AD=AD97 202 ?ARRchlng?gng%;gS ADELPHI MD F/6 1771
HE A - INTERACTION IN AN INFINITE SLAB OF 1S -
APR 80 W D SCHARF O0TROPIC ETC(U)
UNCLASSIFIED HDL-TR-1921

aE |
EiEEEN —




“m 10 =i 2

—_— 32
== & "m %

(£

T =
““__;__ L

28 flig e

MICROCOPY RESOLUTION TEST CHAR]
NATIONA, i ail ot TAN[AWD T M

'




MmAV97T202







UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
¥ 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
"/ | HOL-TR1821 AD-Apg7
- [0, TITLE (and Subitrie) . ) S. TYPE OF REPORT & PERIOD COVERED

! 6 The Acousto-Optic Interaction in an Infinite
-4 ! Slab of Isotropic Mlti'l’l ? €. FERFQRMING ORG. REPORT NUMBER

S - p

) jﬁ:yvnogy _’ 8. Co
; ! !
N ! William D,‘'Schart g; 1L161101A81A

e
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Harry Diamond Laboratories AREA & WORK UNIT NumGERs
2800 Powder Mill Road Program Ele: 6.11.01.A
Adelphi, MD 20783
11. CONTROLLING OFFICE NAME AND ADDRESS
U.S. Army Materiel Development ‘__t
e

and Readiness Command
Alexandria, VA 22333 ) é P
L3 HOII!O‘ING Aainav NAME & ADDRESS(!{ ditferent from Controlling Office) 15. SECURITY CLASS. (o =i

UNCLASSIFIED
WW

T6. OISTRIBUTION STATEMENT (of this Raport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, (f different froy Report)

18, SUPPLENENTARY NOTES

DRCMS Code: 611101.91A0011.A1-A1

HOL Project: A10935

19 xEVY (C on atde 1t y and by block number)

Acousto-optics
Diffraction
Mathieu functions

e __‘E ABSTRACY (Cu - 7 - B diock number)

1" A perturbstion theory approach is taken to the problem of the diffraction of an optical piane
wave by an acoustic wave propagating in an infinite slab of isotropic material. This treatment
does not, like earlier treatments, neglect reflections at the interfaces, and thus can be applied to
transparent solids, for which there is an abrupt wave-impedance mismatch at the interfaces.

A

0D ,5%" W3  £ormon o7 ' wov 6813 ossoLETE UNCLASSIFIED

SECUMTY CLASSTFICATION OF THIS PAGE (When Dare Entered)

o e

—ie i, T

ik xancler




CONTENTS

Page

INTRODUCTION. .. oot e i e ettt te e e reaaaans 5
CTHE O RY .o e e e e 6
GEOMETRICAL INTERPRETATION. . ... .ot 8

. COMPUTATIONAL RESULTS . ... ..ottt n 9
LITERATURE CITED ... i i ettt ettt et iaees 11
NOTATION. L e e e e e e e e 11
APPENDIX A. — The Acousto-Optic Interaction for Bragg Angles ...................... 13

FIGURES
. Incident wave is split by acoustic wave into discrete diffracted orders .................... 5

. Representation of zero-order interactions (Snell’s law) in physical and wave-vector space.... 9
. Internal backward and forward travelling waves....................... ... 00l 9
. An example of Bragg resonance, which occurs for A/Asin § = N/2..................... 9
. Comparison of Nomoto solution and seventh-order plane-wave expansion................. 10

. Second-order term of undeflected beam as function of angle, illustrating Bragg resonance ... 10




N

1. INTRODUCTION

Many treatments of the acousto-optic effect —
the interaction of light with sound — have been
published.'”” These treatments assume an infinite
slab of isotropic material in which an acoustic wave
is propagating parallel to the slab surfaces. A
coherent, monochromatic electromagnetic plane
wave is incident on the medium from one side, and
emerges from the other side broken up into discrete
diffracted plane waves of all integral orders (fig. 1).
The acoustic disturbance modulates the refractive
index of the medium, producing what may usefully
be visualized as a diffraction grating.

In previous work, the researchers have used a
scalar wave theory (neglecting polarization effects)
and have (except for Berry®) assumed that re-
flection from the two interfaces can be neglected.
Berry has considered reflections (in a scalar
theory) and shows that reflected diffracted beam
intensities for a slab of a certain thickness are
directly proportional to the transmitted diffracted
beam intensities for a slab of twice that thickness.
(Actually he, like the other authors, had in mind a
liquid medium.) The proportionality constant is

2
n—1\

n+1

For liquids, this quantity tends to be small (0.01,
or so), whereas for solids it may be appreciably
larger.
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In an attempt to model the acousto-optic effect
in a transparent solid, the author has undertaken to
generalize previous results to include reflected
waves, and also to consider anisotropic media. The
work reported here uses a scalar theory for an
isotropic medium (like earlier work), but with
rigorous boundary conditions — i.e., solving for
reflection as well as transmission. The problem is
treated by using a series expansion in the parameter

AZ
é N

(where & is the intensity of acoustic modulation,
and A and A are acoustic and optical wavelengths
respectively); hence, the expansion converges only
when this parameter is small. A vector treatment of
the interaction in an anisotropic medium will be
reported in a subsequent paper.

Motivation for this research is given by the
experimental work of Berg, Lee, and Udelson,*’
who are investigating the acousto-photorefractive
effect in y-cut slabs of lithium niobate, an aniso-
tropic material. In their work, the acoustic dis-
turbance is given by a surface acoustic wave
(SAW) excited by interdigital transducers and

ACOUSTO- OPTICAL INTERACTION

N
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Figure 1. Incident wave is split by acoustic wave
into discrete diffracted orders.
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propagating along the c-axis. The slab is subjected
to a high-intensity short-duration laser pulse,
which produces a “freezing” of the instantaneous
refractive index, an effect which can be used in a
memory correlator. Also, work is being done on
real-time acousto-optic correlators and convol-
vers using two SAW’s simultaneously. For a com-
plete understanding of these processes, a thorough
theoretical treatment of the diffraction is needed.
This paper treats the isotropic time-independent
case, and can be regarded as a preparation for
treatment of the full time-dependent anisotropic
case. (The time dependence is a trivial addition
giving a frequency shift of the diffracted waves.
Anisotropy, however, introduces considerable
complication, because of the acoustic coupling of
ordinary and extraordinary modes.) This paper
does not treat the spatial dependence normal to
the surface (exponential falloff).

2. THEORY

The physical system to be analyzed is an
infinite, isotropic, and lossless slab of thickness L.
An acoustic disturbance is propagated through the
medium in the z-direction parallel to the slab
surfaces, and the x-direction is chosen normal to
the slab surfaces. A plane wave of monochromatic
light is incident in the x-z plane, at an arbitrary
angle and linearly polarized in the y-direction.

The motion of the acoustic disturbance is
neglected and its effect is incorporated as a varia-
tion in the dielectric property of the material
according to

e = £+d8cosqz

where
¢ = dielectric constant of unmodulated
material,
¢ = modulation amplitude, and
_ 2n
1SR

This assumption corresponds approximately to
the interaction of a pulsed light wave whose
duration is short compared with the acoustic wave
period. The wave equation for a light beam of
radian frequency w and amplitude E is then

2 2
- (V2+%E) E = (-‘:—zacosqz)[i A

where c is the velocity of light.

A propagating electromagnetic mode inside the
medium can be resolved into plane waves as
follows:

E = X Epnqexp(ikx) exp(iyaz) A% . (2)
ns
where

¥y = z-component of incident light wave

vector,
Y = Y+ ng . (3)
K= KA . (h
t=0
2 2
w A
A=8c,q,=6—)\—, )

Note that this is not a power series expansicn in
A, sincek = k(A). and therefore it is not unique.
It can more aptly be termed a plane-wave expan-
sion. Substitution of equations (2) and (4) into the
wave equation (1) yields

ns

2
p [(Ko + - t)Em + 12 K ¢En,.. A ]
c =
exp(ikx)exp(iyaz)A* =

s 2

2
z _(‘]—(En'l.n-l + ErH 1.~ I)

exp(ikx)exp(iy,z)A* . (6)

e e = e




The zero-order component Eg, represents a
*normal” mode of propagation for the medium —
i.e., a solution of the homogeneous equation

2
(A’+ —‘-‘-’;—s)E =0
¢

From this we see that
wl
. 2
K = = Y

Equating like powers of A in equation {6) yields the
recursion relation in E;,

nin + 20)E,, = % (En-l.s—l + En+l.s-l) -

—L,- 3 KiEnoot | )
q 1=1
where
ao X
q

Given the angle of incidence of the light wave, 8, y
is determined by ¥ = w/c sin 8, and equation (7)
generates the corresponding propagating optical
mode of the perturbed medium.

The above solution can be written as
E = exp(ikx)e(z), where e(z) will be showntobe a
Mathieu function. Equation (1) becomes

dl wl wz
— + 5 e-K+ 5 Gcoszq]e(z) =0
dz c c

This is Mathieu’s equation:

2

f
T + (a—2hcos 28)f = O

—

where

2 = qz .

a= —“,—[ﬂ: €— k’] = (2a)’ + 0(A?) .
q ¢

2

7
cq

Thus
e(z) =X Ep, exp(iynz) A = f(a.8) .

where f(a,£) is a Mathieu function. This function
will not in general be one of the well-known
tabulated periodic functions ce, and se,, but, in
general, will be a Floquet solution," of the form
ez (z), where ¢(z) is periodic. However, when
a = N/2(Naninteger, the Bragg condition), the
solution is a linear combination of the ce, and se,,
(see appendix A).

The preceding paragraphs characterize the
natural propagating modes for an infinite sinusoid-
ally modulated medium. For a finite thickness
slab, 0 < x < L, the electromagnetic boundary con-
ditions require that the solution be an expansion in
a subset of these natural modes. requiring a new
index:

E = HES Emns exp(ikmx)exp(iynz)A* . (8)

Also a backward-travelling, reflected. and a trans-
mitted wave are required:

F= n§ansexP(—ikmx)exp(iYnz)As » 9)
5

R = I Ry exp(—ipnx)explivaz)A® , (10)
ns
T = ¥ Tus explipnx)expliynz)A® ,  (11)
ns
where ,
R (12)

Now the wave equation (1) yields a new recursion
relation:

(n—min+m+2aE,,. =
'%"(Em.n—l,nﬂ + Em.n+l.s-l) -

]
N B Mclachian. Theor and Application of Mathieu Functions. Ovford
Press, (ford (1947)




KntEmns—t . (13)
1

] Mm

1
3

q ¢
There is a similar recursion relation for F.

The boundary conditions, applied at x = 0
and x = L, guarantee continuity of tangential E
and H:

—Rps + Enps + Fons =

- Z (Emns + ans) . (143)
()

anns + kno I':nns - knu ans =

s
- lzo(km.sr.—lEmnl— Kmns—1 anl) , (14b)
m 1=

(#%ns)

PnoEnns + MnoFons — exP(iPnL)Tns =

- z i (Pm.s"lEmnl +Mn.s-—l anl) 9(14‘(.‘)

m =0
(#ns)

kpoProEnns =~ knoMnoFans — Pn e"P(ian)Tns =

s s—A-1
- X X X
m I=0j =0
(#n)
(km.s—l Pm.t- jEmnj - km,s—le.l-—ijnj) ’
(14d)
where
exp(ikpl) = 3 PmiAl .
1=0
exp(—ikyl) = !Z Mpial . (15)
=0

If the incident plane wave strikes the x = 0
interface with a 2-direction cosine of y,, then the
zero-order terms Eqo. Fogor Roos and Ty are just

those given by the familiar Fresnel relations for an
unperturbed medium. The first-order terms are
then generated from the recursion refations (which
yield Eqgy,, Eo_ s Fou1o and Fy_,,) and the boundary
conditions (which yield R,,.E,;;, Fyy. Ty, and
R_; E_i_1. F_i_11. T_},) This process can be con-
tinued indefinitely, and is an unambiguous way of
generating the solution for a given incident plane
wave, provided A is “small,” so that the series
converges. The recursion relation (13) serves not
only to generate the E ;.. but also to generate the
Kmt- When m = n, the left-hand side of (13) is
clearly zero. The K, s—m is determined in terms of
low-order values of K, { and Eqpg. (Enns and Fyps
are determined, as previously stated, by the
boundary conditions.)

The left-hand side of equation (13) is also zero
whenever n + m + 2a = 0. This is a funda-
mental problem and in fact invalidates the pro-
cedure, but it occurs only when &« = N/2 for
some integer N — the Bragg condition. This
difficulty can be dealt with in practice by simply
treating an approximate problema = N/2 + &
An elaboration of the theory is givenin appendix A.

3. GEOMETRICAL INTERPRETATION

There is a simple geometrical construction
which is a useful aid in visualizing the above
treatment of the acousto-optical interaction. This
construction derives from one often used to de-
monstrate Snell’s law. Thus, in figure 2, two views
of the simple unmodulated boundary-value prob-
lem are given: (a) is self-explanatory: (b) is more
abstract. Here the circles (in wave-vector space)
represent the naturally propagating modes in the
various media. Their diameters are

w w - w
cvc\fqand—c—

Figure 3 represents the acoustically modulated
medium. Here are represented the higher-order
(m.n) terms — plane waves generated by the
recursion relation (13) and the boundary condi-
tions (14). The (0.0) vectors are as in figure 2.
Equation (13} generates (0.1) and (0.—1). Then

i




(2) PHYSICAL SPACE (L)WAVE-VECTOR SPACE

&
NI o s N -
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d i/ M \ N
| - - .
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Figure 2. Representation of zero-order interac-
tions (Smell's law) in physical and wave-vector
space; boundary conditons require that wy, ¢ csinf
be constant for all media.

PLANE-WAVE DECOMPOSITION

Figure 3. Internal backward and forward travel-
ling waves: to each “lattice site™ in wave-vector
space corresponds a complex amplitude, whose
value is given by the recursion relation (eq (13))
and by the electromagnetic boundary condition.

equation (1-4) generates (1.1) and (—1.—1). Then
equation (13) generates (1.2) (1.0). (0.2). (0.—2).
(—1.0). and (—1.—2). Equation (1-}) generates
(2.2), (—2.~2). and a second-order term for (0.0).
and so on. It will be recognized that the recursion
relation imposes a vertical coupling on the diagram.
while the boundary conditions impose a horizontal
coupling.

It is important to note that. in figure 3. the
“circle™ is not a true circle, but is deformed by the
A-dependence of the kg,

The Bragg problem (@ = N/2) can be seen
from the diagram (fig. 4. where N = 1)} to arise
from an “identity crisis™ in certain higher-order
terms — i.e., “off-circle”™ terms will coincide with
“on-circle”™ terms. The “off-circle™ coefficient
blows up as it approaches the “circle,”

Also, in the more general anisotropic case, even
the zero-order surface will no longer be a cirele, but
a more general second-. fourth-, or sixth-order
surface.

BRAGG RESONANCE (N=1)

|
|

N
) a
\0.1 |

/141

I
,«/
e

Figure 4. An example of Bragg resonance. which
occurs for A Axinf = N 2 :this arises analvtically
from a singularity in the recursion relation. geo-
metrically from the “double labelling™ of an on-
surface lattice point.

4. COMPUTATIONAL RESULTS

It is illuminating to compare results obtained
from the above formalism with those obtained
from earlier efforts. Nomoto” has done caleulations
for an isotropic acoustically modulated medium
assuming normal incidence. Inthis case (@ = O\
the z-dependence of the internal fields reduces to
the tabulated periodic Mathieu functions cey,. dis-
posing of the need for seri- < expansions and so also
of the requirement that A be small. (Nomoto
neglects reflections — that is. he does not use the
boundary conditions — but. under the assumption
of a not-too-abrupt e-transition at the interfaces.
this is an acceptable approximation.)

Comparisons between the present author’s and
Nomoto's caleulations are shown in figure 5. Here
are compared the intensities of the undeflected

o
O Nomota, Diftraction of hight by wltrasound Fugensim of the Rndlowon
Mheom, Jap | Appl Phaa 1001071, 610020

o




o ; o W
Figure 5. Comparison of Nomoto solution and
seventh-order plane-wave expansion; amplitude of
undeflected transmitted beam is shown as a func-
tion of slab thickness.

<T0 = Z Tus explipox)exp(iv,z)A° )

transmitted wave. as functions of thickness L.
using the two methods. For the system considered.
A = 1,. The applicability of the expansion caleu-
lation, which was performed to seventh order. is in
some doubt for such a large A. Also, w/c = 10,
q = 0.03. ¢ = 1. and L varies from 0 10 20 em.
The value ¢ = 1 was chosen to minimize the error
arising from Nomoto’s no-reflection assumption.
Even for A = 1,, the expansion technique works
well up to a thickness of about 10 em (about 500
acoustical wavelengths). It has the advantage of

applying also for oblique incidence and for abrupt
changes in refractive index, and of being generaliz-
able to include anisotropic media.

Figure 6 shows, for a different set of parameter
values, the amplitude of the Ty, term as a funetion
of incident angle. The Ty, term can be visualized as
having been doubly diffracted back to its original
direction. Here e/c = 10.q = 0.5, ¢ = 5. and
L = 1 em. The Bragg resonance at a = !,
(Yo = 0.25) can be clearly seen.

The parameter values in figure 6 (6. w. q. L)
quite closely resemble those of the system that this
research is designed to model: modulation of an
optical beam by microwave acoustical signals in a
1-cm-thick sample of lithium niobate.

= T B 1
| ose! |
" BRAGG RESONANCE € op :
a-osu’
I s
L 1em
Q 1

Figure 6. Second-order term of undeflected beam
as function of angle. illustrating Bragg resonance.
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APPENDIX A

APPENDIX A. — THE ACOVSTO-OFTIC INTERACTION FOR BRAGG ANGLES

The acousto-optic diffraction process can be
described by a perturbation procedure (see main
bady of paper). A recursion relation, applied in
conjunction with certain boundary conditions,
generates plane-wave expansion terms from lower-
order terms. The expansion parameter is

where § is the refractive index modulation ampli-
tude, A is the acoustic wavelength, and X is the
optical wavelength. The recursion relation is

(n—m)(n+m+20)E s =
Y (Em.n—l,s—l + Em.n+l,s-—l) -

2

s
lgl KntEmns—t (A-1)

4’

Here, n, m, and s label the plane-wave terms which
combine to give the full field pattern. Other vari-
ables appearing are

a = %\sinﬂ , (A-2)
6 = angle of incidence
km= Y KnA' ,
i=o0
E = Y Epnexplilkmx + va2)]A* .(A-4)

mns

In the case of Bragg resonance (@ = N/2, N an
integer), the method fails, since the left-hand side
of (A-1) vanishes. A consideration of the solution
for such cases, and how to obtain and represent
them, is given here.

Physically, the Bragg condition implies perfect
periodicity of the system; displacement by A (the
acoustical wavelength) in the z-direction leaves the

13

system unaltered. (The acoustical z-period is an
integral multiple of the optical z-period.) So our
solution should be periodic in z. After separation of
variables, the z-part of the solution satisfies
Mathieu’s equation; thus, in the Bragg case, a
linear combination of the ce, and se,, is needed.
Since we want a solution whose zero-order term is
exp(ik,x)exp(iNqz/2), our solution is clearly

) -

A2 _9A

exp(ik7x) Ci’,‘\'( 5

z
i exp(ikyx) sex (—%—- ,—2A) (A-3)
where
2 2
ax(~24
(k) = Ky = 4 - 4D
¢ 1
) q'ba(=24)
() = K= e - —
¢ 4
_ 2me
@ y
- 27
a A

and an and by are the Mathieu eigenvalues in
McLachlan’s notation,' and are functions of A.

This solution can be obtained by a modification
of the expansion method presented in the body of
this paper. The modification arises from the degen-
eracy (K_n, = Kg) which results in the Bragg
case, For definiteness. we consider here the case
N =2 —thatis, y = q (@ = 1). We use the
usual recursion relation (A—1), but we start with
nonzero E,, and E,_,,. Then

Koo = pie = q° =K_,,

BV 3 McLochlan, Theors and Application of Mathieu Functions, Oxford
Press, Oxford (1947)




APPENDIX A

For E,,, .

. 1
(O + 20)E,, = E Ego0

The equations for Ey,, and Eq_,, yield

1

Eo = ra Eogoo
. 1
Boowi (D=1 +20)Eo- = 3 (Eow + Ea )
-1
Eo_u= E(Eooo +Eo—zo)
. ; 1
Eo_s: (—3)(-3 + 20)E,_,,= "2' Eo—s
Eo = L E
0-n= ¢ To-20
1
Eox 2)2 + 2a)Ey,; = E Eo
1 .. 1
Ee: = ‘]—6‘ Eo = % Eooo
Egox: (0)(0 + 2a)Ey, = 0 =

| . N
7 (L011+Lo-u) - l

2

KOZEOOO

q 1 1
Ko:Ego =— (’ = Eooo _E Eo—zo)

Eo_2:

2 3

(=2)(-2 +20)Ep_,= 0 =

1 1
_2' (Eo—n +Eo—31 Y Koz Eo-zo
q

g 1. 1.
Koon-zo= 7 - Ehooo—g Eo_z

. 1
Eo_or (—H(—4+ 2a)E,_,,= EEo-n

. 1 I .
Eon= — Eouay= — Eo—30

16 96

(K | 1 1M 1 (o]
—qT+z' T Egoo 0
1 1
Kzz + — | |Eo-2 0
| 4 q 61 "1 L
Thus.
- \2 5
k‘;’ + K‘;’——~0
T/ 3 ¢ 14
. 1 5
l\ozzﬁqz or _ﬁqz
Thus.
ke = koot T Aty
0 T T T K
or
5 ¢
2
=k~ o —— Al ...,
ko koo 21 Tk A

Call the first solution ky and the second K.
Substitution shows that the kj solution has the
property Eq_,,= — Eqqo - and the kg solution has
the property Eq_,, = + Egp . We thus have, to
second order. the two solutions.

1

[:=2

Ego0 [exp(ikoox)exp(i)‘oz) -~

. A'q’
exp(ikgox) exp(—l‘/“z)] exp (i _Zﬁ(g - _‘)
tRaoo

= i Eop explikox)sin gz . (A-0)

E* = % Eo00 [exp(ikmx)exp(inz) +

(ikoox) exp(—iv,2)] X
23 _ Z » _—
expliKgoX} exp Y.2) | exp 1 Ik X

= Fooo explikox)eos qz . (A-7)

14

e e et =




APPENDIX A
If carried out to higher order, these solutions turn The E_,_;; term represents the addition ofa
out to be homogeneous solution which can be considered to
arise from the boundary condition. Thus, using
- . - qz .
E™ = iEep exp(ikox)se, (~—2— .—ZA) . (A-8) ki = _é_ (k: n k;) -~
1 qZ

Z —_ 2
EY = Eo exp(ikiyx) ce, (q? . —2A) . (A9) ko ~ 13 koo A

the second-order solution is given by

As remarked earlier, the solution we want is

. . 1 . 1
w exp (lkf,“’x) lexp(lqz) +A [—6 exp(2iqz) — 7]
E*Y + E7 = Eg [ce, (—-— —2A)
3 -

+ A’ (QL()- exp(3iqz) + 1‘:78 exp(—iqz)

' iq 8x iq’8x
(A-10) exp v exp ke

It is of interest now to investigate the continuity
properties of this solution: to consider the case ! 1
a=1+ 8as§ — 0. For this case, the reader can  — exp (ikﬁf”x) expliqz) + A [E exp (2iqz) — 7]
verify the following: -

exp(ik$x) + i se, (q—; ,—ZA) exp(ik;x):l

- 2 22 21 2 1 I ia’x
Koo = poe—a'q =pee—q ~2q6 . +A’[%exp(3iqz)—? ':T., *‘xm—iqz)]}

Koo = pae = (@ —2)'q" > pse —q" +2¢°6 (A-11)

Ego = 1, This expression also represents our Mathien
function solution to second order. where exp(ik§*'x)

E.. = 1 has been factored out. The x-dependent coeffi-
6 cient arises from the series expansion of the
exponentials:
1
Eoony= — D)
| exp(ik3x) ce, (% .—2A) +
Eoy = 5¢
96
) iexp(ik o x) se,(%z— .—2A) =
K, = -3
2
6
o iq’A’x
| exp(iki’x) |1 — Bk
Iflo-zz‘_ m .
. _ 1 % [exp(iqz) + (-xp(—iqz)] +
E_, =~ 168
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APPENDIX A

1 . 1 1 .
A [ﬁ exp(2iqz) — & + ﬁexp(-2lqzﬂ+

1 . 1 .
Al [T9_2 exp(3iqz) + 198 exp(—3|qz)]) +

exp(ik{x) <l + %x—)

(—;— Exp(iqz) — exp(—iqz)] +

1
12

a[%

exp(2iqz) — T% exp(—2iqzﬂ +

N T T
A [192 exp(3iqz) wzexp( 31qz)]> .

The reader can easily see that this matches up with
the limiting form of equation (A-11), and the
continuity of the solution at Bragg angles is
verified. Thus, the expansion procedure described
in the main body of this paper yields solutions for
the Bragg case inthelimita = N/2 + §, § — 0.
The fact that the coefficients themselves are not
continuous arises from the inherent nonunique-
ness of expansion (2).
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