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ABSTRACT

The use of the Fisher distribution to estimate
the mean direction of magnetization of a rock at a
sampling site is now standard. Sampling sites are
chosen to cover 104 to 105 years to average out the
effect of secular variation. The controversy about
how to combine these site means has never been satis-
factorily resolved. By using statistical models for
secular variation, this paper suggests how methods
should be derived. A number of interesting statis-
tical distributions and estimation problems are

shown.

Key words: Palaeomagnetism, Fisher distribution,

unit vectors, multivariate normal dis-
tribution.

NTIs GRAT
DTIC TAB
Unannot'® -
Justi’

-

e
Accession For

v [alG6S

o g_x"S/G!‘

aint - suecial

]

-+ e e e m e B e e




1. INTRODUCTION

When a lava containing iron cools below its Curie point, it becomes
magnetized in the direction of the earth's field at that place and time.
Sediments containing magnetic particles also acquire (a much weaker) local
magnetization as they are formed. The study of palaeomagnetism led to the
current revolution in geology - plate tectonics. For assuming that the earth’'s
magnetic field has always been much the same as it is now - except for rever-
sals of polarity - a magnetic measurement gives a good estimate of the lati-
tude of the site whan the rock was magnetized. These latitudes make no sense
unless one is willing to admit that continental drift has taken place - in
fact, they allow continental reconstructions to be made. A full account may
be found in the book by McElhinny (1973).

The strength of the magnetization of a specimen may have altered over
time and so it is not used in this work - only the direction of natural reman-
ent magnetism, i.e., the original magnetization. Later changes can be
"cleaned" out by methods not relevant here. (If the rocks are unstably mag-
netized, they cannot be used.) If N specimens are taken from one site
with directions, the N unit vectors, Fyseees Ty after cleaning, may be

assumed to be a sample from Fisher's distribution

K

Tosinhx P KT (< 2 0) (1)

where u is the (unit) mean direction. Fisher (1953) showed that the maximum
1ikelihood estimator of u is the direction of R = Lrss the vector resultant
of the sample and, further, that if [R| is the length of R, x is the solu-
tion of

coth k - (1/x) = |R|/N . (2)
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An approximation to x is x given by

. N-1
K-N-R . (2)

k measures the precision of the Fisher distribution. Further statistical
methods appropriate for palaeomagneticists were given by Watson (1956a, b)
and Watson and Irving (1957).

The latter paper gives an approximate within and between sites method
of analyzing data from several sites. It is assumed that the within sites
distribution is Fisher with «k = K about the site mean and that the site
means are independently Fisher with « = Kg about the true palaeomagnetic
direction. Unfortunately, this compound of Fisher distributions is only
approximately Fisher. The estimate of Kg Wwas meant to measure the secular

variation since it is supposed that the sites sample the full cycle of secu-

lar variations. This is some 104

to 105 years when the pole moves around
its mean position, a short period on continental drift time scales.

In designing this analysis, no real thought was given to modelling secu-
lar variation. Furthermore, the immense amount of experimental work done
since then has shown that site means often do not vary symmetrically around
some mean direction as implied by the Fisher distribution (1), as we supposed.

When the earth's field is averaged over the time period of secular var-
fation, it is found to be approximated, with surprising accuracy, by an earth-
centered magnetic dipole currently inclined at about 11 degrees to the rota-

tional axis. From elementary physics, the magnetic force H at a point r

from a dipole M (H, M, r are all vectors) is given by
H e [3 e 1] " (3)
Ir| {rl

where the prime denotes a transpose, I {s the 3x3 1{dentity matrix, and
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|r] is the length of r. Of course, the center of the earth is too hot to ' i
support a dipole! The field is thought to be due to a self-exciting dynamo i
made of asymmetric flows of conducting rock (mainly iron and nickel) through
stray permanent fields of the rotating earth. Minor changes in the flows and
the eastward movement of the crust relative to the interior (core) of the ;
earth cause the secular variation and even the reversals.

Irving and Ward (1964) supposed that the secular variation was due to ﬁ
a smaller geocentric dipole m whose orientation varied uniformly at random ¥
over the period but whose magnitude |m| was constant. Then the field at
site r at different times in the period is independent and has the repre-

sentation

Here and below we will regard M as fixed and define u = M/|m]. Creer et

al. (1959) assume that the main dipole M has fixed strength [M| but

!
|
!
H= [3%- I](M+m)/lr,3 (4) é
|

"wobbles" - that the direction of the main dipole is independent from time to

time and has a Fisher distribution. Creer et al.'s model says

H = [3—'1%- ‘M*/|r|3 (5)
vl

where M* = |M|d and d has a Fisher distribution about wu, and some large

k. Cox (1970) supposes that the main dipole oscillates in strength and wobbles

in directfon and that there is, in addition and independently, a randomly

oriented smaller dipole m, as in the Irving and Watson model. In his case

H = [3-":-',%' I](M++m)/|rl3 (6)

where the average value of M+ is to be M about which M+ has a rotationally

symmetric distribution.
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In the last five years some more complex models have been suggested
which generate secular variations with dipoles on the surface of the core -
see, e.g., Harrison & Watkins (1979). Here we will be content to explore
models expressed in (4), (5), and (6), or closely related to them. We will
assume that large samples have been taken at each site so that site mean direc-
tions are known exactly. Let these directions be Ll’ L2’ cers LN' The
problem is to estimate u, the direction or mean direction of M, M*, M+.

We will choose, as a unit of length, the earth's radius (assuming it to
be a sphere) and set u = r/|r|. Then the common factor in (4), (5), and (6)

is 3uu” - I where u 1is a fixed but arbitrary unit vector. We will write

U=3uw” -1. (7)
Mote that U = U’', U2 = 3uu” + I and that

U = 2uu” + UplUsy + u3u§

where u, Uy, uy are orthonormal. Hence the eigenvalues and eigenvectors of
U are trivially known. Each of the models has the form

H = UX
where X is a random vector, U 1is fixed and only the direction of H is
observed. In the next section we will explore the distributional and estima-
tion problems this raises. They have some intrinsic statistical interest

and may have other applications. In the third section, we return explicitly

to our main problem.

2. STATISTICAL PRELIMINARIES

(a) Fisher observed that his distribution may be derived from the

Gaussian as follows. If X has a trivariate Gaussian distribution with

2

mean vector u and covariance matrix o°I, set R = |X|, L = X/R,

e - s < Ay e s




A = u/lu|l. Then the joint density of R and L is

2 v
R 1 2 2 R -
m exp - " (R + Iul ) exp —i'gl LA (8) '

o

so that the density of L on the unit sphere, conditional on a fixed R, is

exp &LE-LL‘A . (9)
o

From (1) we see that L then has a Fisher distribution about the mean direction

proportional to

A witha « of Rlul/cz. If (9) were appropriate, we know how to estimate

A and R|u|/o2 - use Fisher's estimations for (1).

, 2 —

If, however, (8) were appropriate but we were only given the directions

Ll""’ LN of xl,.... XN, we would have to use the density f of L,

2
R 1 (o2 2
— 5777 e - (R® + |u|® - 2R|u| L*A)dR . (10)
Jw (27) “o 2 )
0

This is simpler if we set S = R/o, v = |u|/o, since then

2
S 1,02 2 .
f(L,A,v) = —=77 exp{- S¢ + V¢ - 2S5l A)}dS (11)
(2m) 7
0
with the vector derivative
f. —37553" expl- 5(s% + 2 - ZSvL‘A)}LdS (12)
3X (2“) p 2—( ’
0
= w(L,A,v)L, say . (12°)
Since A°) = 1, the maximum 1ikelihood (m.1.) estimate of X requires us to
solve




N
3 .
a7 (2 log f(Lj) +032) =0,

=1

i.e.,
N

J(L;sA,v) 202
jfl ?Tf‘:ak_’\)y Lj+ > - 0. (13)

If v is known, (13) may be solved numerically by an iteration. An initial
N

estimate of A, A(l) would be the direction of I Lj. With computer programs
1

(1) (1) (2)
to compute J(Lj.x ) and f(LJ,A )» (13) would be used to find A'“‘, etc.
The two integrals have well-behaved integrands so that numerical integration
will not be difficult.

To estimate the non-negative parameter v, we observe that

2
¥ ?2——‘;‘377 (- v+ SL7) exp{- Hst+ 2 - ZSvL‘A)}dS
T
0
(14)
= ouf + L°AJ .

Hence the m.1. equation for v fis

2 i Vf(Fj.X.V) + LJX J(Lj,k,v) o

j=1 fTLj.A.v)
or

N LIx J(L;,A,v)
1 -4’ f A
LI (P ) B (15)

a form ideal for iteration. It is convenient that no more integrals need be
evaluated. To start off the v iteration we again use the analogy between

(8) and (9) and suggest

W1 . . N -513 ] (16)

T QA e ST

e e
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Thus to solve jointly (13) and (15) for A and v, one seesaws between

(1) (1),

them using the suggested 2 and v Hence given only the directions

Ll""’ LN of a sample of N from G(u.ozl), we may estimate the direction

of u and v = |u|/o. To find the covariance matrix, the second derivatives
of the log-likelihood will be evaluated in the usual way. We will leave this
calculation for an applied paper to appear elsewhere. This paper will also §
show the shape of distribution defined by (10) or (11) and compare it with others.
This distribution has of course appeared before (see e.g. Kendall (1974) under i

the names "off-set" or "displaced" normal — I prefer "angular" normal.

(b) If we observed the directions of n copies of Y = TX, where X is

Gaussian mean u with known covariance matrix 021, and T 1is a known non- ﬁ

2

singular 3x3 matrix, we see that we may set o¢° = 1 without loss of gen-

erality where we wish to estimate the direction of u. The density of Y is

exp - %(v'm‘)‘lv -y ) (17) ?

1
(2m)¥2) 7]
Setting Y = RL where R >0 and |L| = 1, the joint density of R and L is

2
R ' 1 2 - - ‘1 '1 -
exp - 3(RL7(TT)™°L - 2R.T7HL + vw™y).
(2m 33| |7]| 2 )

Thus the density of L s

2
h(L,u) = m exp - Z(R2L-(TT)7IL - 2Tl + w)eR s
m
SO
2
ah R 102, +ppey=l 1,
£ . exp - 3{RL(TT*)"'L - 2RuT™°L + u"u)
o @ 2

. (RTIL - L)aR .




Define 3

k(L,u) = ———3%2-——‘ exp - %(RZL’(TT')-IL - 2R Tl 4 wu)aR

(2m)* €17
0
We see that the m.1. equation for u is
N k(L ,u)
1 -1 .
R G AR (18)

A natural initial value is u(l) = N'1T°1):Lj for the iteration to find ﬁ.
Then we will take the direction of 1. To get thé accuracy of ﬁ, we may use

second derivatives in the usual way.

(c) To go one step further, if Y = UZ where Z dis Gaussian with mean
vector u and a known covariance matrix L and we wish to estimate the
direction of u given the direction of N Y's, we may write

Y = uz = Ut/ V2,

X
where

T=u2, x=rlZ
and X is Gaussian (2'1/2

to estimate Z'I/Zu. Given an estimate of the latter, we have an estimate of

u,I). Thus we may use the method of subsection (b)

u, since 21/2 is known, and hence of its direction.

Subsection (c) leads to an algorithm to solve the problem of Section 1
for a model of secular variation where the geocentric dipole has a multivariate
Gaussian distribution. This is not a model included in (4) and (5); it is a
1imiting case in (6).
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{d) To deal with mode) (6) we are Jed to study the distribution of
Y=X+v where X 1s Gaussian - mean u, covariance I - and v is uni~
formly distributed over a sphere of radius &. This leads to a plethora of
apparently new multivariate densities.

Because of their intrinsic interest, we consider some very special cases
not directly relevant to our main problem. In one dimension, the density of

y clearly is

(exp - 3y - 1= )2+ exp - Hy - u + §)%)

NOfes

L
v

- 7;-_- exp{- iy - wl+ c"’]}tosh sly = u) .

n

In two dimensions the density of y = (yl,yz)‘ is

2T
z;i;g ! exp - %{yl -y - & cos 9)2 - %{ya - M - § sin e)zde
0

« 1 1 - 2 - 2 2
21 exp -2‘((y1 \Jl) + (.Y2 UZ) + 6%}

2n
. 7%~ exp{d(y1 - ul) cos O + 6(y2 - uz) sin e}de

= é%- exp{- %-{(y1 - u1)2 + (yz - uz)z + 62}}10(6(y ~ wul)

wheve Io(z) is the imaginary Bessel function of zero order.

In three dimensions, a similar averaging of the Gaussian with mean u

and covariance matrix I Tleads to
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1 1 . 1 2] sinh 6]y - ul
Wexp{-g(y-u)(y-u)-fd} Ty

In each case, as & - 0 the modifying factor tends to unity. The
averaging has most effect when |y - u] for the basic density is then fallen
off very fast. Let us now return to our real problem.

Model (6) requires a general form of the interesting new distributions
Just given. To put it in neutral notation, let Y =X +d where d 1is uni-
formly distributed over a sphere of radius &, X 1is Gaussian mean u and

covariance I, and the density of Y at y is given by

Ave

1 1 PRCY|
ldl=8 om 325 exp - 5{y - d - u) Ty - d - u)

= ﬁm--l-;—' exp - %(y - u)):'l(y - u) (19)
™

.lgTEG expld“z Ly - w) - % azlay .

If £ =HDH where H is orthogonal and D diagonal, z = GD'IH(y - u), and

gl - 620'1, the averaging term is

1

Ave  oxp {e’z -5 eEley,

le|=1
which cannot be further evaluated. In fact, with 2z = 0, it is the norma’-
izing constant of the Bingham distribution (see, e.g., the book by Mardia, 1972)
and, when z # 0, of a generalization recently studied by Beran (1979). To
get to the working form of the Cox model, we must find the density of the
direction of the vector y from (19). Thus the Cox model (6) is hard to

deal with mathematically, so estimation schemes based on it do not seem very
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practical. However, the Gaussian model without the random smaller dipole

seems an adequate approximation since, typically, |m|/[M| 1is about one-tenth.

(e) The model (4) raises interesting problems. Here M is fixed and
m is uniformly distributed over a sphere of radius |m|, also fixed. Thus
Em = 0, Emm” = |m{I/3.

First, we consider several related academic problems similar to familiar
textbook estimation examples. Suppose that N > 2 points y are uniformly
distributed along a line segment in space, i.e., y =M+ vd where v is
uniformly distributed on (0,|m|) with M, |m| and d unknown and to be
estimated. If, when the points are arranged on the segment,they fall in the
order Yys¥pseees Yo then t d is known exactly, and we have
lyz - y1|,|y3 - yzl, cees IyN - lel as the interior gaps when N points
are randomly distributed on (0,|m|). The sufficient statistic is (yps¥y)-
Simple estimators are (with m = d|m|) yp=Myy=M+m or y, =M-m,

YN = M. These will be biased, as are the analogues on the real line. To give
another interesting example, suppose we could observe’ N codjes of y =M+ m
where M and m are as in model (4). For N 2 3, [m| and M can be found
exactly from the perpendicular bisectors of chords which must intersect at

M. As is so often the case, things are simpler on the circle and sphere than
on the line. |

In practice, we can only observe the directions L of U(M + m). Assuming
that M = |m|u/c, m = |m|d, with c = |m|/|M] known and cpproximately 0.1 and
d uniformly distributed over the surface of the unit sphere. It suffices to
consider the case of observing L where

RL = U(u + cd)

with known c. M.1. here is very awkward. Since

s r




= -1 =
u + Cdi RiU Li (i 1’--.. N)’

one might use (since Ed = 0) the estimator

-1

pez UL (20)

- Mz

i

A case of confidence can be obtained from the approximate multivariate dis-

1

N .
tribution of L U Li' To this end we note that

1
RZ = w12y + 2cp 0% + c2d-vid
so
ER? = 3(u-u)? + 1 + 2c?
where 2c2 may be ignored. If n is an approximate pole position, define
RZ = 3(@u)? + 1,
and write
pted=RUL.
Then
wsReuh
RUlL -p=cd
SO
-1 -1 - 2
E(RUT™L - w)(RUTTL - u)” = (c%/3)1 (21)

which leads easily to the procedure.

(f) The model (5) of Creer et al. has M = |M|d where |[M| is fixed
and known, and d has a Fisher distribution about u with accuracy «. If
the direction of H = UM 1is known, i.e., the direction L of Ud is known,
how to estimate u? Since R,L, = Ud;, d, = R1U'1L1, we may compute each
U'1L1, reduce to unit length (so not knowing R does not matter) to obtain the

di' Since these have a Fisher distribution, Fisher's estimator and method of

P . R o




getting a confidence case for u may be used. This is, in fact, a standard
method of estimating the positon of the pole. It is important to observe that
the Fisherian method is not applied here to the site means but their transforms.
Note that it is related to but different from estimators (20), (18), (15), (13),

which are very similar.

3. ESTIMATION OF POLE POSITIONS

We have seen that a rational method of estimating pole positions should
follow, by the application of maximum likelihood, from a statistical model
for secular variation. In cases where the model makes strict m.1. estimation
too difficult, one must try to improve and check the approximations and simpli-
fications made. Since, however, there is unlikely to be any agreement on the
model, the chosen method should not be sensitive to model changes within the
range of disagreement, i.e., the method should be robust.

The multivariate normal method of Section 2(c) allows a wide variety of
models to be tried. These will be tried out in an applied paper to see what
model changes are most crucial. The Fisher estimation method has been shown
to be robust against deviations from the Fisher distribution but thé cone of
confidence is not so reliable - Watson (1967).

A counsel of greater perfection is to make a more detailed statistical
study of secular variation in the hope of finding a more convincing model.
Certainly the newer, more complex models mentioned earlier should be explored.
This will be attempted elsewhere. Further, we have heré assumed that the
site means are known, whercas they will only be estimated, often with different

accuracies. This must be taken into account in the final practical method.
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