AD~AQ97 231

UNCLASSIFIED

MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2

EVALUATING A DATA ABSTRACTION TESTING SYSTEM BASED ON FORMAL SP==ETC(U)

DEC 80 P K MCMULLIN+s J O GANNON F49620-80-C-0001
AFOSR-TR-81-0264

||||| |0 e

ol

-
""% L

12 flis e

ADAD097231

system for defining data types has been developed.
The system, DAISTS, includes formal algebraic
specifications and statement and expression test

v v e e ae

OSR-"R- 81-0261 -

IVELT =

Evaluating a Data Abstraction Testing System

Based on Formal Specifications

Paul R, McMullin i

t
John De. Gannon [:) I l< !
K

ELECTEF®
APRO 21981 .

Department of Computer Science
University of Maryland
College Park, Maryland Fr :

A

A compiler-based specification and testing !

coverage monitors. This paper descibes our initial p
attempt to evaluate the effectiveness of the system |
in helping users produce software containing fewer
errors. In an exploratory study, subjects without ;
prior experience with DAISTS were encouraged by the i
system_ to develop effective sets of test cases for 4
their implementations. Furthermore, an analysis ot
the errors _remaining in the implementations proviged
valuable hints about additionat useful testing |
metricse,.

1

Key Words and “Phrases: data type, experiment,
specification, testing. -

&
Qs

~.. -
Od.

814 2 139

AIR PORCE CFFICE OP SCIENTIPIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC

This tecrnical report has been reoviewed and 1is
approved for public release IAW AFR 190-12 (7b)e
Distribution is unlimited.

A, D. BLUSE

Techuicul Information Officer

I IV NN

e

———

S -
LT e e it i,

UNCLASSLELIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dam‘Fnh-nd)‘

REPORT DOCUMENTATION PAGE BEFORE CONPLETING Fom .
t BEDAGY N”unim/,«.-«--- - - 2. GOVY ACCESSION NO.| ¥ RECIHIENT'S CATALNS ¢+ MBER
R-81-028%) | AD-HO07Y 287

5 7
EVALUATING A DATA ABSTRACTION TESTING @ﬂ‘ L
SYSTEM BASED ON FORMAL SPECIFICATIONS. | Interin_fcrpl -

3 Esaovwzuu o_y. REFORT NUMeR

7. AUTHOR(Y) 8 CONTRACT OR GRANT NUMBER %)
il -—

>\Pzi(11 R.X;Mullin and John D/Gannon ’ @
' o JF49620-80-C- 0001 Z‘/
3. PERFORMING ORGANIZATION NAME AND ADDRESS 10" BROGRAM ELEMEN JECT TA.]

University of Maryland AREA & WORK UNIT NUMEE RS
Department of Computer Science
College Park, Md. 20742 61102F J23001A7"/

1. CONTROLLING OFFICE NAME AND ADDRESS 12. -SALE-~ -
Air Force Office of Scientific Research/NN\ (::2 Decomber ’802
Bolling AFB, Washington, DC 290332 {73 % RO —
(/2 31“7

T4, MONITORING AGENCY NAME & ADDRESS(I{ different from Contrelling Ofh o =BECURITY CLASS. 7ol this repnrc:

UNCLASSIFIED

| 154 DECLASSIFICATION DOWNARADING
SCHEDULF

16. DISTRIBUTION STATEMENT (of this Repor!)

Approve for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Riark 20, if {iffecent fron Kepart)

18. SUPPLEMENTARY NOTES

LY

19 KEY WORDS (Continue nn reverse tide if necescary and identify by Block number)

data type, experiment specification, testing.

R

20. ABSTRACT (Cantinue on reverse aide H necassary and 1deniily by block nmbees
A compiler-based specification and testing system for defining data tvpes has
been developed. The system, DAISIS, includes formal algebraic specifications
aixl statement and expression test coverage monitors. This papaer describes
our initial attempt to evaluate the effectiveness of the system errors. In an >
exploratory study, subjects without prior experience with DASIS were encouraged .
by the system to develop effective sets of test cases for their implementations. S—
provided valuable hints about additional useful testing metrics.

DD ,f2™, 1473 €0imion oF 1 nov &8 15 0BeaLF TE UNCLASSTFTED !

SFTLRITY CL SSSIFICATION OF TwiS PAGE U1 on Date Fotered

———— — - e e - ; o
it g e s o ,, " 4

e o Cm yé‘Q'bZ‘z .- . . . V"../

1« Introduction

Program development remains an error-prone processs
Specifications are often ambiguous or incomplete, and validation
of a program”s conformance to its specification by testing is
often performed by humans who agree too readily with the output
of the test program and who have little feel for how thoroughly
the specification or program has been tested, These problems are
magnified during the (ater stages of the software life cycle.
Since specifications, programs and test data are usually separate
entities, each can be altered without regard to the others,
Furthermore, test data collected because it exposes a particular
error is theoretically useless as soon as the error it exposes is

corrected.

Program testing systems have been developed that compare
user-supplied and program=-computed input-output pairs, and
measuyre several program coverage criteria (e.g.y Statements,
paths, expression values, etc,) [Hamlet 78]. These input-output
pairs can be difficult to write for complex functions (e.Qey the
result of adding a single ddentifier to a hash-coded symbol
table), and when an error is detected, the user-supplied pair is
often as suspect as the computed one. Testing systems whose
criteria for test gata selection involve only program structure
are too weak to reveal all design errors and many types of
construction errors [Goodenough and Gerhart 751,

we have combined recent work in data abstraction
specification and modularization with a program testing system in
an attempt to ease program development. OAISTS (Data Abstraction
Implementation, Specification, and Testing System)
(Gannon, et al. 80) combines a data abstraction language
containing SIMULA-like <classes [Dahl, et al. 68) and algebraic
specifications similar to those of [Guttag 77] with a Library of
test amonitoring routinese. Wwith wuser-suppliea test sets, the
axjoms of the specification are used as oriver orograms for the

-

mamrye

implementation, Structural testing criteria are applieg to both
axioms and code to evaluate the test data. We feel DAISTS has
several advantages over conventional program development systems:

1) The specification, program, and test data are
packaged as a single entity, encouraging theilp mutual
maintenance,

. 2) The specitication language is apolicative and the
implementation _language is imperative. We hope that this
orthogonality will reduce the Liklihood of the same error
appearing in both the specification and the implementation.,

1) The test data coverage of the specification and the
program are measured.

4) There is no need to describe _the concrete
representation produced by _ an operation; the user
(specifies and) writes an equality routine to udge the
results of tests for abstract objects. This simplifies the
testing process b{. removing the requirement for “hand
simulation” of complicated operations.

5) Having a tool that incorporates specifications into
the development process should provide the motivation and

experience necessary tor proarammers to wuse formal
sgecifications effectively.

The construction of every software tool should include an
evaluation of its effectivenesss The evaluation can be used to
convince users of a system”“s worth and can also proyide wuseful
information to the designers about its shortcomings. This paper
describes an exploratory study that compared program development
with DAISTS against more conventional programming technigues. We
felt that structure imoosed on the programming process by DAISTS
would aid programmers in constructing proorams containing tfewer
delivered errors, but were concerned about program development
costs and the ability of users to adaot to DAISTS.

! 'At':cess 165 i‘dr
!

, PTIC TAB i
+ U aniounced {J

Pdastifdeation |

TS GRAML gD

!
[-
i

Ve
Listribution/

: Avallability Co-c;és

| Avadl andfor

‘Digt l Speclal
|

2e DAISTS

L A

A progr;ﬁ submitted to DAISTS contains an implementation of
an abstract data type written in the high level Language SIMPL-D
(Gannon and Rosenberg 79], a <collection of algebraic axioms
describing the type, and a collection of test cases.

2+1¢ 1Implementation Language

SIMPL-D ¢lass declarations define new types which wmay
subsequently be used in object declarations. The ingepior of a
class is 2 series of variable declarations (the representation)
followed by a series of procedure declarations (the body).
Including the names of procedures in the class heaging makes the
procedures visible outside the classe. The appearance of the
reserved word asgssign in the operation list enables the assignment

operation (:=) to be applied to objects of this glass type.

When a unit of scope containing the declaration of a ¢lass
object is executed, a new copy of the class object is allocated
and initialized. Users generally view class objects as
indivisible entities; the components of class objects cannot be
accessed outside of its clagss declaration. Insige the ¢lasss
these objects may bte viewed as structures containing more
primitive objects. Statements in the body of a glLass can access
the unigye components of a clags object using a period notation
similar to that of PL/1 or Pascale.

A fragment of an implementation for bounded (Lists of
integers is shown beiow. Each Llist object is represented by a
boolean variable (Empty) indicating whether or not the List s
empty, an array of integers (Values) holding the values currently
in the Llisty and integer indices (Head and Tail) into the array
identifying the first and Last elements.,

il

glags List = NeuwList, AddFfirst,
L‘stLQngtho XXX}

Deletertrst, DeleteLast,
23sign

o

/* The representation *;

detine ListSize = “11°

yaigue -3;‘522af'°‘¥

ynigye Int array values(ListSize)

/* The operations =/

NeuLtst /* returns List with no elements »/

esul
Result.Empt i= true

return(Resul t)

List f¥n

List fgn DeleteFirst(List X) /* returns Tail(x) =/
LisS esu
Result := x
it Result.Empty Qr Result.Head = Result.Tail
then /» List contains zero or one element */
:g;ggg(NQuLlst)
elsé® increment Head modulo ListSize =/
if ggsult.uead <> ListSize -~ 1
en
“““Result.Head 5= Result.Head + 1
else /* circularize to zero origin =/
Result.Head := 0
end
retyrn{Result)
end
endelass

2.2« Specification Language
The specification Language for DAISTS is siailar to that
described in [Suttag et al. 73Y. 7The primitives of the Llanguage

include boolean and integer constants, free varfables, equality,

other boolean and integer operators, and functional composition.
Axioms equate two expressions; the first expression is generally
function composition and the second expression is a combination
of primitives and conditional expressions Like those of ALGOL 60.
Each

(ist of the names and types of the free

axiom presented to the DAISTS processor is named and has a

variables wused in the
axioms for the bounded Llist operation DeleteFirst

afight (ook Llike:

antom, The

st(Newl iSt) = Newlist;

AxListl,AxInt1)) =

ir

DeletefirstZ(List AxList1zINT AxInti):
ir
{

h)
Eg(AddFirst

i istlength(AxList1) = 11
then DeleteLast (AxList1)
else AxList?;

The axiom DeleteFirstl specifies that deleting the first
element in an empty list results in an empty (ist. Deletefirst?
specifies that the result of deleting the first element from a
List to which an element had been added at the head is the same
as either: 1) deleting the last element from the original list if
the original list was full (pbecause adding an element to the
front of a full Llist caused the last element to be discarded), or
2) the original List if the original Llist was not full (i.e., the

element just added was the one deleted).

2e30 Test Data

The testpoints section of a3 DAISTS program Llooks (ike a
procedure, complete with declarations and executable statements.
This section allows users to buitd objec?s to be referenced in
the subsequent ¢testsets section of the program. An object that
is expensive to construct can thus be used in testing several
axioms without repeating its construction,

The gestsets section of the program contains o list of axiom
names with values to be substituted for the free variables of the
axioms., Sample testpoints and testsets sections +for bounded
Lists of integers are shown below.

e

[
bee
©
o
Jute
[=]
jre
("]

-2 ”w
Njre
~”

(=]

P1,P2
AgdFirst (AdaFi
0NeuLvst /* Init

-
e P

4)
be empty «/

[N
"na

=TV O MYt o
-

< 11
= Agd%ast(PZ,I) I+ Fill P2 up! */

[~ 4
[[- V>V IYY
100 jjoose
»

rst2: (NewlList
(Conc(P1

- -

In the testpoints section, the two Llists P1 and P2 are
constructed; P1 is (3, 4) and P2 is (Oy 1Ty sees 10)e In the
testsets section, test data pairs are provided for the axiom
peletefirst2, Since the axiom DeleteFirst! has no free
variables, no input data can be supplied for it, and DAISTS will
generate one test to see if the implementation holas for it. The
four pairs of test data for Deletefirst? cause DAISTS to generate
tests for this axiom first with AxList1 instantiated as NewlList
ano AxInt1 as 3, then with AxList1 as P1 and AxIntl as S, etc.
fFor each test set, the implementation is used to evaluate the
left hand side of the axiom, and then again to evaluate the right
hand side of the axiom, and then the two values are compared
using the standard equality operatos for basic types of the
{anguage and a user~-supplier equality operation tor the abstract
types. An error message 1is generated if the two sides do not
acree, A restriction placed on the <implementations for DAISTS
(but not iJnherent in SIMPL-D) is that the abstract operations
have to be functions without side effects so that the two
evaluations in an axiom do not modify the test set e{ementse.

2ebe Run-time Monitors

DAISTS also generates c¢code to monitor statement and
expression execution at run time. ALl statements in the

implementation and all parts of the axioms must be executed to

have a successful test. Furthermore, all expressions in the
statements and axioms must take on more than one value;
user-supplied equality operations are used by the system to
determine if objects with wuser-defined types change values.
Unexecuted statements or axiom fragments, and constant expression
values indicate that either simpler programs or statements can be
written or more test data needs to be added to justify the
program”s complexity.

[»

3. Methodology

3.1. overVieH

we hypothesized that testing with formal specifications

would reduce the number of delivered errors without increasing

the cost of program development. To test our hypotheses, we
conducted an experiment where an 1intermediate class in
programming languages was divided 1into two groups, given

identical English (anguage descriptions of the abstract type
“list-of-integers”, and assigned to oroduce implementations of
the type in (the same) high tevel language. 0One of the aroups
usec atgebraic specifications to test and debug their
implementations, and the other group used the more traditional
debugging method of test programs. The axiom group was sSupplied
with the axioms for the type; the control group was supplied with
a test driver that used the abstract operations to sort groups ot
integers and were allowed to produce other test drivers at their
discretion. Both groups had to develop their own test data. At
the end of the experiment, we examined the projects that were
turned in to discover resigual errorse.

There are several design decisions that \leo wus to this
particular experiment. In evaluating DAISTS there are really two
issues to be resolved: the ease with which users could write
axioms and the ability of users to develop programs from the
axiomse. Given the relative inexperience of our subjects
(primarily soohmores and juniors), we concentrated on program
development rather than specification development hoping to
justify a later, more complex experiment with more sophisticated
subjects. Obviously, if the program development task proved toa
difficult, the system”s worth would be guestioned because writing
formal specifications before development would only make the
process more difficult, Another problem concerned the materijals

to be given to the subjectss Providing the axioms to one group

9

and requiring the control group *o deyvise their own testing
programs seemed to make the control group”s task more time
consuming, Thus, we decided to provide the control group with a
test routine (the sort program), which tested nine of the twelve
List operations, Since some subjects would undoubtedly test with
only the sort routine while others would write their own test
dgrivers (at least for the three untested functions), we would be
able to get more detailed information about the behavior of the

centrol groupe.

3.2 Choosing the groups

The class (of 79 students) met together for lecture tuwice a
week, and was divided into four smaller oroups that met once a
week with one of tuo teaching assistants. Twuo of the small
groups (one from each assistant) wyere combined to form the axiom
group (45 students), and the other tw0o groupos formed the <control
group (34 students). Five of the control group students, and
four of the axiom jyroup students did not turn in any project, and
were droppred from the study. Two more of the control yroup
students, and one of the axiom group students were dropped
because their projects did not appear to bDe independently
developed. Despite the fact that the students were warned
several times that every compilation was being recorded and that
they were required to work independently, three pairs of projects
are so (remarkatly) simitar that we could not objectively
consider them to be independent efforts (either they started from
decks that were eguivalent, and were jointly develocec: or one
deck started “development” after the other was completed, with
“development” consisting of a uniform substitution of names and
reoraerina of code segments). One o0f each pair of the
“non-independent” projects (the “dependent” one if determinable)
has been omitted.s This left 47 students in the axiom group, and
27 students in the control arouo.

Analysis of the grades that they received for ¢he semester
showed only one statistically significant difference between the
two groups - the control group had slightly higher examination
scores, (See Table 0 below.)

Table O Group Ditferences.

Axiom Group Control Group

Letter grade Mean =~ "2k B Rt 4= Y St

St dev « 90 e 94

Leyel < B(Q%
Project grade Mean 120.8 1146.1

St devy 17 .8 26.8

Leyel < 447
Exam Grade Mean 41.00 45481

St dev 12.12 0.90

Level < 7%

Letter grades on a scale 1=D, 2=C, etce.

Project grades (five projects not counting experiment)
on a 150 point scale,

Composite exam grades on a 1170 point scale.

Significance levels for a two-tailed test.

3.3, The Project

This was the first exposure to “encapsulated types” for
nearly all of the students in the classy, s0 we chose to assign a
rather small project <(approximatly 150 \Llines) to implement
“bounded Llist-of-integers.” ALl of the operations on Lists were
described in English in the project handout (see Appendix 1),
which also contained instructions for wusing the appropriate
processor., The subjects were told that they were to implement
all of the functions cdescribed in the handout and present results
demonstrating that the sort routine or axioms executed with no

obvious errorse.

"

A manual describing the implementation language and giving
other specitic information (using the axioms for the axiom group
members, writing driver programs for the control group) was also
distributed. The axioms and the test driver program that were
providea are in Appendices Il and IIl respectively.

Since the test data had to be submitted along with the
program at compilation for the axiom group (to allow DAISTS to
generate its test driver), we felt that the control group should
also be regquired to submit their test data with their compilation
requests to make the development environments more nearly

equivalent.

we also provioged separate lecture and lab meetings for the
two groups, and tried to excthange experimenters so that each
group met with each experimenter to nullify any bias our lectures
could be givinge The students were informed that they had been
divided into two groups, and were asked not to exchange
information about how the two groups were different, HOowever,
since the abstract type that they were implementing was the same
for poth aroups, some of the details of the implementation

lLanguage were discussed with both groups present.

3.4 Data Collection

A special processor was set up to limit access to DAISTS =
it did not allow members of the axiom group to write separate
test drivers, and it did not allow the members of the control
group to use the axioms. This processor also saved a copy of a
every deck submitteds DAISTS was hidden so that the students
were forced to go through the processor (so that all submissions
could be recorded), and the students were told that their ogecks
were being collecteds This approach led to a number of identical
decks being saved by the submission processor - a student would
run a ageck at his terminal and then run the aeck again to
generate a Listing on the printer, or programs failed to complete
evecution before their system default time limit was exhausted so

12

PNV S ‘. e

the gecks were resubmitted with larger time Limits,

3.5« 1ldentitying errors

After 3Ll of the students” projects were collected and
graded, the files of decks were examineds For each student, the
deck that corresponded to the listing' that was turned in was
separatea into the class definition and the debugging aata. We
then debuggea each implementation, both by "desk checking™ and by
using the DAISTS system, with a large variety of data points for
each axionm. Many of the errors that we found were detected by
turning on the subscript-checking feature ot the compiler -

apparently very few of the students used this feature.

As we were debugging their implementations, we found that
several stuaent”s implementations had “subjective restrictions”
that were not clearly specified in the project assignmente These
“sudbjective restrictions” could be interpreted as errors, but 3
case could be made for allowing them as correct restrictions.
One student stored only single~digit positive integers. Several
students could correctly store any integers except zero, which

they used as markers in their representations.

Wwhen these “subjective errors” were counted, the results
were not substantially different from the results reported below,
which come from only counting the “objective errors” - code that

fails no matter how favorable the input values selected.,

3.6, Measuring errors

we also taced a dilemma in chosing which errors to count,
and how to report them. we feel that the most conservative
objective measure that we can use is fynctions containing eprorse.
It a function in the submitted project had to be changed,
regardless of the number of changes that had to be made to
correct the function, 3§t was counted as a single “function

containing an error.” We Llike the resclution ot this measure,

13

,,5_7—1

because 1) it is more nearly representation-independent than any
error measure that is influenced by the structure of the code of
the implementation, and 2) the project description defined
functions, the axioms specified functions, and the sort routine
used the specified functions,

we compared our measure to that of [Gannon 77] who reportea
distingt egrrors and error occurrences where (for example) it the
same error in computing the Llength of a Llist was made in three
places, it would count as one distinct error, but three error
occurrences, Our data produced similar results for both of these

measures and for the measure “functions containing errors.”

Several of the students made errors in the selection of
their representationse One student used a circular (ist and had
an ambiguity in his representation so that a full (ist was not
distinguishable from an empty one. This error could only be
fixed by adding a word to his representation and repairing many
of the functicns, Another student”s project was corrected by
merely changing the size of an array in his representation (no
functions needed changing). These decks were charged with one
incorrect function to account for the change to the
representation (in addition to the incorrect functions that they
were charged).

In the results reported telow, the measure functions that

contained gbjective errors was used.

347« Measuring Cost of Development

It is inherently cifficult to measure orogrammer effort. It
is especially difficult to measure effort of students who do not
work regular schedules and who are not inclined to keep track of
efforts on a project near the ena of a semester. Since the only
enforcable metric which we could employ was the number of runs
submitted, and since the previously mentionesd auplicated decks
involved none of the debuaging effort which we were tryina to
measure, the most convenient and consistent measure that we can

14

use is number of distingt runsg.

Je8as Statistical technigues

we chose to use the Mann-whitney U-test (Siegel 561 ftor
doing the analysis of the data from our experiment, T he
Mann-Whitney U~-test is non-parametric, and our data s (at best)
an ordinal measure of performance. Parametric tests also require
that the samples be drawn *rom an uniform distribution, which we

cannot guarantee for our data.

15

bo Results

We report the data both for the subgroups that successfully
completed the project and tor the entire groups. 3y successfully
completing the project, we mean only that the output of the
program that was submittea for grading displayed no obvious
errors. mMany of the stuaents turned in projects that they knew
were not correct - students in the axiom aroup had error messages
complaining about inconsistent axioms, and students in the
control group turned in projects for which the sort routine would
not correctly sort the integers that they used to demonstrate
that their programs worked. In the axiom group, 32 out of 40 who
turnead in the project successfully completed it, and in the
control group 22 out ct 27 were successful.

we have subdivided the successful control group into two
jroups for turther comparison: one that wrote and ran small test
driver programs in addition to running the sort program (which is
more Like an integration test than a driver), and another group
that wused the sort routine exclusively for testing. Of the 22
successful control group members, 7 wrote their own driver
programe .

Since the sort program tested 9 of the 12 (ist operations,
we have reported both the nuaber of incorrect functions tested by
the sort routine and the totdal number of incorrect functions,
The subjects were required to implement all the functions ang
were encouraged to write extra functions to display List otjects
as a debugging aid.

In the tables below, we report the wmeans ang standard
deviations (following the means in parentheses) of the number of
incorrect tfunctions tested &y ©both the axfoms and the sort
routine, the total number of incorrect functions, and the number

of distinct runs.

16

b1 At Subjects

ALl subjects in both groups had similar numpers of incorrect
functions tested by the sort routine and distinct runs. dhile
the means favored the members of the axiom group (an average of
«18 fewer incorrect functions out of the 9 functions tested by
the sort routine and .71 fewer distinct runs), the differences
were not significant, As enxpected, the axionm group did
significantly better than the control group in eliminating errors
in all the functions,

Table I All Axiom (40) and Control (27) Subjects

Axiom 3roup Sort grou Level
Incoprect sort functions .60(1.1&) .73(1.34)
All incorrect fynctions 2(1.51) 1.78(2.20) <.J03%
Distinct runs 11. 77(5.65) 12.48(8.,53)

ho2¢ Successful Subjects

when we consicer only those students who successfully
coampleted the project, the axiom group did marginally better than
the control group even on the functions tested by the sort
routine, This result appears despite the fact that the sort
routine did do a tairly good job of exposing the errors in these
routines for those subjects choosing good sets of data to wuse
with it (in the sense that when data for the sort proaram
containea all of the boundary cases of the sort routine, all of
the ©voundary cases of the Llist functions were tested), Of
course, the results are even more striking when we consider all
functions that were assigned. The axiom group delivered more
correct functions than did the control group while taking fewer

runs.

1?7

Table Il Successful Axiom (32) and Control (¢2) Subjects

Axjom group Sort group Level

Incorrect sort functions «12(433) «23(.48) <20X
ALl incorrect functions «19(.39) 1.23(1,20) <.004%
DistinCt runs 10.97(5.60) 11.461(7.60)

4e3e Subjects Writing Their Own Drivers

We expected that those subjects in the control group who
wrote driver programs in addition to using the sort routine would
test as effectively as the axiom yroup, but would require more
runs to aebug their own drivers. The data in Taoble IIl supports
these hypotheses, except when we consider all the functions
assigned. Even those subjects writing their own driver programs
did not produce as many correct functions as the axjom jroup did.

Table III Successful Axiom (32) and)
Driver=uriting (?) Subjects

Axiom group Driver group Level

Incorrect sort functions +12(,13) «146C .35)

AlLL incorrect functions e19(,39) oS57(49) <«2X

pistinct runs 10.97(5,.50) 15.74(5.,82) <42
Examining the runs of the driver-writing subjects to

determine why their efforts did not match those of the axiom
group, we tind a distinct Lack of testing discipline, Five of
the 7 subjects had test drivers that could exercise all the
functions (one subject missed one function and the other subject
missed tyo)e Four of the subjects used effective tests, trying a
variety of objects in different gperations, while while two other
subjects with extensive test drivers just dia not seem to use
enough data to cover the necessary cases., Four of the subjects
used drivers before ysing ¢the sort routine seriously as an
integration test. (l.eey they may have used it to compile their
implementations initially, but did not try to debug using ¥t.)
Two other subjects used drivers only in response to specific

errors that occurred in debugging with the sort routine,

4obe Subjects Testing with the Sort Program Only

Those subjects testiny only with the sort program used an
average ot 1.3 tewer runs than did the members of the axionm
group, but the axiom group, but did not produce as many working
functions even when we consider only the functions tested by the
sort program (8.73 to 8.38). Part of the explanation tor this
result may be that the sort proqram gid not encourage the members
of the control qroup to test more thoroughly. The sort program”s
effectiveness as 2 testing vehicle was iapaired by poor
selections of test data that did not include the boundary cases
of the sort”s domain (eeges empty lists, Lists with Suplicate
members, etc,).

Table IV Successful Axiom (32) and
Sort=Only (15) Subjects

Axiom group Sort group Level
Incorrect sort functions .1’(«33) o27(44) <142%
All incorrect functions 3 39) 1.53(1.31) <.2022
Distinct runs 7(5-60) 9.67C(7.70) <8

19

b gy

Se Conctusions

We have shown that DAISTS can encourage even inexperienced
users to develop effective tests for their implementations.
Those subjects who used only the sort program to test their
implementations stopned testing toco soon because the data they
ted the sort program did not expose errors in their List
implementations. The axiom agroup needed more runs to satisfy
DAISTS, out correctly developed more of the functions used by the
sort proyram,

The discipline of testing with DAISTS can help users avoid
less systematic testing methocs. Even if we consider only the
subjects in our study who wrote their own test drivers, we
observe a3 variety of ouestionaoble testing practices - omitted
functions, failures to consider boundary cases, and generally
insufficient test data. The formal specification required by
DAISTS identifies the boundary cases and clearly defines their
treatment. Furthermore, DAISTS run-time monitoring routines

ensure that the code hanaling boundary cases is exercised.

Performing this type of study can also give us insights that
help us improve our system. We were frustrated oy the ambiguity
that the students read into our careful English descriptions (the
“subjective errors” that we identified - single agigit integers,
using zero for a marker, etce), but such imprecision is inherent
in informal specifications, Even including formal cpecifications
for the subtypes used in building the new type does not prevent
the omission of test data that exposes the confusione We feel
that DAISTS~like systems might expose these errors with
special-values testing strateaies. [Howden 78], e.ge.y adding test
sets that include the constant functions of the subtypes (0 tor
ings, null and btank strings, NewlList, EmptyStack, etc.) and the
constants of the subtypes that appear in the text of the
irplementation,

20

This experiment <id not evaluate the subject”s ability to
write specifications. while many programmers might have
difficulty producing axioms without training, we feel that this
fact does not render the tool useless. Our own experience in
teaching programmers to write algebraic axioms Lleads us to
conclude that they are not as cumbersome as many believe.
Another experiment s needed to test the validity of this
hypothesis.

The computer science community has reached a consensus on
the desirability of requirements analysis and formal
srecifications., Haying a tool which can incorporate
specifications into the development process will provide the
motivation and experience necessary to use them. Writing formatl
specifications need not pe considered overhead if they can reduce

the effort needed to write and debug test driver procrams.

21

e Wt b eyt

Scientific

Acknowlegments

This research was supported by the Air Force Office of
Research (Contract FL9620-90-C~-0001). Computer
suppart was provided by the University of Maryland Computer
Center. we would alsc (ike to thank Dr Richard Hamlet

and bDr Mark Ardis for their contributions to the gevelopment of

22

Y

—_——

7. gsibliography

Cbpahl, et al. 681
O.=J. Dahi, B Myhrhaug,, and Ke Nygaard: "The SIMULA 67
Common Base Langua?e Norwegian Computing Centre,
Forskningsveien 18, Os 3, 1568,

{Gannon & Rosenberg 79]
John ©D._ Gannon and Jon Rosenperg: "Implementvng Data
Apstraction Features in a Stack-based Languaas Softuware -
Practice and Experience, vol 9, pp S47-56 75

LGannon 771
John De. Gannon: "An Experimental Evalu i

ot Data Type
Conventions®"”, CACM, vol 22, nc 8, po 9;9.

on
595, August,

(Gannon, et al. 801
John D. Gannon, Paul Re. YcMullin, and Richard G. Hamlet:
"“pata Abstraction Implementation fpec1f1catlon. and
Testing", (submitted for publ1catlon5

{Goodenouagh & Gerhart 751
John B. Goodenough and Susan L. Gerhar “Towarda a Theory
of Test Data election® IEEE TSE vol SE-1, no 2, pp
156=-173, June, 1975,)

(Cuttag 77]
John V. Guttag: "Atstract Data Types and the Development of
23;; structures™, CACM, vol 20y no 6, op T96-404, June,

(Guttag et al. 781
John ve. Guttag, Eltli Horowitz, and _David R, Mysser:
*Abstract Data Types and Software validation®™, CACM, vol
21y no 12, pp 1048-1064, December, 1977,

(Hamlet 78]
Richard G. Hamlet: “Testing P gr with the Aid of a
ggggtler". 1EEE TSE, wvol -3, no by, pp 279289, July,

(Howden 7171 .
William E. Howden: "An Evaluation of the Effectiveness of
Symbolic Testvng Software - Practice and Experience, vol
3, pp 231-397, 8.

[Siegel 56)
S?dney Sfegel: No ne ara 5 zi §§as;§§vsa for the Behavigral
Sgiences, McGraw=H1 t ew

L2

.

Appencix 1 - first page of handout

R

. You are to write ¢the (tASS implementation for Llists of
integers. A List is an ordered caollection of elements which may
have elements added and deleted at its ends, but not in 1ts
middlie. The operations that you must “export" are: Addfirst,
AddLasty Conc, Deletefirst, DeleteLast, First, IsEmpty,
Listequal, tListlLength, NewlList, and Reverse. £Each operation 1is
described in detail belows

[e i

The Lists are to contain up to eleven (11) elements. If _an
element 1is added to the front of a “full” Llist (one containing
eleven elements already), the element at the back of the List is
to be discaraged. Elements to be added to the back of a full list
are discardeds., _Requests to gelete elements from empty Lists
result in empty lists, and requests for the ftirst element of an

empty Llist results in zero (0).

Remember that the operations that you implement are to be
functions,_ and that they may #***NQT#*+* change their parameters!?
1f a function needs to manipulate a parameter to operform the
operation, the parameter is to te CQPIED to a LOCAL variable
BEFORE the change is performed! You may use any representation
you choose to implement your listse. The detailed operation
descriptions are below:

List FUNC Addfirst(List L,INT I) - Returns the list with I as
its first element followed by all of the elements of L. 1If
L is "full”™ to starty, L s last element is ignorede.

List FUNC Addlast(List L,INT I) - Returns the list with all of
the elements of L followed by I. If L is full to start, 1

is i1gnorede.

List FUNC Conc{List L1,List L2) - Returns the list made up of
the elements of List L1 followed by the elements of L2, If
L1 and L2 together contain more than eleven (11) elements,
then the extras are to be ignored.

List FUNC Deletefirst(List L) - Returns the list containing
all tut the first element of Lo If L is empty, then it
returns an empty list.

turns the list containing all

List FUNC Deletelast(List L) - Return L
If L is empty, then it returns

but the lLast element of L.
an empty liste.

e
A

INT FUNC First(List L) - Returns the first element in L. I* L
is empty, then it returns zero (0J).

INT FUNC Isempty(List L) ~ Returns one (1) if L is empty, 2ero
(0) otherwise.

INT FUNC Listequat(List L1,List L2) = Returns one (1) if the
two tists are element for element -equivalent (e.g.
FirstdL1) = First(ild)yoeedy and zero (0) otherwise. Note
that two empty Llists are considered equal,

INT FUNC Listlength(List L) - Returns the count of elements in
Le An empty list has a count of zero (0) elements.

List FUNC Newlist = Returns a Llist initialized to be empty

List FUNC Reverse(List L1) - Returns a Llist containing the
elements of L1 in reverse order.

f
t
|
26
g—_; e O |

Apvengdix 1 - second page of assignment for control jroup

A lest routine has been written for you, or you may write

our own test routines, The provided routine reads in groups of

integers, sorts them, ang prints out the smallest 11 "of each

group. The test routine expects the groups ot integers to be

separateg ty zero. A sample test run wusina the proviged test
routine is shown below:

dadd simold=projecte.setup <done once per run>
A3 .SIMPLD,S <calls the compiler,

. . asks for Listing>
<list implementation> <your CLASS tor LiSts>
$TEST <causes the test routine

. to be provided>
<groups of integers, separated by zeros>
deof <end of the data>

The data for the test routine may have any number of integers or
groups o0f integers per card, with the integer 0 separating each
group. Sonaces are used to separate the integers when more than
one integer 1s on a carde.

A sample run for using your own test routine is shown below:

33.SIMPLD,S <call compiler as above,
assuming setup is done>

<lList imolementation>

<your test driver>

SDATA

<your data>

deof

tementation via
class), and you

he provided test

rrectly sorted.

You will be required to submit your Llist im
the deck submission processor (to be discussed 1
will also turn in a Llisting ot a2 run using

o}
n
t

routine, that shows several groups of integers co

25

C
S

LKt

R e

Appendix I - second page of assignment for axiom group

Axioms have been written which you must use to_ debug vyour

LASS. You may add axioms of your own at your discretion. A
ample run is shown below:

2add simpld*projects.setup <done once per run>

3% +SIMPLD,S <calls compiler, asks

<list implementation>

for lListina>
<your CLASS for Lists>

SAXIOMS <causes axioms to be provided>
<yoyr optional axioms>

TESTPOINTS

<your testpoints>

TESTSETS

<your testsets>

START .

deot <that®s all you need>

PYT2N e 4

e
L
t

You will be required to submit your Llist implementation via
deck submission processor (to be discussed in class), and you
1L also turn in a lvst:n? a run using the providea axioms,
h no axiom failures and all statements executed.

26

B N TS

Appendix II The Axioms supplied to the axiom group

~ >
* %

es for deciding which axioms need to be constructed.
e functions in the 0" group are:
IsEmpty, LlstEoual L1stLength. First
The functions in the “toI1 group are:
NewlLiSt, AddFirst
The functions in the "TQI2" group are:
AddLast, DeleteLast, Deletefirst, Conc, Reverse

om
Thfse axioms are constructeg following the Guttag
ru
Th

»/
lsEmptyl:
IsEmpty(NewlList) = 1;
Istmpty2(List AxListl,int AxInt1):
IsEmpty(AddFirst(AxList1,AxInt1)) = 0O;
ListEqualt:
ListEquat (NewlistyNewList) = 1;
ListEqual2(List AxListl,int AxIntl):
ListEqual(NewList,2ddFirst(AxList1,AxInt1)) = J;
ListEqual3(List AxListl,int AxInt1):
ListeEqual (AddFirst(AxLISt1,AxINnti),NeuwList) = J;
ListEquald(List AxListl,List AxList2,int AxIntl,int AxInt2):
ListEgual(AddFirst (AxList1,AxInt1)7RddFirst(AxCist2,AxInt2))
it AxIntl <> AxInt?
then 0
else .
it List$ength(AxL1st1) = 11
then /» Need to trim the end off'! »/
E1stEQual(DeleteLast(Athst1).DeleteLast(AxL1st2))
else /= Compare them just as they are! =/
Cistequal (AxpList1,AxList2);

ListiLengthl:

LlstLeroth(N wList) = 0;
ListLength2(List AxList1,int AxInt1):
Listiength(AddFirst(AxLiSt1,AxInt1)) =
if ListLength(AxList1) = 11
then 11 .
else 1 + ListLength(AxList1);
First1l:
First(NewlList) = 0;
First2(List AxList1,Eg; AxIint1):
First(AddFfirst{(AxList1,AxInt1)) = AxInt1;

/+* Now for the "T012" function definitions: =/
AddLast1(int AxIntl):

AddLast{NewList,AxINt1) = AddFirst(NewLisSt,AxInt1);
AddLast2(List AxListl,int AxInt?,int AxIntd):
AcdLast (AadFirst (AxCT5t1,AxIntTI AxInt2) =
AcddFirst(AddLast(AxListT ,AxInte),AxIntl);

DeletelLast1:
DeletelLast(NewList) = NewList;

DeleteLast2(List AxList1,int AxInt1):
DeleteLast (AddFirst(C St1,Axint1)) =

2?

Appendix II The Axioms supplied to the axiom group
if IsEmpty(AxList?)
then Newlist
sI;g _
JT ListLength(AxList1) = 41
then Add 3rst(oeleteLast(belgteLast(AxLlst1)),Axlnt1)
else AodFirst(DeleteLast(AxList1),AxInt1);
DeleteFirstt: .
' DeletefFirst(NewList) = NewlLisSt;
DeleteFirst2(List AxListl,int Axlnt1):
DeleteF1rst(AddF1rst(AxL1st1¥Ax1nt1)) =
if ListLength(AxList1) = 19
then DeleteLast(AxList1)
‘ else AxrList1;
Concl(List AxList1):
onc(NewList,AxList1) = AxList1;
Conc2(List AxListl,List AxList2,int AxInt1):
Conc(AdgFtrst(AxL\st!.Axlnt1f.IxListZ) =
AdaFirst(Conc(AxList) ,AxList2),AxInt1);
Reversel: . .
Reverse(NewlList) = NeulList;
Reverse2(List AxList1l,int AxInt1):
Reverse(Adderst(Angst1 AxInt1)) =
LtstLength(Aerst15 =N .
hen AddLast(Reverse(beleteLast(Ava§t1)),Axlnt1)
Usé Addpast(Reverse(AxList1),AxInt1);
28

Appendix 111 The sort routine given to the control group
RLoc Main /* The driver for the sort program to test lists. */
/+* Read in a series of numbers that _ends with zero, sort them, */
/* and then print out the smallest “ListSize” of them, =/
int Holder /+ A place to read numbers into */
. int Setnumber /* The numoer of the current set */
int Counter /+* A counter of the numper of numbers in Unsorted */
List unsortea /* Wwhere the unsorted numbers are read into =/
' List Sorted /* Where the sorted numbers are stored' »/
i /* "ain Loop for reading in sets of numbers +/
i
: Setnumber := 1 /+ Start to work on the first set =/
while .not. eoi do . . .
Sorted I="NewList /* No sorted numbers in tnis group */
! Unsorted := NewList /» Also no unsorted numbers in yet! o/
, ;ﬁgdtuolder) /= To initialize Holder! =2/
while Holder <> C .ang. . ,
«NOte. 201 do 7+ Keep reading and sorting */
Counter :="(J /* Set to count the unsorted Llist */
while Holder <> 0 .and. .
Counter < ListS7Ze .ande. o.note. eoi d
Unsorted := AadFirsti0nsortel,Holder
Counter := Counter + 1
dreag(uolder) /* Get the next number of the set =/
€ng
' /* Either unsorted is ftull, or this set is finishea' */
/* Must first join unsorted numbers with sortea ones #/
i dSorted := Merge(Sorted,Sort{Unsorted)) '1
en
/* nere we must have hit an enc of a set! #/
/* Print out the first “ListSize” worth of numbers »/
wei g(ggiev'Sorted numbers of set number”,Setnumber)
while .ndot. IsEmcty(Sorted) do .
write(First(Sorted)) /+~JGtput smallest number in sete/
d§orted := peletefirst(Sorted)
en
Setnumber := Setnumber + 1 /* NOw Start the next set */
na
!;§i§(§gjg.ggig,§gjg.'Out of sets of numbers to sort”)
List tunc Merge(List M1in,List "2in) /=merges two sorted listse/
List Result
List “1,M2 /* Locals so that we do not change the parameters! =/
M1 2= Mlin /* Copy parameter */ b
M2 3= M2in /* Copy secona parameter too' */
Result := NewlList
. !gékg .gg:. (IsEmpty(®1) .gr. IsEmpty(™2))
go /*"Done when one is empt;! */
if First(M]) <= First(™m2
then /» Take next value from M1 »/
Result := AddFirst(Result,First(m1))
M1 2= DeletefFirst(M1) /+ Don“t need first number ¢/ '
gl;g /* Take from m2! «/ !
esult := AddfFirst(Result,first(m2)) . ‘
dMZ :1= DeletefFirst(M2) /* Ciscard first after copying #/ ,
end)
ead !
/+0ne ot the two Lists §s empty = catenate them all together!'!e/
regurn(Conc(Reverse(Result) Conc(M1,M2))) /*and reorder Result's/
29

.~

Appendix I11 The sort routine given to the control group

rec List fync Sort(List Inlist) /eSorts into increasing ordere/

/* This procedure works by a merge sort = Split the List in */
/* two, sort each half, and then merge the two sorted halfs' e/

List HaltT,Halt2

Halfl 2= NewList /+ Initialize! »/
Half2 :2 Inlist /¢ Injtialize! #y
while ListLength(Halt?) < ListLength(Halt2) do
Halfl := Addflrsg(ﬂa}f1 First(Hal f2))
Halt2 := Deletefirst(Halt2)
en
;gfﬁ%g(ﬂerge(Sort(Nalf1),Sort(nalf?)))

30

