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I. INTRODUCTION

This study is divided into two parts. First, the
observability of the system states is considered when angle
information is available. The pseudolinear measurements are
used to determine global observability for this nonlinear esti-
mation problem. An observer is constructed by defining a
Lyapunov function of the estimation errors. Numerical experi-
ments are used to determine the gains necessary to accurately
determine all the states within the time of the engagement. If
measurement noise is present, the filter is biased. Techniques
of reducing the effect of the bias are explored. The second
phase considers the combination of the linear exponential
Gaussian (LEG) guidance law with an extended Kalman filter (EKF).
The measurement variance of the EKF is estimated on-line. The
error variance generated by the EKF is used in the LEG guidance
law adaptively, changing its gains. This system is tested in
a six-degree-of-freedom simulation of a bank-to-turn missile.
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II. OBSERVABILITY OF THE MISSILE-TARGET ENGAGEMENT AND
PSEUDOLINEAR MEASUREMENTS

The homing missile filtering problem is modeled with
linear dynamics in a rectangular coordinate frame where the
angle and relative range measurement functions are nonlinear.
our objective is first to investigate the observability of the
engagement state space for this nonlinear system. It is demon-
strated that if the missile acceleration is functionally different
from that of the target acceleration, then all the states of
the engagement are observable with angle information only. This
is done by algebraic manipulation of the nonlinear measurement
functions into a linear form called pseudo measurements. An
observer is determined for these pseudo measurements, which
guarantees that the estimation error will asymptotically converge
to zero when the system is observable. A two-dimensional example
of the homing engagement clearly shows that the states can be
obtained perfectly from angle-only information. Earlier studies
using pseudo measurements are discussed in References 1 and 2.1,2
The present study is the first to investigate the use of pseudo
measurements for the homing missile engagement.

The pseudo measurement system can be extended in the
following ways. First, noise can be added to the original measure-
ment functions. In three dimensions these measurements are
composed of two angles, relative range, and relative range rate.
The resulting pseudolinear measurements are linear with state-
dependent noise. The particular form which has been chosen for
the pseudo linear measurements is particularly useful when the
range measurement is not available or has been substantially
degraded. The observer structure that is developed could be
used with the noisy measurements. However, a straightforward
application of the observer produces biased estimates. This
section concludes with a discussion of the extent of the biasing
of the estimates and some possible directions for reducing these
biases.

A. System Description

The missile engagement observation problem falls into
a particular class of nonlinear observer problems which can be
resolved using standard linear theory. In particular, the dynamic
state is assumed linear as

x~~ iJ 1 1()

1. V. J. Aidala, "Behavior of the Kalman Filter Applied to
Bearings - Only Target Motion Analysis," .4dz,(-7c,2rzn

:,Vol. 1, NPS-62TS 77001, Naval Postcraduate School,
May, 1977.

2. A. (-. Lindgren and K. F. Gong, "Position and Velocity
Estimation via Bearing Observations," fF17 ? Irol ~

m '~Vol. AES-14, No. 4, July 1978.
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where xi is an n-dimensional state at time ti, ui is a

p-dimensional control, and Ai and Bi are known matrices.

The measurement or observation function is

z. h.(x.) (2)1 1 1

where zi is the q-dimensional observation and hi(xi) is a
known nonlinear q-dimensional function of the state xi, where it
is assumed that q < n. The particular classes of function of
interest are those that can be algebraically manipulated into
the form:

yi(zi) = H. (zi)x. (3)1 1

where yi(zi) is a known q-dimensional function of zi, and Hi(zi)
is a qXn known matrix of functions of zi . The yi(zi) are called
psuedo measurements because they are derived from the original
measurements zi . Note that the desired form is a linear function
of the states xi . Conditions which guarantee that Equation (3)
can be determined from Equation (2) are to be determined.

The objective is to design an observer for the linear
dynamic system Equations (1) and (3). The important difference
here is that H(z i ) explicitly depends upon the original measure-
ment. Since the control ui affects zi, the observability of
the system equations (1) and (3), will depend upon the history
of ui as it affects H(zi). Nevertheless, the standard observa-
bility criterion,

WN T(z)H(Z) > 0 (4)i,N E k ,i kH k ki '

k=i
where

k
Dki j1i (5)

must hold along a trajectory for the states to be observable.
That the standard Gramian holds for this class of observer
problems is shown directly by producing the requirement of
Equation (4) when attempting to determine the initial conditions.
From Equation (3),

i
yi(zi) : i (z.)x. i =  H i(zi) io x 0 + Z i" B 3 ut]. (6)

j=l

Then, a sequence of psuedo measurements from 0 to k produces

p. 3



YO ( zo) 0 H0 Zo

= x0 (7)
y'.(Zk k Hk (z kk Hk(z k  , 11kj Bku k0k

kkj= 0 1 k j

If Equation (7) is multiplied by [H (z) .... T Dk0 HT Z

thon the requirement that x 0 be determined is that Wk"O be

invertable. Note that if x0 is observable, it can be
determined in a finite time.

B. Observers with Pseudolinear Measurements

Since the dynamic system equations (1) and (3) are
linear, a linear observer structure is chosen. The gain for
the observer is chosen to guarantee that a function V(ei) be
a Lyapunov function, where ei is the error in the estimate of
the state. The observer structure is chosen as

x i/i = xi/i-i - Ki(yi(z i ) - Hi(zi)i/i I ) (8)

4L

x = A x +B. u. (9)
i+l/i i i/i + a. u

where x is the estimate of the state processing all the
informatio[n up to time stage i, xi/i-_ is the estimate of
the state processing all the information up to time stage i - 1,
and Ki is the observer gain to be determined by ensuring that
the function V(ei) be a Lyapunov function. An interesting
feature of this observer is that it is a nonlinear function of
the measurements.

First, the propagation for the error is determined. Define
the errors ei and ei, respectively, as

e Ax. -ex x -(x0)
i  = i/i-(1

Then from Equations (8) and (9), the propagation equations for
the errors are

e. = (I - K. H.)e. (1)1 1 1 1

e i+l = A. e.. (12)1 1

Define a Lyapunov function as

V. = e. P-l e. 0 (13)3. 1 1 1

where Pi is a positive definite matrix. For convenience, a
seconrl -,uadratic function is defined as

4
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-T -1 (14)
V. e.M. e > 0 (14)1 1 1 1

where M i is a positive definition matrix.

For the error to be asymptotically stable, it is reauired
that

Vi+ 1 -Vi+ 1  0 (15)

-i+l V. < 0. (16)1

This implies that Vi+1 - V i < 0 and, therefore, is a monotonically
decreasing function. The derivation begins with Equation (15),
which is expanded using Equation (11) as

V. V. = e(I - K. H.) P.l (I - K. H.) - M.l]e. < 0. (17)1 1 -1 1 1 T -1 1 1 1 _ -

A sufficient condition for the inequality in Equation (17) to hold
is that the matrix in Equation (17) is nonpositive definite.
This is ensured by

(I- K.H P. (I - K. H.) - M. = -HT (H.M.HT + R.)-H (18)1 1 1 1 1 1 1 111 1

T
where Ri is a qxq positive definite matrix. Since Hi Mi HT + Ri
is the sum of the two positive definite matrices, the inverse
exists, and the right side of Equation (18) is nonpositive
definite. The choices of matrices anticipate the construction
of observer gains that resemble the formulism used in constructing
gains for the Kalman filter. For example, Ri plays a role similar
to that of the measurement noise variance in the Kalman filter
formulation. Rewrite Equation (18) as

(I - K. H.) T P.I(1 - K. H.) M 1  H'(1 i M. H T + R J-
1 1 11 1 i - 1 1 1 H H.

=M-
1  M. - M. HT (H M. HT

+ Ri-1 M M l (19)

where the second equality results from a standard matrix identity.
By taking the inversc of both sides, Equation (19) becomes

P1 ( I  -  K  HI)Mi['i - M. M. IT

P.=(-. - 1i~ 1 .H)
1 i

+4 RJ- 11, M]l' M.(T K.i H V (20)

If the observer gain is chosen as

K. M. IT + R.) (21)

: M. H ir M

Ki ' IAP.



then Equation (20) reduces to

T T -1
P M - H (H. M. H. + R.) H M1 1 1 1 1 1 1 1 1 1

-1  + HT R. H.) - I  (22)
1 1 1 1

where the last line is obtained using a standard matrix identity.
For Mi and Ri positive definite, the last line clearly shows
that Pi is positive definite. Equation (22) is essentially the
update formula in the Kalman filter.

To determine Mi, Equation (16) is used with Equation (12) as

Vi+ 1 - V = eT (A T M A - P. )e. < 0. (23)
1 1 1 i-l i 1 1

A sufficient condition for the inequality of Equation (23) to hold
is if the matrix of Equation (23) is negative definite. This is
ensured by choosing

AT Mi A -_ P. -P. A. (Q.i i 1 1
+ A-T Pl h-l)-I h-T P-1 (24)

1 1 1 1 1

where Qi is non-negative definite and Ai is assumed invertable.
(This is always the case if Ai is a transition matrix obtained
from a linear dynamic system.) Since Pi is positive definite,
then the right side of Equation (24) must also be positive
definite. The particular form chosen was needed to simplify
Equation (24) using the matrix identify given in Equation (22);
that is,

-l -T P-l -1 A-T 1 A- -(Q-M 1 =A . A . -A P.-. Q
il 1 1 1 1 1 1 1

AT P. A.) A. Pi A.I

1 1 1 1 1 1

= (A. P. A T + Qi) (25)

or

TM = A P A. +Qi (26)ijl 1 1 1 "

This is the propagation equation used in the Kalman filter.
Therefore, starting with a positive definite P0, Equations (22)
and (26) propaqate a positive definite Pi. Then, the observer
gain can be calculated from Equation (21).

If the system equations (1) and (3) are observable, then Pi
will be bounded. Therefore, since the Lyapunov function V(e i )
is constantly decreasing for all finite i and since Pj l must
he hounded from below, then ei - 0 as i

6



C. Dynamic Description of Homing Missile Problem

The system dynamics of the missile intercept problem
written in rectangular coordinates and the associated measurement
process is a particular example of the system described in
subsection IIA. The state vector x is a nine-state vector
composed of three relative positions XT A [X, Y, Z], three
relative velocities vT = [vX, vy, vz], and three target

T R
accelerations aT A (ax, ay, az). The continuous dynamic
system is

x = Fx + Gu (27)

where u is the missile acceleration, used here as the control
vector, and where it is assumed that the autopilot is sufficiently
fast to produce negligible error. The dynamic coefficients
for Equation (27) are*

13 01
F = 0 G = 03] (28)

0 -X1

where A is the average target switch time when approximating a
Poisson process. This system can be put in the discrete form
of Equation (1) where

13 13 At 13( 2- e + XAt-l)

A i = 0 13 I3(T -e t91 e -)~A (29)
0 0 3e  X~ t

-1 (-)2/2]

Bi = i3 At (30)

0]

where At is the sample time in the discretization of the continuous
dynamic system.

The intercept geometry and measurement angles and relative
range are given in Figure 1. The azimuth and elevation angle
measurements are

az = tan - 1 (Y/X) (31)

el = tan-l [-Z/(X 2 + y2 )i/2] (32)

and the relative range and range rate measurements are

R = VX2 + y2 + Z2  (33)

*I io ', nXn iM. ntit U matrix.

7
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Figjurc 1. Intercept geometry and measurement angles.
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R = (Xvx + YVy + Zvz)/RR. (34)

D. Transformation of Original Nonlinear Measurements
Into Pseudolinear Measurements

The three measurements are transformed into pseudo-
linear measurements by straightforward use of trigonometric
identities. The results obtained here can be extended to the
case where these measurements are corrupted by additive white
noise. From Equation (31), the pseudo measurement is

= 0 = X sin az - Y cos az. (35)

The pseudo measurement Yl is always zero. Before proceeding to
the elevation angle measurement, note that

VrX2 + y2 = X cos az + Y sin az. (36)

Then, from Equation (32),

Y2 = 0 = (X2 + y2)/2 sin el + z cos el. (37)
4i

With Equation (36), Equation (37) reduces to

= 0 - X cos az sin el + Y sin az sin el + Z cos el. (38)

'1 Again, the pseudo measurement is always zero. Note that this
formulation of pseudo measurements does not depend upon the
range measurement and, therefore, can be used in studies where
only angle measurements are available or the range measurement
is very degraded.

For the range measurement, an identity similar to Equation
(35) can be constructed as

Y3 = RR = -Z sin el + (X2 + y2) 1/2 cos el. (39)

But from Equation (36), it is seen that

Y3 = RR = X cos az cos el + Y sin az cos el - Z sin el. (40)

In this case, RR remains the measurement, but it is now expanded
as a linear function of the states. Similarly, the range-rate
measurement can be converted into a pseudolinear form as

= Xv X  Yvy
Y3 = RvR = R ' RR Z sin el

= v x cos el cos az + vy cos el/ sin az - v z sin el. (41)

In this way, all the usual measurements which are nonlinear in a
cartesian reference frame are converted to a linear form. However,
the coefficient matrix is a nonlinear function of the original
measurements.

9



E. Observability of the State Space Using Pseudolinear
Measurements

Conditions for the observability of the dynamic state
are now investigated. To simplify this study, the dynamic model
is reduced to a plane. Our objective is to show that, if the
missile acceleration is functionally different from that of the
target, the full dynamic state is observable. Conditions for
observability are discussed using constant target acceleration.
In this section the planar homing problem is presented using the
observer developed in subsection IIB.

Consider a simple dynamic system as

X = VX, Y = Vy, vX = av - uX  Vy = a - Uy, a, 0,

ay = 0 (42)

where uX and uy are the missile accelerations and ax and ay are
the target accelerations. Suppose further that aX and ay are
modeled as constants as indicated in Equation (42). The goal
is to determine the initial states from a sequence of angle-only
measurements given by the pseudolinear measurement of Equation (35).
The result is the following:

sin az -2 2
sin azI  -cos az1  t1 sin az1  -tI cos az1  t1/2 sin az -t1/2 cos azI  X(0)

2 2
sin az -cos az t sin az -t cos az t2 sin az -t2 cos az Y(O)2 2 2 2 2 2 2/2 2 2/2 22 _ 2 V ( )
sin az3  -cos az3  t3 sin az3  -t3 cos az3  t3/2  sin az3  3 /2  cos az3  v (0)2 2 "
sin az4  -cos az4  t4 sin az4  -t4 cos az4  t42 sin az -t2 cos az V (0)44 4 4 44 4/2 4 4/2 4 Y

2 • 2
sin az5  -cos az5  t5 sin az5  -t 5 cos az5  t5/ 2 sin az -t5/2 cos az5  ax (0)

2 2"
sin az6  -cos az6  t6 sin az6  -t6 cos az6  t2 sin az -t62 cos az a (0)

66 6 6 6 6 6/2 6 6/26

Xm(t1 ) sin az I - Ym(tl) cos azl -

X M(t2 ) sin az2 - Ym(t 2) cos az2

M (t 3) sin az3 - Ym(t 3) cos az3

X m(t 4 ) sin az4 - Ym(t4 cos azt4  (43)

XM(t 5) sin az5 - Ym(t 5) cos az5

where a numerical subscript denotes time and

Xm (t) % A fju (r) dr di, Y (t) % tfa u (-) dT du (44)

If the missile acceleration is zero, then the right side
of Equation (43) becomes zero. Therefore, the rank of the
cooefficient matrix must be less than six. Observability is
reduced to determining the eigenvectors associated with the
zero eigenvalues of the coefficient matrix. If d(az)/dt ,? 0,
then the rank of the coefficient matrix is five, and there is

10



only one eigenvector direction. Therefore, the direction of
the initial condition is observable but not the magnitude. If
d(az)/dt = 0, then there are numerous directions so that even
the direction is not uniquely determined.

If the missile acceleration is a constant, then the right
side of Equation (43) is nonzero. However, there is no way
to determine the difference between the unknown constant
target acceleration and the missile acceleration. Therefore,
the coefficient matrix must still have rank less than six
and be singular. In this case, the signatures generated by
the missile and target accelerations are the same and cannot
be distinguished.

If the missile acceleration is not a constant, i.e., the
missile acceleration is nonzero but with a different time
function than the target acceleration, then the coefficient
matrix becomes invertable, and the initial state is observable
from the angle-only measurement. In the next section the
observer developed in subsection IIB is applied to the homing
missile problem described in subsection IIC, but in the plane.
The results demonstrate quite clearly the observability of
the state for the homing problem with angle information only.

F. Application of Pseudolinear Observer to the Homing
Missile Engagement

The observer developed in subsection IIB is applied
to the homing missile guidance planar problem. The dynamics
used in the simulation for testing the observer and determining
its response are exactly the same as those assumed in the observer.
In this way the performance of the observer can be studied without
the corrupting effects of unmodeled complex nonlinearities.

The homing missile guidance scheme is derived by using
linear-quadratic theory.3  The guidance law is of the form

u A 1 (g )XR + A2 ( VR + A 3(T )aT (45)

where the guidance gains based on estimated time-to-go,Tg, are

A( g) = 12 N( C 1)/2  (46)

A2 (tg) 1 I2 N(T )/Tg (47)

A3(g) 1 2 N(-g) (e X g + )gl)/(A 2 g) (48)

where estimated time-to-go is calculated as

T A - IXRI /(VR XR) (49)

3. A. E. Bayson and Y.-C. Ho, Ap"-Z¢cd f' tlmaZ ControZ, Blaisdell,
Waltham, Massachusetts, 1969.

11



where XR, vR and aT are the estimated states from the observer,
and the navigation ratio is

N(g) = 3 3 (50)

The value of y is chosen as 0.0001.

The observer derived in subsection IIB is evaluated for
the homing planar problem using only the pseudolinear measurement
[Equation (35)]. The responses are chosen by picking various
values of P 0 , Q, and R. In the stochastic counterpart, these
parameters, when used in the Kalman filter, play the role of the
initial error variance, the process noise variance, and the
measurement noise variance, respectively. However, if white
noise is actually added to the measurement, the estimate will
be biased. As discussed in subsection IIG, the observer used as
a filter must be modified. Nevertheless, it is anticipated that
if the noise is small enough, the bias effects will also be
small. Therefore, values of R, Q, and P are chosen over a range
of values that would be used in a statistical settina.

The observer derived in subsection IIB is initialized by
the following data.

The actual initial states are:

X = 7000 ft, Y = 100 ft, v x = -1000 ft/sec, vy -100 ft/sec,

ax = 10 ft/sec 
2 ay = 10 ft/sec

2

The initial estimate states are

X 5500 ft, Y = 0 ft, vX = -800 ft/sec, vy = 0 ft/sec

2" 2
ax = 0ft/sec2

, ay =0 ft/sec.

The initial value of P is always diagonal. The six diagonal
elements are P = 104, P 2 2 = 104, P 3 3 = 104, P44 = 104, P 5 5 = 102,
and P6 6 = 102 11 unless otherwise specified.

The value of Q is always chosen as zero and N = 1. With
the above values, the respons s of the observer for values of
R = (0, 10- 8 , 10-6, 10- 4 , 10- ) are shown in Figures 2 through 7.
Clearly, the speed of the response is related to the value of R.
Large overshoots in acceleration occur for the low values of R
which produce a high gain system. In Figures 8 through 10, the
observer response to various values of initial P with R = 10-6
and Q = 0 are shown. Only the responses in the X direction are
shown since variations in the Y direction are not very different
from those shown in Figures 3, 5, and 7. The effect of various
values of P 55= P6 6 on the position response is not great until
P55 = P6 6 = 1o. The most significant effect is in the large
icceleration errors that occur early in the response as shown
in 7iTure 10. Effects of variation in Q have been computed,
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but the results have not been explained. The above data is
preliminary and a continuing effort should be made in under-
standing the performance of this observer. For example, the
performance of the pseudomeasurement observer should be
compared with an observer constructed as an extended Kalman
filter. The performance of these observers operating without
noise should form a lower bound on the performance of similar
observers operating in a noisy environment. Furthermore,
the region of validity of the linearization of the extended
Kalman can be assessed.

G. Effect of Noise on the Estimates of the Observer
Using Pseudolinear Measurements

If the measurements are corrupted by noise, then
the measurements of Equations (31) to (34) are rewritten as

azm az + vl, elm el + v 2, Rm  RR + v3 ,

Rm = R + v4 (51)

where vI through v4 are white Gaussian noise processes. The
Gaussian assumption can be relaxed if only linear filter
structures are considered. Again, these measurements can be
converted into pseudolinear measurements. For example, the
pseudolinear measurement for azimuth angle is
, ( 2  y2 1/2 sin v .  (52)

Yl = 0 = sin azm x - cos az m Y - (x + 1

Similar results can be obtained for the other three measurements.

In general, the measurement function [Equation (2)] with
additive noise becomes

z. h. (x.) + v. (53)1 1 1 1

where vi is a vector of white noise. The pseudo measurements are
assumed to take the form

Yi(z ') = Hi (zi)x . + \i (xi ' v.)i (54)

where ')i (xi' v i ) is a state-dependent white noise process.

The pseuuo measurement of Equation (52) is an example of Equation (54).

In this section, the effect of the noise process v . (x., vi)
on the estimates produced by the observer of subsection
IIB when used as a filter is determined. It is shown that these
estimates are biased. Directions in constructing filters which
reduce this bias are discussed. As has been assumed for the
observer, a linear structure is assumed for the filter as

xi = L. x. + K. Yi" (55)

The gains Li and K i are to be chosen so that the estimates are
unbiased. In attemptinq to do this, the error in the estimate is
formed using Equation (10) as
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e. = (I - Ki Hi(z.) - Li)x + L. e. - Ki v. (xi, V.) (56)

Suppose the gains are chosen so that the coefficient of xi is
made zero. Then the gains Li and Ki would become functions of
the present measurement zi as

L i (zi) = I - K i (z i ) Hi (z) , (57)

which results in the structure assumed for the observer of
., subsection TIB.

If the estimates are unbiased, then the unconditional expec-
tation of the error is zero. If the unconditional expectation
of Equation (56) is taken using Equation (57), then both ei is
correlated with Li(z i ) and vi(xi, vi ) is correlated with Ki(zi).
To separate the gains from the state, error, and measurement
noise, the conditional expectation is first taken. Because of
the nesting property of conditional expectation, the unconditional
expectation can be taken over the conditional mean. If the
conditional mean is zero, then the conditional mean will be zero.
Therefore, the conditional expectation of Equation (56) with
respect to the measurement history Zi A {zl, . . . .zi } is

E{e/Z L (Z {ei/Z - K (z.) E{v (xi, v)/Z.} . (58)

Given zi, the random variables xi and vi are no longer independent.
Therefore,

E{v(xi, vi)/Z i} $ 0 (59)

and forms one source for which the estimates are seen to be biased
since this bias term adds into the error propagation eauation (58).

The process noise forms an additional source of bias in
the estimates. The error from one stage to the next is

ei+l = A. e. + wi+l (60)

where w i is a vector of white process noise. Taking the expec-
tations of Equation (60) conditioned on Zi and introducing this
into Equation (53) gives

Efoi/Z i. = Li(z i ) Ai_ 1 EfeiI/Zi } 
- Ki(z i ) E{Vi/Z i

+ E{wi/ZA (61)

Similarly,

} L= L z( )A. E{e./Zfe i-1 /Zi L i-i (Zi-I )Ai-2 E ei-2 /Zi "

- K il(zi) EfviI /Z i + Ejwi i/Zi} , (62)
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that is, a recursion rule results in going from stage to stage
where the conditioning on the measurement history remains fixed.
The solution of this recursion is of the form

i-i
Efei/Z} = 0 E{e 0 /Zi} + Ei j+l [E{wj/Zi' j=0'

w K.(z.) E{v./Zi}] (63)

where
i

= Lk (zk) Ak (64)
k=j

If the gain Ki(z i ) is chosen as derived for the deserver of
subsection IIB, then as i goes to infinity, ja 0 goes to zero.
Since the filter has this inherent stability, ne magnitude of
the steady-state error as i tends to infinity will depend upon
the speed of convergence of P 0".Note that process noise and
measurement noise both contribute to the biasing.

There may well be better choices for the gains used in the
filter which will reduce the bias in the estimates. A somewhat
similar conceptual problem is that of estimating the parameters
of a constant coefficient linear system with noise observations.
Instrumental variables has been suggested as an approach. 4 This
approach, implemented without process noise, has been used 2 for
the pseudolinear filter with some success.

4. K. Y. Wong and E. Polak, "Identification of Linear Discrete
Time Systems Using the Instrumental Variable Method," IEEE

on Automitic Control, Vol. AC-12, No. 6, December 1967.
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III. TIIE ADAPTIVE EXTEND KALMAN FILTER AND AN ADAPTIVE
HOMING GUIDANCE LAW BASED ON THE EXPONENTIAL COST
CRITERION

The previous section describes the observability of
the states of the homing engagement using angle-only information.
Furthermore, difficulties and directions for constructing a
filter using pseudolinear measurements have been discussed.
In this section the established extended Kalman filter (EKF)
in rectangular coordinates is used to process the noisy angle
information. This filter is used in cascade with an optimal
guidance law previously derived from linear quadratic Gaussian
(LQG) theory. Two new features are considered to enhance the
system performance. First, the measurement noise (and process
noise) variance is estimated on-line using a sliding window
estimation procedure. 5 The inclusion of this procedure is
not very numerically costly since the error variance had to
be calculated on-line for the EKF. In a sense, the EKF is
adaptive to the missile engagement. By estimating the
measurement noise variance on-line, the EKF is adaptive
with respect to the noise environment. Since the error
variance is already calculated on-line, an adaptive guidance
law based on the exponential cost criterion can be mechanized
without a great deal of numerical cost in hopes of further
reducing miss distance, especially against highly maneuverable
targets. This scheme is tested on a six-degree-of-freedom
simulation in which a bank-to-turn missile is modeled.

In subsection IIIA the six-degree-of-freedom simulation
is described. In subsection IIIB the EKF formulation is
discussed. The adaptive scheme for determining measurement
and process noise variance on-line is given in subsection IIIC.
Numerical results on estimating the measurement variance on-line
are also presented. The adaptive guidance law based upon the
linear-exponential-Gaussian (LEG) theory 6 is presented in a
form used in its implementation as a homing missile guidance
law in subsection IIID. Numerical results showing the
performance of the LEG adaptive guidance relative to the LQG
guidance when both use estimates from the adaptive EKF are
also given in subsection IIID.

A. Six-Degree-of-Freedom Simulation

The six-degree-of-freedom model of a bank-to-turn
m~cie i7 in modular form, allowing easy modification of one
elemnflt without alterinq the remaining elements. The elements

5 . J.;" nons; . Balakrishnan; J. Speyer; and D. Hull,
.;v':.;ou o$ .. , Report AFATL-TR-79-87,

Air ?orce Armament Laboratory, Air Force Systems Command,
EJlin Air Force Base, Florida, October 1979.

6. J. L. Speyer, "An Adaptive Terminal Guidance Scheme Based
on an Exponential Cost Criterion with Application to Homing
Missile Guidance," 7' '  ' . . + Vol.
.- 21, o. j, ,June 1976.



are the missile airframe aerodynamics, the seeker, the
guidance/estimation algorithm, and the autopilot. Since
the engagement is normally restricted to altitudes below
82,000 ft, only the troposphere and stratosphere are
modeled. The autopilot model for this bank-to-turn missile
processes yaw-and-pitch rate acceleration commands from the
guidance law, and accelerometer and rate gyro information to
produce missile control surface deflections. The autopilot
model is divided into four distinct elements: yaw, pitch,
and roll channels and a self-adaptive network. The integration
subroutine uses a fixed-step, fourth-order, Runge-Kutta
method to integrate the system differential equations.
Subroutines are available for one- and two-dimensional linear
interpolation of the aerodynamic coefficients, which are
functions of Mach number and angle-of-attack or sideslip
angle.

The target is modeled as a point mass. It maintains a
constant speed throughout the engagement. From the time of
launch to a relative range of 6000 ft, the target flies steady
and level at the launch altitude. Once this activation
range is reached, the target initiates a 45-deg maneuver up
and to the right relative to its reference frame at maximum g.
This maneuver is maintained until the time-to-go reaches 1 sec
when the target instantaneously rolls 180 deg and pulls maximum g
for the remainder of the engagement.

B. The Extended Kalman Filter

Studies 5 involving various forms of the EKF both in
rectangular and spherical coordinates have indicated that the
EKF in rectangular coordinates is quite robust. The dynamic
system in rectangular coordinates used on the filter is given
by Equation (1) where the coefficients are presented in Equations
(29) and (30). The assumption here is that the target sensor
is the main error source and that missile sensors are perfect.
Therefore, ui, the missile acceleration measured by accelerometers,
is known with negligible error. The major modeling assumption
is that the target can be modeled as a Gauss-Markov process in
the filter. The essential idea is that the autocorrelation
function of this Gauss-Markov model is the same as that obtained
from a Poisson process, which more accurately models the target
maneuver. The actual target is assumed highly maneuverable
and a preprogrammed target maneuver is used on all simulation
runs as described in subsection IIIA.

The measurements are assumed to be of the form given in
Equation (51), which are noisy observations relative to an
inertial reference frame. This is necessary to estimate relative
attitude and target motion. The assumption is that the tracking
and stabilization algorithms isolate the target sensor from the
missile body.. In a skid-to-turn missile, a two-axis gimbal
syster. with a roll-stabilized coordinate frame usually is
sufficient to preserve the inertial reference. In the bank-
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to-turn missile, additional compensation must be used
because of the high roll rates employed by the autopilot.

In all the simulations that have been performed, only
angle information is used. Observered boresight angle
errors and seeker pitch-and-yaw rates are assumed to lie
in a roll-stabilized inertial coordinate system. Then,
the inertial angles measurements are simply integrated
pitch-and-yaw rates added to their respective boresight
angle errors obtained from the centroid of the blur circle
on the IR screen. The essential noise source has been
assumed to reside with the measurement of the boresight angle
errors. Although the noise is assumed to be white with zero
mean, the siding window adaptive scheme estimates both the
measurement noise variance and biases. These biases may be
attributed in part to nonlinear effects in the EKF.

The EKF applied to the homing engagement is based upon
a linearization of the observations which are nonlinear in the
rectangular reference frame. Because of the linearity of the

_dynamic system Equation (1), from the last state estimate,

XK/K, closed-form formulas for the predicted state estimate
XK+l/K, and the error covariance, PK+l/K , are obtained [Equations
(29) and (30)]. The subscript K+l/K means that the state is
at time tK+l, but the last observation update occurred at tK.
The state estimate update equations for processing and obser-
vation are obtained by linearizing the measurement function
about the extrapolated estimate XK+ I/K . The update equation
for the state utilizes the nonlinear observation equations,
while the update equation for the error variance uses the
equations that are obtained from a perturbed linear filter
formulation about xK+l/K. Since xK+l/K is not known a priori,
the error variance must be propagated on-line, and, thereby,
the filter gains are calculated on-line. Note that in
constructing the gains for the pseudomeasurement observer, no
linearization is necessary, although Pi must be calculated on-
line since Hi(z i ) is not known a priori.

C. On-Line Estimation of the Measurement and Process
Noise Variances

In practice, the actual noise and process noise
variances are not known since various targets have different
noise signatures. In the case of the IR sensor, which is
operational a relatively long time, estimation of the observation
and the state process noise variances can be accomplished on-line.

The approach used is that given in Reference 5 where the
population means and covariances are determined by using the
predicted observation residuals sampled and stored over a
sequence of m past estimates. The finile memory filter assump-
tion is used to retain a population of m observation residuals

27



which is used sequentially to determine a current value of
the observation and process noise covariances.

The algorithm for estimating the measurement noise
statistics is given here. The algorithm for estimating the
process noise statistics is given in Reference 5 and is
similar to the scheme now presented. Emp. is in numerical
experiments has been placed largely on the 2stimation of
measurement noise statistics. The measurement function
[Equation (2)] with additive Gaussian white noise is

zi = hi(x i ) + vi  (65)

The objective is to estimate the mean and variance of vi

from the measurement residuals ri obtained from the EKF as

r i = z i - hi(xi/il) (66)

The residuals represent the error in the actual and predicted
observations and are used as a measure of the measurement noise
mean and variance. In the limit that the EKF approaches a
conditional mean estimator, the measurement residuals are a
zero mean white noise process with variance

r T T h T

E[ri ] = Ri + hx xi/i-) Pi/i hx (xi/i-) (67)

where Ri is the measurement variance and hx(xi/i I ) is the
partial derivative of hi with respect to its argument evaluated
at

By using statistical sample theory, the mean and variance of
the residuals are determined and are then related to the sampled
mean v i and variance Ri of the measurement noise through Equation
(67). Suppose the sample window has N samples of the residuals;
then the sample mean can be written in the recursion form,

i
- 1 - - 1
Vi -N =i N [ri - ri-N] (68)

k=i-N+l

In order to mechanize this scheme, N samples must be stored. In
a similar way, the sample variance of the residuals is used with
Equation (67) to form the same measurement variance as

I T
R" N _ 1 {(rk - vk) (rk - Vk)

i k=i-N+l

N-1 h (x ) T  ^
N x k/k-1 _P/ x (X k/k-)1 (69)

where a recursion relation can be formed as
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R + N-1 - - - vT1 i-i N-iC. v)r v.)

(riN - viN) (riN - i TN)

+ 1r - r )r. - r )T

r i i-N i i-N

N-i )P hT (x
N [hx (xi/i-li/i-i x i/i-

- h Cx. P hTx ] (70)x i-N/i-N-i ) i-i/i-N-i x i-N/i-N-1

The division by N-i ralher than N is due to the requirement that
sample variance be unbiased. The sample mean and variance
recursions are begun with a batch average over the N samples
where Equation (69) is used for the sample variance but vk is
fixed at vN '

Initializing the variance recursion by a batch process produces
4a bias in the variance estimate since the residuals are constructed

by the filter using the stored a priori measurement noise variance.
If the actual measurement noise variance, RA, is larger than
the a priori variance, R, assumed in the filter, then the sum
of the residuals in Equation (69) will dominate the term
hx P hT. This is because the residuals should be larger
than if RA is used, and the error variance Pi/i-1 calculated
using R is smaller than it would be if RA were used. Therefore,
the estimated Ri should be larger than RA. This is conjectured
to be a conservative approach since by obtaining an Ri > RA,
the filter will not heavily weigh the current data. If RA < R,
then the sum of the residuals in Equation (69) will be dominated
b hx Pi/i-l hT. In fact, Ri can be made zero. Therefore, if
Ri < RA , then Equation (70) is initialized by the estimated
variance of the residues, i.e., the second term is neglected.
Therefore, RN will be greater than RA. However, it will be much
less than R.

Careful checking of the computer code for this algorithm showed
that a numerical error existed in the previous code 5 . This
error has been corrected, and experimentation has begun on the
six-deqre,--of-freedom simulation. The launch scenario is
defined by the following data: altitude = 10,000 ft; Mach
number = 0.1); launch range = 3,000 ft; boresight angle = 0
deg and aspect angle = 60 deg.

The actual measurement variance used to produce the noise
serluence corrupting the measurement to the EKF is

2
2 = M, /',T , as, el

where 2 is a power spectral density characterized as a function
of relative range as
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2 2 2 2 2, a~l

G') G_ 0.l. /R = go a~

In the simulation

q=0.25 rad 2ft 2sec,00

=56.25 x 10- rad 2see; 2D= az, el

Also, AT is the sample time, which is 0.02 sec and M is the
mismatch parameter, being the ratio of the actual noise variance
to that used in initializing the filter for the adaptive scheme
or that used by the EKF when the adaptive feature is not present.

The following experimentation was begun to test the effect
of the adaptive feature and to determine the size of the sliding
wind.ow, N. Table 1 represents results from single-shot real-
izations. The results of this study are preliminary since a
Monte Carlo analysis using at least 10 runs would be more
represenative. If M = 50, the adaptive feature seems to produce
significant improvements in miss performance. These preliminary
results seem to indicate that miss distance depends heavily on
measurement variance. It might be argued that the guidance
system reduces the miss variance to a minimal value which is
that of the variance of the error in estimating the miss by the
filter. There:fore, improvements in the filter estimates will
be reflected in miss distance.

The tracking histories of the estimated value of the
measurement variance against the actual error variance are
given in Figures 11 through 18. Both the variances associated
with elevation and azimuth are given for M = 50 and M = 0.02
where N - 20. Two sets of figures are given for each M to
effect scale. During the first 0.4 see, the filter uses the
stored measurement variance with M = 1. After N = 20 samples
have been accumulated, the estimated measurement variance is
used in the EKF. In Figures 11 and 12, the tracking history of
the measurement variance is displayed in an expanded scale. The
estimates are on the order of magnitude of that of the actual
value. Near terminal the actual error variance rises quickly.
The estimates tend to lag the actual value. This is best seen
in Figures 13 and 14. This is not surprising in that the estimator
assumes a constant rather than a variable measurement variance.
Also, near terminal the error variance of the state estimate
tends to decrease. This means that the last two terms of
Equation (70) tend to be negative. This effect is more pronounced
when M =0.02. In fact, the constant values near terminal shown
in Figures 15 and 16 are caused by a fix in the program that
chooses the last value of the estimate before it goes negative.
The sharp changes in the estimate of the measurement variances
are seen in Figures 17 and 18. Note that in Figures 15 and 16,
using the expanded scale, the estimated variances are larger
on the average than the actual variances. This behavior has not
been explained although it is conservative.
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TABLE 1. MISS DISTANCE VS. SLIDING WINDOW SAMPLE
SIZE FOR M =50 AND M =0.02
USING A SINGLE REALIZATION

4LMismatch (M) =50 Miss Distance (ft)

Extended Kalman
Adaptive R N = 0 91.529

N = 20 2 5. 26 C
N = 30 59.464
N = 40 56. 837
N =50 39. 584

426.612

Mismatch (M) =0.02 Miss Distance (ft)

Extended Kalman
Adaptive R N = 10 32.268

N = 20 27.182
N = 30 28.662
N = 40 70.158
N = 50 57.594

10.835
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Fiqure 11. Azimuth measurement variance estimate for M = 50 and
N =20 in expanded scale.
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Fiqjure 12. Elevation mnoasurement variance estimate for M 50 and
N =20 in expanded scale.
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Figure 14. Elevation measurement variance estimate for M 50
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Figure 15. Azimuth measurement variance estimate for M =0.02
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Figure 16. Elevation measurement variance estimate for M 0.02
and N = 20 in expanded scale.
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Figure 17. Azimuth measurement variance estimate for M 0.02
and N 2.
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D. Adaptive Homing Guidance Scheme Based Upon LEG Theory

The LEG theory 5 is a generalization of the LQG theory.
Therefore, the LQG guidance rule used in subsection IIF is
modified; the extent of the modification is not very larqe.
The LEG problem is that a control law for u(l) is to be
determined which minimizes the exponential cost criterion

J = E{ exp p i} (71)

where (Qf > 0 and R > 0),

= x(tf) Qf x(tf) +S f 
0 u R u dt, (72)

subject to the dynamic equation

= Fx + Gu + w (73)

and the measurement process

z = Hx + v (74)

where the n-dimensional, normally distributed initial state x0
and the n-and q-dimensional Gaussian white noise processes w
and v are assumed to be zero mean with variances

~T
E[x 0 x0] P0

Etw(t) w(T)T } = W6(t - -1)

E{v(t) v(T) T V6(t - T) (75)

Note that the cost criterion is an exponential of a graduated
form. The control law determined from LEG theory reduces to that
of the LQG theory as the parameter v approaches zero. If 1i > 0,
then large excursions in state and control are heavily penalized,
whereas if V < 0, a less active control rule results.

The resulting control rule is linear in the estimated
state x as

u =-R G QX (76)

where

Q = (I - SP) S (77)

where P is the error covariance matrix produced in the filter
and S satisfies a matrix Riccati equation of the form
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-S= SF + FT S -S(GR - I G - jW)Sj = Q (78)

In applying this controller to the homing guidance problem,
u is the missile acceleration command, F and G are given by
Equation (28) and w is the white noise forcing term in the
Gauss-Markov target model

T = [0, 0, 13 WT] (79)

with power spectral density

.-
0 0 0

0 = 3oT] (80)~0 13w

In the cost function

R = yI3 , Qf 0 0 0 (81)0 0 0
4-

The solution to the matrix Riccati equation (78) is

013

g K1+K2 [I3, 13 Tg, 13 fT]T [13, I3 Tg, 13 fT1  (82)

where Tg A tf - t, the time-to-go, and

fT = [e-2v g + 2vTg- 1 /4v 2  (83)

K = 1 + 0 (84)
3 

1 

3

K 2 1 (e 2
VTg - 1 + 2vi e-2vTC)

2 1 3(2v)2 2(2v) 5  -

+ 1 (2v) 2 T 2 + 2vT - 2VT e-2vrg]

(2v)~ g

1 -2VT (85)

2(2v) 3 eT

In Reference 6, the sign of the coefficient of the first term of
Equation (85) was incorrect. If p = 0, then the controller reduces
to that of the LQG controller. For v X 0, S(Tg) changes by the
addition of K2 . This controller is adaptive because of the
presence of the error variance in Equation (77).
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In Reference 6, the positive exponential cost criterion
was used. The result was that the tails of the miss distribution
were reduced. This may be partially explained by noting that
the guidance scheme would be less sensitive to large target
maneuvers. The positive exponential solution for the perfect
measurement problem is the same as that obtained from the differ-
ential game problem where the process noise is considered a
control variable and the weighting in the cost function is that
of the inverse of the power spectral density WT 13. The numerical
experimentation with this controller has been with the positive
exponential. One difficulty to be avoided is that p must be
set small enough such that I - pPS > 0. The values of 3, y, p,
and wT are chosen so that the navigation ratio increases from 3
of the LQG guidance scheme. Figure 19 shows the navigation ratio
vs. time-to-go for various values of the parameter. The
ragged behavior near terminal shows the effect of the error
variance on the navigation ratio. Its effect shows up here
mostly due to S(T ) becoming large rather than P becoming large.
The best miss distance was obtained by the LQG controller,
although the difference from that obtained by the LEG guidance
law is quite small. It must be emphasized that the results
presented here are for only one realization on which the LEG
guidance law was tuned. A Monte Carlo analysis should be
performed so that the major advantage of the LEG guidance rule
in pulling in the tails of the miss distribution can be assessed.

IV. CONCLUSIONS

The pseudolinear measurement observer provides important
insight into the behavior of angle-only measurement homing
engagements. Clearly, from the numerical results the system
is observable. This study showed the effect of changes in
the parameters of the filter on the observer performance. By
analogy with the Kalman filter, these parameters are related
to initial error variance, measurement noise variance, and
process noise variance. In the context of this controlled
experiment, filter sensitivity can be assessed. As the measure-
ment noise variance increases, the response time of the observer
decreases. The observer seems quite insensitive to variations
in the initial error variance for the target motion. However,
the response of the observer is quite sensitive to the process
noise parameter. The effect here is important and deserves
further study.

The extension of the pseudolinear measurement observer to
a stochastic filter has the difficulty of producing biased
estimates. However, since all measurements used with either
IR or radar sensors can be put into the pseudolinear form
with additive state-dependent noise and since the filter requires
no linearization, it is important to investigate filter structures
which allow reduction of these biases.

The adaptive EKF in cascade with an adaptive guidance law
based upon LEG theory has been investigated. A sliding window
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Figure 19. Navigation ratio for LQG and LEG guidance in the X-channel.
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estimator has been used to process the residuals of the EKE
so that the measurement noise variance could be determined
on-line. This is a driver of the error variance in the EKF
which is calculated on-line. The error variance is an input
to the guidance law based upon LEG theory and is thereby
adaptive. Estimating the measurement error variance on-line
rather than using an priori measurement variance has important
improvement in miss distance from our initial investigations.
The adaptive feature of the guidance law should help reduce
the tails of the miss distance distribution. Since only one
realization of a missile engagement has been investigated,
no significant miss distance results can be reported. However,
the initial tuning of the LEG guidance law was performed
using this realization. Monte Carlo studies on this LEG
guidance law should be done to determine the capability of
the system over an ensemble. with this study, the effect
of the guidance system on the tails of the miss distance
distribution can be assessed.
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