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FOREWORD

The research described in this report was performed by Systems
Technology, Inc., Hawthorne, California, wunder Air Force Contract
F33615-79-C-3601. The Task Number N3, Mathematics of Flight Control,
was under Project Number 2304, Mathematics. This work was directed hy
the Control Dynamics Branch, Flight Control Division, Flight Dynamics
Laboratory, Alr Force Wright Aeronautical Laboratories, Air Force Sys-
tems Command, Wright-Paterson Air Force Base, Ohio. The work was admin-
istered by Captain Dennis G. J. Didaleusky.

Richard F. Whitbeck was the Systems Technology, Imc., Project Engi-
neet under the direction of Duane McRuer.

The authors wish to express theilr appreciation to the Systems Tech-
nology publication staff for their efforts in preparing this three-
volume report,

The authors alse wish to express their thanks to Ms. Sugan Riedel
at Systems Technclogy, Inc., and to Captain Stanley Larimer and
Dr. Robert Schwanz at the Flight Dynamics Laboratory for their appre-

ciable efforts in reviewing the technical report.

This report 1s organized in three volumes. Volume I contains the
theoretical developments as well as 1llustrative examples and case
studies. Volume II describes two algorithms useful in the analysis
of multi-rate systems, the DISCRET and TXCONV computer programs.
Volume III contains the FORTRAN listings for these computer programs.

This report covers work performed from January 19793 through May
1980, The report was submitted by the authors in August 1%80.
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SECTION I ]

INTRODUCTION

The guldance and control field has traditionally focused on continu-
ous or analog control systems represented in the Laplace or s—-domain or
in a state-space model. Today, the increasing use and popularity of the
digital computer as a system component has provided the major impetus to

the theoretical as well as the practical interest in sampled-data or

gt s et A 02

discrete control systems. The basic problem facing the control engineer
is obtaining valid discrete models of complex, closed-loyp hybrid
systems (i.e., systems containing both analog and discrete elements). 4

These discrete models must be in a convenient form that can be readily

analyzed using the analysis and synthesis tools available today. Valid
discrete models for hybrid systems can be obtained using the z~, w-, or
w’'-transform. The z-transform is a loglcal extension of the Laplace
transform and can be used tce handle sampled-data systems. The w- and
w'~transforms are related to the z-transform through simple bilinear
transformations. Discrete models expressed in the z-, w-, or w’-plane

define the continuous variables in a hybrid system at the sampling

et s oD S s . AL sl

instants and completely describe the inherently discrete variables asso-

ciated with digital elements.

The two computer programs presented in this volume provide some of

e st e Ao

the basic digital implementation tocls required the analysls and syn-

thesis of hybrid systems. The DISCRET computer program comnverts a
general analog or continuous model expressed in the s-place te the z-, ;

: i
w-, or w’'—plane. DISCRET can calculate the standard, de ayed, or ad- Lo

vanced discrete transform. Data holds including the zero order, first

ek Liinalu .

order, second order, and slewer can be inserted into the transforma- !

tion, The second program, TXCONV, implements the conversion of a high-

PREYRIY

rate discrete transform to a low-rate discrete transform. The general 1
input/output structure of these two computer programs 1is shown in _ F

Fig. 1. In DISCRET, the input is an s-plane transfer function and the : ]




Transfer Function Transfer Function
s Plane ' DISCRET ™ z,w,or w Plane

| I
| | 1

TRANSFORM DATA HCLD TIME INCREMENT
OPTION OPTION OPTION
Slewer Standard
z w w' ZOH IST 2ND Advanced Delay
High-Rate Low-Rate
Transfer Function ~————- TXCONV }——— Transfer Function
z,w,or w' Plane z,w,or w Plane
< Sampling
Ratio

Figure 1. General Structure of DISCRET and TXCONV
Computer Programs
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output is a selected discrete transfer function. For TXCONV, the input
is a high-rate discrete transfer function and the output a low-rate dis-

crete transfer function in the z—, w~, w’-plane.

In Section II, a review of basic sampled-data theory is presented.
This section provides the necessary background information for succeed-
ing sections. The mathematical development is based on the assumption
that the sampling process can be described as the amplitude modulation
of an impulse train by the input signal. This assumption greatly sim-
plifies sampled-data theory and is valid for most practical engineering

applicatiouns.

The transform conversion expressions mechanized in the TXCONV compu-
ter program are developed In Section III. These expressions allow a
high-rate transform in the z~, w-, or w’'-plane to be converted to a low-
rate discrete transform. The fundamental definition of the z-transform
and the discrete inversion integral developed in Section II form the
basis for the analytical development. The computer mechanization of the
transform conversion 1s based on the practical calculation of the
residues of a complex integral. The residues for this integral are
calculated 1in an unconventional manner wusing a limiting process via
L'Hapital’s rule. This method simplifies the mechanization scheme and

leads to a closed-form solution.

Sections IV and V provide a detalled description of the DISCRET and
TXCONV computer programs, respectively, This 1includes the available
program options, theoretical basis for the mechanization algorithms,
general and detailed program structure, required input data, and typical
program output. Source listings for these two computer programs are

contained iun Volume III.

s e e s e e e




SECTION II

REVIEW OF FUNDAMENTAL SAMPLED-DATA THEORY

A. INTRODUCTION

A quick review of the fundamental principles of sampled~data theory
is presented in this section (Refs. 1-10). This background information
will be used in succeeding sections to develop the analytical expres-
sions mechanized in the DISCRET and TXCONV computer programs. The basic
thecry for sampled-data or discrete systems was developed over 20 years
ago and remains intact today. Practical sampled-data theory is based on
the assumption that t.. actual sampling gperation can be modeled as the
amplitude modulation of an impulse train. This central concept greatly
simplifies the analysis and synthesis of sampled-data systems. For-
tunately, this view of the sampling process is valid for most practical

csycteme and use of thic theory 1e¢ normally congidered exact.

Sampled—-data systems generally contain both continuous and discrete
elements. The z-transform provides a unified analysis and synthesis
technique for these hybrid systems. For a sampled continuous element,
the z-transform can be considered as the Laplace traunsform of an impulse
sequence (impulse train) where the area or strength of the individual
impulses equal the value of the continuous time fupnction at each dis-
crete sampling instant. An alternate viewpoint is to consider the
exponent in the 2”7 delay operator as an ordering variable for a number
sequence (or a sequence of discrete signal values) where the coefficient
for the z " terms equals the value of the number sequence (or the dis-
crete signal) at the nth discrete time instance. This viewpoint allows
the time domain difference (or recursion} equation that describes the
number sequence (or sequence of disciete signal values) to be modeled in
the z-plane. In practice, the continuous functions in a hybrid system
are first expressed in the s-demain ard then transformed to the z-—plane
using standard techniques such as partial fraction expansion coupled

with table lookup or by employing the inversion integral and contour

g e Wity
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integration. (The partial fractioa expansion table lookup approach is
mechanized in the DISCRET computer program.) On the other hand, a dis-
crete function (e.g., digital controller) may be first mcdeled with a
recursion equation and then directly converted to the z-plane by substi-
tuting the z " delay operator for each discrete term in the recursion
equatior. Naturally, during the design phase, it 1s the discrete
controller expressed in the z-plane that is first obtained and then con-
verted to a recursion eguation using the z " delay operator and subse-

quentiy impiemented on a digital computer,

In analysis and design, no distinction is normally necessary between
the z-transform function derived from a sampled continuous el2ment and
the z-transform function that models a completely discrete element.
Once discretized, all elemencs of a hybrid system can be treated using
common analysis and design techniques and tools. However, consideration
must be given to the fact that discretizing a continuous function in the
z~domain only accounts for the continuous variables at the sampling
instance. In general, the inter-sample response is not modeled with the
standard z-transform. It is necessary to investigate the inter-sample
response using such techniques as the continuous frequency response and
T/N methods in Ref. 1 or the advanced (or delayed) z-transform. HNever-
thelnss, the ability to wmodel continucus and discrete elements in a
common domain is one of the most fundamentally useful properties of the

z-transform (and the w- or w'~transtorm).
B, FUNDAMENTAL SAMPLEL-DATA RELATIONSHIPS

The fundamental relationships for the Laplace transform of a sampled

cignal are:

cT(s) = 3, c(kT) e kTs (1)
k=0




et i
cT(s) = ~§—I—~f 0(p) ——t——s ap (2)

Ts) =~ + & c(s-lz—“ﬁ) (3)

The superscript T designates the time interval between each sampling
operation. These expressions are equivalent and each has found varying
degrees of wutility in sampled-data or discrete system theory. All
assume that the sampling process can be visualized as the amplitude
modulation of an impulse train 84(t) by the imput signal (Fig. 2). The
impulse train (Eq. 4) represents a serles of jmpulses of unit strength

or area equally spaced in time and extending from zero to plus infinity.

ST(t) = &(t) + 8(t = T) + 8(t - 2T) + ++= = 3, &(t - KI) (4)
k=0

The Laplace transform of GT(t) is given in closed form as

d:[?ir(t)l = 1+ e 5T 47287 4 «vo = ) oksT
k=0
= 1 -sT <1 5
i ’ le™Sh| (5

Equation 1 is the standard definition of the z-transform with the

simple change of variable

z = e (6)

where T is the sampling interval. Substituting Eq. 6 into Eq. 1 con-

verts (‘.T(s), a nonalgebraic function in s, to a rational function in z.
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Figure 2. Amplitude Modulatiog of Impulse Train
by Continuous Signal
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This change of variable allows many of the well-defined analysis and
synthesis techniques developed for continuous systems to be applied more

readily to sampled-data systems.

The relationship in Eq. 2 1is obtained by exercising the method of
complex convolution. The dual relationships which are of fundamental
importance are stated below:

o The Laplace transform of the convolution of two

time functions 1s equal to the product of their
individual transforms.

¢ The Laplace transform of the multiplication of
two time functions is equal to the convolution of

their transforms in the complex domain.

An analytical definition of the latter relationship 1is expressed as

1 ct e
G(s) = e f Gy(p) Ga(s = p) dp (7
c=jo°
where
g(t) = gi(t) ga(t) ’ 6al < ¢ < Re(s - 0372) (8)

For convergence, the real part of s must be large enough so that all the
poles of Gz(s - p) in the p-plane lie to the right of the poles of
Gl(p). The abscissa of absolute convergence of Gl(p) and Gz(s - p) are,

respectively, g,1 and o Applying Eg. 7 to the sampling process

__________ 1 kN Ta s 12
4

- a1l . -— — b d e o~ '
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Linpu Lo Liadll Ly < —une 4
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time function {i.e., CT(t) = c(t)GT(t)], and recalling that the Laplace
transform of 8p(t) is given by Eq. 5, results in Eq. 2. '

There are many ways of deriving Eq. 3. Assuming C(s) has at least
two more poles than zeros, or the initial value of c(t) is zero [i.e.,
C(s) has a continuous impulse response], then the open interval of inte-
gration in Eq. 2 may Dbe closed through an infinite semicircle in the
right half plane as shown in Fig. 3. The integral along the infinite
semicircle vanishes as a consequence of the assumpticn that the degree

of the denominator of C(s) is at least two higher than the nunmerator
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(Ref. 5). The closed contour integration then reduces to the original
line integral in Eq. 2. Cauchy’s integral formula then allows the
evaluation of Eq. 2 within the closed contour C, as 2n infinite summa-

tion of residues which include all the poles of

1

2 e— = 0 9
1 - e_T(S"p) 9
or

p o= s - , k=0, £1, 42, ... (10)

Equation 2 then reduces to

- c(p)

cIs)y = - 3 — (11
k=—m 4 [1 - e~T(s-p) )

p=s—(j2wk/T)

Ho e
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The negative sign for the summation i1s a result of the clockwise contour

C,. Evaluating the derivative in the denominator results in

d ~T(8=p) = j2rk =
— (1 -~ e P = ~TedeTK = -T 12
dp [ ] p=s=(J2nk/T) (12)
Equation 1l then reduces to
Ts) = ¢ X c(s—i,%"—li) (13)
k==

If C(s) has a denominator one degree higher than its numerator or

c(0%) # 0, Eq. 13 should be modified to include an additional initial
i

condition term (Ref. 5).

cTs) = + X% C(s—-j%Lk) + 3 (0% (14)
k==

Restricting C(s) to be of order 1/s™, where m » 2 in Eq. 13 and m » 1 in
Eq. 14, insures that the infinite summation will be absolutely conver-
gent and independent of the order of summation. However, the restric-
tion on Eq. 13 can be relaxed to m » 1 if the sum is evaluated by taking
palrs of terms corresponding to equal positive and negative values of
the index k. Under this condition, the sum in Eq. 13 will then be abso-
lutely convergent (Ref. 11).

An alternate expression for CT(s) can be obtained from Eq. 2 by
closing the coatour to the left and evaluating the finite residues of
C(p)» This contour avoids the problems of an infinite summation. For
this case, C(s) 1s required caly to have a denominator one degree higher
than its numerator. Under these conditions, Eq. 2 reduces to the fol-
lowing finite summation of residues corresponding to the poles of C(p)

in the p-plane.
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cT(s) = 2. residues C(g%(g:;j (15)
k 1-e " |p=Poles of C{(p)

€. 2z-TRANSFORM AND THE INVERSION INTEGRAL

The analytical derivation of a general conversion equation which
allows a low-rate discrete transform to be calculated from a high-rate
discrete transform (TXCONV computer program), relles con the fundamental
definition of the z-transform and application of the discrete iaversion
integral. These two relationships are derived in some detail in this

subsection.

The definition of the z-transform stems from the infinite summation

x
¢T(t) = 2. clkr) 6(t = kT) , K =0, 1, 2, oes {(16)
k=0

where CT(t), the sampled signal, is represented by the area or strength
of impulses equal to the magnitude of c(t) at the sampling instants
t = kT. Viewing the sampling process as the amplitude modulation of an
impulse tcain 8¢(t) by the signal «(t) at the sampling instants forms
the mathematical basis for practical sampled—data system analysis and
synthesis, Such a viewpoint is justified if the actual time during
which the sampler is closed is short compared to the time constants in
the system under investigation. It is shown in Ref. 5 that for a system
with a single time constant T = l/a, the error using impulse modulation
is less than 5 percent for a sampler pulse width h which 1is less than or
equal to one-tenth of the time constant (i.e., h/t < 1/10). It 1is
significant to note that whether c(t) is sampled physically or ficti-
tiously, or already exists in pulsed form, cT(t) is still representative
of an equivalent linearized continuous signal c(t) at the sampling
instants t = kT. This point will be elaborated on in the next subsec-

tien. Taking the Laplace transform of Eq. 16 produces




cT(s) = <(0) + c(T)e 8T + c(2T)e™28T + -+ = §° c(kT)e k8T (17)
k=0

In general, if the Laplace transform of c(t) is a rational algebraic
function, a closed form can be found for the infinite series represen-
tation of CT(s). The final simple change in variable z = eST results in

the one-sided z-transform

L]

cT(z) = 3, c(xT)z"k (18)
k=0

For the two-sided z-transform, the lower summation limit becomes ninus

infinity and c(t) is defined for negative time.

The inversion integral is a closed form technique for finding the

inverse z-traznsform (Eq. 13).
c(ky) = '—LT gI} zk'ICT(z) dz (19)
Cc

Equation 19 is based on the Laurent series expansion of F(z) = zk*lCT(z)
about z = 0. Expanding Eq. 18, the fundamental definition of the

z-transform, produces

CT(z) = c(0) + e(T)z"l + c(2T)2"2 + ++« + c(kT)z"K + o (20)

If we now multiply Eq. 20 by zk-l,

FT(z) = zK-1¢T(z) = c(0)zk-l + c(T)zK"2 + +s¢ + c(kT)z™] + «+= (21)

The desired output c¢(kT) in the Laurent series expansion 1s defined as
the residue of the function FT(z). This result may be generalized
through application of the Cauchy theorem which states that if the inte-
gral FI(z) is defined by
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FT(z) = zK dz (22)

and the integral is taken around a closed contour C; which encluses the

origin of the z-plane, then FT(z) is given by

Fl(z) = 0 . k < -1
Fl(z) = 1 , k = ~1(23)
Fl(z) = © , k> -1

where the k = -1 case is recognized as the residue of FT(z). Applying
this theorem term by term te Eq. 21 results in the discrete inversion
integral, Eq. 19. The desired discrete time Iinversion for c(kT) then
reduces to the practical evaluation of the residues of the poles asso-

ciated with [zk'lcT(z)] expressed in closed form as

c(kT) = 3 residues of [zK71¢T(z)] at poles of zK-1¢T(z) (24)




SECTION III

DEVELOPMENT OF TRANSFORM CONVERSION EXPRESSION

A. INTRODUCTION

The TXCONV cowmputer program is mechanized to calculate a low-rate
discrete transform trom a given high-rate discrete transform. This sec-
tion analytically derives the transform coaversion expressions used in
TXCONV. Detailed derivations are given in the z-, w-, and w’'-planes.
The mechanization scheme in TXCONV is based on the practical calculation
of the residues associated with a unique form of the inversion integral
derived herein. The methodology presented in this section is exact for
integer ratios of high-to-low sampling rate and is based on an equiva-

lent linearized continuous response for non—integer ratios.

B. TRANSFORM CONVERSION IN z-DOMAIN

The objective of the following mathematical development is to derive
a closed-form expression for the low-rate transform CT(z) as a function

of the high-rate transform CT/N(zp) represented by
C AT /N T .
cT(z) = [cI/N(z,)] (25)

This transformation inherently arises when the output of a system is
sampled at a lower rate than the input (Fig. 4). The superscript in
Eq. 25 designates the sampling interval in the z or 2, transform. That

is,
cf(z) — 2z = esT (26)

CT/N(ZP) — oz = eST/N (27)
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T

R R C c/M ¢
T/N T/N T
(phantom)

Figure 4. Fast-Input/Slow-Output Sampling
with Phantom T/N Qutput Sampler

The zp—transform of the sampled signal CT/N(t) is first calculated with
respect to a sampling interval of T/N producing the high-rate transform
CT/N(zp). Then, the z-transform of this nigh-rate transform is taken
with respect to a T sampling interval producing the low~rate transform
CT(z). This constitutes the general form of the transform conversion

addressed in this subsection. To simplify the notation, the z and z

o

ind €T and cT/N will be uced te designate

[« W

designation will be suppresse

the z and zp transforms.

We will assume that the sampling ratio N in Eq. 25 can be any inte=-
ger or non~integer rational value. However, ouly integer values of N
are allowed in most practical sampled-data systems. More will be said
about this in the next subsections. For the present, we proceed with
the derivation for rational values of the sawmpling ratio and subse-
quently treat integer values as a special case of the wmore general non-

integer case.

The respective sampled signals in Eq. 25 are defined in the z-domain

using Eq. 18.

w

N - Y et/ . zp = eST/N (28)
k=0

cT = 2: c(kT)z"k , z = esT (29)
k=0




Transforming Eq. 28 back into the time domain using the inversion inte-

gral (Eq. 19) results in

= L T/N k-1 ,
c(kT/N) 73 gt%l C zp  dzp (30)

It is important to recognize that although Eq. 30 provides information
only at discrete instances of time separated by T/N seconds, a linear~
ized continuous time function c(t) can be obtained from the solution of
Eq. 30 by replacing kTI/N with t. This linearized system response agrees
with the sampled respounse at the sampling instants t = kT/N. Moreover,
this linearized response also exactly characterizes the low-rate sampled
response c(kT) with t replaced by kT for integer values of N. It
approximates the low-rate sampled response c(kT) for non-integer values
of N by assuming that c(kT/N) ic the high-rate sampled response of a
continuous system c{t). Tor example, if C{s) coutailus only simple pules
at (a;, ay, a3, +..), the general closed-form discrete time solution

from Eq. 30 is represented by

cRT/N) = Ape RKT/N o ma2KT/N oy maskI/N L, (31)

where (A., Ay, Az, +ee) represent the residues cf the simple poles.- If
kT/N 1is replaced by t in Eq. 31, the linearized continuous response is
obtained (Eq. 32) which exactly matches the sampled response c(kI/N) at
t = kT/N.

c(t) = Ape 21t 4 ape™P20 4 4473 4 ... (32)

It 1s readily apparent that sampled responses at other than the T/N
interval can be obtained from Eq. 30 via a change in the ordering
irdex k. For the T sampling interval, substituting k = kN in Eq. 30

produces
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o(kT) = -3f-gt; cT/Nng'l dz, (33)

Substituting Eq. 33 into LEq. 29 results in Eq. 34.

cl = fé

k=0

1 T/N_kN~1 K
a7 @ tzp| = (34)

Interchanging the summation and integration in Eq. 34 produces Eq. 35.

T = —l—: cI/N l

(zNz"l)k] —E (35)
Cy P

k=0

The infinite summation in Eq. 35 is recognized as a geometric progres-
ston in (zgz‘l) which can be placed in closed form as indicated in
Eq. 36.

1 dz
CT = 21 : ¢ CT/N ‘N =) P (36)
] C, 1 -2z Zp

P

Equation 36 is the final result which can be used to calculate any
general low-rate z-transform from a given high-rate zp-transform. To
evaluate Eq. 36, the integration contour C_ 1in the zp-plane can be
selected to include all the poles of CT/N/zp and exclude the N poles of
(2N2=1). Alternatively, the contour C; can include only the N poles of
(zgz‘l) and exclude the poles associated with CT/lep. For either ap-
proach, the problem reduces to calculating the residues of the enclosed
poles. The computationally more convenient method 1is to evaluate the
residues of CT/N/zp. Equation 36 then reduces to the finite summation

given in Eq. 37.
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T/N
T = 2: residues ¢ S
n Zp  z - zN
Plzp=poles of CT/N/z,

(37)

where
cT = ¢T(2) Low-rate transform, z = eST
cT/N = CT/N(zp) High-rate transform, zp = esT/N

C. TRANSFORM CONVERSION IN w— AND w’-PLANE

The biliaear transformation from the z-plane to the w- aud w'-planes

are defined by:

z = 1l ~w wo= z + 1 (38)
z = MIEW wo= 2 221 (39)
2/T = w’ T z+1

Since w’ is related to w by a scale factor 2/T, the bilinear transforma-

tion can be expressed as

A+ w
z = (40)
where w represents either w or w” and A = 1 for w and A = 2/T for w’.

Substituting Eq. 40 into Egqs. 28 and 29 produces

had A, + w,|"k z, ~ 1

cT/N = 37 c(kT/N) —P—-—-EJ w, = A, 2— (41)
k=0 Ap = Wp ’ p P Zp + 1

T i A + w -k 2 - 1 42

¢l = 3 ek |2 , w = A . (42)
k=0 A~w z + 1

18




where A 1s associated with the low-rate transform and Ap with the high-
rate transform. Transforming Eq. 30 into the w- or w’-plame involves a

change in the integrtion variable given by

24, :
dzp = ——L—— dup (43)

(Ap - wp)z

Substituting Eqs. 40 and 43 inte Eq. 30 and simplifying produces

A + w
c(kT/N) = —2%3 cT/N

k
p 2Ap dwp C44)
Ap - wp Ap - wp Ap + wp

Changing the sampling index to k = kN in Eq. 44, substituting Eq. 44

into Eq. 42, and interchanging the summation and integration results in i

N -11k A
(A + ) (A+w) ] l_LAp dwp
- vp A-w ‘ Ap - wp Ap + Wp

D s
D E IO S U SNV R 07 7. 00" KN I 7S

(45)

Placing the infinite summation in closed form reduces Eg. 45 to 5
P
.
, A PG
2nj Ci 1 -X Ap - vWp Ap + wp f :

where 1
Ay + wo\N A + w\L ? :
x = (AP i P) (A ) J (47) C
p ™ Wp W/ .
and i
IXi < 1 (48) 2
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As was done in Eq. 36, a closed contour C; is taken which includes all
the poles of the integrand in Eq. 46 except the poles assoclated with |
the infinite summatioa term l/1 - X. The free 1/Ap - W, term must also !
be excluded since it 1s in the same contour region as the 1/l - X term.

It is required that the infinite sum in Eq. 45 be absolutely convergent
(i.e., satisfy Eq. 48) over the region of integration. For theun, the
integral remains finite and the summation of integrals in Eq. 45 equals
the integral of the summation, This condition assures a closed form
solution for Eq. 46. The integral then reduces to a summation of resi- i

dues given by: !

T/N 2A
T = z: residues ¢ 1 P
n w,=Poles of CL/N/(A +w,)
p PP
(49)
where
v, = High~rate transform variable
w = Low-rate transform variable
wo=w, wp = wp for Ap = 2N/T and A = 2/T

w=w, w 1and A =1 §

p wp for Ap
D. GENERAL MULTI-RATE CONFIGURATIONS ;

In the preceding derivation leading to Eq. 36 (and Eq. 49) it was 1

shown thst the high to low ratic ¥ can be any rational

value. There are three general multi-rate cases of particular interest

in sampled-data systems: L

°© If N is an integer, the result obtained from i
Fgqs. 36 or 49 are exact for all multi-rate con- }j
tigurations. This is easily seen since the exact o
discrete low~rate information c(kT) can be selec- 7
tively extracted from the original high-rate dis- '
crete signal c(kT/N). Therefore, no use is made
ol the linearized continuous response function.




e . b = e

® For non-integer values of N, the results from
Eqs. 36 or 49 are exact if the original high-rate
discrete response c(kT/N) is the sampled response
from a completely continuous linear function c¢(t)
or C(s)e.

® If N is a non-integer and c(kT/N) is the response
from a high-rate discrete function (e.g., digital
computer algorithm), the results from Eqs. 36 or
49 are at best approximate since the low-rate
response c(kT} is based on a linearized continu-
ous model of the original discrete function.
The most practical multi-rate configurations are those which can be
analyzed wich integer values of N. The high-rate transform G?/N can
originate from a completely continuous function, a completely discrete
function, or any combination of continuous and discrete functions, and
Eqs. 36 or 49 provide the exact low-rate discrete transform for integer

ratios of sampling rate.

Consider the fundamental fast-1lnput/slow-output multi-rate sampling
configuration in Fig. 5 where M represents the transfer function of a
data hold and G a continuous system in the s~plane. In general, the
output sampling interval T, 1s greater than the input sampling interval
T;; however, a direct integer ratio between output-to-input sampling 1is
i not unecessarily implied. This simple multi-rate configuration repre-
2 sents a complex (but practical) situation which can be analyzed using a

common sampling period T such that

T . T _ -
oS 1] ¥ = Ty M,N = integer (50)

For example, 1if the input 1s sampled at 20 cps and the output at
13.33 cps; T, = 0.050, I, = 0.075, and a choice of T = 0,150 produces

Wi
L]
)

Yt
(TR

|
|
= T T = 0.150 (51) |

The multi-rate configuration in Fig. 5 then reduces to the general form

in Fig. 6. The output equation for Fig. 6 is given by




T
R R C ce
R A I
T T2

Figure 5, Fundamental Fast-Input/Slow-Qutput
Multi-Rate Sampling, T, > T;

R /R c ,c¢cN
———/—)- M Fm G -—-—/-—-—--—

T/M T/N

Figure 6. Fast-Input/Slow~Output Sampling
with Common Sampling Perlod T

CIIN = [ourT/H]T/N (52)

Computationally, Eq. 52 is more involved than a general slow-input/fast-

output system, since the T/N operator does not '"operate through" the

interval is greater than the inner sampling interval T/M. Moreover, T/N
is not necessarily an integer multiple of T/M, which further complicates
the analysis. Fortunately, we are free to add a mathematical or phantom
sampler to the output (Fig. 7) which operates at an integer multiple of
the output sampling rate or at a submultiple of the output sampling
interval T/N. This mathematical convenience is valid since the actual
output sampler T/N simply rejects all the unwanted samples from the
phantom sampler T*. This cimplification overcomes the above complica-

tions and facilitates a solution to Eq. 52 using the high-rate to low-




T/M .7, T/N
R R c g'* C
T/M T, T/N

Figure 7. Fast-Input/Slow-Output Sampling with
Phantom Sampler T*

rate transform expression in Eqs. 36 or 49, With the additional sampler

T*, the output equation from Fig. 7 becomes

CI/N < [(aTs gT/M)T/N (53)
The problem is now reduced to f{ludiug the individual transforme (GM)T*
and RT/M (and their product) using a common definition for the transform
variable 2z, w, or w'. For the more general case of where M/N 1is not an
integer, a value for T* must be selected such that T* is both smaller
than and an integer submultiple of T/M and T/N. An obvious choice is
T* = T/MN; however, the largest compatible value for T* is composed of
the prime factors of the integer product MN. The smaller T* is, the
higher the order of the numerator and denominator polynomials in the
RT/M term. This increase 1n order is the result of substituting the
higher rate transform variable (e.g., =z =‘eST*) associated with the
(GM)T* term into the lower rate RT/M term (zm = eST/M) to form an over-
all high-rate discrete transform product. For example, if z = eST/6

- esT/3’

and =z then the z; transform variable can be defined by

m
z = z% and the (Gb‘l)T/{’RT/3 product can be formed using the common

transform variable z, . Therefore, a T* composed of the prime factors of
MN reduces to a minimum the resulting order of the KI/M term. This in
turn may reduce the computations required to calculate the low-rate T/N
transform in Eq. 53 (using Eqs. 36 or 49) since the number of residues
in the (GM)T*RT/M product will be at A minimum. Using the prime nota-

tion, the general sampling structure in Eq. 53 becomes
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CT/N = [ (Gu)T/MNx gI/M)T/N (54)

Inserting the previous numerical sampling values into Eq. 54 will

help summarize and clarify the general results.

c/2 = [(an)T/6 gT/317/2 (55)

The selection of T = T/6 allows the formation of the inner transform
product (GM)T/BRTﬁf and at the same time provides an integer ratio of
outer-to~inner sampling periods. Equation 55 is now in a form that can
be easily solved by Egqs. 36 or 49.

A second fundamentally important system configuration is shown in
Fig. 8. Here, cT/N represents a discrete model of the digital computa-
tions in a computer (e.g., digital control laws). My is a data hold
device that models the holding of information in a storage register
between sampling intervals. The actual computational time in the com-
puter is assumed negligible in this case and is nut considered. How-
ever, computational delays can be easily handled with appropriate delay
factors and the advanced z-, w-, or w'=-transforms. Simple algebraic

signal flow tracing produces Eq. 56, the output equation for Fig. 8.

P

¢l = |MpGT/NRI/NT* (56)
R RN c c’
i GT/N ——/ el M N r———/-—-.—
T/N T/N T

Figure 8. Fast-Input/Slow-Output Sampling with
Discrete System Compcnent
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The same situation persists here as in Eq. 52 and we are unable to

operate through with T. Adding a phantom sampler tn the output allews

us to write

¢t = [MT/NGT/NRT/N]T (57)

The CT transform in the z-plane can now be easily obtained from Eq. 36

by evaluating the residues of the inner transform product with the

transform variable defined as z = eST/N,




SECTION IV

DESCRIPTION OF DISCRET COMPUTER PROGRAM

A. INTRODUCTION

DISCRET is a versatile and relatively accurate digital computer pro-
gram that transforms a continuous s-plane transfer function into a valid
discrete transfer function in the s-, w-, or w'-plane. The program cal-
culates the discrete transformation for a system of the general form

depicted in Fig. 9.

R RY C l
—/—p- M(s) —a1G(s) eAT' ——4/———l—

- -
1

Figure 9. General Form of Sampled System

M(s) 1in Fig. 9 represents the s-plane transfer function model of a
data hold, G(s) the s-plane representation of a continuous system, and
efT5 the time factor in the advanced or delayed discrete transterm. VFor
the standard z-, w-, or w'~transform, AT = Q. The ocutput equation for

Fig. 9 is

cT = [eATs G(s)M(s)]T RT (58)

The superscript T denotes the sampling period in the z-, w-, or w'-

transform (i.e.,, 2z = eST). The DISCRET program calculates the general

transform given by
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[eATs G(s)M(s)]T (59)

This general transform is present 1in most o¢pen-loop aund closed~loop

sampled—-data or discrete systems.

DISCRET is writteu in FORTRAN for the Control Data Corporation (CDC)
CYBER 175 series computer. It can handle pole multiplicity up to three
and system order up to 50th, Double precision arithmetic 1is used

throughout the program.
B. PROGRAM OPTIONS

DISCRET calculates the practical discrete transformations required
to analyze and design realistic sampled-data systems. The program can

execute any combination of the following options:

® Trausform Options
- z~transform
- w—~transform

- w'transform

° Data Hold Options
- None
-~  Zero order hold
- First ovder hold
- Second order hold

- Slewer

® Time Increment Option
- Standard transform
- Delayed transform

- Advanced transform
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C. MATHEMATICAL DESCRIPTION OF PROGRAM

The computer code in DISCRET is based on the computer program in
Ref. 12. Extensions and modifications have been made to accommodate
additional options. The analytical basis for the computer algorithms is
discussed in Ref. 12. However, to provide a complete description of the

program, some of the details are repeated.

Consider the partial fraction expénsion of the general expression in P
- {3
Eq. 59. -

i
ATs T _ T ‘ ATs K1 K31 K22
[e G(S)M(s)] Fl(z) Ie G T ap + G T ap) + " a2)2
T ]
> U S B oo 1 ]
(s + a3) (s + a3)Z (s + a3)3 1} %

(60)

-FT(z) in Eq. 60 is a 2z-plane term determined by the data hold se-

ke

lected. For example, for a zero order hold (ZOH), Eq. 59 becones

”~
N
J—

N

e il et

~ @-sT - T
[e8Tso(s)u(s)])" = I[L*'Sf— eATSG(s)}T 221 [oars 6@

N
e
/2]
[ V—

where the Z0H introduces a pole at s = 0 and a z-plane factor z - 1l/z.
For other data holds, a similar situation exists. This can be readily
verified by applying the data hold transfer functions in Table 1 to
Eq. 59.
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TABLE 1. DATA HOLDS IMPLEMENTED IN DISCRET

DATA HOLD TRANSFER FUNCTION
=t

Zero-Order My = lr—re‘ST

Hold 0 s
| S D,

First-Order _ 2{. 1

Hold Moo= Mo(b + r)
’-—_—-—._—_‘—--— —— - © o ——————

Second-Order - w22 4 3 1

Hold "2 “o(s taw st

2
Slewer M - Eg
Hold slew = T

In DISCRET, the individual partial fraction expansion terms in

Eq. 60 are first transformed into the w-plane using the following

advanced w-transforms:

aTs |T -aAT
el 8 ] - e ‘ 1 +w I (62)
s + aj 1+ el | w+ (1 - eal/] + e-al) |
eldTs T _ ATe—aAT ‘ 1 + w )
(s + a)? 1 + e al (w + (1 - emaT/1 + e‘aT)f
+ Te—aTe-alT ‘ (1 + w)(l - w) ) (63)

(1 + e~aT)2 | [w+ (1 - e3T/1 + e'aTJJZ]




ebTs 1T - (AT)2e~aAT 1 +w
(s + a)3 2(1 + e aT) { w+ (1~ eaT/1 + emaT)
+ T2(1 + 2A)e~aTe~aAT { (1 +w)(l - w) }
2(1 + e‘aT)z [w+ (1 -eaT/1 + e'aT)]z
2e—2aTo—alT - w)2
4 T2et2aTe : % U+ wl - w2 3} (64)
(1 -+ eaT) [w+ (1 - eaT/] + ¢=aT)]" |

In Eqs. 62-64,

T = Sampling interval (sec)
AT = Time advance (sec), 0« AT < T, 0 <4<

The w-plane is related to the z-plane by the bilinear transformation
in Eq. 65.

z = 8T (65)

The corresponding z-plane transforms for the partial fraction expansion

terms in Eq. 60 are shown in Eqs. 66-08 (Ref. 2).

[edTs [T e-abT, 6

s + z - e—aT (006

ebTs T pre-adT, , Temale=alT, (67)
(s + a)2 z - eal (z - e-aT)2

(AT)2e—aAT, . T2(1 + 2A)e—aTe-abl, + T2e-2aTa-alT,
2(z - e~aT) 2(z - e'aT)Z (z - e"aT)3

(68)
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The s-plane expressions 1in Eqs. 62-64 and 66-68 represent Laplace
transforms of functicns advanced in time. For example, eATS/(s + a) 1s

at

the Laplace transform of the continuous time function e~ advanced by

AT seconds. That is,

e-a(t+AaT) , 0 < (t+AT) < (t+T) (69)

Sampling the advanced time function in Eq. 69 with period T and taking
the z~transform results in the advanced z-traansform

e-aAT zZ |
z - eaT (70)
and the advanced w-transform

e~abT w+ 1
1 +e2f | w+ (1 -eal/1+ e“aT)y

(71)

Numerical calculations in DISCRET are carried out in the w-plane to
improve the accuracy of the cross-multiplications necessary to form the
numerator of the discrete transfer function, The discrete numerator is
formed by multiplying each partial fraction expansion numerator by all
denominator terms except its own and then summing the resultant prod-
ucts. In geuneral, the poles of the z-transfer function tend to migrate
towards the unit circle in the z~-plane (i.e., z ®» 1). Computationally,
severe loss of accuracy can result from the summation of individual par-
tial fraccion expansion terms in the z-plane. This inherent inaccuracy
can be minimized by performing all possible calculations in the w- or
w’—plane where the poles are more reasonably separated, Therefore, the
w-plane Eqs. 62-64 are implemented in the computer code. It then
becomes a simple task to calculate the corresponding z- and w’-trans-

forms using the bilinear transformations in Eq. 72.

= = L,
w o= , v o= Zw (72)
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The s-plane partlal fraction expansion terms in Eq. 60 are obtained
in the subroutine PARTFR. These are passed to the subroutine WPLN which

calculates the w-plane transforms via Eqs. 62-64. The time factor term

eBTS represents a time advance of less than one sampling interval T

(i,e., 0 < AT < T). For time delays, an additional delay factor

z7l =1 - w/l +w is added to Eqs. 62-64 and AT is defined by

AT =1 = (D/T)
T = Sampling interval (sec)
D = Delay (sec

In this manner, the program can calculate either the advanced or delayed
discrete transform. The user inputs a positive time advance (AT), a
negative time delay (D), or zero for the time increment. From this
information alone, the pregram calculates the advanced, delayed, cr

standard discrete transform.

The computer code automatically inserts a user—-selected data hold
(Table 1) into the implementation scheme. The appropriate s—plane zeros
and poles assoclated with each data hold is inserted into the s-plane
continuous system G(s) (Eq. 60) by the main program module ADVANZ. The
z-plane term Fl(z) in Eq. 60 is added tc the transformation by the sub-

routine WPLN.
D. PROGRAM STRUCTURE

The basic structure of DISCRET consists of the ADVANZ main program
and two primary subroutines PARTFR and WPLN. These three progranm
modules along with their supporting subroutines are shown in Fig. 10.
The main program ADVANZ first calls PARTFR to obtain the partial frac-
tion expénsion terms in the s-plane and then calls WPLN to execute the
conversion to the z-, w-, or w’-plane. No external libraries are used
with the exception of the normal system routines that support FORTRAN.

Parameters are passed between the main program and the two primary
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subroutines entirely in a COMMON data structure. This lack of formal
parameter passing via subroutine arguments wags initiated to allow the
program to be easlly converted to an overlay structure in the TOQTAL
(Ref, 13) computer program at AFWAL/FIGC. This permits interactive
operation of DISCRET as an option in TOTAL. The overlay version at
AFFDL transfers the main program functions to the TOTAL main overlay.
The main program ADVANZ is then treated as a primary overlay with sub-

routines PARTFR and WPLN converted to secondary overlays.

The source listing for DISCRET in Volume III 1s set up in a standard
program-subroutine structure (i.e., a maln program followed by its sub-
routines). This 1listing also includes (in the comment cocde) the re-
quired changes tc run the program in an overlay structure. Dividing the
program into overlays reduces the amount of computer memory required to
execute the program. The overlay code is highlighted with a star (*)
character is column one. Removing this code from comment will allow
overlay operation. To caouplete this turnover, the main program card for
ADVANZ and the subroutine cards for PARTFR and WPLN must be deleted. In
addition, the two call subroutine statements located in ADVANZ must also
be deleted.

DISCRET can be run in either a hatch or interactive wmode. The
source code in Volume III is set up for batch operation. The prowpting
code to run the program in an interactive mode 1is also included in the
comment section of the main program ADVANZ. This code cau be identified

by the characters "CINT" in the first four columns.
E. DBESCRIPTION OF SUBROUTINES

This subsection presents a brief description of the routines used in
DISCRET. The general program structure contains a main program ADVANZ,
two primary subroutines PARTFR and WPLN, and 16 supporting subrou-
tines. These routines are all coded in FORTRAN.
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1. Program ADVANZ

a. Purpose

This 13 the main program for DISCRET. It reads the input from data
cards and transfers it to internal variables and arrays that are located
in a common data structure. The program adds approprlate poles and
zeros to the input s-plane transfer function according to the data held
selected. It calls PARTFR to calculate the partial fraction expansion
terms and then calls WPLN to execute the discrete transformatlions to the

z-, w—-, or w’—-plane.
b. Input/Output

All data are read from data cards and transferred to PARTFR and WPLN

via labeled common.

2. Subroutine PARTFR

a. Purpose

This routine takes the plant description in terms of poles and zeros
and outputs the partial fraction expansion coefficients corresponding to

each pole. The program drops identical poles and zeros and then calcu-

VU P

lates the polyncmials needed for evaluating the partial fraction expan-

sion terms.
b. Input/Qutput

All inputs and outputs for this subroutine are handled entirely by

AT I g, e S i

common Sstatements.

3. Subroutine WPLN

a. Purpose

This subroutine takes the partial fraction expansion ccefficients
and the corresponding poles and calculates the w-plane transformation.

After determining the w-plane numerator and denominator for each partial
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fraction expansion term, the cross product 1is formed. Each numerator is
multiplied by all denominators except 1its own. The resultant polynomi-
als in w are then summed by adding coerficients for each power of w.
The subroutine then calls a root solver to find the zeros of the numera-
tor of the overall transfer function. The roots, poles and w-plane

polynomials may then be transformed to the z-~ or w’~plane,
b. Input/Output

All inputs and outputs for this subroutine are handled entirely by

common statements.

4. Subroutine CONVRT (A, NA, PN, NPN)

a. Purpose

The purpose of this rcutine is to change the format of an array with

O P 3

> o - $ -~ [ Py - -
enits 4dnd COrrespondaing powers ol

app ~ 1 o -
5 to allow a

place for the imaginary part of the coefficient.
b. Input

1) A: A double precision arrav with a two place
format such that each real coefficient of a poly-
nomial 1is immediately followed with its corre-
sponding power of s, '

o \7..__L-_ g <4 P R | l-,_h; e Y
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¢, Output

1) PN: A double precision array with a three place
format such that each real coefficient is fol-
lowed by a zero in the next location and the
corresponding power of s in the third locationm.

2) NPH: The number of occupied locations that are
used in PN(3*NA/2).



5. Subroutine DIRIV (PN, NPN, PD, NPD)

a. Purpose

This routine takes the derivative of a trausfer function with the

numerator polynomial located in PN and che denominator polynomial

located in PD. It then stores the numerator of the derivative in PN and

e

the denominator in PD., If

T

i=0 5

L

then )
d n~1 1]
A = - L )

s (P) z: (n i)Als A

i=0 {

i

g

and 3

N« S _d s 2

PN = ds (PN )*FD ds (P )*PN ;

PD = PD*PD : ;

b. Input ;

1) PN: A double precision array containing the

numerator polynomial in the format: real part,
imaginary part, and the order of s stored in
back—-to—back locations.

- ot i ke A L A ¢ b s 2

2) NPN: Number of occupied elements in array PN.
3) PD: A double precision array containing the
denominator polynomial in the same format as the

numerator polynomial,

4) NPD: Number of occupied elements in array PD.
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c. Qutput

1} PN: Numerator polynomjal (in the same format as
the input) of the derivative function.

2) NPN: Number of occupled elements in PN. %
3) PD: Denominator polynomial of the derivative
function.

4) NPD: Number of occupied elements in PD.

6. Subroutine MLTPL (C, N, D, E, M) §

a, Purpose

This routine multiplies the real polynomial coefficients by a scale

factor and stores the resultant polynomial in a new array.

BT e ST PP T

b. Input

1) C: A Double precision array containing poly-
nomial coefficients and corresponding powers of
Se

TP S

2) N:; Number of occupied elements in array C.

3) D: Scale factor which multiplies all odd loca-
tions of array C.

c. Ouiput

LY . A A~ a P Y
Ly Lie n uvupyiLc pLrLoCiasa

polynomial coefficlents.

A stsAave s b

2) M: Number of occupied elements in array E.

f 7. Subroutine FORM (RB, WRD, MULT, NEGLCT, P2, NP2)

a. Purpose

Tne purpose of this routine is to form the denominator polynomial
: that will be used to evaluate the partial fraction expansion coefficient

corresponding to a pole of the plant. The routine multiplies all of the

’.\4



poles together, excluding the pole (and its conjugate 1f the pole has an

e Tiv o o
o i

imaginary part) for which the partial fraction expansion coefficlent is

being sought.

b. Input

Lo oi

1) RD: A double precision array containing the
poles of the plant, real part then imaginary
part.

2) NRD:B¥P: Two times the number of distinct poles
of the plant (number of locations used in array

RD). i

3) MULT: Array contains multiplicity correspending 3
to each pole contained in array RD (NRD/2 loca- :

tions). :
4) NEGLCT: An integer array containing all zeros E
except 1in the location corresponding to the pole

for which the partial fraction expansion coeffi- E
cient is being determined, where a one appears.
If the pole is complex, a one also appears in
location corresponding to the conjugate of the
pole (NRD/2 locations).

e

PR

¢+ Output

1) P2:pB¥: A double precision array containing a
polynomial representing the product of all the
poles except the one for which the partial frac- ;
tion expansion coefficient is being sought (and
its conjugate 1f complex). The odd locations

. contain the coefficients of the polyuomlal, and _
the even locations contain the corresponding |
; power of s. All coefficients are real. E

2) NP2:BB¥:  Number of occupied locations in the P2
array.

8. Subroutine EVALU8 (P, NP, R, V, ZF)

BRI ot S L e

a. Purpose

R

This routine evaluates a polynomial at the pole for which the par-

4
A

tial fraction expansion coefficient is being sought.
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b. Input

1)

2)

3)

c. Qutput

D

P: A double precision array containing the poly-
nomial coefficients in descending order with the
coefficient (real part, imaginary part) and power
of s stored in separate back-to-back locations.

NP: Number of occupied locations in array P.

R: A double precision array containing the real
part of the pole to be evaluated in the first
location and the imaginary part in the next loca-
tion.

V: A double precision array containing the value
of the polynomial after the pole of interest is
evaluated. The real part is in the first loca-
tion and the imaginary part in the second.

ZF: A scale factor that is used in the routine
to maintain numerical accuracy for large prod-
ucts.

9. Subroutine MULTIP (Cl, NTL, €2, NT2, €3, NI3, N)

a. Purpose

tine SIMPLE

b. Input

1)

3)

This routine multiplies two polynomials and then calls the subrou-

to combine the coefficiencs with like powers of s.

N: An integer that specifies which format the
polynomials are in. A two corresponds to real
coefficieats with two locations necessary for
each polynomial term. A three corregponds to
real and imaginary coefficlents with three loca-
tions necessary for each polynomial term.

Cl: A double precision array containing a poly-
nomial in the format specified by N.

NT1l: Number of occupied elements in array Cl.




4) C€2: A double precision array containing a second
polynomial in the format specified by N.

5) NT2: Number of occupied elemeuts in array C2.
¢« Output

1) C3: A double precision array containing the
product of the polynomials Cl and €2 in the format
specified by N.

2) NT3:p¥p: Number of occupied elements in array C3.

10. Subroutine GETPOL (NR, NRN, A, NA)

a. Purpose

This routine takes a set of roots and multiplies them to form a

polynomial.

b, Input
1) RN: A double precision array containing the
roots to be multiplied tcgether. The roots are
stored real part, then imaginary part. In loca-
tion RN(2*NRN+1), a scale factor is stored that
multiplies the polynomial.
2) NRN: Number of roots to be multiplied together.
; b. Output
1) A: A double precision array with coefficients of ‘;
the polynomial times the scale factor in the odd &
locations in descending order and corresponding .
powers of s located in the even locations. ;
2) NA: Number of locations used in array A. 3

11. Subroutine 4DD (Cl, NT1, €2, NT2, C3, NT3, M)

a. Purpose

The rouline adds polynomials Cl and C2 together and places the sum

in afray C3. The polynomials are first placed sequeutially in array C3

gt

TN PL
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and then the subroutine SIMPLE is called to add coefficients of like

LA e

powers of s. The dimension of array C3 must equal the combined dimen~
sions of Cl and C2.

b. Input E

1 M: An integer constant specifying, as in MULTIP,

which format the polynomial coefficients are in.

2) Cl: A double precision array containing poly-
nomial coefficients and corresponding powers of s

in the format specified by M.

3) NTl: Number of occupied elements in array Cl.

4) C2: A double precision array containing a second k

polynomial in the format specified by M.

5) NT2: Number of occupied elements in array C2.
c. OQutputs

1) C3: A double precision array containing a poly-
nomial which is the sum of the polynomials Cl and
c2. 2

ro
~

NT3: WNuwber of occupied elements in array C3.

12. Subroutine SIMPLE (P, N, K)

a. Purpose

This routine combines the coefficients of a polynomial into the L

least number of coefficients by adding together the coefficients with

like powers of s. 3




b. Input

; 1) ¥: An integer constant specifying, as in MULTIP,
f . the format of the pclynomial P.

2) P: A double precision array coataining a poly-
nomial in the format specified by K.

3) N: Number of occupied elemeants in array P.

¢. Output

1) P: Array containing least number of coefficients
necessary to specify the polynomial read in.

2) N: Number of occupied elements in the output
array P.

13. Subroutine ORDER3 (P, NP, K)

a., Purpose

This routine orders the polynomial coefficients 1into descending

powers of s. i
b. Input
53 1) K: An integer constant specifying, as in MULTIP,

" the format of the input polynomial P.

2) P: A double precision array containing the input
polynomial.

3) NP: Number of occupied locations in array P.
Ce Output

1) P: Array containing the polynomial in descending
powers of s. ;

2) NP: Number of occupied locations in output
array P.
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l4. Subroutine CDEXP (A, B, X, Y)

a. Purpose

This routine calculates the exponential functicn of a complex

number in double precision.

b. Input

1) A: Real part (double precision) of argument of
exponential function.

2) B: Imaginary part (double precision) of argument
of exponential functioen.

Ce Output

1) X: Real part (double precision} of exponential
function.

2) X: Imaginary part (double precision) of expo-
neuntial function,

15. Subroutine MULT (A, B, C, D, X, Y)

a. Purpose

This routine multiplies a double precision complex number by a

double precision complex number.
b. Input

1) A, B: Real and imaginary parts of the first ¥
number.

2) C, D: Real and imaginary parts of second number.

Ce Output

1) X: Real part of the complex product.

2) Y: Imaginary part of the complex product.
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a.

Subroutine DIVI (A, B, C, D, X, Y)

Purpose

This routine divides a double precision complex number by a double

precision complex number.

b. Input
1) A, B: Real and imaginary parts of the first
number.
2) €, D: Real and imaginary parts of second number.
Ce Qutput
1) X: Real part of the complex division.
2) Y: 1Imaginary part of the complex division.
17. Function Fact (n)
This is a function subroutine that calculates n!l.
18. Subroutine POLYCO (4, B, RR, RI, N)
a. Purpose
The purpose of this routine is to form a polynomial from a set of
roots. Both real and imaginary coefficients are calculated.
b. Input

1) RR: Double precision array containing the real
part of each root.

2) RI: Double precision array containing the imag-
inary part of each root.

3) N: Number of input roots.




¢+ Output

1) A: Double precision array containing the real
coefficients of the polynomial.

2) B: Double precision array contalning the imagin-~
ary part of the polynomial coefficients,

19. Subroutine ROOTS (A, B, NN, RR, RI)

a. Purpose

This subroutine finds the roots of a polynomial with complex coef~

ficients.
b. Input
1) A Double precision array containing the real
part of the polynomial coefficients in descending
powers.

2) Double precision array containing the imaginary
part of the polynomial coefficients in descending
povwers.

3) NN: Order of input polynomial.
Ce Qutput
1) RR: Double precision array containing the real

part of each rooct.

2) RI: Double precision array coantaining the imag-

inary part of each root.
F. PROGRAM VARTARLES WITHIN LABELED COMMON

Two labeled COMMON blocks are used in the main program ADVANZ and
the two primary subroutines PARTFR and WPLN. Variables and arrays in
the main program and the two primary subroutines share the same storage

locations by means of the COMMON statement. These variables and arrays

are stored in the order in which they appear in the block specification.
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The COMMON blocks replace the subroutine arguments in PARTFR and WPLN.
This arrangement allows DISCRET to be easily converted to an overlay
structure., The variables and arrays located within these COMMON data
blocks are outlined belcow. Each variable and array is listed indivi-

dually with a brief description of its purpose.

1.  COMMON/ADVCZ/RN,RE,NRTN,NRTD,MM,VR,VI,BR,BI,T,NH,AM, A0, TXFORM, CPLR

Variable Purpose

RN A double precision array containing the zeros
of the continuous s-plane transfer function
G(s). The =zeros are stored real part then

imaginary part (required storage equals two
times number of zeros).

RD A double precision array contalning the poles
of G(s) in the same format as the zeros.

NRTN Number of zeros in G(s).
NkTD Number of poles in G(s).
MM Integef array containing multiplicity of poles

corresponding to the partial fraction expansion
coefficients located iu arrays VR and VI.

VR, VI Double precision arrays containing partial
fraction expansicn coefficients (real and imag-
inary) for the poles of G(s) including thoese
poles Introduced by the data hold.

BR,BL Double precision arrays containing correspond-
ing poles (real and imaginary) for the VK and
VI arrays.

T Sampling time (sec).

NH Integer variables used in the data hold option.

AD Gain of the G(s) transfer function.

TXFORM Transform option variable - Z, W, or WP.

CPLR Data hold option variable - NON, Z0DH, 1ST, 208D,
or SLE.
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2. COMMON/TOTL12/CLNPOLY(5L),CLDPOLY(51),CLZERO(50,2),

CLNPOLY

CLDPOLY

CLZERO

CLPOLE

NCLZ

NCLP

CLK

CLPOLE(50,2),NCLZ,NCLP , CLK , CLNK , CLDK

Single precision array containing the numeratcr
polynomlal coefficients for the discrete trans-
fer function G(z), G(w), or G(w’). The coeffi-
clents are stored sequentially back-to-back
with the highest order coefficient first {n the

array.

Single precision array containing the denouina-
tor polynomial coefficients for the discrete
transfer function in the same format as the

numerator array.

Single precision array containiug the zeroes of
the discrete transfer function. The rezl part
of the nth zero is stored in the first column
(n,1) and the imaginary part 1in the second
(n,2).

Single precision array containing the pules of
the discrete transfer function 1in the same

format as tne zeros.

Number of zeros in the discrete transfer func-

tion,

Number of poles in the discrete transfer func-

tion,

Total gain for the discrete transfer function

(CILK = CLNK/CLDK).
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CLNK Numerator gain for the discrete transfer func-

tion,

CLDK Denominator gain for the discrete transfer

function.
G. PROGRAM GPERATING INSTRUCTIONS

' The example in Fig. 11 will be used to 1llustrate the 1input and out~
put data structure for the DISCRET computer program. Input data items
are free-form (frece-format) with separators rather than in fixged-size
fields. The two exceptions are the alphanumeric inputs which select the
desired data hold and discrete transform. The free-format 1nput data
consist of a string of values separated by one or more blanks, or by a
comma or slash, either of which may‘ be preceded or followed by any
number of blanks, A line boundary, such as an end of record or end of

card, algso serves as a value separator (Ref. 14).

The input 1s divided into three main blocks of data. The first
block contalns the basic parameters that define the s-plane system G(s)
to be transformed. These data are placed on the first data card in a
free format. The alphanumeric code for the data hold and type of dis-
crete transform are inserted on data cards two and three in an A3 and A2

format, respectively. The final block of data is again free format.

R R (s+b)) - C c7
—_— ] Mis) Gls) = AQ ! - AOTs /S e
T ZOM, 18T, 2ND, SLE {s+a Ms+ap) T

17

T
. [eATsG(s)M(sq

RT

Figure 11. Sampled Continuous System
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This input starts on card four and consists of the zeros and poles of
the continuous s-plane transfer function G(s). The required input data
are outlined in Table 2.

The arithmetic sign (i.e., positive or negative) of the time incre-
ment AT selects the advanced (positive AT) or delayed (negative AT) dis-
crete transform. For example, for a sawmpling period of T = 1.0 and a
time increment of 0.3, the advanced discrete transform is specified as
AT = 0.3 and the delayed discrete transform as AT = -0.3. For the

standard discrete transform the time increment is AT = 0.0.

TABLE 2. INPUT DATA FOR DISCRET

VARIABLE PURPOSE

Data Card One - Free-Format

NRTN Number of zeros in G(s)
M Number of poles in G(s)
T Sampling time {sec)

AQ G(s) gain

AM, (AT) Time increment option:

AT, -AT, or zero (sec)

Data Cards Twe and Three - A3, A2 Format

CPLR Data hold option: NON,
Z0H, 1ST, 2ND, or SLE

TXFORM Transform option: Z, W,
or WP

Data Cards Four to nth = Free-Format

RN(2*NRTN) Zeros of G(s): real part
then imaginary part

RD(2*M) Poles of G(s): real part
theun imaginary part
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The data hold and transform options are input in a coded alphanu-
meric format. These options with their respective alphanumeric codes
are given in Table 3. The alphanumeric input code for the data hold is
placed iun Columns 1-3 on data card two (left justified). The discrete

transform code appears on card three in Columns 1-2 (left justified).

TABLE 3. ALPHANUMERIC CODES FOR DISCRET

Data Hold Option Input Code
None NON
Zero order hold Z0H
First order hold iST
Second order hold ZND
Slewar SLE
Transform Option Input Code
z transform Z

w transform W

w’ transform WP

The order of the G(s) traasfer function must be equal tc or JIess

Pala mie
cGal WU

-
(&3
b

p to and including three is permitted.
There 1is no restriction on the number of sets of repeated poles. The
zeros and poles of G(s) are input sequentially in a free~format (start-~
ing on data card four) on as many data cards as is necessary. The real
and imaginary parts are separated with a valid separator (i.e., a comma,
a slash, or one or more blanks). The zeros are given first followed by

the poles. For real roots, 0.0 must be input for the imaginary part.

The output data from DISCRET can be divided into twc main sections.
The first section deals with the input parameters for the s-plane

continuous system G(s) and those parameters that define the discrete

5l
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transformation. The second section contains the results of the trans-

the discrete transfer function G{z), G{(w), or

formation process
G(w’), The program first prints the transform options that have been

e s ey

selected. This includes the sampling time, data hold, type of discrete

o aw

transferm, and the time increment. This 1is foliowed with a list of the ;
s-plane zeros and poles for G(s) includiang those introduced by the data

hold. The partial fractlon expansion coefficients for G(s) and its data

e g

hold are printed next. The program then outputs the numerator and

denominator polynomials and the =zeros aand poles for the discrete

g b o

transfer function, |
Table 4 contains nine sets of input data in card image format. The : i

sampled s-plane systems for these examples are depicted in Fig. 12. The

discrete transfer functions for each of these systems are given 1in

Eqs. 73-75.
cr 58 1 - e"ST]T (73) ? :
rT t(s +1-23(s +1+23) s | §
cr e+0045(s + .03)(s + 6.3)(s = 6) 1 - e-sT|T 's
rT (s + 2)(s - 1.2)(s + .0l ~ .073)(s + .01 + .073) s : i
|
(74) P
T :

T [ e-004s(c + 03)(e + 6:3)(s - 6) (1 - _‘ST)2! |

ET = l(s + 2)(5 - 1-2)(5 + L0l - 107j)(s + .01 + -O7j) Tsz J
(75)

These transfer functions are calculated by the DISCRET computer prograi. !

The output for each data set in Table 4 Is shown in Figs. 13-21.
The first three sets of data calculate the standard z-, w—, and w’'- dis-
crete transforms using a zero order hold and 2 sampling pericd of
T = 0.l (i.e., TXFORM = Z, W, and WP; CPLR = Z0H; and AT = 0.0). The

output for these three examples 1s shown 1in Figs. 13-15. In data
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sets 4-6, the advanced z--, w-, and w'~transforms are calculated for the
second system given by Eq. 74, A ZOH is used with a sampling period of
T = 0.04 and a time advance of AT = 0.004 seconds. These advanced dis-
crete transfer functions appear in Figs. 16-18. The last three sets of
data use the same s-plane system G(s) with a slewer data hold and a time
delay of AT = -0.004 (Eq. 75). Figures 19-21 contain the delayed dis-

crete transforms for these inputs.
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Figure 13b. DISCRET Output for Data Set 1
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SECTION V

DESCRIPTION OF TXCONV COMPUTER PROGRAM

A. INTRODUCTION

The TXCONV computer program calculaies a low-rate discrete cransforu

from a given high-rate discrete transform. The input to TXCONV is a

high-rate transfer function in the 2z-, w~, or w’-plane and the output a

low-rate transfer functicn in the z-, w-, or w’-plane. The general

transform conversion is given by:

cT(z) = [CT/““(zp)]T (76)
Tw) = [cT/meuy))t (77)
Tw) = [c/m@w]T (78)

The superscript designates the sampling interval used to form the dis-

crete transfora. For example, the high-rate zp—transform, CT/m(z“) is
3

first cdlculated with respect to a T/m sampling period. The low-rate

z-transform of this high-rate transform is then taken with respect to a

sampling interval of T seconds. The result is a low-rate z-transform

cF(z).

The transforms in Eqs. 76-68 are generated when the output of a

system is sampled at 2 lower rate than the input (see Secilon ILI, Sub-

section D). An open-loop example of this situation is depicted in

Fig. 22, The output from the physical sampler T in Fig. 22 is expressed

as

[cT/m]T = [gT/mgT/m)T (79)
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Figure 22. Hhigh-Rate Input/Low-Rate Qutput Sampling

The T/m phantom (fictitious) sampler in the output facilitates the for-
mation of the GL/@RT/m product using a common definition of the trans-
form variable (e.g., z, = eST/My,  This mathematical convenience is
valid since the actual output sampler T simply rejects all unwanted
samples from the phantom sampler T/m. To evaluate Eq. 7%, the procedure
is to obtain the high-rate T/m transform of RI/m and multiply it by the
high-rate T/m transform oI cI/m,  This high-rate discrete transfer func-
tion product is the required input to the TXCONV computer program. The

output from TXCONV is a low-rate discrete transfer functiou defined for

a T sampling period.

TXCONV is written in FORTRAN for the Control Data Corporation (CDC)
CYBER 175 series computer. The program can havdle pole multiplicity up
to three and system order up to 530th (the system order is variable and
can be =zasily changed). There is no restriction on the number of sets
of repeated poles. Double precision arithmetic is used throughout the

program,

B. PROGRAM OPTIONS

TXCONV implements the conversion of a high-rate discrete transform
to a low-rate discrete transform. The program accepts the zeros and
poles of a high-rate discrete transfer Zfunction in the 2z-, w-, or
w’-plane and outputs a corresponding low-rate discrete transfer func-

tion., The five available input options are described below.
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1. Z OEtiOn

The program input consists of the high-rate zeros and poles in the
z-plane and the low-rate (T) and high-rate (T/m) sawpling periods.
Prior to executing the transform conversion, the high-rate z-plane
numerator and denominator polynomials are transformed to the w’'-~plane
using the bilinear transformation z, = [ (2m/T) + wé]/[(Zm/T) - wé]. The
w’-plane denominator 1is then rooted to obtain the poles used in the
residue calculations. In this option, all calculations are carried out
in the w’-plane to minimize the numerical round-off errors. This is
necessary since the poles of a z-plane function tend to migrate towards
the unit circle (i.e., z » 1) as the sample rate 1is increased. This can
introduce numerical errors in the residue computation. These inherent
errors can be minimized by performing all possible calculaticns in the
w’~plane where the poles are more reasonably separated. The resulting
low-rate w’~plane transfer function 1is then transformed back into the
z~plane using the bilinear transformation w’ = (2/T)(z - 1)/(z + 1).
The output for thiec option is a low-vaie discrete transfer function in

the z-plane.
2, W Option

The program input is in the w-plane. All numerical calculations are
carried out in the w-plane. The output is a low-rate discrete transfer

function in the w-plane,

The program input is in the w’-plane. All numerical calculations
are carried out in the w’'-plane. The output is a low-rate dilscrete

transfer function in the w’-plape.

4 ZR OBtiOn

This option is the same as the Z option except that the w’-plane
high-rate poles used In the residue calculations are obtained by direct

transformation of the input z-plane poles. That 1is, the high-rate
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w’—plane denominator 1s not rooted to obtain these peles as is done in

the Z option. The ZR option avoids the numerical errors that may occur

when rooting a pelynomial.

5. ZT Option

The program input is in the z-plane. All numerical calculations are
carried out in the z-plane. The output is a low-rate discrete transfer
function in the z-plane. This option is limited to simple poles (i.e.,
pole muitiplicity equal to omne).

C. TRANSFORMATION EXPRESSIONS

The transformation expressions mechanized in the TXCONV computer
program are given below, These expressions transform a high—-rate dis-
crete transfer function to a low-rate discrete transfer function. The

mathematical derivation for these discrete transformations is presented
in Section III.

l. w and w’ Plane Transformations

cT/mey 3 24
Y - o P 1 %
(X 8)] }E, residues Ap Y o I-x AP S, (80)
wp-Poles of CT/m(wp),/(Ap-!-wp)
A 4+ n ]—1
p T ¥ A4 u
X l%—wpl [A-wl (81)
Alternate expressions are given by
(82)
. 2A,(A + N p* /(1 + Y™
Ty = 2 residues il +wl[[(:wp);m);‘:};)1[yri)(] )
k v - wp=Poles of CT'I’”(HP)/(APWP)
. N(w,) I
ot - tdues 24, (A + P — (83)
(w) % reslidues Ap "‘) D*(Hr)[(w + A) + (V - A)Ym] } , ’l'/m
* I wp=Poles of C (wp)/(prp)
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where
Cl(w) = N(w)/D(W) (84)
cT/mwy) = N(wp)/D(wp) (85)
and
D*(wp) = D(wp)[(Ap + wp)(A, = wp)] (86)
Y = (Ap + wp)/(Ap = wp) (87)

These transform expressions are applicable to either the w- or w’-plane.
For the w-plane, the transform variables are w and wn with A = Ap = 1.
In the w’-~plane, the transfcorm variables become w’ and wé with A = 2/T

and Ap = 2m/T. In Eqs. 80~87 the following definitions =zpply:

=]
[}

Ratio of high-to-lcw sampling, (T)/(T/m)

E
)
]

Low-rate transform variables

Wp, Wp = High-rate transform variables

oz -1 . 2 z-1 z = 5T
YoT 2 EF ’ v T z+ 1 o
2n = 1 zy - 1
S . 2 P = oST/m
PT o F1T 0 " T ) 7, ¥ 1 N
2., z=-Plane Transformations
. . cT/m(z ) z |
cT{z) = 2 residues . P — (88)
k p = 2Zp

lzp=Pules of CT/m(zp)/zp

81

ksl A e L na e ie

e

s S o i o R Mt b B P s KR e e

o M

mtanr
s g s




Alternate expressions are given by:

N(zp) r

zD*(zp) - Z%D*(zp)’

cl(z) = 2: residues z 3
zp=Poles of CT/m(zp)/zp

k

(8S)
N(zp)/D*(zp)
cl(z) = E: residues z LA A
K z - 2% | ' (90)
zp=Pcles of Cl/m(zp)/zp
where
cT(z) = N(z)/D(z) (91)
cT/m(zy) = N(zp)/D(zp) , (92)
D*(zp) = 2pD(zp) (93)
and
m = Ratio of high-to-leow sampling, (T)/(T/m)
z = Low-rate transform variable (z = eST)
z, = High-rate transform variable (z; = ST/m)

D. GENERAL RESIDUE CALCULATION

Cousider the general partial fraction exrpansion of a z-plane func-

(94)

82

oy

s bt il

A

A e

A

EEPYY AN ¥

3 PN

R s b




The partial fraction expansion coefficients are given by *he following

equations evaluated at z = =a:

(LVAL (95)

yn
o

YT G L p(')yotl
Ay = f(n+1):/11) _ Aq ' (96)
(a+1) D" lz__a
Ay, = R D L R T Y WU LA i
e (n+1) (nt2)n(NO° (97)
z=-a
R L3 1/3nn? < a pO™ _ @esya, 0™ 2 i) (edya, on( O™
n-3 % ~
(n+1) (n+2) (n+3) ") s (98)

In Egs. 95-98, (’)}® is defined as the nth derivative with cespect to the
transform variable z. These equations are completely general and pro-
vide the partial fraction expansion coefficients for a pole with multi-

plicity up to and including n = 4, The coefficlent for a pole with

]

multiplicity equal to n =1 is given by:

N
p(H}

A = (99)

zZ==a

For n = 2, the partial fraction expansion coefficients can be obtained

from

on( (2 gup()3

(100)
3p{")2p(")?

ZN

(iol)
a

p(")?2 -




And for n = 3,

AL 1208€")2pC 30003 L 1awpC 303 gon( ¥ p0"3p(N 4 4 1sp ) p() 404 (102)

QOD(')BD(,)3D(I)3

z=-a
2481 p()3 _ enp(D4 (103)
= <
4p¢")3p(")3 ma
Ay = -((’—N)—J (104)
D tz=-a

In Eqs. 95-104, the pole that jis being evaluated (z + a)” is not
explicitly factored out of the denominator polynomial D prior to taking
the required derivatives or prior to the evaluation at z = -a. The
derivation of these equations follows the procedure presented in Ref. 1,
This method employs L’Hopital‘s rule to eliminate the indeterminate
forms that result (see Ref. 1, Appendix D for dezails). The general
procedure is to take consecutive derivatives of the numerator and denom-
inator polynomials until a determinate form is obtained. For example,

in the n = 1 case, we have

Al

- N _ e 4
F(z) = 5 CEI) + + Remaining poles of F(z) (105)
Then
- {z+a) .
A = ) gua (105%)

If Eq. 106 is evaluated 1 z = =-a without first explicitly factoring out
the (z + a) factor in the denominator and caucelling it with the numera-
tor factor (z + a), an indeterminate form <{0/0) will result. Applying
L’Hopital‘s rule (i.e., taking separate derivatives of the numerator and

denominator with respect to z) gives
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(z + a)N" + N
D’

z=—a

N
= 7 (107)

zZ=~3

Notice that for any pole with a multiplicity of n = 1, the evaluation of

the first derivative of the denominator produces a finite result. That

is,

D'\ ey * 0:0 (108)

This can be stated in more general terms for any pole with multiplicity
equal to n as

D(')k|z=—a # 0.0 , (z + a)t , k>n (109)

and

D(')k!z:_a = 0.0 , (z + a)n , k <n (110)

where, again, (’)k is defined as the kth derivative of the denomina-
tor D.

For example, if

. . A B
F(Z)=_g_=(.+z)(z+3) _ 1 1

(z ¥ 5)(z+ 100 (z+5) + (z + 10) (1D
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Then
D = z2 + 15z + 50 (112)
D’ = 2z+ 15 (113)
and
A = X . zi+ 5zt 6l = -13.2 (114)
1 D’ |z==10 2z + 15 =10 ) *
N _ z2 4+ 52+ 6 _
Bl = D7lpes T TITEo 5 |pmes 7R (113

The evaluation of the residues in the TXCONV computer program is
accompiished using Eqs. 99, 100, and 102. It is recognized that the
residue for a pole with multiplicity equal to n is given by the partial
fraction cxpansion coetficient associated with the (z + a) term. Apply-
ing Eqs. 99, 100, and 102 to Eqs. 80 and 88 results in closed-form solu-
tions which are functions of the separate derivatives of the numerator
and denominator polynomials for the given high-rate discrete transfer
function. The actual expressions wmechanized in TXCONV are developed in

the next subsection.
E. MECHANIZATION SCHEME

The transformation expression in the z-plane is only mechanized for
poles with multiplicity equal to one (ZT option). This transformation
is coded in subroutine ZMULT1. As explained previously, for pole multi-
plicity greater than one (n > 1), the input high-rate z-plane traansfer
function is first transformed to the w’'-plaue prior to perfiorming the
numerlcal calculations (Z and ZR options). This procedure improves the
accuracy of the results by reducing to a minimum the errors introduced
by numerical round-off. The z~plave convesicn for option 2T is (ormed
by applying Eq. 99 to Eq- 88. The resul 1is Eq. 116 (see Subsectious C

and D for definition of terms).
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N D*(z,)"
¢T(z) = 2. residues z‘ el ;LP” (i16)
k ‘ 27 % szP-—'Poles of D*(zp)
where
D*(zp) = 2,D(zp) 1117)
m = (T)/(T/m) (118)
z = esST , zp = eST/m (119)

For all options except ZT (i.e., Z, W, WP, and ZR), separate mechan-

ization expressions are used for poles with multiplicity equal to one,

two, and three. These expressions are coded in the subroutines WMULTI,

WMULT2, and WMULT3 for m = 1, 2, and 3, respectively. Equations 99,

100, and 102 are individually applied to Eq. 80 to form these expres—

sions. The resulting transform conversion equations (Eqs. 120, 121, and

124) are applicable to either the w- or w’'=plane. The definition of

terms for w or w’ implementation is given ia Subsections C and D. The

specific expressions that are mechanized are outlined below.

Multiplizity n =1
: — N(w,)’D*’w Y1/ + YN} (120)
C](w) = }:, residues ZAP(A+W) } Zpll T AT w\+ T E—— ;

f
wp=l"oles of D(up) \prp)
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Multiplicity of n = 2

T (W) = Z residues 2A_(A+W) Mw + (N7)
X P w + (POLE)?
where wp-Puleu of D("'p) (prp)

[ . Ferr m-1 1
Nl 2N (wp) _ 2N (Jp) D (wp) _ 2nN (wp)Y Y
D)L+ YM 302+ Y DR Gt Y
' *III E m-1 ]
_— 2N (EP)(POLE) __EffVEZP (wp)(POLE) . ZmAN(wp)Y Y

n*"(wp)(l + Y™ 3(0“"(wp))2(1 + Ym) n*"(wp)(l + ym?

Multiplicity of n = 3

(N1 + N2)[w? + 2(POLE)w + (POLE)2)
+ (N3 + N&)[wZ + (POLE - A)w - A(POLE)

+ (N) [w? - QA)w + AZ)
w + (POLE)?3

N

where

3N (wy,) _ 1.5N'(wp)n*""£znl_
DR ) (L 4+ YT (DM (w))2(1 + YR

S37SNCup) (0% (wp )2 0. 3N )D* " ()

vp-Poles of
D(wp) (Ap+wp)

N2 =

@ @)+ Y™ M (W) 2+ Y

m~lyrn*un ¥ m-1y+ m—1y v pKeen

_— BmN(wP)Y Y'D o 6o (wj)‘.’ Y _ l,.SmH(wP)Y Y'D (wp)

¥ e N2+ T2 DM )L+ YT T ()7 + Y2

Im(m - DN@ Y22 3mN (e, Y0y
N4 = -
D" (v ) (2 + Y2 DM () (1 + Y2

6m2N () (Y 1y (v1) 2

N5

D*nl (Hp)(l + Ym)J

(121)

122)

(123)

(125)

(126)

(127)

(128)

(129)
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For Eqs. 120-129, the following relationships and definitions apply:

POLE = A[(l - Ym)/(1 + Yn)] (130)
Y = (A + wp)/(Ap ~ wp) (131)

Y = 24p/(ap - wp)? (132)

Y' = 4Ap/(Ap - wp)3 (133)
D*(wp) = D(wp)(Ap + wp)(Ap = wp) (134)
a = (T)/(T/n) ' (135)

F. ROOT CONVERSION BETWEEN s, z, w, or w’ PLANES

The conversion of the poles between the s-, 2z~, w-, or w'-plane is
mechanizad in the subroutine SZWROOT. The aligebraic relationshins
implemented ir SZWRQOT allow direct transformation of the poles from one
complex plane to another. Direct rconversion of the zeros on a one-for-
one basis 1is not normally possible. One exception 1is the conversion
between the w- and w'-plane where both the =zeros and poles transform
directly (w’ = 2w/T). It is also possible to directly transform the

zeros and poles from the w- or w'-plane to the z-plane. However, the

P T RSO R, R
aue LU wT UL w Tpaa

<= <= - [ B - 72 —~ -
1S 15 aot uviwaLily true LieCoy <P

e

[

2 [ = -
LIIVELDE UL L

direct conversion of zeros).

The complete conversion between any of the complex planes noted
above can be implemented by transforming the complex function instead of
its zeros and poles. Although, in some cases, physically unrealizable
functions may result. The general procedure is to transform the nuaera-
tor and denominator polynomials (cr partial fracticn expansion terms)
and then factor the results to obtain the transformed zeros and poles.
This procedure is normally less desirable than direct conversion of the

zeros anrd poles, since the particular mathematical calculations {e.ge.,
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numerical factoring; multiplicaticn and addition of polynomials) may
Introduce additional numerical errors.

The subroutine SZWROOT 1s used in the TXCONV computer program to
transform the poles between the z~ and w'-planes. The other conversicns
available in SZWROOT are not utilized. Conversion of the poles between
the z- and w’-planes occur only in the ZR option. The algebraic conver-
sion reiationships implemented in SZWRCOT are outlined below. The

following definitions apvly to the root conversion equations:

z = ST = %—_—: = %—%—%—j_’—g—: (136)
w o= 2L - (1/2)w (137)
w = % 2ol o= (/mw (138)
s = Xg + j¥s , z = X, + jY, (139)
w o= Xy + j¥y s wio= Xy + 3y (140)
3-Plane to z-Plane
X, = XsT cos YT (141)
Y, = exST sin YT (142)

90




w~-Plane to z-Plane

1 - x3 - Y2
Xz = s (143)
(1 - %,)2 + Y5

2y 1
Y, = “2 5 (l4k) |
(1 - xy4)% + Y5

w'-Plane7;o z~Plane

farbie v b WALt s

I | (T/2)%,7 ]2 - [(1/2)¥,,-]2 (145)
L7 = (/%0 )2 # [(T/D)Y, ]2

A st 2,

2[(1/2)1y ]
v, = (146)
2 - (D% )2+ [(T/2)Yy )2 f

z-Plane to s-Plane

Xg = é—T In (X2 + ¥2) (147)
|
] s = %tanql (Yz/Xz) (148) ;
R 4
; w~Plane to s-Plane
(1 + X,)2 + Y3 :
Xs = 7 In LA (149) !
(1l - X)c + Y5
2Y
Y = = tan~} -—2F 3 (150)
1 -x2-Y
4
:
91 ,-
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ety

w’'-Plane to s—Plane 3
.
1 (1 + (T/2)%y7]2 + [(T/2)Y,,7]2 i
Xs = g In N 5 (is1) !
(1 - (T/2)%47]2 + [(1/2)v,7]
1 -1 2[(T/2)%y"]
Yo = = tan , (152)
T L~ [(T/z)xw']?' - [(T/Z)Yw’]2
s-Plane to w~Plane #
4
XsT _ o Xsl L
= !
Xy = — ——— (153) ;
eXsT ¢ esT 4 2 cos XgT 4
K
g
3
. 2 sin YgT ( ) j
w = xXT 154 ;
eXsT 4 ¢7XsT 4 2 cos YT !
z-Plane to w-Plane :
X% + Y% -1
Xy = (155 g
VT X+ D2+ Y2 ) :
S (156)
v (X, + D? + 1§




w’~Plane to w=Plane

w-Plane to w’~Plane

Xw' =

HIN

=319

Al

3|0

=i

el

XeT _  ~XgT

- €

XsT X T

+ e + 2 cos YgT

2 sin YgT

Kol , o XsT

+ 2 cos YgT

X3 + ¥3 - 1
(X, + 1)2 + YZ

21,
(X; + 1) 2+ Y2
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G. PROGRAM STRUCTURE

The basic structure of the TXCONV computer program contains a main
program TXCONV and seven primary subroutines ZMULT1, WMULTl, WMULT2,
WMULT3, RES1, RES2, and RES3. The program modules along with the
20 supporting subroutines are depicted 1in Fig. 23. The wmain program
TXCONV first calls ZMULT1, WMULT1, WMULT2, and WMULT3 to evaluate the
individual residues of the high-rate poles. Subroutines RESl, RES2, and
RES3 are then called to combine these residues to form the low-rate dis-—
crete transfer function. ZMULT] calculates the residues for poles with
multiplicity equal to one (n = 1). This subroutine mechanizes Eq. 116
in the z-plane., WMULT1, WMULT2, and WMULT3 calculate the residues for
poles with multiplicity equal to one, two, and three (n =1, 2, 3), res-
pectively. These subroutines mechanize Eqs. 120, 121, and 124 in the w-

or w'-plane.

The TXCONV computer program can be operated in a standard program=-
subroutine structure (i.e., a main program followed by its subroutine)
or in an overlay structure. The source listing for TXCONV in Volume III
is set up in a program—subroutine structure. However, this listing also
includes (in the comment code) the required changes to run the program
in an overlay structure. Dividing the program into overlays reduces the
amount of computer memory required to execute the program. The overlay
code is highlighted with a star (*) character in column one (which makes
the code inactive comment). Removing this code from comment will allow
overlay operation. To complete this turnover, the TXCONV program card
and subroutine cards for ZMULT!, WMULT!, WMULT2, WMULT3, RESl, RES2, and
RES3 nmust be deleted. 1In addition, the call statements for these sub-
routines (which ars now overlays) must also be deleted. These call
statements are located in the "Master Do Loop for Residues" section in
the main prougram. The overlay code creates a main overlay, a primary
aoverlay, and seven secondary overlays. This overlay structure is out~

lined below:
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Overlay Program Name

(TXCONV,0,0,0) TXCONV
(27,0) MAIN
(27,1) ZMULTL
(27,2) WMULT1
(27,3) WMULT?2
(27,4) WMULT3
(27,5) RES1
(27,6) RES?
(27,7) RES3

Parameters are passed between the main program and the svven primary
subroutines entirely in a common data structure. This lack of formal
parameter passing via subroutine arguments was initiated to allow the
program to be easily converted to an overlay structure in the TOTAL
(Ref. 13) computer program at AFWAL/FIGC. This permits interactive
operation of TXCONV as an option in TOTAL.

H. DESCRIPTION OF SUBROUTINES

This subsection contains a brief definition of the routines used in
the TXCONV computer program. A detailed description of each routine is
documented in the COMMENT section of the source code. This comment code
defines all subroutine arguments and the major internal variables in
each routine. In additjon, descriptive comments are included throughout
each routine. The present source code (Volume III) is set up to handle
50th order systems. The comment code ia the main pregram TXCONV lists
the required changes to the program DIMENSION statements to alter the
maximum system order allowed. The purpose of each variable and array in

labeled COMMON is also included in the source code for the main program.

Program TXCONV. This is the main program for the TXCONV computer

ptogram. It reads the input from data cards and transfers the data to
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internal variables and

structure, It adds appropriate denominator poles (z = 0, w = -],

,

arrays that are Jlocated in the COMMON data

w’ = 2m/T) to the residue expressions. The call statements for

or

the

seven primary subroutines (ZMULTI, WMULTl, WMULT2, WMULT3, RES1, RES2,

and RES3) are located in the main program.

The final formation of the

output low-rate discrete transfer function 1s accomplished in this pro-

gram module. The individual low-rate discrete transfer functions from

subroutines RESl, RES2, and RES3 are combined to form the final output.

Subroutlne ZMULTI. This subroutine calculates the residues for
poles with multiplicity equal to one (n = l). ZMULT] mechanizes the
z-plane residue expression in Eq. 116.

Subroutine WMULTI. This subroutine calculates the residues for
poles with muitiplicity equal to one (n = 1). WMULT] mechanizes the
w-plane/w’-plane residue expression in Eq. 120.

Subroutine WMULTZ. Tiils subroutine calculates the residues for

poles with multiplicity equal to two (n = 2). WMULT2 mechanizes the

w—plane/w’-plane residue expression in Eq. 121.

Subroutine WMULT3. This subroutine calculates the residues for

poles with multiplicity equal to three (n = 3). WMULT3 mechanizes the

w-plane/w’-plane residue expression in Eq. 124.

Subroutine RES!. This subroutine forms the overall low-rate dis-

er functiou for 1lsi order poles., The n = 1 (multiplicity

[
crete Lr

equal one) residues that are calculated in subroutines ZMULT1 or WMULT1

are combined to form this transfer fuunction,

Subroutine RESZ. This subroutine forms the overall low-rate dis~

crete transfer function for 2nd order poles, The n = 2 (wultiplicity
equal two) residues that are calculated in subroutine WMULT2 are com-—

bined to form this transfer function.

Subroutine RES3, This subroutine forms the overall low-rate dis-

crete transfer function for 3rd order poles. The n = 3 (multiplicity
equal three) residues that are calculated 1n subroutine WMULT3 are com—

bined to form this transfer function.
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Subroutine COMPOLY. This subroutine forms a polynomial from a set

of roots. Both real and imaginary coefficlents are calculated.

Subroutine BILIN. This subroutine performs the general bilinear

transformation from one complex plaie to another.

Subroutine TERM. This subroutine calculates the individual terms

used in the bilinear transformation mechanized in subroutine BILIN.

Subroutine WZBILIN. This subroutine initiates the specific bilinear

transformation from the w'—~plane to the z~plane. The actual transforma-

tion 1s carried out 1in subroutine BILIN.

Subroutine MULTIP. This subroutine multiplies two polynomials.

Subroutine 4DD. This subroutine adds two polynomials.

Subroutine SIMPLE. This subroutine simplifies a polynomial by add-~

ing coefficients of like powers.

Subroutine COEFF. This subroutine adds the missing power terms in a

polynomial by inserting a zero coefficient with the appropriate power

and moving the original terms to make room for the missing terms.

Subroutine ORDER3. This subroutine orders a polynomial in descend-

ing powers.

Subroutine ROOTS. This subroutine finds the roots of a polynomial

with complex coefficients.

Subroutine SZWROOT. This subroutine performs the root conversion

A aara s =122

between the s-, z-, w-, and w’'-complex planes.

Subroutine ORDPOLE., This subroutine checks for multiple poles and

stores the multiplicity 1in an array. The extra multiple poles are
deleted and only a single copy of each pole is stored in the output

array.

Subroutine POLE. This subroutine calculates a low-rate pole in the

z-plane from a given high-rate pole in the z-plane.

Subroutine WPOLE. This subroutine calculates a low-rate pole in the

w- or w'-plane from a given high-rate pole in the w- or w’~plane.
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Subroutine DERIV3. This subroutine takes the derivative of a poly-

nomial.

Subroutine EVALU3. This subroutine evaluates a polynomial for a

given root.

Subroutine DIVI. This subroutines divides two complex numbers.

Subroutine MULT. This subroutine multiplies two complex numbers.

Subroutine DOLOOP. This subroutine ilmplements a standard DO LOOP to

transfer one array into another array.

Subroutine CANROOT. This subroutine cancels equal zeros and poles

according to a specified tolerance. Separate tolerances are provided

for the real and imaginary parts of each root.
I. PROGRAM OPERATING INSTRUCTIUNS

This subsection presents the input and output data structure for the
TXCONV computer program. Most input data are in free format with sepa-
rators rather than in fixed-size fields. The one exception is the
alphanumeric input which selects the transformation option (Z, W, WP,
ZR, or ZT). The free—format iaput data consist of a string of wvalues
separated by one or more blanks, or by a comma or slash, either of which
may be preceded or followed by any number of btlanks. A line boundary,
such as an end of record or end of card, also serves as a value

separator (Ref. 14).

The first section of input data contains the parameters that define
the high-rate discrete transfer function, the high-rate sampling period
(TIN), and the low-rate sampling periocd (TOUT). These data are placed
on the first two data cards in a free format. The alphanumeric code for
the transformation option is placed on data card threz in an A2 format.
(See Subsection B for an explanation of _.he transformation options.)
The remaining data are again free format and consist of the zeros and
poles of the high-rate transfer function. The order of this transfer
function (i.e., order of the denominator polynomial) can be equal to or

less than 50 with pole multiplicity up to and including three. Tl
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zeros and poles are input sequentially in & free format (startiny on
data card four) on as many data cards as necessary. The real and imag-
inary p-srts are separated with a valid separator (i.e., a comma, a
slash, or one or more blanks). The zeros are inserted first followed hy
the poles. For real roots, 0.0 must be input for the imagivnary part.

The required input data are outlined belcw:

Data Card Datu Items 7 Format
1 GAIN, NZEROS, NPOLES Free format
2 TIN, TOUT Free format
3 Transformation option A2
4 Zeros(real,imag) Free format
nth Poles(rea® mag) Free format

The following definitions apply to the data items 1l'sted above:

GAIN - High-rate transfer function gain
NZERQS — Number of zeros

NPOLES -~ Number of poles

TIN ~ High-rate sampling periocd (sec)

TOUT - Low-rate sampling period (sec)
Transformation option - Z, W, WP, ZR, or ZT

Zeros(real,imag) - Real and imaginary parts of
high-rate zeros

Poles(real,imag) - Real and imaginary parts of
high-rate poles

The output data from TXCONV are divided into two main sections. The
first section contains a listing of the input variables associated with
the high-rate discrete transfer funciion. These variables include the

ratio of the sampling periods (RATIO); the high-rate (TIN) and low-rate
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{TOUT) sampling periods; the high-rate transfer function gain (GAIN);
and the number of input zeros (NZEROS) and poles (NPQOLES). The program
alsc priants the numerator and cenominator polynomials and roots for the
high-rate discrete transfer function. A listing nf the high-rate poles
with their multiplicity is then printed. An additional high-rate pole
(required by the transformation process) at z = 0,9, w=1.0, or
w’ = 2/TIN is included in this 1listing (see Section III). The second
section of output data deals with the low-rate discrete transfer func-
tion, The numerator and denominator polynomials and their roots are
printed. The low-rate transfer function gain and a second listing of

the high-rate and low-rate sampling periods are also given.

The fast-input/slow-cutput sampled system in Fig. 24 will be used to
illustrate the input aund output data structure for TXCONV. The proce-
dure for this example is typical for closed~loop systems emplcying fast-

input/slow—output sampling.

Figure 2Z4. TFasi-Input/Slow-Output
Sampled System
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The output equation for Fig. 24 is given by

¢ =~ (GMp)ET/2 (165)

where
gT/2 = RT/2 - (GzM)T/Z(GleET/Z)T (166)
To solve for the ET/2 signal in Eq. 166, premultiply by G;M, and take

the T transform of both sides of the resulting equation {(or sample both

sides of the equation at a T interval). The result is
(6MET/2)T = (apRT/2)T = [(GM)(GoM) T/2) " (6 ppET/2)T (167)

Rearranging Eq. 167,
\ -1
(61MpE1/2)" = % I+ [(GlﬁzJ(GzM)T/Z]T; (G1MpRT/2)" (168)

and substituting Eq. 168 into Eq. 16& produces Eq. 169.

ET/2 = RV/2 - (cM)T/2 11 + [(Glﬁz)(GZM)T/Z]ri-l (6rRT/2)T  (169)

I

Finally, substituting Eq. 169 into Eq. 165 gives the output equations
for Fig. 24.

¢ = (GMp)RT/2 - (Gle)T/Z(GzM)T/ZEI + [(Glﬁz)(GzM)T/leg_l (611R7/2)T

(170)
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To illustrate the operation of the TXCONV computer program, we cal-
culate the term

[(c1M2)(em)T/2]" (171)

let z = eST/z,

and introduce a phantom T/2 sampler to Eq. 171. This
mathematical operation is depicted in Fig. 25. This step is valid since
the T output sampler simply rejects all the unwanted samples from the

T/2 sampler. Equation 171 then becomes

[(61M)T/2(G1) /2] " (172)
R=1 T
P MG2 —/——D MZGI ——-/-—-!-
T/2 — T/2 T
(phantom)

Figure 25. Phantom Sampler Concept

We next choose a low-rate sampling period of T = -1n(0.81). This gives
a set of convenient numbers when Eq. 172 1s evaluated. Inserting the

transforms depicted in Fig. 24 into Eq. 172 produces

T2=1_e_T/2 Tz_l-e_T/Z z+ 1
(61Mp) 7/ . (6M) 7/ ppuaves v, Miaar (173)
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and

) T
/20 T/21T o |1 eT/217(z + 1) = oST/2
(e /2(oana)” « |L=tmle s B, e

_ [o0iz+ D)
[z[z - 0.9)2J (7

Equation 174 can be solved by calculating the residues of the following

expression (see Eqs. 36 and 88).

1
1 (1 - e 1/2)2(z, + 1) z Az, w5 \
vy Jp RO e-—’r/2)2 (z ~2z3) = ‘
p\ep P p
{
\
The residues for the double poles at 2y = 0.0 and z_ = e /2 are: J
(z. + 1)z -T L =T/2
Reo| - %[ ! ] I (176)
zp=0- Plezg - e (2 - 2D ¢
P lzp=0.0
Res . (zp + Dz | _ T + 2e_T/2) 22+ (3e~2T 4 ée-“{_z)i
~1/2 dzP (z )z(z - zz) I e-ZT(z - e:-T)Z
zp=e P P -1/ (177)
Zp-e

Combining Eqs. 176 and 177 gives the low-rate discrete transfer function
in Eq. 178.
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o122 ,~T/2y2 - -T/2
(] —c”z) Res + Res ] . e ! 2+ (e2T+2e ) s z = e8T
zp’O.D z =e"T/2 (z - e
0.01 2.61
. 0.01(z + 2.61) (178)

(z - 0.81)2

Equation 174 1is now solved using the TXCONV computer program. The

required input data are outlined below:

Data Card Data Items
1 .G1,1,3
2 «1053605155,.210721031
3 ZR
4 -1.0,0.0,0.0,0.0
5 -9,0.0,.9,0.0

The output for this example is shown in Fig. 26+ Both the high-rate and

low-rate z=-plane transfer functions are prianted.

A second example will consider the w’-plane high-rate to low-rate

transform conversion in Eq. 179.

(ke(w)T/3]T (179)
where

K = ,01274481960

li

T .04 (sec)

]

T/3 .12 (sec)

The high-rate zeros and poles for the w’-plane transfer function

G(w')T/3 are given by:




Zeros (real,imag)

Poles (real,imag)

(-+9999481996 , 0.0 )

(.001830897924,

(-+5657507592 ,

(-.5657507592
{-4.956749255
(-9.892804162
(-14,00440188
(-15.45466095

(50.000000000

0.0 )

6.861565379 )

-6.861565379)
0.0 )
0.0 )
0.0 )
0.0 )
0.0 )

1

2

3

4

nth

(~.5087865665 , .3042290447 )
(-.5087865665 , -.3042290447)
(~.001726986844, 0.0 )
(-2.169528987 , 3.364297796 )
(-2.169528987 , -3.364297796)
(~12.82548298 , 0.0 )
(-16.86376037 , ~12,01331830)
(-16.86376037 , 12.01331830 )

(~10.52412126 , 0.0 )

A listing of the input data for this example is outlined below:

.01274481960,9,9
004,.12

WP

Zeros (real,imag)

Poles (real,imag)

The output for this w’~plane example is shown in Fig. 27. Figure 27a
contains the high-rate w’'-plane transfer function input and Fig. 27b the

low-rate w’-plane transfer function output,

The high-rate w’ transfer function KG(w')T/3 was obtained from the

system defined in Eq.

DISCRET computer program (Section

180.

IV} wusing the sampled continuous

K(w)T/3 = [K151(s)M3(s)]T/3 (180)
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In Eq. 180,

My(s) =

1 - e~8T/3

s ?

Zeros (real,ima&)

Ky = -.6483736462 ,

and the s~plane zeros and poles for Gl(s) are given by:

Poles (real,imag)

(-1.000000000 ,

(.001830897352,

(-5.000000000

(-.5008733927

’

0.0 )
0.0 )
0.0 )

6.832938756 )

(-.5008733927 , -~6.832938756)
(-15,00000000 , 0.0 )
(-15.00000000 , 0.0 )
(~10.000000000 , 0.0 )

w’~plane transfer function KG(w

107

(-.5087852889

. 3042567928 )

(-.5087852889 , -.3042567928)

(-.001726986844,0.0 )

(-2.161077353
(~2.161077353
(-13.11843178
(—16.40426112
(~16.40426112

(-10.68380409

¥

3.365523190 )
~-3.365523190)
0.0 )
-13.13942724)
13.13942724 )

0.0 )

These parameters were used with the WP option in DISCRET to obtain the
')T/3.
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SECTION VI

SUMMARY

The high-speed timeshared digital computer with a large =memory has
made it possible for the analyst and the computing machine to be coupled
closely together to solve a large variety of engineering problems. In
system analysis and design, one of the essential ingredients for this
coupling ic a library of properly structured analysis aund synthesis pro-
grams residing in the wmachine. Moreover, easily applied and accurate
computer programs that deal with discrete or hybrid systems are becoming
more essential as a result of the increasing use of digital controilers
in automatic control systems. Practical hybrid systems contain continu-
ous or analog elements (e.g., plant, process, or controlled element)
which can be described by or approximated with linear differential equa-
tions and discrete elements (e.g., digital controller) which are inher-
ently Jefined by difference equations. Thus, not only is the high-
speed, large memory digital computer used to analyze and design discrete
or hybrid systems, but the small-scale digital computer is becoming an
integral part of the control system itself.,

The fundamental first step in the analysis or design of a hybrid
control system is to acquire or formulate a valid linear model of the
system being considered. This includes the discretization of the con-
tinuous elements in the system into a valid discrete domain. The
DISCRET computer program presented in this report provides this discre-
tization. DISCRET takes a continuous element expressed as an s—plane
transfer function and transforms it into the z~, w-, or w'-plane (see
Eq. 58). The resulting discrete transfer function is exact as opposed
to the approximate discrete transfer function obtained from a substitu-
tion-for-s approach such as the Tustin or first~difference transforms.
The discrete transfer function generated by DISCRET defines the continu-
ous variables (associated with the continuous element) at each sampling

instant of the sampler device in the system. It is assumed that the

i S i sish bk




sampler passes the contlnuous signal at discrete 1Instances equally
spaced in time. The time interval T between these samples is called the
sampling period. Once calculated, this discrete model of the continuous
eleme¢nt can be readily combined with the inherent discrete elements in
the system (such as a digital controller) to provide a unified, concise
description of the total system. An inherently discrete element in a
hybrid system 1s first wodeled with a recursion or difference equation
and then directly converted to the z-, w-, or w'~plane by substituting
the z™" delay operator for each discrete term in the difference equa-
tion. Therefore, all the elements in a hybrid system can be described
by transfer functions in the z-, w-, or w'-plane. Consequently, similar
frequency and time domain techniques used for continuous s—-plane systews
can be applied by the control system engineer to a wide variety of prac-

tical hybrid systems.

Many practical hybrid control systems are also multi-rate in nature.
That is, they contain samplers which operate at different sample rates.
This adds additional complexity te the analysis and design procedurey,
but councise, gefinitive methods are available for handling multi-rate
systems (e.g., Refs. 1-3), However, a troublesome situation arises when
the output of a multi-rate system is sampled at a lower rate than its

input. This sampling configuration invariably leads to the requirement

of computing a low-rate discrete transform from a given high-rate dis-

crete transform (see Eqs. 76-78). The TXCONV computer program presented
in this report calculates this complex transformation and makes it a
routine operation in the analysis and design process. Specifically,
TXCONV takes a high-rate discrete transfer functiom expressed in the z-,
w=, or w'—plane and transforms it into a desired low-rate discrete
transfer function in the 2z-, w=-, or w’—-plane. Tnis relieves the analyst
from the computationally involved procedure of calculating the residues

of a complex integral.

Both the DISCRET and :-TXCONV computer programs represent essential
tools for dealing with mulii-rate, hybrid control systems. They provide
two of the primary techniques used to formulate a unified discrete model

of a complex, hybrid system. However, they are by no means the only
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tocls or techniques required by the analyst. Other computational opera-
tions that are required include polynomial and transfer function manipu-
lation routines. These routines are needed to handie the individual
discrete transfer functions present in single-loop and multiloop hybrid
systems. Analysis routines that calculate root locus, frequency re-
sponse, and time response 1n the discrete domain for single-rate and
multi-rate, hybrid systems are also needed. Most of these routines for
single-rate discrete or hybrid systems are already available in the
TOTAL computer program (Ref. 13), Additional software routines that
specifically address multi-rate systems and the special features in-
volved in calculating the continucus frequency response of a discretely

exclited system (Ref. 1) are presently under development at AFWAL/FIGC.

Both DISCRET and TXCONV have been integrated into the total coamputer
program. DISCRET and TXCONV are two of the over 100 options available
during the interactive execution of the TOTAL program. This interactive
feature allows a close coupling between the analyst and the computing
machine (digital computer) such that a real-time dialog between the two
can be effectively carried out. This results in a more effective and
efficient usage of the computing machine and improves the accuracy and

speed of the analysis and synthesis process.
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