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Fmpirical Bayes Rules for
Selecting Good Populations*

by

Shanti S. Gupta
Purdue University

and

Ping Hsiao
Wayne State University

1. Introduction

We assume tnat G ois an unknown prior distribution on 3, and denote

the mirrue Bayes risk in a decision problem by r{(G). Robbins, in his
pionecring capery [1955], [1964], proposed sequences of decision rules,
based on duta trom n independent repetitions of the same decision probliem,
whose {17191 staye Bayes risk converges to r(G) as n » «». Such sequences
ot ruli-, are called empirical Bayes rules. Empirical Bayes rules have been

derived for multiple decision problems by Deely [1965], Van Ryzin [1970],
Huany [1975], Van Ryzin and Susarla [1977], and Singh [1977]. However, the
forms of densities of the populations that these authors considered are either
c(sii(x)e™, for continuous case or c{8)h(x)uX, for discrete case, and the
loss function are either squared error or merely ]mgxk ”j'”i type. Fox
11974] discussed some estimation problem under squé}éa error loss, in which
empirical Bayes rules were derived for uniform distributions for the first
time. Barr and Rizvi [1966], and McDonald [1974] also considered selection
problems related to uniform distribution by subset selection approach. The
problem considered in this paper is related to uniform distributions and can
*This research was supported by the Office of Naval Research contract

ND0014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.




be illustrated by the following example. Suppose that there are k drugs for a
certain disease, and the effect of drug i follows an unknown distribution Gi'

1 - i - k. The effectiveness of drug i is tested on n patients (For different
drugs, different groups of patients are used. If the same patient has to be
used for more than one test, let there be a wash-out period between tests,

so the effects of different drugs are independent.). Let Gij be a measurement
of the effectiveness of drug i on patient j. Drug i cures the disease of patient

3ot 0 and hence is entitled as a good drug, otherwise it is a bad drug.

i 0

is called the control parameter. In general, Oij is unknown and will diminish grad-
ually as time passed by, so a diagnosis will yield a result Yij which we assume

to be uniformly distributed over (0, eij)' Our purpose is to decide on the

quality (good or bad) of the k drugs on the next consulting patient based on

Yoo (Wi ok 1 -3 < n)and X, (1 <4 < k), where X, is the diagnostic

result of drug 1 on the present patient. In Section 2, a general formulation

is given and empirical Bayes rules are derived for selecting populations

petter than a known control when the populations are uniformly distributed.

In Section 3, the same problem is considered except that the control

parameter is unknown. In Section 4, empirical Bayes rules are found for

truncation parameters (that is the densities are of the form pi(x)ci(oi)l(o’oi)(x)).

Rate of converyence is also discussed. Monte Carlo studies are carried out for

2
the priors G(s) = 0? I(O c)(u). The smallest sample size N is determined to
C - ’

guarantee that the relative error is less than ¢.
2. Known control parameter
Assume that my, n,,...,m are k populations and =, - U(O,ni), where 9.

1
is unknown for 1 < i - k. Let 80 be a known control parameter, we define LB




3
to be a good population if "5 and to be a bad population if Oi < 80.
Let - -~ i = ("],....wk);“i 0 for all 1 - i - k. For any = . 3, let
A(") - ii}wi SR and B() - %i*~i © g, then A(s) (B(+)) is the set of

indices of good (bad) populations. OQur qgoal is to select all the good popula-
. tions and reject the btad ones. We formulate the problem in the empirical

Bayes tramework as tollows:

(1) Let . - S5 . 1. ,...,k be the action space.

When we take action ¢, we say > is gond if i .. S and TS is bad if

NS,
(@) 1(,5) - (imig) Pl T (age)
Vihions 107 "8y gng O
is the los< function. (2.1)
k
(3) tes dG0) - d“i(”i) be an unknown prior distribution on 8, where
i=1
“i has a continuous pdf q;-

(4) Let (“il‘Yil)""‘(“in’ Yin) be pairs of random variables from s and
Yij‘“ij : U(O’“ij) forl i <k, 1 -3 < n. Let Yj = (Y1j""’ij)’
then YJ denotes the previous ji-th observations from Tyeee s Ty

ko
(%) Let X (X],...,Xp) he the present observation and f(x|s) = 1 'n
) CT i=1 73
Fro )(xi>' Since we are interested in Bayes rules, we can restrict
our attention to the non-randomized rules.
() let D =~ = » is measurablei, then r(G) = inf r(G,s8) is the
N & D N
minimum Bayes risk.
The decinion rules i¢ (x: Y],...,Yn)b;:] is said to be asymptotically
optimal (a.0.) or empirical Bayes (e.B.) relative to G if rn(@,én) =
JEf L(~,'n(x,Y],...,Yn))f(xlw)dﬂ(u)dx + r(G) as n » =, For simplicity,
D




\ — -
4
\n(x,Y],...,Yn) will be denoted by 6n(§).
Let mi(x) be the marginal pdf of Xi and Mi(x) be the marginal
distribution of Xi. Then we have
mi(x) / 3 dGi(u) for all x > 0, (2.2)
X
and
i X0 9
Mi(x) =17, dGi(n)dt =[] 3 dthj(9)+j / g‘dthj(O)
0t x 0 00
= xmi(x) + Gi(x).
Hence, Gi(x) = Mi(x) - xmi(x). (2.3)
Now, the loss function defined in (2.1) can be expressed as
L{e,S) = ) [Ly(ag-05)1 (05)-Ly(es-6)1 o _y(8:)]
its 2V707 (0,00] i1 (60, YV
; )
+ Y Ly(n.-0.)1 (9.). (2.4
12] 1 i°0 (Gosm) 1

The second sum in (2.4) does not depend on the action S. To find the
Bayes rule we can omit it, and only consider the first sum as our loss

from now on. Then,

r(G,:) = J 2 tf Lg(eo‘ei)f(§|9)dg(9)

- L](oi-ﬂo)f(x|e)dG(Q)]d§.
85>04 T

"

So, if 68(5) S* is the Bayes rule, one finds i € S* if

]
L,(6n-6.) - dG.(0.)
(O{HO]w(xi,m) 227070 vy T

o

. L (0.-0,) l-«dG.(o.). Hence,
1YY 07 9, ittt

”va'i 1




5
Qx Il‘xi gt U iilxi a0 and Hi(xj) ci(uo)} where
94 ]
Hi(xi) = Ly { % dGi(ei)+ LZGi(xi) and
j

- 3} ke ‘1 - 1 ” ],__ i
(,i(_”> = L?Gi(',o)ﬂ](] G].(uo))-Lluoé > dG].(u].).
0

Since Hj(xj) is decreasing in X5 for X; < 6y and H(no) - ci(GO)’ 50

S* i X o wo-bi: where bi > 0 satisfies H(“O’bi) = ci(eo). This shows

for any G, Gupta type rules are Bayes rules (see Gupta [1958,1963,1965]). Now,
since G is unknown, the Bayes rules are not obtainable. We wish to find

a sequence of rules {An(x)$::] to be a.o. Let

and

SB(x) = ii;xi < Bg» AGi(Xi) < 0}.

Also, for any i (1 - i - k), let by (x.) = a,(xs, YipooooaYs ) for all

,n'"i Y7 in
n=1,2,..., be a sequence of real-valued measurable functions, we define

) - iw. o .
S”\x) ix, and b5

0 (Xi) -0} (2.5)

,Nn

and

(x) = 11 x; » ot U Sn(ﬁ). (2.6)

One can show that

Thenrem 2.1, If é“ dGi(~) < w ¥ i=1,2,...,k, and Ai,n(xi) > AGi(xi) in
(p) for almost all Xi g Then {6n(x)};:] defined by (2.6) is e.B.

Proof: for all &« , let




v = {x|xi » 0g if i ¢ S and X; < 0g if % S).

Now, for any X g SB(x) =Sy SB(x), then

fL(*,\B(X))f(x1Q)dG(§)

Similarly, for x ¢ gs wWe have

[ Lleys, (0))F(x])d6(e)

D)
&

=0 -+ g )AG.(X') nom(x:).

with probability near 1 for n - N. Note that (2.7) is non-positive by the

definition of Sn(x). Thus, we have proved 1

I R



[ LGS, () F(x]o)d6(0) » [ L(o.sg(x))F(x]0)d6(s)
) - B 0T

in {p) for a1l most all x. By Corollary 1 of Robbins [1964], {én(g)):_l is

e.B. This completes the proof.
In view of {2.2) and (2.3), we have
2Gi(x1) = Lzmi(xi)(no-xi) + LZ[Mi(xi)-Mi(“O)] + Ll[Mi(OO)']]'

Hence, if we define

23 a0xg) = Ly (O (agmxg) + LMy (Oxg)-My (o) ]
CLyIM L (5g)-1] (2.8)
pon
where M] n(x) = ‘Z] I(_m x](Yij)
k] Jz 9
1
and mi’n(x) " h [Mi,n(X+h) - Mi,n(x)], (2.9)

then »* (x.) » A~ (x.;) in (p) a.e. in x, if h = h(n) >~ 0 and nh » = as n » =,
i,nt" i Gi i i

So, by Theorem 1, 6;(5) = {ilxi > 89l u {ilxi < GO,A?,n(xi) < 0} is e.B.

Remark: In (2.8), M, (x) can be defined as any functions such

1,n(x) and m

s N

that M, n(x) » Mi(x) in {p) and m; n(x) > mi(x) in (p) for almost all x.
0 g xYyy ” -
For example, let my (x) = & ] w(—5=) where w(-) - 0 satisfies
’ J=1
(1) sup w(x) < K for some constant K,

PUS €t

(i) j‘ w(x)dx =1

(i1i) Tim xw(x) = 0
X X




and h = h{n) satisfies h » 0, nh » = as n » » then m? n(x) 1S a consistent

estimator of mi(x) (see Parzen [1962]).

3. “0 unknown
Let 0 be a control population and LI U(O,eo) with %0 unknown. Let
YO]""'YOn be the past data collected from o Based on this further

information, we will search for empirical Bayes rules for selecting populations

better than control. Note that now o= (60,8],...,8k), X = (XO’X1""’Xk) and
) 8
G(-) = = G1(“1)' Under the loss function in (2.4), the Bayes rule sg is:
i=0
i “B(x) if
LI g 5 (890,06 (0, )dg (0,
X 0 (O,uoli(xi;n) i
Ll g - (03289046, (0, )dGg (8,
SR | g, \7i"%p/d8418510G4(84).
X 0 (uo,»Lu(xi,w) i
Henre, i &B(x) if

(1) X5 g and néOQGi(xO,xi) < 0, where
Gi(xf)’x') = (L]‘Lz)]j m.l(go)dGo(eo) + ){ mo(e1)dG1(e1)]

! X
i i

1
G
i

- L][l-Gi(xi)]mO(xO)+mi(xi)[L2+(L]—L2)G0(xj)-L]Go(xo)] (3.1)
or

.. 2
(1) x, - Xy and “GO,Gi(XO’Xi) < 0, where

0

2 ] " .
'GO,Gi(xO’xi) S (L]-LZ)[{ mi(ao)dGO(eo) + mO(Oi)dGi(Oi)]

0 X0

= g (g L+ (L1165 (xg) -6, (x4) ]+ Lom, (x4 (1-Gy(x)). (3.2)

S B
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When L] LP - L, the Bayes rule is greatly simplified. We find
i rR(x) if
-GO.Gi(*O’Xi) - mO(XO)[]'Gi(Xi)]'mi(Xi)L"GU(XO)) - 0.
et RN il:i’n(x1,x0) -0t where

'V‘i,ﬂ(xi':'\‘::) : '”\’,z\ﬁ‘v})[l'(‘l.i’[](xi)] -y n(xi)[]‘GO’n(xo)]’

L)

\ / . Ched i and G -
'1,n"i) is defined in {2.9), and Gi,n(xi) Mi,n(xi)
- v SO The Loy ' i o, 1 v Tl ~ .

i hen, p ey . by Theorem 3.2. When LJ # LZ’

ne needs to find consistent estimators of £ mi(oo)dGn(uO) and gmo(gi)d61(61>

Tnecrer <000 et M]‘

”(;) and v r(x) be defined by (2.9) with h = h(n)
LAatistoineg oyo- 0, ' o as o - .. If f@ dGi(w) < for all i =Q,1,...,k,
0
Preen - ”(rJAmO YR ; uj(x)dhﬁ(x) in (p) for any a - 0.

A * i q ’

Prasrs o See Mppendix AL

Assume that |- dGi(~) - forallp 1 - k.

If for all
0
1 ! ] 5 . 2 >
. Tk . ‘”,xi) ‘Gi,GO(xO’xi) in (p) for X5 Xge and Ai,n(XO’Xi)
Lo (;”,ri) in (r) for i Xy Then
Ai.il i
by Cl (v ) ()(
1 ! H(‘ l n !
£ oand Y (X, %) 0y
3] L,n 0T
| o and ¢ {(x x.) - 0O (3.3)
7 O 0N ’

define, an empirical Baves rule.




n
Proaf: [ L{e, g (x))f(xi0)da(+)

- ] 2
) A (X~oxs) 10 mo(x.) + ) A (xn %) 1 m.(x.)
5% (x) G480 07 1 54y 3T icSE(x) GiaGp 70 T4 00

. 1
o * - I N
where S*(x) {11x1 > Xy and G

3 (XO’Xi) - 0!

iGp

.o 2 o
S§(X) = 1'%+ xy and AGi,GO(XO’Xi) < 0},

and [ L(s,ep(x))f(x;2)d6(s)
= 7 ,) (XpoXs) omo(x: )+ ) A2 (xgsxs) 1 m.(x)
) 16,6, 0% 8y : G,\Gy 07 T

e 37 s
itS;(x) 0 J#i 1655(5) 0 J#I

Now, following the same method as in the proof of Theorcm 2.1, we can show

'\\" L . Q
Lot 6, ooxg) Bom(xg) e ] "6.,6 (xgoxi) 1 myx;)

. S .ok R
itsh(x) i*70 N 1652(5) 0 j#i
in {p) for . = 1,2. Hence {éﬁ(x)}::] is e.B. This completes the proof.
Now, let
] , g (=]
‘i‘n(xo,xi) = \L2~L]){£ xmi,n(x)dmo’n(x) + £ me,n(X)dmi,n(x)}
i i

- L0065 () Img (xg)amy (k) TLp*(Ly-Ly)

i,n
Go’n(xi)—L]GO’n(xo)], (3.4)
and
f]’n(xo,xi) = (LZ-L]){j xmi,n(x)dmo‘n(x) + xmo’n(x)dmi’n(x)}
X X
0 0
+ L0-Gy () Imy Oxg )=y n{xg ) Iy #{Lp-Ly)64 [ (xg)
- LZG'I,H(XY)]’
where Gi,n(x) = Mi,n(x) - xmi‘n(x). (3.5)




1

Then, by Theorem 3.1 and Theorem 3.2 (3.3), (3.4), and (3.5} define an

empirical Bayes rule.

4. Generalization and Simulation
Let pi(x) be a positive continuously differentiable function which is

0
defined over (0,~) for 1 < i < k. Let ci(o)'] = p;(x)dx for 6 > 0, then
0

fi(xle) = pi(x)ci(O)I(o 0)(x) is a density function and ¢ is a truncation

\ parameter. In this section, we assume that =, - fi(xioi) for 1 <1 < k.

Under the formulation of Section 2, we wish to find empirical Bayes rules

for these more general density functions. For simplicity, we assume that

Ly = L, = L and that o, is known. Also we assume Gi(e) has a continuous
density gi(o) with a bounded support [O’“i] with a known a, for all 1 < i < k.

We find

a,

i %
mi(x) = é fi(xle)dGi(e) = pi(x)£ Ci(e)dGi(e)'

If we follow the same discussion as in Section 2, we can show that the Bayes

rule 5z is i¢ 68()}) iff

(li Ot]-
(i) x; < 8 and o £ ci(x)dGi(x) 5_£. xci(x)dGi(x).

i
5

Hence, 58(5) = {ilxi > 8-d;} where d; > 0 satisfies £ (eo—x)ci(x)dGi(x) = Q.
.i

= di,n(Yil""’Yin) be a consistent estimation of d;, then

x) = {i{xi 2 0g=d; ! is e.B. and they are (weak) admissible in the

senge that 62("Y1"“’Yn) is an admissible rule for the non-empirical problem

N ...,Y_and n (see Houwelingen (1976). Meeden (1972)). However,

for Y1 'n
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to find such a sequence {d }:=1 is very difficult. In view of Theorem 2.1,

i,n
a more practical way to find empirical Bayes rules is to estimate
.

;
[ xci(x)dGi(x).

X
1

Theorem 4.1. Let py(x) and G;(x) be defined as above. If mi o (x) is

defined by (2.9) with h » 0, nh » =,

then
o, ' @
i xpi(x) LI
m, (x)dx - f dm. (x)

b o " b
i

> [ xe;(x)d6,(x) in (p).
X

Proof: See Appendix B.

Now, Tet
oom. (x:) %i % xp!(x)
0"i,n "4 X i
A*Y (x.) = 2 +f dm, (x) - [ m, (x)dx, (4.1)
i,nt "4 p.(x.) p.(x) "i,n 2 i,n
ity X; O X; pi(x)
then 6;(5) = {ilxi > 8ty {ilxi < 8 and Aq,n(xi) < 0} (4.2)

defines an empirical Bayes rule.

The following lemma is a direct result of Lemma 3 of Van Ryzin and

Susarla [1977].
%3
Lemma 4.2. Let AGi(x) = £ (8g-t)e, (t)dG,(t) I(o,ai)(*)’

k
then 0 < rn(§’6;) - r(6) = izl {IH}lAGi(x)|pi(x)|P[A¥.n(x) < 0]dx

+ IH§[AGi(x)lpi(x)P[Ag‘n(x) > 0]dx}
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where A; n(x) and 6; are defined by (4.1) and (4.2) respectively, and
1 . 2
H, = ixix - w4 and AGi(x) > 0} and Hj = Ix]x « 0y and AGi(X) < 0},
O(an)
Now, let 0("n) denote a quantity such that 0 < lim I Then
nro n

: since iAG'(x)\pi(x) : Mi for all x < v for some constant Mi’ o)
i

k
r (G,o*) - r(G) < ,Z] Mi{f] ple*  (x) < 0]dx
1= ’

n n :
H.
i

+ [ Pla% (x) - 0ldxi.
2 3
H
Therefore, if for all x < 00

Pl 2%

“]‘n(x)-AG (x) ~» iAG (x)]] =0(a.) as n » e

j i
then

r(6.6%) - r(6) = 0(a).

Now, by the inequality

Var[a¥*

¥ ()]

] < 2

j ~ [lag ) 1-1ag (x)-Es¥ (x)]]
1 b

2 2
1,N

we conclude that if Var[A? (x)] = O(an) for all x < 8y then

n

r’n(G,‘;) - r(G) = O(vtn).

In the following, we have carried out some Monte Carlo studies to see

how fast the derived empirical Bayes rules converge. We let Xi ~ U(O,ei)
. . - 28
for i = 0,1. 9, is treated as an unknown. Assume that gi(e) = c2 I(O,c)(e)

for i = 0,1 and L] = L2 = 1. The smallest sample size N such that

i l"'m(g,éa)'r(@)l
Relative error = — any—*-‘f €




ein e o A o e e i g e e Pl e
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for N-4 < m < N is determined. The values of N corresponding to selected

-1/4 -1/5

and for

, for h = n

¢ and ¢ are shown in the next table for h = n

h = n']/s, where h is used to define (2.9).
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Appendix A

Proof of Theorem 3.1.

For i fixed. f xm, n(x)dmo’n(x)

O,
11§
- ] z j x I (Y 5)dI (x)
n? nl §=1 e (xexthl [og=n-Yoo)
11”'23
= s ) (U, -V. )}, where
né h? 351 g5y 3¢ 3R
U, = (Y

02" (a,0) Mo My oy, 1045

. Y (Y, )1 (Y..).
je 01 {a,~)' 02 (YOQ’Y0£+h] ij

Since Y, My{x) and Yij - Mi(x) for 1. < j, 2 < n, so

u

WAL TR

1 [my (x+h)=my (x) Jdx.

X =X
[N
=

s
—
<
-

3—!

Now, by {2.2) mi(x) is decreasing in x, hence

1 x+h
LT anity) <m0 < L 06,01,
X
1 X*h 1
Then lX' h){ dM.i(,Y) h [mo(x+h)‘m0(X)]‘

Xx+h 1

PA

The last term is integrable over (a,~), then by LDCT

16

(A.1)

- [1- G, (x)] h j a-dGO(e) 5_%—go(x+6h), for some 6 ¢ [0,1].
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o0

E] xm. )dm nx) > / xmi(x)mé(x)dx
a

a
= - f mi(x)dGO(x) in {p}) ifh > 0asn > . (A.2)
a
“‘ 11 .
Now, Var [ xm. (x)dm, (x) = Var : )«
AR 0,n ;?\6?73,1 js~ JE
) , 2(n-1)
= nﬁ? Var(U]]-V )+ 2 7 Cov(U 1V Uyp- V] ). (A.3)

2 2 2

1 2
and b E(U)])

™ 2 ] x+h
= £ x°- H‘£ dMi(y)dMO(x+h)

2. } (16, (x) )dMy (x+h) < Z X dMy(x+h)

.\
-2

M G G
0 _c 0 _ 1 0
£ O0x] = € °LE[X|8g]] = J E Clog] «
| Go
hence h—Var(U]]-V]]) < E [90] for all h > 0. (Ar.8)

s A

Meanwhile, Cov(U]]-V 1> Uyo- 2) = Cov (U, 1’U12) + Cov(V]],VIZ)-Cov(U]],V]z)-
Cov(V n ]2), and I~7 Cov(U 11’U12)] < —?-[E(U]] ]2) + E(U]])E(U]Z)] because

Ujv 0 forall 1 < j, v <n,

1

1
Now, —5 E(U 5
h2 1" 12

he b (ap)n[x h,x)

ydMo()’*h)]szi (x)

LT yam (yeh) oM, () ] ?+h[? dM, (y+h) T%aM, (x)
2 ahp oy Y0V itz Yyl i

X X I
Because ydM_ (y+h) = f —~dG (e
0
x~h X= h
X 1
< f Y-yeR 9Y < h, and, similarly,
x-h
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X ath
f ydMO(y+h) < ydMO(y+h) <h for a < x < ath,
a a
1 -
we get ;? E(U]1U]2) < 1-Mi(a+h) + Mi(a+h) - Mi(a) = 1—Mi(a).
The same argument shows that %—E(U]]) 5_1—Mi(a)
1
h E(V]]) < ]'Mi(a)q
1 . s .
hence ]H? Cov(U]],Ulz)l ;A2[1-Mi(a)]. This implies that
1
;?»‘Cov(U]]-V]],U]Z-V]Z)l‘18 [l-Mi(a)] for any h > 0. (A.5)
By (A.3), (A.4) and (A.5)
Var £ any o (ddng (x) >0 i nh > 0 and h > 0. (A.6)

Now, (A.2) and (A.6) implies that

oo o

£ xmi,n(x)dmO,n(x) > - £ mi(x)dGo(x) in (p).

This finishes the proof.

1
1
‘--.-;-lllIlllIlllIIIllllIIlllll-llIIIlII--III-ltll-ll-----i-.-.--..-i
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Appendix B

Proof of Theorem 4.1.

(x]- ai

First, E £ p}?&) dmi’n(x) = { p;%ij»%»[mi(x+h)-mi(x)]dx
i i

‘B
“y

X

X .
i
;s e [y
Now, Var — dm. (x) = Varl_ (U,-V,
x. Pilx i,n nh 21 J 3

1

Y..-h
. i
where Uj = E}YVfETFT I[xi,ai](Yij-h)’ and

Y..
- 1]
V. = VLY 1 Yii).

[ 253
i
]
Hence, Var X _dm. (x) = —5 Var(U,-Vy)
£i pi<x5 i,n nh2 11

1,+h i i
ui+h Xi+h 2
1 1 x-h 2 1 1 x
+ - f = [ 1M (x) + = [ dM. (x)
nh h tp (x-h i nh o hp?(x) i
j i i
1 d X 2 .2 X 42
<o max [& + max ——T~T]
n xe[xi’“i] dx p1(x) nh xe[xi,ai] pyix
- 0 1f nh -+ o,
We see that
u.i (l.i
X X .
{ B;T]j'dmi,n(x) > £ B;T;T dmi(x) in (p).
j i




' xp%(x) “5 xp%(x
Similarly it sooom (x)dx > f e m (x)dx
x; D (x) ’ x; pylx
. :] (. 4 mi(X)
Since xci(x)dGi(x) = [ -x ak'[ﬁ. < ]
X . X. 1
i i
}i xp%(x) }i .
= e (x)dx - o~ dm, (x),
X, p;(x) ! X, pi—&7 !

the proof is completed.

20
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