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A GOODNESS-OF-FIT TEST BASED ON SPACINGS
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ABSTRACT

,;fThe difference between consecutive order statistics from
a sample is called a spacing. Various tests bascd on sample
spacings have been considered in the literature for testing
the hypothesis that the sample is drawn from a specified dis-
tribution. Tests based on the spacings arc recommended for use
when the alternative distribution differs from the hypothetical
distribution in the shape of the density function. 1In this
paper, we consider a test bascd on the spacings designed for
the case when the ratio of the two density functions is a
pieccc-wise monotone function. This paper deals mainly with
the large sample properties of the test.
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1. Introduction. Let X

l""’xn be a sample drawn from a cer-
tain distribution. 1In this paper, we consider a test of the
hypothesis Hy that the sample comes from a known distribution

F, say, against the alternative hypothesis H, that the sample

1
is drawn from a distribution G, say, where G is not known com-
pletely. Let A denote the common support of the distributions
F and G. We assume that A is a finite or infinite interval and
that distributions have continuous density with respect to the
Lebesgue measure. Let £ and g denote the respective density
functions. We further assume that the ratio Q(x) = g{x)/f(x)
i1s a piece-wise strictly monotone function of x inside A.
Suppose that the slope 0of the graph of Q(x} changes sign at

k points. Let n = (

.+, ) denotc¢ the change points. We

Hl,.. K

consider two cases: (i} % is known and (ii) 1 1is not known.

We shall consider in length the casce in which there is a
single change of sign (k=1) in the slopc of the graph of Q(x).
This is realized in the following examples, where ¢(x) =

2ﬂ)-l/2

( exp(—x2/2) denotes the standard normal density function.

(a) £(x) = ¢ (x); gix) = (1/0)¢(x/0)

(b)  £(x) = $(x); g(x) = e ¥/ (1+e™¥) 2

(c) f(x) = »(x); g(x) = p\i»(x-ul)\*(l—p)ti-(x-uz)
by < 0 < Y 0 " p <1

(@ f(x) =1, 0°x"1; gix) = bl Tl T

I IRD)

0 < x 7 1; L, .




Let Yi = F(Xi), i=1,...,n and let D1 = Y(l)’

D denote the sample spacings

P =¥y T Y Y-

of the transformed data where Y denotes the ith smallest

(1)

value among Y "Yn' Our test is based on the spacings.

17
The test statistic will be denoted by T. Various tests for
goodness-of-fit, based on spacings have been considered in

the literature. The papers of Pyke (1965, 1972), Proschan and
Pyke (1967), Sethuraman and Rao (1970), Kale (1969) and

Kirmani and Alam (1974) may be cited for reference. Pyke (1972)
points out that tests based on spacings should be usced when the
alternative distribution differs from the hpothetical distri-
bution in the shape of the density function.

The following statistics have been proposced in the litera-

ture for a test of goodness-of-fit:

it 1

U = i‘_ Dg; r =5
i=1
n

V= ) inD,-1] and
i=1
n

W= 3 logD,.
i=1 *

The null hypothesis is rejected when the absolute value of the
statistic is large. It is known (see e.g., Cibisov (1961))
that the asymptotic efficiency of any test symmetric in the
spacings is equal to zero relative to the Kolmogorov-Smirnov
test. Scthuraman and Rao (1970) have compared the relative

efficiencies of the tests based on U, V and W.




For applications to reliability and life-testing, Proschan

and Pyke (1967) have considered a test of the hypothesis that

the given sample comes from an exponential distribution which
has a constant failure rate property against the alternative
hypothesis that the distribution has monotone failure rate.

The test 1is based on the statistic

n n - -
(1.1) S = 2 23 h(Di,Dj)
i=1 j=i
where h is a bounded nonnegative function and Bi = (n—i+1)Di

denotes the ith normalized spacing. The authors have shown
that the distribution of $§ is asymptotically normal under the
alternative hypothesis. Further, Bickel and Doksum (1969)
have shown that the asymptotic normality holds also for a
sequence of alternatives Gn approaching the exponential
distribution.

The test statistic T is derived from S as follows:

First suppose that n is known. Let Ci = F(ni) and let "
denote the set of values of Yj for which fi~l z Yj g ;i’ and
n; denote the number of elements in " i=1,...,k+1,
*
where ° = 0 and <, = 1. Let Y. denote thec smallest value
o k+1 1
* .
in =., and let §_ = Y.,-7, for m = n +...+n. .+1 (i = 1,...,k+])
1 m i i-1 1 i-1
and S = D_ otherwise, m = 1,...,n, wheren_ = 0. Let
m m o)
1 for x <y
(1.2) hix,y) = |
0 for x > vy.
Define
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T
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4
n 1 _ n n
T = ) .his;,s;, T = : ! hi(s.,S.)
o] ]:l i=1 ] 3:1 1=
n,+...+n, p|
v, = §1 1 ) h(s,,s.)
Podsagto.ang (1 dsnote.eng 4l ]
_ nyt...4n, n,+ +n,
T, = | 1 y ' h(s.,s.)
]=n1+...+ni_l+1 1=
Let ”j = 0(1l) for odd (even) values of j = 1,...,k+1l, We let
k+1 _ kil .
T = 2 ((1=2.)T.+%. 7)) or ) (. 7T.+(1-¢.)T.)
551 33303 580 33 i

according as the graph of Q(x) has initially a positive or

negative slope. If the slope does not change sign, we let
T« T or T
o) o)

according as the slope is positive or negative. The hypothesis
HO 1s rejected for small values of T.

In case (ii), we estimate 1 from the data and substitute
the estimate for n in the definition of T, given above. The
estimation of i is considered in Section 5 below.

In Section 2, we show that the given test is unbiased.

To compute the critical value of T and the power of the test,
we need to find the distribution of T under HO and Hl. The dis-

tribution is shown in Sections 3 and 4. Some results on the

relative efficiency of the test are given in Section 6.

-




2. Unbiasedness of the test. Let H = GF'l, Y! = H(Y,) and
LI ] V! } = - ) L
D.l &(i) Y(i—l)' i 1,...,n, where YO 0. Suppose that
the slope of the graph of Q({x) is positive inside (um_l,mm).
Then H is convex on (gm—l’;m)' Therefore, by the mean value
theorem we have that for n,+...+n +1 - 1 <2 3 " n,+...+n
1 m-1 - - -1 m
D! Y. =YY, v, o..=-Y . 1' (C.
Y9 YE-n Y Y- BTGy
0 1 Y _ 1
Pi Y Yu-n o Yo Ya-n o W)
Y, ..=-Y,. L.
(2.1) Sy -1 - 73
Yy Y- P
>re . CL Y, . Y, . T C, o~ Sy e e i i
where Y(]-l) LJ (3) and (i-1) Ll Y(l) The inequality

in (2.1) follows from the fact that H'(Cj)/H'(Ci) 1 due to

the convexity of H on (im_l,fm). From (2.1) we find that

D. < D.= D
i -

' < D'. Therefore h(D.,D.) < h(D',D'). Let T', T
3 1 - ) A 1773 m m

and T' be obtained from Tm, Em and T respectively by substituting
Yi for Yi, i=1,...,n. Then by the above inequality we have
that Tm - Té. Similarly, if the slope of the graph of Q(x)

)

is negative inside (nm_ ) then H is concave on (fm

' :
1"'m ~1"'m

and therefore Tm < fé. It follows that T < T'. Hence

P(T - t'G) = P(T'" < t|G) = P(T ~ t|F), for all t _ O.

Since Hy is rejected for small values of T, the test is

unbiased.

3. Distribution of T under HO. When G = F, the sample spacings

i 1) ...,D_are jointly symmetrically distributed according to

ll
the Dirichlet distribution given by the density function




= [ i - -
(3.1) p(dl,...,dn) n! ; di >0, 07 d1+...+dn < 1.

Let 2 ..,Zn be n random variables jointly symmetrically

1"
distributed and let

1,....n

pe}
i
H o~

>
~
a]
o

]

denote the left sequential ranks where the function h is defined

as in (1.2). Similarly, let

denote the right sequential ranks. It is known (see, e.g.,

Renyi (1962)) that R "Rn are statistically independent and

17"

that the distribution of Rj is uniform, given by

1 .
(3.2 P{(R. = m) = & , m=1,..., .
) (By 3 ]

1,...,Rn.

The above result is easily gcneralized as follows: Let

The same result holds for R

(ZyseeosZ ), (2 Y AN D I /A ' I
. g rEY g ’ { PP . . Aot e et
1 1 1+l 17 1t +e+l 1
be a partition of Z = (Zl,...,Zn) into k+l1 sub-vectors, where
1Feeet ke 5D and let
m
R. = ? h(z . 2 .)
L i o e e b . « e o4 9
j ) vl+ + m~l+l Ql+ + m—l+3

be the jth left sequential rank of the variables in the mth

partition (2, _ N TI Yi 3= 1,...,0 ;
;l+ +Qm +1 Ql +Qm m

-1

k+1




Y

m=1,...,k+1, where ;o = 0. Let the right sequential ranks
ﬁ? be defined in analogous manner. Then the random variables
R?, j = 1,...,-m, m=1,...,k+]l are statistically independent

and the distribution of each R? is uniform. Similarly, the

random variables ﬁm, i = 1,...,%
3 ]

m

m=1,...,k+1l arc statis-

tically independent and the distribution of each ﬁ? is uniform.

o}
Moreover, RT and R? are independent for m # m'. These results

follow from the property of symmetry of the joint distribution of

Zyreea D

Given

),

represents a sample of

).

fand n = (nl,...,nk+l

ni obscrvations from a uniform distribution on

(&

i-1'"1

Moreover, the k+1 subsamples are conditionally independent.

The following properties of the conditional distribution of

Tl""’Tk+l; Tl""’¥k+l’ given n follow from the results given
above: (a) Tyee-osT ) are independent, (b) 5]""’$k+1 are
independent, (c) Ti and Tj are independcent for i # j and
(d) T, and Ei have the same distribution for each i. Therefore |
conditionally, |
(3.3) p 4 kfl T |
i=1
where mcans "distributed as".
Lot Pi,n.(t) = P(Ti = t!g), i=1,...,k+1l. Clearly,
pi,n.(t) =0 %or t o n,. For t ~ n. . the probability can be
i

computed recursively from the relation

(3.4) niP- (t—l)+Pi n




'---p-l------------------lﬂﬂa!~ : e

Since Tl""'Tk+l

from (3.3) we get

are conditionally indcpendent given n,

(3.5) P(T = Tln) = ¥
1

As n is distributed according to the multinomial distribution

with the associated probability vector p = (pl""’pk+l)'
v, = §.=-, , 1 =1,.:..,k+1, we obtain
i 1 1-1
n,
k+1 p. .
P(T = t) = P(T = tin) n! ; i
n1+ +nk+l = n i=1 1

Kendall (1938) and Mann (1945) have tabulated the distribution

of pi,n.(t)’ for n, v 10.
i

Since Ti is the sum of independent random variables
i

Rl,...

,R;', it follows from Llaponouv's thceorem that for large
1

values of Ny Ti is asymptotically normally distributed with
mcan ni(ni+3)/4 and variance ni(ni—l)(2ni+5)/72. Therefore,
T is asymptotically normally distributed for large n, with

. 2 .
mean . and variance T given by

k+1 5 k+l
(3.6) iy = Lony(ng+3)/4 - (n7/4) ) Py

iy i=1 i
(3.7) 1S = ) n;(n;-1)(2ng+5) C (n”/36) T p.

i=1 i=1

wherc ~ means "asymptotically egquivalent to".




"-I-!I--f---l"""""'

4, Distribution of T under Hl. The small sample theory of the

distribution of T under Hl is mathematically intractable.

Therefore, we consider the asymptotic theory. Let 2 ,Z

17°°" n

ha: be a sample from the cxponential distribution whose cdf is

given by A(z) = 1l-exp(-z), and let 7 denote the ith

(1)
order statistic in the sample. Similarly, let U(i) denote

the ith order statistic in a sample of n observations from

the uniform distribution in (0,1). It is known that
1
Z 4 Ny /-1 .
1 j=1 3
Let
-
. o
e f(u) = (l—u)/H'(H—l(u)),
el
where H = Gt . We have
d -1 -1
(4.1) nD, < n(H A(Z(i)) H A(Z(i_l)))
= n(z,, -z e frgcTHaan
(1) (i-1) ' !
by mean value thecorom
= n(Z(i)-—Z(i_l))A(u)
d .
- (n/(n—L+l)Zi\(~i)

(8 . Sz o 2. ’ = & . D sy .

wher Z(l-l) 2 (1) Y A(z) and U(l—l) 2ty L U(l)
Though (Zi,Zj) and (ni,*j) are statistically dependent,
Proschar and Pyke (1967) have shown that the degree of depen-

dence is negligible in relation to the distribution of T for




for large n. Under the condition of independence, we have

Eh(D.,,D.) = P(D. - D.)
13 |

e e e
SR I U S
n-j+1 'n-1+1 n-j+1
[
Then for large n, we have
ET, = E B h(D,,D.)
* n, ,+17i<j’n ]
i-1 —
rrort ~1
(4.2) n2 ! } e (H () .. dudv
foom s T o
1-1
2
= n .., sav.

From Theorcm 4.2 of Proschan and Pyke (1967) it follows that

T, is asymptotically normally distributed. The mean of the asympto-

.

tic distribution is given by (4.2). The variance of the asymptotic
2

: . . 3.2 .
distribution equal to n v;, say, can be obtained from formulas

(4.59) and (4.60) of the papcr. We do not give the expression for

the variance, since it is involved. The distribution of T is
k+1
asymptotically normal with mean cqual to n k by and variance
k+l i=1
cequal to n o
coo i
1=1

5. Estimation of !i. We have considered the case when ! or

equivalently ° is known, giving the points of inflection in the




11

graph of Q(x). 1If . is unknown, we estimate 7 as follows. We

shall describe the method of estimation when there is a single

point of inflection though the method carries through to

.‘vl,

the case in which there are several points of inflection. Let

g I‘l {1
> h(Di,Dj) + ) Y

) h(D,,D.)
1 j=m+1 i=j+1 '

*
and let m denote the value of m, maximizing (minimizing) Lm as

m varies from 0 to 1, if the slope of Q(x) changes sign from

negative to positive (positive to negative). If the sign changes

from negative to positive then r(u)/(1-u) is first increasing

then decreasing as u varies from 0 to 1. From the representation

(4.1) of the sample spacings, it is scen that the values of Di

tend to increase thon decrease as 1 varies from 1 to n and

*
therefore the value of m maximizing Lm 1s approximately given

by

(5.1) m - [Fy/m]

where [X] denotes the nearest integer value of x. If the slope
cf QIx) changes sign from positive to negative then m* minimizes
Lm. The estimate of ?1 is given by the largest value of ;l

satisfying the relation (5.1).

* -
It can be shown that m /n = ¢, + Op(m l/2). Therefore,

‘1
the asymptotic theory developed in the previous section remains
valid when &1 is replaced by its estimated value in the definition

of T.




6. Asymptotic relative efficiency. 'n this notion, we comparc

the test based on T with a likelihood ratio test, using the
criterion of asymptotic relative efficiency (ARE) for the com-
parison. We consider below two examples for the comparison. In
Example 1 we test an exponential distribution agains a Weibull
distribution. 1In Example 2 we test a uniform distribution

against a beta distribution. Tor a specificed scet of alternatives
indexed by ', say, the formula for the ARE of a socquence of

tests (based on a sequence of asymptotically normal test statistics
%Tnt) agailnst a sequence of tests (basced on the asymptotically
normal test statistics {[n}) is given by the formula (scc e.g.,

Gibbons (1971))

3 ! " t " -}2
lim [lTn( O) ULn( O)'
(6.1) ARE - ) / KB )I
& T o 1 ol |
n n i
where o denotes the null hypothesis, o (v} and Ji () denote
n n

the limiting mecan and variance, respcctively, of {Tn}, n% (")

denotes the derivative of Hop () with respect to 0. The parametric
n

functions . ('), \? (v) and u'r (¢) are defined similarly, as for
n n n

J‘ T 1
n

-X

3]
=1 —x"
Example 1. Let f(x) = ¢ 7, x > 0 and g(x) = 0x' 1e %

!

x » 0, © > 1. It is seen that Q(x) is increasing (decreasing)

-1

in x for x < (») for all 0 » 1. We have £, = F(1l) = 1-e

The spacing-test statistic is

et




From

(6.2)

(6.3)

13
(4.2) we have, after simplification,
(1) L on?(I,+1,)
Hp R R
where I, and 12 are given by
1. = yzzze—y_z{(l+y)log y - (l4z)log z] dvd
1 2. 2,2 yaz
(y"+z7)
0<y<z<1
= , approximately.

(6.4)

53 5 dydz

Lo J j y’22e” Y2 Y21 ((142) /2) 1og 2 ((1+y) /y) log v]
(y +z7)

O<y-<z<l

= , approximately.

The approximate values of I. and I, given above are obtained by

1 2

numerical integration. From (3.7) we have

(6.5)

ratio

(6.6)

and

(6.7)

2 . .
CT(l) N ig(l-ZLl(l—El)).

Proschan and Pyke (1967) have shown that the likelihood

test rejects the null hypothesis when T, is large where

W

Tw =

He~—D

-X X
(1 i)log i

i=1

u% (1) = n[(Y-1)2+w2/6], vy = .5772, approximately.
W

2




Y

P

(6.8) B2 () = ni(v~1%+12/61.

From (6.1) the ARE is given by

ARE

2 - ) 2,2
36(Il+12) /(1-2&1(1—«1))((1-1) +i7/6)

= approximately.

Example 2. Let f{(x) =1, 0 < x < 1 and g(x) = “x”

It i1s seen that Q(x)} is increasing in x inside the interval

,ng Therefore T = To. From (4.2) and (3.7) we get after soame

simplification
2 1 2 3 2
ap (1) = S5 - 5+ =5 - ...]1 - -(.031)n
o 3 5 7
2 3
o (1) n~/36.
o

The likelihood ratio test rejects the null nypothesis when

n

Ty = ) log X, is large. By direct computation
i=

1

From (6.1) the value of the ARE turns out to be equal to .0345

approximately.

-1

14

(0,1).
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