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Fourier sense. This paper presents a general purpose numerical treatment
formulated to overcome these difficulties. The numerical approach is based
on finite difference schemes applied in conjunction with powerful numerical
ordinary differential equation methods. The theory is examined with respect
to consistency, stability, and convergence of these numerical procedures.

A numerical example is included to demonstrate the validity of the treatment.

Although an explicit boundary condition is absent from this study, a derived
boundary condition is demonstrated to be adequate\
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A NUMERICAL TREATMENT OF THE OYNAMIC MOTION OF A
ZERO BENDING RIGIDITY CYLINDER IN A VISCOUS STREAM

1. INTRODUCTION

1

Paidoussis” worked out a solution to the dynamic motion problem.

2

Ortloff and Ives™ studied a special case of the same problem and expressed

their solution in the form of an infinite series involving Gamma and Bessel

functions. Both the orders and the arguments of Bessel functions are
generally complex and can be large in magnitude. Furthermore, evaluation of a
Bessel function of complex order is laborious and time-consuming, and accuracy
cannot be assured. When the solution proposed by Ortloff and Ives is applied
to the nonhomogenous problem where the "upstream" end of the cylinder is
forced, a harmonic time dependence is assumed; this means that “forcing" the
system by an arbitrary time function will require multiple solutions combined
in the Fourier sense.

To overcome these difficulties, a general purpose numerical approach is
introduced. This approach discretizes g s "Ef » and gt by backward and
central differences. This discretization brings the dynamic motion equation
into a system of second order ordinary differential equations. This system is

decomposed into a system of first order ordinary differential equations. A

feasible numerical ordinary differential equation method is then used to solve
this system with optimal efficiency.

There are many advantages to using a numerical method to solve the problem
of dynamic motion. The theory is well developed with respect to consistency,

stabilicy, and convergence. Numerical methods are systematic to implement,
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and ‘effective technigues can be used to accurately accelerate computations.
When a numerical approach is used, the laborious evaluation of special
functions is bypassed, maximizing accuracy and efficiency.

This report begins with a description of the dynamic motion problem and
the associated initial and boundary conditions. A numerical approach is ?
introduced and the supporting theory and mathematical formulation are
discussed. An example is given to demonstrate the validity of our numerical
solution to a well posed dynamic motion problem. The computer programs are

included in the appendix.
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2. POSED PROBLEMS

The motion of a wire suspended in a fluid stream, considered by Ortloff

and Ives,2 can be described mathematically by the partial differential
equation,
4 2 2 2
? ? 22 ]
El + (M +m) + M + 2MU
ax ;;% ax atax
_a Cy M Uz(Lx)-a-z
x |2 A
le My Y. yy
*ahpl Ul =0 (2.1)
where

EI = bending rigidity,

M = lateral virtual mass of fluid per unit length of wire accelerated by
the accelerating wire,

m = mass of the wire per unit length,

U = velocity of the free stream,

CT = drag coefficient due to pressure acting on the wire surfaca,

. D = wire diameter,
L =« total wire length, and

cN = drag coefficient due to shear forces acting on the wire surface.
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The special case of a zero bending rigidity (or an infinitely flexible)

cylinder is realized by setting EI = 0. To express the above equation in

dimensionless terms, use

r = (t/L)U, g = M/(M*m) , €= x/L,
e= L/D, n=yl/lL.

The above equation becomes

2 2 (C;+ + C)
3 1 ? T N
i%‘#-a?“. B[_.z cTc(l-e)}+?%_T_- cB ‘

2
an,l
*2e agar tg ¢

an

The associated initial boundary conditions are described by

n=20 €= 0 (fixed end condition); (2.3)a

In] is finite, €= 1 (bounded free end deflection); (2.3)b

n=ng (§) r= 0 (prescribed initial deflection); (2.3)c
and

an o rad :

Irl=0 = 0, r= 0 (zero initial velocity). (2.3)d

Ortloff and Ives solved the problem posed by equation (2.2) using
conditions described in equation (2.3). Their solution is expressed in terms

of Bessel functions.
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The initial boundary value problem, equation (2.3), for the partial
differential equation (2.2) is said to be well posed in the sense of
Hadamard3 if and only if its solution exists, is unique, and depends
continuously on the data assigned. After the problem is formulated using
finite difference and ordinary differential equations, it will be seen that
the problem is well posed. We will seek a unique solution by means of the
numerical techniques presented in the next section. When the boundary
conditions become uncertain, there is not enough information available to
solve equation (2.2); we term this problem i11 posed. However, a derived

boundary condition is developed, which is shown to be adequate for our problem.
3. THE NUMERICAL TREATMENT

In search for a general purpose, accurate solution to the well posed
problem (2.2), subject to conditions described in equation (2.3), the method

of attack is to discretize "€ , and n, by central and backward finite

£ gr ¢
differences and then to transform equation (2.2) into a system of second order
ordinary differential equations (known as the method of lines4). We
discovered that Generalized Adams Bashforth (GAB) methods®*® can be used to
solve this system efficiently.

Expressing equation (2.2) in short form and writing u as n gives

Ugp + a(£) Ug, * bug * 28(ug), * cu, = 0, (3.1)
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TR

where

a(k) = 8 [1-3Cre(1-8)] ,
b ’%(CT + CN)¢39 and '

1
(o4 -EBCTg,

—— LT

3.1 FINITE DIFFERENCE DISCRETIZATION

AP AR VI o NP

Applying the second order central and backward finite difference

discretization to equation (3.1) in the & direction, we obtain

u -2u_ ~u
m+l m m-1,0b
(um)ff * a(fm) he MY (um - um—l)
+28 (y _y ) +clu) =0
h m m-1'7 m’r ’ (3.2)

where h = ot for indexma=1, 2, ...

A simplification of equation (3.2) gives

2 2 (E )
("m)rr * (FE * c)(um)r - Fg (um-l)r + 3 hg Un+1
2a(t )
b b
*[F' Jm]%“i “n-1 = O (3.3)
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Equation (3.3) is a difference equation, representing a system of second

order ordinary differential equations and is an approximate equation to

equation (2.2).

3.1.1 Consistency
Before we apply the GAB method to equation (3.3), let us examine the

consistency of our finite difference operator £h [us;h]. First, expressing

equation (2.2) in true operator form, we obtain

e pe

2 2

; w30+ a(f) x v+ p 2
[u] ;:g ;;7 Y:
2 2
+ 28 ——aeaf"'ca—; u=20. (3.4)

Next, expanding u ., and u, ; in powers of h and keeping the first two

principal terms, we obtain

2
Uty = Up * D (um)' +g— (um)" +..., and

hZ
Up 1 = Up - h(um)' * (um)“ - . e v

Therefore,

u ~2u_ *tu
mtl m m-1 l ,2
W " luplee * 17 0"l (3.5)




u_ -u - _ne
m m-1 (um)£ S_(um)“ .

(3.6)

’
Substituting the power expansions of Un and uy 4 into equation (3.2)
and using equations (3.5) and (3.6), we find that equation (3.2) is then

expressed in a difference operator form,

2% 2, he 3
£pluih] = ;2-" a(t) :;'2"" 7.3

(3.7)

L£[u] - L, [u;h]

N
(AN ]
@
N
\—/
[ =4
.

2 4
h- 2 h 2 h
'(““’H:f*f":;f*“fs?

It is seen that

1im

hso (£[u] - L, [ush]) » 0.

Therefore, the difference operator is consistent with the true operator in the

sense of Keller7. Thus, the consistency requirement is established.
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Now that we have a consistent difference operator, we seek stable

numerical ordinary differential equation methods to solve equation (3.2).

3.2 ORDINARY DIFFERENTIAL EQUATION SOLUTION

To seek the solution to equation {3.2), refer to equation (3.3).

Write aum - W
—_— m
ar

2

aum.w.__(ZB,,c)w .28
— m h m b "m=l
ar

a(g,) 2a(§,) b

b
- - |- - u +—u
h? Un+1 h h? m h “m-1 (3.8)

Equation (3.8) is a set of equations that represent equation (3.3) as a
system of first order ordinary differential equations. For illustration,

using m = 1, 2, we can obtain

du

l=w
o !
dw a(g,) 2a(€,)

1 28 28 1 b 1 b
CE2R S U St Sl Sl e S B SR
du2 = W
dar
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dw a(§,) 2a(§,)
2 28 28 2 b 2 b
F._(r+c>w2+rw1_—;‘-2._u3-ﬁ__';.2_ u2+wu1‘

In matrix form, the equation becomes

Fd"" X 0 1 0 0 R
dr

dwl

dr

b Za(ﬁl)
h ~ 2

0
- h n? * (9]
du, 0 0 0 1 u,
dr

dwz

x.FJ -

2 | 2] (23 . c) w2
h L UBNA ) S FE 7Y

Tjo

where

a(€,) T
(9] = {O’ﬁ_a"o+%uo’ 0"'—;22_"3} '

which is in the form

u' = A(§)u + g(§, 7, u). (3.10)

The elements contained in the components of the g-vector have the following

meanings.

10
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uy = top boundary fixed end condition: up = 0, £€=0;
wy = initial condition: u, = 0, 7= 0; and
u3 = bottom boundary bounded free-end deflextion condition:

|u3| is finite at ¢= 1.

The matrix elements, Aij’ of matrix A can be determined by the following

setups in which we define Ai i-j = 0 if i~j <0 for j=1, 2, 3.
’
When index i is odd, A; .,y = 1. When index i is even,
14

b

Aii-3=h

.
i,i-2 h °*

Ay, i-1 _z_a_(_zg_)__% ,

h

28
Ay = ‘(h‘ * °)

where a(§) is evaluated at a(tl). L= %.

A

Now, the problem is to select an effective numerical ordinary differential
equation method to solve equation (3.8). A close examination suggests that

the Generalized Adams-Bashforth (GAB) method offers an efficient solution. In

11
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the present application, because a low order GAB method can do the job, high
order GAB methods are not necessary; hence, first order GAB methods were
developed into computer programs in FORTRAN language. However, the program
package is flexible so that high order GAB methods can be incorporated when
required.

We introduce the first order GAB

L b n hé; olAR) g (3.11)

to solve equation (3.10), where

‘I,O(Ah) - '(Ah)-l (I = eAh)' (3-12)

The theory with respect to consistency, stability, and convergence has
been very well developed for Nonlinear Multistep (NLMS) methods.8 The 6AB
method is a member of the NLMS family. We summarize the theory below.

NLMS methods take the expression.

k k
Ah(k-1)
iZo ;e Upei = 0 Zo by (AN) gpys. (3.13)

3.2.1 Stability
The characteristic polynomial of NLMS is defined by

K §

aAh
iZo %yt (3.14)

O(x.‘) = @

12
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Using the GAB method, the selection of a; is such that

a = 1, a1 * -1. We see that the root of p(a,s) has unity and is
simple; therefore, method (3.11) is stable.
3.2.2 Consistency

The GAB method, equation (3.14) satisfies the consistency

condition

k

lim
i = Mo ‘ki(M)gnH" -0 (3.15)

k
Ah(k-1)
b 4
h0 "1-0 a;e u

for k = 1, o = 1 and o1 " -1. Therefore, GAB method is consistent.
3.2.3 (onvergence
According to the convergence theorem of NLMS methods, “"A stable and
consistent NLMS method is convergent.” Therefore the GAB method applied to
problem (3.10) is a convergent method.
4. BOUNDARY CONDITIONS

In real applications, at &= 1, the bounded free end deflexion boundary
condition is expected to be such that n(l,r) is finite. However, the
appropriate function n(l,7) to be used for the boundary condition appears
uncertain in reality. This lack of information defines problem (2.2) as an
i1l posed problem. For general partial differential equations, it is always
difficult to formulate correct conditions leading to a well posed problem.

Problems may look reasonable, yet cannot be solved.3 It is hoped that the

13
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bounded free end deflexion boundary condition may be obtained through
experimentation, but the exact mathematical expression for n(l,r) must still
be worked out. We will attempt to change the i11 posed problem to a well
posed one so that a solution exists and can be solved by the numerical
techniques we have developed.

In the theory of second order partial differential equations there exists
a class of well posed problems, such as the Cauchy problem for wave equations,
the Dirichlet condition for Laplace equations, and the mixed initial boundary
value problem for heat equations. Our first step is to examine the most
general boundary conditions. Let uy denote the normal derivative. The

first boundary value problem of the Dirichlet type indicates

us=f (4‘1)

on the boundary. The second boundary value problem of the Neumann type

indicates

UN = f (4'2)

on the boundary. The third boundary value problem of the mixed type indicates

uN +aus=f (4.3)

14
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on the boundary. Note that the third boundary value problem is well posed
only for the restricted choice of a. We will assume that the free end

deflexion boundary condition takes the expression

When

A=0, a=1, (4.4) reduces to (4.1);
A=1l, a =0, (4.4) reduces to (4.2); and

A =1, o arbitrary, (4.4) reduces to (4.3).
In our application, as given by the numerical example in the next section,
n(€,7)y = n(€,7) , 2 = 0, a =1 gives

n(§,7) = £(§, ) and |f(1, 7)} is finite. This gives Ortloff's and Ives'
bounded free end deflexion boundary condition.

The procedure to be followed here for determining a free end boundary
condition is to derive an approximate boundary condition and then to use that
boundary condition to compare the solution with a direct application of the
Ortloff and Ives solution.2 We develop a form of the boundary condition for

the second order partial differential equation by following the approach used

15
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by Paidoussis for his fourth order partial differential equation; that is, by
integrating the transverse momentum equation over a short tapered end which is
attached to the free end in order to generate the required boundary

condition. Paidoussis assumed that the cross sectional area tapers smoothly
from S to zero in a distance (2) sufficiently short that the forces acting on
the tapered end can be lumped and considered in appropriate boundary

conditions. For our present problem the boundary condition is obtained from

L L L
f/:_‘ (%'t' + U:—x> [M(x)v] dx +/L-‘ FNdx - ‘/L_l% (T(x)%%) dx
L
2
+/ m(x) 2¥ dx = 0
t
L-2 y (4.5)

where the parts of the equation express rate of change of fluid momentum,
hydrodynamic forces, and cylinder inertia, respectively, and where f is a
factor introduced by Paidoussis to account for the intractable flow conditions
at the free end and V is the transverse velocity of the fluid relative to the

cylinder. Therefore,

? ?
v '3'11:+ x’ (4.6)

16
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Fy =2 (%) UeyYs (4.7)

T(x) = (L) + 3 (B) v, (Lx); (4.8)

and T(L) is a consequence of form drag at the free end.
An important assumption necessary to perform the integration is that the
length of the tapered section (1) is small enough that the lateral velocity

(V) may be considered constant over 1. We find

ax at (4.9)
for x = L, all t.

After nondimension of this equation as before and neglecting terms of

order (£2) and % , we have

C C
| 2 [2@26] %0 o

for =1, all

17
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On physical grounds it is reasonable to neglect Ct relative to

CN/4,9 making the final boundary condition

an , an
= tay=0for =1, allw, (4.11)

which amounts to a "radiation condition"; that is, no reflected energy
exists. In the following sections, we refer to boundary condition (4.11) as

Kennedy boundary condition.
5. A NUMERICAL EXAMPLE

The test example is obtained through linearization of a fourth order

10

nonlinear cable equation,™™ which is given by

2 2
3 3 3 ? 3 ) )
m + M <-— + U -—> y == (T V. T (_¥.+ U _1>
at at ax ax ( ax) N \at ax (5.1)
where m, M, U take the same definitions as given in section 2. T, Eh are
defined as
!
Tap (L-X), (5.2)
T, aCrebUlL
1 T ’ (5.3)
18
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11l .
CT.Z % DZ T, a"d (5.4)
1M
=2 W (5.5)
where CN and CT satisfy the definitions given in section 2.
Assuming 3_ and 3 commute, expanding equation (5.1) gives
ax at
m3_2*+n 3_2%+203_2-1 +023_2% .Ta_z%-o»ﬂﬂ_f A ey
at at atax ax ax ax ax N \at ax (5.6)

Performing aT and using definitions (5.2) through (5.6), we get
ax

2 2 2 2 2 3y
Mtm . 3 2 _1as U sy \ 2 7 Cn g2

e aow [" "ZCTD'“L‘X)] T3 AU RCREIE A 2 & 1
(5.7)

Equation (5.7) is the same as Ortloff's equation (2.1) before

nondimensionalization.2

M =ma=0.00273

U =15 ft/sec

19
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L = 2000 ft )
i

CT = 1.8
35
Cn = 1.1259.

Then,
e = 48,000

g =1
2.

The solution to equation (5.7) is expressed by
y(t, x) = "t J_(x),

where v is approximately 21.89 and Jy(x) initial values are calculated using a
UNIVAC 1108 Bessel function subroutine.10
The fixed end boundary condition initially is zero. The free end boundary
condition uses n(l,7) = ei"‘ﬁy(l).
This problem was tested again using Kennedy's free end boundary
condition. Results are surprisingly in agreement with the known solution.
The test results seem to show that the Kennedy free end boundary condition is 1
adequate. Results are presented in graphic form. Two sets of graphs are

given: one displays [n(§,7)| versus v, the other displays the real {n(§,7)}

versus T. Both plots are constructed at ¢ = 0.2, 0.8.

20
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6. CONCLUSIONS

A numerical solution to the dynamic motion of a zero bending rigidity
cylinder in a viscous stream has been introduced. The numerical procedures
developed to obtain the solution are theoretically convergent and
computationally accurate.

For given appropriate boundary conditions and accurate initial values,
this model will produce an accurate unique solution. For uncertain boundary
conditions, this model can be used as a tool to study the boundary effects and

possible to construct the ad hoc boundary conditions.
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APPENDIX
COMPUTER PROGRAMS STRUCTURE AND COMPUTER LISTING

COMPUTER PROGRAM STRUCTURE

MAIN

—— START
L, oIFEq

NLMS

..._.INIE?
CGJR
[f..
8C

L—PADE

INVERT

OGJR

TR 6343
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ACRONYMS

MAIN main program which controls the setup of inputs and the preparation of

outputs

START  supplies the initial values

DIFEQ controls the present v-step and calls for NLMS(GAB) method
NLMS 1st order Generalized Adams-Bashforth method

INVER calls for complex matrix inversion

CGJR complex matrix inversion using Gauss-Jorden reduction

GFN calculates the g-vector

BC fixed end and free end boundary conditions

PADE a ratioﬁal function approximation for matrix exponentials
INVERT calls for double precision matrix inversion

DGJR double precision matrix inversion using Gauss-Jorden reduction

The user needs to deal with MAIN, START, GFN, and BC. The user need not
be concerned with DIFEQ, NLMS, INVER, INVERT, CGJR, and DGJR.

26
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COMPUTER PROGRAM LISTING

MAIN

COMMON PEPSSPCTsPONSPRETASFQsFAIFRyPCoFlIsDZy TRND
COMMON A(18,18>sT(3)

DIMENSION Y(2,18)sYZERD(18)» YNFW(18)+sEXACT(18)
COMFLEX A»Y»YZERQOs» YNEWs XX OMGAY SAVEYEXACT

kXk%kk THIS FACKAGE SOLVED A 2NI' ORDER F,.D.E. RY THE METHOD OF [.INES AN

GENERALIZED ADAMS-~-RASHFORTH METRHODS
kXkk¥k REFERENCE: ORTLOFF AND IVES
*kakk INPUT PARAMETERS HAVE THE FOLLOWING DEFINITIONSS

xxkkk N = NUMRER OF 2NDII ORDER ODE
okk TMAX = MAXIMUM Ta0D
*iokk TINT = EVERY TAOQ INTERVAL T0O RBE PRINTED OUT
xdokkk FXI = AT THIS XI+. THE DQUTPUT IS REQUESTED
akkkk FQ = FREQUENCY s NONDIMENSIONAL OMEGA
xxkkk TEND = ROUNDARY CONDITION INDICATOR
= ] RUILT-IN KENNEDY BOUNDARY CONDITION
= 2 USER-SUPFPLIED BOUNDARY CONDITION
xkx%kk PEFS = EPSILON
Kkkxk PCT =CSUR T
KRk PCN = C SUR N
AXXXKX PRETA = BETA
RRRNY H = TAO0 STEP SIZE

XXXk READ INPUTS HERE
READ(SsX%) NyTMAXs TINTsPXIsFQs IBND
READ(Ss%) PEPS,PCTsPCNsPRETAsH
N=2X (N-1)
DZ=1,0/(FLOAT(N/2+1))
PR=0 . SXPRETAXPCTRFPEPS
PA=PRETAX(1,0-FR)
PD=0 . SKPCNXPEFSXPRETA
PC=PR4FD

XXXXX TO SET-UP MATRIX A
DO 20 I=1,N
DO 20 J=1,N

20 A(TyJ)=CMPLX(0,0:0,0)
BH=PC/DZ
TBH=2 ,XPRETA/DZ
DG=-(TRH+PR)
DO 28 I=1sN
IF(I .GE. 4) GO TO 26
IF(I .EQ. 2) GO TO 2%
ACIsT+1)=CMPLX(1.050,0)
60 TO 28

25 J=1/2
X=PBETAX(1,-,SRPCTAPEPSR(1,~JXDZ))
ACIyTI-1)=CMPLX(2.%X/(DZXDZ)~BH+0.0)
A(Is1)=CHMPLX(DBs0.0)
ACIsI+1)=CMPLX(~X/(DZXDZ)»0.0)
GO TO 28

26 IF(MOD(I,»2) .EQ. 0) GO TO 27
ACIsI41)=CMPLX(1,050,0)
G0 TO 28

TR 6343
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000

a0n

27 J=1/2
X=FBRETAX(1 .~ ,SXPCTXAPFEPSK (1, ~1kDZ))
A(T s T~-3)=CMFPILX(RH,0.0)
A(T»yI-2)=CMPLX(TRH»0,0)
A(T»I-1)=CMPLX(2.,XX/(DNZXNZ)-RH»0.0)
A(T»yId)=CMPLX(DG0.,0)
IF(I .EQ. N) GO TO 28
A(TsI+1)=CMPLX(=X/(DZXDZ)+0.0)

28 CONTINUE
T(1)=0.0

kAKX TO OBTAIN INITIAL VALUES FRNOM °"START®
CALL START(NsT,YZERND)
TX=0.0
SAVE=YZERO(N-1)

10 CONTINUE
TX=TX+TINT
CALL DIFEQ(HsNsTXsY»YZERO»Z» YNEWs SAVE)

xRk RESULTS IN YNEWCI)

kKR Z CONTAINS PRESENT TAO

xXxkkk USER USES ABOVE INFORMATION FOR HIS PLOT
SAVE=YNEW(N~-1)
IPT=IPT+1
IF(IPT JLE. 4) GO TO 8
IF(MODCIPTs1) ,EQ. O0) GO TO 8
GO TO 100

8 CONTINUE
WRITE(Ss1) HsZ
1 FORMAT(/10Xs’'H =’»E15,8s5Xy‘T ='yE15.8/)
2 FORMAT(3X»FB8.2510XsE15.8+10XE15.8)

x¥kkk PRINT OUT EXACT SOLUTION

x¥kkk THIS PORTION IS FOR TEST EXAMPLE ONLY
CALL START(Ns»T+EXACT)
DO 100 I=1sN+2
NN=(I+1)/2
DLZ=NNXDZ
WRITE(S»2) DLZy YNEW(I)
WRITE(Sy3) EXACT(I)

3 FORMAT(21X»E15.8»10X2E15.8/)

100 CONTINUE
IF(TX .GE. TMAX) STOP
GO TO 10
END
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NLMS

SURROUTINE NLMS(HyYeNs YNy IS,SAVE)
COMMON FPEFSsFCT+FONSPRETAsFQsPAsFRByFCyFLsTIIZy TEND
FARAMETER KM=18
COMMON A(KMyKM)T(3)
DIMENSION AH(KMyKM) sEAH(KMsKM) ¢+ G(KM)
DIMENSTION FL1(RMsRM) sUNIT(KMeKM)
DIMENSION Y(2yKM) sy YN{KM)
DIMENSION FE(KMsKM) »yAL{KM+KM)
COMFLEX AyAHYyEAH»GsF1oFHYUNITYY s YNy SAVE
COMFLEX FE»Al
DATA IND/O/
IFCIND .GT. O0) GO TO 14
DO 2 I=1sN
nn 2 J=1sN
AHC(TI y DD =HXA(T . D)
TFIN=~1) 7+8+7
AL(1s1d)=1./AH(1y1)
BTN 9
CALL INVER(AHsN+Al)
IF(N-1) 10»13+510
EAH(1» 1)=CEXF(AH(1y1))
GO TO 14
CALL FATIE(AYHsEAHYN)
IND = IND + 1 f
IF(IS .67, 1) GO TO 100
DO 1 T=1sN
00 6 J=1+N
F1¢(Ts D=CMFLX(0,0+0.0)
UNIT(T e D=CMPLXC(O:+090.,0)
CONTINUE
UNITC(I»I)=CMFLX(1.0+0.0)
CONTINUE
088K K K 08 K KI5 30K K8 8 KKK 3K 5K 2K 3 30 K 2 0 3 2 335 8 3 3 20 3 5 3 2 0 K 0 3K 3 3 % 3 3 30 K 3 3 3 3K KK 0K K K KK
4 NONIL.INEAR MULTISTEF STARTS HERE. X
L | BEGINNING SECTION DOES INITIALTIZATION %
208 K K 3K 30 300 3 K 3K K oK K 3 20 0 0K K A K K KK 3K K K K K 3 2K 3K 3K 50 2 3K 3K 90 2 280 0 200 300 2 8 20 30000 KK 2K 90K 30K 3K KK K K
LG 132 T=1eN
YNCT)=CMPLA(C ,090.0)
IFCIS.GY,1) GO TO 131
N0 103 I=1sN
00 103 J=1sN
Fi(Te ==EAH{T s DHUNTT T, .
200K 0K K KK K I 28 0 3K K 200 303 K KK 300 3 K03 300 0 30 3K 00 20 3 3 20 3 3K 2K 3K A 3 0 0 K3 0K 0K K 0OK 3K 0K %

x 18T ORDER GAR *
* no L00P 105 CALTULATES FHI(L.0) ¥
X LOOF 108 OR 110 COMPUTES FTNAL Y(N+1) *

08 K 30 KK 005K K 3 30K 000 30 30000000 0K K K 3K 20000 3K 3 3 000 30K 36 300K K 2K 0K 340K 3K K K K
UN 10A I=1eN

00 104 J=1eN

FH=CMFI X(0.00.0)

DO 10% K=isN

FHEFH=-AT (TsKIRPI (K 1D

FELTS 13=FH

CONTINNE

Flai ] SEN(ReoeNs Yol si eDeGAID

Tih 103 = o N

D Q7 = e

YN(TOY=YN(TYHEAH(T o 1IXY (T s DI4HBFF (Yo 1VRE3(.)

RFETURN 29
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DO 9 I=1,»N
DO 10 J=1sN
C(I»J)=AA(I»J)XH/2.0
PP(IyJ)=0,.DO
10 CONTINUE
C(I»Id=C(I»I)+1.D0
9 CONTINUE
DO 12 I=1,N
DO 13 J=1,N
DO 14 K=1+N
FP(Is D=PF(I»J)+B(I»K)XC(K»J)
14 CONTINUE
13 CONTINUE
12 CONTINUE
IF(M .EQ. 0) GO TO 40
00 00 0K 0 20 00 200 02 30000 2 0 0200 300 0 30 20 30 0050 30 300 20 20 300 0 30 530 300 50 30 305 0K 38 3 oK 2 3o 3K 3K 3K oK
X NORM(AH) «GT.(s1)r EXP(A) =EXP(A/2XXM) XX (2XXM) x
020020 0 020 020 00 2000 0050 00 050 200 00000 000 3008 002020000 20200000 203 K 0K 2K KK KK 3 oK KK K 3K KK oK 0K K
DO 24 I=1,N
DO 25 J=1,N
B(I»J)=0,D0
25 CONTINUE
24 CONTINUE
DO 36 K=1sM
DO 27 I=1,N
no 28 J=1sN
DO 29 L=1sN
BCI» )=RB{(IrJ)+PFP(I»LIKPP(L»J)
29 CONTINUE
28 CONTINUE
27 CONTINUE
DO 31 I=1sN
DO 32 J=1,N
BB=R(IyJ)
P(IyJ)=CMPLX(BB»0.0)
B(I».))=0.D0
32 CONTINUE
31 CONTINUE
36 CONTINUE
H=HAVE
RETURN
20 H=H/2.0
M=M+1
PO 54 I=1sN
DO 55 J=1i,N
PP{(Is.))=0.00
55 CONTINUE
54 CONTINUE
60 10 30
40 H=HAVE
RETURN
END

oo
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START

SUBROUTINE START(N»T»YZERO)
COMMON PEPS,PCTsPCNsPBETAsFQsPAsPRyPCsyPD»DZy IBND
COMPLEX YZERO(1)
DIMENSION T(1)
C kXkkkk USER SHALL REVISE THIS PORTION TO INCORPORATE HIS INITIAL VALUE
S
C veevsovssossensese YZERO(I) CONTAINS THE FUNCTION
C teoosevsosssssses YZERO(I+1) CONTAINS THE DERIVATIVE
DO 29 LP=1sN»2
DLZ=DZX(LP+1)/2
IF(LP.EQ.1) YZERO(LP)=CEXP(CMPLX(0.0+FQA%XT(1)))
ACMPLX( . 995467395~ .73021506E-01)
IF(LP.EQ.3) YZERO(LF)=CEXP(CMPLX(0.,0,FQAXT(1)))
XCMPLX(,98602435,-.14547502)
IF(LP.EQ.S) YZERO(LFP)=CEXP(CMPLX(0.0,FQXT(1)))
XCMPLX(.971720899-.21705468)
IF(LP.EQ.7) YZERO(LP)=CEXP(CMPLX(0.0yFQAXT(1)))
ACMPLX( . 96262427 9~.28745766)
YZERO(LP+1)=YZERO(LP)XCMPLX(0.0,FQ)
29 CONTINUE
RETURN
END

* X %

GFN

SUBROUTINE GFN(GsHINsY» Sy TrA»SAVE)

C xxxxx THIS HANDLES THE G VECTOR

C 22X%% G VECTOR CONTAINS ROUNDARY INFORMATION
COMMON FPEPSsPCTsPCNIPRETAYFQRIPAYPRyFPCoPIIeDZy IRND
COMPLEX A(18s18)»Y(2y18)sG(18)ySURFyROTTsXArXEsSAVE
DIMENSION T(1)
DATA PIYZEROSONE/3.1415926535+0.0+1.0/
D0 1 I=1eN

1 G(I)=CMPLX(0.0+0.0)

C xxxxx FIRST ARGUMENT Or CALLS FOR FIXED END CONDITION
CALL BC(OsNsHyT»Yr»SAVE»SURF)
G(2)=PCXSURF/DZ+2 . XFRETAXCMPI. X0, OvFQ)tSURF/DZ

C RExXXx FIRST ARGUMENT 1, CALLS FOR FREE~END CONDITION
CALL. BC(1sNsHsToYsSAVESBOTT)
Xn-PRETAR(L .~ , SKPCTRPEFSK( 1, ~(N/2)XDZ)) /7(DZADZ)
BI(N)=CMPLX(X+0.0)XBROTT
RETURN
END

3
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INVERT

SUBROUTINE INVERT(AsNsANS)
AR K K 8 20030 0 300 30 3 3000 20 30 30 200300 00 3 30 200 00 30 20020 20 00 00 20 200 0002 20 30 o8 3 0 200 00 2005 2K K oK KKK K K K oK
MATRIX INVERSION SUBROUTINEs CALLED BY PADE OR NLNMS x
A CONTAINS THE ORIGINAL ELEMENTS AND REMAINS UNALTERED X
ANS CONTAINS THE AXx(-1) x
THIS SET-UP IS USING UNIVAC 1108 MATHPK EXISTING DOUELE x
PRECISION GAUSS~JORDAN REDUCTION L

THIS PROGRAM IS REPLACEABLE BY THE USER x
B2 20020020 220 200 0 20 3 000 202000 00 0 30K 320 K002 3 003 3 3 0K 3 KK K 3 3 o K oK oK K K Kok

DOUBLE PRECISION A(18,18)rANS(18s18)sV(2)

DIMENSION JC(18)

DATA NR/18/¢NC/18/

V(1)=1.D0

DO 1 I=1sN

DO 1 J=1i,N
1 ANS(IsJI)=A(Is.))

CALL DGJRCANSyNRsNCsNsNsMDEXsJC»V)

IF(MDEX .EQ., 1) GO TO 10

RETURN *

I X X X K R

ananNnNaonn

10 WRITE (4,2)

2 FORMAT(3X»22HMATRIX INVERSION ERROR)
RETURN
END

INVER

SUBROUTINE INVER(As»NsANS)
PARAMETER NDIM=18
COMPLEX A(NDIMsNDIM) »yANS(NDIM,NDIM) sV (2)
DIMENSION JCINDIM)
DATA NR/NDIM/ s NC/NDIM/
V(1)=CMPLX(1,050.0)
PO 1 I=1sN
DO 1 J=1,N

1 ANS(Iy )=A(T,.))
CALL CGJR(ANSsNCsNRsNsNsMDEXs JCrV)
TF(MDEX .EQ. 1) 60 TO 10
RETURN

10 WRITE (4+2)

2 FORMAT(3Xy»11HMAT INV ERR)
RETURN
END




DGJR

SUBROUTINE DGJR(AsNCYNRsNyMCyMDEXy JCrV)
DIMENSION JC(N)sV(2)
DIMENSION A(NRsNC)

DOUBLE PRECISION ArV:X,DLOG
IW=V(1)

M=

S=1,

LeN+(MC-N)X(IW/4)

KD=2- MOD(IW/2»2)
IF(KD.EQ,1) V(2)=0,

KI=2- MOD(IWs2)

GO TO (5+20)sK1

00 10 I=1sN

JC(I)=]

PO 91 I=1sN

GO0 TO (22+21)+K1

M=1

IF (I.EQ.N) GO TO &0

X=-1,

PO 30 J=IsN

IF (X.GT.ABS(A(J»I1)?)) GO TO 30
X=ABS(A(Jr1))

K=J

CONTINUE

IF(K.,EQ.I) GO TD &0

S=-5

V(1)=-V(1)

60 TO (35,40)sK1

MU=JC(I)

JC(D)=JC(K)

JC(KY=MU

PO 50 J=MsL

X=A(Is.))

AT+ J)=A(Ky»J)

A(Ky J)=X

IF (ABS(A(I»I)).GT.0.) GO TO 70
IF(KD.EQ.1) V(1)=0,
JC{1)=1~-1

RETURN

GO TO (71+72)4KD
IFCA(I»I)LT.0.) S=-§
V2)=Y(2) + DLOG(ABS(A(I»I)))
X=A(Ts 1)

A(lrId=1,

DO 80 Js=MsL

A(I» ND=A(T» S /X

Cal.l. ERRTST(72+sMDEX)
IF(MDEX.EQ.1) GO TO 150
CONTINUE

TR 6343
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?0
?1

25

100
110

120
130
140

150

DO 91 K=1sN

IF (K.EQ.I) GO TO ?1
X=A(K»I)

A(K»I)=0,

PO 920 J =MsL

A(Ky NN=A(K»J)-XXA(T»J)
CALL ERRTST(72sMDEX)
IF(MDEX.EQ.1) GO TO 150
CONTINUE

CONTINUE

GO TO (955140)»KIX

DO 130 J=1sN
IF(JC(J)EQ.J0) GO TO 130
JI=Jd+1

N0 100 I=JJsN
IF(JC(I).,EQ.J) GO TO 110
CONTINUE

JCCIN=4CC¢))

DO 120 K=1sN

X=A(K»I)

A(KyI)=A(K? J)

A(Ky J)=X

CONTINUE

JC(1)=N

IF(KD.EQ.1) V(1)=S
RETURN

JC(1)=1-1

IF(KD.EQ.1) v(1)=S
RETURN

END

S iyt
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22

30

35

40

50
60
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CGJR

SUBROUTINE CGJR(AYNCYNRy»NsMCyIFL»JC»V)
DIMENSION JC(1)

COMPLEX CLOG+V»XCrA(18918)
COMPLEX 2

INTEGERX2 NERR

NERR=72

IFL=0

IW=y

Va(0.»0.)

IPIT=0

M=1

LN+ (MC-N)X(IW/4)
KD=2-MOD(IW/2+2)
KI=2-MOD(IWy2)

GO TO (S5,20),K1

DO 10 I=1sN

JC(I)=I

DO 91 I=1sN

GO TO (22521)+KI

M=1

IF (I.EQ.N) GO TO 60
X=-1,

DO 30 J=1IsN

ANORM=ABS (REAL (A(Js I)))+ABS(AIMAG(A(JYI)))
IF(X.GT.ANORM) GO TO 30
X=ANORM

K=.J

CONTINUE

IF(K.EQ.I> GO TO 40
IRIT=IBRIT+1

GO TO (35+40)9KI
MU=JC(I)

JCC(I)=JC(K)

JC(K)Y=MU

Do S0 =Myl

XC=A(IsJ)

A(IsJ)=A(Ks D)

A(Ks J)=XC

ANORM=ABS (REAL(A(I»I)))+ABRS(AIMAG(A(ISI)))
IF (ANORM.GT.0) GO TO 70
VUa(0,90.)

JC(1)=I~-1

RETURN

35
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70
71

72

80

9?0
?1

95

100
110

120
130
140

150

36

GO TO (73»72)yKD
V=U+CLOG(ACI»I))
Z=CLOG(ACI»I))
XC=A(I»I)
A(I»I)=(1,50.)

DO 80 J=MsL
A(I»J)=A(I»J)/XC

CALL ERRTST(NERR»IFL)
IF(IFL.EQ.1) GO TO 150
CONTINUE

DO 91 K=1,N

IF (K.EQ.I) GO TO 91
XC=A(K»1)
A(K»I)=(0.90.)

Do 90 J =MsL

A(Ky J)=A(Ky J)-XCXRA(I»J)
CALL ERRTST(NERR»IFL)
IF(IFL.EQ.1) GO TO 150
CONTINUE

GO TO (955140)sKI

D0 130 J=1sN

IF ¢JC(JD).EQ.J) GO TO 130
JJ=J+1

DQ 100 I=JJsN

IF (JCC(I)>.EQ.J) GO TD 110
CONTINUE

JCC(IN=JC ()

N0 120 K=1,»N
XC=A(K»I)

ARy I)=A(KyJ)

A(K» J)=XC

CONTINUE

JCC1)=N

VU=U+4(0,93.14159265)XCHPLX(FLOAT(MODC(IBIT»2))90.)

RETURN
JC(1)=1-1
RETURN
END
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BC

SUBROUTINE BC(JsNsH»T»Y»SAVE»X)

xkxkk THIS SUBROUTINE SUPPLIES THE FREE-END BOUNDARY CONDITION
Xxxkk USER HAS AN OPTION TO SUFPPLY HIS BOUNDARY CONDITION

kkxkk IN THIS CASEr STATEMENT AFTER 2 SHOULD BE REFLACED BY USER’S

CONDITION
COMMON PEPSyPCTsPCNsFPRETA»FQrPAYPRyPC»PIDZy IBND
DIMENSION T(1)
COMPLEX Y(2»18)sX
IF(J .GT. 0) GO TO 10
xxkxkk FIXED END BOUNDARY CONDITION
X=CEXF(CMPLX(0.0sFQ%XT(1)))
RETURN
10 CONTINUE
GO TO (19253) s IBND
XkRkX R.M.KENNEDY ROUNDARY CONDITION
20RO KK AR KK KKK KK KK K

x U +u =0 x
X T 4 X
AR AR AR AR KK K KKK KK
1 CONTINUE
X=(HXY(1»N-1)/DZ+SAVE) /(1 .0+H/DZ)
RETURN
k%X USER SUPPLIED ROUNDARY CONDITION
2 CONTINUE
X=CEXP(CMPLX(0.0sFQAXT(1))IXCMPLX(.929861965~.35670799)
X=CMPLX(1,050.0)
RETURN
3 CONTINUE
IF(PBETA .NE. 1.0) GO TO 31
X=Y(1sN-1)
RETURN

31 XYZ=1.,+(PCTXPEFSXFRETAXDE) /7(2,.%(1,.,~FPRETA))
X=(CMPLXC(1+/XYZs0.0))XK(CMPLXC(L o #+XYZ2Q 0XXKY(19yN~-1)-Y(1sN-3))
RETURN
END

37
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40

60

62
59

66

85

38

DIFEQ

SUBROUTINE DIFEQ(H»sNsTMAXsY»YZERD s ANORMs YNs SAVE)
COMMON PEPSsPCT»PCNyPBETA»FQsPAyPEsPCsPDsDZy IRND
COMMON A(18,18),T(3)

COMPLEX Y(2,18)sYN(18),YOLD(2,18),YZERO(18) »A»SAVE
10 40 I=1,N

Y(1,I =YZERO(I)

IH=0

TZERO=T(1)

TEA=T(1)+H

IF(TEA.GT.TMAX) H=TMAX-T(1)

IF(TEA.GT.TMAX) IH=0

IF(TEA.GT.TMAX) GO TO 40

TH=IH+1

IF(IH .GE. 32767) IH=2

T(2)=T(1)+H

IMP=2

DO 462 J=1,IMP

DO 62 I=1sN

YOLD(Js T)=Y(JsI)

CALL NLMS(HsYOLDsNsYNsIHsSAVE)

DO 66 I=1,N

Y(2, D) =YN(I)

YOLD(25I)=YN(I)
XRXRAKRKARRRERERKRRKERIARKIRRK KKK KKK KRR K KKK KRR A AR KKK KA KK KKK
%X  RESULTS Y(TEA) IN YN(I) AND Y(2,I) X
KRRKKKRKKRAAKRKKIAKIORA KKK KKK KKK KRR KKK KKK AR K KA K KRR AR A A KKK
ANORM=TEA

DO 85 I=1.N

Y(1s1)=Y(2,1)

YZEROCI)=Y(1,I)

CONTINUE

T(=T(2)

TZERO=T (1)

IF (ARS(TEA-TMAX) .LE.(,1E-5)) RETURN

G0 TO 60

FND
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PADE

SUBROUTINE PADE(AYHsPsN)

C xxkxk A RATIONAL APPROXIMATION OF MATRIX EXPONENTIALS
C *xxxxx DOUBLE PRECISION IS NEEDED FOR REQUIRED ACCURACY

anon

aoon

16

17

18

30

L)

PARAMETER NM=18
COMPLEX A(NMsNM) P (NMsNM)
DOUBLE PRECISION AA(NMsNM) sPP(NMsNM) y B(NMsNM) » C(NMs»NM) » HAVE
DOUBLE PRECISION CC(NM)»COL » XNORM
HAVE=H
DO 2 I=1sN

DO 1 J=1sN

B(I»J)=0.D0

C(I»J4)=0.D0

PP(I»J)=0.D0

AA(TI s J)=DBLE(REAL(A(I»J)))

CONTINUE
CONTINUE
DO 17 I=1sN
COL=0.D0
DO 16 J=1/sN
COL=D0MAX1<(COL » DABS(DBLE(REAL(A(I»J)))))
CONTINUE
CC(I)=COL
CONTINUE
XNORM=CC(1)
DO 18 I=1sN
IF(XNORM .GT. CC(I)) GO TO 18
XNORM=CC(I)
CONTINUE
13 232328338332 23 3333323333383 333233323333 83333883238 3332¢33 283383 %]
x COLUMN NORM IS USED TO SEE WHETHER EXF(A) NEEDS REDUCTION %X
20000 3K 25 56 3K 3 356 2 30 38 35 2 38 2 28 00 3K 2 300 2K 2 30 2K 200 3¢ 3 300 3 2 20 K 2K 300 2K 20 00 30 20 K 2 3 00 3K 3 00 30 3 200 3K 28 300 0 3 20 KK 3 30K 3 K K K K
M=0
IF(XNORMXH - 0.98) 3,20,20
25300 200 300 25200 35 00 3K 380 3K 300 3K 3 30 20 35 30 3K 3 3¢ 38 20 200 3 200 3 30 38 20 3¢ 38 2 300 K 28 3K 30 35 0 3K 00 3K 38 5K 3K 3K 2 3K 200 3K 30 3 3 3 3K 3K K 3K 3K 0K KK K K
X EXPCAY=(I-SXAIRX(=1)DK(I+.5%A) x
K905 2 2 25 3K 200 50 20 30 28 0 2 3 2K 06 2 3 3K 35 20 3¢ 20 3 200 3K 3 3¢ 34 3K 24 30 200 3K 2 3 2K 3 3 3 30 3 3 3K 200 30 900 3 200 300 2 20 2 K 2 30 2 k¢ 3 3k 3 o 3K oK K
00 6 I=1sN
D0 5 .J=1sN
DO 4 K=1sN
PP(Is D=PP(Is )+AA(T s KIXAA(KY.J)
CONTINUE
C(Iy=~AA (I J)XKH/2.0
CONTINUE
C(IsyI)=C(IsI)+1.00
CONTINUE
CALL. INVERT(CsNsB)
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