass

only the echoes of interest. A slower MOSFET gate, shown in Figure 35,

is used between the detected output of the 30 MHz or 60 MHz broadband

amplifier and the boxcar integrator. The RF gate is able to handle the

RF pulses, but the on-to-off ratio is not very great. However, if a

xlO attenuator is placed between the gate and the 30 MHz amplifier,

and the amplifier is operated at higher gain (to prevent overloading of

the first stage, which has fixed gain), the attentuation of the feed-

through is sufficient to prevent overload of the 30 MHz amplifier.

The MOSFET gate is used to protect the more sensitive boxcar

integrator from overload. The on-to-off ratio of the MOSFET qate is

very high, but the gate is useful only for low frequency signals. Both

gates are driven by a pair of complementary pulses from a GR1398-A pulse

generator. A delayed trigger output from the boxcar integrator allows

the gating pulse to be positioned in time.

The frequency doubler used in the calibration enuipment during

room temperature measurements is essentially a ring bridge modulator-

phase sensitive detector followed by a tunable series resonant filter

shown in Figure 36. It provides a signal which is precisely twice the
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frequency of the fundamental used in the study. The diodes DI-D, shown

in the fiqure are RCA type CA3039. The doubler has been tested for

spectral purity with a spectrum analyzer.



APPENDIX A.3

ATTENUATION AND HARMONIC LOSS EFFECTS

As the ultrasonic wave propaqates in the sample, the second

harmonic amplitude A2 changes as a function of distance. There is a

growth of A2 proportional to the square of the first harmonic amplitude

A and there is a decay of the wave due to attenuation of A2 , Therefore

the amplitude of the second harmonic as a function of distance in the

sample a is given by the differential equation
!

dA2  3 2 2
-a A +  k iA (A.3-1)

da 2 2 8 1

where '2 is the attenuation coefficient of A2. If one assumes that the

change in A1 as a function of a is due only to the attenuation of A1 and

Ai the loss of power into the second harmonic, neqlectinq the power loss

into third and hiqher harmonics, one obtains

dA31 A -A k2 A (A.3-2)

where cl is the attenuation coefficient of A1.

The simultaneous solution of Eqs. (A.3-1) and (A.3-2) has not

been obtained, but two special cases can be solved. The first special

case is the one for which we can neqlect the term due to power loss from

the fundamental into the second harmonic. Equation (A.3-2) then becomes

dA1da 1- Al 
(A.3-3)
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Equations (A.3-1) and (A.3-3) can be solved simultaneously to give

A2  3 2 2xla -2,la -2a

- k ;-e e - (A.3-4)
AI R '2 - '1

The attenuation coefficients for silicon have been measured.
8 8

For a 30 MHz fundamental, the coefficients are of the order of

2 0.09 db/cm and 2 0.27 db/cm. For a 5 cm sample (which is lonqer
2

than any of the samples used In the present measurements) A2 /A1  qives

a value for (3/8)k 2,a which is approximately 2.6 low. Since this is

much smaller than the other sources of error in the absolute measurements,

no attenuation correction is necessary.

The second special case is that for which 1 '2 0.

Equations (A.3-1) and (A.3-2) then reduce to

dA2  3 k2 A 2 (A.3-5)

da 8 1

and

dA1 3 k2
da- 8  L:A2AI (A.3-6)

Equations (A.3-5) and (A.3-6) have the simultaneous solution

3 sin h - (A 2 /AI )k 2 a =

VA 1 + A2

Qn (A2 + A2 + AI)- 9.n A1
(A.3-7)

AI2A + A2

2J



This equation is the same as Eq. (3.2) of Chapter 111. for the entire

range of amplitudes used in the room temperature measurements of

silicon, the difference between (A 2/A, 2 and the quantity calculated

from Eq. (A.3-7) is very small.
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