AD-A097 514  PRINCETON UNIV NJ DEPT OF STATISTICS Fr6 1271
PARTIAL CHARACTERIZATIONS OF COMPLETELY NONDETERMINISTIC STOCHA==ETCU)
NOV 80 P BLOOMFIELD: N P JEWELL NOOD14-79-C—-0322
UNCLASSIFIED TR=180=SER-2

NL




fles : o o

Nl

it

L2 e

_
—
.
—
ree
,

I
|

N
On

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS 106+ &

‘.
R
-~




LEVEY 77

 Nicholas P. /AdewelT\¥*
Princeton University

| .
De " PARTIAL CHARACTERIZATIONS OF SOMPLETELY NONDETERMINISTIC 4
7~ [ e .
(@] STOCHASTIC PROCESSES , "
c o by '
fu } Peter/Bloomfield ¥
(o )
<

' fs;L;;.! ®¢¢M_,’ "C’ Q‘ 2 ¥
VDL A ga~v1 L desds

e .
{ N -
i ) "

~—

i
f
¢

- ——————

PN - .
- +r_Technical Reperts
Depar

. 180, Series 2
Statistics

Princeton University

{'ftj November-4980 -

This was facilitated by*bepartment of Energy Grant No. DE-ACOZ-81ER10841.A000
and a contract with the™ffice of Naval Research, No. N00014-79-C-0322,
both awarded to the Department of Statistics, Princeton University.

DT FILE COPY

<
B
~
S~
(=




SoMA

¥ 4

. ABSTRACT
g K& tor=

- c-algebragenerated by Qx(t):t>0? lies in the ?&-

~ - C /,»\. .
unit circle in (kf*with the property that (E/F uniquely deter-

PARTIAL CHARACTERIZATIONS OF COMPLETELY NONDETERMINISTIC
STOCHASTIC PROCESSES

by

Peter Bloomfield
and
Nicholas P. Jewell

Department of Statistics
Princeton University

A discrpte weakly stationary Gaussian stochastic process

fx(t)r. is

ompletely nondeterministic if no non-ffrivial set from the
sqmP

gebra generated
by (t):t . ~da_<8}— Levinson and McKean es

that a necessary and sufficient condition for com

entially showed

ofF
lTete non-,.,mw‘;;ﬂ,m;»
determinism is that the spectrum of the process i given by [|h|%

where h 1is an outer function in the Hardy space, I of the

s /7///’7 Ga,
mines the outer function h up to an arbitrary constant. In
this paper we consider several characterizations of complete non-

heterminism in terms of the geometry of the unit ball of the

‘LHafdy spazéaLHv and in terms of Hankel operators, and pose an

r

open problem. | hoeess! “;hrjhﬁm;ki_[
_ i TTIS R T g
. DYIC TR
, Unannounceq Eg
: Justiticatiol‘-\_‘
—————
By
| Distribution/
‘ ' : e
- : Availability Codegs
N : ‘Avell andfor T
) . DPiet ' epaetal




1. INTRODUCTION

In [10] Sarason defines a property of a discrete weakly
stationary Gaussian stochastic process, {x(t)} , which he
called complete nondeterminism. This condition is that no set
from the future of the process (i.e. the o-algebra generated

_by the random variables x(t) for t>0) lies in the past (i.e.
the o-algebra generated by x(t) for t<0), except for null
sets and the complements of null sets. In the spectral repre-
sentation this c&ndition becomes the following. Let m be the
spectral measure of the process and let P denote the span in

ine

Lz(m) of the exponentials e with n<0 where functions

are defined on T , the unit circle in € . Let F denote the
span in Lz(m) of the exponentials ei"e with n>0 . Then
complete nondeterminism is equivalent to the condition that
PnF={0} . It is clear that this condition reflects a certain
kind of independence (in a statistical sense) of the past, P ,
and the future, F .

It is of interest to characterize those measures m on T
which lead to completely nondeterministic (cnd) processes. In
[10] a necessary and sufficient condition for complete non-
determinism was stated as the measure m being absolutely
continuous with respect to Lebesgue measure, do6 , with log%%
integrable. Unfortunately this characterization is incorrect.
In (8, p.105] Levinson and McKean essentially describe a

partial characterization of cnd processes which we discuss




in Section 3. This paper continues an investigation into the
problem of characterizing spectral measures of cnd processes.

In Section 2 we examine the relationship between complete
nondeterminism and some other familiar kinds of independence of
P and F .

In‘Section 3 we restate the question in several ways which

yield partial answers in terms of exposed points of the unit
sphere of H1 and certain Hankel operators.

The completé characterization of complete nondeterminism
in terms of the spectral distribution function remains open and
seems to be a hard question.

The authors are grateful to D.E. Sarason for some helpful

correspondence on the topics of this paper,.




2. COMPLETE NONDETERMINISM

A Gaussian process is called deterministic if its past

determines the future, i.e., for each ¢t>0 , x(t) is measurable

with respect to the past. This is translated in the spectral

representation to the property that P=L2(dm). A necessary
and sufficient condition for this to occur is that log%% be

not integrable. Conversely the process is indeterministic if

log%% is integrable. A stronger restriction than indeterminism

is that the process is purely indeterministic or regular. This

is an asymptotic independence condition which, in the spectral

o

representation, is equivalent to r\rk={0} where Fk is the
span in Lz(m) of the exponentia%il e™®  with n>k . This
condition is often referred to by saying that the process has
trivial remote future. Results of Szego [11], Kolmogorov [5]

and Krein [6] show that {x(t)} is regular if and only if m

is absolutely continuous with respect to Lebesgue measure and
log%% is integrable. First we give an example of a process
which is regular but not completely nondeterministic, thereby
showing that the characterization in [10] is incorrect. First
we establish some notation. Ll(resp.Lz) is the space of
integrable (resp. square integrable) functions on T . L> s
the space of essentially bounded functions on T . We shall
often regard functions in L1 as extended harmonically into

the open unit disc D={z:|z|<1} by means of Poisson's formula.
1

We let H1 denote those functions in L which have analytic
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extensions into the disc. We define H and H” similarly.

H2 is a Hilbert space with orthornormal basis {z":n=0,1,2,...1.
For standard results on the Hardy spaces we refer to [4].
For a regular process we can write dm = wde = |H|de = |h|2de
1

where H 1is an outer function in H and h 1is an outer func-

tion in H2 .

Proposition 1. There is a regular process which is not

completely nondeiérministic.

Proof. Let w(eie) = |1+eie|2 = |1+z|2 and put dm=wdo .

Since 1log |1+z|2 eL}

(1+’£)'1 € PnF . This follows since 1+z is outer. For we

this process is regular. However

have

Tim f|1-pn(1+z)|2dz = 0 for some sequence Pn of polynomials in
nN->o

hence %I(1¥7)'1 -2 pn|2|1+'z'|2 dz + 0 as n-=
-> f|(1+?)'1 -z pnl2 |1+z|2 dz + 0 as n+» ;
i

i.e. (1+7)° ! ¢ F .

Similarly {\|(1+E)‘1 - 5,12 (142]% 4z

= 1{‘11")"(1*2)]2 dz - 0 as n+= ; i,e, (14.;)'1 e P .

et A L7 . TR i TR S
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We next obtain a simple necessary and sufficient condition
for complete nondeterminism. It is straightforward to see that
if m is singular with respect to Lebesgue measure then

PnF#{0} . This, together with earlier comments means that in

considering c¢cnd processes we can restrict our attention to
regular processes.

2 rather

We wish to rephrase our question in terms of L
than Lz(m) . We have dm=|h|2de . Consider the mapping
T:0%(m)»L% given by Tf=hf . It is easily verified that T
is an isometry of L2(m) onto L2 . Also T maps F onto
HoZ={feh? : £(0) = 0}, and T maps P onto (h/R)HT where

HZ = {F:feH’) .

Proposition 2. A process is not c¢nd if and only if

h/h=a(F/F) where FeH?

is outer and o is inner with a(0)=0 .

Proof. Using the isometry T we see that PnF#{0} if and

2

only if there are non-zero functions 9119, in H such that

29, * (h/F)gz
<=> 2(9,/h)=(g,/R) and z(g,/h)=(g,/h)

-> 2(91+92)/h = (91+92)/F

Hence PnF¥{0} if and only if there exists a function GeH2

such that 2G/h = G/h . If we use the inner-outer factorization

of G then this equality becomes

e e e g s T
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2

z2¢F/h = ¢F/h where ¢ s inner and FeH is outer,

=> h/h = o(F/F) and a(0)=0

Conversely h/h = o(F/F) , a(0)=0
=> (h/h)F = z(BF) where a=2z8
=> PnF#{0} by the above.

The same reasoning yields the following result for k>1

2 is outer and a

PAF #{0} <=> h/F = o(F/F) where FeH
is inner with o having a
zero at the origin of order

at least k .

Another strictly stronger property than regularity is that
of minimality. Introduced by Kolmogorov [5] this property says
that a process is minimal if the value of the random variable
x(0) cannot be predicted without error from the values of the
random variables {x(t):t#0} . In other words a process is not
minimal if it is possible to perfectly interpolate any value of
the process from knowledge of the remaining values of the process.
Kolmogorov [5] proved that a process is minimal if and only if
vl 4s in !

It is immediately of interest to examine the relationship

between minimal processes and completely nondeterministic

processes.




Proposition 3. If the process {x(t)} 1is minimal then it

is completely nondeterministic. On the other hand there exist

completely nondeterministic processes which are not minimal.

Proof. Suppose {x(t)} is minimal. Then by Kolmogorov's
theorem h'leH2 . Using Proposition 2 we argue by contradiction.
For suppose {x(t)} 1is not completely nondeterministic. Then
(h/R)=a(f/T) where f is outer and o 1is inner with a(0)=0 .
This equality implies T/h=a(f/h) . The LHS is in HY and the
RHS is in Hé which forces both sides to be zero and thus =0
which is a contradiction. This proves the first statement of
the proposition. An example of a process which yields the second
statement is given by w=|1+z|. In this case h=(1+z)1/2 and
h/h=zl/2
On the other hand suppose h/h=a(f/f) for f outer, o inner

with a(0)=0 . Then

/2 . a(f/F) = 26(Ff/F) with ¢ dinner

-> 21/2¢f = T
-> z2(¢F)% = (F)% .

The LHS is in Hé and the RHS is in H' . Again this forces

both sides to be zero and hence f=0 which gives a contradiction.

Thus the process with w=|1+z| 1is completely nondeterministic.

Let Pk be the span in Lz(m) of the exponentials eine

with n<k . A minimal process is one for which the function 1

By Kolmogorov's criterion this process is not minimal.




does not belong to the closed linear span of P1 and F1 i.e.

ltPlvF1 . There is a similar restatement of the condition of
complete nondeterminacy. Let P1+F1 = {feLZ(m):f=g+h with
gePl,heFl} .

Proposition 4. A regular process is completely nondeter-

ministic if and only if 1¢P1+F1 .

Proof. Assume f 1is a non-zero element of PAF . Then,

for some k>1 , feF, but f ¢ F  , (since k:\rka{o}) . Hence

. 1
ike + fl where a#0 and fleFk+1 . This implies

f = ae
ike _
e = (f-fl)/a € P+Fk+1

-> 1€ (e'ikeP) + Fy € PyHFy

Conversely assume that 1 ¢ P1+F1 . Then 1-f1+f2 with fleP .

fZeF . Hence e19 fl = e19 - e19 ief

f2 e F. But e P .

1 E

Hence eiefls PNF .

We complete this section by establishing a simple sufficient

condition for PnFn to be non-trivial.

Proposition 5. Suppose that w=|p|2w1 , where p is a
trigonometric polynomial of degree n with all its 2eros in the

closed unit disc, and wleL1 . Then Pnan{O} .

Proof. We show that 1/p € PAF .

i I RV 1123, AP £, T




(i) 1/peP: without loss of generality we can assume that

- M - = j
1/p = 1 (1-2/T;) |;j|§1
n,

q,,j_l(?)(l-i/zj)' y

where A9 -1 is a polynomial.
J

-n,
Now (I-E/Ej) J- can be approximated by polynomials in Zz in
Lz(m) . In fact
[11-37%,) -1l (zz )+ 2(z)7 )2
T \ C... m Cj m Cj
n,
+...+1/m(?/;j)m'1} J|2 w(e)de

_ 1 - - - — _ n.
S (02T BLE ) o1 /m(E/ )" 117912 wy(e)de

"j
where w, = w/(l-Z/Cj)

n,
£1-(1-1/m{Z/ Ty +(Z/T)" 0 312 wyle)de
T J

- 0 as m+»= by Lebesgue's dominated convergence theorem.
Hence 1/p e P ;
(i1) 1/p ¢ Fn:l/EEz"/z"F = z"/qn where qn=z"5 is also a poly-

nomial of degree n in 2z . The same construction as in (1)

shows that 1/qn can be approximated by polynomials in 2z in

Lz(m) . Hence 1/q, ¢ F, and 1/p € Fo
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Remark. This proposition implies that if we restrict our
attention to cnd processes then the strong mixing condition
implies the property that P and F1 be at positive angle;

(see [3], [10, p.77]) for definitions). For if the angle between

P and Fn is converging to n/2 as n+~ then, for some k ,

P and Fk are at a positive angle which implies by [3] that
w=|p|2w1 for some trigonometric polynomial p where w, is

the spectrum of a process for which P and F1 are at a pogitive
angle. If the process is c¢nd then Proposition 5 implies that

p must have zero degree. In general the strong mixing condition

does not imply that P and F1 are at positive angle (e.g. take

h=1+2z).
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3. EXPOSED POINTS OF THE BALL IN H1 AND HANKEL OPERATORS

It is well known (see [7]) that the extreme points of the
unit ball of H1 are given by the outer functions F in H1
with ||F|]}, =1 . It is also well known that an H!  function
F of unit norm is not determined by its argument.

In [8, p.205]) Levinson and McKean showed that for continuous
processes the dimension of PnF0=1 if and only if h/h deter-
mines the outer function h wup to a constant. In this section
we consider this_approach which is closely related to the
results of Section 2 and consider this characterization in
geometrical terms.

1 deLeeuw and

In their study of extremum problems in H
Rudin introduced the following sets of H1 functions indexed
by unimodular L functions. Let ¢eL°° with |¢]=1 almost

everywhere and define

S¢ = {FeH1 : |Ifl]y =1 '|%|= almost everywhere}
Geometrically S¢ is the intersection of the ball of H1 and
the hyperplane {FeH1 : foFde = 1} and so S¢ is a convex set
(which may be empty, in general). When S contains exactly

¢
one function F , the hyperplane touches the ball of H1 only

at F which means that F is an exposed point of the ball of

H1 . (In fact the definition of S we have given corresponds

¢

to S$ as defined by deLeeuw and Rudin.)

T R RS S




Proposition 6. Let w=|H|-|h|2 . Without loss of generality

assume that swde=1 . The following statements are equivalent:

; (1) {x(t)} is completely nondeterministic

(2) Sh/F contains exactly one function

(3) h2=H is an exposed point of the unit ball in Wl .

. o 7]

h

Proof. Note that Sh/F always contains » S0 that our
comments above show the equivalence of (2) and (3). Now suppose

that {x(t)} 1is not completely nondeterministic. By Proposition 2
2

h/h = o(F/F) where a 1is inner and a(0)=0 and FeH® is
2 2 -
outer. Hence I%;TI =(ﬂ%T2 = m% = h/h . ‘

Thus a positive multiple of aF2? is in sh/F . But
a(aF?) # ne  for any a>0 since a has a zero at the origin.
Hence sh/ﬁ contains more than one function. Conversely suppose
Sh/F contains more than one function. Then, by Theorem 9 of [7]
Sh/F contains a function f with f(0)=0. Write f=bF? where
b fnner, b(0)=0 , and FeW’ is outer. Now feS, p implies
that h/h = bF/F which, by Proposition 2, shows that {x(t)}

is not completely nondeterministic. ;
A similar result is given in the following proposition for

k>1 .

Proposition 7. Pan ¥ {0} if and only if there is a func-

B tion feSh/F where f has k zeros (counting multiplicities)

in the open unit disc.




Proof. By Proposition 2 Pan#{O} implies that

h/h = zk¢(F/F) where ¢ 1is inner and Fe?  is outer. As in
the proof of Proposition 6 it follows that zk¢Fszh/F :
Conversely if fe Sh/F and f(zl)=f(zz)=...=f(zk)=0 where
zjeD (1<j<k) then jt is easy to verify that a positive multi-

k
_ K S P R
ple of g(z) = z f(z2) jI=Il(z-zj) (1 zjz) is in Sh/F .

Factorize g as g=zka where b 1is inner and FsH2 is outer.
Since agesh/ﬁ for some a>0 it follows that h/ﬁizka/?
showing that Panf{O} .

Note that Proposition 6 yields the version of the Levinson |
and McKean result as applied to c¢nd processes: namely, a
process is cnd {f and only if arg(h/h) 1is the argument of
a unique H1 function.

Since we have expressed the characterization of completely
nondeterministic processes in terms of an extremum problem it
is not surprising that there is a version of the problem in terms
of the norms of Hankel operators which are closely related to

extremum problems on H1 .

Let P be the orthogonal projection of L2 onto H2 .

Recall that the Hankel operator with symbol ¢elL”™ is the

2 2

bounded operator from H to L GHZ defined by

Ho(f) = (1-P)(of) (fehl) .

The norm of HO

is given by HH¢H = d(¢,H") = inf |le-fll_ .
fecH
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It is straightforward to show from first principles that the
process {x(t)} is completely nondeterministic if and only if
Hh/F attains the norm of 1 (on the unit sphere of W2 ).
In fact more is true.

In [1] it is essentially shown that H¢ attains its norm
on the unit sphere on H2 if and only if ¢=f+Ay where feH™ ,
A>0 and |v|=1 a.e on T with SE containing more than one
function. Also if |[¢]]_=1 then H_ attains the norm 1 if

¢

and only if |¢|¥1 a.e on T and S$ contains more than one

function [1]. There is another result of this type which does

not seem to have appeared in the literature.

Proposition 8. l]H¢]l<]|¢]]°° -> ¢ = f+Ay where feH” , A>0
and |y|=1 a.e on T
with S$ containing
exactly one function.

Proof. Without loss of generality we assume that |¢||_=1 .
Suppose HH¢]|<1 . Then by [2] there exists vel®™ such that
(1) ¢-weH™ and (11) w=F/|F| for some FeH' , FFO . Now (i)
=> Hy=H, and so lHyll<1 . So there exists geH” such that
| (F/{F|)-gll_= a<l which gives that |arg(gF)| <b<n/2 . Hence
(gF)'leH1 (since gFFf0 on D and if G 1is analytic on D and
largG| <b<n/2 then GeHP for all p<n/2b) . Thus g(gF) len?
-> F- el . Now F/|F|=¥ so that a positive multiple of F is
in SE . Then F'leH1 implies that SW contains one and only
and 6~ len!

one function (if GeS then SB'{G} - See [7,

]
Theorem 8] and use the fact that positive H”2 functions are

i . -

constant).
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Note however that S$ containing exactly one function does

not necessarily imply that I|Hw||<||w||°° . For example if
h=(1+z)1/2 , and we take v=h/h it can be shown that

Hleltl but, as we saw in the proof of Proposition 3, |h|2

corresponds to a c¢nd process so that sh/F = {hz} .




4, P __and Fr—s AN OPEN QUESTION

There is an interesting set of results in [9] which describes
the relationship between minimal processes and those processes
which may not be minimal but, for some fixed k , do not allow
perfect interpolation of k "missing" values of the process.

Call a process k-minimal if the k functions l,eie ,....e(k'l)ie
do not all belong to the closed linear span of Pl and Fk . The
extension of Kolmogorov's result given in [9] is that a process

with spectrum w is k-minimal if and only if there exists a

ie i6,,2
polynomial p(e °) such that s e -
LI TLp

wie )

where the degree of the polynomial p 1is strictly less than k
and we may assume that the zeros of p are all on T . Thus if
w is the spectrum of a k-minimal process then w=|pl2w1 where
Wy is the spectrum of a minimal process and p is a trigono-
metric polynomial with degree <k and zeros all on T .

1t would be satisfying to have a similar theory relating
processes for which Pan-{O} with completely nondeterministic
processes. We know that PnF #{0} if and only if h/h = «(F/F)
where FeH2 is outer and o 1is inner with a zero at the
origin of multiplicity at least k .

K for some constant A with [x]=1

The fact that p/p=iz
when p is a trigonometric polynomial of degree &k , together
with our comments above also shows that if a process is k-minimal
then P F ={0} . We also remark that for a cnd process

k-minimal processes are automatically minimal by the same reason-

ing as in the remark following Proposition 5.
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Proposition 9. Suppose PAF ={0} but PAF, _ #{0}. Then
h/h = Aszlf where F s outer and |A]=1 .

Proof. PnF, _,#{0} implies that

h/F = 2% la(F/F) where Fen?

is outer, o 1is inner.
Suppose that o 1is non-constant. Then we can find constants

a,b such that 0#aF+b(aF)€Hg . Then
2%~ 1(aF+baF)/n = (aaF+bF)/R

The LHS ¢ Fy and the RHS ¢ P . Hence Panf{O} . This contra-
diction implies that o 1{is a constant X .

The result we are aiming for is that if PnF ={0} then
w=|pl2w1 where p 1is a trigonometric polynomial of degree <k
with all its zeros on T and wy is the spectrum of a completely
nondeterministic process. (We already know by Proposition 5 that
for such a process PnFj#{D} if J 1is the degree of p .)
Proposition 10 provides a partial answer. First recall that h

is a strong outer function [7) if h/(z-1) ¢ W2 for all AeT

For simplicity we will simply look at processes for which

PnFlf{O} and Rans{O} .

Proposition 10. The following are eoquivalent

(1) w-|p|2w1 where p 1s a trigonometric polynomial of
degree 1 with its zero on T and w; is the spectrum of a
cnd process.

(11) PnFZ-{O} and h 1is not strong outer.




Proof. Suppose (i). Suppose h/F=zza(F/F) for a inner,

Feh? | outer. But |hZ=|p|Z|hy|? => h=ph, => h/F = zh /|

- hl/ﬁ'l = za(F/F) ,
contradicting the fact that |h1|2 corresponds to a cnd
process. Trivially (i) => h 1is not strong outer.

Conversely suppose (i) does not hold, i.e. h#p)\h1 for any
trigonometric polynomial p,=z-1 (AeT) and outer function h,
corresponding to a c¢nd process. Then either h/px ¢ H2 for
all 2eT d.e. h 1{is strong outer or h=p,h, but h, does not
correspond to a cnd process, i.e. hl/K1=za(F/?) for «a
fnner, Feh? outer. Thus t/F = z(h,/F)) = 2%a(F/F) , i.e.
PAF,={0} .

The missing 1ink that we require leads us to suspect that
h strong outer together with RnFlf{O} - PnFZ#{O} . In fact

we make the following conjecture.

Conjecture 1. h strong outer, PnFl#{O} => Pan#{O}
for all k>1 .

We finish by translating this conjecture into
the language of Section 3. In {7] it was shown that Shlﬁs{hz}
implies that h 1s strong outer. The following conjecture
would tell us that if h strong outer does not imply Shlﬁc{hz}

then sh/F must contain many functions.

Conjecture 2. Suppose s¢ contains more than one function,

one of which is strong outer. Then SO contains & function

with an inner factor which is not a finite Blaschke product.




If Conjecture 2 is correct then so is Conjecture 1 for the

following reason. Suppose h 1is strong outer and PnFI#{O} .

Then hzesh/F and so if Conjecture 2 is correct Sh/ﬁ contains

a function with an inner factor which is not a finite Blaschke
product. (7, Lemma 4.6] shows that this gives a function
9€Sh/F with infinitely many zeros in D . Proposition 7 then
shows that Panf{O} for all k>1 . Note that it is easy to
construct examples of processes for which Pan#{O} for all
k»>1 . In fact by the reasoning above w=[l+k|Z gives such an

example if k dis an inner function which is not a finite

Blaschke product.
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