
AD-A97 5L4 PRINCETON UNIV NJ DEPT OF STATISTICS F/S 12/1
PARTIAL CHARACTERIZATIONS OF COMPLETELY NONOETERMINISTIC STOCHA-ETCIU)
NOV 00 P BLOOMFIELD, N P JEWELL N0001-79-C-0322

UNCLASSIFIED TR-IASOTR-2R NL

N 1



l .0.5
113-2 111-.

1~I.8

11111 1-25 ____ 11 .

MICROCOPY RESOLUTION TEST CHART

NA ONA BURI ALJ T IANDAR[T 1-61 A

" W' I ° I I I l . . . . .



LEVE
pARTIAL CHARACTERIZATIONS OF OMPLETELY .ONDETERMINISTIC '

STOCHASTIC PROCESSES .

o - by

.1 Peter/Bl oomfiel d
Nicholas P. /JewelMl

Princeton University .

Technic I epat.ojo. 180, Series 2
DepaFr ff Statistics
Princeton University

INovember-t 80 .

• p , R .' p.

SThis was facilitated by*Department of Energy Grant No. DE-ACO'-81ER10841.AOOO
and a contract with thebffice of Naval Research, No. N00014-79-C-0322,
both awarded to the Department of Statistics, Princeton University.

.. j1Lim

81 4 7 037



PARTIAL CHARACTERIZATIONS OF COMPLETELY NONDETERMINISTIC

STOCHASTIC PROCESSES

by

Peter Bloomfield
and

Nicholas P. Jewell

Department of Statistics
Princeton University

A B S T R A C T

A discr te weakly s ationary Gaussian stochast 
c process

x(t)#". is ompletely nondeterministic if no non- rivial set from the
,i o.-algeb erated by tx(t):t>Of lies in the - gebra generated

by (t),t< . . Levinson and McKean es entially showed

that a necessary and sufficient condition for com lete non-, 44

determinism is that the spectrum of the process i given by h

where h is an outer function in the Hardy space, I/?, of the /

unit circle in with the property that '/n uniquely deter-

mines the outer function h up to an arbitrary constant. In

this paper we consider several characterizations of complete non-

,,t*'determinism in terms of the geometry of the unit ball of the

Hardy space. and in terms of Hankel operators, and pose anr A

open problem.-- A sC . ..
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1. INTRODUCTION

In [10] Sarason defines a property of a discrete weakly

stationary Gaussian stochastic process, fx(t)} , which he

called complete nondeterminism. This condition is that no set

from the future of the process (i.e. the a-algebra generated

by the random variables x(t) for t>O) lies in the past (i.e.

the a-algebra generated by x(t) for t<O), except for null

sets and the complements of null sets. In the spectral repre-

sentation this condition becomes the following. Let m be the

spectral measure of the process and let P denote the span in

L 2(m) of the exponentials ein e with n<O where functions

are defined on T , the unit circle in k . Let F denote the

span in L2 (m) of the exponentials e ine with n>O Then

complete nondeterminism is equivalent to the condition that

PnF={O} . It is clear that this condition reflects a certain

kind of independence (in a statistical sense) of the past, P

and the future, F

It is of interest to characterize those measures m on T

which lead to completely nondeterministic (cnd) processes. In

[10] a necessary and sufficient condition for complete non-

determinism was stated as the measure m being absolutely

continuous with respect to Lebesgue measure, de , with log dm

integrable. Unfortunately this characterization is incorrect.

In (8, p.105] Levinson and McKean essentially describe a

partial characterization of cnd processes which we discuss
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in Section 3. This paper continues an investigation into the

problem of characterizing spectral measures of cnd processes.

In Section 2 we examine the relationship between complete

nondeterminism and some other familiar kinds of independence of

P and F

In Section 3 we restate the question in several ways which

yield partial answers in terms of exposed points of the unit

sphere of H1  and certain Hankel operators.

The completd characterization of complete nondeterminism

in terms of the spectral distribution function remains open and

seems to be a hard question.

The authors are grateful to D.E. Sarason for some helpful

correspondence on the topics of this paper.

41..
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2. COMPLETE NONOETERMINISM

A Gaussian process is called deterministic if its past

determines the future, i.e., for each t>O , x(t) is measurable

with respect to the past. This is translated in the spectral

representation to the property that PaL2 (dm). A necessary

and sufficient condition for this to occur is that logd- be

not integrable. Conversely the process is indeterministic if

dm
log- is integrable. A stronger restriction than indeterminism

is that the process is purely indeterministic or regular. This

is an asymptotic independence condition which, in the spectral

representation, is equivalent to r'%Fk={O} where Fk is the
k=1 ine

span in L2 (m) of the exponentials e with n>k . This

condition is often referred to by saying that the process has

trivial remote future. Results of Szego [11], Kolmogorov [5]

and Krein [6] show that {x(t)} is regular if and only if m

is absolutely continuous with respect to Lebesgue measure and

dmlogk is integrable. First we give an example of a process

which is regular but not completely nondeterministic, thereby

showing that the characterization in (10] is incorrect. First

we establish some notation. L1 (resp. L2 ) is the space of

integrable (resp. square integrable) functions on T . L is

the space of essentia:ly bounded functions on T . We shall

often regard functions in L1 as extended harmonically into

the open unit disc D-{z:lzl<l} by means of Poisson's formula.

We let H1 denote those functions in L' which have analytic
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extensions into the disc. We define H 2  and Hoc similarly.

H 2  is a Hilbert space with orthornormal basis' {zn' :n=0,1,2,...)1

For standard results on the Hardy spaces we refer to [4].

For a regular process we can write dm = wde = Hide = IhI 2de

where H is an outer function in H1  and h is an outer func-

tion in H2

Proposition 1. There is a regular process which is not

completely nondeterministic.

Proof. Let w(ele) = 1+e ie 12 a 11+ZI2 2 n u d~

Since log I1+zI 2 eL I this process is regular. However

(1+7&) .n This follows since 1+z is outer. For we

have

lim fI1-p n(1+z)I dz - 0 for some sequence p n of polynomials in z
n-)o T

hence ft(1+T) -1 - z p 1i2 11+-i1 2 dz -~0 as n--
T

->fiI+i) 1 - z p nI2 I1+z1 2 dz -~0 as n-*-

i.e. (1+iY 1  F

Similarly fI(1+i) - i 112 dz

fll-pn(+ l2 dz -9. 0 as n-- i.e. (1+z)- C P
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We next obtain a simple necessary and sufficient condition

for complete nondeterminism. It is straightforward to see that

if m is singular with respect to Lebesgue measure then

PnF#{O} . This, together with earlier comments means that in

considering cnd processes we can restrict our attention to

regular processes.

We wish to rephrase our question in terms of L2  rather

than L2 (m) . We have dm=lhl2 de . Consider the mapping

T:L2(m)-e.L given by Tf=hf . It is easily verified that T

is an isometry of L2 (m) onto L Also T maps F onto

H 2={fcH2 : f(O) = 0} , and T maps P onto (h/F)H2 where

r 2
H2 = {7:fcH .

Proposition 2. A process is not cnd if and only if

h/ =g(F/'F) where FeH 2  is outer and a is inner with a(0)=0

Proof. Using the isometry T we see that PnFO{0 if and

only if there are non-zero functions g1 ,g2  in H2  such that

zg1 - (h/F)g2

<-> z(gl/h)-(g 2 /W) and z(92/h)=(gl/ )

-> z(g1+g2 )/h = (gg 2 )/ •

Hence PnF#{O} if and only if there exists a function GcH 2

such that zG/h a /5 . If we use the inner-outer factorization

of G then this equality becomes
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zOF/h = -'IW where * is inner and FeH 2  is outer,

=> hi = c(F/F) and ct(O)=O

Conversely h/i = a(F/F) , c(O)=O

=> (h/*)F = z(8F) where a=za

=> P1F${O} by the above.

The same reasoning yields the following result for k>1

PnF k{O} <-> h/F z c(F/F) where FcH 2  is outer and

is inner with a having a

zero at the origin of order

at least k

Another strictly stronger property than regularity is that

of minimality. Introduced by Kolmogorov [5] this property says

that a process is minimal if the value of the random variable

x(O) cannot be predicted without error from the values of the

random variables {x(t):t#O} . In other words a process is not

minimal if it is possible to perfectly interpolate any value of

the process from knowledge of the remaining values of the process.

Kolmogorov [5] proved that a process is minimal if and only if

w is In L.

It is immediately of interest to examine the relationship

between minimal processes and completely nondeterministic

processes.
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Proposition 3. If the process {x(t) I is minimal then it

is completely nondeterministic. On the other hand there exist

completely nondeterministic processes which are not minimal.

Proof. Suppose {x(t) ) is minimal. Then by Kolmogorov's

theorem h' cH2  Using Proposition 2 we argue by contradiction.

For suppose {x(t)} is not completely nondeterministic. Then

(h/-k)=a(f/?) where f is outer and a is inner with a(O)=0

This equality implies f/*F=a(f/h) . The LHS is in i" and the

RHS is in H1 which forces both sides to be zero and thus f=O

which is a contradiction. This proves the first statement of

the proposition. An example of a process which yields the second

statement is given by w=jl+zj. In this case h=(1+z) 1/2 and

h/N-z /  By Kolmogorov's criterion this process is not minimal.

On the other hand suppose h/1T=cz(f/T) for f outer, a inner

with a(O)=O . Then

z 1/2 a(f/) = zO(f/?) with 0 inner

->z/2Of =

-> z(of) 2 - (T)2

The LHS is in H1 and the RHS is in H1 . Again this forces0
both sides to be zero and hence f=O which gives a contradiction.

Thus the process with w-Il+zl is completely nondeterministic.

Let Pk be the span in L2 (m) of the exponentials eine

with n<k . A minimal process is one for which the function 1
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does not belong to the closed linear span of P1  and F1  i.e.

1ePlvF 1 . There is a similar restatement of the condition of

complete nondeterminacy. Let P +F1 = {fcL (m):f-g+h with

gcP1 ,heF 1 } •

Proposition 4. A regular process is completely nondeter-

ministic if and only if IPI+F1

Proof. Assume f is a non-zero element of PuF . Then,

for some k>1 , k  but f 4 Fk+ 1  (since f Fk ={O) . Hence

ike 
kl

f = ae + f1  where a#O and fleFk+l . This implies

eike = (f-fl)/a c P+F

-> 1 c (e-ikP) + F1 , PI+F1 •

Conversely assume that 1 c PI+F 1 . Then l-fI+f 2 with f1CP

f2 eF . Hence e ie fl =e ie - e i f 2  F. But e if 1  P

Hence e ife P F .

We complete this section by establishing a simple sufficient

condition for PAF n to be non-trivial.

Proposition 5. Suppose that w-IpI 2w , where p is a

trigonometric polynomial of degree n with all its zeros in the

closed unit disc, and wlcL 1 . Then PnFn#{Ol

Proof. We show that 1/ c PAF Fn
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(1) 150c: without loss of generality we can assume that

m -n.j

j=1 tL.
m -n

where q 1 is a polynomial.

Now (1-1/.) j- can be approximated by polynomials in i in

L2(m) .In fact

)-j_1in,-,j m+-2--2
T Jm z/ m j

4-.. .+l/m(i/14j)mn1 } j12 w(e)de

= 1 3w 2(e)de
T i

where w2 =/1-/

=~~~ J~~ilmzl+...+(Z/j n ii 2 e
T

-0 as m--~ by Lebesgue's dominated convergence theorem.

Hence 1/p e P;

(11) 15 £ Fn~:1/p~zn/znp znq where qnz p5 is also a poly-

nomial of degree n in z .The same construction as in (i)

shows that 1/q n can be approximated by polynomials in z in

L 2(m) .Hence l/qn e F 0and 1/5 c Fn
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Remark. This proposition implies that if we restrict our

attention to cnd processes then the strong mixing condition

implies the property that P and F1  be at positive angle;

(see [3], [10, p.77] for definitions). For if the angle between

P and Fn is converging to w/2 as n-- then, for some k

P and Fk are at a positive angle which implies by [3] that

w=pi 2w1  for some trigonometric polynomial p where w, is

the spectrum of a process for which P and F are at a positive

angle. If the process is cnd then Proposition 5 implies that

p must have zero degree. In general the strong mixing condition

does not imply that P and F1  are at positive angle (e.g. take

h=1+z).
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3. EXPOSED POINTS OF THE BALL IN H' AND HANKEL OPERATORS

It is well known (see [7]) that the extreme points of the

unit ball of H1 are given by the outer functions F in H'

with IIF11 1 = 1 . It is also well known that an H1  function

F of unit norm is not determined by its argument.

In [8, p.205] Levinson and McKean showed that for continuous

processes the dimension of PnF 0= if and only if h/"F deter-

mines the outer function h up to a constant. In this section

we consider this approach which is closely related to the

results of Section 2 and consider this characterization in

geometrical terms.

In their study of extremum problems in H deLeeuw and

Rudin introduced the following sets of H functions indexed

by unimodular L* functions. Let OcL* with 101=1 almost

everywhere and define

1 F
S0 = {FeH f lfli = 1 , almost everywhere}

Geometrically S is the intersection of the ball of H1 and

the hyperplane {FcH1 : f Fde - 11 and so S is a convex set

(which may be empty, in general). When S¢ contains exactly

one function F , the hyperplane touches the ball of H only

at F which means that F is an exposed point of the ball of

H1 . (In fact the definition of S we have given corresponds

to S- as defined by deLeeuw and Rudin.)
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Proposition 6. Let w=IHI=lhl2 . Without loss of generality

assume that fwde-1 . The following statements are equivalent:

(1) {x(t)} is completely nondeterministic

(2) Sh/W contains exactly one function

1(3) h2-H is an exposed point of the unit ball in H

Proof. Note that Sh/ F always contains h2 , so that our

comments above show the equivalence of (2) and (3). Now suppose

that {x(t)) is-not completely nondeterministic. By Proposition 2

h/*F -a(F/r) where a is inner and a(O)=O and FcH 2  IsaF 2  F 2
outer. Hence I-rl= F 2 = = h/h .

Thus a positive multiple of aF2 is in Sh/* But

a(aF 2) # h2  for any a>O since a has a zero at the origin.

Hence Sh/ contains more than one function. Conversely suppose

Sh/- contains more than one function. Then, by Theorem 9 of [7]

Sh/' contains a function f with f(O)-O. Write f-bF 2 where

b inner, b(O)=O , and FcH 2  is outer. Now feSh/, implies

that h/F a bF/F which, by Proposition 2, shows that {x(t)}

is not completely nondeterministic.

A similar result is given in the following proposition for

k>1 .

Proposition 7. PF k # {01 if and only if there is a func-

tion fCSh/W where f has k zeros (counting multiplicitles)

in the open unit disc.

I
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Proof. By Proposition 2 PnFk#{O} implies that

h/W - zk¢(F/F) where € is inner and FcH 2  is outer. As in

the proof of Proposition 6 it follows that zkOF 2 Sh/.

Conversely if f S h/'F and f(zl)=f(z2 )=... =f(zk)=O where

zjeD (lj~k) then it is easy to verify that a positive multi-

kple of g(z) = z f(z) 11 (z-zi)'10- z)-I is in Sh/
j=1 iih/

Factorize g as gzk bF where b is inner and FcH 2  is outer.

Since ageS h/ for some a>O it follows that h/F-=zkbF/F

showing that PMFkf{O} .

Note that Proposition 6 yields the version of the Levinson

and McKean result as applied to cnd processes: namely, a

process is cnd if and only if arg(h/E) is the argument of

a unique H1  function.

Since we have expressed the characterization of completely

nondeterministic processes in terms of an extremum problem it

is not surprising that there is a version of the problem in terms

of the norms of Hankel operators which are closely related to

extremum problems on H1

Let P be the orthogonal projection of L2 onto H2

Recall that the Hankel operator with symbol OeLm is the

bounded operator from H2  to L2eH2 defined by

H (f) -(I-P)(¢f) MfH 2 )

The norm of He is given by IIHI11 - d(O,H-) int 110-f 1l.
f H i

LJ
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It is straightforward to show from first principles that the

process {x(t) } is completely nondeterministic if and only if

Hh/ Fattains the norm of 1 (on the unit sphere of H2 ).

In fact more is true.

In [I] it is essentially shown that H attains its norm€

on the unit sphere on H2  if and only if *=f+) where fcH'

X>O and I*1-1 a.e on T with ST  containing more than one

function. Also if 11011.=1 then H attains the norm I if

and only if 101-1 a.e on T and ST  contains more than one

function [1]. There is another result of this type which does

not seem to have appeared in the literature.

Proposition 8. JJHJJ<JJJJ > * = f+X* where feH" , X>O

and JIjul a.e on T

with ST  containing

exactly one function.

Proof. Without loss of generality we assume that III11.

Suppose 1IH lI<1 . Then by [2] there exists *cL' such that

(i) -0*-cH= and (ii) *-F/IFI for some FcH 1 , FrO . Now (M)

-> H *H and so IIHIl<1 . So there exists geHO such that

I1 (/fF)-gff,.z a<1 which gives that jarg(gF)j <b<r/2 . Hence

(gF)- 0H1 (since gF#O on 0 and if G is analytic on 0 and

jargGI <b<w/2 then GH P for all p<w/2b) . Thus g(gF)-lcH 1

-> F-cH1 . Now F/IFI= so that a positive multiple of F is

in S- . Then F'IcH 1  implies that ST  contains one and only

one function (if GcS and G 1 cH1  then S {G) - See (7,

Theorem 8] and use the fact that positive H1/2 functions are

constant).
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Note however that ST containing exactly one function does

not necessarily imply that IIHII<IIII • For example if

h-(l+z) 1/ 2 , and we take *-K/h it can be shown that

IH I1 but, as we saw in the proof of Proposition 3, Jh1 2

corresponds to a cnd process so that Sh/F = {h2 }
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4. P and Fk  AN OPEN QUESTION

There is an interesting set of results in [91 which describes

the relationship between minimal processes and those processes

which may not be minimal but, for some fixed k , do not allow

perfect interpolation of k "missing" values of the process.
ie (k-l)ie

Call a process k-minimal if the k functions 1,e1i ,...,e

do not all belong to the closed linear span of P1 and Fk . The

extension of Kolmogorov's result given in [9] is that a process

with spectrum w is k-minimal if and only if there exists a

polynomial p(e e ) such that fp(e)l de
T w(e i e )

where the degree of the polynomial p is strictly less than k

and we may assume that the zeros of p are all on T . Thus if

w is the spectrum of a k-minimal process then w=IpI2 w where

w1 is the spectrum of a minimal process and p is a trigono-

metric polynomial with degree <k and zeros all on T .

It would be satisfying to have a similar theory relating

processes for which PnFk-{O) with completely nondeterministic

processes. We know that PnFkV(O } if and only if h/F - a(F/F)

where FcH 2  is outer and a is inner with a zero at the

origin of multiplicity at least k .

The fact that p/p- zk for some constant X with 1I-1

when p is a trigonometric polynomial of degree k , together

with our comments above also shows that if a process is k-minimal

then P Fk-(O} . We also remark that for a cnd process

k-minimal processes are automatically minimal by the same reason-

Ing as in the remark following Proposition 5.
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Proposition 9. Suppose PnFka{Ol but PnFFk-l {O. Then

a/' Azk F/T where F is outer and jX 1=l

Proof. PnF k-l{O} implies that

h/h = zk I (F/F) where FeH 2  is outer, a is inner.

Suppose that a is non-constant. Then we can find constants

2a,b such that OfaF+b(ctF)EH0 . Then

z k-i (aF-+baF)/h - (TaF+5F)/ W

The LHS e Fk and the RHS c P . Hence PAFk{O)} This contra-

diction implies that a is a constant A "

The result we are aiming for is that if PflFk={O} then

w=aPw 1 where p is a trigonometric polynomial of degree <k

with all its zeros on T and w1  is the spectrum of a completely

nondeterministic process. (We already know by Proposition 5 that

for such a process PnF1 {O1 if j is the degree of p .)

Proposition 10 provides a partial answer. First recall that h

is a strong outer function [7] if h/(z-X) 4 H2 for all XET

For simplicity we will simply look at processes for which

PnFIf{O ) and PrnF 2={O "

Proposition 10. The following are equivalent

(1) w-lpI 2w where p Is a trigonometric polynomial of

degree I with Its zero on T and w1  is the spectrum of a

cnd process.

(ii) PnF2 {O) and h is not strong outer.

. ... ...... . . . . . . . .
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Proof. Suppose (1). Suppose h/W=z 2 a(F/F) for a inner,

FH 2 , outer. But 1h 2-1P 2 h112 > hph1 -> h/h = Zh1/N1

h-> 1N= z(F/*F)

contradicting the fact that 1h112 corresponds to a cnd

process. Trivially (i) -> h is not strong outer.

Conversely suppose (i) does not hold, i.e. hpxh1 for any

trigonometric polynomial px-z-x (AcT) and outer function h

corresponding to a cnd process. Then either h/pX J H2 for

all XcT i.e. h is strong outer or h=pxh 1 but h1  does not

correspond to a cnd process, i.e. h1 /'R1=za(F/F) for a

inner, FeH 2 outer. Thus h/l - z(hl/ 1 ) = z
2c(F/T) , i.e.

P/F2-{O}

The missing link that we require leads us to suspect that

h strong outer together with PnF 10{O}- PnF2 "{O} . In fact

we make the following conjecture.

Conjecture 1. h strong outer, PnF I{O} -> PnFko{O}

for all k>1

We finish by translating this conjecture into

the language of Section 3. In (7) it was shown that Sh/Vi={h 2 }

implies that h is strong outer. The following conjecture

would tell us that if h strong outer does not imply Sh/-={h2 I

then S must contain many functions.

Conjecture 2. Suppose S* contains more than one function,

one of which is strong outer. Then S contains a function

with an inner factor which is not a finite Blaschke product.



If Conjecture 2 is correct then so is Conjecture 1 for the

following reason. Suppose h is strong outer and PnF 1 {O .

Then h2cSh/-g and so if Conjecture 2 is correct ShlF contains

a function with an inner factor which is not a finite Blaschke

product. (7, Lemma 4.6] shows that this gives a function

ges with infinitely many zeros in D . Proposition 7 then

shows that PAFk {O) for all k>1 . Note that it is easy to

construct examples of processes for which PnFk{O} for all

k>l1. In fact by the reasoning above w-ll+kl gives such an

example if k is an inner function which is not a finite

Blaschke product.
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