
RESEARCH REPORT1 FOR AIR FORCE OFF IC E OF SCIENTIFIC RESEARC CON--ETCIUI
DEC VA V R BASILI. ,J D GANNON, P G HAMLET F49620-Al C VIII

UNCLASSIFIED AFOSR-TR- 5i 01

FA-A E EE9MRLA NIVCLEE R EOFCMUER CEE F 9/

111128Z 11111 5
3 2

- Y IIItH j l t -H 1 .8

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE -RE CINSTI ORMI. CREPOETRN NUR W U-C
RFPORT NUMBER GOVT ACCESSION NO IPIENT'S CAI ALOG NUMBER

AFOSR.TR-81i" 0 3 15 ib 9;s9
4. TITLE (and Subtitle) 5 TYPE OF REPORT & PERiOD COVERED

RESEARCH REPORT FOR AIR FORCE OFFICE OF - "__
SCIENTIFIC RESEARCHo tr t CYSZ 6Y' -. 1 Jan 80 - 31 Dec
000/ 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER's)

Raymond T. Yeh, Victor R. Basili, John D.
Gannon, Richard G. Hamlet and Marvin V.
Zelkowitz F49620-80-C-O001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 WORK UNIT NUMBERS

Department of Computer Science
University of Maryland
College Park MD 20742 2304/A2 ____ 7 _

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM 31 DEC M
Boiling AFB DC 20332 13 NUMBER OF OASES

14. MONITORING AGENCY NAME & ADDRESS(if differenl from Controlling Office) 1S. SECURITY CLASS. (.1 ths ep-I:

qCC UNCLASSIFIED
IS. DECLASSIICAION - 6,N RA nl. .

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)Approved for public release; distribution unlimited.

17. DISTRIBUTION ST ATEMENT (of the ebaract entered In Block 20, if different fr o Report,

IS. SUPPLEMENTARY NOTESD l-DTC-
II1 E LE CT E --

19. KEY WORDS (Continue on reverse side if necessary and Ideptify by block number)F"

20. ABSTRACT fConftinue on reverse side If neces.sart and Identif) hv, ni-k .r' D
----his report summarizes research supported by contract F49620-80-C-OCO from

the Air Force Office of Scientific Research to the University of Mirylaixi
60 for the period I Jan 80 to 31 Dec 80. It includes research supported in
00-0 part for principal investigators Drs. Victor R. Basili, John D. Gannon,
LA.- Richard Hamlet, Raymond Yeh and Marvin V. 7Zelkowitz, and senior personnel 7

Drs. Mark Weiser and Pamela Zave.

FO-I
DD ,JAN,73 1473,

SECURITY CLASSIFICATION OF THIS PAGE R4 - ale ftrere,ft

. -)SEARCH JfPORT FOR/
AIR FORCE qFFICE OF §CIENTIFIC ffESEARCHI

Contract F49620-80-C-0001o

I , - -

Principal Investigators:. Victor R.Aasili,
John D. /Gannon I
Richard G.(Halet

[Raymond T. eh

Marvin V. Zelkowitz

and -/L/,
Senior Personnel: I. Miyamoto J

Mark Weiser
Pamela Zave

Accession For . .

NTIS GRA&I /- A_
DTIC TAR ...
Unannounced LI
Justificat ion_.... .

By-

-Dist ributi-or'-/

DT1C
Dist Sp >,, ELECTE

APR 2 1981

D

81 4 2 150

~~~e /AnZgiw6hp "d for pubiC I SS3 e / sdistribut ion unl iited. _



~I

'-4

Alh FORCE Ur:('lfTS VF SCI.NTIFIC RIh"EA1CH (AFSCY
NOTICE OF T M A MiTTMAL TO DDC
This techuical repuit hm been reviewed and is
approved ror pub]iz release lAW AFR 190-12 (7b).
Distribution lu unlimited.
A. D. BLOSE
;echnioal Information officer



This report summarizes research supported by contract F49620-80-C-0001

from the Air Force Office of Scientific Research to the University Of Maryland

for the period January 1, 1980 to December 31, 1980. It includes research

supported in part for principal investigators Drs. Victor R. Basili, John D.

Gannon, Richard Hamlet, Raymond Yeh and Marvin V. Zelkowitz, and senior

personnel Drs. Mark Weiser and Pamela Zave. The references listed at the

end of this report have been sent to AFOSR under separate cover.

I. Data Abstraction. Specification and Testing -

I.lrPLACES Project

Work on implementing data abstractions to the PL/I compiler running under

the PLACES Project continued. The language was fully implemented and included

full "black box" abstract data typing where users of a type were prohibited

from accessing the internal structure of a type. The implementation included

several forms of assertions to be checked during program execution for program

validation [Zelkowitz 80].

The implementation of these abstract types employed a novelcompiling

technique where only a core set of features was added to the compiler. A

built-in macro processor, as part of PLACES's first pass parser, was added

to encode much of the abstraction code as macros of the basic language. This

enabled the implementation to be completed relatively quickly and enabled

groat changes to be made "overnight" (Zelkowitz 81].

The PLACES Project was one of the first implementations of abstract data

types to undergo general use. Data generated during the fall of 1980 has been

collected and is now undergoing analysis. However, some features of the

implementation have already become apparent and should be relevant to other

such efforts (e.g., DOD Ada effort).

The overhead of using functions for all operations is quite high.

However, about 60% of all such functions are simply access to selectors within

the abstract type. It should be possible to automatically recognize several

of these functionals and have the compiler automatically generate them. This

would greatly lessen the amount of code needed to write, and should speed up

execution since the compiler would be able to generate inline subroutines for

these functions.

The PLACES Implementation of assertions gives a good mechanism for com-

paring the two major specification techniques. Witbin an abstraction, an



2

assertion behaves as if it were a Hoare-type of axiom, and validation of

predicate calculus proofs can be achieved. However, outside of the abstraction,

the assertion is essentially an algebraic specification. Hence, there is no

real distinction between both techniques. This similarity is being investigated.

I.2 DAISTS

Work begun under the previous AFOSR contract has continued on the compiler-

based specification and testing system for data types, DAISTS. In an empirical

study, subjects without prior experience with DAISTS were encouraged by the system

to develop effective sets of test cases for their implementations. The DAISTS

subjects produced implementations with fewer residual errors than subjects who

used test routines provided by the experimenters without using significantly

more runs. The DAISTS subjects also produced implementations that were just

as good as subjects using their own test drivers, but the DAISTS subjects

required fewer runs. The experiment also pointed out a hole in the coverage

measures employed by DAISTS. In order to obtain better coverage, we need to

add special-values testing (i.e., the constants of the implementation must

appear as test points) capabilities to the system. We have also started to

define the formal properties of DAISTS: the meaning of our equalityfunction

and the meaning of "successful" tests [Gannon 80].

1.3 Alzebraic Specification -- .

Although one of the advantages of the algebraic technique is that specifica-

tions are precise and formal, the fundamental definitions in this area are a

source of difficulty. The crucial notion of "equality" of the specified objects

is differently defined by different research workers, and this makes it diffi-

cult or impossible to compare their methods and ideas.

Mark Ardis (now at the University of Illinois) investigated the meaning

of algebraic specifications, and their relationship to implementations, in

[Ardis 80]. The interesting relation is the one of "correctness" which

intuitively means that code is consistent with the specification. Ardis's

lattices of congruences are a powerful theoretical tool for analyzing this

relationship. Furthermore, he devised a specification method (Congruence

Table Specifications) that is a special case of the axiom method, which is at

once easier to understand and construct, and more subject to mechanical analysis.

Ardis is continuing and extending this work started at Maryland in his new

position at Illinois.



3

1.4 Testing Theory'

ieliability' is a property of program tests that connects testing with

program correctness: when a program passes a reliable test, it is necessarily

/ correct. Two aspects of this idea require further investigation. One is the

connection with coverage. Intuitively, a test is made more reliable if it
"covers" a program in some structurally-defined sense. However, the technical

definitions do not capture this intuitive idea--both path and data coverage

measures do not lead to reliability. The second aspect of reliability being

investigated is that of "determining" programs rather than proving them correct.

Tests can be devised (based on coverage, in fact) that guarantee a program to

be unique in that no other can pass the test (including coverage criteria).

However, except for the tested behavior, the (necessarily unique) specifica-

tion of the program may be unknown. These ideas are investigated in (Hamlet 80].

Larry Morell is investigating fundamental new approaches to testing theory.

Two promising ideas are:

1) Probalistic testing. The difficulty with tests is that they are small

samples drawn from large spaces; thus passing a given test may not signifi-

cantly increase the probability of future success, because the portion of the

potential test space examined is negligible. A useful probabilistic theory

must attain a multiplication effect of many orders of magnitude. Although

such a theory may be very hard to discover, recent successes in number theory

(probabilistic determination of primes, for example) are suggestive.

2) Combined testing and proving. Past attempts to combine the effective-

ness of tests with the power of proofs have concentrated on testing a few

cases of the general invariant assertions for a program. Morell's idea is

that instead we seek to write assertions that are not conventional invariants,

but rather "enabling" assertions for the usefilness of tests. These asser-

tions would probably take the form of asserting the existence of program

limits and restrictions, and if the ashertion were proved, it would guarantee

that certain tests would then prove the program correct. The advantage would

be in shifting some of the burden from proof to test, since the "enabling"

assertions would be simple.

-,II. Program Correctness

Work continued in analyzing the theoretical aspects of functional correct-

ness and comparing it with other approaches [Dunlop 801. The highlights of



4

this report are as follows:

1) A function derivation/verification proof strategy based on prime

program decomposition is presented.

2) An implication of the functional theory for the derivation of loop

invariants is discussed.

3) Functional correctness for loops is described as a specialization of

the inductive assertion correctness technique.

4) Functional correctness is compared and contrasted with subgoal induc-

tion.

5) The problem of synthesizing a loop invariant and an intended loop

function for the initialized loop program form are shown to be

equivalent.

In addition, work was begun on a new correctness strategy for iterative

programs. The technique is based on a generalization of the WHILE loop

verification rule of functional correctness and does not rely on prime pro-

gram decomposition. A chief advantage to this verification strategy is that

it identifies circumstances in which efficient proofs are possible. These

proofs are accomplished by employing the program specification to ascertain

the necessary properties of contained loops. In other cases, the methodology

proposes a heuristic for synthesizing intended loop functions which seems to

work well on uniformly behaving loops. A report describing this work is

currently in preparation.

III. Complexity Metrics •

A family of structural complexity metrics has been developed which con-

tains many control and size metrics from the current literature (Basili 80].

These include statement count and cyclomatic complexity. The family allows

for the use of factors such as size, nesting level, and type of control

structures in the computation of complexity. This family has been used in

further investigations of the set of student compiler projects described in

[Basili 81B]. The effort has been mainly concerned with the relationships

between some metrics in the family and the number of program changes made

during the development of the projects.

It was found that the relationship is stronger for projects developed by

a single individual than for projects developed by teams. Furthermore, the

relationship was found to be more a straight line than an exponential curve



5

and the slopes of the lines for the different individuals varied widely. It

is believed that this provides the beginning of a measure of how well a given

programmer responds when faced with a given level of complexity. More results

and statistical analysis may be found in [Basili 81A].

The compiler projects have been subject to further experimentation by

having some of them modified by another group of students. No results of

this additional experimentation is yet available.

' IV. Requirements and Specification --

--The objective of this research was to develop an integrated, practical

methodology. We had already done work on more specialized areas. In 1980,

while we were continuing the work, we were also in the process of integrating

these different methodologies. Our work can be broken down into the following

major sub-areas:

IV.1 Conceptual Modeling,

This is a continuation of the work done previously using semantic network

as the descriptive notation for constructing the conceptual model. In order

to enhance the methodology, we propose to study the work breakdown structure

of the requirements analysis phase. A 3-leveled modeling formalism has been

proposed: abstract task modeling for organization investigation, conceptual

system modeling, and detailed requirements flow representation. Semantic net

notation was extended to cover the control aspects as well.

IV.2 Operation Requirements Specification --

Several new requirements examples increased our confidence in language's

ability to deal with the range of embedded systems requirements, especially

performance (timing and reliability) requirements. Therefore, the language

syntax was fully defined in terms of an LALR grammar. We have investigated

the relationship between PAISLEY verifications and data-oriented requirements

models, and discovered that they are basically compatible because the collective

states of processes in a PAISLEY specification are such a data-oriented model,

with restrictions entirely justifiable from the viewpoint of embedded systems.

Zave also began work on the problem of creating hierarchically-structured

requirements specifications in PAISLEY, with very abstract versions useful

at the earliest "conceptual" stages. IYeh 80B]

IV.3" Specification of the Concurrent Processes and Communication Protocols

A high-level specification language for concurrent and distributed system .'

is being developed. The language is "event-based" as contrast to other state-

machine-based specification techniques. LZave 801



6

V. Progr ming Environments

Iterative enhancement, a technique developed by Basili, is a method for

developing software by gradually enhancing a working program until it has met

certain specifications. This method offers opportunities for new kinds of

software development tools through high-quality user feedback, bootstrapping,

assuring consistency across iterations, and a "programmer's apprentice." One

tool in particular, program slicing, as developed by Weiser, is considered in

detail. Starting from a subset of a program's behavior, slicing reduces that

program to a minimal form which still produces that behavior. The reduced

program, called a "slice," is an independent program sufficient to faithfully

represent the original program within the domain of the specified subset of

behavior. Slicing-based development tools are proposed for eliminating super-

fluous code and for identifying code with certain behaviors [Weiser 81].

Ii



References

(Ardis 80] M. A. Ardis, Data abstraction transformations, Ph.D. disserta-
tion TR-925, Department of Computer Science, University of Maryland, 1980

(Basili 80] V. R. Basili and D. H. Hutchens, "A Study of A Family of
Structural Complexity Metrics," Proc. ACM-NBS Nineteenth Annual Technical
Symposium: Pathways to System Integrity, Gaithersburg, MD., June 1980,
pp. 13-15

(Basili 81A] V. R. Basili and D. H. Hutchens, "Analyzing A Syntactic Family
of Complexity Metrics," ACM/SIGSOFT Software Engineering Symposium on
Tool and Methodology Evaluation, Pingree Park, Colorado, June 9-11, 1981

[Basili 81B] V. R. Basili and R. W. Reiter, "A Controlled Experiment
Quantitatively Comparing Software Development Approaches," IEEE Trans-
actions on Software Engineering, 1981, to appear

(Dunlop 80] D. D. Dunlop and V. R. Basili, "A Comparative Analysis of
Functional Correctness," Technical Report TR-921, University of Maryland,
Computer Science, 1980

(Gannon 80B] J. D. Gannon, P. R. McMullin, R. G. Hamlet, Data Abstraction,
Implementation, Specification, and Testing (submitted for publication) 1980

[Hamlet 80] R. G. Hamlet, Reliability Theory of Testing (submitted for
publication) 1980

[Miyamoto 81] I. Miyamoto and R. T. Yeh, "A Software Requirements Analysis
and Definition Methodology for Business Data Processing," to appear NCC
Proceedings

[Weiser 81] M. Weiser, Towards an iterative enhancement software develop-
ment environment, 14th Hawaii International Conference on Systems Science, 1981

[Yeh 80A] R. T. Yeh, P. Zave, A. P. Conn, G. E. Cole, Jr., "Software Require-
ments: A Report on the State of the Art," TR-949, October 1980, Computer
Science Technical Report Series, University of Maryland

[Yeh 80B] R. T. Yeh, P. Zave, "Specifying Software Requirements," Pro-
ceedings IEEE, September 1980

[Zave 80] P. Zave and R. T. Yeh, "Executable Software Requirements for
Embedded Systems," to appear Proceedings 5th ICSE

[Zelkowitz 80] M. V. Zelkowitz and J. R. Lyle, Implementation of program
specifications, IEEE COMPSAC, Chicago, Ill., 1980

[Zelkowitz 81] M. V. Zelkowitz and J. R. Lyle, Development of program
enhancements (submitted) 1981




