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ABSTRACT ’

N
The small sample performance of several AR(l) estima-

tors is investigated through the use of Monte Carlo compar- )

ison studies. The performance of these estimators is com-
pared with respect to the criteria of bias, mean squared i
error, mean absolute error, and mean squared prediction
error. Statistical performance groupings at various fixed
parameter values from (0,l) are determined based on pair-
wise multiple comparisons of estimator performance results.
Two types of two-step adaptive estimators are devel- ﬁ
oped. One type relies on the use of only standard estima-
tors, while the other type includes ad hoc modifications to

standard estimators. The efficacy of performance of these

estimators is validated through the use of additional Monte
Carlo runs based on three different conditions of parameter
selection for data generation. The sensitivity of these
estimators to their use with larger sample sizes is also
investigated.

Based on the various simulation results, recommendations
regarding estimator selection for use in applied estimation

are given. The applicability of the adaptive estimators is

discussed and an example illustrating their application in i

forecasting an economic series is given.,
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CHAPTER 1

INTRODUCTION

A considerable amount of the econometric literature
deals with studies involving economic time series. Since
the publication of Box and Jenkins' book [3] which discusses
forecasting with Autoregressive Integrated Moving Average
(ARIMA) processes, an increasing number of studies have
dealt with some aspect of ARIMA modeling and application.

The form of an ARIMA process is

X, = let_l-----Bpx = ¢ s =9 (1.1)

t-p S qft-q

where X, is a continuous random variable with

{xt: t =0, %1, 2, ...}

being a discrete parameter time series, and
{et: t =0, *1, 2, ...}

is a sequence of independent and identically distributed

random variables (shocks) with mean zero and wvariance 02.

The Bi's are referred to as autoregressive parameters and
the ei's as moving aéerage parameters. In regards to ARIMA
modeling, Box and Jenkins have said:

The relating of a model of this kind to data is usually
best achieved by a three stage iterative procedure
based on identification, estimation, and diagnostic
checking.

By identification we mean the use of the data,
and of any information on how the series was
generated, to suggest a subclass of parsimonious
models worthy to be entertained.

P




By estimation we mean efficient use of the data
to make inferences about parameters conditional
on the adequacy of the entertained model.

By diagnostic checking we mean checking the
fitted model in its relation to the data with
intent to reveal model inadequacies and so to
achieve model improvement. [3], p. 171.

This dissertation only considers the estimation stage
for one particular subclass of ARIMA models, the ARIMA
process in which p = 1 and g = 0, which is referred to as an
autoregressive process of order one, or simply AR(l). 1In
this case (1l.1) reduces to

X

+ e (1.2)

t = BXe t -
This dissertation deals primarily with problems surrounding
parameter estimation and forecasting of AR(l) series. These
problems are investigated through the use of Monte Carlo
simulation studies. 1In these Monte Carlo simulations,
series are generated by a process which is known to be sta-
tionary AR(l), i.e. with |B8|<1l. However, for the short
series generated in this study, there is no guarantee that
all of these series will appear stationary and exhibit clear
AR(l) characteristics. Still no model identification or
diagnostic checking are done on these simulated series, and
adequacy of the AR(l) model for fitting the series is
assumed. Possible influences of this assumption on the
interpretation of the results will be discussed in Chapter
VII.

Interest in the AR(l) model arises in the modeling of

many economic series. The yearly and quarterly earnings of

firms, real GNP, and consumer goods price index are among




the series which have been modeled as AR(1l) series. The
discussion of whether commodity futures prices and stock
prices have any "structure" has centered around the question
as to whether the series are random walks (AR(1l) with 8 = 1).
However, the researcher who identifies AR(1l) models for

short series is faced with problems in obtaining accurate
parameter estimates. It is well-known that the ordinary
least squares estimator is a biased estimator of 8. For
short series, the bias can be substantial. Thus, many alter-
native estimators have been proposed in an effort to overcome
this bias problem. But it remains unclear as to which, if
any, of these estimators provide adequate performance in the
correction of bias, or whether such estimators are better in
performance in terms of mean-squared error. In addition, if
the objective is forecasting, other problems arise. Orcutt
and Winokur [30] have shown that even if corrections are
made for estimator bias, resultant predictive performance of
the fitted models may be no better or even worse than the
predictive performance of fitted models using the original
biased estimator. This indicates that we are dealing with a
situation where performance in terms of any individual cri-
terion such as bias, mean-squared error (MSE), or mean-
squared prediction error (MSPE) must be evaluated separately.
Just as reducing the bias of an estimator does not guarantee
a reduction in MSE, small bias and/or MSE does not of itself

guarantee good predictive performance in terms of MSPE.




Previous investigation of these estimation problems

seems to be rather incomplete. Consider, for example, the
criterion of MSE. Several authors have done Monte Carlo
studies comparing different sets of estimators. Conflict-
ing results sometimes emergea bééause of the small number
of replications used. For instance, Copas [9] found, using
100 replications of sample sizes of 10 and 20, that for

B < .6, MSE of the maximum likelihood estimator was smaller
than for ordinary least squares. But Thornber [36] found,
for 100 replications of sample size 20, that MSE of ordin-
ary least squares was noticeably smaller than for the max-
imum likelihood estimator for B > .7. Moreover, different
parameters and sample sizes used in different studies make
it difficult to make comparisons across studies. The same
problem holds for the criteria of bias and MSPE.

Thus, we consider it appropriate to conduct a study
encompassing a set of estimators that are either well-known
or have been shown in the literature to be effective accord-
ing to one of the three criteria (bias, MSE, and MSPE) and
to conduct a sufficiently large scaled study to determine
the relative effectiveness of those estimators according to
each of the three criteria.

All of the previous Monte Carlo comparison studies
have considered estimator performance at particular fixed
values of B. Since no one estimator is best for all para-

meter values, this information is of little practical value

in applied modeling where the value of B is certainly




unknown. Thus, there is a need to seek better estimators,
estimators which exhibit better performance characteristics
throughout a range of values of B, without having to assume
any strong prior knowledge of the true value of 8.

The resultant objectives of this research are the
following:

(1) To investigate the small sample performance of

several estimators through the use of a large-

scaled Monte Carlo study:;

(2) To make statistical comparisons of the results
of these sampling studies;

(3) To use any information gained in the estimator
comparison studies to aid in the development of
estimation strategies for use in application as
functions of the various estimation criteria.

In Chapter II, the estimators which are chosen for
evaluation in this study will be stated with a summary of
previous findings about some of them in the literature. The
criteria of bias, mean absolute error, MSE, and MSPE will be
defined. The empirical definitions of these quantities as
used in the Monte Carlo studies will also be given. 1In
Chapter III the design of the Monte Carlo simulations are
discussed, including a brief discussion of the choice of
sample size and selection of the number of replications.

The results of estimator performance comparisons at fixed
parameter values are given in Chapter IV. Estimator per-
formance with regard to each of the four criteria of
interest is discussed. Comparisons with the results of

previous studies are made where possible. In Chapter V the

proposed strategy for applied estimation is given. The




development of two types of adaptive estimators are out-

lined. Both types of adaptive estimators are based on a two-
step procedure; i.e., obtaining a preliminary estimate at the
first step, the value of which determines the choice of a
particular estimator for use at the second step in obtaining
a final estimate. The first type of adaptive estimators is
based on the use of only standard estimators in the second
step while the second type of adaptive estimators includes
the use of some "ad hoc" modifications to standard estimators
for use in the second step. Adaptive estimators of each

type are constructed for the criteria of mean absolute error,
MSE, and MSPE. The empirical determination of the adaptive
estimators will be discussed in this chapter. In Chapter VI,
the results of additional Monte Carlo runs which validate

the effectiveness of the adaptive estimators are reported.
Comparisons between the adaptive estimators and standard
estimators are made under three different conditions of data
generation. The first comparison is made for data sets gen-
erated with B drawn randomly from the interval (0,1). This
condition of generation most closely simulates conditions of
practical application where the true parameter is unknown,
and one has only a vague idea about its true location.
Additional estimator performance comparisons are made for
sets of data generated with 8 drawn randomly from each one-
tenth unit subinterval of the interval (0,1). Finally,
comparisons are made for sets of data generated with the

fixed B values considered in the comparisons discussed in

oy eme




Chapter IV. In Chapter VII some of the limitations of the
findings of this study are discussed. Included is a dis-
cussion of the sensitivity of the adaptive estimators to
changes in sample size and in particular their applicability
in estimating longer series. Chapter VIII concludes the
dissertation with a discussion of the application of the
results of this study. Based on the results of the estima-
tor performance comparisons, recommendations for applied
estimation are given. Some examples illustrating the poten-
tial areas of application of this research are discussed,
and an example demonstrating the application of the adaptive

estimators in forecasting an economic series is given.

e R e e




CHAPTER Il

BACKGROUND LITERATURE

Estimators Considered

Most of the eleven estimators considered in the Monte
Carlo performance evaluations either appear in the time
series literature or are mentioned in econometric texts.
These include the least squares estimator and several of its
modifications. With the exception of the maximum likelihood
estimate, all of the estimates are based on combinations of
sums of squares and sums of cross products and are therefore
easy to obtain.

The first estimator considered is the ordinary least
squares (OLS) or Gauss-Markov estimator. This estimator is
referred to by Box-Jenkins as the "conditional" least
squares estimator. It conditions on an initial value of the
series which occurred prior to the observation period. This
estimator is derived by the least squares principle of mini-
mizing the sum of squared differences between observed and

fitted values. That is, the estimator minimizes
T N 2
ss(B) = ] (x. - x (B)°, (2.1)
t=1

where x (g) is the fitted value. If we let

X, (B) = E[xtlxl, Xogs eeer Xp_q) = Bx._;




then (2.1) becomes

T
_ - 2 - 2
SS(B) = (x,-Bxg) +t£2(xt Bx, )¢ - (2.2)
If the unobservable initial value Xq is set equal to its
unconditional mean which is 2zero, minimization of the result-

ing sum of squares gives

T
t£ *e¥e-1
by="7F%"T—"""- (2.3)

2
X

[N

i 1.3

t

The sampling distribution of b1 is unknown. Hurwicz
[19] showed that bl is a biased estimator of B and suc-
ceeded in evaluating the bias exactly for samples of size
three. Asymptotic expansions for the mean and variance of
bl were obtained by Marriott and Pope [(24] and Kendall [21]
and extended by White [38] and Shenton and Johnson {33].
The estimator bl is one of the estimators considered in the
studies of Gonedes and Roberts [16], Dent and Min [10],
Copas [9], Orcutt and Winokur [30], and Thornber [36].

The form of the OLS bias was approximated (to order
1/T) by some of the above authors to be -28/T. Using this
approximation as a correction term for b1 results in the
second estimator considered:

b, = {t/(T-2)]1 - bl . (2.4)

This estimator was considered in Copas' [9] comparison stud-~
ies, and a similar correction for OLS slope bias (where an
intercept term was estimated from the data) was considered

by Orcutt and Winokur [30].
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The third estimator considered is sometimes referred to
as the unconditional least squares estimator. If there is
sufficient a priori reason to impose the constraint that the
system be stationary, |8| < 1, then the marginal distribu-

tion of Xy is given by:

X, ~ N(0, 0%/(1-8%)) .

1

Then the residual sum of squares would be written
2.2, % 2
Ss(B) = (1-8%)x + ] (x.-Bx__,)° . (2.5)
1l t t-1
t=2
Minimizing (2.5) with respect to B gives

g
X, X
t7t-1
- =2 " " (2.6)

T .
t£3x2t-l

Since (2.5) dominates the likelihood function of an AR(1l),
b3 is also an approximation for the maximum likelihood
estimator. This estimator is considered in the work of
Thornber [36] and the comparisons of Dent and Min [10].

An idea given by Quenouille [31] for removing the bias
of bl provides the basis for the fourth estimator consid-
ered. This method consists of calculating

b, = 2b; ~ ([bl]1 + [byly)/2 , (2.7)
where [b1]1 is the OLS estimate for the first half of the
sample data and [b1]2 the OLS estimate for the second half.

Orcutt and Winokur [30] consider this estimator in their

study.
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The Yule-Walker estimator, given for example in Box and

Jenkins [3), is

%
X X
gep tEl

5§ =
T+12

tzzxt'l

. (2.8)

It is very similar in form to the least squares estimators
bl and b3. Since these three have the same numerator, it is
easily seen by comparing the denominators that |bg| < |by ] <
|b3|. The Yule-Walker estimator was included in the compar-
ison studies of Dent and Min [10].

The sixth estimator was suggested by K. Alam of Clemson
University as a bias-correction modification to the OLS
estimator (2.3). It takes on the form

T
x1%p * tzzxtxt-l * Xpo1¥p

b6 = T ' (2.9)

I x2

Since
X% * *r-1%r, _ 28

% xi-l T
£=2

this term affords a bias correction of very nearly the same

magnitude as the 28/T correction used in constructing esti-

mator b2'
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For each of the first six estimators considered, the
imposition of the stationarity condition, |8| < 1, on the
generating process does not guarantee that these estimators
will result in stationary estimates for any given short
series. In this study, since all series are generated with
|8] < 1, the resulting estimates were constrained to be less
than or equal to one in absolute value by truncation, as is
often done in practice and also was done in other Monte
Carlo studies. This was accomplished by using the following

simple truncation rule:

bi if Ibil < 1
b, = }for i=1,2, ..., 6.

i .
+1 if bi >1

Throughout the Monte Carlo estimator comparisons in this
dissertation, these constrained versions of estimators one
through six were used.
The next estimator considered is attributable to

J. Burg and was reported by Foster [15]. The AR(l) case of
Burg's estimator can be derived as a sum of squares minimi-
zation. Due to the symmetry of the joint distribution of
Xis X371 cees Xyps We see that the covariance structure of
{x:: t =0, 1, ¢2, ...}, where x: = Xp_; .1+ is the same as

the covariance structure of {xt: t =0, 1, *2, ...}. Hence,
*
t

realization of the same series having sum of squared resid-

we can think of x;, x;, «ves X, as another (reversed)

uals of the same form as (2.2):

* * * 2 T * * 2
SS (B) = (x; - Bx,)“ + tzz(xt - Bx,_y)° .

e — ]

T

R P =
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*
Substituting for Xy values, we get

* 2 2
S8 (B) = (Xq = BXq, )" + Zz(xt 1 - Bx.) . (2.10)
t=

If the unobservable Xpel is set equal to its uncondi-
tional mean of zero, just as was X in (2.2) when deriving
the conditional least squares estimator in (2.3), then mini-
mizing the average of SS(8) in (2.2) and SS*(B) in (2.10)

results in

2t£2xtxt-l
b, = ; (2.11)
2 2, , %’ 2
X + X + X
1 T EPTES

Review of the econometric literature revealed no use of
Burg's estimator.

The eighth estimator considered is similar in form to
the sample correlation coefficient. This estimator, given

in Murphy [27] takes the form

Z !
= . (2.12)
12, Lx

The Durbin-Watson statistic (see [12]) forms the basis
of the ninth estimator. Since this statistic takes on a
value between zero and four, depending on the strength of
the autocorrelation in the series, the form

bg =1 - (b/2) , (2.13)




—
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where

T 2
(2.13)
T+1 2

I xg.
taa t 1

D =

is the Durbin-Watson statistic, takes on a value between
negative one and one. Thus b9 estimates the value of the
autoregressive parameter. ' The estimator is given in Murphy
[27] and in Johnston (20].

The tenth estimator considered is given by Maulinvaud
[26], and takes the form

T
tzzxtxt_l = [xyxp/(T-1) ]
b . (2.14)

10 T+l ,
X
£=2 t-1

The estimators b7, bg: by, and by, can all be shown to be
less than one in absolute value. This guarantees that they
give only stationary estimates for the autoregressive para-
meter.

The final estimator considered in the performance eval-
uation is the maximum likelihood estimator (MLE). The exact

likelihood function for an AR(l) is given by
L(8,0?x) = (210*) 21/ (1-8%) 172

2 (2.15)

exp{[-1/(20°)] - SS(B)}

where SS(8) is the sum of squares given in (2.5). Substitu~

2

ting the maximizing value of o0“ for a given value of 8 into

(2.15) will produce a likelihcod function that is independent




oo
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of 02 (see [4]), namely

-T/2 -1/2 -T/2

L(8|x) = (2re/T) 211/ (1-8%)17 % (s5(8) ] .

(2.16) |
Finding bll' the value of 8 which maximizes (2.16), is equi-
valent to finding the value of B which minimizes
ss(8) + (1/(1-8%) 17T | (2.17)
The function in (2.17) must be minimized over the interval
(-1, 1) through the use of some numerical technique. For
our purposes a simple though rather crude search routine was
used. This was the iterative three point evaluation, inter- i

val bisection method used by Clawson [7].

Comparison Criteria

In order to adequately evaluate the overall performance
of the eleven estimators discussed above, four criteria for
comparison were chosen. These were bias, mean absolute
error, mean squared error {(MSE) and mean squared prediction
error (MSPE). Several comparison studies have considered

bias. Therefore, for comparison with these studies this

criterion was included. For any given estimator B3, the

bias in estimating a parameter B is defined to be

Bias(8) = E[(8 - &] .

The empirical bias of an estimator f, as computed for para-

meter value B in each Monte Carlo run, is defined to be
| Kk -
| I (B, - BI/k

j=1

where k is the number of replications performed in the run.

Since positive and negative sample errors tend to cancel
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each other out, mean absolute error was felt to be a more
revealing criterion of location accuracy than bias. The

mean absolute error of an estimator 8 is defined to be

Mean Absolute Error(8) = E[|8 - 8|] .
The mean absolute error of an estimator for a Monte Carlo

run is computed as

- Bl/k

[Nt

. l|Bi

i
for k replications. The third estimation criterion compared
was that of mean squared error. The mean squared error of

estimator B is defined to be

MSE(8) = E[(8 -~ 8)°] .
The empirical MSE is computed as '
kK - 2
I 8~ 8%k :
i=1
for k replications. In order to compare forecasting accu-~
racy using the various estimates, mean squared prediction
error was compared. The one-step-ahead mean squared predic-

tion error associated with estimator B is given by

MSPE(B) = E[(x, - x,)°]

where ;t = gxt_l. The empirical one-step MSPE in the fore-
casting of one series is given by

T o~ 2

tEl(xt - x)/m,

where m is the number of one-step-ahead post-sample predic-

tions made. For each series, MSPE of a given estimator was
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computed as the average squared error in making twenty one-
step-ahead predictions for that particular series where the
parameter estimate used in the prediction was computed using
the given estimator. The MSPE reported in this study is the
empirical MSPE averaged over all one-step predictions and
all replications, namely

k m 2
YOI (x, - x.)°/mi/k .
i=] t=1

Previous Simulation Studies

Previous estimator comparison studies which considered 5
AR(l) parameter estimation have compared only a few of the |
eleven estimators considered in this study. They generally
reported comparison results on the criteria of bias and/or }
MSE at fixed B values. They all differ considerably as to
which B values were chosen, what sample sizes were consid- ']
ered, and how many replications were performed. 1In Table I,
some references to the estimators considered in this study
are listed. References to previous simulation studies which
included some of these estimators are given by estimator and
criterion of consideration. The sparseness of entries in

Table I illustrates the need for a comprehensive comparison

of these estimators.

For AR(l), Copas [9] compared the performance of mean
likelihood, OLS, MLE, and sample autocorrelation estima-

tors. He considered the one-parameter model (1.2) with

sample sizes n = 10 and 20, for 100 replications. His




Table I. Summary of Estimator References for This Study
and References to Previous Simulation Studies
e Which_Hnge Included These Estimators.
Estimator General Bias MSE MSPE
1l [3,20,26,27] [9,10,30} { [9,10,16,30,36] {16,30]
2 [20,21,24) [21,24,3¢C] {30] [30]
3 {3,36] (10} (10,36}
4 {30,31) [30,31]) £30] {301
5 (31 (10] (101}
6
7 [15])
8 [27]
9 [12,20,27]
10 [26]
11 (3,4,9,10,36] (9,10} {9,10,16,36] (16])
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simulations considered two approaches for starting series
generation:
(1) Xy = 1

() x; ~ N(0,1/(L - 8%))

For X, = 1 studies he used 8 = -.9(.1).9, n = 10, and for
model (2) used 8 = -.9(.1).9 for n = 20 and B = -.8(.2).8,

n = 20. He compared on the criteria of bias and MSE. His
conclusions were that mean likelihood gave the smallest MSE
in the range (0,.6), OLS being better for B8 > .6 for initial
value (l). For initial value (2), MLE was slightly better
than OLS for B > .6. (This disagrees with results of
Thornber and of Dent and Min who found MLE performance under
condition (2) to be not so good in (.5,1)).

Thornber [36] considered the AR(1l) model with one-
parameter. He investigated the performance of

(1) OLS ("conditional" least squares),

(2) unconditional least squares,

(3) MLE, and

(4) Bayesian minimum expected loss.

He considered ten values of B on the interval (0,1),
using 100 replications of sample size 20. His results
showed that MSE was smaller for MLE over (0, .5), but
Bayesian and conditional least squares (truncated to one if
greater than one) had the smallest MSE over (.5,1).

Orcutt and Winokur [30] studied two-parameter AR(1l),

i-e.,

X, = BO + BiXeog t € - (2.18)
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They showed the extent of bias in OLS estimation of the
slope parameter for 1000 replications on samples of size

10, 20, and 40 for B values of -1(.25)0, and 0(.1)1.1. They
found OLS estimates of B negatively biased for B > -0.5 with
increasing bias as sample size was decreased and 8 increased
from -0.5 to 1.0. They considered two bias-corrected esti-
mators based on corrections given by Marriot and Pope [24]
and Quenouille [31] (similar to our estimators bz and b4 but
for the two-parameter case), which they compared with OLS
and MSE. They found both modifications were essentially
unbiased for B8 values of 0,.3,.6,.9,1.0 and sample sizes 10,
20, and 40. For smaller B values, the OLS estimator, though
biased, still had the lowest MSE. For large B, the Marriott
and Pope correction had smaller MSE. In considering predic-
tive performance, they reported on 2, 3, and 4 period pre-
dictions. They found the OLS fitted model predicted better
(smaller prediction error variance) than either of the bias-
corrected estimation models.

Gonedes and Roberts [16] studied the two-parameter
AR(l) with emphasis on estimator performance for nearly non-
stationary series. They concluded that if sample size is
small and if good one~step prediction is the goal, then one
should difference the data (as if it were non-stationary)
and treat the differences as a stationary AR(l). They did
simulations by generating data from stationary AR(l) (with

u = 0) and then studying estimation and prediction by

v st
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(1) Comparing OLS, mode of joint posterior density
of u, 8, and o, and random walk without drift
on the original series;

(2) Comparing OLS, modal, and random walk on series
of first differences.

They considered 8 = 0 .2,.5,.7,.9,.99 for sample sizes
n = 20, 30, and 60, based on 50 replications. For B8 > .7,
MSE was always less for the modal estimator than for OLS.
For B8 < .7, MSE was nearly the same for the two while OLS
had a slight edge. For 20 one-step predictions, the modal
estimator showed a slight edge over OLS in MSPE for larger
8 and smaller n, but the margin narrowed rapidly as B8 was
reduced or n was increased. However, for 8 > .9, for
all n, MSPE for random walk was substantially lower than for
OLS or modal. This was also the case for OLS and modal on
first differences. However, differenced models were much
better than undifferenced and were only slightly outper-
formed by random walk.

Dent and Min [10] considered six ARMA models with res-
pect to properties of a variety of proposed estimators.
These mainly involved MLE and least sguares estimators.

For the AR models they compared:

(1) Unconditional least squares

(2) Conditional least squares

(3) Yule-Walker estimator

(4) Approximate maximum likelihood

(5) Exact maximum likelihood

(6) Kendall's estimator (based on higher-order sample
autocorrelations)
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{(7) Quenouille's estimator (also based on higher-
order sample autocorrelations)

They used sample sizes of n = 100 throughout, with 100
replications. For AR(l) they considered twelve B values
(.9, *.7, +.6, .5, .3, *.1) for generating data and com-
pared estimator performance on the criteria of bias and
MSE. Their general conclusions were the following: for
AR(1l) little differentiation could be made between estimators
considered; bias tended to be negative for all estimators
with Quenouille having minimum absolute bias at positive B8,

while MSE was minimum for exact MLE (0, .5) or unconditional

least squares (.5, 1l).




CHAPTER III

SIMULATION DESIGN

In making estimator comparison studies and developing
adaptive estimators, many Monte Carlo simulation runs were
made. A run of the simulation consisted of the generation
of a large number of replications and the computation of
summary statistics. These summary run statistics consisted
of averages and variances by estimator and parameter value
over all replications in a run. Each replication included
the generation and parameter estimation of one series for
each parameter value considered.

For these Monte Carlo simulations, a sample size
(series length) of 20 was chosen, since we are interested in
estimator performance when considering samples as small as
would likely be encountered in the study of economic
series. Also, in order to compare the results with the
results of previous studies, 20 seemed to be most appropri-
ate since it was the most commonly used sample size.

For each replication of a simulation run, 40 standard
normal shocks were generated for use in the construction of
one series for each parameter value. These standard normal
variates were generated using a method of Marsaglia and Bray
[25] using the uniform (0,l1) variates generated by the pseu-
do-random number generator given by Lewis, Goodman, and

Miller [23]. The particular generator described by them is
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1

X, = Ax; (mod p) where p = 2>!-1 and A = 16807. The

i+l
authors cite numerous test results substantiating the effec-
tiveness of the generator.

Since all series were generated under the assumption of

stationarity, |B8| < 1, which implies that each

x, v N0, 071 - 8%,

an initial observation can be considered to be
2
X, v N(O, 1/(1 - B®)) .

For a given parameter value, an initial value was generated,

£ g-1 * €y an AR(l) series of

length 40 was generated. Using the first 20 terms of this

and, using model (1.2), x_ = Bx
series as the sample data, sums of squares and cross pro-
ducts were computed, each estimator evaluated, and the
values accumulated. Any estimates greater than one were
truncated to one. Then, for the next parameter value, an
initial value was generated, a series generated, and estima-
tors evaluated. Once this was done for each parameter value
considered, the entire procedure was repeated for each addi-~
tional replication. Here, parameter values of .1(.1l).9, .95,
.99, and .999 were selected. These parameter values were
chosen to provide representation throughout the positive
range of stationarity with some emphasis on performance near
the boundary of stationarity.

The measure of MSPE of an estimator for one series con-
sisted of the average squared misges of twenty one~step-

ahead predictions when using that estimator. This was the

mﬂ»
™
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reason for initially generating series of length 40. As
discussed above, the first 20 observations of the series
were used for obtaining parameter estimates. Then using the
fitted model, and the last observation of the 20, the 21st
term was forecast. The square of the amount by which this
predicted value of the 2lst term missed the actual 21lst term
of the series was the first component of the sum of the
squared prediction error. The second one-step prediction
used the actual 21st term of the generated series along with
the same fitted model for forecasting the 22nd term, etc.
This procedure was repeated 20 times for each estimator on
each series.

At the end of each run of the simulation, several quan-
tities were computed and a table output for each estimator
at each parameter value considered. These quantities inclu-
ded the empirical form of bias, mean absolute error, MSE,
and MSPE as defined in Chapter II. One such table is shown
as Table II, which is the output for estimator 9 from one
simulation run of 10000 replications. 1In Table II, the
first column shows the 12 parameter values used. The next
two columns show the average and variance of the 10000
parameter estimates for each parameter value. Columns 4
and 5 show the average and variance of (E - B) over 10000
replications. For example, for 8 = .1,

10000.
0.03863 = iZ (8; - 0.1)/10000 ,
=1

——
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and
10000 . 2
0.04468 = ] [(B; - 0.1) - 0.03863]°/10000 .
i=1
Similarly, columns 6 and 7 show the mean and variance

of |8 - 8], and columns 8 and 9 the mean and variance of

(8 - B)2 over 10000 replications. Results for MSPE aver-

aged over all one-step predictions and all replications are
given in columns 10 and 11. The final column shows the num-
ber of estimates truncated to one, which for estimator 9 was
always zero.

For estimator performance comparisons, various averages

such as those illustrated in Table II from 10000 replica-

oy

tions were used. This large number of replications was
necessary to ensure sufficiently small standard errors of |
point estimates so that the effectiveness of various estima-

tors could be statistically discriminated. Some preliminary

runs showing averages using sets of 1000 and sets of 5000
replications indicated the need for a larger number of rep-

lications.

For example, when two different sets (different genera-
tor seeds) of 1000 replicates each were run, the typical
difference in MSE between two estimators was in the 0.001 to
0.003 range, which is roughly of the same order of magnitude
as the differences in MSE of the same estimator between sets

of 1000 replicates. For example, the MSE for bl with 8 = .1

wags found to be 0.04662 on one run and 0.04973 on the second

-~ a difference of 0.00311. sSimilarly, the MSE for b11 at

e 4
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B = .1 was 0.04665 and 0.05032 respectively, so that the
difference between estimators b1 and b11 was smaller in each
case than the 0.00311 difference between runs for bl' Also,
for only 1000 replications there were numerous instances
where the rank order of estimator performance was not pre-
served between sets of replicates, especially for B in the
range of 0.7 to 0.9. Of course, the same lack of clear
separation between estimators occured with MSPE. Differ-
ences between runs for the same estimator frequently were in
the 0.01 to 0.025 range while several estimators within runs

differed by less than 0.01l.




CHAPTER IV

ESTIMATOR PERFORMANCE COMPARISONS

In this chapter, comparisons of performance of the
eleven estimators are considered. The performance with
regard to each of the four criteria of bias, mean absolute
error, mean squared error (MSE), and mean squared prediction
error (MSPE) is discussed for each of the parameter values
considered. 1In printing our initial simulation results, one
table was given for each estimator. One of the eleven such
tables is shown as Table II. The contents of this table
were discussed in Chapter III.

In order to compare these results by parameter value,
numerous tables of statistical multiple comparisons were
computed. One such table is shown as Table III. Each of
these tables indicates estimator performance similarities
and differences for one of the criteria at a given parameter
value. The entries in Table III are t values computed for
comparing each pair of means. Since the sample sizes are so
large, the t's can be compared to a critical value of the
standard normal z. Here Bonferroni's method was used to
find this critical value for the 55 simultaneous tests of
equality of means in each table. For a test at the
a = .01 significance level, the critical value is the
(1 - .01/110) or 0.999909 fractile of the standard normal

distribution, which is approximately 3.75. Thus, we can see
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in Table III that each of the estimators (6, 9, 3, 2, 11)
has significantly smaller MSE than that of each of the esti-
mators (1, 8, 5, 10). In fact each of the estimators (6, 9,
3, 2) has significantly smaller MSE than each of the esti-
mators (7, 4, 1, 8, 5, 10). These multiple comparison
results are summarized in Table A-I -~ Table A-IV. These
tables give performance ranking of each estimator, along
with statistical class groupings of equivalent performance 5
for each criterion at each parameter value. In these tables,
any two estimator numbers not underscored by the same line {
have significantly different means for the given criterion
at the given parameter value. Any two estimator numbers
underscored by the same line are not significantly differ- 5
ent., The estimator numbers in each case are arranged from {
left to right in ascending order of the criterion averages.
based on the multiple comparison results, Tables IV

and V were constructed by placing some estimators in a

Ao

"best performance" group and some in a "worst performance"

group for each criterion. For each set of parameter values,

the estimators in the same group are usually not statisti-

cally different in their performance, while each estimator

e

in the "best" group is significantly better than each esti-
mator in the "worst" group. This categorization of estima-
tor performance emphasizes several patterns and trends which

are present.

Let us consider Table IV showing best and worst bias

performance results. 1In general, there is a great deal of
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Table IV. Best and Worst Estimator Performance Groups at
Fixed 8 Values for Criterion of Bias.

8 Values
.1 .2 .3 .4 .5 & .6 >.6
Best
Bias 4,3,2,6,11 6,2,4,3 2,6,4,9,3 9,2,6,4 6,2,4 6,2
1,7,8,10,5
worst 9 8,9,10,5 8,10,5 8,5,10 10,5 5,10

Bias
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inconsistency in performance for (.1 < B < .4) with much
more consistent results for 8 > .5. Estimators 2 and 6,
which incorporate bias correction terms to OLS, seem to per-
form well throughout the parameter range. In fact, estima-
tor 6 dominates all other estimators for B > .5.

In Table V, which shows best and worst estimators in
terms of mean absolute error, MSE, and MSPE, there are sev-
eral apparent patterns. Performance inconsistencies within
a criterion occur mainly at 8 = .7, .8, and .9. Criteria
are very similar in terms of best and worst performance
groups at all parameter values except B8 = .7, .8, and .9.
Estimator 9 appears to exhibit the best overall performance.
It shows the smallest mean absolute error, MSE, and MSPE for
(.3 < B < .9) and is significantly better than all other
estimators for (.5 < B8 £ .8). Also for B = .95 and B = .999
it ranks as the best estimator of the ones which do not gen-
erate any non-stationary values.

The fact that in our simulations any estimate greater
than one is truncated, explains the prominence of estimators
2, 3, and 6 for B > .9. For the larger parameter values,
the large number of these truncations has a dominant influ-
ence on the performance values. For instance, for estimator
2 at B = .9 there were 3758 truncations out of the 10000
estimates; at B = .95 there were 5706; at B = .99 there were
8174; and at 8 = .999 there were 9469. There were very
nearly the same number in each case for estimator 6 and only

slightly fewer for estimator 3. Obviously for these
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estimators, as the true parameter value got closer to one,
while at the same time a large percentage of the estimates
became one, the performance appeared to be very good. This
same truncation influence occurs with estimators 1 and ¢4,
but they each have considerably fewer truncations than do
estimators 2, 3, and 6.

We can notice that estimators 2, 4, and 6 are signifi-
cantly worse than all others throughout (.1 < B < .6), and
probably only appear much better for B >.7 due to the influ-
ence of the truncations discussed above. This is in con-
trast to the good performance in terms of bias observed for
these three estimators in Table 1IV.

It is also interesting to note that estimators 5, 8,
and 10 appear in the best performance class (along with
estimator 9) or second only to estimator 9 for (.1 < B < .6),
and then rapidly drop to becoming the worst in performance
as B approaches one. 1In fact, for 8 > .9 estimators 5 and
10 constitute the worst class. This performance seems to
relate to the poor performance of these estimators in terms
of bias as observed in Table IV. Two of the more common
traditional estimators, OLS (estimator 1) and MLE (estima-
tor 11), exhibit only moderate performance throughout.

The only direct comparisons with previous studies which
can be made are the studies of Copas [9], Thornber [36], and
Dent and Min [10], all of whom investigated the one-parame-
ter AR(l). All three of the above studies investigated OLS

(constrained to be less than or equal to one) and MLE.
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Copas found the differences in bias and MSE between these
two estimators to be small and nearly constant over B with
MLE having a uniformly lower MSE than OLS. Dent and Min
found MSE performance of OLS to worsen relative to MLE as B8
increased. 1In contrast to this, Thornber found MLE to have
smaller MSE over (0,.5) and larger MSE for 8 > .6. We find
almost no difference in the bias of these two estimators at
all parameter values considered. We also find almost no
difference in the MSE performance of these two estimators
for (.1 < B < .5) (with neither being dominant), but find
MLE to have a slight edge for all 8 > .6.

Thornber, and Dent and Min also investigated uncondi-
tional least squares. They both found that neither uncondi-
tional least squares nor MLE dominated the other with
respect to MSE. They both found the sample loss functions
of the two estimators to cross, with MLE having smaller MSE
for small 8, and unconditional least squares having smaller
MSE for larger 8. We also find the sample loss functions of
these two estimators to cross in the same manner. The only
differences seem to be in where they cross. Dent and Min
found them to cross at B = .5; Thornber found them to cross
between B = .6 and 8 = .7; and we find them to cross between
B= .7 and B8 = .8,

Even though the investigations of Orcutt ard Winokur
[30] were with the two-parameter AR(l), we can compare with
one of their findings. In comparing OLS, and two bias cor-

rections to OLS, they found that the bias-corrected
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estimators did not perform as well as OLS in terms of MSPE.
Similarly, Copas found the MSE of a bias-corrected OLS esti-
mator to be larger than the MSE of OLS. We see from our
study that bias-corrected estimators 2, 4, and 6 all perform
very poorly in terms of MSPE throughout most of the parame-
ter range.

The overall results of these estimator comparisons
indicate the need for additional investigation. The fact
that the groups of best and worst estimators changed consid-
erably over different values of the parameter range point
out the need for some sort of selection strategy which, for
any given problem, selects an appropriate estimator from
among several estimator candidates, as opposed to always
using some particular one estimator. In Chapter V, the

attempts at development of such an estimation strategy will

be discussed.




CHAPTER V

DEVELOPMENT OF ADAPTIVE ESTIMATORS

The Need for an Applied Estimation Strategy

The information about estimator performance at fixed
parameter values gained from the Monte Carlo study is of
little direct benefit in any applied estimation or forecast~-
ing problem. Unless the researcher has some strong a priori
knowledge about the location of the true parameter value
upon which to base the selection of an estimator which per-
forms well for such a parameter value, he does not have a
basis for choosing between available estimators. Of course,
based on the results presented in Chapter IV, one would
probably choose estimator 9 because of its good performance
at a number of the parameter values studied. However, since
estimator 9 was not best for each criterion at all parameter
values, it was felt that an estimation strategy which incor-
porated the use of several estimators might perform better
overall than any individual estimator such as estimator 9.
In this chapter we discuss the development of such an esti-

mation strategy.

Construction of Adaptive Estimators

The applied estimation strategy developed here uses a
two-step estimation process. A preliminary estimate is

obtained at the first step. For a given criterion, the

value of this estimate determines the choice of a
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particular estimator for use at the second step in obtaining
a final estimate. Two types of such adaptive estimators
were developed in this study. The first type of adaptive
estimators is based on the use of only standard estimators on
the second step, while the second type of adaptive estima-
tors includes the use of some "ad hoc" modifications to the
standard estimators for use in the second step. The maximum
likelihood estimator was not included due to its computa-
tional difficulty relative to the other estimators consid-
ered. Adaptive estimators were developed for the criteria
of mean absolute error, MSE, and MSPE.

The development of these adaptive estimators was depen-
dent upon two requirements: the choice of an estimator for
use in obtaining the preliminary estimate, and a set of
rules for selecting the final estimator based on the value
of the preliminary estimate and the estimation criterion of
interest. In this study, estimator 7 was chosen as the pre-
liminary estimator. This choice was based primarily on the
fact that estimator 7 does not yield any non-stationary
estimates, and it has consistently good MSE performance for
all parameter values. Obviously, based on the results dis-
cussed in Chapter 1V, estimator 9 would appear to be a log-
ical choice. However, much preliminary work was done using
estimator 7 before estimator 9 came to our attention. Since
estimator 9 was later incorporated into the set of second-
step estimators, it remains unclear as to whether the recon-
struction of the adaptive estimators using estimator 9 as
the preliminary estimator would offer any overall improve-

ment.
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An empirical determination of the rules for selection
of second-step estimators was accomplished through the use
of additional Monte Carlo runs. An initial run was used to
determine series "similarities" based on the step-one esti-
mate for a series. Different randomly generated series were
grouped together if their estimation resulted in very simi-
lar values for estimator 7. This was accomplished in the
following manner. First, a value of B was chosen randomly
from the interval (0,1). Using this value of B8, an AR(1l)
series of length 20 was generated in the same manner as des-
cribed previously. The estimate b7 was computed for this
series. Depending on the value of b7, this series was
assigned to one of eleven "cells". These "cells" are subin-
tervals of the parameter range, namely (-1,0), (0,.1),
(.1,.2), (.2,.3);, «c., (.8,.9), (.9,1). This process was
repeated until 10000 series had been assigned to each cell.

A cell by cell estimator performance analysis was then
made. For the first type of adaptive estimators, this meant
the same type performance analysis runs as for the study
discussed in Chapter IV. It consisted of determining which
standard estimator had the best performance in each cell for
each of the criteria of interest. The results of these runs
are summarized in Table VI, which actually defines the first
type of adaptive estimators. This table illustrates, for
instance, that in the application of the first type of adap-
tive estimator, if the estimate b, is 0.38, and MSE is the
criterion of interest, then estimator b3 should be used for

obtaining a final estimate.

—— | — | —— .J
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. Table VI. Definition of First Type of Adaptive Estimators
(Al) Showing Second-Step Estimators for Use in !

Each Cell. ;

Cell b7-range Me;n Abs. MSE MSPE |

rror '

i

| (-1,0.) by b, b, i
2 (0.,.1) b9 b9 b9
3 (.1,.2) b9 b9 b9
4 (.2,.3) b9 b9 b9
5 (.3,.4) ‘ b3 b3 b9
6 (.4,.5) b7 b7 b3
7 (.5,.6) b7 b7 b3

8 (.6,.7) b, b, b, ‘:
9 (.7,.8) b7 b7 b9
10 {.8,.9) b7 b7 b9
11 (.9,1.) b7 b7 b7
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In an effort to improve on the performance of the first
type of adaptive estimators, considerable cell-by-cell
investigation was done in search of "ad hoc" modifications g
to standard estimators which would improve their performance '
in terms of one or more criteria in some particular cell.

In some cases ad hoc modifications which gave improved per-

formance were functions of the estimator being modified. 1In
other cases these modifications were just constants. These
constants were usually related to the size of the bias
observed for some estimator in a particular cell. In most
instances these modifications were constructed in a manner
s0 as to reduce bias in a particular cell without causing
enough of an increase in variance to allow for a net reduc-

tion in mean absolute error or MSE.

Numerous modifications of various forms were consid- 1
ered. Modifications were made primarily to estimators 7 and
9 since they both had a small variance within each cell and
also gave only stationary estimates. Initially, terms of
the form (Ikbi)z/c were added to estimator b;, where c is a
positive integer. This form was chosen for several rea-
sons. For one, the resulting estimator was still station-
ary. Since the term (l-bi)z/c inflated the estimate bi’ yet
still resulted in estimates less than one, the resulting
variance of the modified estimator was smaller. Also, for
cases where the bias of bi was negative, the added term
served to reduce this negative bias. After preliminary

investigations showed that this term was too small as a
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modification for large bi values, the very similar form
(l-bi)/c was adopted. Again, for c > 2, the addition of
this term still resulted in stationary estimates with the
desirable properties discussed above.

Investigating the performance of the estimator
b, + (1-b3)/c for values of c between 2 and 10 indicated
that for large values of b7, ¢ needed to be small; while r
for smaller values of b7, ¢ needed to be larger. Thus for
some of the lower cells the estimator b; = bgy + (l-b;)/lo i
proved to be an ad hoc estimator which resulted in better

performance for some criteria. In order to generalize the

selection of c for use in different cells, the selection of

*
c was tied to the size of the estimate b7, by letting ¢ = ¢

*
where ¢ = 10{1 - ((10-b7]/10)} + 1 , which resulted in ¢
taking on values between 2 and 'll. The resulting estimator
*
b7 =b

used successfully in some cells with improved performance

7 + (l-bg)/c* was another ad hoc estimator which was

for some criteria. Since the bias of estimators 7 and 9 was
*

positive in the upper cells, estimators b; and b, and sim-

ilarly modified b9 did not always show improved performance

for any criterion in these cells, as the addition of the

modifying terms resulted in extremely large positive bias.
In an effort to correct for this positive bias, even though
variance was usually worsened, several estimators were
investigated which were constructed by subtracting terms of
the form described above. One such ad hoc estimator which
performed well in the upper cells was the estimator b; =

2
by - (1—b9)/1o.

“ . | '
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Even though many ad hoc estimators of the form above
were investigated, the only three of these estimators used
as second-step estimators in the final ad hoc adaptives were
b;, b;, and b;. Other second-step estimators included these
or standard estimators adjusted by the addition or subtrac-
tion of a constant. For some criteria in some cells, nei-
ther type modification resulted in better performance than
the best standard estimator. 1In that case, the best stand-
ard estimator was used as the second-step estimator.

The resulting set of second-step estimators for each
cell which make up the ad hoc type adaptive estimators are
given in Table VII. 1In order to illustrate the choice of
these ad hoc estimators for a representative cell, let us
consider cell 4. The results of the cell 4 performance
analysis for the ten standard estimators and for three ad
hoc estimators, giving means and variances of parameter
estimates, and empirical bias, mean absolute error, MSE,
and MSPE are given in Table VIII. 1In Table VIII we see
that the smallest mean absolute error, MSE, and MSPE of the
ten standard estimators is exhibited by estimator 9. We
can notice that b; has in fact over-corrected for the nega-
tive bias of b7, resulting in a substantial positive bias
but with a slightly smaller variance. It is also notewor-
thy that b; shows a smaller MSPE than all of the standard
estimators, in spite of its positive bias., To eliminate
this bias of +0.04495, this quantity was subtracted as a

constant adjustment to b; . This resulted in a mean
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Table VII. Definition of Second Type of Adaptive Estimators
(A2) Showing Second-Step Estimators for Use in

Each Cell.
Cell | b,-range Mean Abs. MSE MSPE :
Erxror ;
1 (-1,0.) b; + 0.2 by + 0.21679 b; + 0.21679 !
2 (0.,.1) b) + 0.06853 b; + 0.06853 by + 0.1 ’
3 (.1,.2) b by + 0.00502 by + 0.00502
4 (.2,.3) b - 0.04495 b, - 0.04495 by + 0.05
5 (.3,.4) b, b, b’
6 (.4,.5) by - 0.02 by - 0.02 b,
7 (.5,.6) by - 0.03 by - 0.03 b,
8 (.6,.7) by = 0.03 by - 0.03 b,
9 (.7,.8) by = 0.03 by - 0.03 by
10 (.8,.9) by - 0.03 by - 0.03 by
11 (.9,1.) by - 0.02 by - 0.02 b;
by = b, + (1-b3)/{10(1 ~ (£20 - b,1/10)) + 1}.
by = by = (1 - b3) /10.
b = by + (1 - b2)/10.
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Table VIII. Estimator Performance Results for Cell 4.

Estimator E(8) var (8) Bias Mean Abs.| qp MSPE
Error '
1 .25119 | .00106 | -.05846 .15335 | .03767 |1.06239
2 .27910 | .00131 | -.03055 .15061 | .03533 |1.05704
3 .26730 { .00133 | -.04235 .15065 | .03568 |1.05787
4 .27166 | .00898 | -.03799 .16570 | .04348 |1.06775
5 .23738 | .00089 | -.07227 .15609 | .03967 |1.06678
6 .27988 | .00678 | -.02977 .15942 | .04008 |1.06005
7 .25055 | .00083 | -.05910 .15291 | .03749 |1.06240
8 .24399 | .00087 | -.06565 .15449 | .03857 |1.06448 |
9 .28994 | .00203 [ -.01971 .15006 ( .03465 |1.05433 ‘
10 .23734 | .00090 | -.07230 .15613 | .03969 | 1.06681 57
b; .35460 | .00074 | +.04495 .15712 | .03599 | 1.05083 3
b; -.04495 .30965 | .00074 0.0 .14997 | .03397 | 1.05265 .
by + 0.05 .33994 | .00203 | +.03029 .15393 | .03518 | 1.05058
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absolute error value of 0.14997 and a MSE value of 0.03397,
both slight improvements over estimator 9. A constant cor-
rection for the negative bias (-0.01971) of b9 reduced the
MSPE of b9. However, over-corrections resulting in positive
bias continued to reduce MSPE even more. The MSPE appeared
to be near-minimum with a value of 1.05058 for the estimator
b

9 + 0.05. Hence, 0.05 was used as the constant correction

factor.




CHAPTER VI

VALIDATION OF ADAPTIVE ESTIMATORS

In order to assess the improvement in performance
offered by the two types of adaptive estimators, additional
Monte Carlo validation runs were made. Three different
methods of data generation were used in order to afford 4if-
ferent types of validation comparisons. i"oar each of these
types of comparison, the performance of the two types of
adaptive estimators was compared with the performance of
some or all of the standard estimators.

For the first method of data generation, 8 was drawn
randomly from the interval (0,l). Using this 8 as the true
parameter value, a series of length 40 was generated, param-
eter estimates were computed based on the first 20 terms of
the series, 20 one-step predictions of the last 20 terms of
the series were made, and statistics were accumulated.
Again, this process was replicated 10000 times. For the
second method of data generation, performance validation
runs were made for 0.1 length parameter subintervals of the
interval (0,1). For each of these runs, B was drawn ran-
domly from a subinterval, a replication performed as descri-
bed above, and the process repeated so as to acquire 10000
replications in that subinterval. The third method of data
generation was analagous to that of the simulation runs dis-
cussed in Chapter IV. For these runs, 10000 replications

were performed using each of several fixed 8 values.

B
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Throughout the remainder of this chapter, we will dis-~
cuss the performance comparison results of these validation
runs for each of the three methods of series generation des-

cribed above.

Interval (0,1) Comparisons

FPor the first method of data generation, where 8 was
randomly drawn from the interval (0,1}, the two types of
adaptive estimators were compared with all eleven of the
standard estimators considered in Chapter IV. A set of sta-
tistical multiple comparisons were computed for each of the
three criteria of mean absolute error, MSE, and MSPE. Here
each of these sets involved 78 simultaneous pairwise compar-
isons. Again, Bonferroni's method was used to find the cri-
tical value for testing at the a = 0.01 significance
level. From these tables of multiple comparison values (of
the form of Table III, Chapter IV), Table IX was construc-
ted. Table IX shows performance ranking of each estimator,
along with statistical class groupings of equivalent perfor-
mance, for each criterion. 1In this table, any two estimator
numbers not underscored by the same line have significantly
different means for the given criterion. Any two estimator
numbers underscored by the same line are not significantly
different. The estimator numbers in each case are arranged
from left to right in ascending order of the criterion
averages.

The results displayed in Table IX indicate good per-

formance characteristics for the adaptive estimators. The
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Table IX. Estimator Performance Groupings for First Type of
Validation Run (B Drawn from the Interval (0,1)).

Mean Abs. ‘
Exror A2 Al 9 11 7 8 1 5 10 3 2 4 6 i
A< —_— {
MSE A2 Al 9 11 7 8 5 10 l 3 2 4 6 1
!

MSPE A2 9 Al 11 7 3 1 8 2 6 4 S5 10
|

Al represents the first type of adaptive estimators based on the
use of standard second-step estimators.

A2 represents the second type of adaptive estimators based on the
use of ad hoc second-step estimators.
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second type of adaptive estimator, A2, based on ad hoc
second-step estimators, is statistically better than any of
the other estimators for mean absolute error and MSE. For
these two criteria, the first type of adaptive estimator,
Al, based on standard second-step estimators is second best,
and along with estimator 9, forms a class which is statis-~
tically better than all other standard estimators. The
results for MSPE are not as pleasing. Even though the type-
two adaptive estimator does result in the smallest MSPE,
this value is not significantly smaller than that of several
other estimators.

Some of the numerical results from this first type of
validation run are given in Table A-V. This table shows
each criterion mean and standard error for each estimator.
These numbers formed the basis of the multiple comparisons
summarized in Table IX. A look at some of the means given
in Table A-V illustrates the order of magnitude of differ-
ence between estimator performance. For instance, consider
the criterion of MSE. The difference in MSE performance of
the two traditional estimators OLS and MLE was only 0.001l1l.
The largest improvement over OLS offered by any standard
estimator was 0.0055 by estimator 9, which is roughly the
same as the improvement over OLS offered by estimator Al.
However, the MSE improvement over OLS offered by estimator
A2 was 0.0128, which is twice as large as the differences
between OLS and Al or 9, and over ten times as large the

difference between OLS and MLE performance.

P U —
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Subinterval Comparisons

For the second method of data gereration, comparisons
were made in each 0.1 length subinterval of (0,1). These
comparisons involved criterion means and standard errors
.for each estimator in each subinterval. These means and
standard errors for the criterion of MSE are shown in Table
A-VI., The performance of the two types of adaptive estima-
tors was only compared with a selected few of the best other
estimators in each subinterval. Based on the fixed-param-
eter results of Chapter IV, only those estimators which
appeared in the "best"” group for some criterion at the
parameter values which constitute the endpoints of a subin-
terval were selected for comparison in that subinterval.
This resulted in varying numbers of pairwise comparisons for
the different subintervals. Again, simultaneous multiple
comparisons were made at the a = 0.01 level of significance
using Bonferroni's method. The results of these comparisons
were used in the construction of Table X. This table shows
the three best performing estimators for each criterion in
each subinterval. The two types of adaptive estimators
again perform well overall, but do not outperform all of the

standard estimators in the subintervals close to one.

Comparisons at Fixed B Values

The third method of data generation required one simu-

lation run analagous to that using fixed 8 values discussed
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in Chapter IV. On each replication of this run, series were

generated using each of the twelve parameter values used in

the standard estimator comparisons of Chapter IV. The
results of the average performance over 10000 replications
were used for the comparisons. As an example of these per-
formance results, means and standard errors for each estima-
tor at fixed parameter values are given in Table A-VII for
the criterion of MSE. For each parameter value, the per-
formance of the two types of adaptive estimators was com-
pared with the performance of the estimators in the "best"

group for some criterion at that parameter value. As

before, simultaneous multiple comparisons were made at the
a = 0.0l level of significance. These comparison results
were summarized by listing the three best-performing esti-
mators for each criterion at each parameter value, as shown
in Table XI. As would be expected, performance results at
parameter values as illustrated in Table XI are very simi-
lar to performance results for subintervals associated with

those parameter values shown in Table X.
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CHAPTER VII

SAMPLE SIZE SENSITIVITY AND LIMITATIONS

OF THIS RESEARCH

Sample Size Sensitivity

Since in the development of the adaptive estimators a
sample size of 20 was used throughout, some additional anal-
ysis was done to check the sensitivity of adaptive estimator
performance to a change in sample size. As the sample size
was increased with a resulting reduction in estimator bias,
it was felt that the ad hoc correction factors used in con-
struction of the second type of adaptive estimators might
become ineffective. Hence, some additional Monte Carlo runs
were made using sample sizes of 50 and 100 to investigate
this sample size sensitivity.

Each of the runs for sample sizes 50 and 100 were vali-
dation runs of the same type as the first validation run
discussed in Chapter VI. That is, for each replication, 8
was drawn randomly from the interval (0,1) and, using this
B, a series of the specified length was generated. Since
the sampling variances of the quantities compared in these
runs were much smaller for the larger sample sizes, only
1000 replications were used on each run.

A few results from these validation runs for sample

sizes SQ and 100 are shown in Table XII. In column one,

empirical mean absolute error, MSE, and MSPE are shown for
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Some Estimator Performance Results Showing

Samgle Size Sensitivitz of Adaetive Estimators.

Best Standard 1st Type of Adaptive 2nd Type of Adaptive
Estimator (bg) Estimators (Al) Estimators (A2)

n = 50 1% 2t
Mean Abs.

Exrror 0.09089 0.09084 0.08912 0.08343
MSE 0.01435 0.01442 0.01356 0.01211
MSPE 1.01441 1.01445 1.01253 1.01129

n = 100
Mean Abs.

Error 0.06050 0.06055 0.07329 0.05785
MSE 0.00633 0.00634 0.00911 0.00568
MSPE 1.02064 1.02068 1.02433 1.02016

*

using constant modifications.

+ using modifications expressed as functions of the sample size.
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estimator 9, which was the best performing standard estima-~
tor for each of the three criteria at each sample size. We
can see that the performance results of the first type of
adaptive estimators, given in column two, are very nearly
the same as those of estimator 9 for each criterion at each
sample size. This is similar to the validation performance

results using sample sizes of 20, in that the performance of

estimator 9 and that of the first type of adaptive estima-
tors were not statistically different for either criterion.
However, the performance of the first type of adaptive esti-
mators was usually slightly worse than that of estimator 9
in these runs, where for a sample size of 20 it was usually
slightly better. This fact seems to indicate a slight
change in the relative performance of some of the estimators
which make up the first type of adaptive estimators, or
possibly just a difference in the results of using only 1000
replications.

In order to investigate sample size sensitivity of the
second type of adaptive estimators, validation runs were
made with sample sizes of 50 and 100 using the same second
step estimators developed for sample size 20, as shown in

Table VII. Of course, these ad hoc second-step estimators

included the same constant modifications which were devel-
oped for sample size 20. The results of these runs, given
in column 3 of Table XII, show that the ad hoc adaptive
estimators still performed better by all three criteria than

estimator 9 or the first type of adaptive estimators for :

-
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sample size 50. However, for sample size 100, the ad hoc
corrections seemed to become inappropriate and we see that
the performance of the ad hoc adaptive estimators became
worse than that of estimator 9 and the first type of adap-
tive estimators for each of the three criteria. These
results indicated the need to express the ad hoc corrections
as functions of the sample size in order to have appropriate
correction terms.

To determine the nature of appropriate correction
terms, several exploratory simulation runs were made where,
for sample size n, ad hoc corrections were expressed in
terms of vn, n, and nz. For instance, a constant c, was
replaced by the term cz//7f, where c, = V20 c,, and other
constants similarly expressed in terms of vVn for one run.
Analagously, c, was replaced by cz/n, where cy = 20 S for
some other runs, and similarly for n2. In addition, the
three ad hoc estimators b;, b;, and b; described in Chapter
V were expressed as functions of n. For b; = by + (1-b§)/1o,
the constant 10 was replaced by n/2, which gave a smaller
adjustment to b7 for larger sample sizes. Similarly, for
b; = b9 - (1-b§)/1o, the 10 was replaced by n/2. For b; =
b7 + (l-bg)/c*, the c* term in the denominator was multi-
plied by n/20, which again accomplished reduction in the
gsize of the adjustment term for larger sample sizes.

The best ad hoc adaptive estimator performance obser-

*
ved in the various runs resulted from the use of b;, b7, and

*
b9 as discussed above, and the use of constant adjustments
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expressed as functions of vYn. The results of these runs
are shown in column four of Table XII. We can see for

n = 50 that the improvement in performance of the sample-~
size~dependent ad hoc estimators over estimator 9 was much
larger for all three criteria than was the improvement
offered by the adaptive estimators which rely on constant
modifications. Also, for n = 100, the sample-size-dependent
ad hoc estimators performed well. They resulted in lower
values for all three criteria than either estimator 9 or the
first type of adaptive estimators.

Thus, in conclusion, we can see that the second type of
adaptive estimators, as developed, were sensitive to changes
in sample size. However, the expression of the ad hoc modi-
fications used in these estimators as appropriate functions
of the sample size did result in adaptive estimators which

performed well throughout a range of larger sample sizes.

Limitations of This Research

As is usually true of any study of narrow scope, this
study has several limitations. First, it is limited in the
sense that the AR(1l) model is a simple subclass of ARIMA
models. The nature of the investigations do not allow them
to be generalized for parameter estimation for other types
of ARIMA models, per se. In addition, aspects of modeling

such as model identification and diagnostic checking for

model improvement are not considered here.

_'va
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It is assumed that the results of this study will be
applied in parameter estimation of a series which is sta-
tionary and for which the AR(l) model has been identified,
or for which information about the generating process sug-
gests fitting of an AR{(1l) model. 1In practice this might
require taking first or second differences of the raw data
to achieve stationarity. In fact, in model identification,
a series is differenced if preliminary parameter estimates
are less than but not significantly different from one, as
well as when they are greater than one. In the Monte Carlo
simulations, series were generated by a process which was
known tc be stationary AR(l). However, no model identifica-
tion and no differencing were done. So for these short ser-~
ies, estimates might have been greater than one and hence
constrained to one by the truncation rule, or less than one
but not significantly different from one, and still the
fitting of an AR(l) model was "forced" on the data, and
these AR(1l) parameter estimates included in the accumulation
of run statistics. This involved some model misspecifica-
tion which may have, in some manner, biased the results of
the simulations. In particular, results for the larger
parameter values might be different from results which would
have been acquired by considering only those parameter esti-
mates of series for which sample statistics clearly indica-
ted stationary AR(l) series.

Another possible limitation in the appropriateness of

application of the Monte Carlo simulation results comes from
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the choice of fitting the one-parameter AR(1) model

X, = Bx,_, * €, (7.1)

t
rather than the two-parameter AR(1l) model

Xp = Bg * By xp g *oEp
which reparameterized in terms of the process mean u is
given as

(% =n) = B(x,_;-H) + €, . (7.2)

Since in the simulations the generating process used u = 0,
it seemed appropriate to fit model (7.1). However, for B8
values close to one, and short series, the sample mean may
be considerably different from zero. Gonedes and Roberts
[16] found that the fitting of model (7.1) to short series
generated by equation (7.1l) using OLS estimation, resulted
in smaller bias, MSE, and MSPE (of 20 one-step predictions)
in estimating B than did the fitting of model (7.2) to the
same data, where u was also estimated from the sample data.
The question then arises as to how this reduction in bias,
MSE, and MSPE of not estimating the process mean influenced
the relative performance results of the estimators of B con-
sidered in this dissertation, and hence, the conclusions
that are drawn. 1In this respect, it is unclear in applica-
tion of the adaptive estimators in the estimation of a given
series what effect the estimation of the mean of the series
might have on the performance of the adaptive estimators in
estimating 8 for the mean-adjusted series.

One other possible limitation of this study is the

choice of Burg's estimator, b7, as the first-step estimator
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in developing the adaptive estimators. As was discussed in
Chapter V, the good overall performance of estimator 9 in
the fixed parameter studies of Chapter IV would suggest it
as a good first-step estimator. However, since estimator 9
was used as a possible second-step estimator in each cell,
it is not clear whether the use of this estimator as the
first-step estimator would enhance the overall performance

of the two-step adaptive estimation procedures.

e
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CHAPTER VIII
APPLICABILITY OF THIS RESEARCH

AND CONCLUDING REMARKS ‘.'

In this concluding chapter, three aspects of the appli-
cability of this research will be discussed. First, based i
on the findings of this study, a procedure for selecting an
appropriate estimator for use in an applied estimation will
be given. Next, several examples from the literature per-
taining to parameter estimation and forecasting of AR(1l) &
series will be discussed in an effort to illustrate poten-
tial areas of applicability of the adaptive estimators
developed in this dissertation. Also, the results of the
application of the adaptive estimators in the actual esti-
mation and forecasting of a consumer price index series
will be shown. Of course the small average improvement in

absolute bias, MSE, and MSPE performance offered by the

adaptive estimators certainly does not guarantee that
improved performance can be observed for any one given ser-
ies. Nevertheless, this example will serve to demonstrate

the application of these estimators.

Recommendations for Applied Estimation

Based on the results of the validation runs discussed
in Chapter VI, certain recommendations for applied estima-
tion can be given. If one is faced with parameter estima-

tion of a series for which an AR(1l) model has been
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specified, but for which little or no information as to the
true B value is available (more specifically B is assumed
uniformly distributed in (0,1) in the Bayesian sense), one
needs to first refer to Table IX. For a given criterion,
the selection of an estimator will depend on the performance
ranking shown in Table IX and the estimator means and stand-
ard errors shown in Table A-V. The selection of an estima-
tor rests on one's subjective evaluation of the tradeoff
between performance gains and computational difficulty of
the various estimators.

For example, suppose one wishes to estimate 8 and the
criterion of interest is MSE. A look at Table IX would seem
to indicate the use of estimator A2, or possibly of estima-
tors Al or 9. The middle column of Table A-V shows the MSE
values for A2, Al, and 9 to be 0.0263, 0.0333, and 0.0336
respectively, while the MSE values for OLS and MLE estimators
are 0.039]1 and 0.0380 respectively. The 0.0070 difference
in performance of A2 over Al, when standard errors are of the
order 0.0005, together with the fact that the difference
between MLE and OLS is of the magnitude 0.0009, would sug-
gest the use of A2. However, if estimator A2 was thought
to be computationally difficult, then either estimator 9 or
Al could be used. Superficially it might seem that Al is a
much more cumbersome or computationally difficult estimator
to use in practice as compared to any simple standard esti-
mator, such as estimator 9 or estimator 1 (OLS). However,
it should be emphasized, by noting Table VI, which defines

estimator Al, that the computation of estimator Al only

—
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requires the computation of estimators b3, b7, and bg, each
of which requires virtually the same quantities for its
computation and thus could easily be computed each time the
use of estimator Al is considered. This allows the prac-
tical application of estimator Al to be a one-step procedure
computationally, and requires only a few additional arithme-
tic operations compared to the computation of the OLS esti-
mator. On the other hand, if the criterion of interest had
been MSPE, the information in Table IX and Table A-V sug-
gests that one might be indifferent among the choice of the
estimators A2, 9, Al, 11, 7, 3, and 1.

Suppose however, that in a practical estimation situa-
tion one has some fairly strong a priori information that the
true B value lies in some subinterval of the interval
(0,1). In this case, recommendations for estimator choice
rely on the information given in Table X and Table A-VI.

For example, suppose one feels that the true 8 is in the
interval (.2, .6), and is interested in good MSE perform-
ance. Then Table X suggests the use of A2, Al, or 9.
Examination of Table A-VI shows estimator A2 to have smaller
MSE than Al by roughly 0.01 to 0.02 (where standard errors
are in the range 0.0003 to 0.0005) throughout the interval
(.2, .6). This represents a MSE reduction of 30% to 40%

for A2 over Al, which would strongly suggest the use of A2.
Al offers an improvement over estimator 9 of 0.002 to 0.003
for most of the range (.2, .6), and might reasonably be used

in this case if A2 were not used.

e
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The fixed parameter performance results summarized in
Table XI and the MSE means and standard errors given in
Table A-VII are of no practical value in the selection of an
appropriate estimator for use in an application. They are
included in this dissertation to facilitate comparison to
some previous studies which reported their performance

results only in terms of fixed 8 values.

Review of Examples

Many articles found in the economic and finance liter-
ature discuss studies which include some type of ARIMA
modeling. In a number of these studies AR(1l) models were
used in describing many different types of series. 1In most
of these studies the validity of the conclusions that were
drawn depend on the accuracy of parameter estimation and/or
prediction. Often these studies involve short series, and
quite frequently OLS estimation was used. In many of these
cases, potential for improved performance could be offered
by the use of one of the adaptive estimators.

Several articles pertain to the modeling of stock
prices and commodity futures prices [5,8,22,35]). These
articles mainly address the question of whether these series
are random walks, or large parameter AR(l). Here parameter
estimation accuracy (mean absolute error and MSE) is of
crucial importance. Many other articles pertain to the
study of economic series such as annual or quarterly GNP,
annual velocity of money, and short term interest rates

{13,17,28,29].
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For example, Nelson illustrates the fitting of several
of these economic series in his study of the Federal Reserve
Board-MIT-Penn econometric model of the U.S. Economy
{28,29]. 1In this analysis he models 14 endogenous variables
of the FRB-MIT-Penn model with ARIMA models. Of these 14,
real GNP, GNP deflator-price index, and consumer goods price
index are modeled as AR(l) in their first differences. He
concludes that composite forecasts based on a combination of
the individual ARIMA forecasts and the econometric model
forecasts rely significantly on the ARIMA forecasts for 10
of the 14 variables. This suggests that the ARIMA predic-
tions do embody information available in the history of
individual series which is not utilized by the FRB-MIT-Penn
model. In this respect, good AR(l) series prediction can be
important as an alternative to certain findings of other
econometric models or at least serve as a benchmark for
their evaluation.

The accounting literature has numerous articles
[1,2,11,14,18,32,37] discussing the time series properties
and modeling of earnings, earnings-per-share, and other
income numbers. Of particular interest to us because of the
fitting of numerous AR(l) models (often based on short
series) are the articles (1], (11}, and [37].

Watts and Leftwich [37] investigated whether the use of
Box~-Jenkins techniques on annual earnings (available for

common) resulted in models with better predictive ability

than random walk. They investigated 32 firms in three

e o,
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industries (railroads, petroleum, and metals). They identi-
fied AR(1l) models for all but one of the ten railroads, five
of the eleven petroleum firms, and two of the eleven metal i
industries, based on 38 years of data. In order to investi- ¥
gate sample size influence they also used periods of 50, 55,
and 60 years for each firm which had at least 60 years of

data. They concluded that approximately half of the pro- i1

cesses they modeled were significantly different from random
walk. However, the one-step-ahead predictive ability of
these fitted models seemed in most cases to be no better

than random walk or random walk with trend. Also, the large

number of model specification changes with changing sample
sizes seemed to imply structural change and/or model mis-
specification problems.

Albrecht, Lookabill, and McKeown [l1] investigated both
nondeflated (earnings available to common stockholders) and
deflated (earnings available to common stockholders/stock-
holders equity of previous period) earnings for 49 firms in

three industries (foods, chemicals, steel) based on a 25

year estimation period. They fit Box-Jenkins models, and
compared to random walk and random walk with drift. For
the nondeflated data, they fit several AR(l) models for
steel firms, concluding the steel industry tended to be
autoregressive. However, the chemical industry tended to
exhibit random walk behavior and the food industry results
were mixed. Deflated earnings in all three industries were

suggestive of random walk models. In all cases the
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predictive ability of the Box-Jenkins models appeared to be
no better than that of the best of the two random walk
models.

An interesting study by Dopuch and Watts (l1l] dealt
exclusively with 11 steel firms. They attempted to evaluate
the significance of an accounting change (from straight-line
to accelerated depreciation) based on the evaluation of the
time series characteristics of net income. Here small sam-
ple estimation was crucial because the authors only had
approximately 30 years of data before the change and 11+
years after the change for most firms. In fitting Box-
Jenkins models to before-change series, they found that 5 of
the 11 firms could be modeled as AR(l). They then fit the
same respective model to each after-change series and esti-
mated the parameters. They found that the accounting switch
had a significant effect on the income process for 8 of the
11 firms (3 of the 5 AR(l) parameters).

Thus in each of the above studies dealing with earnings
series, we see the reliance of the conclusions that are
drawn on accurate parameter estimation and forecasting. 1In
most of these studies, the use of the adaptive estimators at
some points might offer a potential improvement in estima-
tion and prediction accuracy and hence in the validity of
the conclusions drawn.

An Example: Forecasting a Consumer Price
Index Series

As an illustration of the application of the adaptive

estimators, some one-step forecasts were made using the

N el




71 7
consumer price index series. The data used was acquired ;

from the National Bureau of Economic Research data tapes. |

The particular series used consisted of monthly observations |

of seasonally adjusted values of the consumer price index

for all items with 1967 as the base year.
A plot of the first 312 observations of this series,
form January 1947 through December 1972, showed the series i
- to be nonstationary. After first differences were taken, 1
preliminary model identification and diagnostic checking
indicated the differenced series to be adequately modeled as

an AR(l). Subsamples of this series of length 40 were

chosen for which sample fingerprints still indicated the
adequacy of the AR(l) model in describing the data. One
such series of length 40 was the period from September 1948

through December 1951.

To illustrate the application and performance of the
standard estimators as well as the two types of adaptive
estimators, initial parameter estimates were computed using
the first 20 terms of this series. Using these estimates,

one-step-ahead predictions were made and prediction errors

computed for each estimator. Then, the second through
twenty-first terms were used to compute parameter estimates,
and one-step forecasts made for the twenty-second term. In
this manner, terms 21 through 40 in the first-differenced
series were forecast. In computing the results that are
shown in this section, it should be noted that the sample

mean of each sample of 20 terms was subtracted from each

I | O —. ‘..J
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term before parameter estimation and forecasting, so that in
effect, the two-parameter model was fit. However, the same
run made without adjusting for the mean, and hence, fitting
the one-parameter model resulted in larger parameter esti-
mates for all estimators on most of the 20-term samples, but
very nearly the same results for MSPE,.

The results of the MSPE performance for the standard
estimators, as well as the two types of adaptive estimators,
are given in Table XIII. 1In this table we can see that the
ad hoc adaptive estimator A2 has the smallest MSPE, while
the first type of adaptive estimator Al has the second
smallest MSPE. Predicting terms 21 through 40 of the dif-
ferenced series allows for the forecasting of terms 22
through 41 of the original series. These twenty one-step
forecasts using the ad hoc adaptive estimator A2 are plotted
along with the actual values of the series in Figure 1. The
good forecasting performance in this example in terms of the
criterion of MSPE illustrates the potential applicability of

this estimator for this criterion.

Concluding Remarks

Through the use of Monte Carlo comparison studies, we
have given a more complete catagorization of the small sam-
Ple performance of several AR(1l) estimators for the criteria
of bias, mean absoclute error, MSE, and MSPE than has been
given before. 1In addition, we have shown the development of
two types of adaptive estimators and validated the efficacy

of their performance. The approach used in the development




Table XIII. Results from Estimation and Prediction of
Consumer Price Index Series Showing MSPE for

Twenty One~Step Predictions.
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Estimator
1l

2

MSPE

0.18788

0.18857

0.21579

0.20733

0.19230

0.19037

0.19640

0.18918

0.18838

0.19250

0.18536

0.18238
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of these estimators shows promise for use in additional
investigations. Possibilities for investigation include
using a different first-step estimator, studying perform-
ance based on the fitting of the two-parameter model,
including model identification in the study of generated
series, and incorporating a more thorough study of sample
size dependence. Additional areas for future research
include better characterization of the sampling distribu-
tions of the estimators compared in this study, and the
development of a procedure for obtaining confidence inter-

vals for parameter estimates.
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APPENDIX

TABLES OF ESTIMATOR COMPARISON RESULTS
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Table A-I. Estimator Performance Groupings at Fixed 8 Values
for the Criterion of Bias,

8 =.1 4 3 2 6 11 1 7 8 10 5 9 |
!
8= .2 6 2 4 3 1 1 7 8 9 10 5 |
B = .3 2 6 4 9 3 11 1 7 8 10 5 |
8= .4 9 2 6 4 3 1 1 7 8 5 10
B=.5 6 2 4 9 3 n 1 7 8 10 5
8= .6 6 2 4 3 9 12 1 7 8 10 S
B = .7 6 2 4 3 9 11 1 7 8 510
B =.8 6 2 3 4 2 1 1 7 8 510
, 8 =.9 6 2 3 4 9 11 1 7 8 5 10
) B=.95 6 2 3 a4 9 11 7 1 g 510
B=.99 6 2 3 4 9 1 7 1 8 510
B=.999 6 2 3 9 7 11 4 1 8 5 10
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Table A-II. Estimator Performance Groupings at Fixed 8
Values for the Criterion of Mean Absolute Error.

B=. 5 10 8 9 1 7 11 3 2 a4 _6 |
B=.2 10 5 9 8 7 1 1 32 4 6 ,
B=.3 9 5 10 8 7 1 1 3 2 4 6
B=.4 9 10 5 8 7 1 1 3 2 4 6
B=.5 9 10 5 8 1 7 1 3 2 4 6
B=.6 9 11 7 8 110 5 3 2 4 6
8=.7 9 1 7 8 1 3 5 10 2 4__ 6
g=.8 9 1 7 3 1 8 4 10 5 2_6
B=.9 9 11 3 7 6 2 4 1 8 5 10




Table A-III.

Estimator Performance Groupings at Fixed B8
Values for the Criterion of MSE

B =.1 10 5 8 9 7 1 11 3 24 6
B = .2 5 10 9 8 7 1 1 3 2 4 6
8=.3 9 5 10 8 7 1 1 3 2 4 6
B=.4 9 10 5 8 7 11 1 3 2 4 6
B =.5 9 10 5 8 7 1 11 3 2_4 6
B=.6 9 1 7 8 110 5 3 2_4 6
B = .7 9 1 7 3 1 8 5 10 2 6 4
8= .8 9 3 1 7 2 1 6 8 4 10 5
B=.9 6 9 3 2 1 7 4 1 8 S5 10
B = .95 6 2 3 3 11 4 7 1 8 5 10
B = .99 6 2 3 9 11 4 7 1 8 5 10
B=.999 6 2 3 9 _u 7 4 1 8 5 10

e e T
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Table a-IV. Estimator Performance Groupings at Fixed B8
Values for the Criterion of MSPE.

B = .1 10 5 8 9 7 11 1 3 2 4 6
g = .2 10 5 9 7 8 1 11 3 2 4 6
B = .3 9 5 10 8 7 1 11 3 2 4 6
8 = .4 9 5 10 8 7 11 1 3 2 4 6
g8 = .5 9 10 5 8 7 11 1 3 2 4 6
B= .6 9 7 11 8 1 5 10 3 2 ) 6
B = .7 9 11 7 3 1 8 S 10 2 4 6
B=.8 9 11 3 7 1 2 8 6 4 10 5
g = .9 9 3 6 2 11 7 4 1 8 5 10
B = .95 6 2 3 9 11 4 7 1 8 5 10
g = .99 6 2 3 9 11 4 7 1 8 5 10
B=.999 6 2 3 9 1 7 1 4 8 s 1o
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Table A-V. Empirical Means (Standard Errors) from First Type
of Validation Run Where B was Drawn from (0,1).

Estimator Mean Abs. MSE MSPE
Exrror
1 0.1498(.0013) 0.0391(.0007) 1.0667(.0039)
2 0.1637(.0013) 0.0446(.0007) 1.0706(.0038)
3 0.1532(.0013) 0.0406(.0007) 1.0649(.0038)
4 0.1676(.0014) 0.0484 (.0008) 1.0783(.0040)
S 0.1513(.0013) 0.0391(.0006) 1.0830(.0044)
6 0.1686(.0014) 0.0486 (. 0008) 1.0766(.0039)
7 0.1468(.0013) 0.0381(.0006) 1.0647(.0039)
8 0.1484(.0013) 0.0384(.0006) 1.0696(.0040)
9 0.1389(.0012) 0.0336(.0006) 1.0561(.0037)
10 0.1513(.0013) 0.0391 (.0006) 1.0837(.0044)
11 0.1461(.0013) 0.0380(.0007) 1.0628(.0039)
Al 0.1384(.0012) 0.0333(.0006) 1.0563(.0037)
A2 0.1258(.0010) 0.0263(.0004) 1.0477(.0036)
R SIS - anasibiititanne e
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The small sample performance of several AR (1) estimators is investigated
through the ugse of Monte Carlo comparison studies. The performance of these
estimators is compared with respect to the criteria of bias, mean squared
error, mean absolute error, and mean squared prediction error. Statistical
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ABSTRACT Continued

modifications to standard estimators. The efficacy of performance of
these estimators is validated through the use of additional Monte Carlo
runs based on three different conditions of parameter selection for data
generation. The sensitivity of these estimators to their use with larger
sample sizes is also investigated.

Based on the various simulation results, recommendations regarding
estimator selection for use in applied estimation are given. The appli-
cability of the adaptive estimators is discussed and an example illus-~
trating their application in forecasting an economic series is given.



