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ABSTRACT

N&n the context of multiple linear regression, when a
subset of k-out-of-p predictor variables is to be selected
for the purpose of predicting the response at some known
point in the predictor variables' space, the width of the
resulting prediction interval gives an indication of the
precision with which the response is predicted and, thus, it
may provide a suitable selection criterion.

A review of commonly used selection criteria is given,

with special emphasis on those which deal with the problem
of prediction. The Mahalanobis distance is one ¢of the guan-
tities affecting the width of the predictios interval, and
it is studied in some detail. The effects of adding a new
variable to a model are investigated and a monotonicity
theorem is derived.

The influence of an observation on the width of the

prediction interval, as measured by the effected change when

that observation is set aside, is alsc investigated and an

equivalence between observation deletions and variable aug-
mentation is shown. <— -

The relationships found in these investigations indi-
cate the applicability of certain computing technigues.

Computing algorithms are presented.

e




iii

A management science application of the statistical
procedures developed in this study is explored in the area

of parametric cost estimation.
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CHAPTER I

INTRODUCTION

Multiple regression analysis is, probably, the most
widely used and abused of all statistical tools (5). Many
authors attest to the importance and wide applicability of
this technique (5), (9), (28), etc. The advent of high-
speed digital computers and the development of efficient
software packages have made it accessible to users from all
fields of research. Associated with the enhanced availabil-
ity and ease of use provided by these technological develop-
ments is a tendency to apply regression techniques routinely
and ﬁ;chaniéally, without due consideration to the underly-
ing theory or the empirical "rules of thumb” consistent with
that theory and with common sense.

. The main step in any regression analysis is the devel-
opment of an equation relating one variable, commonly refer-~
red to as the response variable, to another set of varia-
bles, called explanatory or predictor variables. For some
highly structured applications in the physical sciences, the

exact form of the appropriate regression function may be

known to the experimenter. In other cases, theory may spec- B

ify a functional form to be tested. These cases, however,
are the exception rather than the rule. More often, the

analyst is uncertain about which variables are important




carriers of information, as well as about the form of the
relation. 1In those cases, the analyst must let the data
speak for itself in suggesting candidate model specifica-
tions. This process is referred to as "data mining" by
Leamer (22), and is more formally known as empirical model
building. Usually, at an early stage, a large number of
potential predictor variables must be considered, some of
which may be transformations of other variables. The task
of the analyst is to bring to the surface the "nuggets of
truth" which are hidden in a set of observations on the var-
iables by means of a thorough and appropriate investiga-
tion. There are many reasons why one must be parsimonious
in his use of variables. Some of them may be totally irrel-
evant ‘to the problem, while others may be "conditionally
irrelevant" in the sense that, in the presence of other var-
iables they possess little or no explanatory value. It is
tempting to use "all the information"” of the "full" model
but this often causes problems associated with what is
referred to as "overfitting". Models with many. variables
result in large prediction variances (35) a5 well as statis-
tical and computational instability in the presence of mul-
ticollinearity among the retained variables (3). Also
important is the fact that a model with many variables may
be difficult to interpret and/or maintain. Thus, the need
arises for techniques which will screen the variables and
select a subset of them deemed appropriate for the intended

use of the model.
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Various techniques, commonly referred to as "variable
selection criteria", have been suggested for this purpose,
such as minimizing the mean square error (MSE) or, equiva-
lently, maximizing the adjusted coefficient of determina-
tion, Ri, maximizing F, minimizing Mallow's Ck statistic
etc. In Chapter II, the need for variable selection and
some of the criteria in use are discussed. All of these
commonly used techniques are based on the data only through
the sum of square errors (SSE}. As a result, for any given
number of variables, they all select the same subset,
namely, the one which minimizes SSE. This, in itself, is a
rather desirable property, especially when the cbject of the
analysis is the explanation of relations among the histori-
cal data. However, as Lindley (23) emphasizes, the techni-
que used to develop a regression equation ought to be rela-
ted to the intended use. When the object of the analysis is
the development of an equation which will be used in order
to predict the response at a known point in the space of the
predictor variables, ignoring this additional information is
contrary to Lindley's recommendation and to common sense.
The issue of how to use such information needs, therefore,
to be investigated. The Mean Square Error of Prediction
(MSEP) criterion, which is discussed in the next chapter,
represents an attempt towards utilizing the information car-
ried by the point under prediction. Its approach, however,

does not seem to be fully satisfactory for several reasons




which will be discussed in subsequent chapters. Therefore,

there remains a void in the literature in this respect,
which this dissertation attempts to fill.

More specifically, the problem can be described as fol-
lows: A future observation on the response variable, Y,
must be predicted, using the relational information provided
by a set of n historical observations on Y and a set of p
predictor variables xl,xz,...,xp potentially related to it,
as well as the values x of the predictor variables associ-
ated with that future observation. The relative location of
X with respect to the historical data yields additional
information which, if ignoréd, may lead to models not well
suited to predict at that location.

The width of the résulting prediction interval at x is
a numeraire which seems like a reasonable basis for choosing
among alternative models. The Mahalanobis distance, intro-
duced by P. C. Mahalanobis (24) as a measure of divergence
between groups of multivariate data, affects the width of
the prediction interval and may provide a measure of analog
between x and the historical data. 1In Chapter III, the the-
oretical aspects of the problem are investigated. An inter-
esting result which leads both to an easy geometric inter-
pretration and to existing computing techniques is derived
in the form of a monotonicity theorem. This theorem is also
used in order to explain certain observations made during

the simulations which were conducted and the analyses which

were performed on real data sets.




The computational aspect of the problem as it relates
b to the proposed selection technique is investigated in

L Chapter IV. This is an important consideration because the

need for variable selection becomes more pronounced as the

number of potential predictor variables increases. Aan

existing, efficient algorithm is modified for the purposes

-~ of this criterion, by utilizing the results of the theorem

i AR P e — o Y .

in Chapter III. Using the same theorem, stepwise FORWARD
selection and BACKWARD elimination algorithms are

developed.

M e e A sy

% The leverage of individual observations on the various
% guantities of interest should be an integral part of any
| analysis and has recently received deserved attention in the
literature (7), (8), (13), (18), (36). Observations which
seem discrepant or damaging in some sense appropriate to the
analysis are allotted special attention and are investigated
further. In the context of this investigation, an obser-
vation calls for such attention if its deletion from the
least sgquares calculations results in a significant change
in the width of the prediction interval. Chapter V deals
with this issue. Some results are derived, some observations
are made and computational formulae are given.

In Chapter VI, an application from the field of manage-
ment science, referred to as parametric cost estimation, is

investigated. A real data set is analyzed and the perfor-

mance of this criterion is compared to that of others. The




results of a limited simulation study are also briefly dis-
cussed.

Finally, in Chapter VII, some concluding remarks are
made, suggestions for the use of the new criterion are given
and questions relevant to the problem at hand which were not
investigated in this study are raised.

A word of warning is appropriate here, which applies to
every statistical analysis of data and, in particular, to
every variable selection technique. As was mentioned above,
regression is one of the most widely used statistical tech-
niques because of its wide applicability, ease of use and
elegance. It is also one of the most widely abused techni-
ques. Two of the reasons for such abuse are:

(a) The proliferation of efficient statistical packages
with a variety of regression options.

(b) The lack of awareness on the part of the practitioner
about the dangers of such misuse.

It may be that the practitioner has not been warned by the
statistician emphatically or frequently enough. However, it
remains of paramount importance that the practitioner be
aware of the following:

There is no substitute for a well thought out, well executed
and complete analysis. There are many sides to an analysis
and data sets behave in their own peculiar ways. Standard,
mechanical approaches often fail to reveal these peculiari-

ties and, even if they do, appropriate remedial action




requires more than superficial familiarity with the model
and its relation to the real world process. For example,
there is no variable selection technique which is automati-
cally applicable to all situations. Even for a given data
set, there is rarely a "best" criterion or a "best” model
that is known to the analyst. PFor a good analysis, poten-
tial variables and candidate model specifications should be
decided after "eyeballing” the data, and with input from the
experts in the field of application. Part of the data
should be set aside for validation purposes, whenever such a
luxury can be afforded. Models should be kept for further
scrutiny that have good "automatic” properties such as large
Rz, small Ck, small prediction intervals etc. If probabil-
istic statements are to be made, which is almost always the
case, the residuals should be analyzed for indications of
model inadequacy and of violations of the assumptions on the
errors. Finally, the model (or models) passing all tests
should be subjected to the criticisms of the experts in the
field. 1In the process described above, only the computa-
tions may be done in an automatic way. The analyst's judge-
ment and knowledge put to good use is what constitutes the

difference between data analysis and the simple processing

of data.




CHAPTER II

ON THE SELECTION OF VARIABLES

The Need for Variable Selection

In most practical situations, finding an equation which
will describe a set of data collected in a manner referred
to by Box (5) as an "unplanned experiment" is a difficult
task. The problem which is investigated in this disserta-
tion can be described as follows:

There are available n observations (fundamental meas-
urements) on one response variable, V, denoted by Vi'
i=1,2,...,n and n associated observations on m basic, or
fundamental, variables 2,,%,,...,2, denoted by
zil,ziz,...,zim, i=1,2,...,n. There is one more measure-
ment zl,zz,...,zm on the basic variables. An equation of

the form

Y' = 80 + leil + "o ® + B

i xi + £, (2.1)

P 1P 1

is assumed relating Y, = £(V,) and xij = gj(zil,...,zim),
j=1,2,...,p, i=1,2,...,n. Henceforth, the variables xj,
j=1,2,...,p will be referred to as explanatory, or predictor

variables. This equation is assumed to be linear in the

parameters Bo,Bl,...,Bp and it need not be linear in the

original variables zl,zz,...,zm as gj, j=1,2,...,p may be

any functions of those variables. For example, xlszi,




x2=z1z3, x3slogz4 etc., will produce an equaticn which is
not linear in the basic variables 21/25¢40442;. In matrix
terms, the model can be described by Y = X8 + ¢, where Y is
the nxl vector of responses, X is the nx(p+l) matrix of the
values of the explanatory variables whose first column con-
sists of 1's and which is assumed to be of full cclumn rank,
and 3 is the p+l dimensional vector of the unknown parame-
ters. The object of most statistical analyses is to esti-
mate the parameters g8 = [30,81,...,891' by means of

b= [bo,bl,...,bp]'. The estimate b is usually obtained by

the method of least squares, i.e. bo,bl,...,bp are such

that
Yi = bo + blxil +ooat bpxip + ey (2.2)
with
] e ( § (¥,~by-b b X, 1%} (2.3)
e; = min Y.:=b =b.X.3=cc0,- . .
is1 i b i=1 i 7o T17i1 ! " TpTip

In this investigation, the case where the resulting equation
will be used to predict the response y associated with the
point x = [xl,...,xp], where xjrgj(zl,...,zm), j=1,2,...,p
is considered. In these cases, the main consideration is
the accurate prediction of y rather than the estimation of
B. For curve fitting purposes, the n-dimensional vectors

X ,52,....59 are assumed independent in the algebraic
sense. In order to make statistical inferences about the

standard errors of the estimates, the precision of the pre-
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dicted values etc., the errors €, are, in addition, assumed
to be jointly distributed as N(g,czI), i.e. normal, with
mean vector zero and covariance matrix cZI. This covariance
Structure implies that the errors have equal variances
(homoscedastic) and are uncorrelated.

The initial choice of what aspects of the sample units
ought to be measured may be straightforward, as is the case
in well understood situations where physical laws and thec-
ries apply or are being tested. 1In less structured situa-
tions, such as behavioral research, exploratory studies
often start by measuring most everything and then let the
data "speak for itself" in identifying the important varia-
bles and forms of relations. Whatever process is used in

assembling the set of p candidate predictors, xl,xz,...,x

it is hoped that the list is extensive enough to include ill
of those which have influence on the response variable Y.

To be so inclusive, the list often contains useless varia-
bles and/or variables whose informational value is superflu-
ous in the presence of other explanatory variables. As part
of the more general problem of analyzing a given set of
data, subsets of variables must be selected, which seem to
explain the data adegquately. Selecting the essential varia-
bles is a source of trouble with unplanned data. One major
reason for this is that the problem does not yield to a uni-

versal definition. What is precisely meant by saying that a

model is sought which "adequately represents the data"?




Which facet of the data should the analyst ask the chosen |
model to represent best? The answer to such questions must f
depend on the intended use of the model as discussed by |
Lindley (23). The idea of a model which is "best" for pre- g
diction, or a model which is "best" for estimation, for |
instance, is elusive. Indeed, several answers to such ques-
tions might be appropriate as the problem is not one but

several, intricately interwoven. It is a generally accepted
maxim among statisticians, however, that parsimony in mcdel i

building is desirable. There are several theoretical and

practical reasons for this view as follows:

1. Models with too many variables usually result in
large prediction variances due to the fact that many para-
meters have to be estimated. Walls and Weeks (35) have
shown that the variance of prediction increases with the
number of variables in the regression equation. For this
reason, the analyst would like to detect and exclude those
variables which are either irrelevant to the problem or un-
necessary in the presence of others which are to be retained.

2. With a large number of variables, statistical in-
stability of the resulting equation is more likely to occur.
Statistical instability is the phencmenon in which a small
perturbation in the values of some of the variables results
in a large change in the coefficients of the fitted equation.
This is one of the visible effects of multicollinearity,

namely the phenomenon of strong association among the
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r retained variables. Mathematically, this phenomenon occurs

when the matrix X'X is nearly degenerate. The phenomenon of
multicollinearity can appear because the data come from a
subspace of the true sample space, one that can almost be

described in fewer dimensions. This may happen either by '
chance, or by necessity, or by the inclusion of extraneous ' 5‘

variables which are strongly associated with the relevant ﬁ

predictors (21), (27). 1In such cases, the estimates of the

regression coefficients have large variances resulting in

instability of the hyperplane defined by the regression
equation. This is easy to visualize in the case of two
highly correlated explanatory variables. If the data are
nearly collinear (one-dimensional subspace), the regression
plane is "resting on a knife's edge". Any perturbation in
the data can make it tilt heavily. Again, it might be
desirable to use a subset of variables so as to alleviate
the problem, especially if the variables which are causing
the multicollinearity are extraneous anyway.

3. Another undesirable effect of multicollinearity is

computational instability, resulting in potentially large
roundoff errors (3).

4. Finally, from the purely practical point of view, a
model with many variables may be difficult to interpret,
difficult or costly to maintain, or both. Interpretation of
relations between individual predictor variables or groups

of them and the response variable is often desirable, and
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collection of data on certain variables is often difficult,
unreliable or costly.

The reasons mentioned above should suffice in explain-
ing why the problem of variable selection is real and,
often, of great practical importance. In the next section,

some commonly applied selection techniques are discussed.

Review of Selection Criteria

For this gsection and the ones that follow, some new

notation will be needed. The i-th response is estimated by

Ly

Y. = Db

i 0o * b

lxil + ... + bpxip i=1,2,...,0. (2.4)

The i-th residual is defined by e; = Yi'Qi and the sum of
squared errors (residual sum of squares) is defined by
T2
SSE = | ef . (2.5)
i=1
In variable selection the possibility of setting some
of the p coefficients equal to zero is considered. This
amounts to selecting a subset of k, say, out of the p varia-
bles. The mean of the n observations on the response varia-
ble is denoted by ¥, the total sum of squares of deviations
from that mean is defined by
t; 3, 2
SSTO = | (Y. -Y¥) (2.6)
i=p %

and the regression sum of squares by

SSR = SSTO - SSE (2.7)




A selection criterion is a rule according to which a
certain model out of the 2P possible models is labeled
"best". It should be noted that "best" is defined only in
the sense of the particular criterion employed, and it does
not necessarily imply that that model is best in terms of
its intended use or in terms of how well the relation
defined by it carries over to the population. The position
taken in this dissertation concerning variable selection and

model building is more general, namely, that "selection"

rules ought to be used in order to screen the 2P models down
to a more manageable number, say half a dozen or so, which,
subsequently, would be carefully scrutinized for adequacy
and reasonableness. There are several criteria currently
used for this purpose. The most common ones, as well as
some which are related to the problem of prediction are dis-

cussed next.

2

l. The R® Criterion

The coefficient of determination is defined by

2

R® = 1 - SSE/SSTO. (2.8)

2

It is clear that R“ is the proportion of variability in Y

which is explained by the variables in the model under con-

sideration. It seems desirable that, other things being

2

equal, R should be as large as possible. However, since

SSE can not increase as variables are introduced into the

2

model, R® will always achieve its maximum when all p
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variables are used. 1If R2 is to be used as a selection
criterion, some subjective rule must be employed that will

2 attained

determine when the largest increase possible in R
by the introduction of a new variable does not compensate
for the loss in degrees of freedom due to estimating an
additional parameter. A graph of R2 versus mcdel size is
usually helpful in devising what is called an "elbow rule”.

2. The Adjusted Rz Criterion
(Mean Square Error)

To overcome the subjectivity involved in using Rz, an
adjustment for degrees of freedom can be made by defining

the adjusted coefficient of determination, Ri, by

2

Ra

= 1 - [SSE/(n-k-1)]1/[SSTO/(n-1)] (2.9)

where k is the number of predictor variables in the postu-
lated model. This statistic usually achieves a maximum with

a model containing fewer than p variables. The equation

R: = R? = x(1-R%)/ (n-k~-1) (2.10)

2 2

a.
This criterion is equivalent to selecting the model with

shows the relationship between the statistics R” and R

smallest mean square error, defined by MSE = SSE/ (n-k-1),

2
a

bles selected. A preference for choosing models with large

R: is based on the fact that the "true" model minimizes the

since the denominator in R{ does not change with the varia-

expected MSE (32). This criterion is most often referred to
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as the "minimum Mean Square Error" criterion, and this name

will be used in what follows.

3. The Maximum F Criterion

Sometimes it is deemed desirable to maximize the ratio
F = [(SSTO-SSE)/k]/[SSE/(n-k=-1)]. (2.11)

The numerator in the expression above is referred to as the
regression mean square. This criterion is used less fre-
guently than the others, and it is very parsimocnious. That
is to say, it tends to select models with very few varia-

bles.

4. Mallow's Ck Criterion

Mallcows (25), introduced the statistic

c, = SSE/6% + (2k-n) (2.12)

where 32 is an estimate of 02. Cx is an estimate of the
standardized total squared error of predicting at the points
in the data base (12). A model with small bias is expected
to yield a Ck statistic about equal to the number of varia-
bles, k, associated with it as can easily be shown. 1In this
investigation, the model with smallest Ck will be referred
to as the "minimum ck" model and will be used for comparison
purposes. Usually, the MSE of the model containing all var-
iables under consideration is used for 82, although this

forces Cp to be equal to p. Easily interpretable plots of




P Y

Ck versus k can be drawn and it is suggested that models
with small Ck be congidered. The Ck statistic and its prop-
erties have been discussed by Daniel and Wood (9), Gorman
and Toman (15), Hocking (19), Mallows (25), (26) and oth-
ers.

All of the criteria discussed above share two proper-
ties.

(a) They are all simple functions of SSE and, thus, for any
fixed number of variables, they all select the same model,
namely the one which minimizes SSE.

(b) If the final mcdel is to be used in order to predict
the response y at a known point x in the space of the pre-
dictor variables, they all ignore its location and its char-
acteristics with respect to the historical data. As
Wallenius (34) pointed out, "...the first of these proper-
ties is reasonable but myopic when the object is predic-
tion. The second one seems contrary to all reason."”

Of the four criteria, Mallow's ck technique is more
directly related to the problem of prediction in view of the
fact that it utilizes the total square error of prediction.

S. The Prediction Sum of Squares
Criterion

David M. Allen (2) suggested the following selection
procedure:

Let Q{i), i=l,2,...,n denote the i~-th predicted response,

when a given model is used, and with the i-th observation




removed from the data base, so that the coefficients are
derived from the least squares calculations based only on
the remaining n-1 observations. For each model, compute the
prediction sum of squares (PRESS) statistic, given by
PRESS = ) (v,-2(1))2,
S .

(2.13)

Consider models with small PRESS. Notice that PRESS is an
indication of the predictive performance of a model over the
points in the data base. Intuitively, a model with small
PRESS should be expected to do better in predicting future
observations than a model with large PRESS. However, since
this technique fails to take into account the values of the
variables at the point under prediction, it is conceivable
.that there can be points, both in the region of the histori-
cal data and outside, where the selected model may be inap-
propriate.

In terms of the computational aspect of the problem,
this method is much more demanding than the four previously

mentioned.

6. Mean Square Error of Prediction
The mean square error of prediction (MSEP) of the

response y at a given point x can be expressed as

E(y-fr)2 = 02 + Var(y) + (bias)z, i.e. (2.14)

2

Ely-9)2 = o + 5(3'5)'15'0 + [E(y)-E()12. (2.15)
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Allen (1) proposed choosing subsets of variables which
minimize an estimate of the mean square error of predic-
tion. This is a difficult task to accemplish successfully,
mainly because of the fact that a good estimate of the bias
term assumes knowledge of E(y) or, at least, a very good
estimate of it. However, this is at the very heart of the
problem of prediction which the analysis attempts to solve.
An assumption about gocd knowledge of E(y) seems to create a
logical vicious circle in that the unknown answer to the
problem is somehow used in order to get to it. Allen's
approach to this is to assume that the full model ccntains
variables which were chosen carefully, so as to include all
relevant ones and exclude all unnecessary ones. As a result
cf this, the full model will be unbiased, while any submodel
will be biased to a measurable degree. The bias associated
with a given submodel is then estimated by the difference in
point predictions between the full model and the submodel,
an estimate of 02 based on the sum of squared errors of the
full model is used in the expression for E(y-§)2 and the
submodel is found preferable to the full model if and only
if the reduction in prediction variance is greater than the
square of the bias.

Even with the assumptions mentioned above, the method
of estimating the bias (a difference in expectations) by

means of a difference in two point predictions may result in

treating different submodels unfairly. The degree of this
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unfairness will depend on the difference between E(y) and
the point prediction obtained from the full model. It
should also be observed that the MSE's of the postulated
submodels are not taken into consideration. As a result,
the selected mcdel may provide a very poor fit to the data.
As will be discussed in Chapters III and VI, this seems to
be frequently the case in practice. With regard to the com-
putational aspect, Allen proposed a sequential procedure
which provides no guarantee that an absolute minimum will be
obtained, either overall or for a fixed subset size k. It
seems that, for such a guarantee, a complete search of all
2P-1 regressions might be necessary. However, the algorithm
which will be developed in Chapter IV may be modified so as
to apply to the MSEP criterion .

In the next chapter, a somewhat different approach is
taken to the problem described above. The position taken in
this dissertation with respect tc bias is the following:
When the true population model is known, the bias at x asso-
ciated with other models can be obtained. In empirical
work, however, where the true model is not only unknocwn but
its notion is not even easily or well defined, that bias can
not be objectively measured. Indirect methods may be
employed that can, hopefully, give indications of its magni-
tude. It is believed, however, that using such estimates

directly in the screening of variables is risky at best and

rather inapropriate. Thus, no explicit attempt is made to

Y

A A Ny
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estimate bias during the selection. Implicitly, bias is

S

hoped to be reflected in the size of MSE which will be used

as an estimate of 02.
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CHAPTER III

ON THE WIDTH OF THE PREDICTION INTERVAL

Mahalanobis Distance as a
Measure of Analog

The Mahalanobis distance, introduced by P. C.
Mahalanobis (24) as a measure of the distance between two
multivariate populations, is a fundamental notion in mul-
tivariate statistics. 1In this section, the Mahalanobis
distance is discussed in relation to the problems of
prediction and variable selection. The insight gained
through this investigation will be used to explain certain
observations which were made during the course of this
study and to derive computational algorithms for implemen-
tation of the methodology developed.

Suppose there are n historical observations on p
potential predictor variables, xil'xiz""'xip'
i=1,2,...,n. Let Y denote the nxl vector consisting of
the observed values of the response variable, associated
with these n observations, and let Ej denote the nx1l
vector of observed values on variable Xj, i.e.,

Y= [Yl,Yz,...,Yn]' and X Let X

]
j = [le,xzj,...,xnj] .
denote the nxp matrix whose columns are gj, j=1,...,p,
n
and let X, = & Y X.. be the sample mean of variable X..
I om gy T4 3
The point X = [?l,iz,...,ip] is defined as the centroid

of the data. Finally, let




o

S = {sij}[ i[j'l’.o-'p

denote the sample covariance matrix of variables xl,...,x

p

3 = —-l—
(i.e., s,;. -]

n
i3 ) (%, ;%31 1% 4=%5 1)

k=1

Denoting the values of the point under prediction by lower
case letters, the response y at the point x must be pre-
dicted by explciting the predictive relationship between Y
and the characteristics xl""'xp' and the degree of
analogy between x and X. In general geometric terms,
"degree of analogy" refers to the position of x relative
to X in p-dimensional space. If X is far removed from the
historical data, extrapolation is necessary with all the
attendant risks. This point will be discussed in more
detail in the next section. The issue of how to detect
such extrapolation is considered f£irst.

The standard Euclidean distance may fail to reveal
the degree of extrapolation, due to the intercorrelations
among the variables. Points at a small Euclidean distance
from the centroid X of the data may be very non-analogous
in that their coordinates do not conform with the cor-
relation structure observed in the historical data. This
point can be illustrated in two dimensions. 1In Figure 1
below, the point x is at a rather small Euclidean distance
from the centroid X. Nevertheless, it is well outside the
bulk of the data, because its coordinates do not conform

with the negative correlation observed.

[ R
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Observe also that the extrapolation in the two-dimen-
sional scatter would not have been revealed by simple mar-
ginal comparisons. Each coordinate of x is well inside the
range of the data along the corresponding dimension. Of
course, in two or three dimensions, scatter diagrams can be
plotted, which will reveal this phenomenon. 1In higher
dimensions, a different method hecomes necessary.

The Mahalanobis distance defined by

Dip,yse,,L) = (Hl"ﬁz) 2'1(g1-32)' (3.1)

is a measure of the distance between two multivariate popu-
lations with row vector means By and u, and common positive
definite covariance matrix I. The degree of analogy (dis~
tance) between x and the data X can be described by means of

the sample counterpart of the above measure, namely
M= (x-S (x-X)'. (3.2)

The measure M will be referred to as the Mahalanobis dis-
tance between x and X. Observe that, except for a multipli-
cative constant, this is Hotelling's Tz statistic used to
test the hypothesis that x and the historical data come from
the same multinormal population, assuming equal covariances.
In the univariate case, M is (a multiple of) a squared
t-ratio. In the multivariate case as well, M can be viewed
as the square of a t-ratio. It is the squared t-ratio of

that linear combination of the variables which produces




the largest t-ratio. Each univariate t-ratio corresponds

to one such linear combination. However, as mentioned

earlier, marginal, univariate comparisons may fail to re-

veal the degree of extrapolation. All univariate t-ratios i
may be small, although the multivariate Mahalanobis dis~ |

tance may be arbitrarily large. For instance, with only

two variables, M can be expressed as

1/2
M.-2r(M,M,) +M
M=t 12 2 (3.3)
l-r
where Ml and Mz are the corresponding univariate measures,

and r is the sample correlation coefficient between the two
variables. It is clear that, even if both Ml and M, are
small, M can still be large. For example, if Ml = Mz =g,
then M = 2¢/(1+r), which can become arbitrarily large with
r -~ ~-l.

A few things might be of interest to note about the
Mahalanobis distance. Points equidistant from the centroid
X form ellipsoids with center at X whose axes coincide with
the principal components axes of the data. It is a distance
measure, that is, it is non-negative, symmetric, and satis-
fies the triangular inequality. If S = I, the Mahalanobis

distance becomes the natural Euclidean distance in p-space.

For an arbitrary positive definite §, the Mahalanobis dis-

tance is equivalent to the Euclidean distance in the
1/zx', where 51/2

"Mahalanobis space” S is the symmetric

square root of S.
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With respect to this investigation, the behavior of
the Mahalanocbis distance as variables enter or leave the
regression equation is of interest. The monotonicity theo-
rem which follows allows the expression of the change in
the Mahalanobis distance as a new variable is introduced,
in terms of easily recognizable regression statistics and

provides insight which will aid in subsequent analysis.

Theorem 3.1: Let Mk dencte the Mahalanobis distance

between x, = [xl,....xk] and X, = [xl,...,xk]. Let S,,
denote the covariance matrix of variables xl,...,xk. Let

M dencte the Mahalanobis distance between

k+1

Xpe1 = [XprXp, ] and X, = (X,,X, ;] and let aM = M, ,-M, .
Partition the covariance matrix of xl,...,xk,xk+1 as

11 512
S = .
L?zl S22
el
Then,
(xk+1";‘)';+1)2
Szz(l-r )
whe;e

A - -1 -
Xeel ™ Xe1¥S21511 (K )
and r is the multiple correlation coefficient between

variables xk+1 and xl,...,xk.

i
!
|
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Proof: From a well known matrix identity (16),

1 -1 1]

-1 -1 - ) -1
Sy! =511512052275515175,,]

(5177815575

-1 Sl 4-1 -1, -1
$22521 1811751252257 (53275238115:2!

and

-1 RS DS T | o emle q-l
[-525521 1511781285352} 71 $11512152278,,8,15:51 -

Therefore,

s = oK) 15))78158725,,) 7 e Ey) ¢ -
( % s s, (s..-s..571s. 17 (x.-% ) -
X+l Xke17 522521 18117515522851 1 T (FyemXy
(x,-X,)87ts. _(s,.-s..sTts 17 (x, . -F, ) +
X X%)511512182275515118101 T (xp 17Xk

{ X, ) (S..-5..5-1s..171¢ X, ..) -

Xer1 X%e1! 152275215811512) T 1%k

- =1 =\,
(2= Xy) 817 (XX

- -1 -1 -
= (X -X,) [8771-8155,35,;1 "X )" -
2(%, =X, . ) [S.a=S sTlg 1" s ix. -%. ) +
k1" ¥ke1) (52275,18:7512) 75298, 1 (XX
= .2 -1, -1 N P
(%) 1" %k+1)  18227557511512) T~ (XXy ) Sy (k=X ) .

(3.95)

Notice that the correlation coefficient, r, can be written
as

172 2 < 1.

-1




Therefore, relation (3.5) above becomes
AM = (%K. )[S,.-8,5°35. .1 ix -%)"' -
= %,-X,) [811-8155,38,11 T &y
- 2ol =l % 1.
2%y 1=Kpeyy) (S5 (17711 78598y, Xy *

= 2 2,,-1 - o1 = .,
(xk+l-xk+1) (Szz(l-r )1 -(§k-§k)sll(§k-§k) .
(3.6)
Using the fact (see (30)) that
-a~lgvra~! (3.7)
1+v'a- 1y

-1
(a+vr)™l = 2

with

-1
U= -§,5;;, V=S, and A =S5, .

it follows that

-1 -1
$.78,.5,,S
- s;i o 21712721 11 (3.8)

-1 -1
(5117512522521 ! s s 51

22 “21711712
Thus, relation (3.6) becomes

=y (g-1 -1 20,1, = .
M = (%, -F,) (8178)585:577) [S55 (11 ] “ixemKy)

& 2 -l -l k73 ]
20x,1-Ky 1) (855 (1=2T) 1 78918,y () * +
= 2 2,1 _
(e Egey) (82 (1777
k73 -1 Y ! -2 -1 <7 3
(2K )S17 Ky ) '+ (oK )8y (X )

= 1, o iyan2
(% 1=K 1+551517 (%) ' 1) (3.9)

522(1-r )

QED.




Observe, first, that AM > 0. Thus, as variables are
introduced into the regression, the Mahalanobis distance
cannot decrease. The resulting increase is equal to the
standardized square error of predicting Xperl from the
regression of the newly introduced variable xk+l on the
variables xl,xz,...,xk which were already in the regression
equation. The standardization is done by dividing the
resulting squared error by the conditional variance of
variable Xperl (conditioned on variables xl,xz,...,xk).

This standardization implies that the expected change in M
should not depend on the strength of the relationship
between xk+1 and xl,xz,...,xk. Obviously, &M = 0 if and
only if Xievl is on the hyperplane defined by the regression
mentioned above. The Mahalanobis distance is a unitless
quantity whose size does not depend on the units of the
particular problem. For a given problem, x and X are, of
course, fixed. Over all x and X, however, drawn from a

k-variate normal population, the quantity:

n 1 < -1 = 4\
Lt T ECE)S TEcE) )

is distributed like Hotelling's two-sample Tz, and, so, it

has the distribution of

n-k k,n~-k

where F, . _. is an F variate with k and n-k degrees of
’
freedom. This distributional property of M implies that

its expected magnitude depends only on the number of
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variables, k, and is independent of the specific variables
involved. Thus, the relative magnitude of the realized M
for a particular subset of variables can be assessed.

The result of this theorem will be used in what follows
and, in particular, in Chapter IV where the computational

aspect of the problem is investigated.

The Prediction Interval

As was mentioned earlier, all standard variable selec-
tion techniques share the property that, for any given num-
ber of variables in the regression equation, the optimal
set is the one which minimizes the sum of squared residuals
or, equivalently, maximizes RZ. Th? point under prediction
may be rathecr non-analogous to the historical data (large M)
when we consider the set of variables identified as "opti-
mal” by the criterion used. 1In such cases, the model will
be required to extrapolate. The term "extrapolation" is

used here in the sense that the variance of prediction

2 ' -1 ' = 2 .J; -_—M
CxX'P TR = 0%IE + g (3.10)

is large, relative to the inherent error variability 02.

Extrapolation should be avoided whenever possible for two
reasons:

1. The hyperplane defined by the regression eguation
may fit the available data rather well, but this may be
true only in the region of the X-space in which data are

available. The true model for the full X-space may well
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be quite different in the vicinity of x thus producing
substantial bias.

2. Even if the variables used are the ones generating

the response values Y, the variance of prediction and, as
a consequence, the errors at points removed from the bulk
of the data may be large due to the variances associated
with the estimates bo’bl""'bk' These variances may be
large, compared with 02, especially in the presence of multi- @
collinearity among the retained variables. |

Ideally, variables which are extraneous to the problem
as well as variables whose presence does not contribute
significantly to the explanation of the variability in Y
should be detected. Dropping such variables from the
regression equation has the effect of reducing the variance
of prediction at x. This, of course, should not be done at
the expense of excluding variables whose inclusion would
greatly enhance the fit of the data as measured by the mean
square error. Often, there are several models which come
close to the "optimum" in terms of R2 and other measures of
model aptness based on residual analysis. 1In those cases,
by using a slightly sub-optimal set of predictor variables
(slight decrease in RZ), it may be possible to substantially
improve the degree of analogy (decrease M) and thus reduce
prediction variance.

To illustrate this point, suppose that two single-

variable models are to be compared in terms of their

expected predictive performance at x = [10,0]. Suppose,
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moreover, that the following statistics are associated with

each model and the corresponding variables:

R,‘Zr,x = 0.90, X, =10, s, =4,
1 Xy 1
2 -—
. =0.92, X. =10, S. = 4.
Ryix, 2 X,

Suppose further that there are n = 10 observations on Xl,

X, and ¥, and that SY = 4. If the corresponding mean square

2
errors, MSEi, are used to estimate 02, the prediction

MSE')‘ (Xl}:-) X. 1l = 1 2
i j i i i ’ 14

are equal to 0.180 for the first model and 1.144 for the
second one. Notice that the corresponding Mahalanobis dis-
tances are Ml = 0 and Mz = §,25. Even though the second
variable results in a slightly better fit for the data, the
point x = [10,0] is so non-analogous on this dimension
that it might be preferable to use variable xl for
prediction.

The width of the 100(l-a)% prediction interval at x
is a numeraire which reflects the situation discussed above
and, thus, it may provide a reasonable basis for choosing
among competing models. For computational simplicity, a
monotone function of the width will be used, namely the

square of the half-width, viz.

msp[dtl , M_ (3.11)

W n n-l]

* Fieail,n=k-1

,ﬂwuuw-—-nulllllllllIIllllll!lllll!-l!u-...---g....,......T?_,__‘

R e U

e ————— e =



where F is the a-th fractile of an F distri-

l-2;1,n-k-1
bution with 1 and n-k-1 degrees of freedom. This measure,
W, combines fit (MSE) and degree of analogy (M), with a
factor F which penalizes for using too many variables
{increasing k) or excluding points from the data base
(decreasing n). In this form, the role of analogy as
measured by the Mahalanobis distance becomes evident.
Failure to consider this factor in selecting a set of pre-
dictor variables could have a marked effect on predictor
precision as measured by the width of the prediction inter-
val, and, as a consequence, on the accuracy of prediction
as measured by the prediction error.

As mentioned in the previous chapter, the position
taken in this dissertation is that bias is not an issue that
can be dealt with directly in unstructured situations with
whish empirical model building is concerned, since the popu-~
lation model (true model) is unknown. Nevertheless, it
might be of interest to note that the mean square error of

prediction of the elusive population model is

2 n+l M

Y!X[T+E--I]' (3.12)

E(y-?)z =3

Thus, if one were willing to assume that the postu-
lated empirical model is the same as the population model,
then the last two factors in W would be an estimate of the
mean square error of prediction. Notice that the factor

is only a penalizing factor for lost error

Fl-a;l;n-k--l




degrees of freedom. For any given set of n observations and
any number of variables, k, the set of predictor variables

which minimizes W, minimizes also this estimate of E(y—?)z.

General Observations aAbout W

The quantity W has been defined as "the squared half-
width of a 100(1-a)% prediction interval at x". Its statis-
tical validity as a bona fide 100(l-u)% prediction interval
is vitiated if the model is selected by minimizing W, just

as the distributional properties of R2

are no longer valid
when the data is used to build a model which minimizes MSE
(11). After the data have been looked into and, say, the
model with smallest W is selected, the confidence associated
with that interval will be less than 100(l-a)%. Therefore,

an interval centered at y with width éwl/z

should not be
thought of as a 100(l~a)% prediction interval but only as
a relative indication of the predictive performﬁnce of the
various models. Although no concrete statements can be made,
it is hoped that the improvement in precision will be accom=~
panied by an improvement in prediction accuracy. For this
reason, the quantity will be referred to as "W" instead of
"prediction interval" in what follows.

Another important point is that, even when the model is
specified in advance, the validity of the formula used for

the prediction interval rests on the usual assumptions on

the erzors as they were stated in the introduction. If

the residuals associated with a particular model indicate
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gross violations of those assumptions on the part of the

errors, W becomes a meaningless statistic. Judging the

predictive performance of various models on the basis of
such a statistic would be quite speculative at best. There-
fore, when W is employed in order to select subsets of
variables, it is important that a check on the assumptions
be made. Appropriate transformations on the variables
should be made before judgement on the basis of W is
attempted. This observation is supported by the analyses
on data sets which will be discussed in Chapter VI.

Given that M cannot decrease as variables are added to
a model, W may decrease only if the mean square error
decreases by an amount sufficient to offset the increase in
M and F. Thus, augmenting a k-variable modellto reduce W
will always reduce MSE, so that W-optimal models will tend
to cont2in fewer variables than MSE-optimal models. This,
in itself, is a rather desirable property in view of the
commonly held opinion among statisticians that the minimum
MSE criterion frequently results in considerable overfit-
ting. Of course, this parsimony of the "minimum W" cri-
terion is not guaranteed. The selection may take different
paths for the two criteria. The opposite phenocmenon was
observed in only two occasions in the data which were
analyzed.

For large n, W will be dominated by the factor MSE,
since M is divided by n-l. This agrees with our intuition

since, for a given M, the point x will be inside the
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k~dimensional scatter of the data if n is large more so than
if n is small. Thus, a hyperplane which explains the data

i well should be expected to predict the new point well too.
Otherwise, for a given MSE and a given M, extrapolation as
it was defined earlier, is more extreme with a small n than
with a large one. The increased influence of M as n de-
creases, however, may have an adverse effect on the fit. A
variable may be excluded that is found desirable on other

considerations. It may be prudent in such cases to consider

a slightly W-suboptimal model by forcing the desirable vari-
= able into the regression equation. Investigations confirm
that such an occurrence is possible. At the same time, it
was found that a careful analysis will reveal these anomalies.
An investigation into the variables which are excluded by
the minimum W criterion may provide insight into aspects
of the problem which, otherwise, would not have been gained.
The W criterion partitions the p-dimensional X-space
into well defined and clearly bounded regions in which dif-
ferent models are optimal. For purposes of illustration, a
simple two varible example was used in order to obtain
insight into the nature of the various regions. The result
is depicted in Figure 2. Six observations on two predictors
xl and x2 and the response variable were used, marked by
"4", For each one of the four models containing the con-
stant term, W was expressed as a function of x1 and X,.

2
; The "equi-W" curves (level curves) were computed and drawn.
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The model producing the smallest W in each of the regions
defined by the level curves was found.

Notice that, as x traverses any of the boundaries, the
model selected by W changes. As a result, point predictions
change in a discontinuous way as a boundary is crossed.

This is a somewhat disconcerting property of the criterion,
even though W changes continudusly. As was emphasized
earlier, however, W is offered as a screening aid and not as
a method for determining one, and only one, model to be
labeled "best". Seen in this light, for certain points Xx,
the existence of more thaﬂ one model with almost equal W's
should indicate the need for further investigation of their
properties.

The interpretation of the situation for points in the
regions where no variable is retained also merits attention.
A point x in such a region is very non-analogous to the
historical data (large M). Yet, if only the constant is
used, as is suggested by W, the point prediction will be

none other than the mean of the historical response values.

The analyst should view this occurrence as a suggestion that:

x and X are sufficiently non-analogous so as to vitiate the
entire regression approach to prediction in the situation
at hand, at least if the regression is to be based on the
given body of data and the predictor variables under
consideration. Even though one can obtain a good fit be-
tween Y and X in the historical data, there is no strong

justification in expecting y to be analogous to Y if x and




X were generated by different processes. Thus, a phenomenon
which seemed anomalous at first glance, acts as a valuable
warning for the analyst using the W criterion. In fairness
to more standard approaches to prediction it is acknowledged
that the careful analyst should become aware that something
is amiss upon observing the large prediction interval at x
based on his selected "best fitting" model.

As mentioned earlier, W combines fit with analogousness.
It is often desirable to know the relative sizes of these
two factors for a given model. A graphic display can yield
insight into data and enable the analyst to perceive pat-
terns in them which might be difficult to perceive from
numerical procedures and tabular displays. In the situ- °
ation at hand, such a display of the magnitudes of M, MSE
and W could help the analyst choose from among several com-
peting models, according to his judgement of the relative
importance of each factor. For each subset size k such a
display can be constructed by first observing that MSE and
W are expressed in squared Y units. In order to get

unitless quantities, note that
2 2
MSE = SY(n-l)(l-R )/ (n=-k=1) (3.13)

and, therefore,

W(n-k-1)

2
- (1-R%) M + ol (3.14)
Pyeas1,n-k-15¢y
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Taking natural logarithms of both sides of (3.14) and
rearranging terms,
nz-l Win-k-1) 2
nM + =—==] = Lnl _ 5] = Ln(1-R%). (3.15)
F1-a;1,n-k-15¢

So, for fixed k, points representing models with equal W's
lie on a line with slope -1, on a graph of {n{M + (nz-l)/n]
versus Zn(l-Rz). The intercept of such lines is determined
by W. For a giYen W, models with small MSE and large M will
be located high on the "equi-W" line, while models with
large MSE and small M will be located on its lower part.

For a clearer picture of the relative sizes of W across
model sizes, k, these lines may be labeled by W (or the
width of the prediction interval). Since n (1-R%) <0, it
migﬁt be preferable to set the origin at, say, (-5,0), so
as to have most of the points in the first gquadrant. Two
examples were used, differing on the total number of vari-
ables involved. For the first example, the data on page 366
in Draper and Smith (10) were used. This data set involves
thirteen observations on four predictor variables. The
response variable measure the heat evolved during the
hardening of cement containing chemical substances which
are measured by the four predictors. The last row was
deleted from the data base and predicted. The resulting
plots for 1, 2 and 3-variable models are shown in Figures 3,
4 and 5 respectively, with the lines labeled by the width

of the prediction interval. Models which were not selected
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by any criterion are marked by a "+". For those which were
selected, the legends indicate the corresponding criteria.
(The models marked as FORWARD and BACKWARD will be discussed
in the next chapter).

As can be seen from these displays, some of the two-
variable models seem to be pointed cut by several criteria.
The model with variables Xl and xz results in better fit of
the data as its location in the graph indicates. However,
the point under prediction is rather non-analogous to the
data along these variables. Thus, the model with variables
x3 and x4, although it is associated with a larger MSE
(smaller Rz), results in a slightly smaller W. These two
models and, perhaps, the one with variables xl and X, and

4
the one with variables xl, x2 and X, would be the ones

4
passing the first screening and scrutinized further.

For a second example, the data on page 352 in Draper
and Smith (10) were used. They consist of twenty-five
observations on nine predictor variables. The response
measures the pounds of steam used monthly in a glycerine
procducing operation. The eighth row was set aside and
predicted. This row was selected since it has been dis-
cussed in (l). A preliminary investigation suggested that
variables X3 and x5 were not important carriers of infor-
mation in the sense that they were not involved with any of

the good models and they were the first ones to be elimi-

nated by a BACKWARD procedure based on minimum reduction




in Rz. To reduce computation requirements and clutter in

plots, they were not considered for further study. Figures
6-11 depict the situations. Because of the large number of
models, only two "equi-W" lines were drawn for each graph
for reference purposes across model sizes. They correspond
to the smallest and the median W's and they are labeled by
the width of the prediction interval.

This is a well behaved data set in that the models

2 of their

suggested by most criteria have the largest R
respective sizes. Also, as the graphs indicate, the point
under prediction is rather analogous to the data along all
dimensions (variables). The scales on the axes are the same
on all graphs, making clear the general increase in the
Mahalanobis distance as the number of variables increases.
The model with variables XZ' X4, xs, xa, Xq and X1g’ @S
these are labeled in Draper and Smith, was selected by the
minimum W, the minimum MSE and the minimum Cx criteria.
Notice that the model suggested by the Mean Square Error of
Prediction criterion (variables X4 and x7) seems to be
unacceptable on all other counts. It provides a Rz = 0.423,
which is very small compared with those of many other models.
As a result, the prediction interval associated with it is
very wide. This should underscore the fact that variable
selection criteria are not universally applicable and can
often lead to models which a careful analysis may f£ind un-

acceptable. Therefore, they should be used with prudence

and be accompanied by a careful analysis of the models they
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suggest along more than one lines. Model building should
not be reduced to a mechanical selection of variables by

any criterion.

In this chapter, the W criterion was developed and
discussed. Its intuitive appeal in the specific problem of
prediction at a known point is based on the fact that it
has the potential of focusing attention to an aspect of the
problem which could have been ignored otherwise. As is the

case with every data analytic technique, the art of using

this criterion to advantage must be developed through
experience. In subsequent chapters, this methodology will
be applied to real data sets in an effort to understand its

properties. This should help in learning how to exploit

its strong points and avoid its wéaknesses.




CHAPTER IV
COMPUTATION

A Branch and Bound Algorithm

The need for the selection of a subset of variables
becomes more imperative as the number p of potential pre-
dictors becomes large. At the same time, since the compu-
ting time needed for a search of all 2Py possible regres-
sions increases exponentially in p, it is clear that, for
large p, a full search may be well beyond the budget con-
siderations of the analysis. An algorithm which will iden-
tify the good models without actually performing all 2P-1
regressions is, in such cases, highly desirable. Such
algorithms exist for criteria which are simple functions of
the sum of squared errors. The most efficient of these take
advantage of the fact that the sum of squared errors asso-
ciated with a model is a lower bound on the sums of squared
errors of its submodels. In 1974, Furnival and Wilson (12)
suggested a branch-and-bound algorithm whose efficiency is
enhanced by the fact that the search is made by a simul-
taneous traversing of two trees, one for bounds and one for
regressions. A semi~-SWEEP operator is employed for the
entering or removing of variables and the matrices needed
at each stage are available from previous SWEEP's. This
algorithm is the most efficient one known to date and

problems involving 30 variables are well within its reach.




An attractive feature of this algorithm is that the "best"
m models for each subset size k can be cutput without great
loss of efficiency.

The technique proposed in the previous chapter is not
simply related to the sum of squared errors, since it in-
volves the coordinates of x. Thus, for a given model size
k, the model with smallest sum of squared errors may not
yield the smallest W. This implies that the bounds utilized
in Furnival's algorithm cannot be used for a similar search
for models with small W. Somewhat less sharp bounds can
nevertheless be obtained so that, with minor modifications,
Furnival's approach can be adapted to the case at hand.

A univariate one-sample t2 statistic is defined by
tz = n(x-i)zlsz, where X is the mean of a sample of size n

on a variable X, x is an independent observation on the same

2

variable and s“ is the sample variance of X. This is the

exact univariate analog of Hotelling's one-sample Tz. Actu-

ally, T2 = n(x-X)s”*

(x-X)' is the square of the univariate
t-ratio of that linear combination of the variables which
inflates the t-ratio the most. (For a clear explanation of
the derivation of 2 see (17)). A univariate t-ratio cor-
responds to one such linear combination and therefore T2
must be greater than or equal to the largest squared uni-
variate t-ratio. All p univariate t-ratios can be computed

2

and saved. Thus, a lower bound@ on T“ associated with any

set of X's is obtained. Since the Mahalanobis distance

e =i AR R il o
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M= Tzln, a lower bound is also obtained on M. Recalling

(3. 11) ’
SSE . n+l M
W= Pl-a;l,n-k-l n-k-ll n T n-ll’

if WI denotes the smallest W currently available for models
of size i at any stage of the search, then the submodels
derived from a model of size k need not be examined if the
sum of squared errors of that model is greater than:

n(n-l)(n-i-l)w;

2 2 4
(F) _a;1,n-k-10 ~1+t(4))]

for all i = 1,...,k-1, where t?i) is the i-th largest uni-

variate t2. Notice that this quantity needs to be calcu-

lated only when a model which improves W; is encountered.
Por sharper bounds, this quantity can be recomputed at
every stage using for t%i) the i-th largest univariate t2
among the variables in the model under consideration.
Empirical experience with this algorithm suggests that
it is approximately 5-10% less efficient when applied to W
than when it is applied to other criteria which are simple
functions of the sum of squared errors. As noted by

Furnival, time requirements are heavily data dependent.

This observation obviously applies to the W criterion as

well, in which case efficiency will also depend on the value

of x. The importance of this last dependency diminishes
for large n. In general, the efficiency of this algorithm

when applied to the W criterion should be such that problems
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of comparable size can be handled without much additional

investment in computing time.

A Stepwise Algorithm
It is often the case that a suboptimal stepwise search

is used in lieu of computing all regressions, especially in ;
an early screening of a very large number of variables.

Various stepwise procedures have been widely used for this
purpose, all of which are variations of FORWARD selection
and BACKWARD elimination (see e.g. (10)). These techniques, ¢
based on the SWEEP operator (29), were designed for criteria

‘which are simple functions of the residual sum of squares

and, hence, must be modified to deal with the W criterion.
The computational complications associated with the W cri-
terion can be overcome by exploiting the monotonicity pro-
perty of Theorem 3.1. The SWEEP operator must be briefly
considered first, in order to locate the guantities needed
for a PFORWARD selection and a BACKWARD elimination algorithm
based on the minimum W criterion.

Given an originally symmetric positive definite matrix
A, the SWEEP operator applied to the k~th diagonal element
of A is defined as follows:

Step 1: Let D = A

Step 2: Divide row k by D.

Step 3: For every other row i # k, let B = a .

Subtract B x row k from row i. Set a, = -B/D.

Step 4: Set a,, = 1/D.




If a SWEEP is performed on diagonal element i, variable X,
is added to the current regression equation unless xi is
already in the regression in which case xi is removed.
Observe that the result of a SWEEP is an absolutely sym-
metric matrix, i.e., a matrix such that aij = aji if an
equal number of SWEEP's have been performed on elements i
and j, and aij = -a.ji otherwise. Thus, only the upper tri-
angular part of A need be computed.

For the purposes of the W criterion, A must be set
initially to the corrected sums-of-squares-cross-products

matrix of the data, i.e.,
x'x gyl

A=
XX X'y

where X in this section will denote the original matrix X

corrected for the means 21""'§p and Y will denote the
original vector Y corrected for the mean Y. 1In more familiar
statistical terms, the matrix A is the covariance matrix of
the data multiplied by (n-1l). Variables are entered and
deleted by sweeping on the corresponding diagonal elements

of A. After each SWEEP, statistics on the regression of Y

on the variables which have been swept in and submodel

information are available. To illustrate, suppose

-
hfh hE 5L
LI E £t TR 77 FRN ¥

g, Y§, ¥
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where §l contains some of the columns of the data matrix .

Sweeping A on the diagonal elements of éiél yields:

By ' ~1 (X'X )"1 1 ) ) SN o
(%:%,) &) HE 0 &I Y
= -1 ’ [
SO - +2 500 ST ST ¢ MY
-1 ., " 3
e TSP SR P 9 rmd |
e -~ 1
where M, = I-X. (X'X 1X' h
1 %, (#1%y)

21°
!
The rightmost column contains the regression coeffi- '

cients and the sum of square errors of the regression of Y

on the variables contained in - The part (al 1 1§i§2
gives the coefficients of the regressions of each variable
in ¥, on the variables in £, and the diagonal elements of
;énlgz give the sum of square errors of the same
regressions.

For a PORWARD selection algorithm, the reduction in SSE
and the increase in the Mahalanobis distance resulting from
the inclusion of a variable among those in X, can easily be
computed. To illustrate, suppose that variables xl,...,xk
have already been swept into the regression. The gquantities
needed for the computation of the new W, say wj, resulting

from the inclusion of variable xj, 3 = k+1,...,p, are:

k -
Ry = ¥ - izl Bijxi + 121 szxi . 4.1)
2
sjj(l r’) = Bjj/(n 1) (4.2)

and




2

SSE5 = Bn11) (p+l) ~ B§(k+1)

/Bjj (4.3)

where Sjj(l-rz) denotes, as in Chapter III, the conditional
variance of xj on xl,...,xk. Therefore, using the mono-
tonicity property of Theorem 3.1, the new W resulting from

the introduction of variable Xj into the regression equation

is
SSEy 1.1 . (X.-%.)2
Wy = Fla;l,n-k-17n°Kk=2 ‘n T @1 " “%;;l‘ I

where M is the Mahalanobis distance associated with vari-

ables xl,...,xk. Thus, variable Xj is the next variable

to sweep into the regression, if Wj = min{wi, i = k+1,...,pl.
For a BACKWARD elimination algorithm, the variable to

be swepg out is determined as follows:

If variable Xj, j=1,...,k is deleted, the error sum of

squares becomes

2

SSE Bj(p+l)

+ ‘s .
/13]J (4.5)

3 = Bip+1) (p+D)

For the new Mahalanobis distance, the coefficients of the
regression of xj on X, L =1,...,k, 2 # j need to be

computed. These are given by

Ci = -Bij/Bjjl i = 1,--o'k' 1l # J- (4-6)
Thus,
. - k _ k
Xy = Y - 121 C;X, + izl C,X,-
isg i#5
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Again using Theorem 3.1, W becomes

G 42
SSEj [n+l LM (Xj Xi) Bjj] 4. 7)

W. =F
3 l-a;1,n=-k n-k n n-1 (n_l)z

where M is as noted above. Thus, variable X. is the next

variable to be swept out, if Wj = min{wi, i=1,...,k}.

Given the monotonicity result of Chapter III, in FORWARD
selection the computed M is added to the current Mahalanobis
distance, while in BACKWARD elimination it is subtracted.

The current Mahalancbis distance must be saved at each stage.

The computing time requirements for such algorithms
pose no limitations on their applicability in problems of
sizes normally encountered in practice. At issue is the
degree to which the models selected for each subset size
differ from the ones found optimal by the criterion employed
when a full search is done. In order to gain some insight
into this, the two stepwise procedures were applied to the
data sets used in Chapter III. The models selected by the
FORWARD selection and the ones selected by the BACKWARD
elimination are shown in Figures 3-1l1. In the four variable
example, the algorithms identified the better models for
each subset size. The BACKWARD procedufe identified the
best one-variable model, while the FORWARD procedure located
the best three variables. They both missed the overall
optimal model (x3,x4), however, the two~-variable mocdel
selected by BACKWARD elimination had a W very close to the

optimal one.
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In the second example, depicted in Figures 6-11, the
two procedures selected the same model for all model sizes.
Observe that, in all cases, the models selected by these
sub-optimal procedures coincided with the minimum~W-optimal
ones. This, of course, is the most desirable situation.
The degree to which it will happen in practice depends on
the particular set of data. However, if these two examples
offer any indication, it seems that the stepwise procedures
can fruitfully be employed either in thinning down a large
number of variables to a subset on which a full search by
means of the branch-and-bound algorithm will be economically
feasible, or by themselves. The better models of each sub-
set size should be identified at least in the cases of well

behaved data sets.
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CHAPTER V

ON THE INFLUENCE OF OBSERVATIONS ON W

Theory and Discussion

The influence of individual observations on the various
quantities of interest in a statistical analysis of data has
received considerable attention in the recent literature
(8), (13), (18), etc. It is argued that cbservations which
significantly affect (have high leverage on) such quantities
ought to be given careful scrutiny. The object is to detect
"outlying" points and to investigate them further, examining
whether the analysis can be enhanced by setting them aside.
Possible errors of transcription, for instance, might be
discovered. More realistically, in cases of designed ex-
periments, such knowledge may prove useful in suggesting
ways in which the design may be improved. Taking more
measurements in the space of the explanatory variables could
imprcve the analysis.

Identification of outliers does not necessarily imply,
or argue for, the rejection of such points. It is only
meant as a tool for the analysis of data and should be used
with caution. Nevertheless, the inclusion of faulty data
can adversely affect the analysis to a substantial degree.
This point has recently received attention in the liter-

ture. Hoaglin and Welsch (18) studied the "hat" mactrix

|
|
|

T

LMy -ty
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¥'. They suggested an approach combining the
information carried by the hat matrix and the studentized
residuals in an effort to discover exceptional and/or dis-
crepant points.

Cock (7) proposed the distance i

D, = [(b=b;,) §'E(b-b ;,) ]/ lxMSE)

(1) =(i)
where g(i) denotes the estimated coefficients obtained

without observation i, as a measure of the influence of the

i-th data point. He, too, related such influences to the

hat matrix, the studentized residuals and residual
variances.

Welsch and Peters (36) suggested methods for examining
more than two observations at a time and placed emphasis
on the computational aspects of these diagnostic measures.

Gentleman and Wilk (13) developed analysis of variance
methods to identify outlying subsets of K observations.

The investigations above are mainly concerned with the

influence of outliers on the parameter estimates rather than
prediction. In the context of this investigation, an obser-
vation (or group of cbservations) may be termed exceptional
if W changes significantly when that observation (or group
of observations) is set aside and the least squares calcu-

lations are performed on the reduced data set. The effected

change in W will be investigated by means of the ratio of

z prediction variances. Some new notation will facilitate the

exposition of this chapter.
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Partition the matrix X as {5',55}', where X, is n xp
and .98 is n,xp with n,+n, = n. The vector Y is partitioned
in like manner into components-¥, and 32.. Without loss of
generality, assume that the observations in (§2,12) are set
aside. Let 32 and si denote the mean square errors of the
full model and the submodel, respectively. A superscript
(1) will indicate that the quantity to which it is attached
has been computed from the regression using 51 and !1 only.

Let e, and e, be the n,x1 and nle vectors of residuals cor-

responding to ¥, and ¥, respectively when the full data base

is used. In accord with the convention stated above, then

(1) (1)
2

&, and e would be the vectors of residuals correspon-~

ding to ¥, and Y, resulting from fitting the model to X, and

Y A well known result (for example see Bingham (4))

1.
yields

2 ' -1l,1y-1
, _mepleleett-p @y Tl le

where I denotes the n,xn, identity matrix. Letting

2 sz[lf§(§'§)'lx']
Y© - - =1 (5.2)
sy [1+x(¥1%,) "x')

i.e., the ratio of prediction variances at x and substi-

tuting (5.1) into (5.2), it is easy to show that

n,- |
v2 - nl_p x QxH, (5.3)

where

sdinonaihamsion: ik anddin oy —— _ . . . ey )




T U
Q=1+ ~% —
(nl--p)s1
and
[ -1 '
(l+x ('YX “x')
[Lex (518, 'x'1

Using another identity from (4), namely

- ) -1,,7-1_(1) - teyv=lor 1 (1)
g = I %) X)) "e7 = -5 E'Y "Xle,
(5.4)
Yz can also be written as
2. M (1),

YY" = n-o xQ (5.5)

where
(l) -1 1 (l)
'[I+X, ( )
Q(l) -1 4= 52 §1§1 32 ) )

(nl-p)s1

Relations (5.3) and (5.5) express the ratio of prediction
variances, 72, in terms of quantities which yield to intui-
tive interpretations. These gquantities are studied next, in
an effort to isolate the characteristics of observations
whose deletion results in a significant change in W.

It is clear that a reduction in W is obtained if, and

only if,

2> F /E

1-a;l,n1-p l-a;1,n~-p°
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Consider the three factors comprising Yz. Clearly.,
{(nl-p)/(n-p)} < 1. The following theorem shows that the

last factor also has this property.

-1
1+x(X'%) “x'
Theorem S5.1: LR 1 1.
1+x(§l§1 X

Proof: It suffices to prove the result for the case

n, = l. Since {'X = ;iﬁl + 5532 and
' -1, ' -1
-1 -1 Wisy! 5252‘3131’

(5'§)
1+, (518;) X3

= (%1%,

it follows that,

(x( l
x(§1g,) xt = x(g'p x4 5ify) Kz . (5.6)
1+§2(§1§1) xz

Since (;igl)'l is positive definite, the second term in the
right hand side of (5.6) is also positive, completing the
proof.

The second factor in (5.5) is greater than one. This
is so because the matrix I+x (X3 51 l;i is positive defi-
nite, being the sum of positive definite matrices and,
therefore, [I+§2(§i§1)-lxi]-l is also positive definite.
Since only the last two factors in Yz depend on the compo-
nents of §2, they will expose the characteristics of obser-

vations which affect W. The factor

(1). -1 1 (l)
t§ . [I+§2(§1§1) g
ﬁ

$
is studied first.

"y




68

. Observe that |I+X 2 (%:%,) l;él is a measure of the col-

lective distance of the points in §2 from the rest of the

data. This is meant in the following sense: Clearly, if

n, = 1, then

2

n+l

-1 M
B) K St e

I+§2(

where M is the Mahalanobis distance of the point X, from the

data base X,. When n, > 1, a large lI+§2(§i§1)'1§é| will

2 i
indicate that the points in §2 are either far from the Q

centroid of 51' or that their covariance structure is dif-

ferent from that of £ or both. Thus, for a reduction in
W, the determinant of I+X,(XiX; 'lgé must be smallg That

is to say, other things being equal in (5.5), points near
the centroid of §1 are more likely to cause W to decrease
when they are omitted. This should be intuitively appealing.
For the variances of the estimated coefficients to be small,
the data points must be widely dispersed in X-space.

Next, observe that the residuals gél)

must be large in
absolute value. In other words, the Y values of the obser-
vations to be set aside must be discrepant in the sense
that, when the model is built on the remaining n, obsexva-
tions, (;2,32) are not fit well. Cook (8), Hoaglin and
Welsch (18) and others have linked the residual tg with the
influence of the set (¥,,¥,) on the coefficient estimates.

Also, as should be obvious, si should be small. For diag-

nostic purpoiea, it will be more convenient to look at the
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factors comprising t§ simultaneously. Notice that

2 I+x (X'§1 lgé] is the usual estimate of the covariance

sp!
(1)

matrix of the residuals e, (which, incidentally, are the i

basis for Allen's PRESS criterion). Therefore, tg can be

viewed as a collective studentized residual corresponding to

the omitted set (§ In fact, when n, = 1, tg reduces to

(1), (1)

5; — s2 ez

s211+x, ( ~lys
1145, 58y 75

2,) -

which is exactly what is called the studentized residual.
When the rows in §2 have been specified in advance, the

quantity

: (L, ' -1, 1 (1)
L B, o S T ) T e

n%
is distributed as F with n, and n,-p degrees of freedom

since the numerator is distributed as ozxz(n )/n , inde-

e

pendently of the denominator which is distributed as
czxz(nl-p)/(nl-p). Thus, observations whose collective stu-

dentized residual is significantly large ought to be inves-

tigated further. It should be noted that t, depends not
only on the individual residuals, but on their correlations
as well. Although in practice observations whose studen-
tized residuals are small rarely reduce W significantly when
they are combined with others, this is not always the case.

Cases have been observed where the pair which causes W to

decrease the most consists of observations which, if deleted

Gttt dionidhe e e e PR T [
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individually, would cause W to increase. To such a "mask-

ing" effect the last factor in 72 may contribute signifi-

cantly. One way to look at ;

1+§(§'§)-1

Lex (532 T x"

is as a measure of the relative distances from x to X and %
respectively. As noted above, this factor cannot be
greater than one. For a maximum reduction in W, it should
be as close to one as possible. This would imply that the
deletion of §2 does not greatly increase the Mahalanobis
distance from x to the data base. This factor can also be

studied in terms of residual correlations. Notice that

1

) [Lx (538, ) Tx - (Lex (g P %'
1-n2 = 1 - 2 L . - (5.7)
sty
Recall that the residuals y-¢ (1) and Yz-Qél) have a samp-

ling distribution which, under the usual assumptions on ¢,

is normal with mean vector 0 and covariance matrix

“5"-‘31’-15' x(x'x)'lgi )

=]=]
C=g .
-1 -1,
i, (%%, & 1+4, (515 %3
Simple algebra will show that n2 is the square of the multi- 4
ple correlation between y-§(1)and Y2-§§1). This observation '

allows the following intuitively obvious statement: For a

reduction in W, the deleted observations (),,Y,) should not




contribute significantly in the explanation of the vari-

ability in y, beyond that which is provided by the retained
rows (§1,Xl).
It may be of interest to note the similarity between

row deletion and variable selection. In the latter, the

(€)+(§)+...+(§), P < n submodels are investigated, in ordex

to £ind the minimal, in some sense, subset of variables

which adequately explains the data. In the former, the

model is kept fixed and the possible (?)+(g)+...+(§ ),
n, << (n=-p) data subsets are explored in order to find the
maximal set which is adquately explained by the model. The
postulated model form is held fixed, as the notion of
"outlier" is valid only relative to a prespecified model
form. The notation above indicates that n, must be small
relative to n-p, in order to have a sufficient number of
error degrees of freedom left. Notice that, as n, + n-p,
the sum of the squares of the residuals approaches zero,
thus creating a false sense of security. In practice, if
observations were to be deleted one at a time as long as
some measure of £it, or W, "improved”, most of the time all
error degrees of freedom would be exhausted. This can be
seen as follows: Observe first that the hat matrix

H= x(;';)-lg' is a projection matrix, i.e., HxH = H, and
as such, it has all its eigenvalues equal to Zero or one
((16), Thrm. 1.7.2, p. 39). The number of nonzero eigen-

values is equal to the rank of H. In the full rank case,
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rank (H) = rank (X) = p. Hence, trace(H) = p, i.e.,
n

i n
i=]1
of the full model to that of the reduced one is equal to

i1 = P Also, since the ratio of the mean square error

[(n—p—l)/(n—p)l[1+t§/(n-p-1)1, it follows that the mean

square error will decrease if and only if an observation

with tg > 1 is deleted. Finally, let !
I
2
$2 =2
=72 ‘* -1 .
s [1—§2(§'§) 35]
2 2

Then t2 > 1 <=> £° > 1. These observations and the lemma

which follows will help in proving Theorem 5.2 below.

Lemma S.1. Let 21429000002y be any set of non-negative

n
- 1
numbers. Let z = = izlzi' and let a,,a,,...,a  be another

n

set of non-negative numbers such that |} a; =n. Then
i=]1

there exists i such that z /(a;z) > 1.

Proof: Suppose that zi/(aiE) < 1 for all i. Then,

n n n n
z, < a,Z forall i <=> } z. < Jaz<=> }z <Z ] a
11 im1t gmd is1't el
n n n
<=> J z. <nz <= § z. < } z,, which is obviously false.
i=1 * i=1 * =1t

Note: Either there exists an i such that zi/(ai?) > 1,

or zi/(aiz) = 1 for all i.

Theorem 5.2. With probability one, there exists at
least one observation which, if deleted, will cause the

mean square error to decrease.
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Proof: Equivalently, using the observations made above,

there exists at least one i for which

2
e’
t? = >—= > 1. |
s (l-hii) ;
Write {
2 } i h
s“(1-h..) = (1-h..) —_—
ii ii’ ;2 n-p
n(l-hii) 1 ? ez f
n-p no oy i ¢

Notice that

n n((l=h..,) n
e T Ll (ngy)
i=l P Pijm1 :
n
* np (n-p) n. ;
Now,
2
e,
£? = X

8.0

e ?
(1-h,.) ==
ii’ n=p ;2

and the claim follows from Lemma 5.1 by letting

n(l-hii)
n=p

=1 [

- % 2
2, = e, zZ = e; and a, =
i ! ja] & i
With respect to W, this result implies the following:
Given that the factor l-n2 is, for most observations, close

to one, especially when n is large relative to p, there will

e G0 T




tend to exist at least one observation whose deletion from

that data base will make YZ > F /

l—a;l,nl-p » thus

Fl-a;l,n--p
causing W to decrease. In practice, this seems frequently
to be the case. Therefore, a decrease in W should not be
the objective in determining observations to be set aside.
These results suggest that a maximal n, should be chosen in
advance, according to the analyst's a priori belief about
the maximum possible (or likely) number of outliers, and

such that n, << (n-p). Then, subsets of n, or fewer obser-

2
vations whose deletion greatly reduces W should be examined
in view of the discussion in the beginning of this chapter.
It shculd be reemphasized that the object of such analysis
is_pot the rejection or observations, but rather the
gaining of insight about the data under investigation.
Points whose presence in the data base has a significant
gffect on the quantities of interest should be scrutinized.
If the validity of such observations is beyond question,

the reasons for such behavior should be investigated. This
should be done in an effort to gain a more penetrating in-
sight into the data under investigation which insight might
suggest otherwise overlooked remedial action such as the

need for collection ¢f more data in certain regions of the

explanatory variables' space, when that is possible.

Computation

For computational purposes it will be preferable to

express Y2 in terms of the full model. For this purpose,




tg can be written as

t2 = (n;-p)t?/ (n-p-n,t?) (5.8)
where
-1, -1
e [1-%, ("0 ~x.17Le
e s 2225 =2 =2 (5.9)
nzs

Observe that t2 and tg are one-to-one monotone functions of

each other. Using their relation, tz can be transformed to
an F statistic. Also, using the identity found in (27)

p. 29,

2 1

1-n? = [L+x(E'® " 1x') / (lex(z'p izl o+
(5.10)

EH T I-5, 3D T T, D x )

An expression for Yz in terms of the full model is now

obtained if (5.8) and (5.10) are substituted into

2
2 PP <5 2
Y hep (1 + nl-p] (1-n7). (5.11)

This formula can be used as a building block for a compu-
tational procedure. However, one should be aware of the com-
putational instability which is inherent to the problem of
deleting a row (or block of rows) from a regression. See
Chambers (6) for a discussion on the subject. The

symmetric matrix




X'X X'y X x'
= = = - = -
'Y ¥ o0
| A=
I 0

-1—!
can be set up. ' i

After sweeping on the diagonal elements of X'X,

fept @elyr @l @y :
ry-vyg iy e -§ ?
. L i S 1P 4 RS
-1-x(3'%) 'k’

where e'.denotes the 1*n vector of residuals. If n, = 1, the
quantities needed for Y2 are available in B. 1If n, > 1, the

matrix

must be formed, and the SWEEP operator must be applied to
. -1

the diagonal elements of I—§2(§'§) §i.
It may be of interest to note that the change in the

regression coefficients when rows (52,12) are deleted is

given by

sb = p-b‘V - (§'§)'135[I-§2(;‘5)’1351'122 (5.12)
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after some algebra using partitioned matrices. The guanti-

ties needed for Ab are produced in the matrices above.

Row Deletion and Variable Augmentation -
An Equivalence

Suppose that, instead of deleting the last n, rows from
g, an expanded X matrix is formed which will be denoted by
*
X. g* is formed by appending to X n, columns with zeros in

TOWS 1,2,...,n1, and an n,xn., identity matrix for the last

2 2

n, rows. i.e.,

(M5
*
L9 ey

Let also x = [x,0], where 0is a lxn2 vector of zeros.

Now,
x! ] X'
X* , §* =] 2§2 =2
L % g

A fundamental identity on the form of the inverse of a par-

titioned matrix (see for example (16), Theorem 8.2.5) yields

' -1 - (! -l"]
el o (£1%,) ($:1%,) "%

(x'g) X
-3, (313" 1+;2(§'1§1)'1§.1J

. LS |
Using this form of (X '} ) -,

» * * -1 * -1
x (F'3) "x' = x(51%) x

SN vrsn s -

R Py

TYDRIO. AN
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obtains. So, obviously,

*® * * -l * -l
1+x ('8 ) x ' o= Lex(§iF,)  x'-

A 2
Consider the relationship between si and s* = g*'g*/(nl-p),
i.e., between the mean square errors for the model with the
last n, rows deleted and the model with the new columns

appended to X respectively. Clearly,

e = xxgh gy
AR U U
l_g-z %, I‘i:;(z(;(igl)'l I+X2(§i§l)'l§é
5 M |
o1 l_i‘-z
AN At A P
) Xz_j! ] 1, ) ll_o )
So,
ere’ = (2{1)'r2')(2{1)'2')' = g{l)'g{l).
Therefore,

*2 L *

The above relations suggest an algorithm for detecting out-

liers. 1If this approach is used, any determination about




which rows are outlying must be based on the estimated co-
efficients corresponding to the dummy variables. A signi-
ficant coefficient indicates that the corresponding obser-
vation is not adequately explained by the rest of the data
and it needs its own parameter. This becomes clear if one
observes that

' 1, vy | (1)
ey | Y]

= v V= lery | K
'_—’52'52‘%‘1’#1’ 84 e J

Now the last n, observations are fully explained by means

of the coefficients gél)

. (Compare also the expression for
g* found earlier). The significance of these coefficients
ig, therefore, identical to the significance of the resi-

él). The test statistic té/n2 is simply the usual

duals e
partial F for testing whether a set of regression coeffi-
cients is zero in the presence of other explanatory vari-
ables. The F distribution can be used only if the set
(;2,22) has been specified in advance, and not after the
data have been inspected and, say, the maximum has been

chosen to be tested.




CHAPTER VI
APPLICATION 1

In this chapter, an application of this technique in

the field of management science is discussed. The perfor-

mance of the W criterion is compared with that of other com-
monly used selection criteria as well as with that of models
proposed in independent studies by other investigators. The
field of application, parametric cost estimation, is re-
ceiving considerable attention (31), (33), (34). Parametric
cost estimation is a widely used method of obtaining single
valued predictions of the cost of a new item, such as a
weapon system. It deals with predicting the cost (response-’
variable) of a system by means of explanatory variables
(predictors) such as system characteristics or performance

requirements. This procedure is based on the premise that

the cost of a system is related in a quantifiable way to
the system's physical and performance characteristics. The
expression of this quantifiable relationship is in the form
of an estimating equation derived through statistical
regression analysis of historical cost data on systems
which are, more or less, analogous to the proposed system.
Recent experience in weapon system acquisition programs

has underscored the differences between cost estimates and

realized costs. This has given impetus to the search for

better cost estimating techniques.




§1

Consider the case of predicting the cost of a new
aircraft based on its planned physical and performance
characteristics, and the costs and characteristics of air-
craft built in the past. The role of analogy is obvious
in this situation. Which historical aircraft and which
variables should be used? The Mahalanobis distance seems
-& well suited to answer these questions. Any variable se-

lection technique which ignores the issue of analogy, and
which fails to give some consideration to dimensions (vari-
ables) along which there is a marked dissimilarity between
the proposed system and the historical data, may lead to
gross errors due to extrapolation. The W criterion has the
potential of bringing this issue to the attention of the
analyst, and should be used as part of a thorough investi-
, gation. In what follows, optimal models under different

criteria are "automatically" computed and used in an effort

to compare on a fair (or equally unfair) basis the relative
performance of the W criterion. It should be underscored
that this is done partly because of considerations of
mathematical convenience and it may not, in all instances,

agree with good practice.

The data base is given in Table I. It consists of 23
observations on 12 physical and performance characteristics
of different single engine jet fighter aircraft built over
an interval spanning the years from 1947 to 1969. The
rasponse variable, Y, is the flyaway unit cost (in 1972

$100,000) of the hundredth aircraft built for each type.

————rr o~
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The variables, denoted by xl,xz,...,xlz, are the values of

the following characteristics:

=

= Wing Loading Ratio
= Agpect Ratio
= Full to Empty Weight Ratio

= Thickness-to-Cord Ratio

Moo MR

W 0 NV e W Ny

= Lift to Drag Ratio
= Total Avionics Input Power in kva

= Maximum Speed in knots (Clean, Combat Weight)

TN R T R SR i

= Weight Empty in 1lbs

oI o R o I o

= Rate of Climb in ft/min, (sea level, combat weight F
and power) )

X,. = Combat Ceiling in feet

10

Xy, = Ferry Range in nautical miles

X,, = Sea Level Static Thrust (max) in 1lbs.
(For detailed methodologies of data determination and term
definitions see (31)). !

Each observation was set aside, the models found opti-
mal under six criteria were computed based on the remaining
22 observations and the deleted row was predicted. Various !
statistics were also output such as M and MSE for each
model. The criteria compared were:

1. Minimum MSE

2. Minimum Cx

é 3. Maximum F
: 2

4. R” employing a subjective "elbow rule"
5. MSEP

6. Minimum W (nominal 95% prediction interval).

e e




For the R2 criterion, the optimal model for each subset size

was output. The rule employed for the final selection was:
Use the model with largest R2 whose size is such that the
next largest size does not increase R2 by more than one per-
cent. Of the six criteria, the maximum F was the most

parsimonious. It selected variable XB in all cases and it

consistently outperformed the others in terms of the size
of the absolute error of prediction. The minimum W cri-
terion did, on the average, worse than the others. The
case of the F-lliA\aircraft is worth mentioning, as it
clearly represents a situation which warrants special
aétention. Its non-analogousness to the rest of the data
shows up clearly in every sort of residual analysis. His-
'toriéally, each military flight component needed a new air-
craft. The Air Force needed a new interceptor, the Navy
wanted a carrier launched attack aircraft and the Marines
required an aircraft capable of ground support missions.
The then Secretary of Defense, Robert McNamara, decided to
have one aircraft built that would meet all requirements
thereby achieving tremendous savings. The tri-service
design resulted in the F-111A which, at the time, was the
most sophisticated, fastest, heaviest and costly single
engine jet ever built. Its design included a radical wing
which could swing forward or backward depending on desired
flight characteristics. (Incidentally, the F-1llA experi-~

enced all kinds of technical problems, was not well received

by the three services and is often referted to as

£ el 3, TN O B
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"McNamara's Second Edsel".) 1Its cost was underestimated i

dramatically by all models. Due to the fact that its weight

does not conform to its other characteristics (as conformity
is defined by the other aircraft), the Mahalanobis distance |
associated with any model which included weight as a pre-

dictor was excessively large. For this reason, weight was

not included in the minimum W model, in spite of its general
importance (it showed up in every model that was encountered).
The error of prediction associated with this model was far
above that of every other model. However, when weight was
forced into the regression, the new minimum W model clearly
outperformed all others. There was only a 3% increase in W,
which was still much smaller than the W's of models selected
by other criteria. This point will be discussed again in

what follows.

All criteria performed poorly on the untransformed data
in comparison to models suggested by others (Columbia
Research Corporation (31), Clemson University graduate
student projects in Math 805 [unpublished]) after a com-
plete analysis. This suggested the need for further inves-
tigation of some of the models for signs of misspecification.

The residuals were analyzed for the models which were en-

countered most frequently. In all cases, there were clear
indications of gross violations of the assumptions on the
errors. The residuals exhibited clear patterns when

plotted against the X's and against the sorted fitted

values. Plots of Y versus individual X's showed lack of




linearity which, although not necessary for the linearity

of the multi-variable model, tended to confirm information
in other plots. The scatter of Y versus x8 though was more
or less linear. These clear indications of model misspeci-
fication tend to explain the better performance of the most
parsimonious criterion and the poor showing of the minimum
W criterion. As mentioned earlier, the maximum F criterion
always selected variable X8 which is both a significant
variable and linearly related to Y. The poor performance
of the minimum W criterion is explained as follows:

This criterion is based on a statistic (prediction
interval width) the proper interpretation of which is based
on the usual assumptions on the errors. When those assump-
tions are grossly violated, the-Mahalanobis distance may no
longer be a reliable measure of analog. This is the second
point to be considered when this criterion is employed.
Appropriate transformations on the variables must be per-
formed before the selection is made. Also, after the
selection, an analysis of the resulting residuals is neces-
sary in order to validate the assumptions for the selected
models. Only models which seem to satisfy those assumptions
should be compared by means of this criterion.

The problem of appropriate transformations is not a
simple one. Theory and common sense may suggest answers to
this question but in unstructured situations a thorough
investigation is usually called for. There are many pos-

sibilities and a thorough investigation is needed. As a

.
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step in making the problem feasible, all variables were

transformed to their natural logarithms. This transfor-

mation is often considered appropriate for cost data (33)
and, in fact, was employed in all the previously cited

competing models (31). The same preliminary plots and i
residual analyses aluded to above indicated that models ‘
selected after this transformation did not exhibit signs f
of gross misspecification. The same selection procedure é

was used. The minimum W criterion was based on the loga-

rithmic units. Point predictions and prediction errors in
the original units were also calculated and compared. This
was done by applying the exponential transformation to the
point predictions. The fact that this approach is known to
produce biased estimates of the conditional mean (14) shoﬁld
not affect the comparative value of the estimates. Trans-
formation of prediction intervals into the original units
is not easily defined so as to make comparisons meaningful.
This was not needed and was not attempted. Table II shows,
for each aircraft and each model, the errors of prediction
in both units. For each aircraft and for each model dif-
ferent from the minimum W model, the "gain" was also calcu-

lated, as defined by the difference of the absolute error

of that model from the absolute error of the minimum W
model. Gains are shown in Table III. (The entries of
Tables II and III have been rounded to two decimal places
because of space considerations.) A positive gain indicates

a better prediction by the minimum W model. A single zero
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indicates that the model selected coincided with the mini-
mum W model. The gains are shown for both original and
logarithmic units. An asterisk in Tables II and III in-
dicates that the aircraft under prediction was at a large
Mahalanobis distance along the variables selected by the
corresponding criterion. For each criterion, Table IV

shows the average absolute error and the average percent
absolute error in logarithmic units. The average percent
absolute error is the average absolute error as a percentage
of the observed response value. The average percent gain

is defined similarly and it is also shown, together with

the sum of gains, in Table IV for the five other criteria.
Table V shows the corresponding statistics in the original
units. From these two tables, it can be seen that the mini-
mum W criterion outperformed all others on all counts on the
average over the 23 observations. The minimum Ck criterion
did comparably well and, as can be observed from Table III,
it selected the same model as the minimum W criterion more
often than any other. 1In view of its relation to the problem
of prediction discussed in Chapter II, this should not be
surprising. Notice also that this criterion did better

than the minimum W criterion more often than not, although
the difference in some cases was very small. The F104-A
aircraft was predicted better by the minimum W model in the
original units. The performance of the Rz criterion was
also comparable to that of the minimum W criterion, however,

a definite statement cannot be made due to the fact that
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TABLE IV. Performance Statistics in Logarithmic Units

2

Min MSR Min C Max F R MSEP Min W

k
Average |err! 0.385 0.262 0.456 0.266 0.356 0.253
Avrg. § |err| 17.33 14.43 22,70 14.50 16.78 12.15
Total Gain 3.03 0.21 4.68 0.31 2.37
Avrg. % Gain 5.18 2.28 10.55 2.34 4.62

TABLE V. Performance Statistics in Original Units

2

Min MSR Min C Max F R MSEP Min W

k

Average |err| 8.636 4.308 7.838 4.459 7.366 4.195
Avrg. § |err| 42.13 33.55 S54.33 33.84 39.66 25.15
Total Gain  102.15 2.59 83.78 6.06 72.92
Avrg. % Gain 17.15 8.40 29.18 8.69 14.50

TABLE VI. Average Nominal 95% Prediction Interval Widths
and Frequency of Coverage in Logarithmic Units

2

Min MSR Min ck Max F R MSEP Min W
Avrg. Width 1.385 1.250 1.778 1.287 2.288 1.223
Coverage 86.96 91.30 91.30 91.30 95.65 95.65
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the RZ model is not objectively defined. 1In fact, if a more

parsimonious rule had been employed, the performance of this
criterion would have deteriorated.

As was mentioned earlier, the minimum W statistic will . i
tend to underestimate the true 95% prediction interval.
The average interval was calculated for each criterion, as
well as the percentage of observations which were actually ;
covered by the corresponding prediction intervals. These
are shown in Table VI. It is a pleasant surprise that, in
spite of the observation above, the prediction intervals
associated with the minimum W models covered the observed ]
responses more often than the others. The occurrence of i
this phenomenon in the problem at hand may not provide fimm
ground on which a claim that it will happen in general can
be based. Nevertheless, it seems that the prediction inter-
vals associated with the minimum W models are well centered
about the expected value of y. This is a very desirable
property.

Referring to Table III, the observations which the
minimum W model failed to predict well were examined further.
This was done in an effort to identify common features
which might serve as a warning in a careful analysis. The
F9F-8 is the only case in which the W criterion was defi-
nitely outperformed by four of the other criteria. The

This

model selected consisted of variables xz,xs,xs and x9.

model was never selected for any other observation by any

criterion. More importantly, variable xlz was conspicuously
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absent. This variable was present in all the models with
the smaller prediction errors for each observation, and it
would seem desirable to force it into the final predictive
equation. When this was done, i.e., when the model with
smallest W among those containing this variable was
selected, the resulting errors of prediction in logarithmic
and in original units were 0.056 and 0.259 respectively, a
definite improvement. The new model, although it repre-
sented a 30% increase in W, still had the smallest W of all
models selected by the other criteria.

In the case of the F-104A the situation is not as clear.
The minimum W criterion again failed to select variable xlz.
However, its error in logarithmic units was not much greater
than the errors of the minimum Ck' maximum F and Rz cri-
teria which did better and, in fact, in original units the

2 nodels.

error was smaller than that of the minimum Ck and R
A closer investigation revealed that the Mahalanobis dis-
tance of this observation from the variables in the minimum
MSE, minimum Ck and R2 models was very large. In contrast,
in the case of the F9F-8, the reduction in the Mahalanobis
distance attained by the omission of variable X;, was not
as dramatic. When this variable was forced into the mini-
mum W model for the F—}04A, the logarithmic error was the
smallest observed, (-0.35) although the error in the origi-
nal units became slightly larger (-6.68).

The above observations suggest the need for a careful

examination of such cases. It is as important that

P
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extrapolation be avoided, as it is that important variables
be retained. The way in which these two considerations
should be balanced against each other is a matter of judg-
ment on the part of the analyst. The minimum W criterion
has the potential for calling attention to such issues.

The case of the F-80 aircraft is the one clearly
favoring this criterion. Considerable reduction in the
Mahalanobis distance was attained, without worsening the
fit, by the simple switching of certain variables while
retaining the important ones, namely x8 and xl2' {As in
the case of the untransformed data, variable Xg was con-
tained in all of the better models. It was always se-
lected by all criteria except MSEP.

The models selected by each criterion and the corre-
sponding observations are given in Tables VII through XII.
For each criterion, the models selected were ranked
according to their frequency of occurrence and their ranks
were used for labeling purposes. The models selected by
the MSEP criterion are all marked by "x". Observe that
twenty different models were selected by this criterion,
none of which was ever selected by any other criterion, due
to the fact that they were all associated with small R2
values. In view of the fact (mentioned in Chapter II) that
this criterion ignores the MSE (and every other measure of
fit) of the postulated submodels, this should not be sur-

prising. Observe also the large average prediction

interval.

e S Y

W

prare-Ait

e e A A 2




TABLE VII. Minimum W Models and Aircraft Predicted

A/C Variables

X X

1

g F-80
; FH-1
: F2H-1 3
F7U-1
F-84E
F3D-1
F-86H
F9F-8
F4D-1
F3H-1N
, F-102A
] F-100D
f FJ-4
F-104A
F11F-1
F-105B
F-101C
F-106B
F-4B
F-5a
F-4J
F-111A
F-8E

N NN =
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N NN WD W
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TABLE VIII. Minimum MSE Models and Aircraft Predicted
A/C Variables
X X X3 5 8 10 11 *12

F-80 3 3 3 3
FH-1 1 1 1 1 1
F2H~-1 6 6 6 6 6 6
F7U-1 1l 1l 1 1l 1l
F-84E 5 5 5 5 5
F3D-1 1 1 1 1 1
F-86H 2 2 2 2 2 2 2
F9F-8 1l 1l 1l 1l 1
F4D-1 1 1 1l 1 1
F3H-1N 7 7 7 7 7 7 7
F-102A 8 8 8 8 8 8 8 8
F=-100D 1l 1 1 1 1
FJ-4 1l 1 i 1l 1
F=-104A 2 2 2 2 2 2 2
Fl1F-1 1 1 1 1 1
F-105B 2 2 2 2 2 2 2
F=-101C 1 1l 1 1 1
F-106B 2 2 2 2 2 2 2
F-4B 1 1l 1 1 i
F-5Aa 2 2 2 2 2 2 2
F-4J 1 1l 1 1 1
F~11l1lA 4 4 4 4 4 4
F-8E 2 2 2 2 2 2 2

- SR oot




TABLE IX. Minimum Ck Models and Aircraft Predicted

a/c Variables

X X

1 72

F-80 3 3
FH-1
F2H~-1 4
F70-1
P-84E
F3D~1
F-86H
F9F-8
F4D-1
F3H-1N
F-102A
F-100D
FJ-4
F-104A
FllF-1
F-105B
F-101C
F-106B
F-4B
F=-5A
F=4J
F-111A
F-8E

e I I N S e O R S U = . N T Sl ST I S R o W SV Ry
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TABLE X.

a/c

F-80
FH-1
F2H-1
F7U-1
F-84E
F3D-1
F-86H
F9F-8
F4D-1
F3H-1N
F-102A
F-100D
FJ-4
F-104A
FliF-1
F-10SB
F-101C
F-106B
F-4B
F-5a
F-4J
F-111A
F-8E

Maximum F Models and Aircraft Predicted

Variables

X, X X5
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TABLE XI.

a/C

F-80
FH-1
F2H~1
F7U-1
F-84E
F3D=-1
P-86H
F9F-8
F4D-1
F3H~-1N
F-102a
F-100D
rJ-4
F-104A
FllpP-1
F-105B
F-101C
F-106B
F-4B
F-5a
F=-4J
F-111a
F-8E

R? Models and Aircraft Predicted

Variables

X X

i S i R e N i i i s = B I S R S IR

X3 X4

3

Xg

Ll R A e o R e R e e R o o o o S T

X

6
3

X

7
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TABLE XII. MSEP Models and Aircraft Predicted

A/C Variables

X) X X3 Xy X5 Xg X5 Xg X9 X145 Xp; Xp
F~-80 x x x x
FH-1 x x
F2H-1 x x X x x x X X X
F7U-1 x x x x
F~-84E x

F3D-1 x
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With respect to the minimum W models, it seems that

most early and later aircraft were predicted by one model,
while most of the ones in the middle of the time scale

were predicted by another. Three aircraft required their
own models. The F2H-1 was not predicted well by any cri-
terion and it was the one observation whose deletion from
the data base reduced dramatically the widths of the pre-
diction intervals associated with the minimum W model for
all but one of the other observations. The studentized
residual (discussed in Chapter V) which was associated with
this aircraft was very large (4.2 on the average) for each
and every aircraft under prediction. The F9F-8 was selected
for deletion in the one remaining case. (In general, the
performance of the minimum W criterion improved when one
observation was deleted for each prediction. A detailed
exposition is not given since the deletion of observations
is not advocated in this dissertation.) The one observation
whose deletion reduced W the most in each case, and the
percent reduction in the width of the "prediction interval"
are shown in Table XIII. The new "prediction intervals"
contained the observed y's only 86.96% of the time.

Finally, it should be emphasized that the purpose of
this analysis being the gaining of insight into the rela-
tive performance of the minimum W criterion, certain aspects
of the problem (which a complete analysis should not fail
to consider) where not stressed. Data determination and

model form specification, for instance, received only

seccndary attention.




TABLE XIII.

A/C

F-80
FH-1
F2B-1
F70-1
F-84E
F3D-1
F-86H
F4D-1
F3H-1N
F-102A
F-100D
FJ-4
F-104A
FllF-1
F-105B
F-101C
F-106B
F-5A
F-4J
F-111A
F-8E

a/cC
Deleted
F2H-1
F2H-1
F-102A
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1
F2H~1
F9P-8
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1
F2H-1

Observation Deleted and Maximum Reduction in
Width of the Prediction Interval for Each Aircraft

Reduction

(%)
33.23
31.06
26.01
25.20
25.17
33.22
16.39
25.48
25.59
25.51
31.31
29.53

7.37
26.08
28.79
25.20
25.49
39.37
32.78
29.64
31.78




Other data sets were also analyzed in less detail. A

limited simulation study was conducted, in which the cor-
relation matrix, the number of variables and the number of
observations were allowed to vary. Although a complete
investigation would be a large project and was not attempted,
the observations made during these studies seem to support
the ones made on the aircraft data. 1In the absence of g
variables which appeared fundamental to the predictive
equation, the minimum W criterion consistently outperformed

the other criteria whenever it succeeded in reducing a

large Mahalanobis distance. This was more pronounced in
the cases where the correlation structure involved high ‘
multicollinearity. In these last cases, large Mahalanobis
distances were frequently reduced significantly by the
. exclusion of variables which caused the multicollinearity.
Although in no way conclusive, it may be of interest
to note that the minimum W models performed better (along
the same lines discussed above) than models suggested by
other investigators after careful analyses on the aircraft

data. This in no way means that mechanical selection of

variables is preferable to a careful investigation. The |
minimum W criterion should be used as part of a complete

analysis. As is the case with virtually every data ana-

lytic technigue, pedestrian application can result in

curious and misleading conclusions. There is no substitute

for a careful, reasoned analysis.

L 31
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CHAPTER VII
DISCUSSION AND CONCLUSIONS

This investigation has been concerned with the problem
of predicting the response at a known point in the space of
the explanatory variables in the context of multiple linear
regression. This is the problem with which parametric cost
estimation is concerned and it is encountered frequently in
other applications. The view taken in this dissertation is
that the issue of analogy of the point under prediction to
the historical data should not, in such cases, be ignored.

The Mahalanobis distance has been studied as an appro-
priate measure of analog in higher dimensions. The width of
the prediction interval is a numeraire which combines this
measure of analog with the mean square error, which is a
standard measure of the fit provided by a given model.

Thus, the prediction interval offers itself as a tool with
which variables can be screened and models brought in the
foreground that are reasonable candidates for the purpose of
such analyses. The experience gained by applying this meth-
odology to real and simulated data sets suggests that the
careful analyst should benefit from its use by gaining
insight on an aspect of the problem which otherwise would
not have been brought into focus. As was mentioned earlier,

the careful analyst would certainly become skeptical about a
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model which, although otherwise reasonable, produced a very
large prediction interval at the point under consideration.
However, the W criterion has the advantage of providing a
clear and unconfused warning by taking the issue of analogy
into consideration during the screening process. The W cri-
terion, just as any other, should not be used in a pedes~
rian way as a method for pointing to "the one best model”.
The notion of a model which is best for all purposes is not
defined in unstructured situations which comprise the bulk
of empirical model building. Even for a specific applica-
tion, a claim about the knowledge of such a model can not be
defended on uncontestable grounds. Therefore, selection
criteria ought to be viewed as screening aids and used as
such. This point, although generally accepted, is all too
frequently forgotten in practice.

There is a second point on which the W criterion may
prove to be a valuable aid. The exclusion of variables
which are known to be important from other considerations
ought to be taken as a warning about the peculiarity of the
point under prediction. Selection criteria may occasionally
point to models which the analyst finds unacceptable either
because of the variables which they contain (or exclude) or
because of the fact that the underlying model assumptions
seem to be violated. In such cases, the usual statistics
lose their validity and risks attendant with the use of a

suspect model are introduced. If no reasonable model can be

|
|
|




found which passes model aptness considerations, the regres-
sion approach to the problem based on the given body of data
should be questioned.

In parametric cost estimation where the cost of an
object system must be predicted based on historical data on
"similar" systems built in the past, the notion of analogy
often presents itself conspicuously. It is conceivable that :

the proposed system may reflect, in the values of the expla- ]

natory variables associated with it, technological develop-
ments and/or performance characteristics different from
those encountered in the historical data along certain
dimensions. A new weapon system, for instance, would proba-
bly not even be considered if such were not the case. A
model which fails to explain the historical data adeguately
would be unreasonable to use for the prediction of the new
system. It seems equally unreasonable, however, to devote
all effort into fitting the historical data, disregarding
the relation of the proposed system to them. The W crite-
rion can (and should) be employed, together with other con-
siderations, so that both aspects of the problem will be
given deserved attention if the final model is not to be
grossly myopic.

Models which are found good by more than one criteria ' ﬁ

are highly desirable. The W criterion can be employed to

suggest several models which can then be compared with those

suggested by other criteria. This procedure will focus the
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attention of the analyst on a (hopefully) small number of
models which must be carefully scrutinized before a final
choice is made.

The distributional properties of W under selection pose
a highly complex problem which has not been investigated in
this dissertation. Another problem which has not been con-
sidered is the following: The statistic W is expressed in
the units of the response variable used in the selection
process. Often, various transformations on the response
variable are considered in the same problem. How is one to
compare the W's associated with models based on different
transformations on the response variable? This is a ques-
tion which can only be answered on a case by case basis. 1In
some cases it may be a simple mathematical problem, while in
others it may defy an objective definition.

Finally, although an extensive simulation study was not
conducted, such a study may be a worthwhile endeavor that
can provide useful insight into the questions raised in this

investigation.
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