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Forward

The first two parts of this report wind up a few questions in

the mathematical formulation of vector fields governed by conser-

vation and rotationality laws, with explicit application to fluidyn-

amic fields, possibly with shock waves. The points treated have
a strong bearing on computational schemes and the stability of
numerical calculations and the results provide a-priori informa-
tion on the way to select the appropriate set of equations, the
right functional and the most promising approximation space for a
finite element descretizations. The last assertion is then tested
for the tricomi equation in a non-uniformly elliptic domain.

A mixed Tricomi problem is descretized by an alternative
collocation scheme which proves to be accurate and stable as dem-
onstrated on a few test-cases. The collocation finite difference
schemes have superior to the finite elements ones for this case,
so far. They are, however, more specialized and natural for linear
problems and simple geometries. The variationally based finite

elements, on the other hand, hold a better promise for complex

geometries, and for an accurate treatment of shccks,




I. A Note on how to select from too many equations the right ones

to solve a given problem.

Nima Geffen

Abstract
The field laws for a physical continuum are often described
by too many first order partial differential equations for the

number of required field quantities. The question described and

a simple way to resolve it is given for the so-called conserva-

tive and non-conservative representations of continuum mechanics .




General Equations
Continuum mechanics, electrodynamics and other physical
theories can be modelled by various specialization of the follow-

ing equations:
(1) v, A=¢6
(2) vxu=W (n equations)

for:

l1,...,m independent variables

Ix
i
X
=
#

= 1,...,n dependent variables

e
m
[
o

1>

(xi,uj) = A(k) k= 1,...,m

and:
w(j)

G(xi,uj), E(xi,uj)
where the source function G is arbitrary, but the vorticity W

has to satisfy a compatibility condition:
(3) voW=0

The system (1) (2) includes (n+l) first-order partial
differential equations for the n unknown uy- The overdetermin-
acy is apparent only, due to the fact that the n rotationality
conditions are not independent (note eq. (3) ) because any (n-1)
statements imply the one left as will be shown explicitly in the

following.




Examples

1. Maxwell's equations for the electromagnetic field are [ 1]
q

Ll

1
] . = Z - -
el) V:.H =0 e3) VxE S He
1 Y
e2) V.E = Ump ev) UxH - ZE + =1

Equations el) - ed4) are not independent: for smooth fields
(twice differentiable) eq. 3. implies (V-If_i_)t = 0 and eq. el)
holds for all times if it holds for t = tgs thus it is an irnitiail
condition (at most).

The electric charge density and currents (p and j respect-

ively) cannot be prescribed arbitrarily, since eq. €2 and ew)

imply a constraint on their source terms p and i:

e5) CIN % V-j = 0 (continuity of charge)

‘!
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I1. Steady-state Aerodynamics
for which:
X (xl,xz,xs) = (x,y,2z) - space coordinates
u = (ul,u2,u3) = (u,v,w) - velocity components
A= pu
- 2 .
and p = p(u™) density
=0, W=
where: W = 0 for irrotational flow, but changes across c.:ved
shocks. Spelled out in Cartesian coordinates we get:
2 2 2 2 2 .2 v - Cowew =
e6) (a“-u )uX + (a"-v )vy + (a“-w )wz - 2uwwx - 2uv~y Zuww = 0,
(¢*
. _ ()
(1) w,-u, =W
.. _ (2)
(ii) wy -~ v, s W
‘e _ w(3)
(iii) u, - vy = W
i.e. 4 equations for the 3 unknown functions (u,v,w)
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Methods of Solution and Descretization

The system equations (1), (2) even when simplified for
specific physical field, is multidimensional and coupled, which
renders it complicated to analyse and inconvenient to solve.
Auxiliary functions (e.g. scalar and vector potentials)
have been taylored to simplify and clarify the mathematical
picture and render it elegant, intelligible and solvable.

For irrotational fields u, i.e. W = 0 eq. (1) reduce tc
one second order equation for the scalar potential ¢, defined by:
u = V¢, so that eq. (2) is satisfied identically.

Fcr Maxwells equations the standard analysis is done via
the scalar and vector potentials: ¢ and A respectively, (e.g. (21,

where:

o
>

1t

]

i
Ol
=
et

1

<1
-
T
1]
<
x
| >

Written in terms of (¢,A) Maxwell's system reduce to 4 eguaticns
for +he 4 compcnents.
The resulting equations are higher order, and admit a wider

family of solutions, all equivalent under gauge transformations:
1
L - =
¢ ¢ S ft(x,t)

A" = A+ Vf




or in 4% dimensiconal notation:

f (A,=4)" = (A,=¢) + [Vf,- 2 £.]
The potential formulation for the electromagnetic field is
endowed with a beautiful structure, lucid transformation prop-
erties and striking accessible information content (e.g. de-
coupling into ZEQ order wave equations for each of the components)
unfolding the wealth of electromagnetic waves ref., [1].

Another suggestion, to equalise the number of equations and

unknowns is to add a new dependent variable:

and using the relation:

UxVxu = V(Veu) =~ Vzg

replace eq. (2) by its rotor:
2

(4) v%u = vv - VXW,

which, with eq. (1) gives (n+l) equations for the (n+l) unknowns

(u,v).

The formulation above has been suggested by M. Mock for compu-
tational purpcses, with a staggered mesh for (u,v) (to avoid decoup-
iing of the descretized equations for u and v) to solve boundary

value problems.




Direct field formulation
The auxiliary function is (e.g. potentials) formulations
invariably raise the order of the equations to be solved; the
first-order system becomes second-order. This requires a higher
degree of smoothness for the solution function and may be a
A draw~back for numerical analysis and calculations. Thus, although
| many large computer simulations are based on 'potential' formu-
lations (e.g. ref [2]) a direct solution of the first order sys-
tem has been found beneficial [3]. Sometimes essential [u],
-especially for 'initial' rather than boundary value problemes.
The question is how to choose the 'right' (n-1) rotationality
conditions that will give with the continuity eq. (1), the 'right' 2
(nxn) system for a stable descretization for a marching schems

to 50lve the first order system, to obtain directly the n field

componients {(so~called primitive variables), A simple treatmen:
for irrotational, 3-dimensional fields (worked out for the prob-
lem in [41) is given in [s5]. It is extended here for the gener:!

case (eq. (1), (2)), where the field may have sources and be

votational (e.g. an electromagnetic field with moving charges,

filoew behind a curved shock, motion of reacting gases.)
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Choice of Equations for 3-Dimensions
Spelled-out for 3 dependent variables and 3 independent

ones (e.g. Cartesian space coordinates) we get:

X (xl,xz,x3) = (X,¥,2) 4
i u = (up,uy,ug) = (u,v,w) (x,y,2)
A = (A(l),A(Q),A(B)) (U,V,W; X,¥,2)

and the system of equations is:

1y all) 4 a2) A3 | g ]
X y z ;

N & b

w(2) i

~
S
(o
1
£
[

(3)

i.e. 4 equations for the three unkonwon functions (u,v,w), a
redundant system for a well defined field.

In addition, a compatibility on W requires:

(3) w(l) + w(2) + w(3) =0
X y z

f.t
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via which 2 components of W determines the dependence of the
third on its corresponding coordinate, e.g. when w(2), w(3) are

given, the following must hold for w(l):

(1) _ (2) (3)
Wx = -(Wy + Wz )
X 3
NS I J N N L A ey
*a
. (1)
e.g. 1) wy - v, - W
ii) u, - w, = 0
iii) Ve T uy = 0
() wl = o
X
or w(l)(x,y,z) = w(l)(y,z) + C
= w(l)(x = xo,y,z)
Thus w(l) cannot be a function of x and along x-lines re-

tains its value at one point: x = Xq The non-zero component
of the vorticity is constant along lines parallel to the

corresponding coordinate.

P~ N



Irrotational Fields

In this case W = 0, eq. (3) is satisfied automatically and

equations (2) become:

i) W -V =0
y z

11) u_ -~ w_ =20
z X

iii) v. = u_ = 0
X y

for (u,v,w) (x,y,z) unique and sufficiently smooth, (e.g.
twice differentiable in each of the independent variables) we

get:

ii) —> 0 = uzy - wXy = (uy)z - (wy)x = (Vx)z - (wy)x z (vz-w )X

/% (ii) (u,w) € c? (i) ve 2

v, - wy = cly,z)

For u irrotational at any x = Xq

(vz-wy)(xo,y,z) = 0 =» Cly,z) =0 a(y,z)

and i), ii) == (iii) which can be considered and "initial condition"
at most, (e.g. Xy > =%, and a uniform field there). In exactly

the same manner:

i e ey e -



u_-w_ = F(x,z)

and irrotationality at any y Yo plane implies F = 0 and eq. (ii)
and:

i i) ii) —» [vx-uy]Z =0

and irrotationality at any z = 24 implies iii).
Thus any of the 3 irrotationality conditions implies the
third, for unique smooth, irrotational fields everywhere. For
stable numerical algorithms however, one has to choose set that
carries the appropriate "boundary information'" along the march-
ing coordinate; i1f the integration is to be carried out aicny

the X direction, the izh component of the iirrotationality

equations has to be omitted [4]1, [51].




——— e

- 11 -

For the general irrotational Case:

(i) w - v =wd
y z
. _oL(2)
(ii) 4, = W, F W
e _ L3
(1i1) Ve T uy = W

G L ), ),

(3) < +wy t W, 0.
Differentiating and substituting we get:
2 i) w - v = W(l)
Ix yX X X
N (wx)y T Vzx
o owl2) _ - oWl
(uz)y wy Vax T %
(ii)

-~

R S LR €2 R &)
y X z X y

(iii)

(3)

W + F(x,y)

<
!

ot
1}

[(vx—uy) - ¥}3)3(XsY:ZO) = F(x,y,zo)

Thus i) ii) =-> iii) provided vx—uy is given at z = z,.

In the same manner each two of the equations determine the

third, for which initial conditions have to be given for uniqueness.
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Algebraic treatment

sk im e ke s e n s

Equations (1), (2) can be written in a matrix form (used

widely for numerical analysis and descretizations):

(5)
'A(l) AL (1] rA(z) A(2) A(2)l 'A(s) A(3) A(3)1 .
u \Y Ay u] u v W v u v W UI
0 0 0 v 0 0 1 v 0 -1 0 v
+ + |
0 0 -1 W 0 0 0 Wy 1 0 0 Wl
0 1 o ) -1 0 0 L O c 0
f )
3 aA(l)
¢ - 1 ax
izl °%y
NN ENED
w(2)
w(3)
| J
or in short:
(x) y) + (z) -

with the corresponding (4x3) matrices C and 4 forcing functicns F.
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The system (5) is again redundant, and one of the last j

equations has to be deleted to render the (4x3) coefficient
matrices C intc (3x3) matrices ¢. The choice is directed
by the marching "time like" direction, for which the E(i)
matrix has to be invertible, hence nonsingular, hence with
no row (or column) of zeros. This automatically rules out one
equation: when (u,v,w) are given at x = Xq (e.g. Xg —> ==
for steady flow about an obstacle), the first irrotationality
condition has tc omitted. A marching procedure along the x
axis requires the inversion of the non-redundant matrix B0

such that:

SRt el R A A N R I+
In the same manner, integration schemes along the y dand z
directions require the omission of (5i0 and (5iii), respective.y,

as a necessary <ondition (not always sufficient!) for a well

defined, stable scheme, (as is seen in [u41]).
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Final Remarks

The question and system treated are elementary and so gen-
eral, the analysis and answer so simple,to be judged trivial,
if not for the fact that the question does come up occasionally
(e.g. [4]), and the answer not always immediate. Essentially
the same problem has been treated recently (and has come to
our attention while writing this note), in a completely differ-
ent context for different reasons and aims in [6], It also seems
to be related to other recent approaches [ 7] and to variaticnal
formulation and analysis of the system at hand with related
physical applications [8].

Work on relaxing the smoothness requirement, re-formulation

and analysis for non-smooth fields (e.g. flows with shocks) is in

progress.
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II. ALTERNATIVE VARIATIONAL FORMULATIONS
FOR NONLINEAR VECTOR SYSTEMS

Nima Geffen

Abstract

Variational formulations feor vector fields described by a

system of partial differential equations of whatever type, possib-
ly nonlinear, and with initial-boundary conditions are given.
Smoothness properties of suitable approximation spaces are viewed
and the effect of coercive .natural boundary conditions dis-
cussed briefly. Examples are drawn from electromagnetic field

theory and fluidynamics. ’.




) |
|

Differential equations
Consider the following conservation and rotationality condi-

tions, for a vector field u(x):

(1) v-V =6

(2) 9xu =

|=t

(3)  u(x) = f(x) X € 3Q:

! where:
u = u is the vector of dependent variables i = 1,...,m
X = x. is the vector of independent variables j = 1,...,n
G = G(x) 1is a given function
W = wj(z) is the vorticity
v o=

Vj(ﬁ,g)

The vorticity W has to obey a compatibility condition:

()  9+W = 0
The system of equations (1), (2) is quite general, it can

be linear and nonlinear, elliptic, hyperbolic or mixed with smocth

or non smooth solutions. The independent variables x; may

designate space and time coordinates and different kinds of

initial and/or boundary conditions may be appropriate for differ-

ent problems. Higher order equations may be put into this form,

vy

and examples of applications include the description of electrc-

magnetic field s,*™e theory of elasticity, fluidynamics, and plasm.-

dynamics, including flows with shocks.




Variational Formulations
A variational formulation of the field u satisfying (1),
(2), (3) is a functional J(v) defined on @ whose stationary
value is obtained for v = u:
dJ(x):O <=y = u
For well posed problems, for which u(x) 1is unique

6J(v) = 0 o= v =1

Variational formulations are scalar, short, additive (the
functicnals for complex systems are direct sums of their
simpler parts), invariant under appropriate classes of tranc-
formations and are often convenient for theoretical analysis
and for numerical simulations, e.g. by the finite elements
method. Integrals can easily be descritized and approximated,
and the smoothness requirements on the functions are less strin-
gent than for the corresponding differential system. This last
point is most important from the numerical view point in additicn

to a better rationale for the treatment of shocks.

The case G = 0 is described in [1]. The functional J(v,x):

J = J L(y,x) + A(Vyxv-W) + J Axvedg is stationary:
9} N

m

Lk




GJ(X) =0 at v =1u

provided that: ¢ x v = 0.

V=V1L
- 4

resuiting in:

Vo= o-vxa

The variation is done on all v for which J is cefired
and v satisfying coercive boundary conditions on the bcuncary

8Q; = 3@-3a_ or for which Al v or vjido on 3Q.

For the non-sourceless (or sourceful) case; the following
variational statements hold:

Th. 1

The functional:

(5) J(v) = j[L—gox + A (Vxv-W].dx + J Axvedo

Y’ de

is stationary for v

u satisfying (1), (2), (3) providec that




(9) V =X\ + g

v is allowed to vary over all functions for which (5) is
defined and finite and which satisfy the coercive B.C. (3).
The proof is straight forward and follows the details in [1]

exactly.




-5 -
Coreollary
The functional:
(10) J(wv) = J(L—g-v + AtW)dx ¢+ I Axvedg (3)
Q aszm

is stationary for v = u satisfying (1), (3) when the variation
is taken over all fields satisfying eq. (2) and the initial/bound-

ary conditions (3): 1i.e.

8J(y) = 0 <= y=zu: vV =3G
vxV = W

V. = gj(g) X€30,

The restricted variational statement (10) follows from the

statement in (5) by inspection.
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An alternative formulation is obtained by integrating the

nd

2 term by parts, using the vector identity:

Ve(Axv) = vePXA - A-VxV

substituting in (5):

AtUXV = V.VRA = V-(AxV)

Th. 2

The functional
r
(11)  J(y) = J (L-grv + veVx) - A-W)dx
is stationary for

vo:ou satisfying (1), (2).
In the variational formulation (11) is made over all v
in ¢ which render all terms integrable. The lagrange multi-
plier i is required to have integrable first derivatives, which
appear explicitly in J.
The surface term drops out, and the solution v = u satis-

fies the natural boundary conditions: Aju or yjdo or. 3%




Smcothness requirements

In the variational formulation (5) v is required to be
at least once differentiable (for the ond term to be defined)
which holds alsc for (10) (where eq. (2) has to be satisfied).
The lagrange multiplier ) in this formulation can be just inte-~
grable, e.g. a step function. The variational statement (11),
on the other hand, doces not involve derivatives of v (hence
admit integrability - only there) but vrequires 1 to differ-
entiable at least once. Formulations (5), (10) include a sur-
face term and inveclve spaces satisfying appropriate boundary
conditions; in statement (11) the surface term has dropped out,
and the solutvion v = u making it stationary satisfies a natural
boundary condition. Both smocthness requirements and behavior zn ’
the boundary has bearings on approximation spaces used for numer-
ical calculations, and on the stability of numerical schemes.
Simple examples are described in the following part of this revort.

[2].
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Examples:
l. Steady electromagnetic field
Maxwells' equations for a steady state can be written ae {2]:
i) V-E = p ii) vxE = 0
iii) v-B =0 iv) 9xB = 1}
A variational statement for i) ii) is:
‘ .l
(5') J(E) = I(E2f2—g~g) + A(L)(VXE) + f L(E)xg-gg
O 30,
i
for E arbitrary, or:
)
(10') J(E) - [(E"/2 - g-E) for E irrotatiocnal.
Q
where: g is any sclution to
- - -1
vVeg = p or: g =9 o
The variational statement (11) for i) 1i) becomes:
1y - g2 E
(11") J(E) = [[E"/2-g+E) = E-(vxX)]
Y]

The ~orresponding variational formulations for the

equations i1i) iv) are:

magnetic

B |
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(smy g = (872 + AP xm1) ¢ [ 2 Pxpoa0
' a0,
(20™)  J(B) - fa?xz - APy s iL(B)xg-gg
;)Slm

for B satisfying eq, iv)

and
(11") J(B) = f[EZ/Z - g‘(VXA(B))]

9]

the functionals for the combined field are obtained by simply

adding the ones for the 'separated' system:

(frl_n2 ‘
(5"') J(B,E) = l[E 2B - gk * AEQ
Q
(E) (B) 1 N>
tATTCURE) - A TTuxB) | 4 j A"xE+dn

con2 LY n
10" I8, = | P geE AP

af

for irrotational E and B satisfying iv).
The statement (10") can be reduced to the one used for the scalur
and vector potentials for the irrotational electric and wolenoid-

al magnetic fields, (e.g. [3] pg. 366 eq. (11-65).

—kae




- 10 -

Finally (11)' and (11") combine to give:

(11"'):

> - g'E - E-vaf + Brvma




A

e mm———— ~

2. Steady fluidynamics

The differential equations are:
- - 2

vel(pq) = 0 e = p(q7)

Vx+eq = W

and the corresponding Lagrangian L and functionals are:

_ 3L ) _ oL
(%) Pu = 3= or: pu, = ==
= i
f 4
J(u) = jLL + A (Uxu - wi)] + ( Axu-dos "
§ X |
(18)  or:
f {
Jlu) = | L -2 - w+ J A %x u+do
Q 30 \
or: b
¥
(lI) J(E) = ! L - Aew + u<vuxi

for the appropriate function spaces, with the required smooth-
ness properties, and constraints in the region and/or on the
boundary.

The results (5) have been described and analyzed in [1lal, [1b]

where applications to specific flows are given; the formulaticn
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(1Y) of a slight modification used in electromagnetics and other
field theories but not generally useful for computations due to
the practical difficulty in actually constructing a wide enough
family of v fields that satisfy the rotationality condition (2)).
The formulaticn (11) is new and can be readily specialized to par-
ticular fields; it offers an intevesting alternative from the
theoretical point of view but holds rather doubtful promise compu-

tationally (stability problems?).




Concluding Remarks

A preliminary report on alternative variational formulaticons
is given for general vector fields governed by systems of
partial differential equations, possibly ncnlinear specifying
their sources (eq. (1), e.g. conservation of mass for G = Q)
and vorticity (eq. (2), e.g. w = 0 for irrotational fields).
This framework is pregnant with information and connections
with other variational approaches and with related mathemati-
cal and computational Questions. It also involves the questions
of redundancy symmetry and the appropriate way to describe
these fields for the continucus and non continuous cases,
which may (and most often will!) occur for nonlinear systens,
e.g. flows with shocks.

The last question as well as the elaboration on the otne:
points are in the works now, to be reported at a later date.

-

Simple computaticnal examples, wherc “~rnative formu-
lations and triai functions are used for the Laplace and iri-

comi problems are reported in the following chapter.




[1al]

(1ib]

f21

{31
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III. ON DIFFERENT MIXED FINITE
ELEMENT APPROXIMATIONS FOR SYMMETRIC

ELLIPTIC SYSTEMS

Sara Yaniv

Abstract

Different finite-dimensional spaces are tried for mixed
finite element approximations for a functional which has &
saddle peint at the solution of elliptic symmetric linear systern,
with a Lagrange multiplier. Calculations are carried out for 2
first order equations, (u,v)(x,y) and boundary conditions, e.g.
Laplace and Tricomi's problems. Brezzis' convergence condition
is found hard tc verify rigorously, even for descretizations that
seem to Wwork well. Preliminary analysis is tried and experinmei.c
conducted for bilinear variations on rectangles for all ccmpon-
ents and for bilinear (u,v) and piece-wise constant (i) triail

funcrtions.
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1. Introduction and variational fcrmulation

Consider the equation
(1a) At By = fix,y) (A,B)(x,y,¢x,¢y)

in a domain @& with given bcundary conditions:

(1b)  §lasw) = 0
Lye

Assuming ‘
N j
u = ¢ % j
i
Vv =
¢y 'y
and A =B
v u

then the operator F(x,y,u,v) = A+ By is a potential [1, p.-

35].
) {
The variational Tormulation for the problem is: find (i,vihr)

so that

{ f
}QJ[L(x,y,u,v) + x(uy~vx)]dxdy

(2) JdCu,v;ir)

- ZJ [F(x,y)udxdy
Q.

n

X
F(x,y) f flg,yl)de

A€ W, where

is stationary, for all functions (u,v) € VxV and
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svery (S,%) € VxV satisfying boundary conditicns:

Udx + vdy = 0.

iLvX,y,u,v) 1is the Lagrangian of the problem, i.e.

and x»(x,y) is a Lagrange multiplier which is the stream functiirn

of the problem [1, page 391].
The variation of J(u,vi;r) for fixed A

ing weak formulation:

gives the

f
() 8J(u,viA) = | [[Luéu + L,v + A(Guy—évx)]dxdy

.‘Qa

Adding the equation

i weak formulation:
r
| J qu, -v_)dxdy = 0 for VgeEW,
Ia y X

ve get a saddle-point problem:

r aUl 3V

) 1
[[Lu up L vy ot A(-sy - 5%

) ldxdy

v (ul,vl) €V xV

0




and

Ju IV _
(4b) jQJ q(§§ - 3x)dxdy = 0 VQEW.

The functions u,v and A which satisfy (la) and (1lb) are
the solution of (4a) and (4b).

For linear problems:

L u+l v=Au+Bvz=z]L u® + 2L u v+
u v

and for an elliptic equation it is positive definite fcrm.

Hence
- 2 pJ
VxV = {(u,v)/JQJ[Luu-u + 2Luv'uv + va‘v +
+ (uy-vx)z]dxdy < w , udx + vdy = 0}
N
2 2 2 2
IKu,v)anV = JQJ[LUUU + 2L ,uv + L, v o+ (uy—vx) ldxdy

and, since A depends on an arbitrary constant:
2 -
W = {q/J Iq dxdy < = , q(xo,yo) = 0}
Q

(xo,yo) € Q.
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This formulation gives a saddle-point problem [2], which is
determined as follows:

Given f € V', g € W', find u € V, y € W such that:

alu,v) + b(v,p) = f(v) VVvEV
(5)
b(u,¢) = g(¢) VoEW

Brezzi's theorem states the following conditions for
existence and uniqueness of the solution:

Suppose a and b are bounded and

(6a) inf sup  lalu,v)}] 32 v > 0
u€z v€z
iluﬂvzl v llv:]-

z = {ueV/b(u,¢) =0 VoEW}

(6b) sup lEinﬂll

2 kgl VyeEW, k > 0
VEV Hvﬂv W

then the solution of (5) is unique
and

att  +

v < COIENy, + gl )

W S
It is easy to verify that problem (“a), (4b) satisfies
(6a), (6b), (6c), hence has a unique solution which is the only

solution of (la), (1b).




2. Approximation
In order to approximate the solution of problem (4a), (ub)

using the saddle-pcint weak formulation or the saddle-point

variational principle, we use finite-dimensional spaces Vh c V,

wh c W satisfying:

(7a) inf sup laCu,v)| 2 13 0 , 1 independent of h
u€zZ VEZy

= il =
Tul v 1 v 1

(7b)  sup Jalu,v)|] >0 Vv 0 # u € 28
VEZh

Zh z {uEVh; b(u,¢) = 0 V¢€Wh}

(7¢)  sup v,y oy 1 iy

VeV, v iy
VVEW,

2 > 0, independent of h.
The approximated problem is:

a(uh,v) + b(v,wh) = f(wv) vvev
(8)
bCup»4) = g(¢) VeEW,

Under hypothesis (7a), (7b), (7¢c) problem (8) has a unique

solution [2] and:

- + - i - + -
N L 2 Y izgh Cru=xp tav=sy,

GEWh




3. Examples
We used the variational principle (2) to solve, approximately,

the Laplace equation and the Tricomi equation in an elliptic domain.

(i) The Dirichlet problem for the Laplace equation

¢ = f(x,y)
af

The variational functional is:

(9) J(u,vir) = J J[u2 + v2 + A(uy-vx)]dxdy

9]

for (u,v) € VxV , X € W

2

1}

VxV = {(u,v)/JI(u +v2+(uy—vx)2]dxdy < @, udx t+ vdy at

a9

W = {qu qud}(dy < B, q(xO’yo) = 0}
Q

for this problem conditions (6a), (6b), (6c) are fulfilled,
hence the problem has a unique solution.

Let f Dbe the rectangle:

0}.

)

Q= {(x,y)/ -1 £ xs1l, -1 sy
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We have divided @ into rectangles of size h and chesen dif-
ferent finite dimensional spaces for the trial functions

a) The first attempt was to use the bilinear trial func-
tions for (u,v) and A, for these spaces Brezzi's conditions are
not, necessarily satisfied; this is concluded from the instabilaity
of the numerical solution, in some of the cases tried,

b) We tried to take other finite dimensional spaces sc that
(7a), (7b), (7c) will be satisfied. Using the same finite-element
discretization of @ as in a), approximating u and v by bilin-
ear trial functions and piece-wise constant functions for
(intuitively, this may help to get rid of the 4 constants and
leave us with the only arbitrary constant of the problem which is
q(xo,yo) = Q).

For this approximation the solution converged to the analytic
solutions
u - et siny, v = e* COSYy, A = -2¢% cosy + 2/e-1 as shown in the

following table:
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u [ \% ] A |
: T [
. {
Lz—ebror
h = 0.25 0.0.415 0.053 0.184
Lz-error 0.0163 0.0194 0.097
h = 0.125
L.-error E %
h = 0.0625 |
numerical rate}l.35 1.45 0.92
of convergence

(The rates of convergence for all of the problems we solved
were the same).

In [3, page 75-77] the authors show that for the Stckes
zquation (for a mixed variational formulation) quadratic trial
functions for u and v and piece-wise constant function for A
fcr triangular elements are permitted, and then conditions (7a),
Cibr, (72) are satisfied.

) YWe tried to solve the variational principle: find (u,v3))

50 Tthat

¥
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JCu,vir) = I I[u2 + vl oo Ayu + Axv]dxdy +

Q

+
Jan A(£ dx + £ dy)
is stationary, for:

(u,v) € VxV , x € W
where
VxV = {(u,v)/j J<u2 + v2ydxdy < =}
Q

f

- 2 2 - -
W = {q/J I(qy + qx)dxdy < s q(xo,yo) = 0},

Q

as an equivalent problem for the Laplace equation.

For this formulation we used the same element discretiza-
tion, but took piece-wise constant trial functions for u and v

and bilinear trial functions for A. The numerical solutions was

unstable, we received 2 independent solutions for A and the

solution for u and v did not converge.

¥
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ii) The Dirichlet problem for the Tricomi equation in an ellip-

tic domain

Yyx = gy = 0

¢ = f(x,y)
aQ

Q@ = {(x,y)/ -1 ¢ x £1, -1 gy 0}

A

The variational functional is:

’

(10) JCu,viA) = f J (yu2 - v+ A(uy - vx)]dxdy

Q

for (u,v) € VxV. , A € W

VxV = {(u,v)/J J[yu2 - v (u - v )2]dxdy < w,
Q y X

udx + vdy = df}
afd

W= {q] J(qzdxdy < w q(xo,yo) = 0}
Q

conditions (6a), (6b), (6c) are satisfied, hence there exist a

unique solution.
We followed the numerical procedures a) and b) used for the

Laplace equation. The approximated solutions behave the same

[1, page 73].




—_
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For procedure a) the solution for A was unstable dependinpg
on 4 arbitrary additive constants while for u and v the
approximation was good.

For Procedure b) the approximated solution was stable and

converging for u, v and A as shown in the following table:

u \% A

L2-error
h = 0.25 0.0628 0.0962 0.333
Lz-error '
h = 0.125 0.0257 0.0382 0.175

1

!
L,-error i
h = 0.0625
numerical rate 1.3 1.3 0.93
of convergence

The analytic solution in this case 1is:

w 3nt+l
z 81 Y
u olnhx(y+§ (3n+1)3n(3n-2)(3n=-3)...4.3

3n
n(3n-2){3n-3)...5.3 )

v = coshx(1+] %
1

© 3n
- y
Aoz 251““*‘1*§ SO On- . 3)

The rate cf convergence is the same for ail the cases ¢ lves
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L, Remarks

Equation (la) is equivalent to the first order system:

Lu - Ay =0
(12 L,*+ A, =0
u - v, = ¢
y X
where ‘
Lu = 2u for the Laplace equatiocon
L = 2v
v
and
Lu = 2yu for the Tricomi equation
L =-2v
v

It is obvious that the solution for A has more derivatives
than u and wv.

The trial functions used in procedures a) and b) do rnct
satisfy this feature while those of ¢) satisfy it. But the only
procedure which gave a converging solution is b).

The only conditions which insure convergence of the approxi-
mated solutions are those of Brezzi (7a), (7b), (7c¢), (which are

quite difficult to show in the finite-dimensional problem).




Summary and Concluding Remarks
A summary of results o1

non~-uniformly elliptic pariy «te

gion is descreticed intce rectingles and

assumed for both field variacles (u,v
A appearing in the functicnal:

(12) J(u,vir) -

M s
[amn}
r
+
.
-

L
i
-

t> be made stationary at the solution

The values of A at one curney

mine its values at even pcoints -nly

the odd points consist ¢f a separatle

ceptable behavior cf the cverealil =0l

)

civen oo

R

other computational contexts). To coup.e

points the values of 1  at

had to be predetermined (e.g. by a Ta

the 4 pointa

tinite clenent

t

"y

"

vior's

(0,0) point and the relaticn to the values

rectangle). The procedure is not

it yields acceptable vesults. Cn

considerea

r

*

eypals oL al. Lt

PR N
Sdll

the nyperlclic

O SN S

Ty el Do

intermittency causing unstablility has been (baerves,

Following a series of
variation was retained tor (u,v) but
replaced by plece-wise constiants .

occurs and thne calculations are

lectures by

J.

rectangles.

Csborn (&1,
tent Hoade
v V.
b el
atable and I

coupletely
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1=
wn

The price is paid in a lower accuracy, but the scheme never-
theless considered feasible.

The functional:

J(u,vi2) = jJ (L + ury - vi_Jdxdy + f A(CE, dx + fy:;y)
3Q

i

obtained from (12) by integrating the 229 term by parts, 1

ff)
ot}
o5
84

also stationary at the solution to the Laplace system. The

3 A

descritization and the corresponding trieal spaces yield uns

ot
o
v
3

"

LR
- 4

scheme, This is somewhat unexpected, because the relative di

entiability required for (u,v) and A in (11) fits better the

analytic relation than the cne in b). The stability analvelis
for this case (via Brezzi's ccercivity condition for the approx.-
maticn spaces) 1v difficult, «nd we have not been able t. cCo.

it to a successful ccnclusion.
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IV. FINITD Liri:iinlCl APPROXIMATIONS FOR THE
SOLUTION CF 1H:- TRICOMI EQUATION IN A MIXED
ELL1FTIC-HYPEREOLIC REGION
by

David Levin

Abstract

Difference schemes for the sclution of the Tricori oo
are derived. in both the c¢lliptic and hyperbolic domairne i
schemes are constructed so to be exact for several pllvinul.. .
solutions of the Tricomi eyuaticn. The nethced presenied 1x
adaptable to non-lincr ocorionps and te non-standard reshoo.
A high accuracy 1s demenctrateds for ceveral Tricoml founda:ry

conditions.




1. Introduction

The Tricomi eguation

is elliptic for y < ( and hyperbclic for y > § with cher-

acteristics defined Lby:

—_
Tl
"
=
4

wiro>
A

Tricomi [6] showed that (1.1) has 2 unique solution in &

. + - . . .
domain D = D U D bounded by a simple arc T in the ellir- '.
tic domain with endpoints on the x-axis at x = A and x = E
and by the two characteristics T, and T, through *hese

endpoints (figure 1.1).

o

Figure 1.1




Problem (1.1) is known to D=2 w

let boundary conditions, l.e., 3
r

with either Cauchy conditicns - ¢

Goursat conditions - 4 given on T,

For solving the Tricomi probler ir

. + . c
in D with schemes In o , =.28..

formula in D~ and a four-pcint oy

difference equation ccrresponding
"parabolic line"” FO’ on a& mesh 4s

y

Figure _.7

5“

civen on ' ana cn

croblem (1.1) is well
and ¢y given on ?O, fo!
A~ and on either T,

~ A

matched b

= 3 along the

4

Xq}

Filipeov alsc proved that his scheme 1s regular and converging.

posed

Yy &

The change in the structure of the mesh across the parebolilc

line makes it difficult *to construct higher order schenes ot

thie kind in the usual manner.

—_—————
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Another strategy for solving the Tricomi problem is that
of Vincenti and Wagoner {7] who reduced the problem to a pure
elliptic problem. However, the boundary conditions on PO’
which are obtained by projecting the given conditions on Ty
are quite complicated and cause great numerical difficulties.
Several authors, [2], [5] have used expansions in terms of
certain particular solutions of (1.1), and this method proved
to be quite effective for cases of very smooth boundary condi-
tions.

The method presented in this work combines somehow the
motifs of the above three strategies; a local expansion in
terms of particular solutions of the Tricomi equation are uced
tc produce high order difference schemes for the Tricormi
problem. Using these schemes the problem is reduced to an
elliptic problem in D with certain boundary conditions on
y = 0.

The method used here for producing the difference
scheme has recently been found to be useful for sclving both
Cauchy and Goursat problems in p'. It is the versatility of
this method which enables us to obtain specially structured
difference schemes of high order for the desired matching
along the parabolic line.

In section 4 we describe some numerical experiments with

the suggested procedure, exhibiting a global O(h3) accuracy.
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2. The expansion method for producing difference schemes

Let z; = (xi,yi) i=1,...,N+ 1 be N+ 1 adja-
cent mesh points in a grid covering the domain D. We look
for a difference approximation for the Tricomi eguation
(1.1) based upon {zi}gri. The usual way of obtaining dif-
ference schemes is byléxpanding the approximation u(x,y)

in power series, around z for instance, then form a

N+1
linear combination of u(zl),3..,u(zN+1), using (1.1), to
get the desired degree of accuracy. This process can be
simplified by using an expansion in terms of the polynosicl
solutions of (1.1). These can be found by expressing

¢(x,y) as a double power series expansion around (0,0) and
comparing the expansions of Y9k with that of ¢yy . The

result is that all the polynomial solutions of the Trico:ni

equation can be written as

(7] L

Poys1 (%) 'Z cixM—Zly31
10 M=20,1,2,. (z.10)
(3] L

P2M+2(X,y) izo dixM-21y31+l

where ¢, = d0 = 1 and




)

. (M-23i)(M-2i-1)
i+l - I+ 31+ ) S4

i= 1,...,[%1. (2.2)

4 = M-28)(Me2i-1)
i+l T GBrFmFy Y4

LEMMA.
Let u(x,y) be an analytic solution of (1.1) in a neigh-

bourhood S of (xo,yo) then

2M+1 M
ulx,y) = ) aij(x,y) + of({max(h,k) ) v (x,y)} € S (2,3)
i=1

where h = [x-x,| and k = [y—yol. Also, for y, = 0 anc
X s h2/3
2M+1 M
ulx,y) = Z b.P.(x,y) + o(h™)
1733
]
(2.%)

ZMEQ
b.P.(x,y) + of
371 13

hM+2/3).

The proof is straightforward.
Using the above lemma it is clear that if we find a

scheme which is accurate for {Pj}?:l, il.e.

N
iglaipj(xi’yi) 2 Pj(xN+l’yN+l)’ iz 1,2,...,N, (2.5)

'

then this scheme has a truncation error of order [%] There=~
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fore we simply use (2.5) as the defining equations for our
schemes. This method of obtaining difference schemes is
convenient to use for any given distribution of mesh points,
provided that the system (2.5) has a solution. The method has
recently been used successfully for solving the Cauchy and
Goursat problems in p* [3], However, the schemes presented
in [3] are not in a suitable form to be used for solving the
mixed problem in D since they cannot be matched nicely with
schemes in the elliptic domain D . In order to obtain suitabuic
schemes we consider the "discrete Cauchy problem" in D+, i.e.

solving (1.1) with the two-level conditions

¢(x,0) = fl(x)
A < x ¢ B (2.8)

$(x,~-6) = £,(x)

This problem is not well pcsed in p" in the usual sense.
However, i1if we recall that ¢ should be a soluticn of the
mixed problem in D, ¢ should be in Cl in a neighbourhcod cf
y = 0 for any A < x < B, Therefore, ¢y(x,0+) z @y(x,o-) and
as & » 0 the problem (2.6) turns to be a Cauchy problem in p'.
For a fixed &6 we should also give the additicnal bocundcary
conditions:

If¢~(A,y)

[ 1}

gl(y)
-5 <y <0 ' (2.7)

h(B,y)

g?(y)
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to make the problem well posed in A s x « B -6 + y « 0, and
hence also in pt.

For a small & it is expected that the domain of influ-
ence of the boundary conditions (2.6) is similar to that of
the Cauchy conditions. Therefore, we consider a mesh defined
by characteristic lines in pt as in [1]) and [2]. lience, we
look for a scheme of the form

M
p

[ai¢(xi,ym) + am+i¢(xi,ym_l)] = ¢(x0,ym+1) (2.8)

i=1
m= 0,l,...,2i-1, where
3
- 3,,3
y_] = =¢ 4§ & (Th) N
Yo * 0,
32
_ 3 2.3 } -
Vot - (?h ym) m= Uslye.sy2N-1
and
- i-1 1 -
Xl = XO + h(m ?) 1=1,2, s M

where h = %ié as in figure 2.1,




Lzure _.>

.
it . . - .
3 ~ - 9T S e S R
frio b N iz (Z.¢) are determined 1 (o.1)
The coefficients {&i‘. .

with N = 2M, i.e. by tre svsten ¢f 2M linear equ.ii-.

M
P ) Voo (e . 1 = . 3 ¢~
'Z Lo Patx,y ) Oy is Gty ()] Poligay o0 (2. )
1=] ~ ' -
) :
ST il g )

Given the "discrete iLauchsy conditione” (2.€) anc "o
scheme (2.8) for m = 1 (uccunins *iot (2.9) hag a sciution)

cne can get o«n Jpproximeti-n o tne level vV = Y. o and




- q -

to move upward to Voy 2t the top of D+. Before proceeding

to the mixed problem we presant scme numerical results with
the above scheme for the "discrete Cauchy prcblem'"; we
examined the case M = 3, i.e, the scheme is built to be exact

for P ,PG. However, it so turns out that the system (2.9)

100
is singular. Therefore, we could make the scheme accurate

for P7 and P8 as well, and thus, by (2.3) and (Z.4) the re-

sulting scheme is of order o(h3+2/°) near y = 0 and of c¢rder

3 5 3+42/3
G(ym+l—ym) ) for m 3 1. A global 0(h ) accuracy ras
been detected in a series of numerical experiments. An exampic

of this is shown in the following table where an aralytic
solution of the Tricomi eguation,

o 3n+l

p{x,y) = cosh x(y + nzl (3n+1)3n-(3n-2){(3n-3)...4+3

) (2.2

1s taken as a test functicn. The table shows the maximum aht-

solute value of the error obtained by using the suggested

]
scheme with h = %, %, %, T%’ where the "discrete Cauchy condi-
IS
tions (2.6) are given with § = %.
Table 2.1
L 1 L 1
h 2 L 8 16

!maxlerror! ‘.67E-u
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3. The scheme for the mixed probliem

We now consider the Tricomi preblem in the mixed domain
+

D =D uD  with boundary conditions en T  and on F].
Assuming that T is rectangular we can use a rectangular
mesh in D~ and 5 or 9 pcint schemes around any internal mesh
point in D . The scheme (2.8) for m = 0 can be regarded as
difference equation for the mesh points cn y = 0. However,
when we move on upwards we find that we still miss some diff-
erence equations to stand for the unknowns at the mesh points
on the free boundary FQ. Therefore, some additional schemecs
should be introduced.

Let us denote by @ the vecter of the values of the ap-

proximation at the mesh points en y = 0 and by «_; ‘the wvec-
2N(M-1)-~1

tor of the values on y = -6, i.e. ., = {p..} anz
0 01 i=1
9, = {o .}‘N(M"l)—l where
1 1i°,_
i=1
- . h
(Ooi = (A + lM—_i-, 0)
i = 1,...,2N(M=-1)-1. (2.1)
- . h
¢ ° o(A + =T -8)
Successive use of the schemes (2.8) for m = C,1,...,2R-1

finally yields a linear relation between the approximaticn at

the mesh points on ry and @, and ©_) in the form:

T
. = 8 +
h ’/:!:) S (00 T

m

Nk
2 0

[}

A
¢ (Nt -1

mo= 1,2 , 20

3o

L R

i anith
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where Sm and T = are (2N(M=1)-1)~dimensional vectors.

Since ¢ 1is given on we can consider (3.2) as 2N equa-
q

T
tions relating the unknown coefficients in ¢y and ®_-

Yet we are short of 2N(M-2)-1 ecuations to complete the sys-
tem. To get these equations we use some additional schemes
for solving the "discrete Cauchy problem" which result in
relations of the form (3.2) between Wy 0y and bounaary
values at intermediate points on Ty This can te done for
any M and with no less accuracy than in (3.2). To demonstrate
it we present the treatment for the case M = 3;

For M = 3 we are short of 2N-1 equations and we could

have just the right number of equations if we could get re-

lations of the form (3.2) for the boundary values ¢(xm+%,ym+g
where
(X041, = A+ B%Eh
3, ™= 1,.,.,2N-1 (3.2)
ym+% B (%h ¥ y;)3

Such relations can be obtained by using additional uth order

schemes of the form

Y Y. (3.4)
m+

.
1

l_l[ai¢(xi’ym) oy, exgoy 07 = elx

m+

SIS

Again the ccefficients of these schemes are obtained by sys-

)

L E




tems of equations of the form (2.,5) and here we could make
the schemes be accurate for Pl""’PS'

In the end we have the 2N(M-1)-1 relations

n
n

8o
33

¢_, n = 2,...,4N, (3.5)

¢(A + =h, yn) = S

2

co0+T

|
N

where Sn and Tn are given (2N(M-1)-1)-dimensional vectors.

2 2

These 4N-1 relations (for M = 3) are combined with the ordinary
scheme for the internal points in D~ to give a full system cf

equations for all the unknowns in D  and on the parabolic line

y = 3. After solving this system we can use the vectors S

r3

T . n = 2,...,4N to produce an approximation at all the mesh pcints




4, Numerical experiments

In this section we present scme numerical resul*s cf
applying the new schemes for several Tricomi prohlems. e
used the presented schemes (with M = 3) in the hypertolic

domain ccmbined with a simple 5 and 9-point fermula in the

£

elliptic domain. The S-point formula is alsc cbtained by

procedure of the type (2.5), i.e., by demanding that the

scheme 1s accurate for polyncmial solutions cf the Tricomi
1

. . u ., . .
equation. In that way we obtain a local o(é ) scheme in U
1 Yy

which, experimentally, proved to be a glcbal 0(6“) where z

square mesh of size § is used in D . In order to match the
hyperbolic and elliptic schemes we chose § = g.
We consider boundary conditions given on tlie linesg
P = {x =11, -1 ¢y ¢ 0} and {y = -1, -1 ¢ x ¢ 1} in 1
elliptic domain and on the characteristic line
3 2

2 2 3,3 . . . .

L, = {fx - zy" = -1, 0 sy« (7) } in the hyperbelic dom:in.

Such conditions define & unique solution in the domain bounded

by the a*ove lines and by the characteristic
y y

The computational aspects of the method and some addition:z!

numerical results are to be described in a separate veport lul.
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Table 3.1

. + - . .
Maximum error in D = D U D for the Tricomi problem

with the values of the analytic solution (2.10) of the Tri-

coml equation as boundary values on ry UT . A scheme with

M = 3 is used in the hyperbolic domain and 5 and 9-point

formula are used in the elliptic domain.

A Ns

g 16
S-point formula 0.47E-2 0.14E-2 0.370-3

h 1
AN = Ay = & T

9-point formula 0.44E-3 | 0.5GE-4 O.HBth[
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V. DIFFERENCE SCHFMES TOR THE SCLUTION

O CPRICONT'S FOUATION 150 A MINID WECIn

Frieda lLoinger

Abstract
The Tricomi prcblem in a mixed region is solved via a
numerical projection of the hyperbolic boundary conditions B
onto the parabolic line, thus coupling the two regions. Differ-
ence schemes, exact for polynomials up to a certain degree,
are used; high accuracy is achieved in all the examples conpu-

ted.




1. TIntroduction

Tricomi's equation:

- = 0
yw;:x wyy

iz elliptic for y < 0, parabolic for y = 0 and hyperbolic for y > 0.

We look for a solution in a mixed domain D = D_ U D_ where D_ 1is
an elliptic rectangle bounded by x = -1, y = -1, x = +1, y = 0 and
D, the hyperbolic curved triangle bounded by y = 0 and the two

+

characteristice I

1 and r2:

The problem is assume well-posed with appropriate boundary con-
ditions given on x = -1, y = -1, x = +1 and one of the character-

istics, say ry-




2. Notation

For the numerical solution of the problem we divide the region
into the following elements (see figure 1l): rectangles in the ellip-
tic domain along the lines x = const, y = const and isoparametric

triangular elements in the hyperbolic domain, with the following

enumeration:
j - the no. of the row
o= =M, =M + 1,...,0,1,...,N
J < 0 elliptic region
j = 0 parabolic line

j > 0 hyperbolic region

. is a mesh point

no. of points on the parabolic line : 2N + 1

nj - the no. of points in the j-th-row

Xigq - Xy T 8% S 1/N ¥i 1in the grid

Ysep T Y5 F oy = 1/M for 3 < O

Yi+1 ~ Vs = ij = (1.5A><(j+l))2/3 - (1.5Ax-j)2/3 for

3 20

mesh points in the elliptic part including the parabolic line:




s

PSS

(x.,y:) i= <N, =N+ 1,...,0,1,...,N
x, = iax vy = jay
mesh point in the hyperbolic part:

(x. -,yj) J o= 1,2,...,N ; i = =-Ny...,N -

2/3

yj = (1.5a%x3)° IR = (J+3)ax
and the numerical solution at the j-th-row:
w(j) = @ s5Ye) i = =N, =N + 1,...,n.
1,373 ’ T

23




3. Projection of the boundary condition along I'; on the para-

bolic line
The hyperbelic problem with either Goursat conditions (¢ given

on Iy and y = 0) or Cauchy conditions (¢ and wy given on y = 0) is

treated in [1] (D. Levin) using high accuracy difference schemes.

The difference scheme for (Xi’ ) is based on the values of

Yis1
w,wy at the points (xi + OAX, yj), (xi,yj) when Cauchy conditions
are given (figure 2).

The coefficients are determined by the demand that the scheme

is accurate for 6 polynomial soclutions of the Tricomi equation:
l,x,y,xy,3x2 + y3,x3 + xy3. Numerical experiments showed that

the schemes obtained are accurate for 8 basic functions:
3 y 3
l,x,y,xy,3x2 + yg,x} + xy3,6x2y +y ,2xdy + xyq.

We now look for a solution in the mixed region.
An analytic connection between the boundary conditions on Iy and
the »arabolic line is known:

Bitsadze [2]:

1 5/6 d [* y(t/2)
1(x) = 9(x,0) = X -— J dt
2y, X g T2 ey 1T
X
+ v J \)(t])- 3 dt
0 (x-1t)




where v(x) = wy(x,O)

¥(x,0) = @(x,y(x)) on a
The connection on the parabolic line enables one to find the
solution of Tricomi's equation in the elliptic region and then
in the hyperbolic problem can be solved with either as a Goursat
or a Cauchy boundary conditions.

This report presents a numerical process for finding a con-
nection between the hyperbolic and elliptic region, without using
wy (see also [3]). Alternatively, we look for a connection
between the values on T, and w(O), w(_l).

Assuming the elliptic problem already solved, i.e.

w(j) = (wij),...,wégil). j = -M,...,C, known, where w(O) is the
solution on the parabolic line. We proceed from row (j) to

(3 + 1) (3 » 1) by choosing €6 basic functions as before (in the
Cauchy problem), but instead of using values of w,wy on y = yj as

it is done in [1l] for the Cauchy problem we take an additional row

y and the difference scheme will be based on the values of

Jal
¢ at the points (figure 3): (Xi’yj+l) 5 (xi + Ax,yj),(xi,yj) 5

(xi + Ax’yj—l)’(xi’yj-l) H
and we require that the difference scheme is exact for the & basic

functions. llumerical experiments show that these 7-part differ-




ence scheme using 6 basic functions are exact for 8 polynomials.
Note: if J = 0, vy = 0, yj_l = - Ay, i.e. the first row of the
elliptic region is taken.

The difference scheme can be expressed by

3
Z t w(xl,yj) ts, w(xﬂ,yj_l) = w(xz,yj+l)

X
n

x; + (£-1)ax 1 = =Nyeoo,an.

The coefficients (tz’sz) (¢ = 1,3) do not depend on x, but do de-

pend on y. In matrix form

It o G ) s =10 s g e

where

T(j+l)

3= 0y.u.,N-2

(3+1) .
T of order : nj+1 X n




S(j+l)

—
N
w
w

3= 1y ,N-1

(j+1)
S of order Ny X ny_1

S(1) . \\\
sl S5

Suppose we found B(J) and A(]), such that

w(j) - B(j) w(O) + A(j) w(-l)
where
B(j) nj x (2N+1)
A(j) nj x (2N+1)
B(l) - T(l) A(l) . S(l)
B(O) = 1 A(0) -0
then:




vhere: !

ai get only Noequat ions Doy the -1 Inenowns
- / )
JE b N wj ! + ’ ( "&7\ +
{ O]
v S S A G B
Lo al A, Ieljpedtivelny.
Loogen Mel oasdiuinal et Loty e tase N=1 inte
o lmdrred Loy o ® Dt g ate chetol Loililoa B
cneme Lo toaen
e difterence Cclhien <. the P
Iy
T N .
' LD\, . v / + . ‘»‘)(: ,‘ ) K.Q(,‘ >
Qt: X 2 4 = e T
L~ 1 ‘
wherpe:
5 e . + O o
t N 0
-~y it .




e

The coefficients of the scheme are cbtained Ly ti.e demand that
it i, accurate for 8-polynomial lead. Since the 7-point formula is
accurate for 8 polynomials the order of accufacy is not changed.

The 9-point scheme can be expressed as:

SCI*3/2) L 2(3+3/2) () | a(343/2) (5-1)

+ S
where:
c(3+3/2)
T nj+3/2 X nj
c(3+3/72)
> 54372 % M-l
w(j) and m(]-l) can be substituted from the equation obtained by

the 7-point formula:

(3) (3) _(0)

o(3) = 53 SO () (=D

L%

wolI+37/2) _2034372) (1(3) (0 ) (3) (=1)), (5+3/2)

Y48 B(j-l)w(O)

(B (

NAGEISIEIDN

L3370 (0D 1(3+3/2) (-1)

where:
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R(3+3/2) | 2(3+3/2)5(3) |, 5(3+3/2)5(5-1)

AG343/2) | 2(3+3/2),(3) |, 2(3+3/2),(3-1)

We now have 2N-1 equations for the 2N-1l unknowns on the para-

bolic line:

(3) (-1)

(0,43 (1y¢ 3= 1,...,HK

gf=w(])(1):B

] (e

CoOIL/2) (15 5 UIHL/2) (15,00, 23+1/2 1y (-1)

&5 +1, o= 1,...,0-1

where B30 (1), Al (1), U/ Dy, AP,

are the first rows of B(j) A(j) é(j+l/2), A(3+1/2)

s s respectively.

The projection on the parabolic line can be written in matrix form:

The projection matrices A and B, of order (2N+1)x(2N+1) are:




E(l)(l)
4(3/2)
B(2) (1)

é(5/2)(l)

BN-1) ()

-1
p{N=%2) (1,

a¥ 1y

- 11 -

0

A1)y
A(N—l/Q)

A(N)(l)

0

o

(1)

o
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. Solution of the elliptic prchblem
In the elliptic region we i3e ei-fe:r a S-point (I) or a §
difference scheme.
2
D Ay wyv NoE(x, vty - o) v @le,y=2y)
. I e, v, -
l’] L Ly -y _ T
AX N P{x+tax,y) = Zo(x,v) + @{x=-2x,vy)
= (. . 2. .+ .
(’Il+1’] wl’] Lpl"a_‘
The 5-pcint difference scheme for the Tricemi equaticn YO,
Pa)
for the point (i,]) is:
- P . . - . - 2¢. . ¢+ . -
y(“"~+1,j 2‘”1_,3 “01-1,3.) (npl’]h 05, &Dl’v”)
where:
y = JAy 3= =M+ 1, =¥+ 2,...,1

D>

.y . 2 3
Jhis scheme 1s accurate for: 1,xX,y,Xy,3x + v

1i)  We build a 3-point Jitfference scheme by taking the tirst
volynomials which solve Tricomi's equation, i.e.:

ol




> B }’ 3
laxsy,XYV”(‘ + "v”""xyj’sxzy + yua2x3y + qu

J

The demand that the difference scheme based on the points:

Ax,yj * AY) (xi * Ax,yj) R (Xi’yj + Ay) and (xi,y;)

1+

(x.
i

(-

~
~

[ )

be accurate for those functions leads to a dependent gystem
equations. Therefor2 one polynomial has to Le exchanged with ore

with a higher degree.

An independent set of functions are:

2 3 .3 3 2 4 3 4 L a2 3 €
l,y,xy,Bx‘ Ty L,x txy L,bxTy + y ,2x7y + xy ,10x + 3:xTy T + 2¥%
= .. as well, hence it is accurate ZIcr

The scheme is accurate for P =

9 functions.

Both types of the difference schemes give a system of eguaticns

which 1s triangular in blocks:

B(-M) c(-H) w(-M) f(—m>
=M (=M
A(-M+l) B(-M+1) C(-1v1+1) @( M+1) f( +1)]

- - -M+2) -M+2 L=
A (SM¥2) L (SMH2) ((M#2) Mo oo
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with all the blocks having the same size: (2N+1) x (2N+1)

B(-M) .
C(—M) -0
A(]), B(J), C(]), -M+1 ¢ j ¢ 1, are matrices of either the

5-point or 9-point difference schemes including identity equa-

tions for the boundary points (-1,jay), (+l,jAy)-A(O)

B(0) (-M)

and

are the projection matrices (section 3), f is the

boundary condition on y = =1, and f(])(l) and f(])(2N+1) are

the boundary conditions on x = -1 and x = +1, accordingly.

£97(1) = o(-1,38y)
£ (2n%1) = @(+1,38y)F M + 1 g 5 g 1

f9¢i)y = 0, 2 ¢ i < 2N

f(O) = g - vecior of solution on T

)




5. MNumerical results

The mixed problem 1s solved in % steps:

a) Computation of the projection matrices A(O) and B(O).
b) Solution of the elliptic problem with ACD)w(_l) + B(O)w(J)zg
as boundary condition on y = 0.
2) Solution of the hyperbolic problem using the resulrs of w(O)
and w(—l) from (b)), and proceeding with the 7-point formula: S
To see the influence of the projection condition on y = 0 the ellip-

tic problem is also solved with exact Loundary conditions on y-=0,

i.e. A(O) = 0, B(O) = I and f(O) = @(x,0) Iz substituted in the

system (d); the hyperbolic problem is also solved with exact val-
ues for w(O) and w(—l). (e)

The folloiwng 3 examples are considered:
. )
i) wl(x,y) = 15x¢ + 30x2y3 + 2y”

Note: For this function the 4g-point formula in the elliptic

region 1s exact.

.. ! . 7
ii) wQ(x,y) = —°1x$y - 21x2yu -y
® v n+i
« ¢ \
L) eg(x,y) = coshxly + | S Sy G 0

n=1
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P e

py =

AX

s ey st

Ay =

Ax =

8

r

| Dv\anuu_lﬂl

max abs.er-
ror in ys0

nax abs.

er-

ror in y>0

max< abs.
roY in ys

er-
0

max abs.er-
ror in y>0

ﬁmmx abs.er-|max avs.er-
rer in ys0 Aroy 2p y>0
| 10 e

S5~-point formula
in the elliptic
region and proj-
ection on y=0
(a,b,c)

g.u411

,0.360

0.106

0.883x10 *

1 . i

0.267x20" 0.226x:0"*

|

SIS SR

§-point formula
in the elliptic

region and proj- 0.676x10

ection on y=0
(a,b,c)

1

9.110

|
Al
|
1

0.555x10"

2

0.113x107 %

|
(R

|
(a

5-point formula

in the elliptic !

region and exact(0.24%2

values ony = 0
(d)

—fpm o —

).B4Bx10

1

0.162x107+

|
|
‘
i
'

9-point formula |

in the elliptic |

region and exact| O

values ony = 0
(d)

hyperbolic prob-
lem with exact
Values for

0 -1
GA VU GA )

(e)

0.538x10 2

(%)

0.476x10"

Gwhxv%v =

15x*

B
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Conclusions

The order of convergence of the 5-point formula alene is
O(sz) and the order of convergence of the 9-point formula alone
is O(Axu) (see results (d), table 1-3). The results of (e) show
that the order of convergence in the hyperbolic region is O(Axg),
approximately:

3+2/3
X

0Ca ) ~0(Ax3-ij> (3>0)

(estimate of error, see [3]).

The schemes used in the hyperbolic region are more accurate than
the 5-point formula and less accurate than the 9-point formula,
used in the elliptic region. Therefore, when the mixed problem isg
solved with the projection, the maximal absolute error is cbtained
iny ¢ ¢ 1in case of the 5-point scheme and the order of con-
vergence 1is O(Ax2) in the whole region, and the maximal absoulute

error is achieved in y>0 when we use the 9-pcint scheme in the

elliptic region and the order of ccnvergence is O(Ax Ay.) (j»0)
J
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