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1. INTRODUCTION

The determination of the two-point velocity correlation tensor Rjj is a
major aim of our research because R j contains full information on the
Reynolds stress tensor, the scale and"the structure of an arbitrary turbu-
lent flow. The tensor Rij is defined by

Ry (.9) = uj w30

We propose to determine Rj; by solving a closed equation for this
quantity (Refs. 1, 2). Clogure requires modeling of the nonlinear velocity
correlation terms analogous to those now familiar in second-order closures
for the Reynolds stresses (Ref. 3). Because Rjj contains scale and
structure information, closure of the Rjj equation obviates the need for
introducing ad hoc information on these features of the turbulence.

As a first attack on the integration of the modeled Rjj equations for a
general flow, we simplify the integration by introducing the approximation

2 -+
Ri; =% Aij6(|r‘|) (1)

which is the firgt term in the moment expansion of Rjj in the relative
coordinate r = x - y . Here Ajj 1is the angular or ﬂatche]or average of
the integral scale for the appropriate component of the two-point correla-
tion tensor; i.e.,

A, = | A d? (2)

This "first moment" approximation yields coupled equations for the Reynolds
stress and for the scale tensor. Since both quantities are single-point
variables, the approximation is relatively simple when compared to the full
system, which is a two-point, multicomponent equation.

We note that for isotropic turbulence, as discussed in Ref. 1, we have,

1. Sandri, G., "A New Approach to the Development of Scale Equations for
Turbulent Flows," A.R.A.P. Report No. 302, April 1977.

2. Sandri, G., "Recent Results Obtained in the Modeling of Turbulent Flows
by Second-Order Closure," AFOSR-TR-78-0680, February 1978.

3. Donaldson, C.duP., "Construction of a Dynamic Model of the Production
of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutants,"”

Workshop on Micrometeorology (D.A. Haugen, ed.), American Meteorologi-
cal Sﬁcgety, Boston (1973), pp. 313-392.




-g—A=%-Akk=Lf=f £(r) dr (3)
0

where r = |?| . Since L¢ is G.I. Taylor's integral scale, Eq. (3)
justifies our statement that the tensor Aij represents an integral scale.

The first moment approximation is based on the assumption that the size of
the eddies is small compared to the scale of the mean quantities. This
assumption is not usually valid, so that for a number of flows we must
consider the full Rjj equation. Fortunately, however, we can test the
first moment approximation quite stringently. In fact, (i) the first moment
approximation is valid for homogeneous flows, whether sheared or not, because
for such flows the scale of the mean is infinite, and (ii) several experi-
ments have been performed on homogeneous flows, with and without shear,

which yield information on several turbulence quantities.

Our model, which contains only two adjustable parameters, is required to
reproduce the main features of both grid and sheared turbulence data. We
find a satisfactory overall fit with parameter choices that are used in
second-order closure for general flows. The calculated integral scales for
sheared turbulence are strongly directional. Thus the model allows one to
compute, for the first time, a first approximation of the eddy structure in
a sheared turbulent flow.

Proceeding a step beyong the first moment approximation, we show that the
familiar dissipation equation

2 3
9q_ _ q
50 = 20§

can be derived from a simple model of the "cascading” term (the divergence
of the triple velocity correlation).
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I1. DERIVATION OF CLOSED EQUATIONS FOR THE TWO-POINT CORRELATION TENSOR

We start with the Navier-Stokes equations for the velocity field u; and |
the kinematic pressure p (pressure/density)

ou., ou,
i i, . ol
T Tl Tl (4) :
1 !
au,i
W 0 (5)

The velocity and pressure are decomposed, following Reynolds, into mean and
fluctuating parts

Uty (6)
p=p+p (7)

Substituting (6) and (7) into (4) and (5), one obtains separate equations
for the mean and fluctuations. After multiplication and averaging, these
equations can be cast into the form of equations for the correlation tensor

]
!
b
f
H
!
¢
b

Ry;(%a3) = uj @y (8)
namely,
3R
i = > 9 = ;s 9
aTi: - [uk(x) -W+ uk(y) '33{] Rij +
[ Ju;, du,
i
| - Rika—y‘i*ﬁ:"kj]*

k
-3 YA (Yt (Y 9 eV (TN (T
La—x: <u1(x)uk(x)uj(.)')> + by—k ui(x)uk(y)uj(y)>:] +

- ;<%% us(;)> + <u;(;) %;— ] + v[(vi + vjzf)R'ij] (9)




and

aRi.
J

It is convenient to recast these equations by introducing “centroid" and
“relative" variables as follows:

=y -X (13)

-+

Using the chain rule for differentiation, as detailed in Ref. 1, the dynami-
cal equations for Rij become

3R 5 [ak(i) +4(y)

1 . + (1,6 - 5 G) 3| Ry +
at 2 8xck k k ark ij
[ du;,  au, ]
-1 R, + R, :| +
ik Xck 5xck kJj

g1 [CupouGous > + Cu@uGu ] +

+ 3 [Qutuoum - (ytuy@umd] +

k
_
- %;(p'muj'(?)) + ’37; <ui'('§)p'(§)>] +
C

-+

+

oy 2430 uj(x)
b<p x) e > * <axcj P (Y)>j| ’

2 au} (X) au}(y)
+v v Rij - 2v <: axck (14)

axck
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and the continuity equations become

oR.; . 3R, .
Bxu =2 ariJ (15)
ci . i
oR oR. .
._ia i = .2 _.l‘ (16)
xcj arj

where the arguments in the correlations are given by the inverse of Eqs. (12)
and (13), namely,

-»> -> >
X = x. - %- (17)
V=X +3 (18)

For homogeneous turbulence, the derivatives with respect to the centroid
vanish when acting on any correlation but not, in general, on the mean

velocity or on a fluctuation. We then have, for homogeneous turbulence, the
dynamical equations

aR. . R A
+ ng ku;(;)u"((;)uj(:\)!)) - <“%(;)U§(})u3('§)>] .

[Got®) - (2vs)]

aui(x) au'.(y)
- 2v ax] ﬁj (19)
ck ck
and the continuity conditions
aR; .
_ij,
3, 0 (20)
aRi
r (21)
J

The terms in Eq. (19) that prevent closure of the equation are the last
three. In order to achieve closure, we introduce generalized transport
models as follows:




(i) Dissipation equation. We shall prove in Section V that a model for
dissipation 1s not needed once a model for eddy size rearrangement is
specified. A full specification of this latter is not available at present;
therefore, we provisionally maintain a model for dissipation which is given

by

au!(X) aul(y) ba\ Sii R
-2v <3";k ﬁik > =-2(-K‘1)-%1Rm(r) (22)

(ii) Intercomponent rearrangement. We give a generalization of the famil-
jar tendency-towards-isotropy model by introducing a tensor Cij that
guarantees that continuity is satisfied.

Lo duiy) eawi(x)
<"(") e * B p'(Y)> =-3 [R'ij - 3 8iRoa * Cij] (23)

C1 cl

The tensor Cjj 1is assumed to satisfy

cij(F =0)=0 (24)
C..(¥

W g (25)
4nr

These properties are utilized in Section III to derive the Reynolds stress
and scale tensor equations. In the Appendix, we prove a rather remarkable
property of Ci; for isotropic turbulence. If S;: satisfies continuity
(as we assume hgre), the tensor Cjj is uniquely Agtermined by continuity
and it is such as to make the pressure-velocity correlations vanish as is
necessary for isotropic turbulence. A proof of the latter statement is
given in Ref. 4, p. 51.

(iii) Eddy size rearrangement. In addition to the two generalizations
given above, we need a model for the spatially homogeneous part of the
triple velocity correlation which represents the nonlinear effects of local
turbulent convection. These nonlinear effects correspond to either eddy
break-up (cascading, when wave vectors add) or merging of eddies (when the
wave vectors subtract). We assume the model

& (o Gy D> - CuGrg@us@d] = v § Ry - 535] (26

4. Batchelor, G.K., The Theory of Homogeneous Turbulence, Cambridge
University Press, 1953.

pores N

1




where Si satisfies

J

sij(F = 0) = —'_"uiuj (27)

S. .
—-1?‘ dr = 0 (28)
f4m' r

A simple example of Nij is

n

d n
S;; = ——(|r] R..)
1) 3|?'|n( L]

where n is a positive integer. Substituting the models (22), (23) and
(26) into (19) yields

3R, . 3R u, au
__‘l.-[ﬁ(;)-ﬁ(;)]__ii- R wdb + —d_R .|+
ot k k 3f‘k ik 3Xck axck kj

09_ - _g _1
v A[Rij Sij] A[Rij 3 845 Rm*cij]*

8,
- 2(%3) _}l Rax (29)
with (20) and (21), i.e., continuity, holding.

We also introduce the spectral tensor ¢j; in order to present the

equations in separation space as well as wave number space. The definition
is

> = 1 - i-.o-'! -
¢1j(k) WfRij(r) e dr

The unmodeled equation for the spectral tensor ¢ j is




(- %4

TR i
9 lsgij i
i

1J f

|

i [kin(:) - (-u):l 2uk%s i

where we have introduced the two spectra

01.]'(:) - kafTiaj(;) et %.2;75

-> &> -
Y Tt (3 o-iker dr
P (k) 'f p'(x)uily)) e ]
J < J > (21)
and the triple velocity correlation tensor

Tiag(M = oy (Ruy(Rhug(x + 7))

Continuity requires the Poisson equation

P (k) - P (k) R R
J 5 l . 20°K 10, + 1ka[ ouj(k) + oaj(-k)]

Anticipating the development of Section V, we note that the following
51mp1$ model gives a tolerable picture for the energy spectrum of grid
turbulence

1 [o3 0 + o540 -

29

with
A=0.075, B=0.615, C~0.27

which have been adjusted to give exactly a 5/3 law for equilibrium.
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o A full matching of the energy spectrum as a function of time is not
; achieved with this model; mainly the peak value is followed correctly. We
attribute this feature in part to the fact that a grid flow is not simply
an isotropic flow. In Section V we discuss a simpler form of the model to

demonstrate an important relation between dissipation and eddy size
rearrangement. }
|
|

L3
.-




I11. EQUATIONS FOR THE REYNOLDS AND SCALE TENSORS

We now exploit the definition
--T . *
“i“j %13 Rij(r)

in order to obtain the rate equation for the Reynolds stress (divided by
p). Welet r=+0 in (29) and find, using (24) and (27)

aaj W, —— _—
a LITREE [ ] i [} ] - .0 -l 2]
at YiYj '[ Yit% ax_ T "k“j] %["i"j 3539

k Xek
-2(%) d oy’ (30)

The scale tensor, Ay; , is defined in terms of Ry; by

2 R -
H -1i2 dr (31)
%f'“ij .’.4wr
To obtain a rate equation for the scale tensor Ajj that includes the first
order information of turbulence structure, we expand Ri{ ¥) in terms of

its moments in pure relative coordinates and retain the lowest term. We
obtain

2 ->
Rys(r) = & A 5801F) (32)

where the Dirac function of the magnitude of ¥ is related to §(¥) by

() = SUFLL (33)

4nr

We use the notation r = |F| . The approximation (33), as we remarked in
the Introduction, is best justified for homogeneous turbulence because in
this case the spatial scale of the mean flow is infinite.

We now apply to (29) the operation !-d?/4wr2 and, using (25) and (28), we
find

i
N f HOMm MR BAR-wr 1L

L
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() - - [“w T 3xck Akj] (v )+

-1 [ofg - Foigdfua] - ey (34)

Convection of Aqjy does not occur for homogeneous turbulence. To see that

this fact is a consequence of the moment approximation (32), we note that
(33) gives

i (% + §) - ik - B)) 3 st

&Jn.
]
-
[
P
b3
+*
=+
NS
]
[
”~<
P’
¥
(2]
~N
—_
Y
q
e
3
1
(-
-
-
=

where we performed an integration by parts and used continuity. We obtain

the final form of the equation for the scale tensor by substituting into
(34) the formula

2 (2 \a..2M 3q°
F(hg) = o el e a3 (35)

and the contraction of Eq. (30)
2 — W, 3
a 8 e ’ ‘' —k -
'5%' 2y T 2b SA' (3)

This latter is the energy equation. The result is

12




3A 3 au ‘u' 3u
ij.. %% % ,
t ["1« T o “u]* “13[27m**(2°*')]*

- %[AU . i;‘t“kk] - 2bqs, 4 (37)

Note that Eq. (37) us ibtained by dividing by q2 and, therefore, it is
meaningless in the absence of turbulence.

To close the pair (30) and (37), we choose
LY (38)

The reason for this chofce was discussed in a previous report (Ref. 1).
Contraction of (37) and use of (38) yields the equation for the mean scale

u 2ulu! 3u
A, _2 i kY %Y ‘
3t sﬂiksg*ﬂ—qz‘—axu*"" (39)

It is interesting to note that, in this model, the coefficient of the
“production” term is not a universal constant and receives generally compet-
ing contributions from the Reynolds stress and from the tensor scale.

13
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IV. SOLUTIONS OF THE COUPLED EQUATIONS 1
FOR STRESS AND SCALE TENSORS :

In this section we give two analytic solutions to the coupled equations for i
the stress tensor and scale tensor equations. We use subsections to
separate the different calculations.

+ A. Equations in Standard Coordinates

The centroid vector and mean velocity vector are taken to have components

(x,y,2) » (U(y),0,0)

with 3U/ay = U' = constant. The relevant components of the Reynolds stress
equations are obtained from Eqs. (30) and (36). We drop primes on the
fluctuations and give a form useful for numerical integration in which u_f
and All are calculated from

2 2.2 _ 2

U a0 - uy - ug (40) ‘
Ay = 3k - Ay - Agg (41)
i
The other relevant components of the stress and energy equations are
3
Fo cia-m-fy (u2)
2
B STTRN By
ot U1tz T Yy U -y (44)
1‘1---‘-'ﬁ2-13'-|>51E (45)
at q A

For the tensor scale components, we obtain, using Eqs. (37) and (39)

St thpt (1o 200 ey

15
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%T'A33 = - %-A33 + (1 - 2b)q (47)

2 A, =-4a,-un (48)

ot 12 T M2 22

aA,ZIUZUA-g[\ U* + v' (49)
& 12 q

where
u,u
1},_g.z_lzz.u'4’%(1-2b-v') (50)

q
B. Solution of the Shearless Equations

Setting U' = 0 , we see that equations for q and A decouple from the
tensor components. Introducing the deviators

et .1 2
dij ujuy - 3 Gijq (51)
D,y = Ay - L6, (52)
55 % M 3 SiiM
and the time
= A
Ty (53)
We have the set
a=-2q, L=t (54)
a b ) L _1-2 -y
i Ty why T T Uy (85)
reb+v 56
T v (56)
Integrating (56) as A
Te(b+v)(t-t) +q—° (57)

0

16




o

we see that q , A, djj and Djj are suitable powers of (q,/T )t ; for
example,

q -b/(b+v')
q-qo[(bw')f-(t-to)n] (58)
°
q =1/(b+v')
= "y @ -
d1j dij [ (b+v') 1 (t to) + i] (59)
(] 0
q -v'/(b+v')
= ’ _0 -
A Ao[ (b +v') Ao (t to) + 1] (60)
A good fit to experimental data on the decay of turbulent energy and
the growth of eddy size for grid turbulence is obtained if one chooses
b :-}; , v' z0.075 (61)
We then see that for large times
q -5/4
o?~ o2 [ 2 r:-t] (62)
d.. ~d 230 - (63)
at 1]

which shows that the deviator decays with a power about four times larger
than the energy. This substantial difference may eventually be checked in
our anisotropic grid flow.

From the solutions given above, we can verify that statistics are preserved
by the model equations if the model parameters satisfy certain bounds. We
first show that the two tensors uju; and Aq4 are positive definite from
their definitions. Consider an arbi%rary (congtant) Aj then,

AUA, = (wA) >0 (64)

the equality sign holding for A = 0 only. Thus "i"j is a positive
definite tensor.

From the definition of the scale tensor given by Eq. (31), using Fourier
transform on Rij ’

17




2 R; . ¢
%—Aij=f—ilz-d? ‘fs_:rl}“ (65)

4nr

where the power spectrum tensor ¢jj 1s positive definite by Khiutchine's
theorem. Thus,

2 e
dk
3 Aghy 85 =fm Ajdygh; 2 0 (66)
T:us(»é”l\i j is positive definite because q2 is positive as a consequence
0 .
Using the solution (61) and an analogous solution for Ajj , we find
-1/(b+v')
u;u.(t) = u.u (0)( °'r) +
iy iJ K;
2[4 -2b/(b+v') q =1/(b+v')
1 0 0
+§Gijq° (r ‘[) '('K‘ T) (67)
(] 0
-(1-2b-v')/(b+v"')
= 92
Aij(t) A‘Ij(o)(l\o 1') +
[ q \v'/(b+v') q -(1-2b-v')/(b+v')
+ A(0)S, <—° T -<-2 1'> (68)
i A / A

We now multiply (67) by AiA\1 when A1 is an arbitrary vector and find

+

q =1/(b+v')
Aimj‘(t)t\j = (A-u)z(O)(A—o r)

o

2 q ) «2b/(b+v') (q ) -1/(b+v‘)}

A 2 9 - 0 69
*T9 [(A T 1: T (69)

From (57) we see that

T2l (b+v'>0) (70)

18
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Sufficient for the left-hand side of (69) to be positive is
-2b/(b+v') -1/(b+v')
R: T > %o T (71)
R 25

which requires, using (70),

2b <1 (72)

A similar analysis applies to Ajj ; however, no further restrictions on
the parameters is found.

C. An Exact Solution of the Equations with Shear

To obtain a solution of the equations with shear, we let

q=vel't A= eUt
T2, au't . au't
Uy Hl e All L1 e
2. 2ay't - au't
u, = W, e Ay = Ly & (73)
2. 2aU't . au't
ug w3 e A33 L3 e
—_— 2au't . au't
uyu, H4 e A12 L4 e

Substituting these forms into the differential equations of 111.A, we find
that the exponentials cancel and that an algebraic set of equations for the
amplitudes are obtained. It is possible, with some algebra, to solve the
amplitude equations explicitly in terms of the parameters b and v' .
The energy components are

2

Yy _1+6v' +4b 74
2T (74)
2 2
Y2 Y _1-2 1 (75)
;2 ;2' -3 T+ov

The scale components are
Mi_1e6v s (76)
N T+ 2V




We see that

The off-diagonal components are

|uyu, | ] (1 - 2b)(b + v')
Br = 2 ’1+2v'./ 3

A
kz E - 1 jzvl /3(1 - Zb)(b + V')

The Corrsin parameter is

C = uiYz 3(b + v'

1+ + ov
/fef

The ratio of the two times is

1, Ug_ = 1 / 1-2b
a A T+2v /3 +v")

and the growth rate, a , is
a.v|l = V' 1'2b
a 1+2vv/ 3+

We notice two additional interesting parameters:

luu '
1 2' L'-c-i--”a-Br =b +v'
q

A N LT
—+L-s 3(?‘1"5"13)

20
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(79)

(80)

(81)

(82)

(83)

(84)
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In terms of the anisotropy parameter o defined in Ref. 2, p. 4, we note
that this condition corresponds exactly to

g=3

The value of o that has given satisfactory results for a wide class of
turbulent flows is

oexp =2.5

We add the following observations:

1) Several numerical integrations suggest that any solution that is statisti-
cally realizable initially will remain so and will asymptote to the
exact solutions given.

2) If the scalar scale equation

% =c —"2_—ulu2 U' +v'q (¢ = 0.35) (86)

is adopted instead of the tensor equation, an exponential solution
exists and has the same qualitative features insofar as scale and
energy are concerned (of course, no scale directivity results). This
indicates that the models for scale, which were not designed to fit
homogeneous shear data, are quite stable.

With only two adjustable constants, the model covers qualitatively both
types of turbulent flows. We have shown this by exhibiting explicit analy-
tic solutions with several of the desired features. In particular, the
analytic solutions for the homogeneous turbulence models show the presence
of two distinct time scales which characterize, respectively, the rapid
settling of the tensor character of the flow to an asymptotic state and the
slower development of the energy and mean scale. It is found that for both
grid and homogeneous shear turbulence, the ratio of the two scales is about
ten.

The fast time is the redistribution time, A/q , while the slower one is
bA/q (dissipation scale) for grid turbulence and v'A/q (merging scale)
for shear flows after an initial transient. This feature of the model
solutions seems to be well reflected in the data.
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V. RELATION BETWEEN THE HIGH REYNOLDS NUMBER DISSIPATION
AND THE EDDY SIZE REARRANGEMENT

A further test of our modeling consists in comparing the spectra predicted
by the Rj; model with experimental data. The simplest flow on which
spectral lgformation (Energy Spectra) is available is grid turbulence. A
first cut at the analysis can be made by assuming that grid turbulence is
isotropic (Ref. 5). This assumption is in fact not correct, and a more
general framework is needed in order to understand the full details of the
measurements. A remarkable result can be demonstrated, however. For high
turbulence Reynolds numbers (qA/v large), the energy dissipation is given
experimentally by

\ 2 3
. 39 . _op 4
'a'%‘ 2b3- , b~0.125 (87)
A theorem due to G.I. Taylor (Ref. 4, p. 100) states on the other hand
that
2 2
8q " _
g 27 (88)

The two statements of dissipation are equivalent if the following relation
(Glushko, Ref. 6) is assumed

3 e A (89)

We demonstrate below that a simple model of eddy size rearrangement needed
to obtain closure of the Rjj equation implies (89). We introduce wave
number space by

0::(F) = Lo IR () KT g2 (90)
iJ 5;5 ij
and the three-dimensional spectrum, E , by the Karman-Howarth relation

k. k
. _d E(k
¢435(%) («sﬁ 71k )—‘-%m (91)

5. Cerasoli, C., Donaldson, C.duP. and Sandri, G., "Fundamental Research
fn Turbulent Modeling,” AFOSR TR-80-0324, February 1980.

6. Glushko, G.S., "Turbulent Boundary Layer on a Flat Plate in an
Incompressible Fluid," Bull. Acad. Sciences USSR, Mech. Series No. 4,
1965, pp. 13-23.
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The normalization is chosen so that

2 ® !
% - f E(k) dk (52)
0 i

The Rij equation becomes

2

3E . 1(k) - 2wE (93)

ot

where the transfer function T which represents "cascading” (more properly,
eddy size rearrangement) satisfies

f T(k) dk = 0 (94)
0

i.e., eddy size rearrangement does not change the energy. A simple model
for T , which has derivatives only (no integrals) both in (4 space and
for Rjj , is

T= -

=0

5 oE 2q .22
°[§E+kakJ+§A°)‘kE (95)

The coefficients have been chosen so that for Kolmogoroff equilibrium,
i.e., T =0, the only solution is

E = const - k'5/3

and, in addition, Eq. (94) is satisfied. For purposes of calculational
feasibility, it is most desirable that the model equations be differential.
If both ¢jj and Rjj are to be governed by differential equations, then
it can be sﬂown that all terms in the modeling of T must be of the form
a,kM3aME/ak™ . A general consequence of such assumptions is that ¢(k)

will exhibit a region where ? is proportional to a power of k . From
the point of view of theory, it seems that the simplest assumption one can
make on the eddy size rearrangement model is that it be Tocal simultaneous-
ly in wave number and relative separation. To obtain Eq. (89), we
consider a steady source at kg

2
%a[%E-fk-g-E] +2vk2£[g—Reiz-- 1] .

-1
=Qgslk - k) , Re=d} (96)
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The exact solution is

Q '(k-kc)ZK
E = R e H kk— -1 L—s-fa— (97)
(a7R)ak 0 (k/K)
with H the Heaviside function and
k22 k2,2
k=2 0 (98)
“aRe T T 3

“We now impose, as integral constraints, the definitions of q2/2 » A and
A .

2 - -2
3 =f E(k) dk = Ek I,(x) (99)
0
9; Lol «PEdk= EkZI,(k) (100)
;7 . 00 2
2 - -]
29 s =f Edk = E_15(x) (101)
0

where we have introduced three convenient integrals, I3 , I2 , I3 , and the
abbreviation

Q
E = 2 e (102)
o (q/R) Eo
After some manipulation, we find
2 -K
A e
= aRe (103)
3 M)
Numerical evaluation of 11 then gives
2
A A (104)

(—12/4) + (aRe/3)
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Comparing Eq. (104) with (89), we obtain

2
a=!4-=2.47, b=% (105)

It is interesting to note that the empirically accepted values of a 1lie
between 3.25 and 2.5. We note here a general result, namely that a model
of the eddy size rearrangement term in the R;; equation determines the
asymptotic model in the u{ul equation. This“is not obvious when one
merely considers the contrac%ion of the Rijj equation into the u!uj
equation. From dimensional arguments, it can be shown that a fami‘y of
models should yield the Glushko relation and, in addition, that if the
spectrum has the Kolmogoroff form

for k > ko
Re»

then the dissipation parameter b is given by

. T a=3/2 -3/2
b ;?TZA 0.121A (106)

Experimentally, A = 1; thus Eq. (106) yields a value for b that is close
to the generally accepted value of b , i.e., 0.125.

It is of interest to observe that a model in the sense of the familiar Krook
model (or single relaxation time model) would not require any derivatives

at all. uUnfortunately, it does not seem possible to implement such a
concept in modeling cascading because the "equilibrium" spectrum (assumed of
Kolmogoroff form) has infinite dissipation.

e o




VI. CONCLUSIONS

We have tested our formulation of the modeled equations for the Rj; tensor

} ¥ by illustrating its properties in the case of homogeneous turbulencé. Our
. analysis of the model of homogeneous turbulence has brought out four main
: conclusions.

; 1. The model contains only two adjustable parameters which we chose to
i fix from grid turbulence data. Good qualitative agreement with homo-
z geneous shear flow results.

2. The model implies the existence of two distinct time scales which are
separated by a factor of about 10. They appear after an initial
transient phase has died out during which q/A becomes approximately

s equal to U' . On the fast scale, A/q = (U')"!, the normalized
deviator
YiYi 1
45 = '?‘1‘ " 3%
lﬁfks)into a constant value indicated by a Corrsin parameter (Refs. 7
and 8
T
001
/2 .2
U up
or by a Bradshaw number
[ujus]
12 .o0.19
q

On the slower scale, v'(A/q) ~ 0.07(A/q) , the energy components and
the mean scale grow exponentially. This solution can be thought of as
a superequilibrium with convection. A qualitative physical picture is
as follows. During the initial transient, when (qg/A,) <<U' , the
shear brings the sudden distortion-1ike turbulence up to convective
equilibrium (q/A = U'), while when (qg/Ag) >> U' , the turbulence decays
grid-1ike to convective equilibrium. Then a merging mechanism takes
over (a muiti-layer Brown-Roshko effect) so that eddies fold with each
other, making larger ones indefinitely (as long as the imposed shear
provides the energy to sustain the process). Once the merging process
takes over, the eddy structure remains fixed and exhibits highly direc-
tional integral scales (see 4 below). -

7. Harris, V.G., Graham, J.A.H. and Corrsin, S., "Further Experiments in
Nearly Homogeneous Turbulent Shear Flow," J. Fluid Mech. 81, 1977, pp.
657-687. Corrigendum, J. Fluid Mech. 86, 1978, pp. 795-796.

8. Corrsin, S. and Koliman, W., "Preliminary Report on Suddenly Sheared )
Cellular Motion as a Qualitative Model of Homogeneous Turbulent Shear ‘

Flow," Proc. SQUID Symposium on Turbulence in Internal Flows,pp. 11-33 i
(S.N.B. Furthy, ed.), EEm1spﬁere PubTishing Co., 1977 *
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3. In the model, the two transverse energy components do not separate
while the data indicate that such a separation occurs. The splitting
can, however, be brought into the model by assuming a tensor coeffi-
cient in the redistribution equation. We have taken this point to
constitute a refinement at this stage of analysis.

4. The calculated angular averaged integral scales are quite directional.
The model thus gives a picture of the eddy structure of a sheared
turbulence. With our choice of parameters

A A
7\-1—1~ 2.6 , —2-0.19
22 3

this picture could eventually be tested by experiment.
The derivation of the scale equation, the agreement of the model with homo-

genous shear flows, and the derivation of the Glushko relation are, in our
opinion, strong arguments in support of developing a full model for Rij .
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APPENDIX A.
THE INTERCOMPONENT REARRANGEMENT MODEL FOR ISOTROPIC TURBULENCE

We prove that our modeling of the two-point intercomponent rearrangement
term makes this term vanish automatically for isotropic turbulence. We also
show why this statement is nontrivial for two-point as contrasted to one-
point models.

The intercomponent rearrangement two-point tensor is given by

. Loauk(y)  aui(x)
G = pr () gpb—+ 57— p' (9) (A.1)

A
i ci cj

We model generally Ajj as (Eq. (23) in the text)

M g 1
ST [Rij - 3%;fat cij] (a.2)

From the definition, Eq. (A.1) and the continuity relations

Bu, (%) aui(}) (A.3)
= = 0

axci axci

we find that A1j must be traceless; i.e.,

A, =0 (A.4)

kk
From Eq. (A.4) we conclude that Cij itself must be traceless. In fact,

= 2 - 3 - - -

0=Ax=-3 [Rkk Roas * ckk] F Cik (A.5)
For homogenegus turbulence, » Cjj and hence A;; depend on the,
separation r only. We Fourier trans*orm Eq. (A.2) with regpect to [

using Eq. (90) and analogous equations to define Ajj and Cij . We find
in wave number space

AygR) = - 0458 - § 64505 + E5(0)] (A.6)

For all the models that we consider for isotropic turbulence, satis-
fies continuity automatically. We can then determine C; uniqugly In
fact, from isotropy the most general symmetric second rank tensor can be
written in terms of two scalars, a(k) and b(k) as

€y(F) = a(R)s,; + b(k)i,id (A.7)
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where Kk denotes the unit vector

Ei = k,/k (A.8)
But Eij is traceless by Eq. (A.5); thus, from Eq. (A.7)

0=3a+b (A.9)
Substituting (A.9) into (A.2), we have

~ - A A
) = a(k)[aij ] 3kikj} (A.10)
Continuity of Aij requires
0= kiAij
=-1 1 ¢
A [¢1J(k) 3 6ij%a * C1J]
=9, -1, .
! kJ[ L o 2a(k)] (A.11)
Hence a(k) is determined:
R | = .1 E(k
a(k) = - s % m—.(('z)- (R.12)
and from Eq. (A.10), cij is determined uniquely by the energy spectrum
-~ t . o 1 - A A

We now substitute (A.13) into (A.6) and use the Karman-Howarth theorem,
Eq. (91) in the form

<> A A ¢
0330 = (85 - ki) 3 (A.14)

We find
iu@"'%K%f*ﬁj)%?"iﬁﬁm’(ﬁf“%%)%?]

=0 (A.15)




This completes the proof of our theorem.

If we had assumed a model for Ajj without the Cij term, i.e.,

M _1
Ay = - a [ ij - sukm] (A.16)

we would have violated the requirement that Aj; vanish for isotropic
turbulence because (in r space), using the Karman-Howarth representation

We find
2
-1 =4 '
Ris = 3 SiRoa = 35 (‘51 - 37, rJ) rf(r) £ 0 (A.18)

Following von Karman and Howarth, we have considered here only mirror
symmetric isotropic turbulence and hence neglected the skew-symmetric part
of Rii (and of Cjj ). A straightforward calculation, which follows

al

essentially_the steps given here, shows that the skew-symmetric parts of
¢1j and Cij
95 * eijaﬁaA(k) » G5 = u“kac(k) (A.19)
v v
are related by
A(k) + c(k) = 0 (A.20)

in order to satisfy the theorem. The result is therefore valid for general
isotropic turbulence.
Mathematically we may summarize our analysis in the following theorem:
Any isotropic (second rank) tensor that is traceless and divergence-
free is skew-symmetric (and therefore a curl).

Even though it is possible that alternative models satisfy the isotropy
requirement, i.e., =0 , 1t is an advantage of the model proposed here
that it does so explicit
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I. INTRODUCTION

The study of turbulent flows began over a century ago with the work of
Reynolds. Since that time, our understanding of turbulent flows has
grown, but not as rapidly or dramatically as in many other fields of
scifence. A very old and useful concept in the study of turbulence is
the turbulent length scale, or, more physically, the "eddy" size. The
notion of a typical eddy size is intimately connected with the turbulent
transport of all flow variables, and is an aid in qualitatively under-
standing turbulent flows. The concept of length scale enters explicitly
when one attempts to simulate turbulent flows numerically by use of
"second order closure" models. Data on the magnitude of the turbulent
scales is required as input for such modeling schemes, and the present
:xperimentaI study provides data on turbulent scales for an annular

Tow field.

The manner in which length scales appear in closure models will be
discussed in Section II. We will also present the definition of the
correlation tensor and the way in which length scales can be defined

via this tensor. The experimental facilities and techniques used here

will be discussed in Section III, while data on the basic flow field (mean
and turbulent velocities) will be presented in Section IV. Section IV will
also include a discussion of theoretical concepts related to the mean and
turbulent velocity fields, and a comparison of our data with that from
previous experiments. Turbulent length scales obtained by use of auto-
correlation measurements and Taylor's hypothesis are presented in Section V,
where, again, theory and experiment are discussed. The notion of the

von Karmon length scale is also introduced and compared to data.

Section VI contains results obtained from two-point correlation measure-
ments, and data are compared to previous experiments and our theoretical
knowledge. In particular, results are discussed using concepts developed
for isotropic and homogenecus flows. Although the annular fiow field is
neither isotropic nor homogeneous globally, these concepts are useful

and consistent with our data in certain spatial regions where the mean
flow gradients are small.

The two-point correlation equations are also presented, and we qualitatively
discuss the effect of the production terms on the various correlation
functions. The results from this study are summarized in Section VII

and future research topics are discussed.
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II. SECOND ORDER CLOSURE MODELS
AND THE CORRELATION TENSOR

The typical method for solving turbulent flows requires the decomposition
of dependent flow variables into mean and fluctuating parts. The total
velocity field is written as

.+ U,
|J'I u'l

where U; 1is the mean velocity (either a time or ensemble average) and
uj 1is the fluctuating part; the subscript i runs from 1 to 3 for the
three velocity components. A similar separation is used for all other
dependent variables, such as temperature, density, etc. The following
equations result when such a decomposition is applied to the Navier-
Stokes equations for incompressible, constant temperature flow:

oU oU,
3 — o+ LR 02y . 3 (@)
t + Uj X * p axi w Ui X (uiuj

€,

where P and p are the mean pressure and density, respectively, v

is the kinematic viscosity, repeated indices are summed over and the
overbar denotes an average. We find that the equation for mean variables
involves the correlation of fluctuating variables, ujuj . The equation
for Ujuj reads

3 — p) _ i — 3 ( ) 3 (._>
—UsU. + U — U:U: = = U:U - Uoldy 7= = 7= [U:U:U. )= 57— pu_
at ivj k axk iv3 %k axk 37k Xy axk i3k axi J
au EITH 2 du; Ju
9 (—) i ) 3 — ] k
- = (pu + Pl— ¢+ .—l + Vv u.u 2V ——
axj i xj axi axE J axk axj

Here we find that the equation for the second order quantity, Ujug involves
third order variables, u ujug s pressure-velocity correlations,

pui , and pressure-velocily gradient terms, p( ui/ x3) One can continue
this

X
process and the equation for third order var!ablgs will involve fourth
order terms. This problem of always having one equation less than the
number of dependent variables is the “"closure" problem. The equations
can be closed at the first order by writing u uj as a function of the
mean, or first order, variables. This is usuaily d
an eddy viscosity, vg , such that

one via the concept of




e et e . m——

oI

2 U,  au,
— - 9 b R |
Ujus = 3 855 Vg 3, *
|
where %
2 _
and
S5=1  i=j
=0 itd

This method essentially treats turbulent mixing in a manner similar to
viscous diffusion and can yield reasonable results for certain flow fields.
The next level of sophistication is to close the system at second order,
and this allows the physics of turbulence to be more accurately modeled
than the use of eddy viscosities. The set of equations are closed at
second order by writing equations for u; iUl > Pyi and p({3u;/ax;)
solely in terms of second order quantities. The present A.R.A. 5 mgdel
uses the following equations:

T - - Vet () + g ) + g )]
J

Py = - P o Ag 5 (T0)
J
au, ou. 2
—3 = _Pq 9 s..
P 3xj +P 3x; A (u1uj 3 61J)

where the constants V¢ and Pc are determined experimentally. The
symbo? A represents a variable length which is locally representative
of the integral turbulent length scale, or alternately, a typical eddy
size.

The determination of A requires knowledge of the correlation tensor,
defined as
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PUNSINE

Ryj (rs ar) = uy(r) uy(r + ar)

For the case Ar =0, J (r; 0) equals the turbulent intensity squared
for each veloc1;y component when i = j , and the turbulent shear stress
when i # j . (r, Ar) will in general be a function of the vector
position r w1thin the_flow field and the vector separation Ar . A
normalized version of ﬁ,J will be used in most of this work, defined as

/2 1/2
[te7]

Correlation lengths may be generated from Rj; in a number of ways.
One method is to first perform an angular avegage over all separation
directions; this is known as a "Batchelor average" and is defined by

<R,-j(£3 Ar)> B = ijij(L; Ar) d@
2

where dQ is the solid angle vector. A length scale may be defined by

integrating over the scalar separation variable Ar ,

ij(i) = ‘[ <Rij(5 Ar)>B d(ar)

1
R,-j(g; Ar) = R,-j(n; Ar) [ui(z)z]

Note that one may generate nine 1ndependent length scales which are
functions of position r , and that Ljj is a tensor. Another way to
define length scales is to integrate over a single separation direction
while holding the other two separations at zero. We take a case using
cylindrical coordinates as an example where

r=(r, ¢, 2)
and

r = (ar, A¢, AZ)

Let Ar = Ad = 0 , and a length scale Aij' Z can be defined as
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Aij,z z.[ Rij(55 0,0,A2) d(Az)
0

where the subscripts indicate the tensor component and the integration
direction, respectively. Note that Aj; k s not a tensor and the
subscripts are used purely for bookkeepgﬁg purposes. A total of 27
length scales can be defined by the preceeding technique (9 components
times 3 directions). Second order closure models typically require a
single length scale, and the richness of information contained in Rij
and its associated scales must be replaced by a single number. This
is best done when one understands the structure and details of the
correlation tensor.

The present study involves axisymmetric, annular flow and cylindrical
coordinates are used, where (r,¢,z) are the radial, azimuthal and
axial coordinates. The corresponding velocity components are

(u,v,W + w), where we have used the fact that the mean radial and
azimuthal velocities are negligible and taken as zero (U =V = 0).
The flow is assumed to be well developed and axisymmetric, so Rij

is independent of ¢ and z , and we write Rij as

Rij (r; Ar,0¢,A2)

Azimuthal separations were held to zero in all experiments, and either
Ar=0,082#0, orAr # 0, Az = 0 , so that the separations were
either pure axial or pure radial. The axial separations were implied
by use of Taylor's hypothesis which will be subsequently discussed.
The axisymmetric nature of this flow results in

ViUp = UjVy = VoW, = VoW = 0
where the subscripts refer to position,

1=r

2=r+Ar

We therefore have a tensor with 5 independent, non-zero components for the

annular flow field.
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III. EXPERIMENTAL APPARATUS AND TECHNIQUES

The wind tunnel used in this study is described in a previous A.R.A.P.

Report (Ref. 1), and a brief description of the facility will be given

here for completeness. The facility is shown schematically in Figure (1),
where the test section is an annulus with inner and outer radii, R, and

Ro, of 2.54 and 21.59 cm, respectively. The distance from the end of the
contraction section to the test section can be varied by the addition or sub-
traction of cylindrical sections, and the minimum and maximum distances can
be varied from 15 to 45 diameters (2R,). The contraction section admits air
through the region shown in Figure (1) and vanes are situated to direct the
incoming air. The vanes may be set at any angle from 0° to 45°, and when

the vane angle is non-zero, angular momentum is imparted to the incoming air.
The contraction process will then create a swirling flow in the annulus. A
constant speed motor was used in conjunction with a variable speed fan drive
to provide flow through the tunnel, and the mean axial velocity could be
varied between approximately 1200 and 3000 cm/sec. Before discussing the
data acquisition techniques, we will discuss certain problems associated with
the wind tunnel.

Initial measurements made by this author showed that the flow field was highly
unsteady. This was apparent in the behavior of the turbulent velocity power
spectra as low frequencies were approached (f - 0). Typically, as f -~ 0, the
power spectral density approaches a constant value which can be used to define
a turbulent length scale. Our initial experiments showed a divergent behavior
where the spectral 1evel increased as f - (, and this indicated a high degree
of unsteadiness.

The source of unsteadiness was traced to the inlet section. Initially, a fine
screen was placed around the inlet and did not provide any damping of atmos-
pheric motions. Such motions wouic be amplified as the flow contracted and
gave rise to the unsteadiness; the problem was remedied by placing a 5 cm
thick piece of polyurethane foam around the inlet section. This provided a
pressure drop across the foam of more than 10 times the dynamic pressure based
on the inlet velocity (pU}/2, p {s the fluid density and U; fs the inlet

velocity), and filtered out all the atmospheric motions.

A detailed survey of the mean and turbulent velocity fields was taken following
the solution of the unsteadiness problem. These measurements revealed that

the flow field was not axisymmetric. One indication of this lack of symmetry
was that the maximum mean axfal velocity was at r = .55Rp on the near side of
the inner tube (¢ = 0°), while the maximum mean occurred at r = .35R, on the
far side of the inner tube (¢ = 180°). This behavior was believed to be asso-
cfated with the shape of the contraction section, which may have caused the flow

1. Bilanin, Alan J., Snedeker, Richard S., Sullivan, Roger D., and Donaldson,
Coleman duP., “Final Report on an Experimental and Theoretical Study of
?;;graft Vortices," AFOSR-TR-75-0664, A.R.A.P. Report No. 238, February




to become separated. The problem was remedied by placing three sections of
honeycomb after the contraction section, as shown in Figure (2). The pressure
drop associated with the honeycomb was great enough to reduce the asymmetries
created in the contraction section, and data showed that the flow was Symmetric
to within our resolving capabilities. The disadvantage of this solution was
that swirl cannot be introduced by the vanes. Swirl now must be introduced
# after the honeycomb in the annulus region, or the contraction section must be
redesigned to eliminate the asymmetries. The solution of using honeycomb was
the quickest and most inexpensive one, and enabled us to make a very complete
set of measurements on non-swirling annular flow.

Fluid velocities were measured using hot film X probes which allowed
parallel and traverse velocities to be determined. The probes were manufac-
tured by Thermo Systems Incorporated (TSI, model number 1240-20), and the
sensor elements were .05 mm in diameter and 1 mm 1long. TSI anemometers
and linearizers (model 1054) were used in conjunction with the X probes.
A variety of probe holders were designed and used in this study, but only two
need to be described. The first probe holder allowed a single probe to be
traversed radially on either side of the inner tube. This was used to obtain
mean and turbulent velocities as a function of radius and determine the sym-
metry of the flow field. A TSI sum and difference amplifier (model 1063)
was used during the single probe measurements. This provided output voltages
which were in proportion to the parallel (sum) and transverse (difference)
velocities. The second probe holder allowed one probe to remain at the fixed
radius, rg, while a second probe was traversed to other radii. This allowed
two-point correlations to be measured for the case of pure radial separations.
No sum and difference amplifiers were used in the two probe measurements as
the signals were added and subtracted in the data analysis programs. The
signals from the anemometer and linearizer units were amplified by AC coupled
amplifiers with a bandwidth from 2Hz to over 20,000Hz. These amplified signals
:$;e transmitted via cable to the computer facility and into a low pass

ter.

The filtered output was digitized by use of an analog to digital (A/D)
converter. Digitized data was then stored on tape and subsequently analyzed.
The sample rate for the single probe experiments was 5,000 samples a second,
which gave a Nyquist frequency of 2,500Hz. The cutoff frequency for the

low pass filter was 2,000Hz and this eliminated any sorce of aliasing error.
The two probe measurements used the A/D converter in the multiplex mode. The
sample rate for all four data channels was 50,000 samples per second, which
yielded a sample rate per channel of 12,500Hz and a Nyquist frequency of 6250Hz;
the low pass cutoff frequency was 5,000Hz. The data aquisition system is
shown schematically in Figure (3), where the flow of data from probes and
anemometers through amplifiers and filters, into the A/D converter and eventu-
ally to storage on tape can be seen. Computer programs were used to calculate
mean velocities, RMS fluctuations, autocorrelations, power spectra and corre-
lation functions.

A1l experiments were conducted with a maximum axial velocity of 1960 cm/sec
and a mass flow velocity, Wg, (defined in Section IV) of 1660 cm/sec. The
flow Reynolds based on mass glow velocity and the hydraulic diameter,

dp = Z(Ro - Rl)' was
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o Wp dp | s
Ry -JE;Jl 4.2 x 10

while the distance from the last section of honeycomb to the test section, z,

was
2 =300, = 34 d

Three sets of measurements were made for the two point correlations, where the

. fixed probe positions were rp = .27, .43 and .75 . (Note that from this point,

v all distances will be normalized by R, .) These three positions were chosen
because the mean axial velocity gradient (dw/dr) was positive, zero and negative,
respectively, at these positions. Such measurements enabled us to examine the
effect of mean shear and geometry on the correlation functions.




IV. MEAN AND TURBULENT VELOCITY MEASUREMENTS

A series of single probe measurements were made to map out the mean and
fluctuating velocities in the annulus. The following variables were measured
as a function of radial position: the mean axial or downstream velocity,

W, the turbulenf 3ntensif1 s for %hs radial, azimuthal, and axfal velocities,
u, v, w [= (u2)172, (v2)1/2, (wZ)1/2], and the turbulent shear stress, uw.

A. Mean Velocity

Figure 4 shows the mean axial velocity versus radius where velocities have
been normalized by the mass flow, or bulk, velocity, Wg, defined as

: 2T Ro
Wy, * ————— W(r)rdrdé
B n(rZ - R2) .[ J;I

Ry and R, are the inner and outer radii, respectively. Measurements were
made on each side of the center tube (denoted as “"near" and “far" side) and
W is symmetric to within the accuracy of the measurements. It is well known
that the velocity can be represented logarithmically for the outer region in
pipe flow (distance away from wall greater than .05Rg), and a similar behavior
exists for the present case. Figure 5 shows the axial velocity versus dis-
tance from wall in semi-log coordinates, where the upper and lower graphs
are for distances away from the inner and outer radial walls, respectively.
Both cases show good logarithmic fits until the central annular region is
approached; the velocities fall under the log profile for distances from the
inner radial wall and are above the log profile for distances from the outer
radial wall. No analytical solutions exist for this annular flow, therefore
no comparisons can be made between theory and experiment. In the pipe flow
case, the log profile is an excellent fit right to r = 0, the zero mean
gradient position (Nikuradse, Ref. 2). The present case shows deviations
from the log profile near the zero gradient position, r = .43, but one must
be cautious when relating the behavior at r = 0, di/dr = 0 1in pipe flow to
that at r # 0, di/dr = 0 1in annular flow. The point r = 0 {s very
different geometrically from a point such as r = .43,

B. Turbulent Intensities

The root mean square turbulent velocities are presented in Figure 6 as a
function of radfus. The velocities were normalized by the bulk velocity and
the data are from near side measurements. As in the case for the mean axial
velocity, near and far side turbulent intensities agreed to within measurement
accuracy. A number of features can be discussed in terms of our general

2. Nikuradse, J., "Gesetzmabigkeit der Turbulenten Stromung in Glatten
Rohren," Forsch. Arb. Ing.-Wes. No. 356, 1932.
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knowledge of turbulent shear flows. In the regions away from the zero
gradient position (r = .43), we have w > v = u. This is a common feature
where the velocity component receiving energy by production directly (w)

. is greater than the other two components. The velocity component perpen-

. dicular to the gradient direction (v) is greater than the component parallel

! to the gradient direction (u); similar behavior is observed and discussed by
Champagne et.al. (Ref. 3)., The parabolic behavior of w(r) is consistent
with pipe flow measurements and w 1is a minimum at the zero gradient posi-
tion where no local production occurs. Two features of the data differ from
expectations. The first is the "bulge” in the w profile near r = .65.

This is a reproducible feature and we can offer no explanation for it as no
anamolous behavior occurs in other flow variables near this position. The
second feature is the lack of isotropy at the zero gradient position, that

is, wfu=v at r = 43, and we define an isotropy factor y = (u/w)p=_ 4
= ,72. Note that the measured values for the transverse velocities (u and v?
were corrected for the effects of tangential cooling (see Appendix A). Had
this not been done, the isotropy factor would have been even lower. The degree
of tangential cooling is embodied in the k factor, which was measured for
the hot film probes used here. The values agree with the published results of
Frieke and Schwarz (Ref. 4) and Jorgensen (Ref. 5), but a fair amount of
scatter exists in all the measurements. If we take the largest k measured
(which results in the greatest correction factor), the isotropy factor is

{ increased to about .78, as opposed to .72. This lack of isotropy may be a

| consequence of the flow field not being fully developed. Priest (Ref. 6) ‘
shows data on the evolution of w and u downstream in pipe flow, and there
is a tendency for w to become independent of downstream distance before

u (and v). Priest's results show that at r = 0,

y=.70 z/D = 20
Yy = .76 z/D = 30
y=.78 z/D > 45

The present result concerning isotropy can be compared to pipe flow measure-
ments at r = 0, and the values of y are summarized below.

3. Champagne, F. H., Harris, V. G. and Corrsin, S., "Experiments on Nearly
Homogeneous Turbulent Shear Flow," J. Fluid Mech. 41, pp. 81-139.

4. Frieke, C. A. and Schwarz, W. H., "Deviations from the Cosine Law for
Yawed Cyligdrical Anemometer Sensors,” J. Applied Mech., Dec. 1968,
pp. 655-662.

5. Jorgensen, F. E., "Directional Sensitivity of Wire and Fiber-film Probes,"
Disa Report No. 11, May, 1971, pp. 31-37.

6. Priest, A. J., "Incompressible Turbulent Flow in Pipes and Conical Diffusers,"
Ph.D Thesis, University of Salford, England, 1975.
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Annular Flow r= .43 Pipe Flow=0

—

A

‘Present Experiment Laufer(Ref. 7) Priest(Ref. 6) Sabot and Comte-Bellot(Ref. 8)
.72 .98 .78 .90

Typical error bounds on Yy are about .04, so that substantial disagreement
exists in the literature concerning the degree of anisotropy at pipe center.

A1l three pipe flow measurements were made at downstream distances greater than
90 pipe diameters, and lack of fully developed flow is not responsible for the
differences. It is not clear whether the various authors corrected the data

for tangential cooling, and if this is the cause for the differences. The reader
should note that a similar problem exists in circular jet measurements.

Wygnanski and Fiedler (Ref. 9) found y = .86 on jet centerline (and does
compensate for tangential cooling), while Gibson (Ref. 10) found perfect iso-
tropy, Y = 1, on centerline.

C. Turbulent Shear Stress

!gpsure?ints of Ehe turbulent shear stress, uw, and the shear stress coefficient,
uw/(u2)1/2(wZ)1/2, were made as a function of radius. These measurements are
sensitive to both probe calidbration and orientation, and this can be seen by
noting that

W Te T egl(ey +og) = of - of ‘

where ey and eg are the fluctuating voltages from sensors A and B of
an X wire probe. If (1) the sensitivities of the two sensors are not equal,
or (2) the_probe axis is not parallel to the mean flow direction, the measured |
value of uw will be in error. Such errors can be substantially reduced by !
appropriately averaging two measurements where the probe is rotated 1800 about ‘
its axis, thereby 1nterchan?1ng the positions of sensors A and B. This
procedure was used and results for the shear stress coefficient are presented J
- 1n Figure 7. Measurements from the near and far sides are shown and the degree !

7. Laufer, J., "The structure of Turbulence in Fully Developed Pipe Flow," !
N.A.C.A. Report No. 1174, 1954. |

8. Sabot, J. and Comte-Bellot, 6., "Intermittency of Coherent Structures in |
the Core Region of Fully Developed Turbulent Pipe Flow," J. Fluid Mech. 74, 1
1976, pp. 767-96.

9. Wygnanski, I. and Fiedler, H., "Some Measurements in the Self-Preserving ]
Jet,” J. Fluid Mech. 38, 1969, pp. 577-612.

10. Gibson, M. M., "Spectra of Turbulence in a Round Jet," J. Fluid Mech. 15,
1963, pp. 161-73.
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of asymmetry is the same order as the experimental uncertainties. The values
of approximately 0.4 in the constant coefficient regions are in good agreement
with the value of 0.4 given by Laufer for pipe flow. The shear stress coeffi-
cient is zero at r = .43, where the mean gradient is zero, and the sign change
in the coefficient relates to the sign change in dW/dr. The shear stress is
presented in Figure 8, where we have averaged the near and far_side data. The
dashed 1ine represents a fit to a theoretical expression for uw which we
will now discuss.

The derivation for uw as a function of radius in pipe flow is a textbook

exercise which can be found in Fluid Dynamics by Daily and Harleman (Ref. 11).
The derivation requires the assumption of well developed flow, and when
applied to the case of annular flow gives

1 [ 2 2 2
A= ———s [Rou, o ReRy Ye 1
Ro - RI L ’

1 fee 2 2
B ey |R{ul o * ARy u*',]

(I RI -
. 2 _ ., 2 . 9
i u*,o va"-' u*ol vaF
] r=R° r'RI

Usr] 8nd u ,0 are friction velocities based on the mean gradient at the inner
' and outer ra31i. The variable r 1{n the above expressions is the dimensional
] radius, as this allows one to see how Ro and Ry appear in the equations.
' The case Ry = 0 ylelds

and

- 2r dW
uw U'Io-+\)a-;

which is the well known result for pipe flow. The friction velocities can be
related to the downstream pressure gradient by

11. Dafly, J. W. and Harleman, D. R. F., Fluid Dynamics, Addison-Wesley
Publishing Co., 1966.
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1.1 2.2 .22
9% T 2 [Ro Vo0 * R "-,I]
Ry - Ry

and the expression reduces to the pipe flow result for RI = 0.

The theoretical expression for uw {involves two constants, u, o and u, |,
T which can be obtained by direct measurement. Boundary layer méasurements

were not made to determine gradients at the walls and, as a consequence, the

following methodology will be considered. The position at which uw =0

can be used to determine the ratio of wu, o to u, 1 , and using uw = 0

at r = .43, we find ’ ’

U, 2 1.33
u*’o

w o=l [1.227,{—- 227 33] v
(]

The experimental data can be fit to the above expression and yields Up o = -033 W
Alternately, the friction velocity can be computed from measured values of

dP/dz (again using ux I = 1.33 us o), which gives u, o = .040 Wg. Finally,
the data of Koch and Feind (Ref. 12 ) show u, o = .039 Mg for annuli with

RI/Ro = .6 and .8. These three values are summarized below.

U, o/Mp Technique
.033 Fit Shear Stress Data
to Theory Present
Study
.040 Pressure Gradient Measurement
.039 Koch and Feind
i The fit to data yields a u, o below that of the other two values, although

a better agreement can be obfained by choosing a higher k factor for the

tangential cooling. The largest reasonable value of k (as previously dis-

L cussed) gives Uy o = -036 Wg, which agrees with the other values to within
experimental uncertainties. The experimental values of uw tend to be less

than theoretically predicted as the inner radius is approached, and this may be

a consequence of the flow not being fully developed.

L This concludes the discusssion of the mean and turbulent flow variables. The
flow is symmetric to within our resolving capability, and the general features

L 12. Koch, R. and Feind, K., "Druckverlust und Wirmeilibergang in Ringspalten,"
Chemie-Ing.-Techn., 30, 1958, pp. 577-84.




of the flow agree with our knowledge of turbulent shear flow. The mean velocity
profile is logarithmic, while the turbulent intensities have a parabolic be-
havior with minimum values near the midpoint between the inner and outer radii.
The behavior of the shear stress coefficient agrees well with past experiments,
while uw agrees reasonably well with the theoretical prediction. Certain
details of the experiment do not precisely agree with theory and expectations
and this is probably a consequence of the flow not being completey developed.
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V. TURBULENT LENGTH SCALES VIA TAYLOR'S HYPOTHESIS

Turbulent length scales can be obtained using single point autocorrelation
measurements in conjunction with Taylor's hypothesis. That is, the
following correspondence can be made,

R, (82) =W R, (1) |

where

+T -
ul Ruu(-r) = }12-217 f u(z,t) u(z,t + 1) dt f
-T }
atl ?
:2%Ju)agﬂﬁ-J u(z,t) ulz + Az,t) dt

A
T

? z ']r.i.:: 'EIT J 2(2,t) dt
-T

and W is the local downstream velocity. The correlation functions
are independent of z and t for fully developed flows. Taylor's
hypothesis essentially states that the eddy field is frozen and
convected downstream by the local mean velocity. Two criteria

are necessary for this assumption to be valid, (1) the turbulent
intensity must be low,

Wo> w

and (2) the mean flow gradients must be small relative to a typical cross
section stream eddy size, 2

L dW
l))w'd-':

These two criteria are well satisfied in the central annular region
where mean gradients and turbulent intensities are low,

re.25¢t .75 "S-06W¥
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These criteria are not as well satisfied near the inner and outer radii, but s
probably do not invalidate the use of Taylor's hypothesis. The worst case !
values are i
|

w= .12 W

and

W, W
ar = ° 7

The autocorrelation can be used to define integral length scales by ¥

To f
I
uu,2z "f Ryu(t) dt

o

where T, is the position of the first zero in Ry, (t); this convention of
1ntegrat?ng to To 1s a standard one and is discussed in Hassan et. al.

(Ref. 13). The Ay, , notation is one in which the first two subscripts

refer to the correvaffon function indices, while the last index refers to

the integration direction (downstream in this case, by Taylor's hypothesis).
The following integral scales, Ayy.z» Avy and Aww,z were obtained as

a function of radius and are presented in F?gure (9). The behavior of

A u, and Ay, , is expected, where the length scales are constant away from
t“e 60undar¥e§ and go to zero as the inner and outer radii are approached. The
two scales are approximately equal in the central region where Ayy,z = .082R;
and Ay, 2 = .090 R, . The relative behavior of Ay, » and Ayy,2 as the
boundaries are approached is consistent with receng iﬁeoretica] work by Lewellen
and Sandri (Ref. 14). A, , decreases more rapidly than Ayy » near the
walls because the normal véfocity (u) is affected more readiYy by the presence
of a wall than the parallel velocity (v). Such behavior is the cornerstone of
the Lewellen-Sandri model.

A

The behavior of z 1s more complex than for the other two scales. We first
note that AYw z ~ 3Ry 2 and this is a common feature of turbulent shear

flows. The TeAgth sca?é in the downstream direction for the velocity receiving
energy by direct production will be the largest scale in the field and is typically

2 to 8 times the various other length scales. The decrease in Ayy,z hnear

r = .43 1is associated with the zero mean gradient and a similar behavior was
observed by Sabot and Comte-Bellot in pipe flow. Results from their work are
presented in Figure 10,and Awy,z s 2 minimum at r = 0 where dW/dr = 0.
The values for Ayy.z are also shown and agree with those observed in the pre-
sent study. The values of Aww,z given by Sabot and Comte-Bellot are much
greater than those obtained here and Hassan et.al.; data from Hassan et.al. is

13. Hassan, H. A., Jones, B. G. and Adrian, R. J., "Measurements and Axisym-
metric Model of Spatial Correlations in Turbulent Pipe Flow," AIAA
Report No. 79-1562, 1979.

14. Lewellen, W. S. and Sandri, G., "Incorporation of an Anisotropic Scale
into Second-Order Closure Modeling of the Reynold Stress Equation,"
A.R.A.P. Tech Memo No. 80-11 (Submitted to J. Fluid Mech., 1980).
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also included in Figure 10. (We have carefully reviewed other works by Sabot !
and Comte-Bellot, and they consistently report values of Ay, ; greater than t
observed by other workers.) The increase in ¢ hear r = .85 in the

present data may be related to the general parabolic behavior of Awwi 2 in l
pipe flow. Precise agreement between pipe and annulus flow is not expected, but
the behavior of Aww,z in the present study is consistent with pipe flow data. |

We compare the Ay, , data with the von Karman length scale, Ayx , defined as
follows for plane parallel flow,

du/dy i
Ayp = i
K dburdy f

i where y 1is the cross-stream gradient direction. The motivation for this

definition is that away from flow boundaries, the scale will be determined by
local derivatives of W, and a rational choice is the first and second deriva-
tives. An analogous expression for Ayx 1in cylindrical coordinates is

dW/dr
(1/r)(d/dr)(rdW/dr)

Ay =

Ayk was computed using our mean velocity field and the results are presented

in Figure 11. The von Karman length possesses a number of features which are
consistent with the Ayw,z data, although these features tend to be exaggerated.
The general level of Ayx 1is of the same order as Ayw,z, Ayk is greater near
the outer wall than near the inner wall, and Ayk 1is small in the region of
small mean gradient. It is remarkable that given the simplicity of the von
Karman scale, it behaves as similarly to the data as observed.

i The autocorrelation results can be compared to concepts derived for isotropic

: and homogeneous turbulence, and although the annulus flow is neither isotropic
nor homogeneous, the data do have certain features in common with such flows.
The correlation tensor may be completely specified by two scalar functions
f and g, for isotropic, homogeneous turbulence, and these functions are de-
pendent only on the magnitude of the separation vector. This is discussed in
The Theory of Homogeneous Turbulence by Batchelor, (Ref.15) and Figure 12 is used
to define the f and g functions. A separation vector, 5, is specified and
velocities parallel and normal to r are defined as up and un, respectively.
The following definitions are taken:

ea A m——————————r A oL

u2f(r)

up(y up(g +r)

ug(x) up(x + 1) = ug(r)

15. Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge
University Press, T967.
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where

2 _ 2 .2
Up =up=u
h by isotropy. The functions f and g depend only on the magnitude of r
and for incompressible flows, the following constraint exists,
L g =f + (r/2)(3f/0r)
* The behavior of f and g 1s such that £(0) = g(0) =1, f will have a
: long positive tail for large r, and g will go through zero or become

negative for relatively smail r.

| The data is now placed in the context of f and g functions. The sepa-
ration direction is Az, so that w plays the role of the parallel velocity,
while both u and v play the role of the perpendicular velocity. Auto-
correlation data from r = .75 1{s presented in Figure 13 for the three
velocity components and the autocorrelation lag time, T, is related to Az
by Wt = Az, Both Ryy and Ryy behave g-like, becoming zero at Az/Rp = .3,
while Rww 1s f-1ike, remaining positive for separations greater than 1.2Rg.
A more sensitive test to isotropic concepts involves the length scales Af
and Ag, defined by

Afsffdr

0

[- -]
A= qd
9_[9'

(o]

and the constraint, g = f + (r/2)(3f/3r), yields
Ag/Af = 0.5

The following correspondences are made,

~

Ag > Auu.z ’ Aw.z

Ap =+ Ay 2

and the ratios Ay z/A and Ayy,z/My,z are tabulated below for three
radial positions, & -A?¥7f .43, and '35 where all lengths are nomalized by R,.
; (The ti1da s placed over A to emphasize that these scales were obtained by
integrating the correlation functions out beyond 1g).

56

.i....lIII.I.I.llIIIIllIIllIIIIIIIlI.llII.-ll-I.lllIIi.lllll-u------ng_;._._.__-ullll-lh-id“




Auu,zMw,z Avv.zMw.z
r= 27 .22 .26
r= 43 .26 .30
r=.75 . .20 .22

A11 ratios_are well below the 0.5 value associated with isotropic flow. The
ratio of Ayy,z/Apy,z at r = .43 is the closest to 0.5 because the flow is
nearly isotropic locally, no local production of w occurs, and the v velocity
fs not as sensitive to boundaries as u. It is not surprising that the above
ratios differ substantially from 0.5 because of the use of Avw,z. The w
velocity receives energy by direct production, and quantities related to w are
not expected to satisfy isotropic relations. In the following section,
two-point measurements give a separation in the radial direction and the corre-
lation functions for u and v are f and g-like, respectively. Results
for that case will be in closer agreement with isotropic concepts and the data
in the present section is given for future comparison with the two-point data.
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VI. TURBULENT LENGTH SCALES VIA
TWO-POINT CORRELATIONS

Two-point correlations for u, v and w, and two-point cross-correlations
for u and w were measured for the case of pure radial separations.

Three fixed probe positions were chosen, rg = .27, .43, and .75, where the
mean velocity gradient was positive, zero, and negative, respectively. Such
measurements allowed an examination of the effects of mean shear and boun-
daries on the correlation functions. Data from the two-point correlation
measurements are presented in Figures 14, 15, and 16 for the three fixed
probe positions; the notation is one in which curves labeled u refer to
Ruyy, defined as

+T
ul Ry (res ar) = }1':,'21" f u(rg,t) u(rp + ar,t) dt
4

The curves labeled v and w refer to Ryy, and Ry which are defined
similarly.

Data from rf = .27, where dW/dr 1{s positive, are presented in Figure 14.
In the region between the inner tube (R} = .118) and rg, Ry > Ryy > Ryys
and Ryy 1is negative for r < .18. The region outward from rg shows a
similar behavior, Ryw > Ryu > Ryy out to r = .38; beyond that point,

Ryu and Ryy possess long posit¥ve tails and Ry goes negative. Data
from the zero mean gradient position, rg = .43, are shown in Figure 15, and
the following relationships hold for all separations, Ryu > Rww > Rvv.
This result differs from the previous case (and, as will be seen, from the
rg = .75 case) and is related to the zero mean gradient. Figure 16 shows
data from rg = .75 where dW/dr was negative. In the region approaching
the outer wall (.75 < r < 1.0), Ry > Ryy > Ryy, and Ryy goes negative
for r 2 .87. This behavior is similar to that observed in the rf = .27
case for the region between the inner tube, and rg. This similarity results
from the fact that both regions possess relatively constant shear and are
near boundaries. The results for r < .75 show Ryy > Ryy until r = .55,
Ruu > Ryw for r < .55. Ryy possesses a long positive tail, and this is
similar to the behavior in the rfg = .27 case. In both instances, Ryy
remains positive and decays slowly as one moves away from the near boundary.
Both Ryy and Ryy go negative for r < .75, but Ryy becomes negative for
much smalier separations than does Ryy.

Cross-correlations for u and w were measured and defined as

+T
(;7)]/2(;2-)]/2 Rw("iA") s 1im ':'}T f u(r,t) wir + ar,t) dt

and

+1
(@22 nytran £ ym & [ st st o)
-T

|
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We note that for aAr =0,
Ryw (ri0) = Ryy (r;0) = Shear Stress Coefficient

while for Ar # 0, Ryw and Ryy need not be equal. Data from the

three fixed probe positions, rg = .27, .43 and .75 are presented in

Figure (17), (18) and (19), respectively. The cross correlations at

Tg = .27 behave such that R,y = Ryy in the region between the inner tube

aﬁd rr, where the mean veloc*ty g:adient is fairly constant, while for
r>re, Ry > Ryw in 2 region where the mean gradient is rapidly decreas-
ing. figure (18? shows data taken about the zero gradient position, r = .43,
and we find that |Ryw| > |Rwul| for all radial separations. We note that
Ruw(Ar = 0) = Rwu(Ar) # O because the fixed probe was not precisely at the
zero mean gradient position. It fs most likely that Ryy(Ar) would have been
zero for all separations if the fixed probe had been positioned at the pre-
cise zero stress point. The sign of Ryw is consistent with the sign of the
turbulent stress Ryw(r;ar = 0) and TRuwl reaches a maximum value of
approximately .18 for separations, Ar, of about .14. The rg = .75 case

is presented in Figure (19), and the results are very similar to those at

rﬁ = .27. Ryw = Ryy in the region approaching the other wall (.75 < r < 1.0)
where the mean velocity gradient is approximately constant. In the region
where the mean gradient is rapidly changing, r < .75, Rwu, > Ruw,» and this is
similar to the behavior observed at rg = .27.

The correlation functions described above were integrated along Ar to
obtain turbulent length scales in the following manner,

Aro
Auu,r =f Ruu(rF;Ar) d(ar)

o]

The notation is the same as discussed in Section 5 and Arg is the position
at which R,;, becomes zero. The various length scales are tabulated in

Table I, where the results from Section 5 are also included. Separations
of plus and minus Ar were measured and integral scales for both cases are
tabulated and denoted by the + and - signs. A1l lengths are normalized
by Ry, and the negative values for Auw,r and Ay, reflect the negative

value for the corresponding correlation functions.

The tabulated length scales can be compared to pipe flow results obtained
by Hassan et. al., Sabot, Renault and Comte-Bellot (Ref. 16), and Sabot and
Comte-Bellot. In all three papers, a complete map of Ryu, Rews Ryw» and

u Wwas obtained for arbitrary values of Ar and Az , and such dag: allow
the computation of isocorrelation curves for the various tensor components.
Hassan et. al. tabulate various length scales at rg = .65R, (or .35R. from
the pipe wall), while Sabot et.al. provide isocorrelation curves at r = .50R,,
but do not tabulate the various length scales. Data from the present work,
Hassan et. al. and Sabot et. al. are tabulated in Table II.

16. Sabot, J., Renault, J. and Comte-Bellot, G., "Space-Time Correlations
of the Transverse Velocity Fluctuation in Pipe Flow," Phys. Fluids 16,
No. 9, 1973, pp. 1403-05.




6L0° 150° ooL’ 0s0° €60° |-
e’ 060° 280° SL*
90" 8¥0° 060° 8%0° 690" t+
$90° 850° 280° |-
961" 060" 280° 0~ 0~ 3 )
8.0° S90° olL” |+
1331 My 8€0° - 190° Leo’ 6%0° |-
ove’ 880° 890° It
o'~ 920° - 9.0° v90° 680° | +
p $ L] L] ¢ L] € LI L
p 4 !< h 4 >>< 2 ==< 4 =3< 4 3=< 4 §< >>< 4 ==< da

I 37avl

61




Table 11
Auw.r Auu.r Auw.r Auw.r A'w.z Auu.z
Present .100 .093 .051 .079 242 .082
r = 75R
(i}
Hassan et.al, 134 .083 .057 .051 .587 .083
r = _65R
0
.J Sabot et.al. ~ .068 ~ 110 1.000 130
rs= .SOR°

A1l separations
in direction

awa* from pipe
wa

_ A1) lengths are divided by R, and are derived from correlations with a

? radial separation away from tge wall. Sabot et.al. gave values for
Apw,z and Ay, z, while A,y r and u,r Wwere obtained by reading the
respective isocorrelation curves, plotting the data, and integrating the
correlation curve. This is not a very accurate technique and we note this
by use of the approximation symbols. A comparison between the present
results and Hassan's shows that Ayy . p, Ayu,z, and Ay, r 211 agree to with-
in approximately 10%, while r differs by about 30%. Inspection of
Sabot's results shows that all thefr length scales are greater than observed
here, or by Hassan and this was discussed in Section 5. The difference
fn Ayy,z observed by Sabot et.al. and Hassan et.al. is disturbing, as
both measurements were made at downstream distances of 90 diameters, which
insures well developed flow. The relatively low value obtained here may
be a consequence of the different geometry (annulus versus pipe) and the
lack of a fully developed flow field. We can look to the work of Laufer
for a third value of Aww,z to compare with Sabot's and Hassan's values.

L Laufer does not give Agy,z values directly and one must interpret the

given power spectra and estimate Ayw,zi this was done and the values ob-

tained from Laufer support the Aww,z ~ 0.6Ro value of Hassan.

Substantial differences exist for the behavior of the cross-correlation

| functions, Ryw and Ryy, for the three sets of data (Sabot, Hassan, and
present). Both Sabot et.al. and we found |Ry,]| > |Ryw| for pure radial
separations away from the outer wall, and we will subsequently show that

such behavior is consistent with the production terms in the cross-correlation
equations. Hassan et.a). found that |R,,| 2 [Rwy| for pure radial sepa-
rations, and the difference between Sabo% et.al. and Hassan et.al. is again
perplexing, given the simflarity of their experiments.

Ne end this discussion by noting that a number of differences exist in the
literature regarding turbulent pipe flow. In Section 4, the question of
isotropy at pipe center was raised and a careful reading of Laufer, Hassan
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et.al., and Sabot et.al. shows comparable discrepancies between the ratio
u/w at similar radial positions. Differences in the various turbulent
length scales exist (most notably in ,z) and differences in the struc-
ture of the correlation functions (the behavior of Ry, and Ryy) are
also observed. This state of affairs complicates the work of turbulent
modelers. The correct modeling of the “tendency to isotropy" term in

2nd order closure schemes is very important and requires good, consistent
data on the relative behavior of u, v, and w. As turbulent modeling
becomes more sophisticated and length scale structure is introduced, high
quality, consistent data on the various turbulent scales will be required.
It is for these reasons that the discrepancies between the various pipe
flow experiments are very disturbing.

The two-point, radial separation data can be interpreted using isotropic and
homogeneous turbulence concepts in a manner similar to that discussed in
Section 5. The separation direction was radial so that u plays the role
of the parallel velocity, while v and w play the role of the transverse, or
normal, velocity. It will be shown that the w correlations are g-like
only at the zero mean gradient position where no direct production of w

is occuring. The data from rp = .27 show that Ryy > Ryy in accord with
the f and g-1ike character of isotropic turbulence. For Ry < r < .27
Ryy has a negative region, while Ryy remains positive for r > .27. The
behavior of Ry 1s not consistent With isotropic concepts as Ry > Ry,
for Ro<r<.48, and this is a consequence of the direct production of w

by the mean gradient. The correlation functions at the zero gradient posi-
tion, rg = .43, behave in a manner expected from isotropic theory. The Ryy
correlation is f-l1ike and is always greater than Ryy and Rww, while both
Ryv and Ry have negative regions in a g-l1ike manner. At rf = .75,

Ruu > Ryy and the two correlation functions behave f and g-like, respec-
tively. Again, Rww is not g-like because the non-zero mean gradient
results in direct production of w.

The f and g length scales can be defined by the correspondence,

-

A

£” uu,r

~ -

Ag * Avv,r ' Auw.r

where the tilda again is used to emphasize that these length scales are
obtained by integrating beyond Ar,. The following ratios, Ayy,r/Ayy,r
and K r/Kuu,r. are tabulated below for the three fixed probe positions,
and we distinguish between positive and negative 4r by + and -.
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Avv,rMuu.r Aw.rMuu.r

+ .72 .70

I'F = .27 - .67 .79
+ .53 .69

.43 - .70 .70

+ .58 1.30

.75 - .47 .90

The values here are much closer to the _0.5 value than observed in Section
5, and this is a consequence of using Ayy,r, which is derived from a velo-
city component not receiving energy by direct production. The values
closest to 0.5, occur at rg = .43 where the mean gradient is zero, and
for positive separations, which are in the direction of the far wall and
affected less by boundaries than the negative separation case.

The equations for the various correlation functions may be readily derived

for the present flow configuration, and the derivation is presented in

Appendix B. A1l the equations have a similar form, and we present the
(r;dr) equation as a model,

2§¥! + ;ww + [?uw(gg)l + Ewu(%g)ZJ

where the subscripts 1 and 2 refer the positions r and r + ar,
respectively. The tilda denotes the correlation functions have not been
normalized by the rms velocities (see Section 2). The Ay term re-
presents the advection of R, and is equal to

A = ("sai)liuu + ('%)ziuu 6-1

The bracketed term in Eq. (6-1) is the production term, and is the one on
which we will concentrate. The Dy term represents turbulent diffusion
and is comprised of third order velocity correlations, while the Py,
term is the velocity-pressure gradient correlation and Vi represents
the viscous diffusion term. The equations for the other non-zero tensor
components are presented below where the various terms are analogous to
those described above.
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3R O ~ ~
5! ML Puu *Vau 6-2
Myy o3 o5 o3 40 |
5* + Avv * va + va + vvv 6-3
» Ruw & o7 (M) o5 45 43
S A, ¢t Ruu(EF)Z O * Puw * Vi 6-4
g . 3 Wy L5 L3

tAut Ruu(SF)l "0 * Pt Vuu 6-5

The equations for R,, and Ryy do not have direct production terms,

and the differences ogserved for these functions within the flow field

are due to geometrical effects (boundaries) and the nature of the turbu-
lent diffusion and velocity-pressure gradient terms (Dij and Pij).
Equation (6-1) for Rww shows a production term which provides a qualita-
tive explanation of the Awy,z behavior. For the case of pure axial
separation, (3W/3ar)y = (3W/ar)2, and at rf = .43, the mean gradient is zero;
this is consistent with the diminishing of Af"'z near the zero gradient
position. The equations for Ryy and Ry, LEqs. (6-4) and (6-5)] show
production terms, Ry,(3W/3r)2 and Ry,(3W/3r)y, respectively. In regions
of relatively constant mean gradient where (au}ar)1 = (3aW/3r)2, one can
expect Ryyw = Rwy, and this was found to be true. We write Eqs. (6-4) and
(6-5) as folilows,

~

aR r (oW
- - Ru(ah ¢ Other 6-¢

aR ~ oM
—#ﬂ = -~ R + Other 6-7
uu(Sr)Z Terms

S N and we inspect the behavior at r. = .43, where (9W/3r), = 0. The pro-
‘ duction term in Eq. (6-6) is theh consistent with the Benavior of Ruw
being a relatively small quantity around r. = .43. The production term,
-R ?au/ar) #£0, in Eq. (6-7) 1s non zerd as (awW/ar), ¢ O for separa-
‘ tions about r. = .43 and this agrees with the observed behavior, |R¥ >
{ IR _|. Also, the observed sign of Ruu is consistent with the produc ?on

|
tefm fn Eq. (6-7). Finally, we observe that the structure of the produc-

tion terms for R and R will drive IRVUI > lRuw' in the regions of

rapidly changing shears r > re " .27 and r < rp = .75, as was observed.
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VII. SUMMARY AND RECOMMENDATIONS

The present experimental study has provided a complete description

of the mean and turbulent velocity fields in annular flow at a downstream
distance of 30 diameters. A partial map of the correlation tensor components
was also obtained as well as varjous turbulent length scales. A good deal of
time and effort was devoted to upgrading the wind tunnel to research stan-
dards, and we are confident that the flow ffeld is steady and symmetric to
within such standards. The downstream position of 30 diameters was tnsuffi-
cient to provide fully developed flow as evidenced by the lack of isotropy

at the zero mean gradient position. Even with this drawback, the velocity
fields behaved as generally expected. The mean velocity followed a loga-
rithmic profile, while the downstream fluctuations (w) behaved parabolically
as 2 function of radius with the minimum occurring at the zero mean gradient
position. The relative magnitudes of u and v were in l1ine with previous shear
flow results in the non-zero shear regions, where w > v > u. The behavior of
the cross correlation coefficient was, again, in accord with previous pipe
flow results, where Uw / |u|[|{w| ~ + .4 in the regions of positive and neg-
ative mean gradients. The turbulent Reynolds stress was in agproximate agree-
ment with tge theoretically derived expression and discrepancies between
theory and experiment were probably due to a lack of fully developed flow.

The various turbulent length scales measured for the annulus flow were for

the most part in accord with the results of other workers. Typically length
scales for velocity correlations with pure radial separations were all of

order one tenth the outer pipe radius. The behavior of Ayy,z and Ayy,z as

a function of radius agreed with pipe flow results and their relative behavior

f near flow boundaries provided support for the two-scale turbulent models of
Lewellen and Sandri. The Aww,z Scale was a minimum at the zero mean gradient
position. The magnitude of Awy,z was smaller than generally reported for

pipe flow and this may be a consequence of the different geometry (annulus
versus pipe) or the lack of fully developed flow. The length scale results
were interpreted using a number of theoretical concepts. One was the von

Karman length scale which {s based on the ratio of local mean velocity deriva-
tives. This simple model gave surprisingly good agreement with the general be-
havior of Aww,z. The theoretical framework derived for isotropic turbulence
was used to interpret certain Tength scale results. We found reasonable agree-
ment between theory and experiment for length scales associated with the u and
v velocities which do not recefve energy by direct production. The best agreement
occured for length scales measured about the zero mean gradient position where
even w receives no energy by direct production. Finally, the full equations
for the correlation functions were presented, and the production terms were
examined; these terms were found to be consistent with our experimental results.
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The present work has provided data on turbulent structure in annular flow.

As previously stated, much effort was spent upgrading the facility to research
standards, and we now have a research quality apparatus along with all the
necessary data taking hardware and software. A number of research projects
could now be undertaken for varying degrees of expense and we will outline

them. The first project would be an exact repeat of the measurements de-
scribed here at a downstream distance of 45 diameters (and possibly 15 di-
ameters). This would provide data on the evolution of various flow quantities
as a function of downstream distance. Such information would be of interest
because not all fiow variables come into equilibrium simultaneously. Certain
variables obtain equilibrium markedly faster than others, such as the Reynolds
stress coefficient. This was evidenced in our present results where the stress
coefficient agreed with well developed pipe flow results, while u and v

were still evolving (the lack of isotropy at the zero gradient position). Such
a project would require no capital expenditures and could be done in approxi-
mately )5 man-year. A study which could be done with a small capital expenditure
is a map of the various isocorrelations at positive, negative and zero mean
gradient positions. This would require correlation measurements for simultaneous
non-zero radial and axial separations, and a modification of probes and trans-
versing mechanisms would be necessary. Such a study would provide a very com-
plete determination of the effect of shear on turbulent structure, and would
again require approximately % man-year.

The introduction of swirl to this flow field is still a goal of our re-

search. Very little data exists on the behavior of swirling flows and given
the large number of situations where swirl occurs, the importance of under-
standing such flows goes without saying. Two possibilities exist for the in-
troduction of swirl in the present apparatus. One is to run the tunnel in its
present configuration with the honeycomb and introduce swirl by use of vanes or
"twisted tape". The efficiency of such a method would probably be low, so that
high swirls could not be attained. The precise design of such a system would
require trial and error, but should not be very expensive. Once swirl is in-
troduced, one can measure the swirl decay rate as a function of downstream
position, and this information would be extremely useful for comparison to the
A.R.A.P. 2nd order turbulence model. Also, one can investigate the effect of
swirl on the turbulent structure. Such effects would be analogous to stably
stratified flow in the sense that both rotatfon and stratification can be
stabilizing influences. The other way in which to introduce swirl is to go
back to the original design concepts of this apparatus. The vanes situated

at the inlet introduce swirl which is “spun-up” during the contraction process.
It 1s precisely in the contraction section where we believe the asymmetries

are introduced and modification of the contraction section is in order. The
contraction section would be redesigned to provide a very smooth and uniform
contraction for the purpose of eliminating any asymmetries. The advantage of
such a technique is the generation of very high swirl levels, while the draw-
backs involve the difficulty in creating symmetric flows in such a system

and the fair amount of construction required. The rewards would be many be-
cause detafled characteristics of highly swirled flow could be studied and

this would represent a true advance in our understanding of such flows.
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APPENDIX A
“ The expression for the effective cooling velocity, Uc, of a hot wire or hot
film sensor oriented at an angle a to the mstantaneous velocity, U, is given
below as
U, = U{cos?a + k2 sin? a]l/2 (A.1)

where k is an experimentally determined quantity and the orientation of the
flow and sensor are shown in Figure A-1(a). The output voltage, e, of an
anemometer-1inearizer system will be proportional to U, and we write

e = YU, (A.2)

where vy is the calibration coefficient. The two sensors of the X-probe are
labeled A and B, and are oriented at plus and minus 459 to the mean flow
direction, U, respectively. The output voltage for each sensor from an
instantaneous velocity, U, oriented at an angle ¢ to the mean flow direction
is given below as

1/2

v[(U+ )2+ (\,')2]”2 [cosz(eA +4) + k2 sin2(e, + v)]

- .- 2] 12 . s 2 172
Y[(U+u) +(v)] [cos(eB+¢)+k sin(eB+¢)]

The primed quantities are the fluctuating velocities and the orientation of
sensor and velocity is shown in Figure A-1(b). The trigonometric functions
are expanded and we make use of the fact that

tang = =—— & = <« 1
U+ u

tang = . o
¢ ¢ 5

this leads to the following expressions,
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(1 - 26) + K4(1 + 29)

1/2 (A.3)

172 (A.4)

The above expressions may be further simplified by neglecting _second order
quantities and expanding the square root expressions (using u'/U, v'/U << 1,

¢ = V.m.

it

(1 + k2)

N

/'

1 2
/2'(1 + K

1+ L
U

r []
1+ L
\]

The sum of e, and eg is taken as

s

ep * e
2

U
= = (1 + k2)

/2

and the average of e is

s

where y'
written as

eg = eg - € = Y

(1 + k2)

il

X

-
Ny

u

(“

is the new calibration constant.

ir
1_ 2 l'kl
) 1+k2

o

and the difference of eg and ey is taken as
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(A.6)

(A.7)

(A.8)

The fluctuating voltage may be




_eg - e T 1 k2 v'
eD H > = [ ] 1+k‘ U (A.9)

Second order terms are again neglected and we make use of the fact that
€y = 0; this yields

' [ 1"k2 '
e = v (W) v (A.10)

The apparent velocity fluctuations are defined in relation to the true
fluctuations as follows,

! - eS - ]

Yapparent o Ut rue (A.11)
' ) 1-k4\ |

vapparent - Y_. = (——1 +k2) V¢ rue (A.12)

The above expression shows that the apparent transverse fluctuations must be
corrected by the factor (1+k?/1-k¢) to yield the true value.

The k factor is determined expenmentally by measuring the flow angle a and
using Eq (A.1). The measurement is a difficult one and a good deal of scatter
exists for the k values determined here and by others (Jorgensen, 1971). The
value of k depends on a, with the largest values of k occurring at u = 0. At
a =45% we find k = .32:.05 for the hot film probes used in the present
experiment, while Jorgensen (1971) found k = .36£.04 for comparable hot film
sensors. Friehe and Schwarz (1968) used a somewhat different expression for
the effective cooling velocity than given in Eq.(A.1), and the correction
factor they give is consistent with a value of k = .28 for hot film sensors.




APPENDIX B

The equations for the correlation tensor components can be derived for each
component separately as follows, where the Ry, component is chosen as an
example. The following relationships are used:

Ruw(Lsar) = u(r_) wir + 4r) uw,

where

and

%?'“1%2*"1%'{1

The preceeding definitions are used in conjunction with the Navier-Stokes
equations for the turbulent fluctuations in cylindrical coordinates.

" (g—:)z * (“g_!)z * (“%%)2 * (% %‘% * ("'g%)z * ("g;)z =

- (%), + v(v2w),

- -

o |8+ (82 + (32 + (B2 + (2 )- (2, -

on 2 u 2 3dv
| (Gh + v (-2 - 58
The above equations are averaged and added to yield

My o 7 oo (M)
+Aw+u]uz (a—r)z D_+P +V

where the following definitions are used,

PO ) ]
A 2 [u'l fi'l' + ¥, ﬁ;]aw




o
L]
[ ]

The term Ay represents the advection of the correlation by the mean velocity
while D represents turbulent diffusion and is comprised of third order
correlations. Pyy represents the velocity pressure gradient correlations

and Vyy 1s the viscous diffusion term. The equations for the other non-zero
tensor components can be derived in_a simjlar manner and are given in Section
6. We do not bother defining the A, D, P, and V terms for all the corre-
lation equations because they are never used and the example presented here
shows the form of these terms. The production term is of interest and is
presented in Section 6 for all the non-zero correlation components.
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2.5cm polyurethane to
reduce unsteadiness

Ro = 21.6 cm

3 sections of honeycomb
to reduce asymmetry

——.l |-—1o.3;|

Cell Size

O
\7//4\1 cm = 0.046 R,

Figure 2 - Schematic of contraction section where the placement of the
polyurethane and honeycomb sections is shown.
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f Computer Room
|
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[ Rejection —3={ Filters —> Digital
Amplifiers fe. = 5000 hz Converter
‘ - Data Stored
on Tape

Figure 3 - Schematic of data acquisition system.
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Figure 4 - Mean axial velocity vs. radial position.
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Figure 12 - Schematic of perpendicular and normal velocities
and their orientations to the separation vector,
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