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EVALUATION

This research has quantitatively established the validity of adaptive
excision of additive narrowband interference from direct sequence spread
spectrum communication signals. More importantly, it has shown that this
strategy is suitable for dispersive channels such as the skywave High
Frequency (HF) radio communication channel. Consequently, this work is
directly applicable to the accomplishment of RADC TPO 1B in the area of
sub-UHF communications, especially HF radio communications. We anticipate
that the research described in this report will be directly applied in
our forthcoming exploratory development work in HF signal processing and
in our advanced development new initiative in HF communications.

gﬁaOHN T. GAMBLE

Project Engineer
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1. INTRODUCTION

Spread spectrum, direct sequence or pseudo-noise (PN) modulation is
emploved in digital communication systems to reduce the effects of inter-
ference due to other users and intentional jamming. When the interference
is narrow band the cross-correlation of the received signal with the
replica of the PN code sequence reduces the level of the interference by

spreading it across the frequency band occupied by the PN signal. Thus,

-
, the interference is rendered equivalent to a lower level noise with a
I relatively flat spectrum. Simultaneously, the cross-correlation operation
J collapses the desired signal to the bandwidth occupied by the information
f -{ signal prior to spreading.
i é The interference immunity of a PN spread spectrum communication sys-
L tem corrupted by narrow band interference can be further improved by

filtering the signal prior to cross-correlation, where the objective is

to reduce the level of the interference at the expense of introducing

some distortion on the desired sjgnal. This filtering can be accomplished
by exploiting the wideband spectral characteristics of the desired PN
signal and the narrow band characteristic of the inteference. Since the

spectrum of the PN signal is relatively flat across the signal frequency

hand, the presence of a strong narrow band interference is easily recog-
nized. Then, the interference can be suppressed by means of an appropri- :
ately designed linear filter.

Our approach to the interfercence suppression problem has been greatly

influenced by the previous work of Hsu and Giordano [1}. They considered

:
!
4
?
:

the problem of narrow band interference estimation and suppression by

means of two lincar prediction algorithms, the Burg algorithm |2,3], and

L= g Y

H
e




the Levinson aleorithm [2,4]. ‘The channel throuegh which the PN spread
spectrum signal Is transmitted was assumed to be nondispersive.  Results
were presented on the effectiveness of the linear prediction filter in
suppressing the interference.  Performance was measured in terms of
signal-to-noise ratio at the output of the PN correlator.

Our rescarch work extends the results obtained by Hsu and Giordano
on filter requirements and characteristics in single and multiple fre-
auency band interference. In addition to u nondispersive channel, we
consider the tronsmission of the PN spread spectrum signal over a
channel characterized by fading and multipath (time dispersion). This 3
serves as a model tor radio channels such as HF. The existence of time

dispersion in the received signal necessitates some means for dealing

M e B

4 with this type of distortion at the receiver. We have considered the use
1

of an adaptive decision-{ecedback equalizer preceding the PN correlator

. ' for mitigating the eifects of time dispersion duc to multipath and the

lincar, interference suppression filter.

Section tI of this report presents fhe algorithms for estimating
and suppressing narrow band interference in a wideband PN spread spectrum
signal. Performance results arce presented in Section IIT. Before con-
cluding this section, we present a brief description of the mathematical

nodel of the PN sproad spectrum binary communication system which is used

in the analvsis and in Monte Carle simulation. .\ baseband system

1= used throughout this report,

L. Mathematical Model ot PN Spread Slwpitﬁl'_l_l@‘\__(I_ollqn_u_n_i‘g.a}’ip_n_ﬁS_,\_’_s‘tem

Transmitted Signal

The transmitted signal iz generated as shown in the block diagram.
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Binary
Data —® \lodulator f—————9 5(t)
PN Code
Gienerator

The number of PN chips per information bit is L. ‘Thus, the sienal for

the kth information bit can be cxpressed as

1=

b (t) = . p..qlt - j1 (1.1
k( ) PR 1( J C) { )
where {pki}‘roprcsont the output scquence from the PN code venerator f{or
the k™ information bit and q(t) is a rectangular pulse of duration Te
and unit energy. The total transmitted signal may be expressed in the

form
s(t) = X I. b (t - ka) (1.
k

where le} represents the binary information sequence and Th = L. is the

hit interval (reciprecal of the bit rate).
Channel
The fading multipath channel is modeled as having discrete multi-

path components with relative delavs cqual to multiples of the chip

duration e The impulse response may be expressed as
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where the {aj(t)} are complex-valued, statistically independent, narrow band
Gaussian random processes. Since the multipath components cannot be

distinguished with a resolution better than t_, this is a reasonable

C)
model for the multipath. The fading is inherent in the time variations
of the narrow band processes {aj(t)}.

The signal is corrupted by additive white Gaussian noise n(t) and

by narrow band interference denoted by i(t). The narrow band inter-

ference is modeled as consisting of either a number of CW tones, i.e.,

i(t) = mgl Am cos (2w fmt + ¢m) , (1.4)
or a filtered narrow band Gaussian noise process. In some cases it may
be appropriate to model the interference as a narrow band random process
that arrives at the receiver through another statistically independent
fading multipath channel. Although we have not considered this model of
the interference explicitly in our analysis, the algorithms presented

in Section II for estimating and suppressing the interference still apply.

Received Signal

From the description given above, the received signal has the form

K
r(t) = ]

a; (1) st - Jro) + i(t) + n(v) (1.5)
]

1
The receiver attempts to suppress the interference i(t) and then to re-
cover the information sequence by further processing, which involves

equalization and cross-correlation with a replica of the PN sequence.

e e o kA




] Estimation and Suppression of the Interference

] . The estimation and suppression of the narrow band interference is
accomplished prior to signal demodulation, as illustrated in general

terms in the block diagram shown below.

B U0 U SV S S,

Adjustable

Signal 1
r(t) —71—®| Transversal p————¥ .
Filter Demodulation

Estimation
of Filter
Coefficients

rd

The estimation of the filter coefficients may be accomplished by means
of a linear prediction algorithm or by means of a spectral analysis al-
gorithm based on the Fast Fourier Transform (FFT) algorithm. In any
case, the objective is to design an adaptive transversal filter that

highly attenuates the received signal in those frequency bands which con-

tain strong interference.

Signal Demodulator

The signal at the output of the interference suppression filter is
processed by an adaptive equalizer operating on a chip-by-chip basis,
followed by a PN correlator which employs a replica of the transmitted
PN sequence. Perfect synchronization of the PN sequence is assumed.

The type of equalizer employed in our performance evaluation is a
decision-feedback equalizer. It serves to reduce the detrimental effects

of time dispersion due to the interference suppression filter and the




H channel multipath.
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1T, ALGORITINS FOR ESITMATION AND SUPPRESSION
OF NARROW BAND INTERFERENCE

In this section we present a number of algorithms for estimating and
suppressing a narrow band interference embedded in a wideband PN spread
spectrun signal.  The algorithms may be classified into two general cate-
gories,  The algorithms in the first category employ the lFast Fourier
Transform (FFT) algorithm for pertforming a spectral analysis from which
an appropriate transversal {ilter is specified. These algorithms av be
termed nonparametric, since no prior knowledge of the characteristics of
the interference is assumed in forming the estimate. The algorithms in
the sccond category are based on linear prediction and may be termed para-
metric. ‘that is, the interference is modeled as having been generated by

passing white noise through an all-pole filter [2].

2.1 Interference Suppression Based on Nonparametric Spectral Estimates

The basis for this method is that the power density spectrum of the
PN sequence is relatively flat while the spectrum of the narrow band
interterence is highly peaked. The first step in this method is to
cstinate the power spectral density of the received signal. The spectral
estimate can be obtained by any onc of the well-known spectral analysis
techniques described in [5]. For illustrative purposes, we have selected
the Welch method and we have made use of the computer program listed in
[6] to generate the mumerical results presented in Sectien I17.

once the power spectral density of the received signal is estimated,
the intertference suppression filter can be designed. 2\ transversal filter
is an appropriate {ilter structure for this application, since we desire

to use a filter that contains zeros in the frequency range occupied by the

PRER I
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intertference. A relatively simple method for designing the transversal
filter in the discrete-time (sampled-data) domain is to select its dis-
crete Pourier transtorm (DIFT) to be the reciprocal of the square root of
the power spectral density at cequally spaced frequencies. To elaboruate,
suppose that the transversal filter has K taps.  ‘The problem is to specify

the K tap coefficients h(n)} or, cquivalently, the DFI H(k), defined as

- . 2m
N-1 -1 Tnk
Hk) = §  h(n) e , k=0,1, , k-1 (2.1)
n=0
The DFT H(k), k = 0,1, , K-1 1s scelected as
. 2n k-1
=) ( —— )k
k) = e ™ N2 (2.2)

where P(f), 0 < f < Rg, denotes the estimate ol the power spectral

density and Rs denotes the sampling rate, which is normalized to unity.
It is desirable to have a transversal filter that has linear phase.

This can be achieved if the impulse responsc h{n) is recal and satisfies

the symmetry condition

hin) = h{k - 1 - n) (2.3

The symmetry condition in by, (2.3) is satistied 10 H(K) = H¥ (R -~ k).
But (k) as defined in Bqg. (2.2) does satisfy this condition since P(f) =
P(RS - 1), Hence, hin) is svametric,

In eftect, the filter characteristic obtained from Fq. (2.2) attempts

to approximiate an inverse filter to the power spectral density,  That is,

T T ol o S o il s

YR T




the interference suppression filter attempts to whiten the spectrum of
the incoming signal. Thus, the filter will have a large attenuation in
the frequency range occupied by the interference and a relatively small
attenuation elsewhere.

There is an alternative f{ilter design procedure that may lead to a
relatively smaller transversal filter. The method simply involves the
selection of the position of the zeros so as to obtain an appropriate

- set of notches in the frequency response characteristic of the filter.
' We have not investigated any ad hoc methods for selecting the zeros of

the transter function, since the linear prediction approach described in

%,

3 ‘ the following =cction 1s a systematic method for attaining the same goal.

J <
< : 3
£ . . . . . 3
K 2.2 Interference Suppression Based on Linear Predlcthg
¢ ) . )
: In contrast to the nonparametric spectral analysis method described

¢ ' in the previous section, the method presented in this section for esti-
mating the narrow band interference is based on modeling the interference
as white noise passed through an all-pole filter. That is, instead of
using the received signal to estimate the spectrum directly, the signal
1s used to estimate the pole positions. This estimation is accomplished
by means of lincar prediction. An estimate of the power spectral density
is casily obtained from the all-pole model. However, this step can be
omitted.  That is, the power density spectrum need not be computed ex-
plicitly ftor the purposce of designing the suppression filter. The inter-
ference suppression filter is simply a transversal (all-zero} filter

having cero positions that coincide with the estimated pole positions.

o

Thus, the spectrum of the signal at the output of the transversal filter

is rendered white.

T POPE TN L . . PUET)
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In order to develop the mathematical formulation for the all-pole
model, we assume that the channel through which the signal is transmitted
is nondispersive (no multipath). Let s(t) denote the equivalent lowpass
transmitted PN spread spectrum signal and let r{t) denote the cquivalent

lowpass received signal. The latter is expressed as
ri(t) = s(t) + i(t) + n(t) (2.4)

where 1(t) denotes the narrow band interference and n(t) is assumed to be
a sample function of a white Gaussian noise process. For convenience, we
assume that r(t) is sampled at the chip rate of the PN scquence. Thus,

Fq. (2.4) can be expressed as
r(k) = s(k) + i(k) + n(k), k=1,2, ... (2.5)

We assume that s(k), i(k) and n(k) are mutually uncorrelated.

An estimate of the interference i(t) is formed from r(k). Assume
for the moment that the statistics of i(t) are known and are stationary.
Then, we can predict i(k) from r(k - 1), r(k - 2), ..., r(k - m). That

is,

. m
i(k) = ) a, v(k - 1) (2.6)
=1

o

where {“L} arce the coefficients of the linear prodictor.. It should be

cuphasized that Fq. (2.6) predicts the interference but not the signal

n

s(k), because s(k) 1s uncorrclated with rik - 2) for 2 =1, 2, ..., m,

Rt . . . . .
For convenience, our treatment ot lincar prediction is based on real-valued

signals. The extension to complex—valuced signals is straightforward.

-10-
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as a consequence of the sampling being done at the chip rate.

The coefficients in Lig. (2.0) are deternmined by minimizing the mean

square error between r(k) and itk}, which is defined as j
" 2
Em) = I'[r(k) - i(k)lf. 1
” m S )
: = Lrk) - ) ag vk - 2))” (2.7)
" =1 ‘ :
: 4

Minimization of F with respect to the predictor coefficients {a£¥ can i
be easily accomplished by invoking the orthogonality principle in mean

square estimation [7]. This leads to the set of linear equations

!
LU T T

m
L ) a, ok - 2) =p(k) , k=12, ..., m (2.8)
=1 -

. ‘ where

p(k)y = E[r(m) r(k + m)] (2.9)

is the autocorrelation function of the received signal v(k) . The

equations in (2.8) are usually called the Yule-Walker equations [2].

They can be solved efficiently by means of the Levinson algorithm [4,2].
The Levinson algorithm is an order-recursive method for solving lq.

(2.8). That is, it solves for the coefficients of an m-order predictor

recursively from the coefficients of an (m - 1)-order predictor. Starting

PR Y SR

with ¢ first-order predictor and introducing another subscript in the pre-

diction coefficients to indicate the order, we have
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o (0) a1 = p(1)

and, hence,

(2.10)

For a second-order predictor, the two equations obtained from tq. (2.8)

are

p(0) ayp * p(1) ayy = o(1)

0(2) (2.11)

p(1) a5y + r(0) a,,

The first equation in (2.11) can be used to solve for a,7. By substi-

tuting aq for p(1)/0(0; we obtain
421 7 811 T @28 (2.

Thus, a,, is related to apq- Next, a,, can be solved from the second
equation in (2.11). By using Lq. (2.12} to eliminate a5 from the second

cquation, we ohtain a,, in the form

p(2) - o(1) a4

“22 7 H R A (213

Therefore, bg. (2.13) is used to solve for a,, and, then, a5 is ob-

tained from bq. (2.12). This is the Levinson recursion for order two.

In general, it can bhe shown [2,4], that the Levinson recursion for the

.-
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coefficients of the m-order predictor are

, - . . , = > _ 2
Ik T -1 kT Ym Yl ek K L2, ey el (2. 14)

where
!
p(my - 2! a
a = }_(._)___l‘;l___l..ﬂ"_]' (’7 15)
< T IR (‘r—_ cedd
o e(1) el &g
The vectors ¢, a_ and al in Lq. (2.15) are defined as
M’ = 4
C (n [ a 7 B 7
(n) nn 4n {
2 = ; - S S . . = . 2 -
" v(n-1) ’ SN “nn-1 v 4y 4h2 (2.16)
4
(1 LL a
| oLl S L “nn J

We note from bys. (2.16) that the vector 3; is simplv the vector a,
in reversce order. Furthermore, if we express Eq. (2.8) in the matrix
form
? . = 5 -
km I Em L1

where &” is the {mxm) autocorrclation matrix, the vector o in Fgs. (2.160)

is simply the vector hn in reverse order. These relations will be used

later in our discussion of the lattice realization of the prediction E
{ilter. .

The minimum mean square error is a measure of the effectivencss of
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the prediction filter. The expression for Emin(m) is casily shown to

be

m
m) = u(0) - kzl a ¢ (k) (2.18)

Lo
min
A recursion relation can also be obtained for Emin(m)' Using Eq. (2.18)
we have

m-1
2 (m) = p(0) = kzl %“kp(k) -a p(m) (2.19)

“min
If we substitute for a in Tq. (2.19) the Levinson recursion given in
Eq. (2.14), and rearrange the terms, we obtain
m-1 m

Emin(m) [o(0) - kzl -1k o(k)] —anme(m) _kzl an-1 m-k p(k)]

= 7 - - : _ o2t P o)
'min(m 1) amm[p(m) ém—l £i-m-l] (2.20)
From bg. (2.15), we note that
. opt .
4 = ri[ﬂ.A__E_ﬂ_l.:lﬂll_ (2.21)
“mm oo (mo- 1) i
min
Hence, Eq. (2.20) becomes
2 = 2 Y F 1) 7 79
‘min(m] = (1 - ag, ﬁnhlﬁn ) (2.22)

L]
3
'
i
‘
]
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The result in Eg. (2.22) implies that l”mm
Once the prediction coefficients are determined, the estimate i(K)
of the interference, given by bg. (2.6), is subtracted from r(k) and
the difference signal is processed further in order to extract the digital
information. Thus, the equivalent transversal filter for suppressing the
interference is described by the transfer function
m
A =1 [ a2k (2.25] |
k=1
where :_] denotes a unit of delay. The corresponding all-pole model for
the interference signal is I/Am(z).
The solution of liq. (2.8) for the coefficients {umk} of the pre-
diction filter requires knowledge of the autocorrelation function (k).
In practice, the autocorrelation function of i(k) and, hence, r(k) is
unknown and it may also be slowly varyving in time. Consequently, one
must consider methods for obtaining the predictor cocfficients directly
from the received signal {r(k)}. This may be accomplished in a mumber
of ways. In this investigation, three different methods were considered.
In all cases, we obtained the predictor coefficients by using a block of

N samples of {rik)t.  The three methods arc described in the following

section.
2.5 Algorithms tor Computing the Prediction Cocfficients ;
i
2
Since the autocorrelation function o(k) is not known . :velcyd, we i
shall describe three algorithms for computing the prediction coeftficionts
from the reccived signal r(k). We assume throuchout that a hlock of N
samples of r(k) are available,
g
-15- f




Direct Application of the Levinson Algorithm

The first method is simply based on the direct estimation of p(k)
from the block of N samples. ‘The estimate of (k) is
. N-K
p(k) = ) r(m) rin+ k) , k=0,1, ..., m (2.24)
n=1
The estimate (k) may then be substituted in Eg. {2.8) in place of (k)
and the Levinson algorithm can be used to solve the equations efficiently.
Thus, the recursive relations given in the previous section apply with

(k) replaced by o(K).

Burg Algorithm
: The second method considered for obtaining the prediction coefficients
» g is the Burg algorithm [2,3]. Basically, the Burg algorithm may be viewed

as an order-recursive least squares algorithm in which the Levinson re-
cursion is used in cach iteration. To be specific, we hegin with the
determination of the coefficient in a tirst-order predictor, based on the
method of least squares.

The performance index used by Burg is the mean (time-average) square
error, which, for a first-order predictor, is defined as

'\: 2
iij (e - ag (- D1+ G- 1) - ayr(i)]%)

,\
—
1}

N A )
) [F7(i) + bl (2.25)
i=2

The first term in the sum represents the error in a first-order predictor

operating on the received signal in the forward direction and, hence, it

_1(‘_
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is called the forward crror fl(i). The second term represents the error
in a first-order predictor operating on the data in the reverse direction
and, hence, it is called the backward error b](i). Minimization of

SB(I) with respect to a9 vields the predictor coefficient 49 in the

form

N
2 z r{i) r(i - 1)

1= (2.26)

N 7 R
LorT(i) (i - D

I'or the second-order predictor we have the performance index

ro
.
Lo
~1
-

N 2. 2.
Eg(2) = ] [f5(1) + by(i)] (
1=5

where fz(i) and bz(i) denote the forward and backward crrors, respectively,

which are defined as

2
£,(i) = r(i) - ) a, r(i - k)
2 21 2k
2
bo(1) = r(i - 2) - ] a5 r(i-2+Kk (2.28)
2 Kby 2

We use the Levinson recursion given in Eq. (2.12) to express {,(1) and
b,(i) in terms of an and a,,, where a1 is the coefficient of the first-

order predictor. Tor f,7i) we obtain the relation




fz(i) r(i) - ay, r(i - 1) - azzlr(i - 2) - 419 rii - 1)]

fl(i) Ty, bl(i - 1) (2.29)

and for b,(i) we obtain the relation

" by(i) = hl(i - 1) - 455 fl(i) (2.30)
Minimization of Eq. (2.27) with respect to a,, vields the result

.

< N

2 iZS f1(1) by - D

: ay, = (2.31)

- v 2. 2.
y ) [t1(1) + b](l - 1]
. 1=3

th

Let us now consider an m™ order predictor. The performance index

is defined as |
N

2o 2. ..
Egm) = ] [f (i) + by(i)] (2.
i=m+1

to
(o2
(]
N

where the forward error fm(i) and the backward error bm(i) are defined

as

m ]

r(i) - ) ay o= k)

It

£ (i)

o~

hm(i) =r(i-m - s Ak r(i - m+ k) {2.33)

-18-




The general Levinson recursion, given in Lg. (2.11), is used in Egs. (2.33)
to express fm(i) and hm(i) in terms of the predictor coefficients at the
(m - 1) iteration. The result of this substitution is

(1 - 1)

) = ﬂn-l‘l) ;%m1hm-l

b (i) =b (i -1)-a (i) (2.34)

f
m" m-1 mn m-1

Upon substituting kgs. (2.34) into Eg. (2.32) and minimizing Ep(m) with

respect to a_ we obtain
min

§
. i=$+1 ﬂn—l(i) bm~](i -l )
dn ——7:A~~E--»?~—-~«-é—-A~:~w——~ (2.35)
i:%+}fm_1(1) by (- 1

A recursion relation can also be obtained for the minimum mean
square error. By substituting Bgs. (2.34) into Ly. (2.32), expanding the
squared terms and using Eq. (2.35), we obtain the recursive relation

2

r {m) = (1 - a% )

B min mn "R min(m - D (-.20)

The recursive relations in bgs. (2.533), (2.35) and (2.30) constitute
the Rurg atgorithm {or computing the predictor coefficients and the
minimum mean square error. The estimate of the power spectral density

ohtained by means of the Burg aleorithm using a predictor of crder m is

-19-




I . {(m)
PIf) = queee B mine © (2.37)
m 12
1- 7 a -j2nkf|
ko1 mk

Least Squares Algorithm

As we indicated in the discussion above, the Burg algorithm is

hasically a least squares algorithm with the added constraint that the

_ predictor coefficients satisfy the Levinson recursion. As a result of

‘ this constraint, an increase in the order of the predictor requires

_ only a single parameter optimization at each stage. In contrast to this
_é approach, we shall now describe an unconstrained least squares algorithm.

; That is, the algorithm computes the optimum predictor coefficients, in

é the sensc of least squares, at each stage of the iteration.

As in the Burg algorithm, we minimize the mecan square error perform-
ance given in Fg. (2.32). The forward and backward prediction errors
are defined in tags. (2.33). The global minimization of Eq. (2.32) with
respect to the set of predictor coefficients {amk} vields the set of

lincar equations

m
3 . c = ) = 7 7 IR
kél a p(L,k) = (2,00 , 2=1,2, ..., m (2.38)
where
N
S(2,k) = ) r(i - Ky r(i - ) +r(i-m+ k) or(i-m+ )]
i=m+1

(2.39)

The lincar equations in (2.38) can be cexpressed in matrix form as

-20-




> (2.10)

L

¥ o
-m o n

where the matrix ﬁ“ is an (mxm) autocorrelation mutrix with elements
fa(k, ) and P 1s an m-dimensional vector with clements ¢(2,0),

o= 1,20 ..., m. The matrix is symmetric. lowever, in contrast to

n
the autocorrelation matrix Rm in LEq. (2.17), which is Toeplitz, the
matrix Em is not Toeplitz. Conscquently, the levinson algorithm cannot
be used to solve Iq. (2.40) recursively. In spite of the fact that ém
1s not Toeplitz, it is still possible to derive a recursive algorithm
for the predictor cocfficients based on the least squares performance
index. Morf et al [8-11] have developed such a recursive least squares
algorithm that not only allows one to recursively increasc the order of
the predictor, hut also allows one to update the predictor coefficients
recursively in time for a predictor of any given order. A detailed
development of this recursive least squares algorithm has been given by
Pack and Satorius [12} and, for the sake of brevity, will not be repeated
here. An order-recursive version of this algorithm has also been de-
scribed recently by Marple [13]. The point that we wish to make is that
the prediction coefficients based on the least squares criterion can be
solved cfficicently by means of an algorithm that is both recursive in
order and in time. The order-recursive part of the atgorithm fits the
lattice formulation described briefly in the following scction.

To conclude this scction, we observe that the minimum mean square

crror in the least squares solution can be expressed as




N
E g mint™ = __2 [im(l) v(i) + b (1) r(i - ]
i=m+]
m
= 000,00 - §ay dk,0) (2.41)

k=1

As a final comment we mention the well-known property of the unconstrained
least squares solution, namely, that the resulting prediction coefficients
do not necessarily vield a minimum phase filter Am(z). In our case and in
some other practical applications of linear prediction this is not a

problem.

2.4 Lattice Structure for Linear Prediction Filters

In this section we demonstrate that the transversal filter with
transfer function
A(z)=1-r§a 27K (2.42)
“m kel mk e
where the {amk} are the prediction coefficients, can also be realized as
a lattice filter. As we shall observe below, the lattice filter structure
has a number of properties that may prove desirable in a practical imple-
mentation of the interference suppression filter.
The starting point for this development is the Levinson recursive
algorithm for the predictor coefficients {amk} given in Eq. (2.14). 1If
we substitute this relation into Eq. (2.42) and rearrange terms, we

obtain




m-1 m-1
-y = S Lk ~-m X . _m-K
\n(') 1 kél -1k C ! Y~ 1 kzl -1 mek T I
m-1 |
_ oy My ) _k
Am-lt“) ‘o - I kzl R I l

. o _-m -1 o A=
_"\n—l(“) = A-107 ) (2.45) L
y :
» The filter Jdefined by the transfer function '
I | -1 5
_ G lz) == A7) 2.44) J
f 4
=
4 . . . . .
: is the transversal {ilter resulting from backward prediction. Conscquently, J
¥ .
; we may cexpress Lg. (2.43) in the fom

oA

z) - a 1 ¢

- g (2 (2.45)

) Aptz) = Am—l(

Thus, the transf{cr function Am(z) for the transversal f{ilter arising from F

forward prediction is related to the transversal filter resulting f{rom
backward prediction. A similar relationship holds for Gm(:). This can
be obtained by substituting f{or Am(:_l) from iq. (2.45) into Lq. (2.44).

This substitution yields

N | 1 . . -1
hm(“) - I“\m—lt“ ) - L 7 Gm—l(" )]
1 -(m-1) I T 1S § RSN ‘
I A E T gy, O =) 3
T RS oy . .
B ('m-](“) dmm ‘\m-](“) (2.40)
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Thus, Eq. (2.46) g¢ives the recursive relation for Gm(:).

Let (m\i\ and bm(i) denote the output scquences of the filters Am(z)
and Cm(:), respectively, for an input sequence x(i). Since, Fm(:) =
Am(:) X (z) and Bm(:) = Gm(z) X (z), it follows f{rom Egs. (2.43) and

{2.45) that Fm(z) and Bm(:) satlsfy the recursive reclations

-1

F (z) = Fm_l(z) - z Bm_l(:)

d
nm

-1

B (z) =z Bm_ltz) - a (2.47)

nmllhrltz)

where initially we have Fo(:) = BO(Z) = X{(z). Alternatively, in the time

domain the relations in Igs. (2.47) arc

b (1 - 1)

1m(1) - 1(1) T m Pm-1

m-
bp(i) = by G- D= a h (1) (2.48)

with initial conditions fo(i) = bo(i) = x(1i).

The recursive relations in Lgs. (2.48) describe a lattice filter as
shown in Figure 2.1. In our casc the input to the lattice is the re-
ceived signal sequence r(i) and the desired output is fm(i). Lach stage
of the lattice has two inputs and two outputs. The two inputs and out-
puts arc the forward and backward prediction errors defined previously.
These errors, usually called the residuals, satis{y a number of inter-
esting propertices [11], which we state here without proof.

First of all, there is the orthogonality property between the
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residuals and the input:

i

i
—_

li[ﬂ“(Q) rii - k) R 1 <k <m

t§
—_

E[b (1) rii - K] , 1<k

| A

m-1 (2.49)

These relations are simply a restatement of the orthogonality principle
in linear mean square estimation [7]. Secondlv, the backward residuals

arc sclf-orthogonul, in the serse that

Etb (1) b (1)] = £ . (m) ¢ 2.50
l U n( a min ™ mn ( )
where Emin(m) is the minimun mean square error for an m-stage lattice or
predictor, and Son is the Kronecker delta. This orthogonality relation
means that successive stages of the lattice are decoupled statistically.
In terms of the forward residuals, the expression for the minimum mean

SQuUare error is

g ) = B[] (2.51)
Two additional expressions for Emin(m) are

ﬂmin(m) = L[(m(i) r{i)] (2.52)

Fmin(m) = E[hm(i) r(i - m)| (2.53)




Finally, the prediction coefficients {ukk} conputed at cach stage of the
lattice arec related to the cross-correlation between the {forward and

backward residuals.  Specifically, we have

CEIf ) by G- )

A = - (2.501
kk Zo -1
) min )
RN In using the lattice structurc Instead of the transversal structurce
. for the interference suppression filter, onec must compute the lattice

gains {ukk} as specified by Igq. (2.15) or Lg. (2.21), in conjunction with

N the Levinson recursion (2.14). In this computation, the estimate (time-
& ~

i average) of the autocorrelation (unction p(k) is used in place of the

: statistical average o(k).

The Burg aleorithm as described by the relations in bgs. (2.34),
(2.35) and (2.30) is basically a lattice implementation of the linear
predictor.  The lattice stages are specified by the recursive relations
in Bgs. (2.34) for ﬂntj) and hm(i), with the lattice gains {a”mﬁ given
by L. (2.35). It is interesting to note that [g. (2.35), which was ob-
tained by performing a least squarcs optimization, is the time-average
ecquivalent of the statistical average given by lig. (2.54). In fact, the
forward and backward residuals have identical statistical mean square
vialues.  Consequently, the denowminator in bg. (2.35) is equivalent to
twice the statistical mean squarce value. Thus, the factors of two in the
nunerator and denominator cancel.

From a computational viewpoint, the Rurg algerithm has the advantage
that the lattice gains are computed divectly from the forward and back-

ward residuals, as indicated by the relation in lig. (2.35), whereas in




the direct application of the Levinson algorithm one must first compute
the estimate of the autocorrelation fumction from the data. As a con-
sequence, the Burg algorithm is computationally more efficient.

The least squares algorithm described in the previous section can
also be formulated in terms of a lattice filter structure. Such 4

. formulation was developed by Morf et al [8-11]. For a clear tutorial

. presentation of the lattice, recursive least squares formulation the

-

; interested reader is referred to the report by Pack and Satorius [12].
: 2.5 CGeneralization of Lincar Prediction Algorithms

; Up to this point, our treatment of lincar prediction algorithms

? has been limited to one-step prediction. In the PN spread spectrum

y problem under consideration, one-step linear prediction is appropriate

if the received signal is sampled at a rate of one sample per PN chip.
In such a case the predictor forms an estimate of the narrow band inter-
ference and is insensitive to the presence of the desired signal. As a
consequence, the desired signal is not suppressed.

[l, for somc reason, the received signal is sampled at a higher rate,

say M samples per chip, then successive samples of the desired signal are

highly correlated. In this case, the onec-step lincar predictor will
attempt to predict and suppress not only the narrow band interference
but also the desired signal. Since this situation is undesirable, the
remedy is to employ an M-step linear predictor, which can be implemented
as 1llustrated in Figure 2.2,

A similar problem arises in attompting to suppress a narrow band

interference in the presence of resolvable signal multipath. 1{ the
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Figure 2.2 An M-Step lLincar Predictor
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multipath components in the PN spread spectrun sional span a time inter-

val of M samples, a one-step linear predictor of order M or greater will
attempt to estimate and suppress the multipath components in the received
signal.  Since the multipath signal components represent a form of signal
diversity, their suppression by the lincar predictor may be undesirable.
To avoid this situation an M-step linear predictor can be emploved. In
the case of multipath, however, the major problem with this approach is
that if M is laree the interference components i(k) and i(k - M - n),
n=20,l, ..., m-1 arc highly decorrelated. As a consequence, th - estimate
of the interference is poor and so is the performance of the suppression
filter. When the interference is much stronger than the desired signat,
the multipath components of the signal are completely masked by the
interference.  In this case a one-step predictor 1s appropriate, since
the predictor responds to the interference and is relatively unaffected
by the much weaker multipath components of the signal. This situation is
demonstrated in Section LI by some numerical results.
In spite of this one shortcoming of the M-step predictor, it may
still be appropriate to use it in some situations, as for example, in
the case of multiple samples per chin ror this reason we briefly outline
the appropriate algorithms for performing M-step prediction and inter-
lerence suppression. !
First, we adopt a statistical approach. The M-step linear predictor !

ol order m is

i) = ot -




and the corresponding meuan square crror is

-

. >
Fm) = B{[r{t) - 1(t)]~} {2.50)

Minimization of #(m} with respect to the predictor coefficients {ﬁkr -
vields the set of linecar cquations

m

1,2, ..., m (2,57
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The difference between this set of linecar equations and the sct g¢iven
in bq. (2.8) ftor the one-step predictor are the terms in the right-hand
side of the equations. The solution of Egq. (2.57) requires a eencral-
ization of the lLevinson algorithm vhich incorporates the recursion in
LEg. (2.13) and includes a second recursive relation. It is straight-

forward to show that the second recursive relation is

“mk T “m-1 k  Som Ym-l omek k=12, ooy el (2.58)

where the coefticients S is given by the expression

L R

f o

.5

st a
an-1 -m-1

o0 I . . - . ~ .
I'he vectors 4y and , In Fag. (2.59) were previously defined in bgs. (2.10),

and the vector ¢ is the n-dimensional vector of the coetlicionts {anl’

k=1,2, ..., n. The cocfficients fa_+ arc civen by Ly, (2.15%). Tinally,
1+ ’ nn . h
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the initial conditions are

4 = Pll) .=l >
dll - f_r_T(U y Lll - E)'a)')_ -.()0)

The above equations (2.58)-(2.60) along with LEg. (2.14) constitute the
ceneralized version of the Levinson algorithm which is appropriate for
solving the linear cquations in Eq. (2.57).

In a practical implementation of the generalized Levinson algorithm
for the M-step predictor, an estimate of the autocorrelation function
B(k) 1s used in placcof p(k). Furthermore, the interference suppression
filter cun be implemented cither as a transversal filter or in the form
of a lattice. In the lattice structure, the transfer function

m

. -k
C.(z) =1 - kzl Cok Z (2.61)

can be expressed as

Sy = L I s . 262
Lm(“) Cm—l(“) “mm = Gm-l(“) (2.62)
where Fg. (2.02) follows from substituting Eq. (2.58) into Eq. (2.61).
G120 was defined previously in Bq. (2.43). Tor an input signal X(z2),
let Vm(:l = Cm(:) X(z). Then, the cutput sequence Vm(i) can be expressed

as

1) (2.63)

V(i) = v i) - ¢ b (i
m( ) m-l( 27 S - 1
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This expression gives the necessary addition to the basic lattice in
order to generate the output \'m(i) ol the M-step predictor. Fioure
2.3 illustrates a typlcal stage of the lattice imploementation for the
M-step predictor.

The Burg atgorithm can also be moditicd to render it appropriute
for M-step prediction.  In this case we detine the forward and backward

Crrors as

n
LI = {1 - ~ (1 - k - O
ﬂ”(l) r(i) -Z i Tl K - M+ 1)
k=1
m
[ - (i - -\ _ . U L - .
hm(xJ r{i - m - M+ 1} .Z Cok v{i -m-M+1+K)
k=1
{2.04)
and the performance index 1s the mean square error
(m) ; [£12(i) + b2 (i) ] 5
L lm)o= : “(1) + b' (i (2.65)
GB K= m

ECB(mI is minimized with respect to the single parameter ¢ subiect to
. )

the constraint that {cmk}, for 1 < k < m - I, satisfy the genceralized

m

lLevinson recursion given by Lgs. (2.58) and (2.14). It we substitute
Pg. (2.58) into L. (2.06d] we obtain the recursive algorithm tor the

forward and backward residuals f&(i) and h&(i) in the form

G o S . \
‘mtl] “n-l(]] anw‘ﬁn»l(l M

[ = ] . . - SRR 5
bty =br - e M {2.00)
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Figure 2.3 N\ Lattice Stage for the Generalized Levinson
M-Step Lincar Predictor




Substituting Lgs. (2.60) into Eq. (2.65) and minimizing the resulting

Ao m) with respect to ¢ vields the cquation for ¢ in the fom
GB mn nun

N
™ LN . . _ ' . — - . ~
i:£+w ltm-l(l) hm--l(l My hm-l(l b Im-l(1 Ml
“mn N o ,
i:f{i+\1 [1”]_1(1 - M+ Ly 4 hm_](l - My

(2.67)

Thus, Lygs. (2.606), 12.67) along with [2.33) and (2.35) constitute a

veneralized version of the Burg algorithm appropriate for M-step prediction.

Figure 2.4 illustrates a single stage in a lattice implementation of this
algorithm,

If we drop the constraint that the predictor coefficients {ka} satis-
fv the generalized Levinson algorithm, and simply minimize the mean square
error in Eg. {2.05) with respect to the entire set of coefficients, we
obtain the solution for the least squares M-step predictor.  The appropri-
ate set of equations for the coefficients arc

m

o V(e = (L ©=1,2, ... 2.08
kil e VoK) =0, [,2y cooym (2.08)

where, by detinitton,

N
Clo,k) = ) r(d - k- M e 1y r(io- b - M+
1=m+M
+ (i -m+ K) r{i-m+ )], bh = 1,2, ..,

(2.09)
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Figure 2.3 A Lattice Stage for the Generalized Burg M-Step Predictor




The minimun mean square error is

mn
= p0,0) - ) g vk (2.70)

2o (m)
GLS =

The solution to the above cquation can be {ormulated in terms of
recursive relations, which are simply ¢eneralizations of the work of
Mor{ et al |8-11] and Pack and Satorius [12]. The recursive relations
represent a lattice formulation of the least squares, M-step predictrion
problem.

When the statistical characteristics of the received signal sequence
rii}) arc changing with time (nonstationary signal) great care must be
taken in sclecting the block size of the duta record from which the pre-
diction coetficients are determined. In particular, N must be small
relative to the number of samples over which a significant change occurs
in the statistics ol the signial. This 1s a situiation where the parametric
methods based on lincar prediction show their superiority over the con-
vent ional nonparametric spectral estimation methods.  That is, for the
same spectral resolution, the parametric methods require a much smaller
set of samples in comparison with conventional spectral estimation. (on-
sequent 1y, the paramctric method will accommodate more rapidly changing
signal statistics.

A convenient method for dealing with the slo@ly time-variant proper-
ties of the received signal is to emplov a weighting function in the
performance index, which places more emphasis on errors {rom current
data and less on errors due to past data. A simple weighting function

for accomplishing this type of weighting is an exponential.




In the context of one-step prediction, Morf et al [8-11] and Pack

and Satorius |[12] have presented a recursive least squares algorithm
for an exponentially weighted mean square crror. Also in the context of
one-step predictions Nuttall [15] has generalized the Burg algorithm by
including a weighted mean square error performance index.
. This concludes our discussion of algorithms for narrow band inter-
ference estimation and suppression. In the next section we present a
. number of numerical results that illustrate the effectiveness of inter-

ference suppression.
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[11. PERFORMANCE RESULTS ON INTERFERENCE SUPPRESSTON

This section deals with the performance of the interference sup-
pression filter. First, we determine the improvement provided by inter-
ference suppression as measured in terms of the signal-to-noisc ratio
(SNR) at the output of the PN corrclator. ‘The output SNR is by f{ar the
most convenient performance index for obtaining numerical results. This
performance index is used to assess the improvement in performance ob- ]
tained by an interference suppression tilter. In addition, we describe
a number of other characteristics of the interference suppression {ilter, :
including its frequency responsce and the locition of its zeros. Finally,

we present some Monte (arlo simulation results on the performance of

the receiver as measured in terms of the probability of crror. A two-
path, Ravleigh fading channel is used in the simulation. The receiver
consists of an interference suppression filter followed by o decision-

feedback equalizer and a PN correlator.
3.1 SNR Improvement Factor Resulting from Interference Suppression

In order to demonstrate the effectiveness of the interference sup-
pression algorithms, we shall compare the performance of the receiver
with and without the suppression filter. Since the channel characteristic
is not an issue in this tvpe of comparison, we assume that the channel is
ideal, i.e., nondispersive. Consequently, the received signal, sampled

at the chip rate, can be represented as

rikt = p(k) + itky + n(ky k=1,2, ... {3.1)
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where the binary scequence {(p(k)} represents the PN chips, {i(k)} repre-

sents the scequence of samples of the narrow band interference and
in(k)} represents the sequence of wideband noise suhplcs.

Let the impulse response of the interference suppression filter be
denoted by {h(k)}t, k = 0,1, ..., K. In the case of the one-step pre-

dictor of order m, we have h{0) = 1, h(k) = and K = m. For an

-a
mk

M-step predictor (M > 1), we have h(0) = 1, h(k) = 0 for 1 < k < M-,

hik + M - 1) = “Cok for k= 1,2, ..., mand K=m + M - 1. The input to

the filter is r(k) and its output is

K
vik) = )} h(#) r(k - &) k=1,2,
L=0
K
= ) h(2)|p(k - £) + i(k - &) + n(k - £)] (3.2)
=0

[t is apparent trom Eq. (3.2) that the time—dispcréivo characteristic of
the interference suppression filter results in inter-chip interference
which can be mitigated by use of some form of equalization [16]. In the
following computation, however, no equalizer is employed. Instcad, the
output of the interference suppression filter is fed directly to the PN
correlator.  Thus, the output of the PN correlator, which 1s the decision
variable for recovering the binary information, is expressed as

B

U=, vik) p(k) (3.3)
k=1

where [ represents the number of chips per information bit or the

-40-




processing gain.

By substituting bg. (3.2) into lig. (3.3), the decision variable

can be expressed in the form J
| K
Uus= " p(k){ Z h(2)fptk - 2) + 1(k - £) + n(k - )]} i
k=1 L=0
Ty Lo, K 1 L K
‘ = ) pT(ky+ ) oh(n) ]opk) ptk - 2+ T Fhis) pik)
k=1 =1 k=1 k=1 =o
R
litk - 2) + n(k - )] ]
é
¥ K L L K
=L+ ) he J pk)ypk-2)+ ) J hi) pk) i(k - 2)
2=1 k=1 k=1 2=0
L K
£ 71 h() pk) n(k - ) (3.4
k=1 2=0

The first term in the right-hand side of Ly. (3.4) represents the desired
signal component; the second term represents the scli-noise caused by
tte dispersive characteristic of the filter; the third term represents

the residual narrow band interference at the output of the PN correlator

and the last term represents the additive wideband noisc.
For the comparison that we wish to make, the SNR at the output of ¢

the PN correlator is a mathematically tractable perfomance index. To

determine the expression for the SNR we must compute the mean and variance




of U. We assume that the binary PN scequence is white, the interference
1{k) has zero mean and autocorrclation fGnction pi(k), and the additive

noise n(k) is white with variance vy Then, the mean of U is

Ecly = 1 (5.5)
- and the variance is
' AN
‘ Ko KK
var(U)y = L 7 ho(2) + L. ) ) h(?) h(m) Oi(R - m)
=1 L=0 m=0
A
-
S
* + -"] N h=(.) (3.6)
4 <=0

the first tem on the richt-hand <ide of the expression for the variance
represents the mean square value of the self-noise due to the time dis-
ver~ron introduced by the interterence suppression filter. The second
ters s the mean sguare valdoae of the residual narrow band interference.
che dast torm o the e sguare value of the wideband noise.

Ihe SN gt the oatput ot the correlatoer is deiined as the ratio of

the square of the mean to the variance.  Thus,

. J.
AT KoK LK
hot. o+ - heor him ui(f - m) o+ VoohT(R)
| CEOOMTO =0
(5.7)
It there s no sappression filter, hio) = 1 for ¢ = 0 and zero otherwise.

|
!
I
i




Theretore, the corresponding output SNR is

SNR_ = L (3.8)

no 2
{0y + 0
Ol(l) n
where oj(O) represents the totial power of the narrow band intertference.
The ratio of the SNR in Eq. (3.7) to the SNR in btg. (3.8) repre-

sents the improvement in pertformance due to the use of the interference

T suppression filter. This ratio, denoted by ¢, is

} . {0) + o

' o - » L0 “n S i
a . I K ’ K (l} U b 7
’ * LohT(ey+ ) h(e) htm) e (8 - m) + o hT(L) ;
Foow 2=] =0 m=0 170 .
3 .
. < :
b K (3.9)
: 4
k. "
b : We observe that n is independent of the processing gain L.

in plottin: the improvement factor, it is convenient to use a

ogarithmic scale.  Thus, we define

This factor will be plotted against the normalized SNR at the output of
the PN correlator when there is no suppression filter. In other words,

the abscissa is

3
j SNR
no .
; s b (3.11)
' a0y + T
] l(() n
As a conscequence, the graphs of T Vs, S\Wﬂ]o/l,;xro universal plots in
AN

ek cuslloantllii g can e e e e “ . - aditn




the sense that they apply to any PN spread spectrum system with arbitrary

Processing gain.,

3 Characteristics of the Interference Suppression Filter

In this section we shall discuss the characteristics of the inter-

ference suppression filter and we shall illustrate its performance as

meusured 1n terms ol the improvement factor ”dB'

One

First we consider two models for the narrow band interference.

type consists of a sum of equally spaced sinusoids covering 209 of the

signal band.

In particular, i(k) i1s expressed as

f k+2¢
m *m)

where the amplitudes €N“} wore selected to be identical and the phases

arc unifomly distributed on the interval (0,27). The autocorrelation

function of 1(k) is

The nunber ot tones used in (k) was cither Q = 100 or Q = 10. A

second type of niarrow band interference emploved was filtered white

The tilter characteristic was that of a Butterworth f{ilter

noisce.

having a 53dB bandwidth covering 200 of the signal bhand.

Fieure 3.1 illustriates the improvement tactor for the Q = 100

sinsotdal interference and the filtered white noise interference for a

six-pole Butterworth and a two-pole Butterworth filter. The interference

g . R AT - - T AT



Figure 3.1 Improvement Factor for Single-Band Interference
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suppression filter consists of four taps with exact values for the pre-
dictor coefticients determined from solving the lincar cquations given
by (2.17). We obscrve that the improvement factors for the sinusoidal
intertference and the interference from the six-pole Butterworth are
practically identical. On the other hand, the interference suppression
filter is not quite as effective in suppressing the interference from
the two-pole Butterworth primarily because of the diftficulty in estimating
and suppressing the rather significant amount of out-of-band power.
Ficure 3.2 illustrates the improvement factor for the same conditions as
those in Figure 3.1 except that the predictor coefficients were determined
from simulation data using the Levinson algorithm. The results of the
simulation agreed very well with the analvtical results shown in Figure
5.1 except at low values of interference where the improvement factor
approaches zero dB, theoretically, but the simulation data indicates a
small loss in performance. We have observed this phenomenon in other
simulation data, which suggests that {or small interference it is best
to arbitrarily sct the predictor coefficients to zero. Figure 3.3
illustrates the improvement factor for sinusoidal interference with Q =
10 and @ = 100 tones. The suppression filter consisted of either four
taps or fiftecen taps with the predictor coefficients estimated from
simulated data. There appears to be little difference in performance
hetween Q = 10 and Q = 100. Furthermore, there is very little gain in
performance when the number of taps is increased from tour to fifteen.
The major conclusion that we have reached from the above results 1s that
the model {or the interference is not critical. Consequently, in most

of our numerical results we used sinusoidal interference with 1) = 100




Figure 3.2 Improvement Factor for Single-Band Interference --
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Figure 3.3 Improvement Factor for Sinusoidal Interference
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tones.  To a relatively small Interterence suppression {ilter such
interference is indistinguishable from fittered white noisc.

Secondly, we have investigated the length of the interference sup-
pression tilter required to achieve good performance. In this computation
we maintained the 20% bandwidth occupancy for the interference, but we
distributed it equally in several non-overlapping frequency binds.

Frgure 3.0 tllustrates the improvement tfactor as a function of the number
of filter taps when the SNR per chip without {iltering is -20dB. From
the graphs we obscrve that a filter having about eight taps performs well
when the interference is split into two [requency bands; whereas a [ilter
having sixteen to eighteen taps is required to achieve good performance
when the interference is split into four frequency bands. Figure 3.5
illustrates the performance as a function of the SNR per chip for eight-
tap and sixteen-tap tilters when the interference occupies two bands and
four bands, respectively. The graphs show that the sixtceen-tap filter
with the four interference bands closely approaches the performance galn
of the cight-tap filter that suppresses the interference in two bands.

The freyuency response characteristics of the cight-tap and sixteen-
tap [ilters for an SNR per chip of -20dB are shown in Figures 3.0 and 3.7,
respectivelyv., [t appears that the sixteen-tap f{ilter introduces some
distortion in the frequency range between notches. On the other hand,
1t the number of taps is increased beyond sixteen, the {requency response
is improved.  tor example, Figure 3.8 illustrates the frequency responsc
characteristic of a 29-tup filter when the SNR per chip without filtering
15 - 20dB.

The computations reported above were repeated for cight-band and

-10-




Figure 3.4 Improvemecnt Factor as a Function of Filter Order for
Multi-Band Interference
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Figure 3.5 Improvement Factor for Eight-Tap and Sixteen-Tap
Filters
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sixteen-band interference. Figure 3.9 shows the improvement factor as
a function of the number of filter taps when the SN\R per chip is -20dB.
There appear to be two threshold regions in these graphs. When the
interference occupics eight bands, the first threshold occurs at lo
taps, where basically one complex-conjugate zero pair is assigned to
cach interference band. The second threshold occurs at 32 taps, in which
case therce are two complex-conjugate zero pairs assigned to each inter-
ference band. When the interference occupics sixteen bands, the first
threshold occurs at 32 taps and the seccond threshold occurs at about 64
taps. The improvement factor as a function of the SNR per chip without
filtering is shown in Figure 3.10 for a J0-tap predictor operating with
¢cight interference bands and an 80—tdp predictor operating with sixteen
interference bands. The performance gain is very similar to that ob-
tained when the interference is spread over fewer bands.

The conclusion that we have rcached from observation of the above
results is that the {ilter will suppress the multi-bhand interference
provided that it has cnough degrees of freedom, i.c., it is sufficiently
long, to assign at least one complex-conjugate pair of zeros to each band.
This behavior is substantiated further by the following frequency response
characteristics ol the suppression [ilter when there arce cight hands of
interference. Figures 3.11 through 3.14 illustrate the frequency response
of {ilters corresponding to predictors of order 8, 16, 32 and 18, re-
spectively. We observe that a filter with cight degrees of freedom is
basically an all-pass {ilter. [t does not have enough degrees of freedom
to place notches at the cight {requency bands. On the other hand, with

16 degrees of [reedom it does place the notches at the desired trequencies.




Figure 3.9 Improvement Factor as a Function of Filter Order for
8-Band and 16-Band Interference
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Figure 3.10
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For higher-order predictors, the frequency response is improved as
shown 1n Figures 3.13 and 3.14.

Another view of the characteristics of the suppression filter is
provided by the position of its zeros in the z-plane. For example,
Ficure 5015 illustrates one-half of the unit circle with the positions
of the zeros for the suppression tilter corresponding to 2, 4, 6, 8,

1o, I2-order predictors. In this case, the interference is concentrated
in two bands. As shown in the plot, a second-order predictor places 1ts
complex-conjugate pair of zeros far from the unit circle and roughly
Midway tin angled between the two interference bands. Thus, its per-
tormance is poor. towever, a fourth or higher-order predictor does have
seros within the interference regions.

The above results indicate that a prediction filter having a number
ot voefficients that is fewer than twice the number of interference bands
is useless, 1n the scense that it does nothing, i.e., it is an all-pass
filter. Apparently, this is a limitation of the mean squarc error
criterion used to design the prediction fiiter. If one knows that the
mmber of degrees of freedom is fewer thun twice the number of inter-
ference bands, an ad hoc scheme such as arbitrarily assigning a complex-
conjugate pair of zeros to cach band, up to the maximum number of bands
that can be suppressed with the given number of degrces of freedom,
appears to he better.

Since we are dealing with a digital comrunication problem, we have
also invostigutoﬁ the characteristics of the interference suppression
filter as u noise-whitening filter in a matched filter realization. That

is, we view the comhined narrow band interference plus wideband noisc as
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an cquivalent colored noise process.  Now, in detection ot a signal Sif)
in colored noise with power spectral density Pit), the output SNR at the
receiver is maximized when the recelver consists of a noise-whitening
Cilter, sav Ht), foltowed by a rilter marched to H{) S(1). Thus, a
matched [ilter with {requency response chavacteristic N*(1) S*(t) will
maximize the output SNR. [0 H(D) represents the interference suppression
{ilter with impulse respense h(t), then H¥( ) represents a {ilter with
impulse response hi-t).  Thus, the cascade ot these two filters is a
filter having an cven impulse response.  Since we have determined the
coctficients of ) hy means of linear prediction, the coefficients ol
HE(L) are simply the time reverse of those obtained for H(f). Therefore,
the cascade ot 1H D) and H*¥(1) results in a linear phase filter. Usce of
such a filter prior to the PN correlator improves performance.  This is
illastrated in Fieure 3.16 for a lour-tap and a fifteen-tap predictor.
ve observe that at -20dB per c¢hip SMR the four-tap predictor in cuscade
with its matched filter provides about 21dB ol improvement. The fifteen-
tap predictor with its matched {ilter provides about 23dB ol improve-
ment. In comparison, the lVour-tap predictor without its matched [ilter
provides about 13dB of improvement. Therefore, the inclusion of the
matched tilter has resulted in about 8dB gain at a -20dB SNR per chip.
Such a laree gain is highly significant and suggests that the use of the
matched filter is very desirvable.

Finally, we turn our attention to the performance characteristics

of the tilters designed from the data by means of the prediction algorithms

deseribed in section 1. For this discussion it sulfices to consider onlh

-01-

single band interterence.  The main point that we wish to make with regard
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to the pertormance of the algorithms is best illustrated with the results
E . shown 1n Figure 3.17. We used a block of fifty data samples to compute
the coetficients of o lourth-order predictor by means of the least
squares alporithi, the Bury aigeritisn and the Levinson algorithm. For
the latter, the data was used to generate the estimate of the autocor-

relation function.  The predictor coefficlents obtained {rom the data

L -
were used in the computation of the improvement tactor given by Lg. (3.9).
5 . The graphs indicate that all three algorithms perform equally well. In
Lf ) other words, the difference in performance among the three algorithms is
“+
L ‘
s insigniticant.  This behavior is {further substantiated by observing the
i
M corresponding Irequency response characteristics of the suppression
‘ . - P - / A
: tilter. For example, Figures 3,18, 3,19 :Mmd 3.20 itlustrate the fre-
«
quency response characteristics of the suppression [ilter designed from
- , firty samples of Jduta on the basis of the three algorithms. Here, we

also obscerve very minor differences in the frequency responsce character-
istics. On the other hand, when the order of the predictor is a large
traction of the data record length N, the Bury algorithm and the least
squares aleerithm are expected to vield better perfomance relative to
the Levinson sleorithn.

5.3 Perfomance of Interference Suppression Lilter Based on Nonparametric
Spectral Estimates
In section 2.1 we described o nethold for designing an interterence
suppres=ion fiilter based on conventional, nonparametric methods for

spectral estimation.  As an illustration of the cffectivencss of this

approach, we computed estimates of the power spectral density trom simu

Lated received data and used the resultint estimates to specity a filter

st

cad



Figure 3.17 Improvement Factor Obtained with Linear Prediction
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characteristic in accordance with g, (2.2). the Welch method [5] was
used to generate the estimates of the power spectral density. lor this
computuation, the FFT size selected was 64 points.  The resultunt inter-
ference suppression tilter consists of {ifteen taps. The number of
data points usced to generate the spectral estimate is 992,

Figure 3.21 illustrates the estimate of the power spectral density
for an SNR per chip of -20dB.  The corresponding {reguency response of
the fifteen-tap interference suppression {ilter is shown in FFigure 3.22.
The interference occupiced 20% of the signal band as shown in the graph of
the estimate, and the filter contains a notch in the desired {requency
band. lor comparison, the spectral estimate shown in Figure 3.23 is for
an SNR of -10dB per chip without {iltering. The notch in the filter is
now morc shallow as shown in Pigure 5.23. This behavior is similar to
that obtained by means of linear prediction.

. As a final computation, the coefficients h{(n) of the interference
suppression filter were substituted into Eq. (3.9) and the improvement
factor was cvaluated. Figure 3.25 illustrates the improvement factor

as a function of the SNR per chip without f{iltering. When comparced with
our previous results for single band interference using linear prediction,
we [ind that the perfomance improvement has similar characteristics.
Therefore, it appears that the nonparametric method for spectral esti-
mation coupled with the filter design formula in Lg. (2.2) provides a
viable means for suppressing narrow band interference in a wideband
signal.  The one disadvantage of this method is the relatively large

sample size required to generate the spectral estimate.




0650

o

vy’

.

>ocoadOLm
mwwo

610

1

210

-

oo;o

OIVARY;

L£31Tsuo( 1va3icodg 10M0g 10 onvWIISY ]

i3

TOCHLIMN G

INZEZ =

-
-

-

IS

£

S
(&)




-

>ocoaco,_.._
280 1€°0 mw._o 61°C 21C 8Cc-C cc o

| { { | |

103111 del-S1 3o asuodsay Aduanbaay 22°¢ o24and14

Ja}r[!

cC 6z

73-

;»(.uan.aB'

I St

0!
(&8P

GO

]
—
re;

i

=H

-

(p]
(]
<«
]
it
Ly
@y
=
e
e
-
L




TP

6s'C

¥y 0

YRV

i£°0

>ucondogm
m?b

§1°0
L

AITsUY Texinadg domag

i

jo

Le)

_*
1
|
w
{
w
|
|
|
|
-

GCC v

0C ¢

co v
G mu

RN

Y

o
Iy
-

wn

~
- o
A ]
e
o

(s

057




]
o 1
i !
_ 1
i
4
i
k)
-~ i
e t
o H
. 1
< :
+ 1
— I
- N :
23 ~ .
a Fo ;
o 1
= s
' i
wy
—
G -
o ~> {
) o
w
P
. o 1)
] <9
(&) o >
@] v o ;
. . =2 v
~
(@) [59) P o !
e - 0 bo
= : .
© c |
=t ) ‘
] 8‘ ~
L ~ L.
O ! = @
= ! .
<t -
< l <
o Lo} 1
=< 3
> i : 5
x ¢ - o5 o~
W e o -
(@) o e r_()
= g
L tLi
[0 _d
Lyl
L e g B
oo w o ]
'] [ - .
- J A
= P .
C= 9% R
o
o . p
St s S T - 1 T T T T e e B
CG G GG W CG Gl GG § l'~ [GIeRN IV [ ORR R GG C¢--
(4P RALRTES IR S VI N I

3

: l I

-75- ; ’ 9
1

il i K0 cade s o el b ik




M 15 TAP LIN PHASE FILTER
BASED ON WELCH METHOD

24.00

T

.00

Figure 3.25 Improvement Factor for 15-Tap Filter

2. 00

2
L

ROVEMENT
/

SNR _1MP
9.00

DPSRTRT WIFL ~ L SO
R

=0 SRR

- e e et e

o T T 1
5000 -15.00  -10. 0.90 5.00 10.00
SNR/CHIP W/U FIL1EPING (DB

-76-

f kY
1o
¢




5.4 Performance of Pyualized PN Spread Spectrum System

This section of the report is devoted to the perfomance of the
receiver in the presence of fading multipath signal components and narrow
band interierence.  \: indicated previously in Section 2.5, a major con-
cern with the use of interference suppression in the presence of multipath
is the sensitivity ot the predictor to the channel multipath structure.
[deally, one would like to have the prediction filter respond only to
the interference components. lHowever, this is possible only if (1) the
delay M, as illustrated in Figure 2.2, exceeds the duration of the channel
nultipath spread, i.c., use an M-step predictor, or (2) the delay M plus
the time span ot the prediction filter is less than or equal to the smal-
lest time interval between successive multipath components of the received
signal. The problem with condition (2} is that it places an unrcasonably
severe constraint on the length of the prediction filter. 1In practice,
the multipath characteristics of the channel are not controllable to the
extent necessary to satisty condition (2). Consequently, this condition
cannot be achieved realistically. On the other hand, imposition of con-
dition (1) results in relatively poor estimates of the narrow band inter-
ference when the multipath spread is large. This is duc to the fact that
the intertference i(t) and its delaved version i(t - M) are highly de-
correlated when M is large. Conscquently, the estimate of the inter-
ference at the output of the prediction {ilter is poor. This phenomenon
wis observed in simulation results on a two-path channel characteristic.
The conclusien is that imposition of condition (1) leads to such poor
performance to render it impractical.

Since the M-step predictor vields poor perfomance for large M duc

P U

OR VRETAR
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L 2 -_k.lﬁ.-

P N

to the Jdecorrelation in the interference sivnal, we mnvesticated the

use of a one-step predictor in the presence of multipath, e tollowinge
froquency response characteristics ol the interference suppression filter
resulted trom one-stepd prodiction of a sianal consisting of nareow and
interterence plus two multipath signal components of equal strength.
Single-bund interterence was emploved in this computation.  The eaact
autocorrelation tunction was uscd 1n the computation of the cocorficicnts
ot a towrth-order predictor according to ly. (2.8).

Fleures 3,20 through 3.350 illustrate the frequency responsce of the
suppression tilter for varyving amounts of narvow bhand interterence and a
multipath spread of two chips.  lhe observe that a strong narrow band
intertercnce completely masks the stenal multipath components nd, hence,
the filter, or one-step predictor, responds to the interference by placing
a notch at the desirved trequency band.  On the other hand, when the inter-
forence is weak, the predictor responds priwarily to the multipath compo-
nents and attempts to plenent an inverse channel filter.  The transition
point between ¢ strong interterence and a weak Interterence appears to he
in the range where the =ienal and interterence arve comparable in power,

A osimilav set of curves was obtained tor a multipath spread of four
chips as illustrated by the freguency responses an Pigures 5031 throush
3.35. Here, again, the suppression (ilrer adapts to the inverse channel
filter when the interterence is small, but s wnaftected b the multipath
when the interierence 1s tarce.  un the other hand, it we increasce the
mualtipath spread bevend four chips, the four-tap predictor will not scc
the multipath component.  This condition 15 illustrated by the tfrequency

respons¢ ocurve. in bigures 3050 throagh 3000 for o multipath spread
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corresponding to tive chips.  In this cuse, when the interference is

. small, the suppression Uilter approaches an all pass filter.
3
The results given above dlewonstrate that the one-step prodictor E
can be used oficctively i aomaltipath envivonment,  On the other hand,
- the M-step predictor, vhen Mous large, 15 not very effective except,
<. pevhaps, for a cure 0 interference.
-
‘ Anoimportant issuce in owr investication of narrow band interference ,
> 4
~ 3 N N e 3w . T -
* suppression inoa PN ospread spectrun system 1s the wnount of intersymbol
E nterterence introduced by the suppression filter and whether or not :
=~ there is a need for cqualjpzation.  In order to demonstrate the mageitude
i
) - . . N . - - -
b of the distortion cased by the intertorence suppression filter, we have
E plotted m bionre 3001 vhe variance of cach of the three tewms in the
denominator of the expression for the SAR civen by by, (3.7). In this
:
comput ation. the channel is ideal no muttiparh) and the interference is
centined to o =incte pand. The suppression tilter consists of the filter
Atz cascade with its natched filter.  the term "self-noise' refers
to the tine dispersive distortion cansed by the suppression {ilter. [t
1 evident that this is the dominant tera in the Jdenominator of the ex-
pression for the SNR in bg. (5,76, lenee, 1t is the term that limits
the performance ot the svstoem when the narrow band intericrence is strong. !

For eaample, at an S8R per chip of - 2600 the distortion due to the filter

1o more than [5IB above the white noisc and more than 20008 bove the

residual interterence,  When the interference is weak, the {ilter approiaches
an bl -pass characteristic and, honee, the distortion due to time Jdis-

porsiop ddecreases, Thercetore, the need for equalization of the time-

dispersne otfects of the suppression tilter is established by these
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mmerical resaltse o conrse, 1r there are resolvable moltinath svonal
components in the recenved signal the need for cqualization 1= atroady
established. o osock o Cchase, the cqualizor wili not only comnensate for
the channel distortion "ot =0 o e sional Jrstontion cansed b the
suppression Vilter,

avoorder to demonstrate the crfect tveness ot an cqaalizer in con-
censating for the distortion o the titter and the pmltipath component =
oo tadine channel, we have obtaned, g Monte Carlo sinnlation on o
divital computer, the probability of ¢rror for o receiver consisting of
e intevierence vuppression Ciites toltacod oo Gecision- feedhack
cauianbroer CBDEL ) and o TN correlator. A channed consisting ot two oqual -

Streacth ton the dveraeed paths o celated witho oo nabtipeth soread

corresponding to Poor Chipss Inoorder roomaxinize the oifficieney 4 the

srralation, we msed o Uaneyeshot tecnnd pie te simadate the oftect of

G lodoon cedines that e s the cong tox valoed s tatss ban-distribured tag

weisohts of the chiannel wore paondo vandently selected and Rept fixed for
PR

2000 PN chiips, The calizer was Drest Croconed foo 1000 chips and then

e rate data was coliocted on the other vn chips, Then, the chanmel

was changed By pscudo randomiy selocting ancother set of tap weichts and

the procednre was repeated. Thae owe obtaiped o prebabilbity of crvor
averieea over thoe cade sV T wes cay boved pastead o a0 Tincan equantites

prims ety becanse o the superiority of the D5 compensat ing for g
Chnpmel anhe eoressioa oo that vontains spoectral nailss In the

frarbaton, The antortercie o was contined tooo sinele hand, Hence o

tovy ~tap credictor was o aeod, dhe

Aido~eLen Yeed bach taps,
i

Povonsisted of e ht oed forwad taps
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Ihe results of the Monte Carlo simulations are shown in Figures

3,42 through 3.30. The {irst two figures illustrate the error probability
for a signal-to-interference ratio of -20dB and -10dB per chip prior to
filtering, respectively. In this case, the input to the PN correlator
consists of the chip estimates from the DEL prior to binary quantization.
Figure 5.44 illustrates the cffectiveless of the interference suppression
tilter. That is, the performance of the system with a signal-to-inter-
ference ratio of -20dB is almost as good as that for -10dB. A check of
the slope of these error rate curves indicates that they correspond to
the performance of a dual diversity system. In other words, the feed-
forward part ol the cqualizer acts as an equivalent (coherent) diversity
combiner. Figures 3.45 and 3.40 illustrate the perf{ommance of the re-
ceiver when the input to the PN correlator are the hard decisions from
the DFE.  Comparison of these graphs with those in Figures 3.42 and 35.45
leads us to conclude that chip estimates into the PN correlator result in
better perfomance at low error rates.

fhe crror rate results given uhove indicate that inter-chip inter-
ference caused by channel multipath and the suppression filter can be
compensated by the DEEL 1t is important to emphasize, however, that, for
the DEE to be cffective, it must be sufficiently long to span the time-
dispersion of the filter and the channel multipath. That is, an increasc

in the length of the interterence suppression filter must be accompanied

by an increase in the length of the DIE.
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