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0. Introduction. Consider s (_ 2) linear regression

models

(0.1) Xki = ok + 8kki + Zki i 1. k  k = 1,...,s

where, for each k = 1,...,s, Ok is the (unknown) intercept,

(0.2) Rk = (Skl* . kq)

is a q-dimensional vector of unknown regression parameters,

(0.3) Cki = (ckli... Ckq i)

is a q-dimensional vector of known regression constants for each

i = 1,...,n k , and the Zki are all independent (error) random

variables with the same (but unknown) continuous distribution

(0.4) F(x) = P(Zki s x) , k = 1k....s i = . .

A problem of interest is that of testing whether the s regres-

sion surfaces are parallel to one another, i.e., Acceza I r Ott Yo.

(0.5) HO '
(05 H. : e S(unknown)

FV
vs.

H : k #6. for some 1 5 k#j - s

For the special case q = 1 , i.e., testing the parallelism of sev-

eral regression lines, Sen (1969) has proposed a class of rank order

tests. In the present paper we study the problem in the general

case q 1 Preliminary notations and assumptions are given in

AL' i * ' ,'NTIF1C R'SkUfIcj] (ASC)
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section 1. In section 2 a class of asymptotically distribution-

itree alined rank-orcer tests are proposed. These are univariate

c;unterparts o: a "u'tivariate problem briefly mentioned in Sen

dnd Puri (1977) but not solved. The asymptotic distribution of

t }e t,.st statstics is orived n section 3. In section 4 we

de, iv, th, syiptotic relative efficiency of the proposed tests

with respect to the qereral likelihood rat(e test of the same pro-

blem. Fina~1, in sect-ion 5. a.,ymptotic optiality in the sense

A, W ,,' I 4 i s d: " O -

1. Preliminary Notations and As sunpt ioqns. For each

k let

nk

(1.1) k' Cki 1< 1n ..... kqn k)kt

where

.Kmn k m
(L2)ic. "nk i . n=1.... q

We assume that the q q q symmetric matrices

nk

(1.3) Mn - 'c - n  lr )(c -. kn k 1.....s

are positive definite and that the limiting matrices

(1.4) M = lim n M , k=1.....s

exist and are positive definite. Simplifying some of JureCkov'
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(1971) conditions on the regression constants, we also assume

that each cki can be expressed as a difference

Cki :ki(1) Cki(2)
(1.5)

Cki(j) = (Ckli(j) ..... Ckqi(j))

where, for each k = 1 ,...s , m = 1,...,q and j 1,2, ckmi (j)

is nondecreasing in i , and the Ckmi(j)'s satisfy

lira nkl 1 max Cki(.) - C
nk- k k kmknnkM

(1.6) k

Ckmn (j) = nkl Y Ckmi(
k i=l k j

and

(1.7) lim n~ k ki - c km(J)] -E (O,
k k

which together imply the Noether condition

1.8 ) Max Ckmi (j) - Ckmn(j) [ Ckmi(j) 2 kmn (J )

nk n nk ik

We denote the total (combined) sample size by

s
(1.9) N Y k

k=1

and assume that the limits
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(1.0) r = lIr (nk/N) , k =1 s

exist and satisfy

(1.11) r rk 5 1 - r, k i, s

for some 0 < r < 1/s . Thus we have

(1.12) lim nk  0 0 k =
N-co

and

S

(1.13) T r 1
k=l

and the matrices

(114) = lim N Mkn lim (nk/N)Mk  rk k 1,...,s
N-o k N-o ok,

are symmetric and positive definite.

For each positive integer n , let the scores a n(1) ,...,a n(n)

be generated by a non-constant and square integrable function

on (0,1) according to one of the following two ways:

(1.15) an(i) = ,ri/(n +1)1 , i = 1.....n

or

(1.16) an (i) = E[I (Uni)] , i =

where ... nn are the order statistics of a random sample

of size n from the uniform distribution over (0,I). We assume

that 4 can be expressed as the difference = - 42 of two



6.

non-decreasing and absolutely continuous functions 1I and

42 on (0,1) . Let

(1.17) X( ) = [4(u) - T ]2 du , = ,(uldu

0 f0

Thus we have 0 < ANp) <

We assume that the underlying distribution function F has

an absolutely continuous density f = F' with finite positive

Fisher information

(1.18) 0 < I(f) lf'(x)/f(x) 2dF(x)

We note that

(1.19) 1(f) = [X(l,) 2 -- [ Ufu) 2 du

0
where

(1.20) f (u) -f'[F- (u)]/f[F- (u)] , u - (0,1)

with

,41

(1.21) Of = f(u)du = 0

0

2. The Proposed Rank-order Tests. For b= (b I .... b) ]Rq

and k1....s, let

(2.1) R (b) = the rank of X - bcki among

kin k ki -k

Xkl - bckl. Xkn - bcknk  in the ascending order of

magnitude,
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nk

(2.2) Skmnk(b) l (ckmi kmn an [R kin(b)1 , m =1...,q
i1k k k

where an(1) ... 'a (n are generated according to (1.15)

or (1.16) (with n replaced by nk),

(2.3) Sk (b) = (b),...,S (b))

-kn kin k kqn k

and define

S

(2.4) -(b) S (b) (SN (b). .. S (b))
k2 b- knk Ml Nq

Let
(2.5) 

{b g ___ SN(b) minimum}

and choose one element

A
(2.6) 1N N B(N)

as an estimate of B . Define the s vectors of aligned rank

statistics

(2.7) - sk U , k = 1,,q k Nk

and let

(2.8) N N nk (i) - I
k=l i=l k k

where

(29n i
(2.9) an n i-[ a, k 1. . .s

n 'k -- nl f | .. . - - . . . .
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Then a class of aligned rank-order tests of (0.5), each deter-

mined by a score-generating function i , can be based on the

statistics

(2.10) N = I SNkMkn %Nk
k=1 k

whose asymptotic distribution under H is given by Theorem

2.1, which in turn follows from Theorem 3.1 (see section 3).

Theorem 2.1. Under H 0 ON has asymptotically the (central)

chi-square distribution X2  with (s - 1)q degrees of free-(s-l)q

dom.
For 0 < C < 1, let X2  be the upper i00ex point

(s-l)q,c

of the distribution. Then for large N we have the
(s-l)q

following asymptotically distribution-free test of approximately

size c

(2.11) Reject H0 (in favor of H ) if and only if

Q X2
N (s-l)q, e

3. Asymptotic Distribution of the Test Statistics. Consider

the sequence of hypotheses

(3.1) H N - + N-% * k = 1,...,s

where the s vectors b ] , k = 1,..., s are such that

(3.2) b* 0
k=l

II
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Then the asymptotic distribution of QN under HN is given by

the following theorem.

Theorem 3.1. Under HN P QN has asymptotically the non-

central chi-square distribution X2  (AQ) with (s - l)q(s-l)q Q

degrees of freedom and noncentrality parameter

(3.3) AQ Ly( f)/A(t)2 s bM *b
k=1 k l

where

(3.4) y(W, f) =  (u)f (u)du

Remark. Clearly for b* = b* = 0 which satisfy (3.2),

HN reduces to H0 , and A reduces to 0 Thus Theorem 2.1 is

a special case of Theorem 3.1.

For later purpose we also estimate the sk's separately. For

each k =......s , let

(3.5) B = {b Sn(D) minimum}
kn= ? m(Dl mnmm

and choose one element

A

(3.6) 3 B

as an estimate of 8k based on the k-tb sample

(3.7) Xknk (Xkl ..... Xknk)

We note that since the s samples Xn are independent
A A 1 vs

so are the estimates b .... Sn. By Jureckova's (1971)
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results (see Theorems 3.1 and 4.1, and Lemmas 4.1 and 4.5),

the distribution (denoted by D ) of nk ( - is

asymptotically normal (denoted by N q), i.e.,

Nj A0A~)/(, 2 -1
(3.8) rn (6kn- Bk)I - k(OL(0//Yf)-2Mkl) (k 1,....,s)

(3.kk k

and

;2 A(3.9) nk  kn (6k k o p(1) (k = 1... ,.s)
k kn~ k knk

Similarly we have

(3.10) N s O p(1)

We need the following lemmas to prove Theorem 3.1.

Lemma 3.2. For each k = 1.....s we have

(3.11 I,- iA A
(3.11) N- Nk = y( , f)N (-kn k +_ A ^ (1)

= - BN)Mk + op (1)

Proof. By Theorem 3.1 of Jureckova (1971), for each

k = 1,...,s we have

A -n S )9 =-i
(3.1) kkn k ( k n k  k -kn k ( k

)

(3.12) k

- y(^fn(, - + op (I)k k(bf n kk

and

- ^)n- S 8k

(3.13) nk Sknk (8N n k -knk  ~

A

-(O,fn - Mk + 0 (1)

kN.
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Subtracting (3.12) from (3.13) and using (2.7) ard (3.9), we

have

A A
(3.14) n S -(c'f)nkL] P - N)Mk + 0 (2

Multiplying both sides of(3.14) by (nk/N)' an . usino (1.14),

we obtain (3.11).

For later use we also define the q - q ratix

s(3. • = (dm

k =!,

which, beina a sum of symretric and positive-- definite matrices,

is itself symmetric and positive definite and hence has a symmetric

inverse

(3.16) A = D-  =(am)

Thus we have

s ~ s
(3.17) DA = AD= A A k q

k=1 k= q

where I is the q x q identity matrix.
q

Notation. Let {Un  and {Vn } be two sequences of random

vectors of the same dimension. Then

(3.18) U n V if and only if U - V = o (1)-n *-n ~n -n p

Lemma 3.3.

A S A

(3.19) N "S2 N l X kn kA
-N k=1lk k
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Proof. By (2.4), (2.7), (3.11) and (3.15) we have

A s

~N _N k_q
w.s (^ s

S A A

2 (3 - ) + 0 (1)
k:=J k

A M'*2 A ;
-2 M No. (1)

. -l *'knk k N p

Since - (,f) is a non-zero constant, by (.10) we have

(3.20) N SND - N ,
k_1~ k

which, together with (3.17), implies (3.19).

Lemma 3.4. Under H. , for each k = 1....s we have

(. A 2 *-1
(3.21) VN)( k  - H Mk.kn k q1 _k' ~~ 3 M

Proof. By (3.1), under HN  for each k = 1,...,s we have

n (3nk- 8) =-n (0.. ) + (n /N) '5

k -n - k kn k k k _k

and so by (1.10) and (3.8) we have

n- -3)1HNi - N(rkb, ) 2 /1)
k k

Hence, by (1.14), under HN the random vector
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^ _ --

N- (nN) nk(kn

is asymptotically q-variate normal with mean b and covariance

matri x

2 r- - 2 *-I
~x~)y(v) k Mk ~ )y f Ak

Lemrma 3.5. Under 1N, the sq-dimensional random vector

1 A A A A
(3.22) T = N (k^ AN, ^• N In ... N' sn N

is asymptotically normal N sq(b* ,J))/v(<,f) j , where

(3.23) b* = (b*,....b s )

and J can be partitioned as

(3.24) kj)k,j=l .... s

with

(3.25) j = 1kjM. - A

(6kj being the Kronecker delta).

Proof. We prove Lemma 3.5 by showinq that any linear combi-

nation of the components of TN is asymptotically normal under

HN , with the appropriate mean and variance. Let

(3.26) t h(tle...ret S R

where
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3.27) t (tk ,tq f IRq  k- 1, ,s

and let

s
(3.28) U = tS

k=1

Then -v (3.19) we have

S A A

k=l 1nk . N k

S IAN N7' t' - N2  n
(3.29)~ - 3n 1

k~l Kk- ~
S IA I S A *

N ~ N -N 2  M Au
k.1 -kn k- k=l-kn k k

A A

By making the substitution n= (n - .) + C on the right-

hand side of - in (3.29) and then making cancellation (using

(3.17)), we have

S

(3.30 - 8)(t~ M*Au-)(3.30) TN(-n -k-ikk=l

Now by (3.21) and the symmetry of and A , under HN the

random variable

A

N (8k - ) (tk - MkAu

is asymptotically normal with mean b*(t k  *Au') and variance
k k-- k *-lndvaiac

/( ) 2(tk uAM*)M-( (t MkAu')

A

So, by independence of the 6kn Is , under HN  the right-hand
k ergthn
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side of (3.30) is asymptotically normal with variance
2 2

F\(2) (., f) 2 c where

S

(3.3 1) c 2  t - .)Mk-N(t, - MAu-)
k=l

and mean

s S s
b *ut ) = j b~t - ( b*M*)Au'-i '(K k k-l k- kk

k=l k=-l ~kk k1 ~k
(3.32)

b't 
,

the last equality in (3.32) beino a consequence of (3.2).

Expanding the right-hand side of (3.31) and using (3.17), we have

2 s s
A "* kt -k= Y k _ tkAU

k=l k=l

S(6 M* - I - A) t"

-k j. ( kjM* -

k=l j-1

=-tJt-

Thus, for any t. JI ]sq , TN t under HN  has asymptotically a

(possibly degenerate) normal distribution with mean b*t' and

variance 2 (i)/y( ,f) tJt " It follows that

(3.33) D(TNIH N) - s (b*, [A(ip)/-y(,f) 12J)
-'NN) sq
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Lemma 3.6. Under H , the random variable

( ).,-2 s A A )M ( A
(3.34) O* = N'y ,f)A/ k'l (6 - A

N )

N k- -('f/(~U ?~ kn k k k )

is asvmptot ica _l X 2  (
.. ... .... (s-l) q Q

Proof. Let

(3.35) N f)/ T N..... Ns

wher

(3.36) - _,N , k -1,....,s .
k

Then by (3.33) we have

(3.37) D(Y HN  j ([-y(, ,f)/X($)]jb*,J)

Define the (sq) x (sq) symmetric matrix

(3.38) K ( j,1 .....s kjN k,jl,.... s

Then (3.34) and (3.3) can be rewritten respectively as

s
(3.39) QN Y KY'

N -NNY; = YN --Nk=l

and

(3.40) A0  {y(,f)/X () ]b*}K{[-y(),f)/X ( ) ]b*}-

So, to prove Lemma 3.6, it suffices to show that KJ, or equiv-

alently its transpose

(3.41) W = JK

_- J--
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is id, :lttert with tract equal to (s - 1)q and that

(1.42) b *KJKb*' b*Kb*"

(see "17 (vT1), Corollary 2s.1). By direct computation

we hav e

(3.43 W = (Wkjk,=.

w:-cr-

(3.44 I - AM k,j-I

By fr-ther coeputatior and (3.17) we havf w - W 9n the other

hand

KJK KW N(LkM - AM

and .;o

s 9 s
b*J~*" hMb*"* * * M'*

b*KJb k - ( bkMk A M b
kIl ki j-i 'I I

(3.45)

b*Kb*

where the last equality in (3.45) follow- fror (.2).

It remains to compute the trace of W . I.,et

(3.46) M k = 1,...,s• k . .. .. q

Then by (3.15) we have

s
(3.47) dm )I CkMP, m,2z = 1......q

k-]
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* K'Q r~i~. i~L we hIavc

* by W44) wp have

a .

k-

Tt- I b 1 , V f- .

rc)o f c-t P' co r, :i- 3.1. 'y errn 3.6 1 r muf h t (,hw t

11Y I-. i) - I. . ' ind (2 *O we \.vc

and so by a•, .....- nd '1.13) we have

(3 ."*)) ItM r

It foltcows from (3.11) and (3.36) that

2 11
(3.52) N Nk k N .....



19.

Now by (1.14) we have

-1 _
(3.53) lir MkN k 1....

N- M n

It follows from the symmetry of Mk that

2A  M- A

(3.54)S M S, - Y M Y
N -Nk kn XNk .Nk'kNk

Supuing up both sides of (3.54) over k = 1,....s and using

(2.10) ard (3.39), we obtain (3.50). Thus Theorem 3.1 is proved.

4. 4 iymtotic Efficiency. Using (3.7) we rewrite (0.1) as

(4.1) Xkn k  X klnk + ekCk + Zknk ,k ] ..... ,s

where

nk
(4.2) 1 (....1) ,-k

(4.3) Z (Zkl. Zknk)

and

(4.4) Ck  (cl ... Ck )

k

is a q n k matrix.

Let

(4.5) XN = (Xln .. .X )_N -I 1 ' sns

(4.6) zN = (Z 1  .,Z
... .. I . . .s
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(4.7) a = (a . . s)

(4.8) 0 =  (Ox, 1 .... ,.)

and let

(4.9) E = (0 .... ,k ... ,0)' k 1.-, s

be the s x nk matrix with 1 n as the k-th row and all the

other rows being 0 Then the s linear models in (4.1) can

be combined into one linear model

(4.10) X = PC* +
oN N -N

where

E 1E 2EE1 E2 - s

(4.11) C1  0 . .. 0

C = 0 C2  0CN  2

0 0 ... C

is an rs(q + 1)J Y N matrix. The parameter space for 6 is

the s(q + l)-dimensional Euclidean space

(4.12) Q = IRs ( q + l )

and H can be expressed as
0

(4.13) H 0 5 o {(abl .. s) bl ." bs0 '1"- . -S

The likelihood ratio test of (0.5) rejects H (in favor of H0
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if the likelihood ratio

s nk
s sup T T I f(X - a - a E J , k 1, . . . s; b q}/

N kup 1 1 ki k -'Ek± kk=-I i=] ~

s nk
, f(Xk a - b c :a b R q k = i s

k= 1 ki k k ki k k k ......

is small, or equivalently if

(4.14) LN = -2 loq A N

is larch-. Her,- f (or equivalently F ) a s -.umed to be known. t
Under Assumptions I - V and VII of Wald (1943), but no assumption

concerning the shape of F , the asymptotic distribution of LN

under HN is given by Theorem 4.1, which will be proved later in

this section.

Theorer 4.1. Under P L is asymptotically X2 (AL ) withN' N (s-l)q L

(4.15) AL = I(f) S b*Mkb*
k=l

To compare the proposed rank-order tests with the likelihood

ratio test, we make the additional assumption that

(4.16) bk P 0 for some 1 q k - s

which makes the right-hand side of (4.15) strictly positive. Com-

bininq Theorems 3.1 and 4.1, we have the asymptotic relative effi-

ciency.
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Corollary 4.2. The asymptotic efficiency of the aligned

rank-order t0st of (0.5) (based on QN) relative to the likeli-

hood ratio test (based on L ) is

eQ, L (F) = 2'('Pf) / Xi(f) () ]

(4 .1 7 ) 2 1 1

= U (u)f(u)du/f [f(U) ]2du ! ,(u) - du

Clearly if the score-generating function 4 is the same

as then the right-hand side of (4.17) reduces to unity.

Corollary 4.3. With the score-generating function q) =

the aligned rank-order test of (0.5) has asymptotic relative

efficiency one with respect to the likelihood ratio test.

Examples. If F is the standard logistic distribution

function, then p(u) = f(u) = 2u - 1 generates Wilcoxon-type

scores; and if F = is the standard normal distribution func-

-tion, then i generates normal scores.

Proof of Theorem 4.1. Consider the map

defined by

0 ) = e) a y e ) =

(4.19)

= s - 9l for k = 2...,s ,(
= (c1 ,  S s ) )Zk - k 1 . . ' . ._S
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Let

(1):(") = ( l...... s+q)

(4.201

_(2) - 2..... s =' 's(q+l))

Then H0  can be expressed as

(4.21) r(2) () 0

Clearly is a homeomorphism and, with the identification

(4.22) = (a'' (o1l -8s(q+l))

has a positive Jacobian det(3&/3e) not depending on e ; more-

over, the first two partial derivatives of 1) ... s(q+l)()

are uniformly continuous and bounded functions of e . Indeed,

the inverse e = & of is given by

(4.23) (E)

with Jacobian natrix

Is  0 0 ... 0

0 I 0 ... 0
q

(4.24) M -0 
1  q q

0 I 0 .. I
L q q

(whose determinant is equal to unity).

Now consider the ls(q + 1)] x Fs(q + I)] matrix
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E F 'F F1 2 s
F D 0 ... 0

(4.25) A C*-C 2 2 0

F 0 0 ... D
S SLss

where

(4.26) E = (6kjnk)k,j=1,..

nk

(4.27) Dk = CkC k = i kii- s

and

(4.28) Fk = (O , .... nkckn k.... 0 ), k = 1.....,s

is a q x s matrix with nkcknk  as the k-th column and 0

elsewhere. By routine computation we have the

Es(q + 1)] x ' s(q + 1)1 matrix

JAN,, AN1 2

(4.29) A MA N M LAA 1

where
s

E Y,

( 4 .3 0 ) 
A N 1 i =

Nl s sI F k Dk
k=lk k=l

is (s + q) ( (s + q)
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(4.31) * SN12 tD2...DJ

(4.32) A* A*"2

and

(4. 33) A 22  kjDk)kj=2 ,

We note that by assumption AN is positive definite, hence so

is A Con-ider the r atrix

S
(4 .3 4 ) M ' I' k k n k

which is symmetric and positive definite and hence has a symmetric

inverse

-1(4.35) GN = Mi

and define the q ), s matrix

(4.36) ( n....C
fN 1 Elns

Then by routine computation and the obvious identity

(4.37) Mknk Dk -nkckn kcknk  k k 1,...,s

it can be checked that

CNGC+E-I -CNGNJ
(4.38) AN1* =-

i
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By further computation and the additional identity

(4.39) F k E F. = k n c , k,j = 1.....s

we have

(4.40) n1A~[ ~ T C c, M G MN21 N,-12 ki k-knk -jn + kn kNjn. k,j=2,... s
(4.0) 1 NI 1 ( j kj k..

So we have the [ (s - 1)q] x F (s - l)q! matrix

:* _ * *-i.*
(4.41) A22 A21N 11 12

2 dj~n - £ G M )

kjkn -n k N jn k,j=2......s

Now HN  can be expressed as

(4.42) HN e =N ('O1N......sN )

We also note that

(4.43) (8 : [(b,....b) - ( b

Then, by Theorem IX of Wald (1943), LN under HN  is asymptot-

ically noncentral chi-square with s(q + 1) - (s + q) = (s - 1)q

degrees of freedom and noncentrality parameter

(4.44) AL I(f)( 2 )(*N)A (2) (ON) = I(f)AN

where

(4.45) A• N- 1 (I) - (II) - (III) + (IV)'
N

with
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(4.4) (W (b*, .. ,b *) (b*....b)-)G( i

b*M bI )G Y I
- k knk .k -K*Nn N k

k=2 k k=2 k kk2

(4.47)

b*Mk)G~Mb
k=1l

(4.48) (III) = (I)

and

(b * -* * * "

(IV)

(4.49)
**M b M GM

bl ln 1  -1 ln1 N lnlb

By (1.14) and (3.2) we have

s

(4.50) lir N 1  bkM -bM
N k=2 nk

And by (3.15) - (3.16) and (4.34) - (4.35) we have

(4.51) lim NGN = A

It follows that

Arn =A bkMkb and so lim = A p

N _= 1 N k 'N' 1 Ni

The proof is complete.

S.
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5. Asymptotic Optimality. Let I and B be non-
NJ N

singular square matrices of orders s + q and (s - 1)q

respectively, 5atisfying

(5.1) NINI IIN1

and

(5.2) B~BN

and define the (s + q) (s - 1)ql matrix

(5.3) = (r N)- I *

•N2 = N12

Then the square matrix

(5.4) KN =

of order s(q + 1) is nonsingular and satisfies

(5.5) KN N K N = Is(q + 1)

For (a,b,...,b) P 0 and c > 0 define the surface

(5.6) S(wc)

S I.f (2 ) N (ab)2r

where

(5.7) 
TN = (F N1'N2)

is (s + q) x 1 s(q + 1) !. Consider the transformation of S
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5. ..8) 1 M ( ) . N

where

(5.9) (t*, . ) =J

and

(5.10) = ( ) (2) ()BN

which maps (c) into

S '{ ,C)

(3s) " : (Cl,3 1 ) 1, *  = c}"S -1-1 - N k=2 - -

For !0 Q and p > 0 let

(5.12)

Q2 (00

= 0 . S(w c) for some w E00 and c> 0, and j0 - 8011<

being the Euclidean norm on Q ) , and let Q*(e0,p) be

its image under the transformation (5.8). For e c 0 let

(5.13) T(O) = lim {A[ Q* (e,p)] / A[ 2(e,p) }

where A denotes area. Then by Theorem VIII of Wald (1943) the

likelihood ratio test of (0.5) is asymptotically optimal in the

sense that it
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(a) has asymptotically best average power with respect to

the weight function n(6) and the family of surfaces

(5.14) S = {S(wc) : W E 00 P c > 0} ;

(b) has asymptotically best constant power on the surfaces

in S

and

(c) is an asymptotically most stringent test.

By Corollary 4.3., with the score-generating function

b = f the proposed rank-order test is asymptotically power-

equivalent to the Wald-optimal likelihood ratio test. Thus if

the underlying distribution F is logistic, then the QN-test

using Wilcoxon-type scores is asymptotically optimal; and if

F is normal, then the normal-scores rank-order test is asymp-

totically optimal.
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