NAVAL AIR DEVELOPMENT CENTER WARMINSTER PA AIRCRAFT =-ETC F/6 20/4
METHOD FOR PREDICTING THE JET=INDUCED AERODYNAMICS FOR V/STOL C==-ETC(U)
JAN 81 M M WALTERSs R E PALMER

UNCLASSIFIED NADC-80205-60

AD=A097 356




goaas”
REPORT NO. NADC-$8883-60

., O
0 METHOD FOR PREDICTING THE JET-INDUCED
g:’ AERODYNAMICS OF V/STOL CONFIGURATIONS IN TRANSITION
e
o) ' ‘
o Marvin M. Waiters and Robert E. Paimer {

Aircraft and Crew Systems Technology Directorate ‘

T NAVAL AIR DEVELOPMENT CENTER \Q, o~
o Warminster, Pennsylvania 18974 « (,:‘ & *
<< o A Ol

30 JANUARY 1981 Q o '1

INTERIM REPORT
AIRTASK NO. A03V-320D/001B/7F41-400-000 :

Approved for Public Release; Distribution Uniimited

v

{
i
Prepared for &
NAVAL AIR SYSTEMS COMMAND ;‘
Department of the Navy L
Washington, D. C. 20361 3




NOTICES

922037 NUMSERING SYSTEM - The numbering of technicel projact reports issued by the Naval &r Daveszmars
Camer is arranged for specilic identification purposes. Each number consisis of the Center a.m,n the czlander
yezr in which the number was assignad, the sequence number of the report within the specific czlzmder yazr, a.-... T i
te cificial 2digit correspondence codz of the Command Office or the Functicnsl Directorat2 raspsnsie for
rerort. For example: Report No. NAOC-78015-20 indicates the fifteath Center. report for the year 1378, and ;rs;:ara’!
by T2 Systems Directarate. The numerical codes are as follows:

CODE OFFICE OR DIRECTORATE
00 Commander, Naval Air Davelopment Center
01 Technical Director, Naval Air Development Center }
02 Comptroller .
10 Directarate Command Projects E ]
20 Systems Directorate
30 Sensars & Avionics Technolagy Directorate b
4 Communicaticn & Navigation Technology Directorate
50 Software Computer Directorate
60 Aircraft & Crew Systems Technology Directorzta
70 Planning Assessment Resources
80 Engineering Support Group

70VED BY: L/éﬁ:w - DATE: _j{:é /'?f . 4

. J. STURM i
CAPT UsN ) !

c,x,ﬂ,z wepl *
?/;Lw 918
},@,..,;,)‘f
= arZ




SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

,,,,,, - — ey

UNCLASSIFIED

READ INSTRUCTIONS

1o, Marvin

L_ﬁ_ C r ‘“‘.‘ll / . p—— oy ]
- M. [Walters % t Palmer w E L'IL_LL"I’ (e

e
$. PERFORMING ORGANIZATION NAME AND ADORESS 1 10. PROGAAM ELE
: AREA & WORK
Naval Air Development Center ['7 '
T ~ 3

1T NUMBERS

Aircrafc & Crew Systems Technology Directo
Warminster, PA 18974

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
2. GOVT ACCESSION NO. ). RECIPIENT'S CATALOG NUMBER ‘
" e : 4 g0 COVERED
‘(ethod for Predicting the Jet- Tnduced ? Interim Kepamt,
’ Aerodynamics of V/STOL Configurations in .
! Transicion . ' 6. PIAFORMING ORG. REPORT NUMBER

e ————
ngﬂ T, PROJECT, TASK

. NUMBER OF BAGES —
40

Department of the Navy
Washington, DC 20361

T1. CONTROLLING OFFICE NAME AND ADORESS
Naval Air Systems Command ( ' ‘

14. MONITORING AGENCY NAME & ADORESS((t diiferent (rom Controlling Office) 1S. SECURITY CLASS. (of this repor)

UNCLASSIFIED

8@, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

1§. OISTRIBUTION STATEMENT (of this Raport)
Approved for Public Release; Distribution Unlimited

G oo o0y

17. DISTRIBUTION STATEMENT rof the sbetrect encered in Block 29, !f differsnt from Report)

18, SUPPLEMENTARY NOTES

19. KEY WOROS rContinue on reverse side (f necessary and identtly by biock number)
V/STOL Aerodymamics
Transition
Aerodvnamic Interference
Induced Flow

20. ABSTRACT ’Continue on reverse eside if necessary and identity by biock number)

A method for predicting the propulsive induced aercdvmamics of a VSTOL
aircraft in the tramsition flight regime i{s presented. This method is appli-
cable to low-wing, circular jet subsonic VSTOL configurations with normalilv
exhausting jets. Validation results for various VSTOL configurations are also
presented.

~L .
DU
DD ,"S™ . 1473 eoiTion oF 1 NOV 8313 OBSOLETK
TR ] UNCLASSIFI=
$.°N 0102-L 7-91 44401 —
SECUMITY CLASSIFICATION OF TuiS PAGE (When Deta Bater:

2G353 0 AW




SECURITY CLASSIFICATION OF TUIS PAGE (When Dara Entered)

- ..,,_

il

J U ——
b

e s

SN AP

SECURITY CLASSIFICATION OF THIS P AGE(When Date Entered)




NADC-80025-60

ACKNOWLEDGEMENT

The authors wish to acknowledge the contribution of Kevin Goldstein for
his assistance in the development and evaluation of the method presented

herein.
SUMMARY

A method for predicting the propulsion-induced aerodynamics of a VSTOL
aircraft in the transition flight regime has been developed. This method
represents the formulation of wind tunnel test data consisting of pressure
coefficients at numerous locations on a flat plate due to a circular jet
exhausting normally into crossflows of freestream to jet velocity ratios from
0.1 to 0.3. As a result, the method is applicable to low-wing, circular jet

subsonic V/STOL configurations with normally exhausting jets.

This report documents the development of the formulation along with
validation results for various V/STOL configurations indicating its applica-
bility as well as limitations. The computer code used in the validation of
the method is also presented along with the required input and configuration

modelling procedures.
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INTRODUCTION

The V/STOL transition flight regime covers the velocity range from low
speed hover to the sustalned velocity required for fullv wingborne flight. Jet
exhaust effects have a major influence on aerodvnamic characteristics in this
regime resulting in large forces and moments being induced on the aircrafrc.
These jet effects involve the interaction of the jet and free stream flow and
are primarilv the result of four viscous flow phenomena: jet blockage, wake
separation, entrainment, and vortex generation. Due to complex viscous inter-
action of these four phenomena, the individual effect of each component has not
been separated, making analytical/numerical prediction most difficult.

Current prediction techniques applicable to the transition flight regime
consist of potential flow analysis computer programs with empirically derived
adjustments or corrections to account for the viscous interactions which char-
acterize transition aerodynamics. These techniques are extremely time consuming
with respect to modelling the aircraft configuration with panels required by
the potential flow analysis, and also with respect to the computer time required
to run the pregram. Unfortunately, this time expended does not necessarily
result in an associated increase in accuracy. As a result, these techniques are
primarly applicable to detailed design type of analvsis, being too expensive for
use as a preliminary design tool.

The methodology presented here represents the development of a prediction
technique which is designed for use as a preliminary design tool. The induced
lift and pitching moment are calculated requiring only the configuration geom-
etry and jet location. Since most of the available experimental data applicable
to the transition flight regime resulted from specific aircraft configurations,
it was decided to use the more fundamental data obtained from tests of jets
issuing from flat plates. This data formed the basis of the prediction tech-
nique which could then be applied or adapted to most aircraft configurationms.

Prior to the formal publication of this report, this method was used as
the basis for a more complete prediction technique for V/STOL transition aero-
dynamics with no restrictions concerning aircraft configuration. Coefficients
are applied to the basic 1lift loss value calculated by the method contained
herein to account for various configuration effects including wing aspect ratio,
longitudinal position of the jet, wing height, lateral spacing of multiple jets,
nozzle configuration, and jet deflection angle. A complete discussion of the
development of the more complete technique is contained in reference (6).

L
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METHOD DEVELOPMENT

The preliminary design stage of a V/STOL aircraft involves the assessment
of various conceptual designs to determine which concept most satisfies the
design requirements to justify further development. As part of this assessment,
the propulsion induced aerodynamic effects must be predicted to ensure the
selection of that design which, when weighed against the other design require-
ments, minimizes the negative effects and maximizes the positive effects.

In developing a method to predict the propulsion induced effects in such a
design enviromment, the design information required by the method must be
limited to that which would be known at that stage. Accordingly, the present
method was developed under the guidelines of requiring only general configura-
tion geometry, jet location, and free stream~to-jet velocity ratio for the
desired flight conditions. The approach then taken to develop this generalized,
preliminary design stage type of empirical formulation to predict the tramsition
aerodynamics was to:

a. Obtain available pressure coefficient data measured on a large
flat plate due to a jet exhausting perpendicular to the free stream.

b. Derive an expression for the pressure coefficient data as a
function of velocity ratio, Vo> and longitudinal and lateral distances from the
jet, X/D and Y/D respectively.

c. Use the finalized expression as a basis to integrate over the
configuration planform area of interest relative to nozzle location to obtain
the jet induced aerodymamics in transition flight.

d. Validate the resulting method initially using simplified flat plate
or low wing configurations followed by more realistic complex designs.

e. Modify or adjust the expression, based on results of step (d) to
account for configuration variables such as jet nozzle location relative to wing
and fuselage, planform-to-jet area ratio, jet deflection, and fuselage contour.

The pressure coefficient data used to develop the empirical formulation was
obtained from flat plate data generated by Fearn, reference (1). This data was
obtained for free stream-to-jet velocity ratios ranging from 0.1 to 0.45 using a
four-inch.-diameter jet exhausting normally from a flat plate 24 jet diameters
wide by 27 diameters long. The pressure coefficient was defined as

Cp = gq- D

where p is the difference between the pressure measured at the test condition and
the pressure measured with the power off, and p_ is the static pressure of the
free stream fluid. Thus, the data represents the induced effects produced by the
jet. As plotted in figures (1) to (4) the data approximates an exponential

trend with X/D which tends to flatten out as Y/D is increased, with a non-

linear peak value variation with V,. In developing an expression to fit this
data, each of these variations must be accounted for plus the variation of the
X/D location of the peak values for a particular Ve, as emphasized in Figure (4).
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The equations representing the induced pressure coefficient data were
developed in essentially two parts. The first part, Cp,,.,, equaction (1), cal-
culates the peak pressure coefficient as a function of 3 and Vg. The second
part, Cpyopme» @quation (2), represents the remaining normalized data points
(normalized by the peak Cp value, CPWAX’ for each V,). The two equations
are then simply multiolied according to equation (3) to obtain the desired
induced pressure coefficient.

= .. a
Chyas . 4.25 )
v, - 1) (3.25 Vg + 1.4)
& (Y/Dg+ .5)
Cp - 1 - (3.67 ¥/Dg+ 5) Vo 2)
NORM - >
L1 (X/D-F)] o (X/Dg + 4 Y/D+ 2.5)°

= (2.48 ¥/Dg- 1.6)Vg - .1 Y/Dg- .07

and for (X/Dg- F) <0

Kl= 1
(-2.28 v, + 1.36) Y/1,

Ky = 16 Vg + 1.55 ln (Y/De) - 1
Y/De

whereas for (X/De— F) >0

K1= 1
1.1 Y/De

~
]
]

-.13(¥/D,- 3.5)2 + 1.8

@}
L}

c c
P “Pax  ProrM
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Ia equation (1), the constant -4.25 establishes the maximum value which CPupx

attains. The tem e(lee—l‘2 accourts for the exponential variation of Cpy,y
values as shown in Figure (2), with the term

(Y/De+ .5)(3.25 Vo + 1.4)

providing the variation in C values with Y/T, and V, which tends to flatten
the Cp curves as Y/I} increases, as seen in Figures (1) to (4).

The first parc of the CPNORM equation

1

elxp @ - P2
establishes the basic exponential shape of the curve, being a version of the
general equation 1 . Replacing the x term by (X/qa— F) accounts for the

o (ax)®

X/D, shift in the Cp values with varying V., and Y/Qg as indicated in Figures

(1) to (4). The term Ky represents the coefficient of x required ro curve fit
the data and provides a corrective effect to insure the exponent remains posi-
tive. The overall exponential shape of the curve is made svmmetrical about
the ordinate axis by the factor K, which again varies with V. and Y/Qg. The
second term of the C equation

Pxory °4

(3.67 Y/n,+ 5) v{é

/ 2
e(X/De+ . Y/De+ 2.5)

modifies the original shape of the curve at high negative X/l values to account
for the positive pressure coefficient in front of the jet.

With the equation developed in this form, the calculation of induced
pressure coefficients is relatively simple. Fowever, calculating the induced
forces for an entire configuration is more amenable to use of the computer. As
a result, the formulation was computerized with a configuration modelling tech-
nique and an integration procedure included as part of the code. The modelling
technique and integration procedure are discussed in Appendix A. A listing of
the computer program, a discussion of the required input, and a sample output
are then presented in Aopendix R.

[P RN
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METHOD VALIDATION

Since the data used for formulation represents pressures on a flat plate
due to normally exhausting jets, the method mainly applies to low wing config-
urations with a normally exhausting jet. The jet should be centrally located
in the fuselage or wing undersurface, away from wing or fuselage edges which
would result in additional circulation effects not contained in the data.
Additionally, nozzle pressure ratios iuring the test indicate the method to be
applicable to subsonic configurations. Therefore, the method was validated
against configurations commensurate with its capability plus additional con-
figurations to indicate possibilities for extending its capability.

The first correlation of the method was done with data from reference (2)
for a rectangular wing. Figure (5) shows fairly good agreement for both lift
and resulting pitching moment, especially since the data contains some circu-
lation effects causing the apparent over-prediction of induced lift loss while
the method does not contain circulation effects.

Figure (6a) shows the correlation of data, also from reference (2), for an
elongated body with a jet located 407 from the leading edge. Excellent results
are shown for jet induced lift while the pitching moment exhibits fair correla-
tion. Additional comparisons with the same elongated body but with the jet
located 60% from the leading edge are shown in Figure (6b). Very good agreement
again is shown between the test data and predicted results.

For a delta wing configuration with a small jet, also from reference (2),
excellent agreement with test data is shown in Figure (7a) for a velocity ratio
range of 0.1 to 0.3. This velocity range is representative of the lower and
middle transition region and thus a good correlation in this range is considered
to be of primary importance. The corresponding pitching moment plot, however,
indicates gross disagreement. This is due to questionable data since the
aberrant points on the plot represent a large hump in the data which substan-
tially deviates from the trend.

Results of replacing the small jet with a larger jet in the same delta
wing configuration are shown in Figure (7b). For this configuration, the pre-
dicted results for jet induced lift are slightly greater than actual test data,
but again this difference is small. Excellent agreement for pitching moments
is shown between the predicted results and test data for the velocity range
0.1 to 0.3.

Further validation was conducted with a delta wing design from reference
(3). Figure (8a) shows the comparison to be fair for the configuration with a
jet to planform area ratio of 0.006, whereas increasing the ratio to 0.02% pro-
duced quite good results as indicated in Figure (8b).

To determine the possibilities of extending the method application to
multiple jet configurations, data from reference (4) for a four jet arrangement
of the same configuration as above was used for comparison. The method was
applied in the same manner as before for each jet, however a thrust weighted
summation was used to obtain the total induced force as given by

‘_QL = (A_L) Ti + (AI_.) Ti‘\"]. + veas + (L_‘)I._) Tﬂ
T T Ttotal T /141 Tegeay T /n Trotal

9
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ual jet, and Tyyp,) 1s the total thrust of the configuration.

tion begins to diverge into only fair agreement at Ve = 0.25.

A final validation of the method was done using data from reference (5)
for a high wing configuration. This represents an additional extension of the
method's applicability beyond the low wing type of configuration.
Figure (9), the comparison is quite good for the single jet configuration
indicating wing height to be a secondary effect in this design.
(10a) and (10b) indicate an important limitation of this method being the
inability to account for additional circulation created by a jet located near
the trailing edge of a wing. The additional 1lift and subsequent reduction in

As shown in

where (AL/T); and T4 are the induced lift and thrust associated with an individ-
Figure (8c) con-
tains a planform view of the configuration along with results of the comparison,
indicating excellent agreement up to velocity ratio of 0.15, where the predic-

However, Figures

induced lift loss associated with such a jet/wing arrangement is clearly illus-

trated in the figure.

CONCLUSIONS AND RECOMMENDATIONS

The method developed herein to predict the propulsion induced 1lift of a
V/STOL aircraft in the transition flight regime has been shown to be quite
effective. VWhen applied to those configurations which do not exceed the limi-
tations imposed by its development, the method's predictions are well within
the accuracy required of a preliminary design phase analysis technique.

However, these limitations require that further development of the method
be directed towards extending its capability to include other configuration
variables. These variables include nozzle location relative to the wing, jet
deflection angle, and sideslip conditions. Additionally, nozzle pressure ratio
effects must also be included to allow prediction of supersonic V/STOL config-
urations which are typically characterized by one or more high nozzle pressure
ratio exhaust jets.

P
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12




F—

- ' !- rl'm. v .

Cp
-1.0
Cp -0.5
0.0

NADC-80025-60

-4.0 -2.0 6.0

X/D

FIGURE 2. Pressure Coefficient Distribution
for Vo = .1 - .36, Y/D = 1.0

FIGURE 3. Pressure Coefficient Distribution
for Vo = .1 ~ .36, Y/D = 2.0
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FIGURE 4. Pressure Coefficient Distribution
for Ve = .1 - .36, (a) Y/D = 3.0, (b) ¥/D = 4.0
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FIGURE 6. Comparison of Predicted Results with
Test Data of an Elongated Body
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FIGURE 7. Comparison of Predicted and Experimental Data of a
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FIGURF 3. Comparison of Predicted and F:iperimental Data of
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FIGURE 9. Comparison of Predicted and Experimental Data
of a Single Jet High Wing Configuration
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a. VNozzles Forward

Comparison of Predicted and Experiment.:

SICURE 10.
High Wing Configuration

Data of a Two-jet,
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b. Nozzles Aft

FIGURE 10. Continued
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MODELLING AND CALCULATIONS PROCEDURES
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Modelling the Configuration

A simple panelling method using rectangular segments to approximate the
geometry of the planform is used to input the desired configuration. As shown
in Figure (A-l1), the length of these rectangular segments is restricted only by
the size of the configuration, with the width being dictated by the accuracy
with which the curved and angled aircraft components are to be modelled. To
further refine the calculation of the induced pregsures within each rectangular
segment, an integration interval is used and required as input by the computer
program which defines the longitudinal and lateral grid of rectangular elements.
The mid-point of these elements defines the point at which actual pressure
coefficient calculations are made.

The only caution to be heeded when panelling the configuration is that suf-
ficiently small elements are defined in the area around the jet to enable accurate
calculation of the rapidly changing induced pressures associated with this area.
Conversely, modelling of the planform at distances beyond five jet diameters
from the jet iIs not critical since induced pressures are negligible beyvond
this distance.

Once the configuration is panelled, the computer program is structured to
calculate the induced pressures for any number of different velocity ratios.
This can be done by simply inputting the number of cases to be run and the
associated values of velocity ratio; a more detailed discussion of which is
given in the computer program section.

Integration Procedure

The integration procedure used to exercise and validate the developed
method consists of the incremental form of the equation

AL = 39&[[% d (X/D)d (Y/D)
T s aj

The procedure used involves the following steps:

(1) Pressure coefficients calculated at various longitudinal stations for
a constant span station are plotted, with the area under the curve calculated
assuming the pressure coefficient to be constant across the various longitu-
dinal intervals.

(2) Step 1 is repeated for each span station at which pressure coeffi-
cients are calculated.

(3) The resulting forces per station are then plotted against their par-
ticular span station to again calculate the area under the curve which results
in the total induced force. This procedure is followed for each rectangular
segment. The resultant pressure coefficient and induced 1lift of each segment
is then summed for all segments to obtain the induced lift for the total planform.
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The accuracy of this procedure is dependent upon the integration interval
chosen. This is especially true in close proximity to the jet exit when the
surface pressure variations are quite large for only small changes in location.
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NOTES:

1.

Rectangular segments are smaller near the location of the jet than those
farther away. Some consideration must be given in determining the inte-
gration intervals.

Rectangular segment lengths are sized for accuracy in modelling the plan-
form contour.

For applicable configurations, only half of configuration panelled, with
results multiplied by two for symmetry.

Jet center is considered to be the origin with the central most panel(s)
offset from the origin to avoid a zero value for Y/D.

All lengths are non-dimensionalized by the jet diameter. Accordingly,

all input data for any configuration should be similarly non-dimensionalized.

PIGURE A~1. Schematic of Configuration Panelling Procedure

A-5
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Computer Program

An interactive computer program was developed to facilitate the calcula-
tion of the jet induced pressure coefficient over any configuration planform.
The program contains equations (1) to (4) with which to calculate the pressure
cofficients for any given point, the methodology with which to panel the con-
figuration planform, and the integration routine to calculate the induced lift
from the pressure distribution. Programing these equations has also enabled
calculation of the pitching moment resulting from the planform pressure distri-
bution according to equation (A-1)
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where

(AL) =  induced lift of a particular panel
i

the X location of the panel center of pressure

o
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number of panels used to simulate the planform
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The planform center of pressure is then calculated according to equation (A-2)

(A-2)

UlNI
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As output, the program provides the pressure coefficient, induced 1ift,
pitching moment, and center of pressure for each panel used to model the
planform and for the entire planform. A listing of the program along with

a sample input and resulting output is contained at the end of this appendix.
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Computer Program Input

The input required by the computer program consists of data required to
panel the configuration planform, the jet location, and the equivalent velocity
ratio. This input is tabulated below.

COMPUTER INPUT

ITTL Case Title (Up to 80 Characters)

NCOMP NMumber of rectangular segments

NE Number of velocity ratios 4
VE Velocity ratio

DELXY Integration interval into which rectangular segments are divided |

(interval for both x and y directions; different values can be
input for the various segments)

X0Dnl Minimum x-coordinate of rectangular segment
Xop2 Maximum x-coordinate of rectangular segment
YOD1 Minimum Y-coordinate of rectangular segment

YOD2 Maximum Y-coordinate of rectangular segment

XOoD1, XOD2, YOD1l, YOD2 must be repeated for each rectangular segment,
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