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I. INTRODUCTION

Stephen Feldberg's finite difference methods [1]) for digital

simulation has been the primary method of approximating the solutions

to second order partial differential equations found in electro-
chemistry. The intensity of usage of digital simulations by these
finite difference methods has increased markedly, and it has become
apparent in some cases that there is a need for faster techniques
capable of delivering accurate results as well as being able to
simulate extremely "fast" systems more efficiently. As a result,
several groups [2] have made significant contributions toward im-
proving finite difference methods for electrochemical problems.

But instability znd lengthy computational times under certain con-

ditions still manifests itself as a primary drawback.

The methods described in this chapter provide some of the
answers to these problems. The mathematics involv:ad in these
polynomial approximation methods are only slightly more com-
plicated than the finite difference equations, but the accuracy of
the results, stability limits, and speed of execution of the com-
puter programs make their use well worth the small extra effort
needed to implement them.

It is not intended to imply that the methods described are
the "ultimate" electrochemical differential equation simulations.
The rapid convergence of low approximation order solutions to the
exact solutions has been proven mathematically for many ‘types of
problems, but certainly not all. However, it is this type of con-
vergence in a method that urges us to seek general theorems that

may lead to faster, even more effective methods of approximation.
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The interest in the use of new highly efficient numerical

methods for the solution of complex mathematical problems is further

evidenced by the overwhelming number of publications on the sub-
ject that have appeared in the recent mathematics and engineering
literature [3]. The success of these techniques may be attributed
to: a) the impressive degree of accuracy that is cbtainable;

b) the fact that many of the methods may be constructed
from only a few basic principles;

c) the consideration that many methods are "modular" in
construction, and the "modules" are available as highly
efficient algorithms amenable to digital computer
implementation.

Harrison and Gray [4] used Chebyshev polynomial approximations
some years ago for an electrochemical simulation. More recently,
Whiting and Carr [5] introduced ar advanced and highly efficient
method (orthogonal collocation) into the simulation of electrode
reactions. Their work outlines the theory of orthogonal colloc-
ation and its application tc several electrochemical mechanisms
occurring during chronoamperometric experiments. Bewick, Mellor,
and Pons [6] applied the technique to some actual complicated
systems and extended the method to simulate modulated specular
reflectance transient responses of the intermediates formed during
the réaction. More recently, Rieker and Speiser (7] have used
orthogonal collocation to simulate a full spectrum of cyclic volt-
ammetric responses.

The methods that will be discussed in this chapter-are
suitable in nature to the solution of a great many types of dif-
ferential equations. As Whiting and Carr [5] pointed out, it is
usually just a matter of changing a few steps in the program to

switch from one problem to one of a completely different nature,
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e.g., the chronocamperometric response of an e.c.e. mechanism in
electrochemistry to & dynamic model of a differential scanning
calorimeter. With this in mind, it is also important to :emember
that even highly efficient methods may be improved by using cer-
tain techniques to treat peculiar situations that arise in specific
problems. I have, however, tried to keep the methods as general
as possible.

Special attention has been given to the integration of
"stiff" differential equations, since it is with this type that
electrochemists are most often confronted in their routine work.
Equations of this type are of considerable interest in engineering
research presently, and new, more efficient methods are being
developed rapidly.

Some simple approximation methods are also described that
may be solved on a calculator. These methods are of acceptable
accuracy in many types of experiments, and some are of accuracy

approaching the moze sophisticated methods.

II. THE METHOD OF WEIGHTED RESIDUALS

A. Introduction

Consider the boundary value problem

SR

‘}";;‘V,A ‘.‘

B, = B SR

R

where
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and

g = GZg(x,t)

XX ze

We assume that @ is defined and continuous in the domain W. We
also define ﬂo(x) = g(x,0) as the initial condition of @, and
ﬂz(x,t) are the values of g at the boundaries 2 of the domain.
We choose an approximate solution, ﬂA to the problem in the form:
n

By, = By (o) 4y (04T oy (600 () ( 4)
where ﬂA is the approximate solution, ¢z=o and ﬂz=L are the
solutions at the boundaries 0 and L, and the ﬂi are the basis
functions (which may be polynomial, trigonometric, or other types).
Various techniques would prescribe whether the basis functions
satisfy the differential equation, the boundary conditions, or
both.

The residuual of equation (1) is defined as
R(f) = @, - ﬂt ( 5)

so that if ﬂA is an accurate approximation to the actual g, then
R(ﬂA) will equal zero. It is the purpose in the weighted residual
methods to pick the ai(t) such that the residual tends to zero.
The o, (t) are chosen by specifying that the integral of the re-
sidual times some weighting function w is equal to zero. Thus it

is the "weighted average" of the residual that is specified to be
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zero over the whole domain:

fw.R(ﬂA)dx =0 ( 6)
W .

The choice of the weighiing function wj determines which method
of weighted residuals is being utilized. Some of the more pop-

ular methods are listed here [8].

Integral Method (method of moments, lst order subdomain)

[y

The wj are chosen to be xJ, j=0,1,2,3,=~==- So for the first

order approximation problem, xJ=1, the integral
fR(ﬂA)dx =0 ( 7
W

is evaluated. The result, for time dependent e is a first

order differential equation in ”A'

Galerkin Method

In this, a most widely used and highly accurate method,
the basis functions for the ”A are chosen as the weighting

function, i.e.,
w., = f.(x 8)
j ﬂJ( ) (

Because of this choice, and the completeness of the basis set,

the method can be made ezact as j + «,.

Variational Methods

Using the calculus of variations, certain problems may be

approximated similar to weighted residual methods. The
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solutions, when accessible, compare in accuracy to the Galerkin
method. However, the method is not directly applicable to all
general second order partial differential equations, and is

mentioned here for reference only.

Least Squares Method

Here, the weighting functions are chosen to be

SR(8,)
wj = EEITET ( 9)

The ai(t) are provided by n equations from the set of equations

SR(4,)
§Q A _ . .
KEITET = ZIR(ﬂA)gaITET dx =0, 1 = 1,2, n ( 10)

for a one dimensional situation.

General Collocation

The weighting functions are given by
. = -X. 11
wJ 8 (x xJ) , ( )
§ being the Dirac delta function, which is defined as follows:

§(r) = 0, r#0
JE(r)é(r)dr = £(0)

( 12)

Note that if f(r) =1, f6§(r)dr = 1. ALlso, it is true that §(r)

is only defined during an integration.
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to the general diffusion problem. Several weighted residual me-
thods are then used to provide the concentration profiles, and a

comparison is made of the results.

1

B. The Diffusion Boundary Layer Approximation g

%

i

As an example of one method that may be used on a hand calc- gﬁ

3

ulator, we develop an approximation for the EC mechanism using a %?

boundary layer approach. We have:

It is then immediately obvious that this choice of we-

ighting function leads to
0 E‘gij(ﬂA)dx = fé(x-xj)R(ﬂA)dx = R(ﬂA(xj)) ( 13)

so that the residual is given in terms of a fixed set of x.

only. The xj are any set of points in the integration interval.

Orthogonal Collocation Method

This highly accurate method, which is used in this work
for accurate simulations of complicated systems, is the same
as method (5) above with the collocation points xj chosen as

the real roots of an orthogonal polynomial.

Subdomain Method

The integration domain W is subdivided into subdomains W/n,
n=1,2,3,----. The weighting functions are equal to 1 when x is
in a particular subdomain, and equal to zero when it is not.

If the number of subdomains is increased, the residual ap-
proximates zero closely in more regions, and eventually ap-

proximates zero over the entire region.

In the following section, a very useful approximation is made
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AT—B —¢C ( 14)

at a planar electrode under conditions of semi infinite linear di-

ffusion, ard the conditions:

(Aly o = [Alg o = [A°] ( 15)

[Bly o = [Cly o = [Alg,p = [Bly g = [Cly o =0 ( 16)

(d[A]> _ (d[B]) ( 17)
aX Jx=0 dX Jy=0

This problem is one of a potential step applied to the elec-
trode of such magnitude that the surface concentration of species
A is reduced immediately to zero. We wish to determine the con-
centration profile of species B as a function of time. The dif-
ferential equation to be solved is

8181 _ , 8%18]

- k(B] ( 18)
T B 6X2

Assume that I is some distance from the elec’.rode such that at the

end of the experiment, there has been no diffusion of any species

to L. 1In this case, we define the dimensionless parameters

D 2
t:—-—z- X = B:E-Il'- Cc. =

L Dy B

[os}
es)

e

( 19)

]
>
©,
[o—

Inserting these parameters into (18), we obtain

6cB ) Ch

—

- Bc ( 20)
t 5)(2 B
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The initial and boundary conditions are also changed to

cB(x,O) = cB(l,t) = 0 ( 21)

I
(=]

cp(0,t) ( 22)
Now consider the diffusion boundary layer. When the potential
step is applied, B immediately starts diffusing into the solution
toward the cell wall which we assume to be no closer than L. As-
sume that the concentration of B ahead of this boundary, whose
distance from the electrode we shall call b, is equal to zerc. We
also assume that behind the boundary, B is represented by a con-
tinuous gradient. We note that b is a function of t only. We
may, under this supposition, treat distance from the electrode
surface as some fraction of the parameter b(t). We now define a
dimensionless distance transformation, which is simply a fraction

of the diffusion boundary thickness:

%

LTS (23)

Since the concentration is to be expressed as a function of distance

from the electrode surface, we have

- — X
CB = CB(H) = CB(B-TE-)—> ( 24)

Note that we have combined distance and time into one new in-

dependent variable yp.
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From the nature of the model, the following general boundary

conditions must be imposed:
(1) The dimensionless concentration at the electrode surface

is 1, i.e.

cg = £()=£(0)=1 (25)

(2) At the edge of the moving boundary (u=1l), the concentra-
tion is 0, i.e.

Cy = f(u)=£(1)=0 (26)

(3) There is no flux of material across the moving boundary, i.e.

£'(1)=0 (27)

(4) The moving boundary initially is located at the electrode
surface, i.e.

b(0)=0 (28)

Now we rewrite the differential equation in terms of the new -

single independent variable y.

e

_ _ X
cp = £)=£ Gy (29) |
__X X X '::11
Scp _sequ) _ se'mrEr) _st'5er s d
St ét St 8 X ) 6t é‘e
() 5
_ e X X 1 db(t) :
= EE 5 b)) e 4

L
T o AAEALR S T T ] A

=£' (1) pn b(t) b (t) (30)
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6cp s BrEr s 'BE) & oxe 1 -1
&% 8% | gp.X 3% =W EEp) = £ b T(e) (31)
S By

2 X X
$7ep s byl BT 2

1 -2
= £ (u)( )= £" ()b (t) (32)
2 X 6x b(t) b(t)
§x G(STET)
The differential equation (20) now reads:
“£' () wb() b () - b2 (u) - BE() (33)

The residual of (33) is simply the left hand side minus the right
hand side. Now we choose an approximating function for £(v). The

simnlist polynomial approximation that satisfies all of the boundary

conditions (25-28) is:

£(y) = (1-p)2 = 12 +p? (34)
We have:

£'(y) = 2y - 2 (35)
and

£" (u) = 2 (36)
So:

Ry = =k (2u-2)b' (1)b(6) ™3 = 2b()™2 + g(1-2u41) (37)

2 2 2 2

or  b(t)“Ry= (2u=2u")b’ (t)b(t) = 2 + BD(t) (1-2u+u®) (38)

Now we shall apply various MWR to solve for the moving boundary

position b. 1Insertion of this value into equation (34) will give

| ool
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the concentration profiles for species B. The results for each
method are then compared to the exact solution.

Method (1): The integral method (w_.=1l)

3

For the highest accturacy, we demand that the residual be equal

to zero in the weighted average sense:

2, - ! -
b2 v Redy = [Rpdu = 0 (39)
i.e.
{’(2u-2u2)b'(t)b(t) - 2+ 8b(t)2(1-2u+u)ap = 0 (40)
2
b'(t)b(t) b (t)
{‘REdU = 5 -2+ ﬁ—s-—— = 0 (41)

The first order differential equation is solved for b(t):

b(t)b'(t) = 6 + Bb2(t) = 0 (42)

and since b'(t) = Qgé&i . we have

b(t)db(t)
(Bb"=6)

= =-dt (43)
which is integrated to give
6 1/2
b(t) = [§(1~exp(-26t))] (44)

This approximation describes the movement of the diffusion boundary
layer in time.
The approximate concentration change with distance and time is

obtained by substitution of (44) into (34):

pxed
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2 (45)

2 X 2 X
B bit) gil-exp(-ZBt)) /2

The solution is valid until the moving diffusion boundary layer

reaches the outer boundary limit b=1l:

g(l-exp(-zst>)1/2 -1 (46)
or until
-1 B
t= 78 In(1 6) (47)

Method (2): The method of moments with 3=2.

Using j=2 (a second order approximation),

wylu) = uj’l

=y (48)
The residual integral is then
{MWoRedy = [TuRgd
= [ulu-228)p' (b(e) = 2 + Bp2 () (Q-zundlau = 0 (49)
The solution is

['WRedu = ' (£)b(t) = 1 + Bb2 (L) (x}) = 0 (50)

The differential equation is solved easily to give the new
approximation for b(t)
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b(t) = [l%(l-exp(-st) )] 172 (51)

and substitution into (34) gives the new approximate concentration

profile:
2

c, = £(u) = |1 - X ' (52)
B léll-exp(-st))ll;z

Method (31): Single point collocation, wj(u) = (u-uj), §-1,2,-=-N

where the u are N points in the integral (0,b(t)).
Let us arbitrarily pick 1/2 as a collocation point because of

symmetry. Thus we have from (38):

PR = (1-1/2)b(t)b’ (£)-2 + 8b2 (t) (1/4) = 0 (53)
or
blubi(t) _ 5, gbi(t) -0 (54)

This equation yields
b(t) = [gil-exp(-st)ﬂ 1/2 (55)

and thus

2
(56)

C, = f(y) = }l- X v
B gu-oxp(-st) ilm

Method (3b): Other collocation points might have been chosen. AS
an example, if we had chosen u = 1/3 (a highly effective choice in

Galerkin collocation methods), we would have the result:

e e & ——— —— —
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c, = f(p) =[1 - X (57)
B i%g(l-exp(-zst)ﬂ 172

Method (4): The Galerkin Methc2 wj(u) = £ (p) = 1=-2u+ uz

{’ijEdusf‘{1-2u-v2)[(2u-2u2)b(t)b'(t)-2+8b2(tf(1-2u*v2)]du=0 (58)

Integration and solution of the resulting differential equation

yields

2
(59)

c, = f(u) = |1~ X
B B‘-%(l-exp(-‘ﬁt))] 172

Method (5): Integral method, j=1, but choose as an approximation

polynomial the function

cp = f(y) = l-sin 1% (60)

instead of equation (34).
Thus

2
f'(y) = -g cos %u and £"(y) = %— sin %u (61)

so that since

R, = =uf' (Wb(£)b1(£)=£" (WIb™2(8) + BE(w) (62)
we have
2
Rg=-u (~JcosJulb (b2 (£) = (sinfu)b™2 (£)+8 (1-singu) (63)
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and
- 2 -
uRedy = £1 BleosTuib(e1p™ (¢) - GosinduIbT2(e) + 8

- Bsingu =0

(64)

integration and solution of the resulting differential equation leads to

1/2
1.571
bee) - [a—.ss-m‘l'“?"m”]

. x
and since y = B(t)’

-1/2
¢y = 1 - sin [%5-[%f%%%;—g(l-exp(-zet))l ]

Exact solution:

(65)

(66)

The exact solution to the catalytic boundary value problem has been

given by Joslin and Pletcher [9] as

[B] = L%:lexp(-§[%)erfc( X -IkT) + lgzlexp(x!%)erfc( X +.r;5) (67)

20T 2{pT

For comparison of the exact solution with the approximations, we
choose k = 100 8%, T = 1072 5, D = 10”° cm?s™} and [A®] = 1073

We find that if we choose, under these conditions, the boundary
X=L 2 3 % 10.3 cm, that there are no diffusion effects at the boundary
under these conditions, therefore the approximate solutions are valid
using L = 3 x 10”> em. This leads (using the relations in (19)) to

the following values of the dimensionless parameters:

X

B
t= 0,011 B = 90 8--3-,‘—1-0—_1' CB-L!;_—E

moles 1 ~.

1

(68

—e
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2 e L I R




17

jabie 1 liists the results of each of the approximation methods and
the exact solution at various distances from the electrode-solution
interface. The accuracy of the collocation method 3b is impressive for
regions close to the electrode (or at short times). This method is
particularly interesting because of the low order (j=1) cf polynomials
used for the basis functions. It will be seen in the next section that
the use of the more sophisticated orthogonal collocation method leads
to continuvation of rapid convergence as the approximation order is
increased. The approximation is thus capable of giving highly accurate

results with little computational effort.
IXII. ORTHOGONAL COLLOCATION

A. Introduction

The method of orthogonal collocation has as its basis the existence
of what is known as interpolating polynomials. If we have a real
function #(x), and we choose n points Xq 1 Xg===X in the interval lxl,xn]
then it may be shown [10] that there exists some polynomial of degree
n-1 which equates to #(x) at each of the points x . If the number of
points X, is increased, a new polynomial may thus be found which de-
scribes f(x) at thess new points. Therefore, in the limit, #(x) can
be described at every point. Certain techniques may be used, however, to
use a relatively small number of X, (interpolation points) and still
describe g(x) accurately at all points in the interval. This is most
readily accomplished by choosing the proper type of polynomiil. The
interpolation points are defined by the polynomial chosen, and are usually
tl.e roots of that polynomial,

The purpose of orthogonal collocation solutions to partial dif-

ferential equations is to supply time dependent coefficients to the

- e c———
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Table 1. Comparison of results of the several MWR for the catalytic

mechanism. Parameters: T = 1072 s, (A°] = 107> M, k = 100 s 2,
D= 107" em?s™!, g = 90.
Concentration, species B, M/10™>

Z/cm EXACT 1 2 3a 3b 4 5
2x10-6 .9934 9944 .9954 .9944 .9936 .9530 .9949
4 .9868 .9889 .9908 .9888 .9872 .9861 .9897
6 .9802 +9834 .9863 .9832 .9808 .9791 .9846
8 .9738 9779 .9817 .9776 9745 .9722 .9794
1x10™° | .9673  .9724  .9772  .9721  .9682  .9653  .9743
2 .9355 .9452 9546 . 9445 .9369 .9313 . 9486
4 ~.8749 .892C .9103 .8906 .8758 .8650 .8974
6 ,8177 .8403 .8670 .8383 .8169 .8012 .8464
8 .7639 . 7902 .8247 .7876 . 7699 .7398 «7959
1110-‘ .7133 .7416 .7835 .7385 .7015 .6809 «7459
2 .4930 .5218 .5934 .5165 .4615 .4230 .5085
4 .2343 .1977 .2924 »1913 .1287 .0906 .2118
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various powers of x in the polynomial, thereby providing f(x) at the
interpolation points X . In the method described herein, the polynomials
chosen are orthogonal shifted Jacobi polynomials, and the interpolation
or collocation points are the roots of those polynomials. These
choices have been shown [11] to be sufficient to describe solutions to
the types of systems of equations that appear in electrochemical
diffusion-kinetic problems.

The advantages over finite difference methods are:
(1) 1Inherent stability of solutions.
(2) Greatly increased savings in computational effort.
(3) Ease in changing programs from one mechanism to another.

A given polynomiai of degree n-1, i.e. Pn-l(x)' may be found if it

is possible to solve a set of simultaneous equations in the X, inter-

polation points, i.e.

X +a g%yt ==t ax) tag® #(x,)

+ =me- ¢ Glxz + ao = g(xz) (69)

n-1 n-2 * * .
+ qn_zxn + e ¢ ulxn + qo = ﬁ(xn)

If the determinate in the xj of the above system is nonzero, then a s
urigue solution exists. Since the X, are known, and the orthogonal
collination technigue will supply the nj. the solution of the ﬁ(xn)

is ztraightforward.
It was mentioned ahove that as the number of interpolation points

vt'&z:'.';g;g‘wm -
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are increased in the interval, the more accurately the polynomial
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inzerpolates to f(x) at every point. The exact error bound at a point
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Exrror [f;m) < %T | Y (m) | 2 (70) ]

vhere Y (x) = (x-xl)(x-xz)--~(x-xn). and 2 is defined if we know that
Iﬂ(n)(x) | <2, for all x in [x,,x_ ]. This assumes that f(x) has con-
tinuous derivatives ﬁ(n) in the interval. 1It is obvious that as the
number n of interpolation points is increased, there is a rapid decrease

in the error bounds.
The individual reacting species' spectrochemical absorbances and

the total charge consumed during the reaction may be obtained by the
time integration of the appropriate concentration profile and the current,

For polynomials, a class of formulas called quadrature

respectively.
formulas {12] exist such that their solutions yield exact values of

the integral of the polynomial over the designated interval. With

respect to a specified weight function (w(x), the formula

x n
I T wxgxiax = I Q. (x,) (72)
X, i=1
represents an exact quadrature formula for the integral of g(x) with
respect to the weight function w(x) over the interval [xl.xn]. The ,

L
St

Qi are constants that are determined once again by methods dependent
on the type of polynomial that has been used to simulate g(x) in the
interval (xl.xnl. Certain of these quadrature formulas lead to the

well known Newton-Cotes, trapezoidal, and Simpsons' rule integration

We will be concerned here with the highly accurate Gauss-

formulas.
Jacobi, Lobatto, and Radau types of quadrature formulas.

B. Discretization of the Differential Equations

We are interested in solving an equation describing electrochemical

diffusion phenomenon such as the type
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By = Byy (72)
where
”t = %% ’ {73)
and
g - 88
= (74)
xx 6x2

We assume that there is an interpolation polynomial that will
describe f(x,t) over the interval [0,L]. The constants a in the poly-
nomial described in the previous section, are now functions of time
(a(t)) since we are dealing with a function § of x and t.

As mentioned, the orthogonal polynomial that we shali use to ap-
proximate g(x,t) is the shifted Jacobi polynomial. These polynomials,

PN(Y,G)(x) are described by the orthogonality relation

{’xa(l-x)YPN(Y'G)(x) pM‘Y")(x) ax = 0 (75)

where xé(l-x)Y is the weight function; y and § > -1. Letting y = 6 = 0,
we have polynomials defined that are suitable for the linear diffusion
approximation. These are known as the Legendre polynomials. Since

the interpolation polynomial will have order (n~l) where n is the number

T L e JebpmiTen

of interpolation points to be used for calculation of the values of .

g(x,t), the highest power of x in the approximation will be (n-1).

BRI
- b o

The trial function for § may thus be written:
i
n+2 -1 ?i
'T = I cj(t)x (76) -
3=1

The n+2 terms come from the fact that x = 0 and x = 1 are also roots of

the polynomial. 1In terms of the interpolation (collocation) points,

sequation (76) becomes:

et Eh
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n+2 j-1
ﬂ(xilt) = 2 ao(t)x. v i = 1'2'-—0n+2 (77)
=1 ) 7

This represents a set of n+2 simultaneous equations in the unknown g
and a. Since the “j represent the elements of an n+2 vector of the time
dependent coefficients, the ﬂ(xi.t) represent the elements of a vector
in the g(t), and the xg'l are the elements of an (n+2,n+2) matrix.
Equation (77) may be represented in matrix/vector notation after

Whiting and Carr [S5) as:

g(t) = a-Q (78)
at fixed x;s where the
- xJ
Q4 = %] (79)

We now differentiate (77) «ith respect to x to get the terms in

the original equation (76):

G x,t)) = = oy (t) & (80)
or in general,
A ) = E () g%yl (81)
X, = (4}
ax (K} fe1 3 gx(K)

Specifically then, at the ccllocation points,

91;;@ "B (e a{klyd im1,2,-==n¢2 82)
- a.(t ——(E'r— ’ = l,2,~==n !
ax — =1 I ax xex,

In matrix/vector notation, for k = 1 and k = 2, this iz equivalent to

ot
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Dij dx!
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(83)

(84)

(85)

(86)

The desired quantities are the aj(t). and follow from matrix algebra:

From (78) we have

alt) = o1 B(e)
such that

Qg%&l = 6 ﬂ(t) C and

%,‘-El P PR
X

or

ag(t) :""

) ’ and
-
dax

where A = C Q 1 and B = po~!

For a single collocation point, we have

(e7)

(88)

(89)

(90)

(91)

‘
b
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+2
ag(t) -
i
2 n+2
e A LIS (53)
ax x. j=1
i
Equation (93) may be used immediately in the diffusion equation ﬂt = ”xx
to yield
2
ag n+
-— = I B,. ot
ac ex. 521 IJﬂ(xJ' ) (94)

1

The diffusion equation is reduced to n+2 simultaneous first order dif-

ferential equations in n+2 unknowns, ﬂ(xj.t).

C. Integration

There are many standard methods that may be used for the integration
of these simultaneous first order differential equations. We have
found [13]) that the method of Calliaud and Padmanabhan [14] is probably
the fastest and most accurate for diffusion/kinetic equations. This
method, known as 1SI3, has been shown [15] to be highly effective for
the integration of stiff coupled differential equations. The reader is
referred to the original literature for details of the derivation; the
pertinent features are given here.

In a Runge-Kutta method of integration, many derivative approaches
may be taken. In the semi-implicat ISI3 variation, the solution y at
the n+l point to a general differential equation

%§ = £(y) (95)
is given by
r
Yney ® ¥ ¢ 1£1 Rl (96)
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where r is the approximation order. The 1i for a third order method are
given explicitly by:
hf(y,)
L WG (97)
1, = T——j—)';'h:.(:g+:1§l) (98)
17 n
ane hB(y ) (c.l,+c,l,)
c c
13 = Ti-igl‘a(gn%) 2 (99)

Here, B is the Jacobian of f(y) at Yne h is the integration step size,
c; are constants, and the I are elements of the identity matrix. The
Ri and c, are found by comparing Taylor/power series expansions of

equation (85) with the Taylor series expansion of y Using this

n+l°
procedure with the constraint of making the characteristic root at (-«)
equal to zero (a necessary condition for accurate integration of stiff

equations), the values inTable 2 for the ¢y and Ri are obtained.

i




Table 2

c1 0.43586659
c, 0.75

c3 -0.27468397
c‘ =0.10562709
Rl 16/27

Rz 11/27

R3 1.

Use of these constants in the above equations gives very accurate
integrations of differential equations possessing large differences in sub-
sequent eigenvalues ("stiff" equations). This is the primary method used i
this work, and the Fortran program STIFF3 [15] is given in the appendix.
Included also are programs for calculating the roots of an orthogonal poly-
nomial (collocation points), the A and B coefficients for the descretized
differential equations, and programs to calculate the quadrature coef-
ficients and perform polynomial integration. The examples there demonstrat

the use of the programs.
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D. Spline Collocation

When dealing with equations containing large homogeneous rate con-
stants and/or trying to solve equations at very short times, it is obvious
that the use of a low collocation approximation order will not be sufficient
to simulate the response accurately. The rapidly changing response simply
might take place before the first interior interpolation point. This
is the same problem that presents itself in finite difference schemes
and to which Joslin and Pletcher [2] have treated for that technique.

In collocation techniques, there are several good ways to eliminate this
problem while maintaining the use of only a few collocation points for
the simulation. One such method is the automatic choice of the pre-sum-

mation factor as discus -~d in section (F.b.). Here, another simple option

is discussed: the method of global splines.

o
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There are techniques for dividing the interval of interest into
many subintervals, and then performing a standard collocation technique
on each subinterval (15]. The solutions at the outer boundary of each
subinterval become the internal boundary conditions for the next sub-
interval. The procedure continues until the original outer boundary
(or last subinterval) has been treated. The number of equations is
raised by a factor equal to the ~umber of subintervals. This technique
then becomes similar to simply raising the number of mesh points in a
finite difference scheme, although one finds that for similar accuracy
between the two methods, this spline technique is still significantly
faster.

The diffusion boundary concept provides a very simple but highly
efficient spline method. 1Initially, the original spacing between the
collocation points is compressed so that their total spanned interval is
just slightly larger than the region where the profile is changing most
rapidly. As the width of the change increases, the concentration value
is tested at the last internal collocation points (N or N+l). As the
concentration there begins to become larger (or smaller if appropriate)
than the boundary condition for that species, then the distance between
the collocation points is expanded, and the procedure repeated. 1In this
new repetition, solutions at all times less than the time at which the
expansion was made are discarded as inaccurate. The procedure is con-
tinued until the final desired time has been reached. Solutions of
excentional accuracy are obtained. For instance, the maximum relative
error in a catalytic mechanism simulation under a chronoamperometric
ixpetiment where the rate constant was 100 3'1 and the integration was

from 1'0'8 8 to 20 s, the maximum relative error was 0.07 percent.
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The procedure for implementing this "spline point” method is quite
gimple to execute. The subinterval is normalized to a (C,1) interval
by a variable transformation, and the normal integration procedure is
followed. However, the value of the concentration at the outer points
is tested continuously as mentioned. The test value is dependent on
several factors, including the rate constant, time of integration,
number of species, etc. It was found empirically that in using 6 internal
collocation points (6th order Legendre polynomial) for the ECE/DISP
mechanism under a chronoamperometric experiment, that a branch test at
the N+l point of 0.001 concentration units was sufficient to maintain
high accuracy even at very high rate constants (up to 106 first order

and 1010 second order) when compared to finite difference schemes taking

computing times up to 104

times as long and extremely fine mesh sizes
(high memory usage).

Consider the general partial differential equation

2
&g 8¢ (100)
%" |

in the interval (0,1). If we desire to insert a spline point at some value
x, such that 0 <« X, < 1, then we would simply make the variable trans-

formaticn

N
L]
.SPQ

(101)

in our equation to renormalize the houndaries. The equation then reads

2
6 . 1_&°¢ (102)
(13 xi 622
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Discretization, then, leads tc¢

- , me2
el =7 I Bjfx.n) (103)
zi X j=1

Integration of the set of equations (103) is performed as usual. Wwhen
the branch is made to a wider interval, x. is changed and the process
repeated.

Spline techniques are given in example 3 in section E.

E. Discretization Examples

Example 1: The reversible charge transfer mechanism under a potential
step to a region where the kinetics are diffusion con-

trolled.

ne
A8 (104

The descriptive equations and boundary conditions are:

2
§[A §”(al
'%T]' =D, '?,({'T (205
8[8) _ , 82IB) (10€
st B gx?
(Al g = [Bl, 4 = [Bly =0 (207
(Aly,0 = [Al, o = [2°] (10¢
ara a(s) 110¢
*Jor ™= &lor

Inserting the dimensionless parameters

DT

X
t-;i ’ x-r , .nch- :‘l'j‘o

we have

ar g — - vyt
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' 2
éc d ¢

, A

, -_— '-'-2'é (110)
st 8x

' 2

3 i —7-6 B (111)

! 6t §x

j cA(O.t) = cB(lgt) = Ca(xlc) = 0 (112)
cA(x.O) = cA(l.t) = ] (113)
dc dc
= -z (114)

1‘0 x1=0

From (93), we then have

? ch N+2
It = .2 Bi'jca(xj.t) (115)
x5 i=1
ch N+2
b

After partial expansion, we obtain

ch N+l

. . = 31,1°3‘°"’ + Bi,N+29A(1't) + jiz Bi,jca(xj't) (117,
i

ch N+l ‘

I . = 31,1°a‘°"’ + 31,N+2°B‘1't) + jfz Bi,jca(xj't) (118
i

The known boundary conditions (112) and (113) for cA(o,t), cagl,t) and
cs(l.t) may be entered at this point to give

ac, N+l
I x =B ne2 t j£2 Bi,jca(xj't)‘\\ (119
¥ ch N+l
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Note that we must use some other means to eliminate cB(o,t). This may
be done by discretizing the boundary condition (114) with (92).
dc dc
A B
= - (121)
ax |, 0 & |, w0
1 1
N+2 N+2
€ (x t) = - g (x,,t) (122)
so1 M3 so1 "3
N+1
N+l
1 N+2 8(1 t)+j£2A1'jc (x ot) (123}

Inserting the known boundary conditions (112) and (113) again for cA(O,t).
cA(l,t) and cB(l.t) we have

N+l N+l
Solving for cB(O,t).
N+1
C (0, t) = - x-l-_l- [AI N+2+jt Al;j(c (let)+cB(let)] (125)
This explicit value may now be substituted in (120) to yield
. ol PR, L (o (x, o t)4cy (X, o8]
= - ==I= [A +IA c, (x..t)+c (x,,t
dat % M 1,N+2 =2 i,9°°A%y B'"§
N+1
+ I B c (x,ot) (126)
4oz 1,38

Now the problem has been reduced to the simultaneous solution of
2N equations, i.e. (119) and (126) in order to obtain c,(t) and cp(t)

at each of the collocation points X
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We will depart from the normal format at this point to completely
develop the program necessary to solve this particular bhasic example.
In the later examples, only the equations necessary to be programmed
will be given.

In this example, we use a Legendre polynomial of order six (six
internal roots Or collocation points). We know the concentration at
both boundaries for the A species at all times, and we know the con-
centration of B at the outer boundary at all times. The concentration
of B at the electrode surface may be found easily if we know all of
the other A and B concentrations at each internal point as one can see
from (125). For a large savings in computational time and programming
ease, it will be simpler to simply solve for the six internal con-

centrations of AandB (12 equations) insteadof at all 8 points (16

equations). %he procedure calls for the writing of 3 short subroutines,

FUN, DFUN, and OUT. 1In this example, FUN consists of defining the
differential equations and returning their values as F(I), I = 1 to 6
for the A species (119), and F(I+6), I = 1 to 6 for the B species. We
will use Y(I), I = 1 to 6 for the six concentrations of species A at
the internal points, and ¥ (I+6), I = 1 to 6 as the six internal con-

centrations of species B. From (119), therefore, we have

dc 6
A
1l
dec 6
A
F(2) = Ic = 83,8 + I 83'j+1ca(xj.t) . E2
s ; xz j-l
* dc 6
A
6

Note that for programming simplicity, we have changed the i and

§ indices slightly. Since we are considering the internal solutions only,
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the i and j indices on the right hand side of the eguations on the A
and B coefficients are simply changed to i + 1 and j + 1. Ve are
simply refering to
ch
F(I) = 3t i=2,7 E4
X3

ch
F(I) = — i=],6 ES
dt x. !

1

The j index on the summation thus is changed also from j = 2 to 7 to
j =1 to 6 to maintain consistency.
Partially transforming to FORTRAN language, we have
6

F(I) = B(I+1,8) + I B(I+1,J3+1)*Y(J) E6
3=1

To get rid of the summation symbol, we use the following loop
DOIQI‘lpG
TDDER1 = 0,
DOZJ-I.G
2 TDDER]1 = TDDER]1 + B(I+1,J+1)*Y(J)
1 F(I) = B(I+1,8) + TDDER1
Thus the 6 differential equations are defined in subroutine FUN and
will be returned to the main program for simultaneous integration.
Programming for the six differential equations F(I+6), I =1 to 6
for the six internal concentrations Y(I+6) for the B species follows
a similar line of reasoning. We also "re-index" for programming
simplicity in the same manner. (Replace i and j on right hand side of
(126) on the collocation coefficients A and B by i + 1 and jJ + 1 and

change the summation index from j = 2 to 7 to j = 1 to 6.)
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F(7) = 252‘ - - :gi-lA + g A (c (x .t)+c (x t))
at |y A1 18407254
6
+j£182 3418 (%5 %)) E7
F(12) = dpl .. _241[ + § A (Cy (Xsot)+C, (X.0t))
dt Xg 1 1 1 8 j=1 7,341°°A75° B3’
6
+j£lnj'j+lcs(xj,t)] ES

Partial transformation to FORTRAN gives

6
F{I+6) = -B(I+1,1)/2(1,1)*(A(1,8)+ I A(I+1,J+1)*(Y(J)+Y(J+6))
J=1
6
4+ T B(I+l,J+1)*Y(J+6)
J=l

Again the summation signs may be eliminated by the following loops

DOII'I'G
TDDER2 = 0.
TDDER3 = 0.
DO 2J = 1'6
TDDER2 = TDDER2+A (I+1,J+1)* (Y (J)+Y (J+6))
2 TDDER3 = TDDER3+B(I+1,J+1)*Y(J+6)
1l P(1+6) = -B(I+1)/A(1,1)*(A(1,8)+TDDER2)+TDDER3

Thus, the entire subroutine defining both sets of differential eguations
for the A and B species would appear as follows:
( 1) SUBROUTINE FUN (Y,F)

( 2) IMPLICIT REAL*8(A~H,0-F)
(Implicitly invoking double precision mathematics for all real
variables)
3) DIMENSION ¥({16), F(16)
COMMON A(30,30), B(30,30), ROOT(30)
(The collocation coefficients A and B and the polynomial roots
ROOT have been defined by subroutine JCOBI and DFOPR. They are
passed to FUN, when needed, by the COMMON block statement.)

5) DO11Is= 1'6
6) TDDER]l = 0.
8) TDDER3 = 0,
9) DO 2J = 1(6

o~
&
-

T

R

Y, g, S g, gy

st
T




314

(10) TDDERY = TDDER1+B(I+1,J+1)*Y(J)
(11) TDDER2 = TDDER2+A (I+1,J+1)* (Y (J)+Y(J+6))
{12) 2 TDDER3 = TDDER3+B(I+1,J+1)*Y(J+6)
(13) F(I) = B(I+1,8)+TDDER]
(14) 1 F(1+46) = -B(X+1,1)/A(1,1)*(A(1,8)+TDDER2)+TDDER3
(15) RETURN
(16) END
The next subroutine that must be defined is DFUN. DFUN is used
by the integration subroutine. DFUN must return the values of the
derivatives of F(I) and F(I+6) at each one of the collocation points
x, as DF(I) and DF(I+6), I = 1 to 6. -
The differentiation is seen to be straightforward upon expansion

of one of the F(I) terms, say F(1l)

F(l) = 82,8+32,2°A(x1't)+32,3°5‘x2't)+32,4°A(x3't)+82,scA(x4't)

+82'GcA(xs,t)+Bz'7cA(x6.t) E9
We desire
a(F(l1))
- , J=1¢to6 El0
ch(xj)

We have, by inspection,

a(rF(l

DF(1,1) = ch xl't = 82‘2 Ell
a(r(l)) .

DF(1,2) = °, x2.t = 52‘3 El2

a(F(1) . ;

DF(1,6) = W - 82'7 El2 L%

%

In general, we have X
oF(1,3) = $EEL « B(142,54) ;
A %

A

B




3le

These are programmed into DFUN as follows
DO11I=1,6
DO1J=1,6
1 DF(I,J) = B(I+1,J3+l)
The F(I=6) are differentiated similarly. For instance,
2 1
. __L_
F(7) 1 llAl gt 2 2(c (xl.t)+c8(x1.t))+a (c (x2,t)+c (xz,t))
2 ‘(c (xatt)'.'c (x3't)) + Az S(C (x40t)+ca(x4lt)) +
Ry, 6(c: (xgot)eg(x,t)) + 52'7(0A(x6.t)+c3(x6,t) + By 5Cp(%;,t)

2 3c (xz,t) + Bz 4% xx3,t) + Bz'scg(x4.t) + 52 6 B(xs,t)

+ B2 7%g (xs,t)] El4
. d(F%?))

We desire ¢ 3 =1,6 El5
ch 3

Note that the cB(xj,t) are the Y(I+6), so that we use the nomenclature

DF(1+6,J+6) for the B species.
B

a(F(7) 2,1
DF(7,7) = o w-dy 4, E16
1 A
DF(7,8) = SELT) S22, .. E17
qc, (x, E K123t P2
® 8 *
. A B
DF(7,12) = o Rl =t a, 548, F18

or in general,

A(F(I41)) _ _ B(I+1,1 .
DE(146,946) = G oy, eF = = BUEHFE *acze1,342) 4B (141,340

This is programmed exactly the same as the DF(I,J) above. The entire

subroutine then appears as follows
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1) SUBROUTINE DFUN (Y,DF)

2) IMPLICIT REAL * 8 (A-H,0-2)

3) DIMENSION DF(30,30)

4) COMMON A(30,30), B(30,30), ROOT(30)

DOlJ*l,G

7) DF(1,J) = B(I+1,J+41)

8) 1 DF(I+6,J46) = ~B(I+1,1)/A(2,1)*A(I+1,J+1)+B(I+1,J+1)
9) RETURN

10) END

(-]
~

The OUT subroutine is called at predetermined time increments from

the integration subroutine STIFF3. When OUT is called, the O values

for the concentration profile (Y(I) and Y(I+6), I = 1 to 6) are available

for output. Four parameters are transferred:

X = the current value of the time

Y = the current value of the concentration at each collocation point

IH = number of bisections that occurred before successful integration

Q = stepwise acceleration integration factor.
In general, IH and Q are of little interest for our purposes.

One thing that may be done first in OUT is the calculation of the
unknown boundary condition--i.e. the value of the B species at the

electrode surface cB(O,t). For convenience we call this value

¥(13). PFrom (125), after re-indexing,

6
=]
Y(13) = cB(O.t)..-xITI (A1'8+jilai+1,j+l(cA(xj.t)+cB(xj.t)) El9

We perform this calculation in OUT since all of the Cp and g (Y(I) and
¥(I+6)) are available. Partial conversion to FORTRAN gives

PO11I=1,6
TDDER4 = 0,
DO 2J = 1,6
2 TDDER4 = TDDER4+A (I+1,J3+1)*(Y(J)+Y(J+6)

1 ¥(13) = - 3/A(1,1)*(A(1,8)_TDDER4)
The rest of the OUT subroutine may be used for calculating the current
or spectrochemical absorbance, etc., as well as defining the output

format,

A e e
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For instance, the flux at the electrode surface is given by

ch N+2
-_— A, . .
P ;e = jil 1'JcA(x3.t)

Partial expansion gives

ch N+1
a;— = Al,ch(o't)+A1,8cA(l't)+-E Al'jca(xjat)
x1=0 j=2
N+l
= A1,8+j£2A1.ch(xj't)

after insertion of cA(o,t) = 0 and cA(l,t) =],

So to calculate the surface concentration of the B species at all times,

Switching to the new index for programming, we have

6
FLUX = A(l.B) + h) A(lpJ+1)*Y(J)
J=1

Eliminating the summation sign, we have

TDX = 0.
DOl1J=1,6

1 TDX = TDX+A(1,J+1)*Y(J)
FLUX = A(1,8)+TDX

31g

E20

E21

and to calculate and print the flux as well as the profiles for each

gpecies, the subroutine would appear as follows:

Sy, TN, P, PN PN, S P P
g

SUBROUTINE OUT(X,Y,IH,Q)
IMPLICIT REAL*8(A~H,0-2)
DIMENSION ¥ (30)
COMMON A(30,30),B(30,30),RO0T(30)
DO11XI=1,6
TDX=0,
TDDER4=(,
DO 23 .106
TDDER4=TDDER4+A (I+1,J+1)* (Y (J)+Y (J+6))
2 TDX=TDX+A(1,J+1)*Y(J)
Y(13)=-=1,/A(1,1)*(A(1,8)+TDDER4)
1 FLUX=A(1,8)+TDX
WRITE(G,IOO)X.PLUX.(Y(I)'131,6)'Y(13),(Y(I+6).I-l.6)
100 FORMAT(' TIME=!E20.15,/,' FLUX=',E20.15,/,4X,
1 '0,00000000000!3(F16.11,1X),/1X,3(F16.11,1X),3X%,
1 ¢1.00000000000!//,4%X,F16.11,1%,3(F16.11,1X),/,
l 1X,3(F16.11,1X),3x,'0.00000000000")
o
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. The main program for the solution of these equations would appear, for

example, as follows:

IMPLICIT REAL*8(A-H,0-2)
DIMENSION DIF1(30),DIF2(30),DIF3(30),VECT(30),F(30),FOLD(30)
DIMENSION YOLD (38),YA(30),YK1(30),¥K2(30),YK3(30)
DIMENSION DF(30,30),DFOLD(30,30),W(30),Y(30),YOLD{30)

(The above defines the subroutine variable arrays.)
COMMON A (30,30),B(30,30),RO0T(30)
EXTERNAL FUN,DFUN,OUT

N=6
(Defines order of polynomial used and hence the number of
internal collocation roots.)

Ng=1

Nl=l
(Specifies that the X-0 and X-1 boundaries will also be roots.
(see JCOB1))

AL=0

BE=0

(Specifies that a=8=0 and hence an orthogonal Legendre poly-
nomial will be used (see JCOBl).)

ND=30
(Indicates maximum vector dimension size for this program - note
this is the array sizes in the DIMENSION statements.)

CALL JCOBI (ND,N,N&,NL,AL,BE,DIF]1,DIF2,DIF3,RO0T)

(Calculates the roots of the Legendre polynomial, i.e. the X,.)

DO 41 = 1'8

4 A(I,J3)=VECT(J)
(Calculates the A matrix collocation coefficients and places
them in the A(I,J) matrix.)

DO 5 I =1,8

CALL DFOPR(ND,N,N@,N1,I,1,DIF]1,DIF2,DIF3,RO0T,VECT)

5 DO5J = 1'8

B(XI,J)=BECT(J)

(Calculates the B matrix collocation coefficients and places
them in the B(I,J) matrix.)

X@=0.Dg

X1=20.Dg
(Sets the starting and ending times for integration.)

EPS=1.D-p6 -6
(Sets integration error limit at 10 ".)

DO6 1= 1,6

Y(I)=1,Dp

Y(I+6)=g.D@

(Sets initial conditions for A and B species.)

W{I)=1.Dg

6 W(I+6) = 1.D@
. (Sets weight factors for results at 1l.)

H@=1,D=06 -6
(Sgts ?nitial value for integration interval time step at 10
units.

CALLSTIFF3(12,30,10,FUN,DFUN,OUT,X@,X1,HJ,EPS,

iw,Y,YOLD,YOLDl,IP,¥YA,YK]1,YK2,YK3,DF,DFOLD,F,FOLD)
(Begins integration of the eguations contained in FUN. There
are 12 eguations to be integrated and OUT will be called every
10 integration steps.)

S§TOP

END
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T R
i S Py

T e T v

T R aryrcvrn Ty
WA a2 s I e T




These four user defined programs (MAIN, FUN, DFUN, OUT) are then
compiled with the six library subroutines STIFF3, JCOB1l, DFOPR, SIRK,

LU, and BACK (which perform the integrations),
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Example 2: The ECE/DISP1 mechanism under a potential step to a region

where the kinetics are diffusion controlled.
n,e
A—==8 £}
ky
B ZC+H

] [
D 82 << El

B+C > A+D Homogeneous e transfer, equilibrium constant K.

The above mechanism has been investigated by Saveant et al. [16] and

Bewick et al. [17).

The equations to be solved are:

2
8(a) §”[Aa)
=T " Pa '6;%— + kplelic]

2
§ [B) §°1(C)
=T = DB 5)(2 - kl[B] - kz[B] [C]

8lel . p, “Lil + k,[B) - k,IB)[C)
2
§(p] . 5 &°(D) -
_2.,1,. D, _;)1(2_ + K, [B1[C) = kyID) + k,[E]

2
SIE) _ o S2IE _
4 - o —c;‘c’l + k3D) = kyIE]

The boundary conditions are:
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(Alg g = [B), g = [C) g = D), o= [E] n=0

[Bly,0 = [Clg,p = [Ply o = [Ely o= 0

zilo,w 5xlo,r 5“'0,1 8%
Using the dimensionless parameters t = 2%.
L
a = D
2
le
k
2
g = == [A®)
ky
quk-i
k)
k
53—4.
1
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(133)

(134)

(135)

(136)

(137)

(138)

(139)

the equations (128-132) and boundary conditions (133-135) are converted

to the following dimensionless forms:

2
éc §%¢c
._A.- g+BchC
6t 8x
GcB 62cB
ét Gxi B BC
6cc 62cc
— = — + ¢, - Bc,.C
(14 éx B B°C
ch 62°D 6 6
— + Bc.cn - YO, + SC
st sxi B C D E

(140)

(141)

(142)

(143

ad
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e =

-

cA(Q,t) = CB(I.t) = cc(l,t) = cD(l,t) = cl..(l.t) =0

ca(x,O) = cc(x.O) = cD(x,O) = ::E(x,O) = 0

ch

auﬁ
o

ccB dcc
= - . =
xlco ax—[xl,,o ax

ch

g2 -

xltﬂ

llote that the normal assunption of setting all of the diffusiorn co-
efficients equal to each other is not necessarv in orthogonal

collocation sinulations, and is simply done here for brevity.

Precisely the sane technioue is used as in the first exarple above

to éiscretize the equations. The results are:

ch N+l

T = °[B1,N+2+j£231j°1\(xj't” + ecB(xi,t)cc(xi.t)

ch B N+l
t

i}
T . = gf~ XI?I [Al'N+2+j£2Al'j(CA(xj,t)+cB(xj.t))]
i
N+l
+ j‘4';2}'%“(:3(:::’.1:)] - cn(xi.t)-BcB(xi,t)cC(xi.t)

1N+1

& X - e 32281:}%("5ot)+cB(xj.t)-BcB(xi.t)cc(xiot)
i

ch B N+l N+l
xi 101 532

+ ﬁca(xi,t)cc(xi.t) - ch(xi.t)"’GcE(xi.t)

1,1 '
a-t— = 0(‘ r‘L_ [ L Al'j(cc(xj.t)‘*co(xjot))l + jfzai'jcn(xj't)]
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(145)

(14¢€)

(147)

(148)

(1249)

(150)

(151)

~
-

—
e

T
ke &
B Sl

R T

T
s

A
e,
[ 2N PR

X

,,,\*
LA SN PO

—
P,

%}» T Y NI P S ST g0y
LA .3 N




35

3—“‘ (- oind IN?A (xot)] + T (x: .))
= g~ C xX.,t 4+ B Cn (X
t xi ’-1 1 j‘z lj j j‘z ioj E j't
+ ycnixi.t)-ccs(xi.t) (152)

This last equation makes use 0f the fact that the flux of the

species E at the electrode surface is zero, i.e.

dc N+2

E
Ex— . = E 1 j E(& ,t) = 0 (153)
%y 0 3j=1
N+l
1 1 l,:(«') t) + Al N+2SE (1,t) + Jﬁzal j E(x k) = 0 (152)

Since cE(l.t) = 0, we have

1
Aa

TR .c.(x.,t) (155)

vhich is substituted into equation (144) after initial discretization.
Spline Modified Collocation Examples

Example 3: Chronoamperometric single pulse

(a) Reversible charge transfer under diffusion controlled kinetics.

A8 (156)
+ne

t -x?- x=7 2 e {—-1-1- {—r]- D D + DB (157)

cA(o.t) = cB(x,O) = cn(l,t) = 0 (158)

ca(l.t) = cA(x,n) -] (159)

v ~ 2

{

'}\‘w"—-‘.'.ﬁm tm;%%w.



(b)

Reversible Charge Transfer-Reversible Chemical Reaction (EC

-ne- kf
A:B:C
+ne kb
tc?—’z xc-x- z-x_ Kekb Y = k_+k B =
12 L x_ E; . £ b

a) B) _ Ic)
Cp = {A‘i Cp = [A°T e [K‘I D = Dy = Dy = D

CA(O,t) = CB(lpt) = cc(llt) = cB(xlo) = cc(xle) = o

ca(llt) = cA(xlo) = C °

éc

éc
.-—B
xlto 6x xlco
1 M+l
= —— [B, + B, .c.(z.,t
. oz 2 [B; n+2 522 i3 a(z50t)]
b % f 3
1 N+l
= —— [B +4 B c,(z.,t
ey AU LA W M A M

> s s

D,

8x

A
—— =" e ESE ;Eg
x1-0 6x x1-0 x x=0
= B + L B c, (z,,t
2, ;:7 L2704, 37A0
1{3-&( N, L le, (2,0 t)oey (20 t)]]
= - A + A e, (z,,t)+c,(2;:,t
2, ;:7 Ry,p o ame2 j=2 1,3'°A B'4y’
N+l
+ LB

j=2

i,jca(zj't)} - Blcs(zi,t)-xcc(zi,t)]

3€

(1€2)

(1€1)

(162)

(1€3)

(164)

(165)

(1€6)

(167)

(168)

(1€9)
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dc, 1 { B, 4 N+l n+l ( )}
I = - ==l T A c.(z,,t) + £ B e (z.,t
: Li x2 U B g2 13CTST T gt 3T

+ Bch(zi't) - ch(zi.t)]

Reversible Electron Transfer - Direrization

-ne kf
AZT/—/HSB 2B =C
+ne” ks

k
X - X , b -
t = — x::-I-‘ -Sx I\IW k [A.]kf‘}kb

[A) (B) . I h oo .
€x " 1T B " [a°T Sc ‘[“‘AT D = Dy = Dy = D

cA(O.t) = cB(l,t) = cc(l,t) = cB(x,O) = cc(x,O) = 0

cA(l,t) = cA(x,O) = Cpo

.} I %) .o
st %,=0 §x %,=0 8% Jxen
ch 1 H+l
|, T %2 PBameat DBy %00
1 .
e 1 { el B Lo (2, ot 4oy t)ﬂ
{ - . - A + ¥ c,(z,,t)+c (2.,
at 2, ;:.r L [ 1,N42 yu2 A 3 B'°j
i+l 2
+ jizailjcB(zj't) - Bleg (zi,t)-xcc(zi.t)l
dcc 1 : Bi 1 1+l ( , N+l : X
= - o=ls T A, onf(2.0t) + I B, .cn(z,,t
Tls, w2 Ra2 e 23CTIT T gpdaTe

+ Bl3cp? (2,,8)-Keg (2, ,t))
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(179)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179!
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(8) Reversible Charge Transfer - Dispronortionation

+ne kf

AT—/B A+BEZC

4ne Xy

tc?—D- xga‘- zs!—‘-— ngb k= [A®)k 4k 8.—&—1‘3
L2 L Xg cl*.'ﬁf ‘£ b 14X J\D

S B )
c, = Ta®7 S8 = IA*T Sc
cA(O,t) = cB(l,t) = cc(l,t) = cB(l.O) = cc(l,o) = 0

CA(lrt) = CA(Z'O) = [A’]

?fi\- = - ﬁ .6-:9- = 0
§x |, « 6 J., « 6% ..
xy 9 %y 0 % 4]
ch 1 1141
g = =7 1By et D B30 0] T Bley (zgoticp(zy,t)
25 Xg 3=
"Rcc(zilt)]
s { N e L lcs (zaot)4ey (2,8)]
= A 5t I A c. (z.,t)+c (2.,t
arzi "‘2’ hll 1N+-j_21j.\j' B'“3 ]
11+l

B 1+l N+l

el LA (- il p A Lc.lzt)+ za colz, 8]
Tl TRT Ry 2O e 1IE ¥’

+ Bley(z ot)en(z, 1t)=Kea(2 t)]
f iat | B'“4 c'“i

(e) Reversible Charge Transfer - Catalvtic Reaction

(The FORTPAN listings for this exanple are given in the appendix.)
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(181)

(132)

(163)

(156)

(137)

(188)
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+ne M)
2
k7 X X kL
ts= B x=7T z = xs = =5 D= DA = DB = Dc

L, . I8 _ ]
€a {A‘] °s " T&2°T Sc * 12°T

cA(l,t) = cA(z,O) = cB(O,t) = cA(zi,t) + cB(ziyt) = ]

EE—A; = e é—cg
23 0 z; 0
ch 1 N+l
i 8
ch 1 N+l
25 e 3 .

The Jacobians for these two equations are given by:

Jij. -x_faij+861j
8
; dcB
a'i_z
I e e s LIV

where sij is the Ktoneqker delta (=1 if i = §; = 0 if § ¥ J).

T SN A Y A

39

(189)

(120)

(191)

(102)

(193)

(1924)

(195)

(196)

(127)

(198)




T -

40
Example 4: Spherical Diffusion - Chronoamperometric £ingle Pulse

(a) Reversible Charge Transfer

A8 (129)

The aquations for the systen are:

iglunA%l+%%i—l- (2c0)
{A}RO'T = 0 (201)
[(A),p = (Mppp o = [8°) (202)
§a) s, = -'-‘.‘-é%l e, (203)

where R is the radial distance fror the center of the spherical elec-
trode, and Ro is the radius of the electrode. Ve choose the following

convenient variable transformations:

R-R
- ID - 0 - A)
t 5 r iR D DA ¢:A = -E-A—,]- (204)
(L-RO) 0
Effecting these transformations on equation (200) we obtain
2 2
éc §°c 2(L=-R,) éc
A, %_ . , 0 A (205)
st ér r(L-no) +R°(L-Ro) ér
or, after simplifying,
e, &% sc
A, A, 2 A (206)

st 6:7 r+g* &r

vwhere




R,

Also, we have

CA(Out) = 0 (208)

c, (1,t) -."'1 (209)

éc éc

IEE - - 3;2 (210)
n N

The second term containing r and the first partial derivative of the
concentration present no problen in orthogonal collocation since we

have the discretization for all partial derivatives:

ch N+2 2 1+2
.&—-lr = jilaijch(rj't) + ;—:_'_—B-;- jilhijch(rjct) (211)
i

The r is sinmply replaced by the Ty at each collocation point, where
the r, are the roots of the approximating nolynorial (i.e. the x, or
collocation points in the planar cases). lle then proceed as before
to solve the set of simultaneous differential equations. We reduce
the order by 2 sy inserting the boundary conditions.

N+l

= Bi.1°.‘°'t) + Bi,N+2°A(1't) + jfznijch(rj't)

ch

at

Ty
N+l

(0,t) + A, (1,¢) + I A.ch(nj.t) (212)

2 c
i,N+2% ju2

Y IE (34,15

Substituting the known values for cA(o,t) and ch(l,t), we have

T

ch

at

I+l 2 N+l

= Bi,u+2*j£231jca(rj.t) + U [Ai'“+2+j£2Aich(rj,t) (213)
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At this point, it is worth considering the effect of choesing
orthoaonal polynomials other than the Legendre {(y = § = 0 in equation
(75)) polynomials. Although beyond the scope of this chapter, it may
be shown that a rore suitable svrretrv for spherical diffusion in-
volving the differential equations usec here is one in which we choose
Yy=1and § = 1/2.

The collocation points and the Ai.

J
the planar éiffusion cases. The new values are given by the JCOBI

and Bij thus are different fror

and DrOPR subroutines simply by changing the value for y(2AL) and 6§ (BE)
in the main proqran,

Although the Legendre polynomials give excellent simnulations even
in this case, the new choice of y and § is even better. Tor example,
integration of the equations and subsequent calculation of the

current fron

nTAD(A°]) GCA nFAD([A®] N+l
1= — E e [2 +IA,.c,(r.,t)] (214)
(L-Ry) \or reR, (L~Ry) 1,042 j=2 ij"a’")

leads to the following results for g% = 1 x 107% in equation (213), and

time point t = 0.03715:

Iexact

Isimulated
Yy =68 =0 (Legendre) 0.997372
Yy=1; é6=1/2 0.929958

T e

Six internal collocation points were useé in the integration.

~F s

;

The additional accuracy can become important in dealing with very ??
rapidly changina profiles. :
Spherical syrnmetry may also be treated by recognizing that in

such a casc, the diffcrential equation is also valid for all radial

o

z
A
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2

directions, i.e. the equation is valid for R” as well as R. Orne ray

make the variatle transformation

us g2 (215)

in ecuation (200).

Vie notice that

o

o)
0
&
>
0
»

Ao _Rdu_ o= A (216)
dar du 4r 2¢u du
and
a? ”A (. :) {__ ch dch
(2 = + 4u —x—) (217)
r dr ar du duz
At the collocation points, equation (211) becomes
2
2 d%c 1/2 dc
“al ., %% P J5— B (216)
at u du du ut g
i
vith
cA(O,t) =0 (21°)
cA(l.t) = cA(u,O) =1 ’ (220)
8¢, éc
A B
Y lu=o L1 Y, (224)
Discretization of eguation (218) with insertion of the boundary
conditions vields
ch N+l N+l
= 2 {A + A ¢ t)) +4 B +IB ot
|, thy mea® F RagCa (g 1]+ 40y (By oot T ByyCpluyet))
1/° N+l Guil/z
i
N+ 1+l 223
+ .
jfz“u%‘“j"” *ug 1By gt L Byyea (vyet) (222)

- ———————— e

B R
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The u, are sirply the saquares of the values of the collocation points.
%his set of equations may then be intecrated by the standard methods to
obtain the concentration profiles. This set of equations is protbatly
more accurate than those previously described, but a cdetaileé cormparison

has not been made. The polvnorials usec here again shoulc be those

vhere y = 1 and § = 1/2.
Example 5: Chronopotentiorietry - Planar Electrodes

(a; €imple Reversible Charge Transfer

ne
AT—"HB (223)

The diffusion equations and bouncary conditions descriting this

ex-erirment are

2
[ 1 0. §°[A] (224)
2 .
§[B] _ Dy ) [gl (225)
87 86X
[A]x,o = [A]m't = [a°) (226)
[Bly,o= 1Bl ¢ =0 (227)
D =D, =Dy (228

D (5 A) - -D (é{._l.a ) : (229
A ‘%il =0 383X Jyup

o (510
{ = nFA DA(-K,TL)X‘O (230

rre ; [B)yeg (231

C=E - 1n TKT;:;




45

Insertion of the usual dimensionless variables for concentration ané

distance, and the new time variable t = T/t, T the transition time, yields:

o 0122
(A®)écy ala®)s’cy

=
1 6t 122

(a*16c, DIA*Is%cy

=
T &t 125x2

and after simplifying and letting B = 2%
2

i.c_&:B__i—s CA
8t &x

2
6t x*

The boundary conditions (226-228) are treated similarly ané become:

cA(x,O) = ] cA(l,t) = ]

cB(x.O) = 0 CB(lot) = 0

() - (i
8%/ ye 8% =0

piscretization of eguations (234) and (235) vields

ch BN;ZB ( )

B - [ X 't

dt x, 3=l 1,323

ch Bu;z

Y. [ . B c.(2.,t)
t X j=1 1,378

Expanding (239) and (240) partially, we have

(232)

(233)

(23¢)

(235)

(236)

(237)

(238)

(239)

(240)
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e

ch N+l
i

ch N+l

T [, " F1P1,1% 0t By ety (114 T By gepxyet)]
b i

Ingertion of the boundary conditions (236) and (237) yields

e
>

N+2
AAI0E * By ag * T By 50 (500

= R[B,
d
x5

(o7
t

dcg N+2
Ic = B[Bi'ICB(O,t) + I Bi'jcB(xj't)]

x4 j=1

lle need an expression for cA(o,t) and cB(o,t) explicitly. From (92)

applied to the boundary flux condition (238), we have

ch N+2
R W L LT
1l
dc N+2
B = LA .,c (x.,t)
ax x,=0 jel 1,3 B3

1

Now, equation (230) is also made dimensionless as follows.

de
T_“M) = M(H—A » Wwe have
( X/ x=0 Lo\gx x,=0

sBFA'DIA) (3%) nra(ne)pl/2g1/2
L ax /. a0 /2

Combining this expression with (245) and (24€), we have

N+l
N+l

cB(o,t) s R e jj; ajcs(xj.t)

Since:
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(241)

(242)

(243)

(24¢)

(245)

(246)

(247)

(248)

(249)

(2590
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where
1 [ iTk
Q = - A (25‘)
2y 1 {nra[ac)p¥p™ 1’“*2] ) *
1 | i
1,1 h_“!"A[P."]D B“] , and (252)
A
- 2]
Substitution of (242) and (250) back into (243) and (244), we have
ch N+1
.d-t_- = si <+ 8 jfzbipch(xj't) ? and (254)
ch N+1
T o Ti + B jfzbi,jcB(xj't) . Wwhere (255)
'1‘j = 8 Bi.IR , and (257)
(258)

bi,5 = "Bi,1%5 * By 4

Simultaneous solution of the 2N differential equations by the inte-
gration subroutines described previously give accurate and fast

approximations to the concentration profiles of A and B as a function

of tine,
The desired response, potential as a function of tine, is given

then by equation (231) in the form

. RT' CB(Oat)
E=E'= -‘-‘-I-,-ln W ’ (259)

with cp(0,t) and cA(O.t) being supplied at each time integration step
by equations (254) and (25S5).
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(b) Ecrev Mechanisn

The extension of the mathematics to include kinetic reactions is

irmrediate. Consider (under the same experimental conditions) the

Ecrev mechanism:

ne ky
A=3B BC (26¢)
k)
with
k_y
K = ol and (261)
1l
A= (kg +k_y)t (2€2)

The diffusion-kinetic equations and boundary conditions describing

the systen are:

sIAl . p sng

(263)
8T S
2
818 . p 1Bl .y () + x 10 (264)
8T &%
2
$l€l . p 818 4 x 18] = k_,1c) (265)
5T 8x
[Aly o = (Al o = [A®) (266)
(Bly,o= [Blgp=0 (267)
(Cly o= 1C), q=0 : (268)
5(2 o (818 \
o (%), = 0 881 - (269!
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§_LCJ.) .
nc( o M (270)

Introducing the dimensionless parareters for concentration, time,

and distance, the following sirplified equations are readily obtained:

2
§c §%c
A A
st 8
2
éc §%¢
B B -1
—= = g—x— = A(14K) “(cg-Kc ) (272)
ot 8x BC
2
éc 6%c -
—€ sS4+ 214K l(cB-I(cc) (273)
st 6x
cA(x,O) = cA(l,t) = ] (274)
cB(x.O) = cB(l.t) =0 (275)
cc(x,O) = cc(l.t) = 0 (27¢)
éc éc
A -}
('G'x_) = "(‘5‘—) (277)
x1=0 xl-o
(écc) (278)
=0
5y m0
Equations (271-273) are discretized (93) to yield, after partial
expansion and substitution of boundary conditions (274-276),
ch(t) N+l (279)
o Teaas + + £8,.C .
W BIBL, 10 1008) + By nap * T ByytalXyet)]
dca(t) N+l
= B ¢+ -
A(14K) " eg (x,t) = Keg (x,st)] (280)
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dcc(t) N+l
- y - BIBi'lcc(o.t) + jizai'jcc‘xj't)] +
i

x(1+x)'1(c3(xi.t) - Ke,(x,t))

The flux relation (277) is identical to the sirpile reversible charge
transfer case, and is discretized in precisely the sare manner to
yield equations (249) and (259). The flux relation for species C is

equation (278), and is discretized as follovs:

vcc 11+2

—— = 0= £ A .C.(x.,t)

OX Joen j=1 1,57¢'"5°

N+l
= Al'lcc(0,t)+Al'n+2cC(1,t)+j£2Al'jcC(xj.t)
N+1
or
N+l
c.(0,t) = I a.c.(x.,t)
c'! ju2 jc'hi’

where ‘j was defined by (253).
furstitution of (249), (250) and (283) into (279), (280), and (281)

gives

ch 11+1

3 xi - Si + Bjizbiljch(xi't)

acp N+l «1
33—'x£ = T+ jfzbiojcB‘xi't) = MIHK) “leg(x,t)=Keq (x,,t)]

dcc N+l -1
= 8 L b, C.(%,,t) + A(1+K) “en (X, st)=Kc.(%x,,t)])
r. xg 4u2 i,3°¢'"y B' i c' i

59

(281)

(282)

(283)

(284)

(285)

(28€)

As before, simultaneous solution of egquations (284) - (28¢) provides .
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the time dependent concentration profiles. The chronopotentioretric
response for this mechanism is still given by equation (259) with the
term in parentheses beinc supplied by eguations (249) and (250). The
concentration terms in (249) and (250) however, are nov calculated
nurerically from equations (284) - (286).

The elements of the Jacobian matrix are simply the derivatives of
equations (254-255) or (284-286) with respect to each xj. The matrix
elements of the Jacobian for the simple reversible electron transfer

mechanism then are given by:

s facatt) ]
Ji,j il 3t for species A (287)
3j x,
i
and
¢ [éeglt) )
Ji,j = ij 3T . for species B (288)
i

These are given explicitly by:

s N+l
Ji,j = K Si + jizbiojca(x

j 3

for species A, and

s N+l
Ji'j = 3:—j Ti + jizbiljcs(xj't) (290)

for species B, or finally,

“B, A
« 22113 4 p : (291)

94,9 % P13 TR 1,3

for both species.

ot) (289)
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Similarily, the matrix elements of the Jacobian for the Bcrev

mechanism are given by:

I5

(4

for species A, and

Ji'j

for species B, where sij is the Kronecker fdelta, and

I8,3

Bt .

Ma

= :ELL__Ji

A

for species C.

Listed below are the discretized equations for several other

comronly occurring electrochemical mechanismns. As above, it is

3 = equation (291)

-1
i3 = AK(1+4K) ca(xi,t)éij

1™ + B, . = AK(1+X) Yo (x.,t) 6
1.1 irj c{Xgrt) 654

52

(222)

(293)

(294

assumed that the diffusion is to a planar electrode in quiet solution,

and species A is the only electroactive species present initially.

(c) Catalytic Mechanism

ne

k

A==B—2a+C

ch
at

ch
at

For the E~t profile, equation (231) is used along with .quations
(249) and (250), the unknown concentration terms being furnished by
the simultaneous solution of the 2N equations (296) and (227).

Xy

x§

i,jca(xj‘t) - ktcB(xj,t)

+ B8 ¢E bi,jcB(xj't) - kTCB(xjot)

N+l
= Si +g8LD

3=2

N+l
= 7T

(4) Dimerization

A PO N e i R NI

(295)

(256)

(297)

(298!
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1
2B —0C (2¢99)
k.y
tle let
A= ([A‘]k1 + k_l)r, and (309)
k.
Then
ch N+1
T x.g 5; + Bjizbi.jca(xj't) (302)
i
dcy N+1 -1 2
I x.g Ti + Bjizbi’jcn(xj,t)-l(l+x) (cB(xi,t) -ch(xi.t)) (303)
i
dcc N"'l _1 2
T x‘= jizbi.jcc(xj't) + A (14K) (cB(xi't) -ch(xi,t)) (304)
i

Once more, equations (231), (249), and (250) are used for the E-t
profiles. Note that in this case, 3N equations must be solved

because cB(O,t) depends on the concentration of the C species.

(e) Second Order Reaction
- k

ne 1l
ASZ=H B+AZT=C (305)
k.y

A and K are defined as in equations (300) and (391).

ch N+l

- -1
I xi 514-ejfzbi'jca(xj,t)-x(1+x) (CA‘xi't)ca‘xi't)'

xcc(xi,t)) (306)
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ch N+l -1
— = Ti + Bji,bi.jcB(xj't) + A (1+X) (ca(xi,t)ca(xi,t) -
i L9
ch(xi.t)) (307)
% - Bjizbi'jcc(xj't) + 2 (14X) (cA(xi.t)cB(::i.t)-xcc(xi,t)) (308)
i

F, Cyclic Voltamretry - Planar Diffusion

Rieker and Speiser [7] have derived the discretized eqguations
necessary to simulate cyclic voltammetric responses by orthoconal
collocation. They are presented in this section. The only @if-
ference in the mathematical treatment for this case and chronoanp-
eroretry is the statement of the surface concentratioﬁs of each species,
which of course must be modified to reflect the new potential program. 1t
should be noted that the computer time expended in these cases is approx-
imately the same as Feldberg's finite difference approach.

(a) Discretization of Cyclic Voltammetfic Experiments [7]
ne

1. Simple electron transfer A &=—8B

‘+ne

Fror the original boundarv conditions and differential equations,

ve have the following dimensionless ecuations:

o

éc §%c
AL A o
ate— 8—7 * (30- ;:g
ét 6 %
foy o (310 f‘%
— = g3 B
t 8x Hﬁ%
£y
C,(x,0) = 1, cp(x,0) = 0 (311 m

ca(lot) =], Ca(lot) s 0 (312




with

fiA- B o 6cB

E x x=0

e, (0,6 " °asm §,(¢)

eA/B = exp|nF/RT (ER/B - Estart)]

sk(t) = {exp(-nFvt/RT) = exp(-at)

exp(at-ZatA)

tA = potential sweep switching time

a = nFv/RT

v = g%. the scan rate

ER/B = the formal potential of the A/B couple

E = the starting potential of the scan

start
8 = p/aL’

The differential equations (302) and (310) are discretized by

the approximation (93) at the collocation points X,

Expanding out the two boundary terms at x = 0 and x = 1, i.e. X, = X%,

ch N+2
dt
ch N+2

and x; = Xy,,, we have

ch

N+d

'&—' b B[Bioch(o't)+Bi,N+2cA(1't) + I Bi,jch(xj't)

x5

=2

55

(313)

(320)

(321)

(322f

(323)
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s |

dc. R+1
a& | - 6lsi'ICB(O.t)+Bi'“+zcn(1.t)+ji“Bi'jcB(xj.t) (324)
i *~

fukstituting the boundarv conditions .3 and .4 yield

dc, 11+l
rrad = BIBi,ch(o't)+Bi,N+2+jEZBi,jCP-(xj't)] (325)
Oli bl
dcE N+l
x| = B[ni,1°8‘°'t)+j£231,j°8(xj't)] (326)
1

2n explicit value for c;(o,t) and cB(O,t) rav be derived exactly as was
cone for previous equations by usinc the boundary condition (313). 1he
interrediate result

[ |

!-lllch(ovt)+A1'N+2+j§=2Al’jc.(let) = "[1‘\1’1CB(OIt)

4l
z Al Co (X, ,t)] (327)

j=2 J B3]
is nov rodified to include the tire depencence of potential and to
eliriinate one of the unknowns cA(O,t) or cB(O,t) by the insertion of
the bounéarv condition (314).

The result is

6,t) °2/8%) () Rt )4 )]} (328
i
and ;
1 R, Loy o t)4ey (o )1] (329
c,(0,t) = ~ — A +IA C, (%, ot)+c (%, < K
B By 11348, 8, TET | 71,0427 570, 3 "A T ™ 0BT

Ingsertion of these explicit values of cA(O,t) and cB(o,t) into (325)

R e

o FE

and (32€) yield the final set of N differential ecuations to be solved

T T
e R Y

sarultaneously for the N values of cA(xj.t) and cB(xj.t) (at the

collocation poivcs)s
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dc, B, .6 g (¢) N+1
2 i,1°2/B") [
—— = 8 {~ = A, + LA, clc.(n.,t)+c (x.,t)]]
ét g ; Al,lll*eA/B°A(t)] i,N42 j=2 1,5'7a'"y! B'"j
1+
+ Bi,u+2+jz B;,jc (a..t) (332)
ch B1 1 N+l
= = B!~ [ + I A [c (m..t)+c (x. t)ﬂ
at % I‘.l 1[1+6MB A(t)] 242 j=2 1,3 !
N+1 '
+ I B c (xj,t) (331)
j=2 *

The concentration profiles are fullyv develored from the solution
of these equations.
The current is given by

ch

"nFA' DBa [a°] ax

6c
i = nrA'D E;—

(332)

xl=0

vhere A' is the electrode area.
dc
YT follows fron

X,=0

The discretization of «—
*1

de

A H+2
d

= LA
xl=0 j=1

Expansion of (333), insertion of the boundary conditions (312) and (314)

vith insertion of the result back into (332) vields

. nFa Jne a [a°) N+l ( ) ( )N;l ( )] (33
= +IA c X.,t)=-0 s, (t P c Xoot ¢

Since we know the cA(xj.t) and cB(xj.t) fror: the solution of (330) and
(331), the current as a function of tire is irmecdiatelv found. Since

the real tine T = at is related to the rotential by

e

>
"‘sn:t*"" TA.T.?O 0T STA (335)

T e S -
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E=E + v(ZTA-T) TX ST C ZTA (33¢€)

Start

or dirensionless tire by

E= EStart + vat D st £ t, (337)

E=E + va(ZtA-t) t, St < 2tA (338)

Start )

The spectroelectrocheriical absorbance response A is civen for each

species A and B for cyclic voltarretry by the quadratures

_ N+2
Fy=y 5.21 Vi"Ai (33¢)
_ N+2

Ag = v iil VicBi (34%)

where the Vi are given by the weicht vector forrula soived. In the
procrars, the A are given at any tinme t simplv by using the cA(xi,t)
or cn(xi.t) in (339) or (340) respectively, that correspoad to that

tire ¢t.

2. Reversible electron transfer folloved bv irreversitle first

order cherical reaction: -ne” X
RO Y 0
2 = 3—>C (EC;pn)
+ne

The dimensionless partial differential equation for species B is now

i —3—6 e (341)
L2 B - uc . -
t §x B
vhere
a = k/a (342)
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By inspection of the equations for the reversible charge transfer
redian it is seen that only the equations describinc the B species

need to be changed to £it the BCIQP case. The changes yield these new

equations for B:

dcy N+]
at” X " B[B 1B (0, tHBz N+2 B(Lﬁ+j£281'j B(x 't) ]} -acy (x 't) (343)
ch Bl,l N+l
at” xi - 8’- 1 1[1+6A/B (t)] [ ,N+2+J£2P1 j[C (xj.t)-l»cB(xj,t)]]
N+1
! jﬁznlecB( J't)‘ = acglx;.t) (342)

The current is exactly the same in the forward direction as in the pre-
vious case since the kineatic terr does not affect the flux of species
A to the electrode. The spectroelectrocherical absorbance is also

identical for species A, but is chanced for species B.

-n,e
3. A ;:::; B R/B
+n,e
B - H+ +C kl (first or pseuce first orcder)
it + A - m?t k2 (second order)
- 4
“nye (345)
it —»p ESn* /D
+n2e'
D—s 28" 4+ C k3 (first or pseudo first order)

The results are given below for this complicated mechanism., The

reader is referred to the original literature [7] for the details of

the derivation.
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dac B, .0 €, (t) n+l
A i,1 A/B"A
— = Bz- L — A + LA, .fo(x.,t)+c (x.,t)
dt % }.1'1[1+6A/BSA(t)] [ 1,N+2 §=2 i,3ta't"y’ B35’ ]
N+l
+ Bi.N+2+j£281,ch(xj't)$ - °2°A(xi't)°n+(xi't)
ch Bi,l N+l
& |, * B%‘ Ay 11176, /55, (€] EETAASIE L S Tt 2 R
i
N+l
dcc Bi 1 N+l N+l
Tt_ Xi ® Bl- Al‘l jizhl'jcc(let)+j£28i'jcc(xjot)]
+ uch(xi,t)+a3cD(xi,t)
dCH+ Bi 1 N+1 N+l
= . = B[~ XI?I jfzal'jcn+(xj,t)+j£28i’jcu+(xj,t)]
i
+ °1°B‘xi't)+2°3cn(xi't)'°2°A(xi’t)°a+(xi't)
dc B 6 xS, (t) n+l
HA* i, 1 HAat/D°)
e = 83- L A IA [Cpas (Xiot) 4o (%, t))
N+1
+ jzzai,jcah*(xj't)§ + °2°A(xi't)ca+(xi't)
ch B; Bi.l N+l )
= f{- = LA, LlCuad (R ot)dcn(x.,t)]
N+l
+ 12281'5cb(x3't)1 - a3cD(xi,t)

In the above equations,

60

(34¢)

(347)

(343)

(34¢)

(359)

(351)
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¢ = X1/a (352)
o, = kzla’)/a (353)
oy = k3/a (354)
Suat/p = exp In/RT(Egpy p = Egpary') (355)

The current is given by

o ac dan+
i = FA DBa [A®°] [nl r =0+n2 —-orx—- ] (35¢)
X xy=0
or
[ 013 1 N+l
i = FA DgalA {2 + I A c (x L)
1+9A/3 A (E) 71, N+2 522 1,5 A
N+l : n2 N+
(t) 2 A (x t)] + [ T2, cpa(x,,t)
N+1
=Oyn+/pS) (t) ,Eq’lvn D(xj,t)] (357)

() Optimization of the Dimensionless Parareter 8

The dimensionless parameter B that is introduced into the col-
location equations must be chosen such that (a) it is not so low as
to distort the simulations, and (b) it is not so high as to cause
oscillation at a collocation point. Since the parareter 8 is a function
of the dinensionless rate constant, simply choosing a £ixed Qalue will
not give the best results for all possible values of rate constants.

Speiser [18]) has recognized this fact and has developed an analysis

of the problem based on stability criterion for the particular integration




b T

T w——

1
€2 i

method used. BAn optimal value of 8 then is calculated in the program

itself.
A nunerical intecration is "stable" if the difference betveen the

true ané¢ annroxirate solution decreases, while the condition

--——"ég(") 0 (353)
vhere

£0x,y) = 5E (359)
holds.

If ve are referrinc to a svster. of I ordinary differential equations,
then y, £(x,y), and —£é§L¥L represent column vectors with N components.

For e:armple, in the EC nechanisn, the corponents of the vector

IRR

dat

scix,t) (360)

are the partial differentials of equation (330) and (344) and are
(t) ’
i 182 S A .

c m

+ i=2, ...N41 (362)

It is noted that for the values of the A, and Bi.j found in

i
program DFOPR (see Appendix), the expressions ;;62) and (363) are
always negative, and hence always stable. ‘

For the Hammings predictor-corrector method, such as that found
in IBM's 8SP library, Speiser points out tha: a particular stability

criterion for our problenrs is

I BTk ¥ L d e 3
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< 0.65
(dC x't)) (363)
Gt
6c(x3,t$
where h is the integration interval step.
(361) and (362) may then be combined with (363) to develop values
for 8 for which the integration of the differential ecuation using the
Fammings predictor corrector method is stable.
The results are
¢ 0 65
(t)
1 A/B .
hl- 1' 48, , i=2, .. .N41 (36¢)
1,1 [1+6A/B A(t)] 1,i%i,i !
8 <H
0.65“}\&
nf- ot 1 S A, 4B , 122, ...N41 (365)
" A1'1[1+6A/Bsx(t)] 1,i "i,i

The results for the complicated mechanism (345) are found sikilarly,
and are found to be:

0.65 - hu2 P+(x ot)

Ll A/Bsk(t) £*B;

hi=-

) i=2, o.o“"’l

0.65 - hul

B
i,1
hi- L A, 4B, i=2, ...N+1

g <
0.65
hi- Ei&l Ay (*B , i%2, ...N4L i
3
O.GS-haa %&
B T
h A +B ’ 1'2, oooN+1 ?ig
Al 1(l+GHA+/ (t)] 1,1 ipil 1:“}:‘%
5%
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0.65
"B, 6.4 06 ()
h]' i'l Hb’ /D A ] ’ 1.2' 000N+1

3 A, .+B,
A1,1(1+QHA*fDSA(t)] 1,i74,i

C D,

A

h . i=2, .. .N41  (366)

1,1%3;,3

Thus using the inequalities defined in (365) and (365), and in
(3€€) one may optimize 8 such that the intecrations approach the highest
possible accuracy without going into oscillation. Epeiser notes that
negative values of B cannot be used since the current is proportional
to 81/2. 80 negative values of f must be eliminated for a given set

of kinetic parameters by decreasing h until B becomes positive.
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APPENDIX

fubroutine JCOBI: Calculates roots ané derivatives of a polynomial,

( 'Usage: CALL JCOBI (ND, N, NO, N1, ALFA, BET2, DIF1, DIF2, DIF3, RONT)

Input parameters:

Integer ND: The dirension of vectors DIrl, DIF2, DIF3, and ROOT.
! ' These vectors should be dirensioned in a DIMENCION
statenent in the calling prograrm. ND should be at

least as large as the total number of interpolation
points.

Integer N: The degree of the Jacobi polynomial (i.e. the nurber of
interior interpolation points).

Integer NO: Control index. If Nl=1, x=0 is used as a collocation
point; if NC=0, x=0 is not used.

Intecer N1l: Control index. If Ni=l, x=1 is used as a collocation
point; if Nl1=0, x=1 is not used. MNormally, boti id wnd
N1l are set to 1. '

Real ALra,

BETA: Deternines the symmetry of polynomial chosen. (See
equation (75 )). The Legendre polynomials described
herein have ALTA=BETA=0 for linear diffusion problens.

Output parareters:

Real Array

Root: One dimensional vector containing on exit of the sub-
routine the N+NO0+N1l roots or zeros of the chosen

polynomial.
Real Array
pIrl, DIF2,
and DIr3: Three one dinensional arrays containinc on exit from

JCOBI the first, second, anéd third derivatives of the
polynoriials at the roots of the polynomial.

*Please note that ir order to retain Villaden's original program, ALFA
and BETA arec used here for y and & in the text (equation (75)).
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SUBROUTINE JCOBI(ND ,N,NO.N1,AL.8E . DIF1,D1F2,D01F3,R00T)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION DIF1(ND) ,DIF2(ND) DIFI(ND) ROOT(ND)

AB=AL+BE
AD=BE-AL

APSBE°AL
DIFI(1)s(AD/(aB42)¢1)/2
DIF2(1)=0.

TF(N.LT.2)GO T0 15

00 10 12N

21s]-4

ZeAB+2°21
DIF1(1)=(AB*AD/2/(242)+1)/2
1F(1.NE.2)GO TO 11
DIF2(1)e(AB+AP+21)/2/2/(2+14)
GO TO0 10

222

YeZ1°(AB+21)

Yave (AP+Y)
DIF2(1)sv/2/(2-1)

CONTINUE

Xs0.

DO 20 1=¢,N

XDs=0,

XN= 1,

XD1=0.

XN120.

00 30 V=1 ,N
XP2(DIFI(J)=X)*XN-DIF2(J)*XD
XP1=(DIF1(J)-X)*XNI-DIF2(V)*XD1-XN
Nisd

XD=XN

XD1eXN§

XNsXP

XN1sXP 1

2Cs=1.

29XN/ XN

IF(3.€Q.1)G0 T0 21

D0 22 v=2,1
2Cs2C-2/(X-ROOT(V-1))
2s2/2C

Xex-2
IF(DABS(2).GY.1.0-09)G0 TO 25
ROOT(1)sX

XsX+ 0001

CONT INUE

NTeNeNO*NY

1F(NO.€Q.0)GO TO 35

00 31 1°4,N

JeN+ -]

ROOY(J+ 1)sROOT ()
ROOT(1)«0
IF(N1.EQ. 1 )RODT(NT o4,

D0 40 Je1,NT

XsROOT(1)

OIF1(1)st,

DIF2(1)=0.

D1F3(1)e0.

00 40 ye 4 ,NTY

1F(v.€0.1)G0 YO 40
VeX=-R00T(J)
ODIFJ(1)sY*DIFI(1)e3°DIF2(1)
DIF2(3)eveDIF2(1)e2°DIF (1)
DIF1(1)sYeDIF1(])

CONTINUE

RETURN

END
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Subroutine DrFOPR: Calculates the Aij' Bi" and Qi interpolation ané

J
guadrature weights.

Usage: CALL DFOPR (ND, N, NO, N1, T ID, DIF1l, DIF2, DIF3, ROOT)

Input parameters:

Integer ND,
N, NO, Nl: fame as in JCOBI

Integer I: Index of the root at which A

' Bi" or Qi is being
evaluated.

ij J
Integer ID: Control index. ID=l causes calculation of Aij’ ID=2
is for the Bij’ ID=3 is for the Qi'

Real Array
ROOT, DIF1,
DIr2, DIF3: fThe vectors calculated in JCOBI.

Output parameters:

Real Array
VEC: The vector containing the Aij' Bij' or Qi at the given
root upon exit.
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SUBROUTINE DFOPR(ND.N,NO.NY,31.1D,DIF1.D1F2,DIF3,R00T,VECT)
TMPLICIT REAL*8(A-H,0-2)

DIMENSION DIF1(ND).DIF2(ND),.DIF3(ND) ,ROOT(ND),VECT(ND)
NTsNeNO*Nt

1F(1D.€0.3)G0 TO 10

00 20 Jy=1,NT

I1F(JU.NE.1)GD TO 21

IF(ID.NE.1)GO T0 S

VECT(1)eD1F2(1)/DIF1(1)/2

GO YO 20

VECT(1)=DIF3(1)/DIF1(1)/3

G0 T0 20

YsROOT(1)-ROOT(J)

VECT(V)=DIF1(1)/DIF(U)/Y

IF(10 EQ.2)VECT(VU)=VECT(U)*(DIF2(1)/D1F4(1)-2/Y)
CONT INUE

GO T0 80

Ye0.

00 25 Js1,NT

XeROOT(J)

AXsxe(t-X)

IE(NO E£Q.0)AX=AX/X/X
1F(NY.EQ.O)AXeAX/{1-X)/(1=X)
VECT(J)sAX/DIF1(J)*=2

YeY+VECT (V)

Lo 60 J=1,NT

VECT(J)=VECT(U)/Y

RETURN

END
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Subroutined STIFF3: Perforns the integration of single or coupled systens
of stiff d.fferential equations by the ISI3 method.

Uszge: CALL STIFF3 (N, ND, NPRINT, FUJ, DFUN, OUT, X0, X1, HO, EPS,
v, ¥, YOLD, YOLD1l, IP, YA, ¥YK1, YK2, YK3, DF, DFOLD, F, FOLD)

iP is an internally used integer vector and should be dimensioneé as
such in the calling progran with dirension ND. The following are real
vectors of cdimension ND and should also be dinensioned in the calling
progran as such: W, ¥, YOLD, YOLDl, YA, ¥YK1, YKZ, YK3, F, FOLD. All
but %! and Y are internally used only. DF and DFOLD are internalliy used
arrays of dim=nsion (NDXND) and shoulld be designated as such also.

FUN, DFUN, and OUT are external subroutines called from STIFF3 and should
appear in an EXTCRNAL statzrent in the calling progran.

Input parameters:
Integer N: Number of equations to be integrated.

Integer ND: As in JCOBI - main program array dimension.

Integer

NPRINT: Printing interval. The solution is printed at every
NPFRINT step. The solution is always printed at Xl.

Real XOc

X1 The lirits of time over whichk the differential equa-
tions are integrated.

Real HO: Suggested initial half-steplength for integration. On

exit, HO contains suggested value for half-steplength
for continued integration beyond Xl1.

Real Vector

{7 and real

LPS: These parameters dete——ine subsecuernt steplencths for
integrations. They | part of the autoratic step size
selection part of the progran. Suggested values are
given in the examples. Further information is given in
the original literature.

Re2l Vector .
Y: Vector of concentration solutions at the collocation

points. Initially, these are specified as the br :ndary
conditions (t=0) for each species.

ETIFF3 algo uses three internal subroutines, SIRK3, LU and BACK. The
listings for th~oue are included.

i .




1 SUBROUTINE SIRKI(N,ND,FUN,IPIV F Y, YK{,YK2,YK3, DF H)

2 IMPLICIT REAL®B(A-H,0-2)
3 DIMENSION F(ND),.Y(ND),YK1(ND) YK2(ND),YKI(ND),IPIV(ND) ,DF (ND.ND)
4 OIMENSION R(4)

s DATA A.R/.435866%2 1508458900, 1.03760949613185900, .834830483852637
3 1700, - .630202088724452300, ~ . 24233789 12600452/
7 00O S I=1,N

[ 00 6 Us1.N

9 OF(1,J)o=HoA*DF(],d)

10 1F(OABS(DF(1,J)).LT.1.D0-12)0F(1,J)=0.

) 1" € CONTINUE

12 $ DF(1,1)eDF(1,1)41.

1 CALL LU(ND,N.1PIV,.DF)

14 CALL BACK(ND,N,IPIV,DF,F)

15 DO 8 1+1,N

16 YK1(I)eH*F(])

" s VYK2(1)eY(1)+.75D0*YK (1Y)

18 CALL FUN(YK2,F)

19 CALL BACK(ND,.N,IPIV,DF.F)

20 DO 9 I=1,N

21 YK2(3)eH*F(1)

22 Y(1)eY(I)eR(1)*YKI{I)*R(2)°VK2(])

23 9 YK2(1)eR(3)*YK$(1)+R(M)*YK2(1)

24 CALL BACK(ND,N,IPIV,DF.¥K2)

25 DO 40 It ,N

26 10 Y(1)=v(1)evx2(1)

27 RETURN

20 END
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30
37

40

41
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49
49
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SUBROUTINE STIFFI(N.ND NPRINT, FUN, DFUN, OUT XO,.X1,HO, EPS.VW.Y,YOLD,

fYOLD1 1P, YA, V9,YK2,YK3,DF ,OFOLD,F,.FOLD)
IMPLICIT REAL®8(A-H,0-2)

DIMENSION IP(ND),V(ND),vYOLD{ND),YOLD1(ND),YA(ND),YK1(ND),¥K2(ND)
DIMENSION YK3(ND) ,W(ND),F(ND),FOLD(ND),DF (NO.ND),DFOLD(NO.ND)

ICON=O

NOUTYeD

X=X0

YY)

IF(X0O ¢ 2.°H .LT.X$)GO 10
He(X1-X)/2

SCONe1

IF (1CON .€EQ. O .AND. X+&°*H .GT. Xt)He(Xt-X)/4
CALL FUN(Y . F)

CALL DFUN(Y,OF)

THA=-§

00 30 =1 N

YOLO(I)ev(1)

FOLD(1)=F (1)

00 30 v=1 N

DFOLD(1,J)=DF(1,V)

CALL SIRK3(N,ND,FUN,1P.F,Y,YK1,YK2,YK3, DF ,2°H)
00 35 I=1,N

YA(I)=Y(])

v{1)=YOLD(1)

F(1)=FOLD(1)

00 35 Js1 N

OF(1,J)=DFOLD(1.v)

THAS THA+ ¢

CALL SIRK3(N,ND,FUN,IP,F.Y, VK1, 6YK2,YK3,0F H)
CALL FUN(Y.F)

CALL DFUN(Y,DF)

DO 40 =1 N

YOLD1(1)sv(1)

CALL SIRK3(N,ND,.FUN,1P F,Y,VK1,YK2,YK3 DF H)
£+0.

DO 41 1=t ,N

€Ssw( 1) DABS(YA(T)-Y(1))/(1.4DABS(Y(1)))
1F(ES .GT. E)E*ES

CONTINUE

O=E/EPS

QA=(4,°Q)**.25

tF(0 .LE. 1.) GO TO 48

00 4% I=¢{ N

YA(I)evYOLD1(1)

F{1)eFOLD(])

Y(1)evOLD(])

00 45 J=t N

OF(3,J)*DFOLD(1.V)

HeH/2

1CON=O

GO 70 38

00 49 1= .N

v{l)ev(1)e(v(1)-Ya(1))/7.00

XeXe2oN

OAs1./(0A%4,0-10)

SF(OA .GT. 3.)0Ae3.

HeQAH

NOUTeNOUT« ¢

TF((WOUT/NPRINT )SNPRINT .EQ. NOUT .OR. JCON .EQ.

1HA,QA)

JFLICON .£0. 1) GO 7O 87
HO:

1F(ne2.°H LY. X9) GO D ¢
G0 70 2

RETURN
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SUBROUTINE LU(ND . N,IPIV.A)
IMPLICIT REAL®B(A-H,0-2)
DIMENSION IPIV(ND),A(ND.ND)
IPIV(N)eN

NisN-1

00 10 I=1,N1

XsA(1,1)

1F(X.LY.0.)Xe=X
IPIV(1)=]

It=1et

00 11 VYol N

veA(J.1)

$F(Y.LY.0.)V=-Y
IF(Y.LE.X)GD TO 11

XevY

IPIV(T)

CONTINUE
1F{1PIV(1).£Q.1)GO TO 14
KeIPIV(1)

DO 12 J=I,N

XeA(1,V)

A(1,0)eA(K,J)

A(K,J)*X

00 10 v=11,N
Xe-A(J,1)/A(1,1)
A(Y,1)=X

00 10 K=14,N

A(U.K)sA(U K)+X*A(T,K)
RETURN

END

e ..nei@w\wwmnv ~

RSETS




I e

1 SUBROUTINE BACK(ND N,IPIV.A,V)
2 IMPLICIT REAL®8(A-H,0-2)
3 DIMENSION IPIV(ND),A(ND,ND),V(ND)
4 NisN-1

s D0 10 I=1 N1

6 111+

7 KeiPIV(])

[} 1F{K.E0.1)GD TD 11

] Xev(1)

10 v(1)sv(K)

1" v(K)=X

12 1 DO 10 J=Il{,M

13 10 V(V)=sV(J)*a(u. 1)*v(T)

14 V(N)=V(N)/A(N.N)

15 00 15 11+2,N

16 TN+ 1-11

17 Ttalet

18 DO 16 U=14,N

19 16 V(1)sv(3)-A(1,8)°V(J)
20 15 v(3)=v(1)/A(1,.1)
21 RETURN
22 END
23 ¢
24 c
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Subroutine FUN (Y,F): User supplied subprogram for defining the Gif-
ferential equations. F is the vector of the right
hand side of the differential equations. (See
exanples.)

Subroutine Drul (¥, DF): User supplied subroutine for evaluation of the
Jacobian of the differential equations. DF is the
Jacobian matrix with elerments DF (I,J)=F(i)/Y(J).
(See examples.)

Subroutine OUT (X, ¥, IH, Q): User supplied subprogram for output.
X: Current value of tire.
¥: Current value of concentration vector at each
collocation point.
IH: Number of bisections (unsuccessful integrations)
in the current integration step.
Q: Steplenaoth acceleration factor.

STIFF3 also uses three internal subroutines: SIRK3, LU, and BACK. No
xtra prograrnming allowarnces need be mace for their use.

The first set of listings following are MAIN, FUN, OUT, and DFUN for
the catalytic mechanism including spectrochemical absorbances as de-
scribed in Section E, example Se. The second set of listings are for
spherical symmetr, simple electron transfer including the current cal-
culation as descrioed in Section E, example 4a.
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PROGRAM TO SIMULATE THE STANDARD CATALYTIC MECHANISM
THE CONCENTRATION PROFILES. CURRENY, AND
SPECTRCELECTROCHEMICAL ABSORBANCES ARE GIVEN ON OUTPUT.

IMPLICIT REAL*8(A-H,0-2)

DIMENSION DIF1(30),.01F2(30),.D1F3(20),VECT(30),.F(30),FOLD(30)
DIMENSION YOLD1{(30),YA(30),¥YK1(30),YK2(30),YK3(30)
DIMENSION DF(30,30),0F0LD(30.30).W(30),.Y(30),Y0LD(30)
DIMENSION YY(30),YYY(30)

COMMON AAA(30,30),888(30,30).R0O0T(30),.WK(30) MANUAL
EXTERNAL FUN,OUT,DFUN

SET NUMBER DF SPLINES

DO 1000 MANUAL=t,10

GIVE ORDER OF POLYNOMIAL OESIRED

N=§

STIPULATE WHETHER O AND 1 ARE TO BE USED AS INTERPOLATION POINTS
NO=1

Nisy

ENTER ALPHA AND BETA DETERMINING POLYNOMIAL YVYPE

(WE USE LEGENDRE HERE)

AL=0.

8E0.

ENTER PROGRAM DIMENSION

ND=230
CALCULATE ROOTS OF SPECIFIED POLYNOMIAL(COLLOCATION POINTS)
CALL JCOBI(ND,N,NO,N1,AL ,BE,DIF1,D1F2,DIF3,RO0T)
WRITE(6,2)(ROOT(1),11,8)

FORMAT(4F15.12)
CALCULATE A MATRIX DESCRETIZATION COEFFICIENTS

DO 4 I=1.8

CALL DFOPR(ND,N.NO,N1,1,1,01F4,01F2,01F3,R00T,VECT)

DD 4 J*1,8

AAA(T,U)sVECT(V)
CALCULATE B MATRIX DESCRETIZATION COEFFICIENTS

00 S 1s1.8

CALL DFOPR{ND,N,NO.Nt,1,2,D1F4,01F2,D1F3,RO0DT,VECY)

D0 8 Js1.8

888(1,J)sVECT(y)
CALCULATE QUADRATURE INTEGRATION WEIGHT COEFFICIENTS

DO 791 le%.8

CALL OFOPR(NO,.N.NO,Nt,1,3,D1F1,DIF2,DIF3,RO0T,VECT)
wK(1)eVECT(1)

CONTINUE

ENTER TIME LIMITS BETWEEN WHICH INTEGRATION IS TO BE PERFORMED
X0+0.00

X1220.00

ENTER INTEGRATION ERROR TOLERANCE

EPS=1.0-06

ENTER INITIAL CONDITIUNS FOR ALL 3SPECIES

D0 300 1=1,6

Y(1)1.00

v{(1+6)¢0.00 .
SET WEIGHY FACTORS FOR ANSWERS )
W(1¢8)1.00

W(l)e1.00

SET INITIAL VALUE FOR INTEGRATION INTERVAL STEP

HO*1.D-06

SEGIN INTEGRATION

CALL STIFF3(12.30.10,FUN,DFUN,OUT,X0,X1,H0,EPS,W,Y,YOLD, YOLDY.IP,
1YA,¥K1,YK2,YK3,DF ,OFOLD,T,FOLD)

1000 CONTINUE

sTOP
&ND
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SUBROUTINE FUN(Y,F)
IMPLICIT REAL®8(#-H,0-2)
DIMENSION Y(16),F(16)
COMMON AA(30,30).88(30.30).R00(30),WK(30) .MANUAL
TR*MANUAL

C *¢ SET UP SPLINE POINT MUL IPLIER
VARs(1.00/((.1D0*TR)**2))

C ** STATE THE DESCRETIZED DIFFERENTIAL EQUATIONS

00 350 1=1.6

TODER 120,

YDDER2=0.

00 351 uU=1,6

TODER1=TODER 14VAR*(BB( 141,y 1)ev(Y))

TODER2=TDDER24VAR® (BB( 141, J+1)*Y(U+6))
351  CONTINUE

F(I1)sTODER1+VAR*BB(]1+1,8)+Y(1+6)

F(146)"TODER2+VARBB(1+1,1)~Y(146)
350 CONTINUE

RETURN

END
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SUBROUTINE OUT(X,Y,IH.Q)
IMPLICIT REAL*B(A-H,0-2)
DIMENSION YY(30),YYY{(30)
COMMON AA(30,30),88(30,30),R00(30),WK(30) ,MANUAL
DIMENSION Y(30)
WRITE(6,130)X,(v(1),121,6),(v(1+6),14.6)
13C  FORMAT(’ TIME =’ ,£20.15,/,.4X,°0.00000000000 *, 3(F16.11,1X),./,1X,3
1(F16. 11, 1X),3X, ‘ 1.00000000000',// ,4X, ' 1,00000000000' ,3(F16. 14, 1X),
2/.,1%,3(F16. 11, 1X),3X, *0.00000000000 )
C ** CALCULATE THE ABSORBANCES FROM THE NOW KNOWN CONCENTRATION
C ** AT THE COLLOCATION POINTS (Y), AND THE INTEGRATION
C ** COEFFICIENTS (WK).
GAUSSA®0.DO
GAUSSB*0.00
YY¥(1)#0.00
YY(8)=1.D00
YYVY(1}s1.00
YYY(8):0.00
00 792 1s1.6
YY(I+1)ev (1)
YYY(I+1)oY(146)
792 CONTINUE
00 793 1=1.8
GAUSSA®GAUSSA+WK(1)evY(1)
GAUSSB=GAUSSB4WK(T)oVYY(1)
793  CONTINUE
GAUSSA2GAUSSA®1.D-6° . 1DO*MANUAL® 1 . D-3%+ . §
GAUSSB*GAUSSB® 1.0-6°. 1DO*MANUAL® 1. D3¢ 8
WRITE(6.794)GAUSSA,GAUSSB
794 FORMAT(’ ABSORBANCE A »’,E20.15,°' ABSORBANCE 8 ¢’ E20.15.//)
RETURN
END
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SUBROUTINE OFUN(Y,DF)

JWPLICIY REAL*B(A-H,0-2)

DIMENSION DF(30,30)

COWMON AA(SO.QO).'!(30.10).000(30).UK(SO) JMANUAL
TR*MANUAL

VAR=$.D0/(( . 100°TR)**2)

Do 8C 1+1.6

00 90 v=1.6

DF(l.J)'VAR’SS(l*!.d‘\)

DF(!‘G.J‘G)'VAR‘BB(I01.001)
CONTINUE

00 368 M=1.6
DF(U‘G.“‘G)'DF(N‘G.N‘S)'1.DO
CONTINUE

RETURN

END
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INPLICIY RTALSD(A-HD-T)

NIACHSTON DPIVLEID) s NIFILI0N 2 NTERCP0) +VECT (0D oF (300 +FIND(30)
PIRCNSTON YOLIL(I0) 1 YACIO) s YAL(IO) o YD (X0) ¢ YKI(30)
NINFHSTON BF (3030 e DFI NCI00 30 oW (30X 0¥ (30 o YOLD(IO)
CONMON AAAC30:30) o 11130+ 30) 1 RODY ¢ 30)

EXTORNAL FLUINOUT DFUN

Hro

NO=1

Nim}

AL =3,

Nfey,S

NL=30

CALL JCORICNDoNsMOINS 1AL+ RE+DIFI oD F2.DIF3,RNOT)
URTYEC(SG s DY(NRNNT(T) o In1 o B)

FURNAT (AT 15.32)

RO 4 Ja1,8

CALL DFOFPRINDNoNOeN1oTo2oDI Lo DIF2+DIFIIKDOTVECT)
NO & J=i0

AAN(T2J)BVCET (D)

) § Jel+8

CalL DrOLE (NN INIHOINL T o 2oNIT Lo DIFQsDIFILROOTVECT)
n s Jsged

NI e JISVECT (D)

FORMAT(1XeD(rD,.323X))

X0=0.00

X1=20,.00

€HSn,.30-4

" 300 I=geé

YiTiut DO

H(I)n1,D0

(112 98 (TY.3

COLL STIPF3C40X02% o FUNDFUNIOUT o X0 X2 o HOEFSsWo Y YOLD YOLD1»IP,Y
FAYRKI s YR YA IF o DFOL Do T oFOL D)

sSYOP

END
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SUNROUTINL FIINC(Y.F)

INLIGTY RCAL 80(A-4H0-2)

NIAUNSION Y1) CID)

connne AAC30,30) 111300302 ¢ RO0CI0)

NN 350 I=194

ThifR1e0,

THR2=0,

NN 351 JSeteé
TRDERI2TPUERIGRECTI o M 3IBY IO DOZ(RNNCIILISIDIISAA(TIL041)
1Y)

CONTINUF .
FOOSTURFRIIRN(TI43¢8) 32, I07C(RIDCIEIII3.DISAACTIL,0)
CONTINUE

RETURN

END

SURKDUTING QUT(XoYeIHR)

N ICIT KREALSO(A~H,0-2)

CORANN AN IO+ 30) o 1RII09 30) 21 RN 30)

tIRrNCIoNn Y(30)

BRITECH+330)Xe (YT )oIv],44)

TORHAYC® Tr/ 31 3%5.120704X0°0,00000000000°02X0F16.38
TolXeQ(F1A3103X)0/e3X03(F16.9203X)93Xs’1,00000:000000°)
Th:0.00

P 33 usieé

ThalfLeAA(S 2 DI IBY(S)

CONTINUE *

Cie944N6.N0S1 . D-SS(AA(S,0)4TD)

CRITOCE 131 UR

CHNR I A " LUKKENI® 9P 3008 L0270

R VUKRN

CN

SURROUTINE DFUNCYIF)

IMPLICTT KiALSB(A=I0-2)

COURNON AA(30+30) o 1E(I030)»kN0(30)

PINTNSION DF(30,30)

M 360 eleé

"0 360 Jwieb
OFCEeIsEnCI43outl)$2.D0/7(ROC(IHIICL.DOISANCTHL I I4D)
CUONY TNUE

FRIURN

L
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