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1. INTRODUCTION In an attempt to model the acousto-optic effect
in a transparent solid, the author has undertaken to

Many treatments of the acousto-optic effect - generalize previous results to include reflected
the interaction of light with sound - have been waves, and also to consider anisotropic media. The
published.' These treatments assume an infinite work reported here uses a scalar theory for an
slab of isotropic material in which an acoustic wave isotropic medium (like earlier work), but with
is propagating parallel to the slab surfaces. A rigorous boundary conditions - i.e., solving for
coherent, monochromatic electromagnetic plane reflection as well as transmission. The problem is
wave is incident on the medium from one side, and treated by using a series expansion in the parameter
emerges from the other side broken up into discrete
diffracted plane waves of all integral orders (fig. 1). A2

The acoustic disturbance modulates the refractive 8
index of the medium, producing what may usefully
be visualized as a diffraction grating. (where 8 is the intensity of acoustic modulation,

In previous work, the researchers have used a and A and X are acoustic and optical wavelengths
scalar wave theory (neglecting polarization effects) respectively); hence, the expansion converges onlyand have (except for Berry6 ) assumed that re- when this parameter is small. A vector treatment of

flection from the two interfaces can be neglected. the interaction in an anisotropic medium will be
Berry has considered reflections (in a scalar reported in a subsequent paper.
theory) and shows that reflected diffracted beam Motivation for this research is given by the
intensities for a slab of a certain thickness are experimental work of Berg, Lee, and Udelson, 
directly proportional to the transmitted diffracted e opeie ta ting e and Udelsonti
beam intensities for a slab of twice that thickness who are investigating the acousto-photorefractive
(Actually he, like the other authors, had in mind a effect in y-cut slabs of lithium niobate, an aniso-
liquid medium.) The proportionality constant is tropic material. In their work, the acoustic dis-

turbance is given by a surface acoustic wave
(SAW) excited by interdigital transducers and

ACOUSTO- OPTICAL INTERACTION

For liquids, this quantity tends to be small (0.01, R

or so), whereas for solids it may be appreciably TO

larger.

L Brimim 1A Diffraction de la ,umier par des uhlrausn. 4e euitu.
Srieasiqwts et Inifistrielis No. 59, Herrmtrt et Gie. (Paris. 1933). T.,

2
C. V. Ramam and .. N. Nath. 'he dUffiranion of light by hig u /jrfey

suand waws, Pert I. I'r. Indian Aead. Sri.. 2 (1935). 406-412; Par II. 2(1935).
413-420" Part 111. 3 (1936). 75.84. Pan IV. 3 (1936), 119-125: Part V. 3 (1936).
459-465: Generafuied the-n, 4 (1936). 222-242. INCIDENT OPTICAL

3R. Exiirran ad Gr.ear. Thoie-,,, de l diff ani de la lumiere par les WAVE

ultran.. Hv. Phy.. Arta. (Switedefand). 9 (1936). 520-532
4 Figure 1. Incident wave is split by acoustic wave
R. ,eren.. ,n Steea I'a Naturk. ui5ds-Ar.. 27 (1949). 212. into discrete diffracted orders.
f. Pharueeu..Sm n . 9,n , Vatudr. Tilds-hr.. 33 (19.59. 72.

6 5
6. IV. er. he diffmetn of liht by ultr.sound. 4dr, Pnt Iardun V J 1e1a. H. J I deln . % '. 4 na.- arut,,phoefrt,,,.r m

and .S.e Y'od (IW66. Idhum enet. 4ppl. Phw. let,. 31(1977). 555.
7 911 Nanmata. I Dfran-ati Of liht bu alteau " Kxten.,,n Of tise Ilrlloutn I " . . . e. ad R I desn. 4n aar u.-opi, maultos'heliw iae.l

Then,. Jap.. 4W. Ph,.. 1, (1971) . 611-622 pr-eism .. 4pW.. Phys. Le 3ter. 2 1978). 519.
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propagating along the c-axis. The slab is subjected This assumption corresponds approximately to
to a high-intensity short-duration laser pulse, the interaction of a pulsed light wave whose
which produces a "freezing" of the instantaneous duration is short compared with the acoustic wave
refractive index, an effect which can be used in a period. The wave equation for a light beam of
memory correlator. Also, work is being done on radian frequency w and amplitude E is then
real-time acousto-optic correlators and convol-
vers using two SAW's simultaneously. For a com- 2
plete understanding of these processes, a thorough ned - +-" E = - -8cosqzE (I
theoretical treatment of the diffraction is needed.

This paper treats the isotropic time-independent where c is the velocity of light.
case, and can be regarded as a preparation for A propagating electromagnetic mode inside the
treatment of the full time-dependent anisotropic mediumgan elednto mode ins as
case. (The time dependence is a trivial addition medium can be resolved into plane waves as
giving a frequency shift of the diffracted waves. follows:

Anisotropy, however, introduces considerable
complication, because of the acoustic coupling of ns
ordinary and extraordinary modes.) This paper
does not treat the spatial dependence normal to where
the surface (exponential falloff).

y = z-component of incident light wave
vector,

2. THEORY
The physical system to be analyzed is an = y+nq (3)

infinite, isotropic, and lossless slab of thickness L.
An acoustic disturbance is propagated through the V = K 1A
medium in the z-direction parallel to the slab
surfaces, and the x-direction is chosen normal to 2 A2

the slab surfaces. A plane wave of monochromatic A = 8 6 - 8 2 6V

light is incident in the x-z plane, at an arbitrary c q
angle and linearly polarized in the y-direction.

Note that this is not a power series expansion in
The motion of the acoustic disturbance is A, since k = k{A). and therefore it is not unique.

neglected and its effect is incorporated as a varia- It can more aptly be termed a plane-wave expan-
tion in the dielectric property of the material sion. Substitution of equations (2) and (4) into the
according to wave equation (1) yields

E - E+6cosqz ,w ,F iy, + 1n- 2' Ens + K IE",. |

where + + t = I

= dielectric constant of unmodulated exp(ikx)exp(iynz)A' =
material,

2ff

q = . exp(ikx)exp(iynz) A  (b)

6



The zero-order component E, represents a Thus
..normal" mode of propagation for the medium -

i.e.. a solution of the homogeneous equation e(z) = En.~ exP(iYnz)AW f(a4)

(A2 + c~ 0 .Where f(a, ~ is a Mathieu function. This function
will not ingeneral beone of the well-known

From this we see that tabulated periodic functions ce,, and see, but, in

2 general, will be a Floquet solution,'0 of the form
= -i- £ 2 ePZ O(z), where O(z) is periodic. However, when
c a=N/2 (N an integer, the Bragg condition), the

solution is a linear combination of the cc,, and SCI,
Equating like powers of A in equation (6) yields the (see appendix A).
recursion relation in En.5

n~ + 2a)E,,5  1/~2 (En- I., + E,,+.- 1) - The preceding paragraphs characterize the
natural propagating modes for an infinite sinusoid-

ally modulated medium. For a finite thickness
2 K I ., (7) slab, 0 < x < L the electromagnetic boundary con-

q t=1 ditions require that the solution be an expansion in
where a subset of these natural modes, requiring a new

Y index:

Given the angle of incidence of the light wave, 9, -Ynn
is determined by y - olc sin 9, and equation 47)
generates the corresponding propagating optical Also a backward-travel ling. reflected, and a trans-
mode of the perturbed medium. mitted wave are required:

The above solution can be written as F = 1: F...s exp(-ikx)exp(iY,,z)A' (9)
E =exp(ikxfr(z), where e~z) will be shown to be a in
Mathieu function. Equation (1) becomesR= nep-pxxpiz)' (0

R = I Tn. exP(iPnx)exp(i-ynz)A'~ (1)
'Is

This is Mathieu's equation: sI

2' where
-j+ (a -2h cos 24)f =0 2 p ~( 2 (

where
Now the wave equation (1) yields a new recursion

24 =qz ,relation:

a 2i- - i- 2) ( 2  (n - m) (n + m + 2a) Em,,,

7



those given by the familiar Fresnel relations for an
2 KmlEm ns-1 (13) unperturbed medium. The first-order terms are

q f= I then generated from the recursion relations (which
yield Eo0 1 , E-,, Fe1, and F,- J) and the boundary

There is a similar recursion relation for F. conditions (which yield RB1, E,,, Fil, T11 and
R-. 1 , E-1-1, F-I- ,T-11) This processcan be con-

The boundary conditions, applied at x = 0 tinued indefinitely, and is an unambiguous way of
and x = L. guarantee continuity of tangential E generating the solution for a given incident plane
and H: wave, provided A is "small," so that the series

converges. The recursion relation (13) serves not
-Rns + Enns + Fnns = only to generate the Emn , but also to generate the

Km.- When m = n, the left-hand side of (13) is
- Z (Emns + Finns) , (14a) clearly zero. The K.,,-m is determined in terms of

m low-order values of K.t and Emn . (Enn s and Fnns
(#n) are determined, as previously stated, by the

boundary conditions.)
pnRns + kn0 Enns - kw e F+0nsT

is i (b The left-hand side of equation (13) is also zerok--Om~s-1Emnf-kmns-1Fmn1) •(14b) whenever n + mn + 2cr = 0. This is a funda-

(#ns) mental problem and in fact invalidates the pro-
cedure, but it occurs only when a = N/2 for

P +Mn1Fn -n =some integer N - the Bragg condition. This
pexp(ipnL)Tn difficulty can be dealt with in practice by simply

treating an approximate problem a = N/2 + E.

-- (Pm s-I Einni + Mn5s-t nt) , (1 4c) An elaboration of the theory is given in appendix A.

M 1=0
(Ons)

3. GEOMETRICAL INTERPRETATION
knoPnoEnns - knoMnoFnrns - Pn exp(ipnL)Tns =

There is a simple geometrical construction
5 S~ - Iwhich is a useful aid in visualizing the above

- f=0 j= treatment of the acousto-optical interaction. This(9n) construction derives from one often used to de-

monstrate Snell's law. Thus. in figure 2. two views
(km.s- Pm. f- jEmnj - km,s-tMm.J-jFn) , of the simple unmodulated boundary-value prob-

(14d) lem are given: (a) is self-explanatory, (b) is more
abstract. Here the circles (in wave-vector space)

where represent the naturally propagating modes in the
various media. Their diameters are

exp(ikmnL) ---- & PA - W t
1=0 , c ,and -C C c '

exp(-ikmL) = 1 MjAt  (15) Figure 3 represents the acoustically modulated
!= 0 medium. Here are represented the higher-order

(m.n) terms - plane waves generated by the
If the incident plane wave strikes the x = 0 recursion relation (13) and the boundary condi-
interface with a z-direction cosine of -f, then the tions (14). The (0.0) vectors are as in figure 2.
zero-order terms Eo, F0e, R., and To, are just Equation (13) generates (0,1) and (0,-1). Then

8



(a) PHYSICAL SPACE (b$WAVE-VECTOR SPACE Xiso. in the more general anisotropic case. 1eV1n
the zero-order surface will no longer lbe a circle. but
a more general second-, fourth-. or sixth-order
smlrface.

y BRAGG RESONANCE (N=1)

____ 00
Figure 2. Representation of zero-order interac-
tions (Snell's law) in physical and wave-vector
space. boundary conditons require that w., e c sin ()
be constant for all media.

PLANE-WAVE DECOMPOSITION01 i

-4 1.10 q Fiure4. An example of Bragg resonance. %hicli
occurs for A X\ sin 0 = X 2: this arises analvtical1

+ ~ from a singularity in the recursion relation. geo-t4 metrically from the *'double labelling- of n on-

Figure 3. Internal backward and forward travel- surface lattice point.

ling wavs.s to each "lattice mite- in toase-upctor
space corresponds a complex amplitude, whose 4. COMPUTATIONAL RESULTS
value is given by the recursion relation (eq (13))
and by the electromagnetic boundary condition. It is illuminating to compare resuilts obtainedl

from the above formalism with those obltaine'd
eqluation (14) generates (1.1) and (-1.-i1). T1hen from earlier efforts. Nomnoto7 has done, calculation,
equation (13) generates (1.2) (1,0). (0.2). (0.-2). for an isotropic acoustivall\ modulated meditin
(-1.0). and (- L-2). Equation (14) generates assuming normal incidence. In this case (a =0).
(2.2). (-2. -2). and a second-order term for (1).0). the z-dependenve of the internal fields reducestt to
and so on. It will be recognized that the rectirsion the tabulated periodic \Mathieu functions CtV,,. dis-
relation imposes a vertical coupling on the diagram. posing of the need for seni expansions and so also
while the boundary conditions impose a horizontal oif the requirement that A be smnall. ( Noinato
coupling, neglects reflections - that is. he dloes not use the

It is important to note that, in figure 3. tht' boundary conditions - but. uinde~r the assumption
eirclt. is not a true circle. but is deformed by tht'ufanttoarp -rasto ttn nefcs

A-deendece o thekm.this is an acceptable approximation.)

Trhe Bragg problem (a =N/2) can be se'en Cotinparismns betwe-en the pre'sent author's and
from the diagram (fig. 4. where N = 1) to ariste \omoto's calculations arte shown in figure, 5. Itre
from an "identity crisis" in certain higher-order arte compared the initt'n1sitits of the tdtflectt'd
terms - i.e., "off-eircle' terms will coincide with _________

"on-cirele- terms. The -off-circle- otfficient 1,4h ehO d1,1

9



NORMAL INCIDENCE .,o. applying also for oblique incidence and for abnipt

Mo.. 003' changes in refractive index, and of being generaliz-

-- able to include anisotropic media.

Figure 6 shows, for a different set of parameter
values, the amplitude of the T02 term as a function
of incident angle. The T,2 term can be visualized as

* having been doubly diffracted back to its original
direction. Here e/c 10, q = 0.5. r = 5. and
L = 1 cm. The Bragg resonance at a = .2

(Y, = 0.25) can be clearly seen.

09. '0 The parameter values in figure 6 (e. w. q. L)

Figure 5. Comparison of Nomoto solution and quite closely resemble those of the system that this

seventh-order plane-wave expansion, amplitude of research is designed to model: modulation of an

undeflected transmitted beam is shown as a funt- optical beam by microwave acoustical signals in a

tion of slab thickness. 1-cm-thick sample of lithium niobate.

IT = T 0 exp(ip(,x)exp(iy,,z)A' BRAGG RESONANCE r 'of,

00o

transmitted wave. as functions of thickness L,
using the two methods. For the system considered.
A =2. The applicability of the expansion calcu-
lation, which was performed to seventh order, is in
some doubt for such a large A. Also. w/c = 10.
q = 0.03. = 1. and 1. varies from 0 to 21) cm.
The value r I was chosen to minimize the error
arising from Nomoto's no-reflection assumption.
Even for A = 12, the expansion technique works
well tip to a thickness of about 10 cm (about 500 Figure 6. Second-order term of undeflected beam

acoustical wavelengths). It has the advantage of as function of angle. illustrating Bragg resonance.

to
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NOTATION

c free-space velocity of light L slab thickness

W optical frequency -y z-component of incident light wave vector

e dielectric constant of unmodulated material a
q

8 modulation amplitude Emns term in expansion of internal forward-

A2'  travelling wawe

A a . expansion parameter

Fni s term in expansion of internal backward-

,X free-space optical wavelength travelling wave

A acoustic wavelength 11, term in expansion of reflected wave

2ln,  term in expansion of transmitted wave

k x-component of wave vector in medium

II



APPENDIX A

APPENDIX A. - THE ACOUSTO-OrFIC INTERACTION FOR BRAGG ANGLES

The acousto-optic diffraction process can be system unaltered. (The acoustical z-period is an
described by a perturbation procedure (see main integral multiple of the optical z-period.) So our
body of paper). A recursion relation, applied in solution should be periodic in z. After separation of
conjunction with certain boundary conditions, variables, the z-part of the solution satisfies
generates plane-wave expansion terms from lower- Mathieu's equation; thus, in the Bragg case. a
order terms. The expansion parameter is linear combination of the cen and sen is needed.

Since we want a solution whose zero-order term is

A A2  exp(ik,x)exp(iNqz/2), our solution is clearly

0=z- .- 2) +

where 8 is the refractive index modulation ampli- exp(ik+x) ceN 2

tude, A is the acoustic wavelength, and X is the
optical wavelength. The recursion relation is i exp(ik/x) se, -!- -2A) (A-5)

(n- m) (n + m + 2a)Emns = -

where
l2 (Em±n-1,s-I + Em n+1is-i) -

+)
2

2 qaN(-2A)

A2  ~( K -- ___

2 KmtEmn.- 
(A-1)

4 Tr

Here, n, m, and s label the plane-wave terms which (k-) 2  K - tL 2 q2 b(-2A)

combine to give the full field pattern. Other vai- c 4

ables appearing are
2 rcA 'o

of = Asin0, (A-2)

27T
q - .

0= angle of incidence A

and aN and bN are the Mathieu eigenvalues in

km' = KmlA McLachlan's notation,' and are functions of A.
t=0

This solution can be obtained by a modification
E = I Ens exp [i(kmx + 1ynz)] A' (A-4) of the expansion method presented in the body of

runs this paper. The modification arises from the degen-

In the case of Bragg resonance (a = N/2, N an eracy (K-N,, = K,..) which results in the Bragg
integer), the method fails, since the left-hand side case. For definiteness, we consider here the cas(
of (A- 1) vanishes. A consideration of the solution N = 2 - that is, y = q (a = 1). We use the
for such cases, and how to obtain and represent usual recursion relation (A-i), but we start with
them, is given here. nonzero E(, and E,,. Then

K ., = p4 E - q ' = K-
Physically, the Bragg condition implies perfect

periodicity of the system; displacement by A (the ,N. 9,,d A o 4Md .no -oh ,,,. o.rd

acoustical wavelength) in the z-direction leaves the Pre.,. Oxord (9547

13



APPENDIX A

For Eo The equations for Eo2 and Eo 2 o yield

(1)(1 + 2a)E,, K 
+  I E-4 0

E1=2 q~ 2  6 4 L2  l ]
Eo, 1 61 Eooo6 1 qo, + I Eo-20 I 0

E,-,,: (-1)(-1 + 2a)E o, (Eooo + Eo-2 . . . .

2 Thus.

E -11= (Eooo +Eo- 2 ) (K 0 2)
2 + 1 4K2 5

), 2 3 q 2 14 4

Eo-,3 : (-3)(-3 + 2a)Eo- 1 = Eo-2 1 2 5 2
2 K 2 2Ko2 -F12 q  or - -F q

EO31 = I Eo- 20  Thus.
1 q2

Iko = ko, + A + . .

E022: (2)(2 + 2a)Eo2, = Eo,, 24 ko,
2

or
11 - 2

Eo2,z = E011 = =koo - q A2 +
24 k,

E 2: (0)(0 + 2a)E,, = 0 =Call the first solution ko and the second ko.

Substitution shows that the k- solution has the
(Eo,+Eo-,,) 2 KozEooo propertyEo_2o = - Eooc and the ksolution has

q the property EO_ 20 = + Eooo. We thus have. to
2 EEoc=7E) second order, the two solutions.

3o oo Eooo -2 a°
E

- 2 1

2 = - Eooo [exp(ikoox)exp(i'Yoz) -

Eo- 2 2: (-2)(-2 + 2a)Eo- 22 = 0 =

exp(ikoox) exp(-iY,,z)]exp i 2--to /'I ( E 3) Ko Eo-209o

q i Eooo exp(ikox)sin qz (A-6

qZ 1  1 ()K02Eo-2o= 2 Eooo-3 Eo-2 E +  Eooo [exp(ikoox)exp(iyoz) +2

Eo, 2 : (-4)(-4 + 2a)Eo. 2  Eo- 1  exp(ikoox) exp(-iy,,z)],.xp i q

Eo-42 6 6 020 ( 1 4Eo-2 1196Eo(o ,xp(ik(ox)vos qz (..7

14



APPENDIX A

If carried out to higher order, these solutions turn The E- 2 - 22 term represents the addition of a
out to be homogeneous solution which can be considered to

arise from the boundary condition. Thus, using

E- = iEoo exp(ikx)se 2 -!- -2 (A-8) = (k+ + k;)

1 qz I Aq

E+ = E exp(ikx) ce2 (-! -2A 1 (A-9) koo 2 k. '

the second-order solution is given by

As remarked earlier, the solution we want is ( ) { + A exp(2iqz) -

E+ + E- E,0 [Ce2 ( -2A'

+ A 2  exp(3iqz) + 168 exp(-iqz)

exp(ikox) + i se2 ( -2 exp(ikx A-
(2 A)( 1)Cp( iq2 8x ex (iq 2ax i

It is of interest now to investigate the continuity
properties of this solution: to consider the casexep 6e i
a = I + 8 as 8 - 0. For this case, the reader can - cxpk a)x) exp(iqz) + A exp( 2 iqz)-
verify the following:

K, = poe - aq poE -q 2q 28 2 1 I 2 x
+ exp(3iqz) +8Ak_ exp(-iqz)

K 2 = po - (a - 2)2 q 2 pV-q' + 2q' (A-i)

Eoo = I . This expression also represents our Mathieu
function solution to second order, where exp(i4alx)

1 has been factored out. The x-dependent coeffi-Eo1, 6 cient arises from the series expansion of the
exponentials:

o 1

Eo_, exp(ik+x) ce2-1 - .-2A +
12

E -96

2 i exp(ik x) -1i'2 x

I (- Iex~iz)+ex-iqz

E--2 16t$

E-z-2 I p~iq) + -xp(iqz

iII .... . ... . . ini . ...... . ...... . ..i , .. ......... .... 6



APPENDIX A

A exp(2iqz) --- + 1exp(-2iqzi A 1 (1 .
+exp(3iqz) - -fexp!-3qz .

AZ 1I 19 9

A 1 exp(3iqz) + I expl-3iqz +
2 2The reader can easily see that this matches up with

( iq2A x the limiting form of equation (A- 11). and the
exp(i~x) I + 8"-~k continuity of the solution at Bragg angles is

verified. Thus, the expansion procedure described
in the main body of this paper yields solutions for

xp(iqz)- exp(-iqz + the Bragg case in the limit a = N/2 + 8, 8 - 0.
The fact that the coefficients themselves are not

exp(2iqz) continuous arises from the inherent nonunique-
A 12p(2iqz) -- - ness of expansion (2).

16



DISTRIBUTION

DEFENSE DOCUMENTATION CENTER US ARMY ELECTRONICS TECHNOLOGY
CAMERON STATION, BUILDING 5 & DEVICES LABORATORY
ALEXANDRIA, VA 22314 FORT MONMOUTH, NJ 07703

ATTN DDC-TCA (12 COPIES) ATTN DELET-DD

COMMANDER DIRECTOR
US ARMY RSCH & STD GP (EUR) DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

BOX 65 ARCHITECT BLDG

FPO NEW YORK 09510 1400 WILSON BLVD

ATTN LTC JAMES M. KENNEDY, JR. ARLINGTON, VA 22209

CHIEF, PHYSICS & MATH BRANCH
DIRECTOR

COMMANDER DEFENSE NUCLEAR AGENCY
US ARMY MATERIEL DEVELOPMENT & WASHINGTON, DC 20305

READINESS COMMAND ATTN APTL, TECH LIBRARY
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333 UNDER SECRETARY OF DEFENSE FOR RES AND

ATTN DRXAM-TL, HQ TECH LIBRARY ENGINEERING
ATTN DRCDE, DIR FOR DEV & ENGR WASHINGTON, DC 20301
ATTN DRCDMD-ST ATTN TECHNICAL LIBRARY (3C128)

COMMANDER OFFICE, CHIEF OF RESEARCH,

US ARMY ARMAMENT MATERIEL DEVELOPMENT, & ACQUISITION
READINESS COMMAND DEPARTMENT OF THE ARMY

ROCK ISLAND ARSENAL WASHINGTON, DC 20310
ROCK ISLAND, IL 61299 ATTN DAMA-ARZ-A, CHIEF SCIENTIST
ATTN DRSAR-ASF, FUZE & MUNITIONS DR. M. E. LASSER

SPT DIV ATTN DAMA-ARZ-B, DR. I. R. HERSHNER
ATTN DRSAR-LEP-L, TECHNICAL

LIBRARY COMMANDER
US ARMY RESEARCH OFFICE (DURHAM)

COMMANDER PO BOX 12211

US ARMY MISSILE & MUNITIONS RESEARCH TRIANGLE PARK, NC 27709
CENTER & SCHOOL ATTN DR. ROBERT J. LONTZ

REDSTONE ARSENAL, AL 35809 ATTN DR. CHARLES BOGOSIAN
ATTN ATSK-CTD-F

COMMANDER

DIRECTOR ARMY MATERIALS & MECHANICS RESEARCH

US ARMY MATERIEL SYSTEMS ANALYSIS CENTER
ACTIVITY WATERTOWN, MA 02172

ABERDEEN PROVING GROUND, MD 21005 ATTN DRXMR-TL, TECH LIBRARY BR

TELEDYNE BROWN ENGINEERING COMMANDER

CUMMINGS RESEARCH PARK NATICK LABORATORIES

HUNTSVILLE, AL 35807 NATICK, MA 01762

ATTN DR. MELVIN L. PRICE, MS-44 ATTN DRXRES-RTL, TECH LIBRARY

ENGINEERING SOCIETIES LIBRARY COMMANDER

345 EAST 47TH STREET US ARMY FOREIGN SCIENCE & TECHNOLOGY
NEW YORK, NY 10017 CENTER

ATTN ACQUISITIONS DEPARTMENT FEDERAL OFFICE BUILDING
220 7TH STREET NE
CHARLOTTESVILLE, VA 22901

ATTN DRXST-BS, BASIC SCIENCE DIV

17



DISTRIBUTION (Cont'd)

DIRECTOR COMMANDER
US ARMY BALLISTICS RESEARCH LABORATORY US ARMY TEST & EVALUATION COMMAND
ABERDEEN PROVING GROUND, MD 21005 ABERDEEN PROVING GROUND, MD 21005

ATTN DRXBR, DIRECTOR, R. EICHELBERGER ATTN TECH LIBRARY
ATTN DRXBP-TB, FRANK J. ALLEN
ATTN DRDAR-TSB-S (STINFO) COMMANDER

US ARMY ABERDEEN PROVING GROUND
DIRECTOR ABERDEEN PROVING GROUND, MD 21005
ELECTRONIC WARFARE LABORATORY ATTN STEAP-TL, TECH LIBRARY, BLDG 305
FT MONMOUTH, NJ 07703

ATTN TECHNICAL LIBRARY COMMANDER
ATTN J. CHARLTON WHITE SANDS MISSILE RANGE, NM 88002
ATTN DR. HIESLMAIR ATTN DRSEL-WL-MS, ROBERT NELSON
ATTN J. STROZYK
ATTN DR. E. J. TEBO COMMANDER

GENERAL THOMAS J. RODMAN LABORATORY
DIRECTOR ROCK ISLAND ARSENAL
NIGHT VISION & ELECTRO-OPTICS LABORATORY ROCK ISLAND, IL 61201
FT BELVOIR, VA 22060 ATTN SWERR-PL, TECH LIBRARY
ATTN TECHNICAL LIBRARY
ATTN R. BUSER COMMANDER

USA CHEMICAL CENTER & SCHOOL
COMMANDER FORT MCCLELLAN, AL 36201
ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NM 88002 COMMANDER

ATTN TECHNICAL LIBRARY NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152

DIRECTOR ATTN TECH LIBRARY
DEFENSE COMMUNICATIONS ENGINEER CENTER
1860 WIEHLE AVE COMMANDER
RESTON, VA 22090 NAVAL SURFACE WEAPONS CENTER

ATTN PETER A. VENA WHITE OAK, MD 20910
ATTN WX-40, TECHNICAL LIBRARY

COMMANDER
US ARMY MISSILE RESEARCH & DEVELOPMENT DIRECTOR

COMMAND NAVAL RESEARCH LABORATORY
REDSTONE ARSENAL, AL 35809 WASHINGTON, DC 20390
ATTN DRDMI-TB, REDSTONE SCI INFO CENTER ATTN CODE 2620, TECH LIBRARY BR
ATTN DRCPM-HEL, DR. W. B. JENNINGS ATTN CODE 5554, DR. LEON ESTEROWITZ
ATTN DR. J. P. HALLOWES
ATTN T. HONEYCUTT COMMANDER

NAVAL WEAPONS CENTER
COMMANDER CHINA LAKE, CA 93555
EDGEWOOD ARSENAL ATTN CODE 753, LIBRARY DIV
EDGEWOOD ARSENAL, MD 21010

ATTN SAREA-TS-L, TECH LIBRARY COMMANDER
AF ELECTRONICS SYSTEMS DIV

COMMANDER L. G. HANSCOM AFB, MA 01730
US ARMY ARMAMENT RES & DEV COMMAND ATTN TECH LIBRARY
DOVER, NJ 07801

ATTN DRDAR-TSS, STINFO DIV

18



DISTRIBUTION (Cont'd)

DEPARTMENT OF COMMERCE US ARMY ELECTRONICS RESEARCH
NATIONAL BUREAU OF STANDARDS & DEVELOPMENT COMMAND
WASHINGTON, DC 20234 ATTN TECHNICAL DIRECTOR, DRDEL-CT

ATTN LIBRARY
ATTN DR. W. BROWNER HARRY DIAMOND LABORATORIES
ATTN H. S. PARKER ATTN 00100, COMANDER/TECH DIR/TSO

ATTN CHIEF, DIV 10000

NASA GODDARD SPACE FLIGHT CENTER ATTN CHIEF, DIV 20000
GREENBELT, MD 20771 ATTN CHIEF, DIV 30000
ATTN CODE 252, DOC SECT, LIBRARY ATTN CHIEF, DIV 40000

ATTN RECORD COPY, 81200
NATIONAL OCEANIC & ATMOSPHERIC ADM ATTN HDL LIBRARY, (3 COPIES) 81100
ENVIRONMENTAL RESEARCH LABORATORIES ATTN HDL LIBRARY, (WOODBRIDGE) 81100
BOULDER, CO 80302 ATTN TECHNICAL REPORTS BRANCH. 81300
ATTN LIBRARY, R-51, TECH REPORTS ATTN CHAIRMAN, EDITORIAL COMMITTEE

ATTN CHIEF, 13000
UNIVERSITY OF MICHIGAN ATTN BERG, N. J., 13200
COLLEGE OF ENGINEERING NORTH CAMPUS ATTN LEAVITT, R., 13200
DEPARTMENT OF NUCLEAR ENGINEERING ATTN LEE, J. N., 13200
ANN ARBOR, MI 48104 ATTN MORRISON, C., 13200
ATTN DR. CHIHIRO KIKUCHI ATTN RIESSLER, W. A., 13200

ATTN SATTLER, J., 13200
DIRECTOR ATTN SIMONIS, G., 13200
ADVISORY GROUP ON ELECTRON DEVICES ATTN TOBIN, M. S., 13200
201 VARICK STREET ATTN WEBER, B., 13200
NEW YORK, NY 10013 ATTN WORCHESKY, T. L., 13200
ATTN SECTRY, WORKING GROUP D ATTN WORTMAN, D., 13200

ATTN LANHAM, C., 00210
CRYSTAL PHYSICS LABORATORY ATTN KARAYIANIS, N., 13200 (10 COPIES)
MASSACHUSETTS INSTITUTE OF TECHNOLOGY ATTN SPOHN, D., 21300
CAMBRIDGE, MA 02139 ATTN WASILIK, J., 22800
ATTN DR. A. LINZ ATTN MCLEAN, F., 22800
ATTN DR. H. P. JENSSEN ATTN WIMENITZ, F., 20240

ATTN SCHARF, W. D., 13200 (10 COPIES)

19



I I


