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1.0 INTRODUCTION

As part of the Air Force Base and Installation Security System

(BISS) program, Rome Air Development Center (RADC) has sponsored this

contract, F30602-79-C-0176, entitled "Data Collection, Analysis and

Test" (Data CAT). The purpose of the project was to specify a data

base, and its method of collection to be used in testing of present

and future voice, fingerprint ar' signature authentication devices.

This report is the final summary of the results of that effort.

Entry control and the associated concept of personal identity

authentication have long been of interest to RADC, and are integral

parts of the BISS program. A large portion of the effort is devoted

to the Scquisition of automated entry control systems to provide all

levels of security. The diverse requirements of varying applications

and levels of security make for a multiplicity of devices and system

configurations, all of which require testing and evaluation. The test

procedures are expensive ano often inconsistent and inadequate. Data

CAT is designed to reduce these pioblems. Specifically, according

to the Statement of Work, "The objective of this study is to determine

an experimental procedure for the collection of data bases to be used

in testing and evaluation of present and future voice, fingerprint,

and signature authentication techniques."



A major cost in entry control device testing is the collection of

adequate data from test subjects.. With Data CAT, this need be done

only once, in order to generate the data base. Subsequent testing is

performed by reproducing the appropriate attribute from the data.

Since the same procedure is followed for every test, results should be

consistent and comparable. Furthermore, proper design of the data

base will ensure adequate testing.

There were four major issues to be resolved by this effort.

First, how much data is required in the data base? For any binary

decision making device, there are two types of errors: False

rejection and false acceptance. These have been given the names Type

I and Type II errors, resp-ctively. We wish to know how much data is

required to determine the Type I and Type II error rates to a given

confidence. Naturally, we wish to determine the minimum amount of

data required, since the cost of collection and storage increases with

the quantity of data. This issue speaks to the question of the

adequacy of the testing and points out one reason why other procedures

were inadequate. Because of a Lack of unoerstanding of the statistics

of the problem, or to cut costs, inadequate quantities of test data

were collected. We have made our determination of data quantity based

on a thorough statistical study of the problem.

Specifically, we have determined the minimum total number of test

samples and the minimum total number of individuals required to

determine a Type I error rate of 1% with 90% and 95% confidence, and a

Type II error rate of 2% and .001% with 90% and 95% confidence. We

have also made an estimate of the number of samples required for
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enrollment, and the number of different sessions required to cotlect

the data.

Second, what information should constitute the data base for each

attribute? The answer is, of course, all the information requirec to

reproduce the attribute. This answer is useful though, only in

pointing the way to the real resolution of the problem and indeed, to

the key risk area of this effort: How to reproduce the attribute.

For example, it is not exactly obvious how one should store and

reproduce a fingerprint. Optical projection of the image is not

adequate because at least one known system requires actual physical

contact of the fingerprint ridge on the input sensor [65). The

presence of the ridge changes the index of refraction at the boundary

and it is this change which is detected. It has been suggested that

the input sensor could be bypassed and its output to the analysis

stage could'be simulated. This is not acceptable since the sensor is

such an important part of the d' 'iice; its performance must be

evaluated also. We propose a procedure which surmounts all these

obstacles.

In the case of the voice data base, the difficulty is not in the

physical reproduction of the attribute - that can be handled by an

amplifier and loudspeaker - the difficulty is in constructing the

utterance to be reproduced. The data base must have universal

applicability which for voices means that the data must be capable of

reproducing an arbitrary utterance. Voice verification devices employ

a large variety of utterances for verification and it is not possible

to determine a priori which utterances will be required. This fact

I3



dictates that some form of speech synthesis is necessary to reproduce

the speech data base. Not only must the utterance be synthesized on

some fundamental Level, but it also must be recognizably distinct for

each subject in the data base. This requirement is indeed a stringent

one.

It is clear, then, that the method or procedure used to reproduce

the attribute will determine the information to be stored in the data

base.

Third, how is the data base to be stored? The resolution of this

issue is dictated by the nature of the information to be stored. For

instance, analog speech data should be stored on analog magnetic tape.

In general, the quantity of data will be fairly Large so that some

form of archival "off-line" type of storage would seem appropriate.

When time comes to test a device, the data could be brought "on-Line"

to some convenient form. Consider, for example digital speech data.

The volume of data is so large that it would not be economical to keep

in core memory or even on-line on disk. Digital magnetic tape would

be most appropriate. For device testing, the data would be easily

transferred from tape to disk, or even read from the tape directly, if

random access is not required.

4



Finaly, how should the data be collected? One would Like to

collect the data in a way that assures its accuracy in representing

the population. To do this, one must first determine the population

to be sampled, then where to find the subjects, then finally, how to

ensure the cooperation of the subjects in obtaining accurate data.

Before pursuing the issues at hand any further, a few general

remarks about our approach to the design of the data collection system

are in order. Ideally, we would Like the collection hardware to be

smalL, portable and inexpensive, as we anticipate coLLecting data from

Locales across the nation. Processing and reproduction equipment is

not so constrained, so Long as the data can be recorded and brought to

a central facility. Our system will require a minimum of special

purpose hardware, and will be general enough to facilitate expansion

and modification.
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2.0 QUANTITY OF DATA

The first issue addressed was that of determining the amount of

data required for Type I and Type II error testing. Recall that a

Type I error is a false rejection and that a Type II error is a false

acceptance. Derivations of the results presented in this Section

appear in Apendix A. Consider first Type I errors.

2.1 TYPE I ERROR TESTING

We would Like to know the minimum total number of samples

required to determine a Type I error rate of p a .01, or 1% with 90%

and 95% confidence. First note that confidences are only defined on

intervals about some value. Accordingly, we define an interval of

+ .005 or + 0.5%, about p a 1% which allows a distinction to be made

between 1% and 2%. We find then that 1200 test samples will suffice

to determine p a 1.0 + 0.5% with 90% confidence and 1800 test samples

gives us 95% confidence in our result. The arguments Leading to these

results are interesting because they apply to any binary decision with

a fixed, constant probability.

To find the minimum total number of test subjects, we first

establish that the performance specification p =1.0 + 0.5% is the

average system performance, not inividual average performance. Then

assuming the existence of an undisclosed, poorly performing subgroup,
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II

we find that at Least 400 subjects must be incLuded in the data base

to insure that this subgroup does not unduly affect the results. This

notion of subgroups of the popuLation is an important one and will

affect the design of the data bases.

Combining the number of samples and individuals teLLs us that

each subject must give at Least three to five samples for the test

data base for Type I testing.

2.2 TYPE II ERROR TESTING

Now Let us consider Type 11 errors. Like Type I errors, we wish

to determine -he minimum total number of sampLes and subjects

required. The Type II error rates of interest are Pl a 0.02 or 2% and

uP2 r 1 x 10 -  or .001%. Using the statistics developed for Type I

errors, we first define the intervals about p, and P2 to be IL .01 and

+ 0.5 x 10"1, respectively. We find that 800 samples wiLL determine

P1 z .02 + .01 with 90% confidence and 1000 sampLes gives us 95%

confidence. The values for P2= 1 x 10 - 5 + 0.5 x 10-5  are 1.2 x 106

for 90% confidence and approximately 1.8 x 10 for 95%. These are the

minimum totaL number of tests required to determine that the

performance meets the specifications.

7



Using again the notion of undisclosed subgroups, we find that 200

account/intruder pairs are required for p = 2% and 399,996 pairs for

p x .001%. The population of enrolled subjects for Type I testing pan

be paired for Type II testing. With the restriction that the account

and intruder populations cannot overlap, approximately 21 enrolled

subjects will form sufficient number of pairs for Type II error of 2%

and 895 for .001% error.

2.3 NUMBER OF ENROLLMENT SAMPLES

Verification devices require the subjects to first enroll on the

system, so enrollment samples must be included in the data base. In

keeping with good practice E1, the enrollment samples should be

separate from the test samples. How many additional samples should be

collected from each subiect for enrollment? In general, the answer to

this question depends on the dimensionality of the feature space and

the complexity of the decision boundary, neither of which are known a

priori. An analytic solution is therefore not possible, but it is

possible to make a reasonable guess based on current devices. Twenty

samples per subject turns out to be a good, conservative figure and

indeed, it would seem unlikely that more than twenty samples might be

required since an entry control device requiring too Large a number of

enrollment samples would prove inconvenient to its users.

8



2.4 NUMBER OF DATA COLLECTION SESSIONS

Finally, it is well known that there are certain Long-term

variations in the attributes under consideration. How many sessions

are required to account for these variations? To answer this, assume

again that an undisclosed, poorly performing subgroup has emerged as a

result of the Long-term variations. We can then apply our previous

arguments to show that a minimum of 400 collection sessions are

required to ensure against the effects of this subgroup. However, if

we further assume that the temporal variations are not correlated

between subjects, the results for 400 sessions can be inferred from

the results for 400 subjects in one session. Therefore, two data

collection sessions are required; one to collect enrollment samples,

and one to collect test samples. From a study of the Long-term

variations in the attributes under consideration [22,25,90), it would

seem that any period of time longer than four or five days between

sessions should be adequate.

In sum, we recommend that data be collected from 400 subjects;

their selection and the data collection procedure will be discussed in

the sections to follow. The number of samples required for testing is

summarized in Table 1. The collection should take place during two

sessions.

9



TABLE

SampLes

No. Of No. Of Per

Error Confidence SampLes SampLes Subject

Type I, pal +/-.5% 90% 1200 400 3

95% 1800 400 5

Type II, p:2 +/-1% 90% 800 20 2
95% 1000 20 3

Type II, pu.001 +/-.0005% 90% 1.2x10 900 2
95% 1.8x10 900 3

EnroLLment 
20
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3.0 THE DATA BASES

We would like now to discuss each data base separately and in

turn. For each data base, the topics covered will be: The

characteristic features of the attribute and their variations; and

the proposed system for recording, storing, and reproducing the

attribute.

Our aim in studying the variations in the characteristics of the

attributes is to be sure that the data base explicitly contains

representatives of any known subgroups of the population in proportion

with their natural frequency of occurrence. This topic deserves more

discussion: The goal of a data base is to represent variability of

the known population so that test results will be useful in estimating

performance. A data base used to test a device is of Limited use if

the results do not correspond to the actuaL performance of the device

in the real world, and indeed, this is a problem that plagues any

testing program. If accuracy in the test results cannot be

guaranteed, certainly precision can be guaranteed by sound design.

Such a data base would be useful in comparative evaluation of systems

and devices and once experience is gained, correspondence can be made

between test results and real world performance.
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There is a subgroup of the population which must be included in

all the data bases. These are persons with certain physical

handicaps. For the voice data base, speech impairments; for the

fingerprint and signature data bases, persons with malformed or

missing arms, hands, or digits. The reasoning is clear since one

would expect that many such persons would have very high Type I error

rates, although their Type II error rates would probably be low. In

the actual data collection, it would most likely not be necessary to

collect data from such persons, and this is reflected in the data base

specification.

3.1 SIGNATURE DATA BASE

The signature has become the standard means of identity

authentication in modern society. It appears on bank drafts and legal

documents as proof of the signer's identity. That the signature is

subject to forgery is well known and because of this, it serves mainly

as a oeterent only to casual imposters. There are really two aspects

that a signature provides for identity verification. The first is the

static, two-dimensional image itself, signed checks or contracts fall

in this category. It does not take a great deal of skill to forge

this aspect of a person's signature. The second is the dynamic,

ballistic trajectory of the signature as it is produced. Any

witnessed signings fall into this category and clearly this is much

12
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more difficult to forge.

It has not been proven conclusively that signatures are unique to

an individual. Since signatures are a learned activity, one could

certainly imagine that a skilled and dedicated forger could learn to

duplic.te the exact hand movements of another's signature, right down

to the pressure of the dot on an "i", but such effort is hardly

practical. Indeed, little is known about the ballistics of signatures

or their attributes. Much of what follows is based on our own work

and conjecture.

3.1.1 Characteristic Features -

We will concentrate our discussion on the ballistic history of

the signature rather than the image. The basic information that one

might record would be position and pressure (at the tip) as a function

of time, f(t) and p(t), respectively. Straightforward differentiation

of f(t) results in the velocity and acceleration of the tip, v(t) and

a(t). One may also calculate the curvature, x(t) or arc-length, s(t),

or such things as the angle of the pen or the movement of some part of

the hand during signing. One m~y also derive any function in terms of

another, for example, velocity and acceleration as a function of

position, or arc-length as a function of pressure and so on. This

provides a wealth of data from which to extract features.

13



3.1.2 Variations In Features -

ALL the quantities mentioned in the previous section surely have

some natural range. The position, f(t), varies over a range of a few

centimeters, perhaps up to IC in the horizontal direction, velocities

are on the order of 10 cm/sec, accelerations are on the order of

212 cm/sec 2. Maximum velocities probably occur in the middle of Long,

slightly curved or straight arcs, and maximum acceleration occurs at

points of reversal of direction between two such arcs. (See Figure

1.)

It is difficult to see systematic variations in any of these

features that lead to any subgroup of the population. Out of

intuition, one would suspect that handedness and possibly gender may

systematically affect handwriting. The left-handed mechanics of

handwriting are simply different than the right-handed, and this may

be evidenced in the production of a signature, if not within the

completed image. Everyone has certainly rcnarked at one time or

another that a piece was "written in a woman's hand". These

suspicions are borne out by test results of an actual device. C913

It would be appropriate then, to distribute the handwriting data

base according to gender and handedness.

14
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Maximum Acceleration

Figure 1

Typical are in a Signature
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3.1.3 Proposed Data CAT System For Signatures -

We must reproduce the signature as a ballistic trajectory. The

variables required to do this are simply the position as a function of

time, X(t) an Y(t) and as a substitute for the Z coordinate, the

pressure as a function of time, P(t). A spatial resolution of .01 in.

(.25 mm) should be sufficient. A sampling frequency of 100 Hz results

in approximately 1000 data points per signature.

A standard graphics tablet with either a special surface or

special pen for pressure sensing would serve excellently for recording

the signatures. Data for each subject would be collected and

processed in real-time and stored on digital tape. On reproduction, a

modified x-y recorder would serve as the output transucer. The

recorder would be modified to include a pressure transducer to

reproduce the pen pressure. The drawback of this system is that it

requires either very special purpose hardware, or a minicomputer for

supervising the digitization and recording. This makes for a system

that is costly and difficult to transport.

Before any hardware is actually acquired, we recommend c more

thorough study of the range of velocities, accelerations and pressures

involved in handuriting.

16



3.2 FINGERPRINT DATA BASE

Fingerprints(*) have had a Long history dating back as far as the

third century A.D. Evidence from this period suggests that

fingerprints were used as seals and identifying marks on some

documents. It has only been in the Last 100 years, though, that

fingerprints were used systematically as a means of identifying

people. Their usefulness as an identifying attribute stems from two

important qualities. First, fingerprints are unique. No two

I i fingerprints have ever been found to be exactly alike and it is

thought by experts that no two ever will be. Cummins [69) gives an

estimate of the probability for two fingerprints to be identical as

Less than one chance in 10'. Since fingerprint patterns are partly

controlled by heredity, the assertion that no two are identical is put

to the s,,verest test in the case of identical twins. Even in such

twins, the prints are at best only similar, r )t identical. Secondly,

fingerprints do not change in form with age unless altered surgically

or severly damaged. This has been substantiated by observing the

prints of persons taken over intervals of many years [69,713.

(*) The terms 'print, and 'fingerprint' are used interchangeably and
refer to any reco rd of the pattern of lines on the finger, or to the
actual pattern on the finger itself. Whcie a distinction is
important, one will be made.

17



3.2.1 Characteristic Features -

Simple examination of the pattern of lines on a finger will

reveal all the characteristic features. The pattern consists of

ridges (rugae) separated by narrow grooves (sulci), which flow across

the finger. The ridges form a global pattern that can be classified

as one of three general types: Arches, loops, and whorls (see Figure

2). (The line

drawn on the pictures of the loop and whorl are called lines of count;

they are not important for this discussion.) The variations are many

and it is often difficult to make the distinction between pattern

types, but such precision is not necessary for our purposes.

Closer examination (a magnifying glass may prove helpful) reveals

more detail. Along the crests of the ridges are tiny impressions that

are actually the openings of the sweat pores (the white dots in Figure

2). These are uniquely distributed on every fingerprint and could be

used as identifying features by a verification device, but because of

their small size, they are difficult to detect and hence are not of

practical use. Other local features of the print are obvious. These

are the breaks and divergences in the ridge lines that are known as

minutiae. These features are of four types: Forks or bifucations,

ridge endings, enclosures, and islands (see Figure 3). There are

approximately 40 to 200 occurrences of minutia in the average rolled

fingerprint.

18
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SIMPLE ARCH LOOP WHORL (SYMMETRICAL)

Figure 2.
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rudimentaryIpre

ridge Pore

) nclsure 0
Details of ridge structure. The rudimentary

or secondary ridges have no pores.

Figure 3.
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There are two classes of fingerprint verification/identification

devices. The first is based on the local features, the minutia.

Basically, the Locations of the minutia are extracted and compared

with the file prints. The second is generally known as optical

correlation and is not quite as successful. Light is passed through

transparencies of the test and file prints as they are translated and

rotated. The transmittance function is a measure of the correlation

between the two (there is an equivalent process in frequency space).

(803 We must ther Are reproduce both the local features, the minutia,

and the global features, the ridge pattern, from our data base.

2.2 Variations In Features -

Global features vary continuously and a progression of pattern

type can be distinguished (see Figure 4). Pattern 1 is an ideal whorl

and

39 is an ideal arch. Twenty-four and twenty-eight are loops. Of

course the progression can be viewed as going from 1 to 39 or from 39

to 1; no progression in terms of development is implied.

Patteen types are not distributed randomly in the population.

The distinction is a statistical one; pattern types occur with

varying frequency on each digit of each hand and their occurrence is

correlated with race, gender, ha.c.a:dness, and susceptibilty to

j21



2 3 4. 5 -~6 7

9 10 11 12 15 1

1 17 18 19 20 21 22

25 24 25 26 27 28 29

3 1 .2 3 .4 5 36 57 38
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ahA'

A "family tree" of fingerprint types.
(Modified from Mairs.)

Figure 4.
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disease. In general, Loops are the most abundant patterns and occur

with most frequency on the Little finger. Whorls are most common on

thumb and ring finger, and the index finger has the highest frequency

of arches.

People with certain diseases (e.g., neurofibromatosis, psoriasis,

schizophrenia, and so on) tend to have different pattern frequencies

than others of similar sex and racial stock [693. The hypothesis is

that some of the same genetic factors that govern fingerprint

formation also influence one's susceptibility to disease. Table 2

gives an example of the magnitude of the differences in pattern

frequencies for German and Danish schizophrenics.

The difference in pattern type frequency between the control

groups of Germans and Danes is typical of what Cummins [69) calls

racial variations. He defines his use of the work 'race' thus:

"The sense of 'race' in these examples applies to a
group, whether comprehensive or limited, marked by
common characteristics traceable to inheritance."

Table 3 is representative of racial variationt. We see that in a

Large sense, Blacks are not distinguishable from Whites, but Orientals

appear to have a lower frequency of occurrence of arches.

ALso in Table 3, the differences between males and females is

shown. In general, females have more occurrences of arches than

males Ir addition, females are known to have narrower ridges thrn

2



Frequencies of Whorls and Arches in Three Independent Series
of Schizophrenics, Compaved with Controls

From the General Fopulations

East Prus-
Germans (Poll) suans* (Duis) Danes (Miller)

Schizo- Schizo- Schizo-
Control phrenics phrenics Control phrenics

(845) (776) (232) (545) (416) (356) (86654) (14857) (450) (583)

Male Female Male Female Male Female Male Female Male Female

Whorls 33.6% 26.8% 28.5% 28.1% 30.2% 29.6% 29.8% 25.3% 27.0% 26.2%

Arches 4.3 7.6 5.7 6.6 5.2 7.8 5.4 7.5 7.7 8.2

The geneaology of all these subjects was traced at least as far as through their
grandparents, and East Prussian origin of each generation was established. In the
absence of a control, it should be explained that the higher whorl frequencies, as
compared with Poll's material, are the expected associate of more frequent whorls
in the general population of this territory.

ITABLE 2



Pattern-Type Frequencies - Racial Variations

MALE FEMALE

Arches Loops Whorls Arches Loops Whorls

Tobabataks 1.6% 55.4% 43.0% 1.9% 58.5% 39.6%

Koreans 2.3 54.4 43.3 2.8 52.6 44.6

Chineseh 2.5 43.5 54.0 - - -

Japanese* 2.7 52.8 44.5 - - -

Jews 1 4.6 53.3 42.1 3.9 52.7 43.4

Danes 5.4 64.8 29.8 7.5 66.3 26.2

Negroes 5.5 65.6 28.9 8.5 63.6 27.9

Germans 6.7 67.1 26.2 8.1 64.9 27.0

Angola Negroes 6.7 67.5 25.8 5.1 64.9 30.0

Dutch 7.7 66.1 26.2 9.6 67.3 23.1

Efe Pygmies 15.9 64.4 19.7 17.0 63.2 19.8

TABLE 3

Data for females not available
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males; they have 2.7 +I-.09 more ridges per centimeter than males

(20.7 vs. 23.4).

The fineness of the female ridge structure can have a significant

effect on verification device performance C56). The closeness of the

ridges would seem to imply a higher density of minutia on the finger.

On this basis then, the gender of the subject is identified as a

systematic variable.

Handedness (right or left handed) is related to sex variations in

that it cends to cancel them. That is to say that left handed females

tend to have the same occurrence of arches as males. For more details

concerning variations in fingerprint patterns, see Cummins [69) and

Holt E713.

We have yet to specify that pattern type is a systematic

variable. Certainly, pattern type frequency does vary with the race,

gender, and handedness of the subject, but is the variation

significant to the identification problem? We believe not. In the

case of minutia based authentication devices, there is no evidence

that the occurrence of minutia is correlated with pattern type. In

optical correlation, there is no reason to believe that any pattern

type is easier to correlate than the others. A second and very

practical consideration is that a vast number of subjects would be

required if statistically meaningful deta is to be collected
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representing the various combinations and ranges of pattern type

frequency. Note well that we are merely saying that pattern type

frequency need not be sampled for explicitly in the- data base. Random

selection of subjects sould result in a data base with pattern type

frequencies generally representative of the population.

A variation in fingerprints that is not related to pattern type

is physical damage or aberrations. Damage can range from a small cut

to complete Loss of a digit, hand or arm. SmaLL cuts usuaLLy heaL and

Leave no mark visible in the fingerprint. Deeper wounds may Leave

scars which result in permanent disruption of the pattern. Aside from

damage related to disease or accidents, there are certain

occupationally related abnormalities. The prints of dishwashers,

scrub-women, and workers in lime, plaster and similar substances

usually show effects of prolonged exposure to alkali and water. The

ridges appear only faintly and are discontinuously printed. These

effects disappear once the occupation is abandoned. Such variations

should be adequately sampled by random selection from the population.

The maximum size of a rolled fingerprint impression is about 5cm

x 5cm. For a pressed print it is aLout 2.5cm x 5cm. The ridge width

varies from .33mm to .75mm; tOe minutiae are of comparable size.

With inked prints, the sulci (Light lines between the ridges) are

sometimes smeared or partly filled in because of excess ink or

pressure, and so vary in size from about .5mm in width to Omm (i.e.,

the ridges are indistinguishable). Because of this, very high

resolution (.C5mm) is neeced to read inked fingerprints.

27



As mentioned previously, the occupation of the subject has some

effect on ridge height and there must certainly be some natural

variation, but there seems to be no information available concerning

this feature of fingerprints.

In sum, beyond the subgroup of the physically handicapped already

discussed, we find that the fingerprint data base need inlcude males

and females in explicit proportion to their representation in the

population. Within those subgroups, random selection of subjects

should adequately cover all of the variations mentioned, including

occupationally related variations.

3.2.3 Proposed Data CAT System For Fingerprints -

The most difficult aspect in designing this system is finding a

suitable method of outputting the fingerprint to the verification

device. The two methods mentioned earLier, simulating the sensor

output and optical projection, have been dismissed as inadequate. We

propose to take molds of each of the digits and use these to cast

replicas of the digits. The replicas would be stored and

'reproduction' would consist simply of removing them from their

storage containers.

The verification device would be tested by manually placing the

replica on the input sensor. Data acquisition requires no special

transducers, just a spatula for mixing and a mixing pad; there is no

data processing, and minimal storage requirements. Accuracy of
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reproduction is guaranteed.

After experimentation with materials such as various clays, Silly

Putty) , and so on, we have found that a suitable maTerial for making

the mold is dental impression compound. We recommend KERRy(

PERMLASTIC, regular type III, medium viscosity. The material comes as

a catalyst and base, which must be mixed as per instructions. The

material is not harmful to skin and is aplied directly to the

fingertip of the subject, covering it entirely. When dry

(approximately 6-8 minutes), the mold is removed and sprayed with a

suitable lubricant. Silicone spray Lubricant or PAM^ will suffice.

The same compound is then pressed into the mold and allowed to set.

When set, the compound has a consistency much like skin, it has a fine

sensitivity to detail, and it is non-volitile. The casts are to be

made thin so they can be glued to the fingers of a rubber glove on

each corresponding fingertip. The gloves should be kept in a cool,

dry, dark pUbce to minimize deterioration. To test a device, a

technician places his hand in the gtove and follows the enrollment and

test procedure determined by the d-vire undergoing testing. In this

way all individuals are 'reproduced' in tne test.

We have produced a small sample of these fingerprints and found

the quality to be quite good. The Calspan fingerprint authentication

device in the laboratory at RADC was able to register the ridge

patterns of the 'reproduced' fingerprint, so we believe this method

will prove quite successful. This data base will be simple and

inexpensive to collect, maintain, and reproduce and cause minimal user

discomfort.
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3.3 VOICE DATA BASE

The human voice is marvelous in its capabilities and

applications. It is the primary mode of human communication. Subtle

inflections and rhythms convey the gamut of human emotions and

intentions.

To misquote an old adage, how many ways are there to say'"I Love

you"? These same words cen be said in all sincerity, mockingly,

playfully, derisively, hopelessly, Lovingly, an so on, and so on;

always the same words, it is the way they are said which conveys the

meaning. The extent to which the intended meaning and perceived

meaning coincide, however, depends on the skill of the speaker and

awareness of the Listener. Every Don Juan worth his salt will have

command of many moees of expression, and will be able to manipulate

the articulators of speech (among other things such as facial

expression and hands) to produce the proper cadence, emphasis, and

timing to convey a larger message, a more informative message, than

just the words might convey. The world about us is full of so many

examples of how proper application of the voice means more than saying

the right words. A good comedian tells a funny joke; a bad one tells

the same joke and it's not funny. The aifference is timing, the good

comedian would probably say (at least that's what Johnny Carson says:

The joke goes something like, "People with good timing either become

comedians or parents.").
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What is it in speech that allows the same words to say so many

different things? There are three ancillary sources for extra

information. One is visual cues; hand motions, facial expressions

and so on. These play an important role, but we have no interest in

them for this project. Another is context. 4ords uttered in

differing contexts change not only their connotations, but even their

meaning. Context is of interest here only in how it interacts with

the Last source; the 'quality' of speech. By 'quality' we mean the

emphasis, rhythm, tone, and so on, which a speaker controls in

uttering any phrase. These are the factors whose proper manipulation

make speech sound natural, and the degree to which this can be done

determines the success of one's ability to reproduce speech.

Human beings have the innate ability to manipulate these factors

and they employ these abilities with greater or Lesser skill. The

most talented or influential or persuasive speakers express the

ultimate control cver not only the quality of their voice, but also

the text, visual cues, and context of each phrase. Machines, however,

nave no such abilities ano so must first be given them, then 'taught'

to use them. As we have said, this is the key, -isk area in this

effort.

Speech is produced when a pressure, built up in the Lungs, is

forced past the vocal chords and through the oral and nasal cavities.

Tnere are two basic modes of speech. The first is when the vocal

chorGs are held closed. Subglottal air pressure builds until it

forces the vocal chords open &nd a burst of air passes. The vocal

cnords close once more and the cycle repeats. The period of the cycle
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is known as the pitch period. The oral and nasal cavities form a

resonant cavity which is excited by the puLse of air coming from the

vocal chords, giving rise to what is known as voiced speech. On the

other hand, if the vocal chords are held open, the speech is czlled

unvoiced. The excitation of the resonant cavity is furnished by air

rushing past a constriction in the vocal tract, giving rise to a

noise-Like excitation. There is no pitch period for this type of

* speech.

3.3.1 Characteristic Features -

Ue must first decide just what wz! mean by characteristic features

of speech. Do we mean the characteristic features of the speech

signal waveform, such as its statistics, frequency structure, or

energy content, or do we mean the perceived characteristics of the

human voice? There are no compelling arguments that cithcr of those

approaches are more appropriate from a technical point of view. &oth

are equivalent and for the most part, independent. Gut of

convenience, we choose to consider the perceived speech

characteristics. These characteristics ere simply those which

distinguish dialects of the language in linguistics. This approach is

more convenient because of the relatively larger amount of infcr"r-ation

concerning dialects and also, because of greater ease in screening

subjects. If subgroups of tne populction are idcntifieo, say by a

partiLular format structure, then all subjects woult have to first be

screened by anclyzing the formzt structure of their speech. Tnis adcs
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enormously to the effort required to collect the data. There is,

however, one feature of the speech waveform which defines easily

distinguishable subgroups of the population. This feature is the

average pitch frequency which, for females, is about twice as high as

males. This fact is known to cause difficulties for verification

devices. According to Rosenberg, "The difficulties associated with

analysis of female speech are well known. The fundamental problem is

the loss of spectral resolution compared with analysis of male

speech." (163 The loss of spectral resolution is due to the higher

average pitch frequency, leading to more widely spaced harmonics and

Less information in a given frequency range. We have then the

immediate result that the sample g-oup should be divided according to

gender.

Dialect is a subjective concept: "Dialects are merely the

convenient summaries of observers who bring together certain

homogeneities of the speech habits of a group and thus secure for

themselves an impression of unity. Other observers might secure

different impressions by assembling different habits of the same

group." [52) Fortunately, precision in determining an absolute dialect

for each subject is not required, we wish only to assure that the

sample population represents the major dialectal subgroups. To do

this we will attempt to identify the factors which affect one's

dialect and from there we can identify the subgroups as those people

for which those fictors are important.
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The first major factor in determining dialect is the mother

tongue of the subject: Mother tongue being the first language one

acquires. If it is other than American English, then such a person

will speak English with a foreign accent. This is not a dialect of

American English in a strict sense; it is, however, a variation with

which we must contend. Among those with foreign accents we include

persons whose mother tongue is British English since British English

is spoken differently from American English. We should note here that

for our purposes, vocabulary and usage are not important factors in

determining dialect. We are concerned mainly with pronunciation,

although it is true that such factors undergo similar variations.

That is to say, if a person uses a word differently from another, it

is more than likely that he pronounces it differently also.

The next most important element in determining dialect is the

region of origin of the speaker. These influences result from local,

regional variations in speech and are established in a child by

adolescence. It is not possible to draw definitive regional

boundaries, and every expert will propose slightly different ones, but

as we have said, precision is not required. The map in Figure 5 gives

an acceptable subdivision of the United States into ten linguistic

regions.

In general, socioeconomic status has a profound affect on the

nature and extent of linguistic variation. A typical example is given

in C47J for the occurrence of postvocalic 'r' absence:
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Map showing the major regional speech areas:
A: Eastern New England; B: New York City; C: Middle
Atlantic; D: Southern; E: Western Pennsylvania;
F: Southern Mountain; G: Central Midland; H: Northwest;
I: Southwest; J: North Central.

Figure 5.
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Socioeconomic Class Mean % 'r' Absence

upper middle 20.8

lower middle 38.8

upper working 61.3

lower working 71.7

The middle classes show more homogeneous speech habits across

regional boundaries, the Lower classes exhibit the regional

peculiarities more strongly, though this may be less true in.the South

and Southern Mountain regions where upper and middle class speakers

speak a fairly strong region3l dialect. According to Wolfram and

FasoLd [47), the best indicators of socioeconomic status are

education, occupation, income (both source and amount), house type,

and dwelling area.

There is a dialect known as Vernacular Black English which is

common only among lower cLa s urban blacks. This fact brings us to

the question of the effect of the speaker's race or ethnic background

on his speech. It has been proposed that there are physical features

of vocal tracts that differ according to race; this especially in

connection with Vernacular Black English. However, this proposal is

not generally accepted by linguists and comparative anatomical studies

do not support it. Aspects of linguistic behavior that are highly

correlated with race (more specifically, highly correlateed with being

black) are due to factors which cause the black community to be highly

segregated socially from general American influence. No other racial
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I
or ethnic group, except of course those groups whose mother tongue is

not English, show any systematic variation. Studies have shown that

the dialect of Puerto Ricans in New York City is affected most by

their peer group contacts, even when there is strong parental

influence in other directions [47). The persistance of Vernacular

Black English is easy to understand in this Light; people growing up

in the urban black community are affected most be their peers and

since urban black neighborhoods are inevitably segregated, those peers

speak Vernacular Black. The dialect is perpetuated by the same social

forces that perpetuate segregation. The influence of peer groups is

far reaching. Quoting Wolfram and Fasold [47J, "Although interference

from a foreign language may be quite obvious in the speech of

first-generation immigrants, straightforward interference from another

Language is of Little or no significance for the second and

third-generation immigrant." This is because English language skills

.are acquired through peer group contocts. This is indeed an important

point. One may at first suspect that not only persons whose mother

tongue is not English should be accounted for, but also those who grew

up in households where the predominant language was not English should

be accounted for. ortunately, we see that this is not the case since

the mechanism of pejr group influence tends to homogenize speech

patterns within a given community. For our purposes, speakers of

Vernacular Black English form a recognizable subgroup of the

population.
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3.3.2 Variations In Features -

What sorts of variations are there among the different dialects?

Besides variations in vocabulary and usage, the major difference is in

pronunciation, principally of the vowels or, more generally, voiced

sounds. Referring to the map in Figure 5, the variations seen in

regions G, H, I, and J are subtle. In fact, many linguists classify

inhabitants of these regions as all speaking one dialect known as

general American English. Speakers from the southern region, tend to

slur and elongate vowel sounds. This changes the rhythm of the speech

and gives rise to the Southern drawl. Residents of the New England

area tend to nasalize vowels which results in the "New England twang".

Persons from central Pennsylvania have a unique dialect known as

Pennsylvania-Dutch. It results from German (Deutsch) influence rather

I than Dutch influence, as it first might be throught, and is marked by

confusion of sounds such as 'b' and 'p', Id' and It', and others.

There is, of course, much richer regional variation than outlined

here, however, the details are not important.

There are variations in the speech signal which are important.

The maximum frequency range of the human voice is approximately

50-6C00 Hz, although there is very little information in the higher

frequencies. The dynamic range of the human voice is 30 40 dB 155J.



3.3.3 PROPOSED DATACAT SYSTEM FOR VOICES -

As we have said above, it is clear that some form of speech

synthesis is required in reproducing the speech data base. The method

chosen for the synthesis will determine the details of the system, but

the general form it will take is clear. A set of phrases will be

specified which contain all the phonetic events required for

synthesis. These phrases wilt be recorded for each subject on analog

tape. Thus, the data collection equipment is inexpensive and

portable. The analog tape is then brought to the computer facility

where it is digitized. Phonemes are then selected to form the phoneme

data base. The term phoneme is used here, not in the Linguistic

sense, but in the broad sense meaning the fundamental building blocks

the speech will be constructed from. From the phoneme data base, the

test utterances required by the verification device are constructed,

then converted to analog form and used for the test. This procedure

is diagrammed in Figure 6.

The analog data base is stored on analog tape, the digitized

speech is stored on digital tape, as is the phoneme data base. The

digitized test utterance can be held on-line on disk or off-line on

digital tape.

What exactly is required from our speech synthesis? We must

reproduce a speaker: We must collect data from a subject and use it

to reconstruct his speech. One might call it speaker synthesis. It
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was clear from the outset that this was not a trivial task. From a

linguistic point of view, speech is not characterized well enough on

an individual level such that all of a person's speech habits, his

personal dialect, can be known from some limited set of data. From a

synthesis of natural sounding speech. To generate speech that was not

only natural, but sounded like some individual, would take another

advance in the state-of-the-art. There are some aspects of this

problem, however, which allow for compromise. The verification device

under test does not have to verify that the reproduced voice be the

same as the original speaker. It is required only to distinguish

utterances constructed from one phoneme set from those constructed

from all other sets, with the specified accuracy. This eases the

requirements somewhat. We do not have to reproduce a set of human

speakers, we have only to produce a set of voices whose

characteristics are representative of the population. The

~specifications then, for the quantity and type of data to be collected

are crucial since it is here that the data base makes contact with the

real world. Additionally, the psychology of entry control argues that

Ithe users will grow accustomed to the system and will Learn,

subconsciously, to repeat the verification phrase in such a way as to

gain access. Such a system is a classic example of what psychologists

call operant conditioning, with the reward being successful access.

Untold numbers of rats have learned to run mazes in just this fashion.

Experience with existing systems supports this supposition. In fact,
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an entry conrol device may actually use different decision strategies

for users new to the system and those experienced with it [36). The

new users are judged less strictly white they adjust to and learn the

system. What this all means is that the tremendous variety and

richness of which speech is capable will not be present in a

verification situation. Just as one would expect, a typical user of

the system will not expound grandly his verification phrase one day,

then coo softly on the next. He would, in general, recite it in the

same pat manner as he aid originally during enrollment. Since the

context of the situation and phrase never change, no variation in

pronunciation should bc expected due to context, and finally, of

course, visual cues or motions are of no consequence. In short, we

now find that it is not ncessary to reproduce a specific speaker, nor

is it necessary to reproduce all aspects of speech and vocal

expression in order for this data base to meet its goals. It will

suffice for us to simply produce from each data set from each speaker,

the utterance required in a natural sounding voice.

Let us now discuss our actual speech synthesis system. It is

based on the source filter model of speech production as depicted in

Figure 7.

In this model it is assumed that the exciting source, the vocal

chords or a vocal tract constriction is linearily separable from the

remeinder of the vocal tract, which acts Like a filter. As we have

said before, the exciting source is either a pulse train or white

noise. The filter can be any appropriate filter either real or

modeled. Of course, because of the flexibility available, this system
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is ideally simulated on a general purpose digital computer. Well

established techniques exist for estimating the filter characteristics

from the speech signal. Assuming the filter can be adequately modeled

by an &ll pole filter of moderate size, Linear predictive coding

technique turns out to be very useful [323.

Let the discrete time series output of the system be sn, the

previous outputs sn  and inputs un , then the system can be modeled by:

P - q
Sn = a S + G Z bo=l

k~J. k n-k Z= kn-k

G is the gain factor. Taking the z transform, the transform function

of the filter is given as:

q -1
S(z) 1 + Z b z

H(Z) U-Uz) G k:i

P -k1 + E akz
k=k

where S(z) and U(z) are the z transforms of the output and input.

This is known as the pole-zero model. The transfer function can be

estimated to any desired degree of accuracy if all b= 0, then:

11(z) = G 1
P -k

1 + Z akz
k=l

The problem is to estimate the ak, the linear predictive coefficients,

and to choose p such that the filter is determined to the desired
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degree of accuracy. Procedures for doing this are well established in

the Literature, and one of the most common is known as the method of

Least squares.

Assume the input un to the system is not known. The output s

can then onLy be aproximated by:

S n E~ a k Sn-k
=

The error e nbetween the actual value and the predicted value is

In

simpty the difference:

A P
e n  = S n S Sn Z Sn + kla k Sn-k

e e n is also known as the residual, and the ak can be determined by

minimizing the mean total squared error. The result is a set of p

S simultaneous equations in p unknowns and is the same for a

1 deterministic or random signal. Computationatty economical methods

are known for solving these equations and from them we have chosen to

~impLement the auto-correlation method.

t An added benefit from the auto-correLation method is a secondary

!set of coefficients known as the partial correlation or reftection
coefficients. The term reflection coefficients arises from

transmisson Line theory where the refection coefficients are actuaLLy

anthose of the boundary between two regions of differing impeence with

l a plane wave normally incident at that boundary. In the case of

speech,re btwe t ransmission Line is an accoustic tube made up of

equal Length sections of constant but differing cross-sectionaL area.
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The reflection coefficients, k. are related to the cross-sectional

area A. by:

A -A
n n+i

k
n

A +-A
n An+i

The analog speech is digitized at 12.& kHz, giving an effective

bandwidth of 6.4 kHz. We use a 20 ms processing frame Length which

corresponds to 256 data points per frame. Each frame of digitized

speech is encoded using linear predictive coding. The data is

pre-emphasized then windowed with a 256 point Hamming window, then the

voicing, pitch period, LPC coefficients, reflection coefficients and

cross-sectional areas are extracted for each processing frame. Each

phoneme is represented by one frame of data. Phoneme selection is

interactive and Lided by waveform displays and automatic phoneme

recognition. The operator must make the final determination of which

frame represents the desired phoneme. A library containing all the

required phonemes will be assembled for each subject.

To construct a new utterance, the operator specifies a string of

phonemes along with a relative gein and pitch and a duration. Because

pitch and duration are under operator conrol, he is responsible for

obtaining the proper prosody. The difficulty with this appraoch to

speech synthesis lies in handling the transition from one phoneme to
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the next. The implicit assumption is made that connected speech can

be modeled as a series of steady state phonemes, reasonably invariant

from occurrence to occurrence, which are connected by smooth

transitions. The speech synthesis program must calculate the

transitions.

Others have tried this approach and have met with Little success

because they calculated transitions by interpolating between

successive sets of LPC coefficients. There is no reason to believe

that this scheme has any physical basis and indeed, If one Looks at

the time history of the LPC coefficients, one finds they do not change

smoothly. The solution is to interpolate on a set of physically

meaningful coefficients, the cross-sectional areas. An extensive

survey of the cross-sectional areas in natural speech has resulted in

interpolation rules. Our experiments in this area show that this

method does work. We have constructed a set of phrases taken from the

Texas Instruments Automatic Speaker Verification System [383. These

phrases have good, natural sounding quality and can be recognized as

the voice of the original speaker.

The operator has the complete capability to audition the

constructed utterance and make changes he deems appropriate. The

operator should have expertise in dialectology so that he will be

useful in segmentation and construction.

47



Each subject in this data base has three permanent data sets.

The analog recording of the original passage on audio tape, the

digitized version of this, and the phoneme library, which is also

digital. These are most economically stored on magnetic tape, the

format depending on the particular computer installation on which the

processing was done. In our research, a DEC PDP 11/70 was used. The

digitized data is stored in 512 byte (256 data point) blocks, as

unformatted 2 byte integers. The phoneme data base is stored as

unformatted 4 byte real data. For device testing, the phoneme library

for each subject is brought on-line from tape, the test utterances are

constructed, then stored on digital tape in the same format as the

original digitized utterances. After the processing is completed,

these can be played out to the device through the D/A interface,

amplifier and loudspeaker.



4.C DATA BASE COMPOSITION

We have discussed so far the quantity of data required, its form

and methods of storage and reproduction. We will now descibe the

actual data collection.

The most economical way to collect the data base will be to use

portable equipment which can he brought to the collection site. We

recommend the data be collected at U.S. military installations since

all subjects required are Likely to be found there. Each subject will

be sampled for his fingerprints, signature and voice. Care should be

taken in screening subjects and to insure accurate data. Both

civilian and military personnel, officers, and enlisted men should be

included in the population.

We have idenified subgroups of the population for each attribute

and the sample should be assembled accordingly. The sample should be

half mr.Le and half female. Each of these groups should then be

divided according to mother tongue, then region of origin. Within the

smallest subdivisions, subjects should be drawn at random (see Figure

8). This

satisfies the requirement for the voice and fingerprint data base, but

the sign&ture data base requires it be distributed according to

handedness. Further subdivision of the population is undesirable

since smaLL numbers of persons in a subdivision would not Lead to

statistically meaningful results. Rather than increase the sample
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size, we believe that the random draw will adequately sample the right

and left handed populations. TabLe 3 gives a breakdown of the U.S.

population into the subgroups we have identified. Of the 400

subjects, 2GO will be male and 200 female. The last column in Table 4

gives the number of male and female subjects required for each region.

The entire population should be characterized in terms of the

important variables that we have defined: gender, mother tongue, and

region of origin. Only those raised from birth through adolescence in

one region shall be considered as true members of that subgroup.

Others may speak with a dialect reflecting the influence of two or

more aifferent regions; similarly with mother tongue. Once so

divided, names can be drawn at random and the named person can be

asked to porticipate in the study. The voluntary participation of the

subject should give some confidence that he will be cooperative. So

as not to stretch our confidence in human nature too far, we suggest a

small monetary compensation may buy a little more cooperation.

Once the subject has been secured, a short briefing explafning

the purpose of the project should be given to orient the subject and

to give him time to relax. Every subject should be reassured that the

information collected in this study will be used only for the stated

purpose and will not be circulated without his permission. The

fingerprints, being unaffected by the emotional state of the subject,

should be collected first. The signatures (signing being a very

natural act) should be collected next, then finally the voie data
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American Cut of 16C
Region English Samples

Eastern New England 5,Ca5,1-3 3.7 6
New York City 6,63-1,491 4.2 7
Mid Atlantic 12,676,23V L.C 13

Southern 37,037,32; 2-.5 37
Western Pennsylvaniz 4,572,10, 2.9 5
Southern Mountains 9,445,317 5.Z 9
Mid CentraL 25,056,602 15.8 25
Northwest 5,362,160 3.7 6
Southwest 15,575,619 9.9 16
North Central 3,257,947 22.9 36

Total 15Z,C49,799 ICO.C 16C

Non American Out of 4L
Mother Tongue English % Samples

Spanish 7,E21,52 17.9L

German 6, C, G 54 14.0 7
italian 4,144,315 S.5 5
French 2,59,4C2 6.C
Polish 2,437, :: 5.6 3
English 1,657,425 :.9
Yiddish 1,59, 93 .7 2
Russian 14,565 .3 1
Other &,149,266 1C.7 E
Not Reported :,764,Z5L 20.1 - (*)

Total 437,3C5 OC.C 4G

TABLE 4

(*) Subjects credited to 'unreported' were cistributed
evenly among all other categories (one additional
subject for ecch).
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base. The voice recording should be done in a sound booth or a quiet

room. The subject shouLd be given time to familiarize himself with

the text to be recited, and any ambiguities or questions should be

cleared up prior to recording. The recording should not be rushed and

the subject should be allowed to pause if desired. All precautions

should be taken to insure recording the subject in as natural a state

as possibLe. Figure 9 is a list of equipment required for recording

the voice data base.
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List of Data CAT Speech Processing Hardw3re

Qty item Specification/Recommendstions

1 Microphone/Preamp Frequency response 50-6000 Hz
caroid condenser/FET pre.mp.
windscreen, associated hardware
AKG CK1 Condenser Miic

C451E FET Preemp
W-. Windscreen

1 Linear Audio Amplifier Frequency response 50-6C00 Hz
Variable G&in

S/M > 60db

1 Bandpass Audio Filter Low cut 50 Hz
High cut 6"C3 Hz
S/N > 60cz'

1 Anzlog Audio Tape Frcquency Response 50-60CC Hz
Recorder/Player S/N > 6cdB
(2 or 4 track) THD < 0.5%

1 Audio Loudspeaker Frequency Response 50-vCwI Hz
High Efficiency,

4 or C Ohms

1 Computer w/Analog Digital Tepe - Large Disk
Interface > 12 bit A/D, D/A

> 12CCC Hz SampLing Rate
DEC PDP 11/70 w/ LPA11-K

RPC4, TU16

1 Graphics Terminal Waveform Display
Tektronix 404

lliscellaneous Cables; Connectors;
Mgnetic Tape

Figure i
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5.0 CONCLUSIONS AND RECOMMENDATIONS

We believe that the Data CAT approach is basically sound. The

relatively high expense of collecting the signature data base, weighed

against its possible uses, Leads us to believe that this effort would

not be cost effective. The fingerprint data base is extremely easy

and inexpensive to collect and could prove very useful in testing not

only fingerprint identification devices, but also fingerprint

recognition and classification devices. Since this data base need

only be subdivided by gender, the collection could take plare in any

population center and Large number of fingerprints could be included

in the data base at very Low cost.

The voice data base has a moderate initial cost due to the

acquisition of required equipment, and the screening of subjects is

more costly, but the potential benefits are very great considering the

growing field of speech identification and recognition. As with the

fingerprint data base, the speaker synthesis system and voice data

base can be useful testing both speaker identification and speech

recognition devices.

Since this is a new application of new technology, it may be wise

to proceed cautiously in its develoment. The cost of the aci ial data

collection wilt obviously far outweigh the cost of equipment and

software required for the processing. However, the capability to
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acquire the data base would not be that costly. The speaker synthesis

unit, consisting of a host comuter, analog interface, graphics

capability, software, and associated analog equipment could be

procurred anti a small data base collected for minimal cost. This

would allow the user the opportunity to prove the technology under

laboratory conditions and &lso establish baseline performance and real

world performance, thus avoiding the typical pitfall of precise but

inaccurate testing.

As an added bonus, software and techniques developed under

contract F30602-7?-C-0226, known as UNITRANS, also sponsored by RADC

and recently completed by PAR [923 could be easily integrated into the

speaker synthesis unit, providing the user with a virtually unlimited

number of synthetic speakers and virtu.lly unlimited speech synthesis

capability.

As with any good laboratory tool, the uses of such a system are

innumerable. It could be u-d in testing speaker verification

devices, as per its original intent, speech recognition devices, voice

communication and bandwidth compression systems, computer sifmulations

of the above, and so on.
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APPENDIX A

DATA CAT STATISTICS

A.1 NUMBER OF ATTE4PTS AND SUBJECTS FOR TYPE I ERROR TESTING

The purpose of this section is to answer a question posed by

paragraph 4.1.1.1. of the Data CAT Statement of Work. "Determine the

number of samples per individual and the number of separate sessions

per individual required to determine a Type I error of .01 with a 90%

and 95% confidence Level."

We first assume there is no variability of the attribute or its

measurement process from session to session. In this simplified case

we will find the number of samples required in the data base. The

question of how many sessions are required will be addressed in a

Later section.

Let the data base consist of N samples. An identity verification

device is to be teste. The result is an acceptance or a rejection.

6ecause of the assumption that there is no session-to-session

variability, there is a single constant probability, p, that a sample

will be rejected by the test. After all N samples are tested, M will

have been found to be rejected. The problem is to estimate p, the
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DATA CAT STATISTICS

Type I error rate. The likelihood'function for p is (Reference 1, p.

196) :

I pM )N-M

L(p) p (l-p) (Al)

and the most Likely estimate of p is p*, that value of p which

maximizes the log L:

Sog L = M N-M (A2)
ap P P

Solving Equation A2 yields

* =, M (A3)
P N

which is, of course, the intuitive estimate for the Type I error as

well.

A confidence intervaL about p* is cefind by a single parameter

A p, which is said to provide a confidence level of C when

p* + Ap 1
C f Ldp / f Ldp (A4)

p*' - Ap 0

Equetion A4 mea.r:s that the statement "The Type I errcr has 3 valuz
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p* + Ap." will be true 100C percent of the time.

Because of the shape of L, for certain values of M and N, it will

not be possible to find a single Ap which provides the desired

confidence and at the same time keeps both p* + Ap and P* - Ap

within the known range of p (from 0 to 1). In this case, a Logical

interpretation of Equation A4 is to replace p* + Ap with 1 or

p* - Ap with zero, depending upon which limit was exceeded.

We would now Like to plot L for a reasonable value of M and N in

order to gain some insight into its behavior. What is a typical value

of M? This is turning the problem about the other direction.

Previously we have been considering a best estimate for p given M.

Now we want to know a typical M, which, of course, can only be

answered by knowing p. The value of p of interest for this study is

.Cl. Thus, we now ask for the most likely value of M given p.

Clearly

M* - pN (A5)

and, in fact, the probability that any vakue of M will be observed is

given by the binomial distribution

(M) - N! M (_p)N-M (A)
( M!(N-M)! P (A6)

Taking I=ICC samples, we find a most likely value of M to be 1. A

plot of L(p) for a1C and M=l is shown in Figure Al. Nott that if a

confidence of .95 were specified, the interval about p* would be

asymmetric. The Lower value of p would Le zero while the upper would

be well above .C3.
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The above discussion should make it clear that confidences are

defined on intervals of p. The problem before us is to find a sample

size which will provide testing to a specified confidence for p=.01.

This is insufficient information, as an interval about .CI must also

be set. What is a reasonable v&lue for the interval? That is, what

accuracy on p is desired? We submit that if the value of p required

on the identity verification system is .01, then one would like to

distinguish between Lhe case p = .C1 and p = .C2. (One is not really

interested in knowing that p = .C091 +/-.CC1, for example, although

givcn sufficient samples this level of accuracy could be achieved.)

Thus, a reasonable value of A p for p = .01 is Ap = .L05. This

will permit the 1% and 2 Type I error cases to be distinguished.

The question which we havc set out to answer may now be posed.

"What sample size N is required to permit p in the neighborhood of .01

to be determined to */-.C05 with a confidence of 9C% or 95X." It is

clear from Figure Al that n=10C samples is insufficient. As N grows

Larger, with N=pN=.01N fixed, L approaches a Gaussian shape,

N 2 N

L(p) .exp (-(p--) /2M(1--)) (A7)
N N

Equation A? is easily dcrivec by expanding log L in a Taylor series

about p*. From the normal curve of error 90% of the area is contained

within 1.645 of the standard deviation and 95% within 1.96. Thus, we

require a value of N such that

1.645 M 1 ) (.01)N (A)
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Inserting = .01N gives

1.645 -.l)(99< .005 N (A9)

1071.6 < N (AO)

The 95"% confidence value is 1521.3<N

The estimates based on assuming a Gaussian shape can be refined

to exact answers by performing the integration of Equation A4. The

integrals can be written as:

C - [B (M+l, N-M,1) - Bp (M+l, N-MI)]/B(M+I, N-M+i) (All)

Where B and B are the incomplete and complete beta functions [2,x

p.2633. Using an expansion for B good for small, non-zero values of
X

x [2, p.S443, we can compute a confidence table, Table Al for p a .01.

Table Al is used by finding a confidence

interval of interest in the top row and a number of samples in the

Left hand column. The intersection of row and column gives the

confidence value. We have recommended an interval of + .005 about

p - .C1. This is tabulated in the second column. From Table Al we

see that 1200 samples would produce a 90% confidence on this interval

and 1WO0 would produce 95% confidence.

The above discussion has made no mention of the number of

different individuals included in the study. It simply says that a

binary decision making device must be tested 1200 times to establish

that A p = + .C05 when p = .Ct. Suppose now that the access system

is testeo on two people. The requirement that the system perform at

p .01 can be interpreted in two difftrent ways. The Type I error

A-6



TABLE Al

Confidence Values for SeLected Number of SampLes
and Intervals About p = .01 for the Binomial Distribution

p IntervaL

I.C075, £.CZ5, Cc, .C2: C, .€3 CC, .C43
# Samples .C1253 .C15]

Iit 1Z.- "95.4 59.7 9.7
200 26.z 5r,.I1 76..C 94.2 9Z .

_oo 41A. 72. IV. 59r.7
1 00 56.E E7.0 99.C
11 C0 IV '. 7 9 9. :
I12CO 61.1 9 C.2 99.4
150UG 66.5 93..4 9 9. 1,
1600 68.C 94.2 99.9
1700 69.5 9 4. Z
1800 70 .9 95.4
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could be the average system performance or it could be the performance

requirement on each individuaL. That is, if Individual 1 is tested

10,00C and rejected 175 and Individual 2 is rejected 25 times out of

1C,CC', then the system performance is p a .01 in the average sense

even though Individual 2 has shown a p = .0175.

Whi-ch of the two interpretations above makes the best sense for

testing an eccess device? It seems obvious that in a large human

population one will always be able to find a subjct whose measurements

are sufficiently variable to reproduce a p greater than .C1. For an

acceptable access conrol system, however, the number of such subjects

should be vanishingly small. Thus, the interpretation of a p

specification as a system average is the sensible one. It follows

that the number of samples we have computed is the total samples for

all individuals, not the number of samples per individual.

The foregoing argument would make it appear that 1200 samples

could be drawn from 12C0 subjects, one sample per subject (in adoition

to the samples needed for enrollment). We would now Like to show that

there is a more realistic lower bound on the number of samples per

subject.

What will determine the number of subjects in the study? First

of all, we note that fewer subjects in the system permits economy of

cata collection and storage because a fixed number of samples per

subject must be collected for enrollment. Say 100 enrollment samples

are collected for 12CO subjects. The enrollment data base is 120,000
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simptes while the total data base of enrollment and test data bases is

only 12CO greater, continuing the example of one test sample per

individual. At the opposite end of the scaLe, if only one individual

is. to be used for the data base with 1200 test samples for him, then

the total data base consists of only 1300 samples. It is also

apparent that the collection of data from one individual would be

easier and less costly than from 12C0.

Despite the foregoing, it is obvious that the data base must

include more than one subject because the population of subjects will

not be homogeneous with respact to the attribute being mezsured. in

collecting the signature deta base, for example, we know a priori that

there are two fundamental groups of subjects, left- and right-handed

persons. Subjects must bE drawn from all groups of a significant size

for which there is reasonable probability of systematic attribute

variation. Let us suppose that 2C4 of the popul&tion is lcft-handed

and &0% right-handed. Then a possible procecure is to use one subject

from each of the two classes and to collect four times m,'e samples

from the right-hander. Since the average p will be computed as the

weighted sum of the right- handed Type I error, PR, and the left, PLO

p = .2 pL +  .8 PR (A12)

error in R contributes more to error in p. An alternate and

superior procedure is to use one left-hanced subject and four right.

Then an equal number of samples should be collected from each.
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That subgroups are expected in the population demonstrates that

previously undiscovered subgroups may be reveaLed in the testing of a

new access device. This is an additional reason why there must be a

number of different subjects in the data base. For example, suppose

the data base consisted of samples from two randomly selected subjects

and there are two undiscovered subgroups, each comprising 50% of the

population. Further suppose they hove & Type I error of 1.9 and .1%.

VTwo times out of four the individuals in the data base would include a

subject from each subgroup, one time in four it would include two

subjects from the first subgroup, and one time in four, two from the

second. Assume enough samples per subject that the Type I error for

the first subject, p1 , and for the second, P2 - are known with high

precision. Then the true p for this population, true " is 1.0%.

However, because of too few subjects in the data base, a value of p

different from Pt can result. This is shown in Table A2, where

the three cases are given

at the Left of the Table, each with its probability of occurrence.

The value of p which would be computed is shown in the column Labelled

'p', and the square deviation from Ptrue in the last column. The rms

deviation is .64%.

We now consider the same situation more generally. Instead of

two subgroups with discrete value of p, we permit a contiuum of

possible values of p. Now let f(p)dp be the fraction of the

population having Type I error, p, between p and p+dp. We want to

know how many subjects to include in our sample in order to prevent a

widely spread distribution f from affecting the results. Again,

A-1C



TABLE A2

The Error in Type I Error Estimate
Caused by Having Two Subgroups

Subgroup ProbabiLity p=1/2(,. + ) (p- PTRUE )

2

x x 0.5 0.01 0

xx 0.25 0.019 .000081

xx 0.25 0.001 .000081

(P'PTRUE)2 .0000405

Ap = (p-PTRUE )2 .06
1006
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assuming that enough samples are taken from each subject so that the

value of p for the subject may be determined with ignorable error, we

can state that the average value of p given by

1

p I pf(p)dp (A13)
0

is the value of p for the whole population and is therefore the value

we would want our sample to represent. Thus, we need to have enough

subjects so that 0 is determined with small error. The accuracy of an

estimate of - is also determined by the variance of the distribution

f. In fact, from the Central Limit Theorem we can state that the

error in & determination of p, C, is given by

(A4)

as K grows large. Here A p is the standzrd deviation of p due to the

distribution f,

AP2 = (p-p)f(p)dp (A15)
0

Actually, the type of distribution which produces the Largest

A p, and, hence, according to Equation A14 the largest a is a

binomipl distribution of the sort we considered in tha example of

Table A2. We will make this worst case assumption in order to

establish an upper bound on K. Let f 1 be the fraction of the

population belonging to Subgroup 1. Let p1  be the Type I error of

this subgroup. Let f2 and P2  be the corresponding quzntitics for

Subgroup 2. K subjects are selected randomly. The true vzlue of p
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for the population is:

p flpi + f2P2  (A6)

A particular draw of K subjects wiLL consist of V members of

Subgroup I and K- v of 2. The probability, ff , of this event -is

n(v) = (6) f IV f 2 k v  (A17)

The resulting Type I error which would be measured is

P =P2 + lk (Pl-P2) A8

2 k i(v) (p2p) (A19)
v=O

which gives

f (U-f)
1 1 1 1

0 l-P2' - (A20)

Fixing p at .01, from Equation A16

S.01-f lp I

2 1-f (A21)

giving

1.ol - Y (A22)

The worst case value (Large a ) is produced by fl near 1. Since
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is Less than or equal to one, from A21

f .99 (A23)
-. 1-P1

Thus, the wors case value af is for p1  0 and f, .99.

inserting these values into A22 gives

o< .01 (A24)

Using again the requirement that the sample size should be sufficient

to aistinguish a Type I error of .C1 from that of .C2,

99 <0 ' .005 (A25)

yieLds

396 < k (A26)

Table A- shows the probabilities of measuring certain p values

when

4CO subjects are used an the worst case assumptions are made.

Observe that a value pf F = 1.5C% or Less is obtained C% of the time.

Unfortunately, the result K=4GC is rather a large number of

subjects to include in the data base. This Large number hos arisen

due to the fact that we have postulated a subgroup comprising only 1%

of the population. If we werc to relax the specifications so tnat

only subgroups of 5% or more would be of concern, then f1  can bE set
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TABLE A!

Two Subgroups Assumed, With Type I Errors 0.0 and 1.0

And Frequency of Occurrence .99 and .01.

TabLe shows probabitity of occurrence for

various 5*vaLues for 400 subjects in sampLe.

v lr(v) p

400 .01795 0
399 .07253 .25%
398 .14615 .50%
397 .19585 .75%
396 .19635 1.00%
395 .15708 1.25%
394 .10446 1.50%
393 .05939 1.75%
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to .95. Using again the worst case values of p1  * 0.0 and p2  = 0.2,

.005 a . " (A27)

or

28 < k (A28)

SimitLrly, if subgroups no smalLer than 10% of the population are

considered

8 < k (A29)
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A.2 NUMBER OF ATTEMPTS A:D SUBJECTS FOR TYPE II ERRCR TESTING

The purpose of this Section is to discuss the number of attempts

which must be made against an identity verific&tion device to

ascertain its Type II error performance to certain confidence Levels.

We first define the Type II error rate. Let a be an index over

the population tc be enroLte6 in the system. An individual who is

enrolled will have an 'account' which will contain the personal data

against which he will be compared. When cnother indivicu&l, i, makes

a verification sttempt against account a , an opportunity for F Type

11 error &rilses. The probpbility that individual i will be accepted

under account a will be denoted p. . By letting i run over all

members of the population which might attempt access, we couLd obtain

the Type II error rate of account a,

NTO
TPa Z Pai '(A30)

p ": -TOT i::l

where NTOT is the size of the intruder population.

In Section A.1 we discussed for Type I errors whether a

specification on the error rate should be a rigic bound on all

accounds or an averagt over all zccounts. t'e demonstrated that only

the latter made sense. Corresponoingly, wa here caopt a ccfinition of

the identity system Type II performance as an average. The Type II

error rate is defined as

N1
1 TOT (A 31)

NP a).i-- > : 1

NOT
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where N' is the size of the population of individuals who would

potentially be enrolled in the system.

Since the goal of Data CAT is to collect a general data base,

neither intruder nor enrollee population can be specified exactly. We

take both to be the entire American population. Thus,

N
2 TOTp =-- E £ P B ,ct#8 (A32)

NTOT 8 a

?I

where the two populations are considered to be the same and an

individual is eliminated from the Type II statistics against his own

account by deleting the = 8 term.

ALtogether, two random variables must be adequately sampled in
0

compiting the Data CAT data base. There should be enough access

attempts that the individual terms pa are accurately estimated, and

there should be sufficient account-intruder pairs that the population

is adequately sampled.

Despite the foregoing, to simplify the discussion we first assume

aLL 'accounts and intruders are equivalent. We have a single account

and a single intruder. We want to know how many samples, N, of the

intruder are required to test a system which performs with a Type II

error near a) .02 and b) .CGCG1. The intruder is either accepted or

rejected so the binary statistics developed in Section 1.0 can be

use0 .
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Table A4 gives the confidence for a system with p = .02. For

example,

if the data base contained 20L samples and four were falsely acceptea,

then the Type Il error would be 2%. Furthermore, by examining the

Table, one sees that the assertion that p = .C2 + .C1 has a 67%

confidence. Using this error interval es the most reasonable choice,

we ci.n state that &GO samples are required for 9C% confidence and 1CO0

for 95%. Table A5 provides the same information as Table A4 for a

system with

p .0z1%. Here we see that for the preferred choice of

6
p * .U'i% + .OCC5%, 1.2 x 10 samples are sufficient for 90%

confidence, but even 1.5 x I samples are insufficient to achieve a

confidence of 95X. Comparing to Table A4 we estimate a requirement of6I
I.& x 106  samples.

Ve now extend the argument to consicer the fact tnzt different

account-intruder pairs will have different vaLu2s of p. ie must have

a sufficient number of pairs to sample the population adequately.

This question was also considered in Section 1.C under the

"undisclosed subgroup problem." There te showed that the greatest

danger of biased sampling occurred for two subgroups, one with p1= C

comprising 9C% of the population and one with p2  I.CC comprising 2%.

This produces a p equal to .02 but a large sample of individu3Ls is

required to reduce the fluctuations in the number of members of the

poorly performing subgroup included in the sample. From Equations A16

and A22,

= .02 < .01 (A33)
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TABLE A4

Confidence LeveLs for a System
With Type II Near 2%

IntervaL .005 .01 .02
p- .02+

N
SampLes

100 27.0 50.5 77.0
200 38.0 67.0 90.7

5QO 57.1 87.3 99.0
800 68.3 91.1 99.9
1000 73.7 96.5 99.95
1500 82.9 98.9 99.96
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TABLE A5

Confidence Levels for a System
With Type II Near .001%

IntervaL .25 x 10- 5  .5 x 1o- 5 10- 5

p 10-5 +

N
Samples

5 18.2 35.2 59.4

10 6 56.5 86.8 98.9
1.2 x 106 60.8 89.9 99.4
1.5 x 10 66.2 93.2 99.8

A-21



DATA CAT STATISTICS

Thus, the number of pairs required, K, is

196 < k (A34)

For the device performing at p = .CO1%, 399996 pairs would be

required.

Notice tiat the population of intruders and accounts cannot

overlap. However, a popuLt'on of enrolled individuals must be

collected for Type I testing, aiyway. The intruders could be drawn

from a subset of this group. That is, suppose K' individuals are

collected for Type I error testing. Let their accounts be numbered

1, 2, ... , Kv. Use Account I and run individual 2, 3, ..., K' as

intruders. Use Account 2 and run the K'-2 remaining individuals as

intruoers. Notice that Individual 2 is run against Account 1 but

not conversely. Choosing both combinations would not constitute an

independent sample from the universe of all possible pairs even though

p is not necessar ily eqaL to p Proceeding in this fashion, one

obtains (K'-)K'I/2 pairs. Thus, with K' individuals in the data base,

the number of tests which may be performed, K, is

k =(A35)
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For Type II error of 2%, usin; Equations A34 and A3z,

approximetely 20 individuals are required. For an error of .CC%,

approximately 895 individuaLs are required.

Just as the total number of pairs is a quadratic function of the

number or individuaLs, the total number of samples required, N, is a

quadratic function of the number of samples per incividuaL, n. Tnus,

N= (k'n)2  (A36)
22

For examplc, we know that 799996 (=K' 2/2) pairs are required for

p = .001%. Also, 1.2 x 106  (=I.) tests are rcouired to establish &

SO% confidence on the rcccmmen-.ed interv l + rCCS '.  Thus, inserting

into Equation A36,

n = 3 (A37)

TabLe At summarizes the requirements or individuaLs and samples

in

the data base. We observe that a requirement for 4% indiviruaLs to

achieve a Type I error rate of i: is more dEmcnding than the

equivalent twenty individuals for a 2'/ ypc 11.
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TABLE A6

Number of Persons SampLes/Person
Type II Error K 00X 95t

2%20 4 5

.001% 895 35
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A.3 NUMBER OF SAM;PLES FOR ENROLLMENT

Currently available identity verification systems measure a

personal attribute of a test subject and compare the measured

attribute with a previously stored reference file for the subject.

This operation, the verification process, thus requires a reference

file for cach user. The reference file is created when the user is

enrolled in the system, but may be updated with subsequent

measurements from verification attempts.

The purpose of Data CAT is to design a data base of speech,

fingerprint, and handwriting attributes which will permit testing of

potential identity verification devices. The data base must contain

mecsurements for both enrollment and verification. Typically, at

enrollment several repeated measurements are performed. For example,

a subject in the handwriting system would sign his name several times

in order to establish a representative pattern. The Data CAT data

base should be general enough to accomodate a wide class of

verification systems, and, therefore, the enrollment portion must

contain more than one measurement of the attribute. Each measurement

will be called a sample. This Section will discuss the number of

samples which should be collected for the enrollment portion of the

data base.
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ALL identity verification devices currently under consideration

by the Air Force work in a fashion which is easily Oescribed in the

Language of Linear pattern recognition. When the personal attribute

iz cot~tect*ed ,ertain keY f eatures ,believed particularly individual

or-st*bL are extracted. The compLex attribute is, thus reduced: to a

u $mler set of features. Let us suppose that A mea',sureaents are

06de,' the 'Irst measurtment having value x , etc. Tht measurements,

'asisebted~os a Vect6r, x,

x = < x11 x 2,... ,I x A  > ,(A36)

comprise the feature Vector. In Linear pattern recognition the vector

x is treated as a point in a A -dimensional Linear space. When the

attribute for the subject is measured a second time, due to

measurement noise, statistical fluctuation, or actual change in v&lue,

the feature vector, x, will be different. However, if th personal

attribute" is useful for identification and the feitures are well

constructed, then all the vectors for a particulzr subject should be

relatively close together ond relatively far from vectors belonging to

a different subject. A metric is obviously needed to formclize the

notion of distance. Figure A2 shoews a two-dimensional space with

feature vectors for two subjects.

At enrollment a re-'ercnce file for a subject is created. This

reference file is a neans of specifying that region or regions in

feature space which are likely to contain vectors for the subject. At

verification a newly acquired featurc vector is tested to see whether

it lies in an acceptable region for the subject, and he is acceptec or
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Measurement 2
4- +
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+ +

Measurement 1

V)

Figure A2 A two-dimensional feature
space containing measurement
vectors for two subjects, one
represented by dots, the other
by crosses.
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rejected accordingly.

A number of methods for specifying the so-called decision

boundaries of regions are in common use. In general, there are simple

methods which involve few parameters and represent the regions by

reLativeLy simple shapes and methods employing numerous parameters,

thereby capable of representing more complex shapes. Each parameter

which is used to specify a region must be established before a

decision strategy can be impLemented. In an identity verification

system the region parameters are estimated at enrollment by using the

repeated measurements of the attribute under consideration. The

accuracy with which a region can be specified will depend both on the

number of parameters needed and on the dimensionaLity of the space.

M oreover, the number of samples of an attribute which are available to

estimate the parameters directly affects the accuracy of region

representation.

For Data CAT we need to determine the number of samples of an

attribute which might be required by a future identification device.

The answer to this question depends on the dimensionality of the

feature space and on the complexity of the region, both of which is

impossible to describe without previously specifying the device. We

can, of course, make estimates of the maximum dimensionaLity permitted

in the data for the respective attributes. Furthermore, we could

postulate commonly used region shapes (or decision strategies). We

postpone this ultimate question for the present and consider a few
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well known decision strategies in order to elucidate the interplay

between complexity of a strategy and number of samples required.

The simplest stratcgies, or 'logics' as they are sometimes called

to emphasize their decision making role, all assume z single simply

connected region. A straightforward Logic is to assume that the

regions for all inoividuaLs may be represented by a simple geometric

figure such as a hypersphere, hypercubc, or hyper-rectangle. The size

and shape of the geometric figure are fixed, only its Location nee6 be

ascertained by samples of feature vectors for the subject. Figure A3

shows such a decision strategy for three individuals.

How many samples are required to center the decision box?

Suppose for the present that A =1 and n measuremsnt' are maae: x ()

(2) (n) -:
x ... , x , Then the averagE value of xp whe i the box shouLc be

Located is: -

-- ( )(A39)n

The best estimate for the error in e:ch measurement is

AX Z (X -2 (A40)

and the best estimate of the deviation of x from the true mean is

__ =" (A41)

where the estimate of the mean given by Equation A9 will lie within

+ Ax of the true mern with probability .6C2. Tha observed x will beI
required to be smaller than some bounc G (presumably related tc the
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Measurement 2

Subject B

Sujc t iJ

Subject C

Measurement 1

Figure A3 Simple decision logic utilizing
fixed geometric chapes. A mea-

surement vector lying inside box A

is accepted as Subject A, etc.
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characteristic size of the box) in order to make the estimated mean,

X, close to the true mean,

x< B (A42)

Equations A40, A41, and A42 give on operationa test to determine

whether enough measurements have been made. Now suppose x is

two-cimensiontt. Then the mean and standard deviation for each

component are calculated as above. But to guarantee that both

components have a standard deviation close to the true mean wilt

require more measurements. Suppose we require that x' and x2  lie

within 81 and 82 of their true mean with probability .6M2. Then we

must require that T1  and x2 lie within the bounds with probability

.26. In general, each component must satisfy its bounds with a

probability .6&21/A to make the joint probability .682. For example,

if we make sufficient measurements that /x/B < .5, then x will Lie

within 8 of the true value with probability .954, since

2 2
.954 2 f exp(-l ) dy erf ) (A43)2 o

or in general,

(.682) I /A erf (B (A44)

Substituting Equation A4C gives

(.682) /A = erf ( -2 ) (A45)
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The value of n in units of (0/fx)2  for some representative choices of

are given in Table A?.

Another method for specifying a region is to estimate not only

the locatlop of a simple geometric figure, but also its size. Figure

A4 shows such a use

of ellipses. For each ellipse the location and width of the ellipse

must be determined by sampling, for a total of 2 A parameters per

class. Using Equation A45 with A replaced by 2A produces Teble A8.

Another common method of specifying z logic is to permit the

geometric figures to have &rbitrary size and orientation in addition

to location. In this case A2  parameters are usea for size and

orientation for A and Location. Using Equation A45 with A

replaced by A2 + A produces Table AS

Another conditlon which may be pLaco on the number of samples

required is that the estimated parameters be linearly indepenc'ent.

This c n occur only if the number of samples numbers is greater than

the number of estimated numbers. With n samples of dimension A, nA

numbers cro available. Thus, at lcat one sample is requirec for a

A parameter logic, two are required fcr z 2 A logic, and A + I are

required for a A2  + A Lcgic.

In conclusion, we observe that the number of samples required to

establish the p3rameters of e region is depEnd~nt en the type of Logic

employed and on the cimensionality of the feature space. However, for

Logics of the first ti.o types ccnsicered, in which the number of

parameters to bc estimated is a linear function of A , even for large
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TABLE AT

Logic With A Parameters Per CLass

-A1 10 100 1000

B32

(X~) n 1 4.28 8.32 12.7

TAB3LE A8

Logic With 2A Parameters Per Ctass

A 1 10 100 1000

(_2) 2n 1 1.84 8.71 17.1

TABLE A9

jLogic With A 2 + A Parameters Per Ctass

A 1 10 100

44
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Measurement 1

Figur'e A4 Ellipses of adjustable dimensions
used to specify regions.
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A the number of measurements is not that excessive.

We nw turn to a consideration of the maximum dimensionaLity

available in the attributes considered. In the case of speaker

identification, we shall presume that an utterance of two seconds is

used consisting of approximately twenty different phonemes [33. Each

phoneme can be characterized by a few numbers such as voiced/unvoiced,

pitch, and formant position, bandwidth, and relative amplitude.

Altogether, some twenty numbers are perhaps sufficient, Leading to an

estimate of A 40C for a two. seconO utterance. It is interesting to

compare this to the number of bits necessary to encode the utterance.

Using either a channel or LPC vocoder, approximately 2000 bits/second

are required for good quality z.peech £43.

Whereas voices are &dequately decomposed !nto formants, no such

set of features has even been devised for fingerprints. Much of the

information content of a print resides in the minutiae, however.

Assuming four numbers per minutia (two for Location, one for

direction, and one for type) and 100 minutiae per print yield an

estimate of A 400C for all ten fingers. Encoding of fingerprints

requires some 60, OGi bits per digit [53.

In the case of signatures, even Less is known, and neither

estimates of the number of features nor the number of bits for

encoding are available in the literature. Assuming an average
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signature to be pe'rhavps five inches in Length when integrated along

its arc and assuming a resolution of .01 inches, then the spatial

information might require some 1CGO numbers. At IC bits per number,

1OC00 bits per signature would be required. Finally, doubling this

number to allow for a pressure variable yields 2CCCO bits. This

number is an upper bound since many portions of & signature consist of

Line segments of Low or zero curvature.

Considering the current speaker verification system built by

Texas Instruments 6] to be prototypical, we can comparc the number of

dimgnsions utiLizec; znd the number of enrollment samples required. In

each utterance four reference points with ICC associated numbers are

evcLuated, giving a dimensiontlity of 4CO. Since these reference

points concern only vowels, not all phonemes are exploited. Thus the

agreement between the theoretical &nd actual dimensionality is Largely

coincidental. At enrollment time, each word is spoken four times.

Ue consider, Likewise, the fingerprint verification device built

by CALSPAN Corporation [? to be typical. Unfortunately, the

operation of the device is not described in open literature. Although

print matching is based on minutiae (position in two coordinates and

orientation), the number of minutiae used is not stated. It appears

to be variable epenaing on the number Located within the print, with

three being a minimum. Thus, the dimension3Lity is greater then nine.

The CALSPAN device requires ten enrollment samples.
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Even Less information is available about the operation of the

prototypical signature verification system built by Veripen C83.

Veripan uses six signatures for en.rollment.

Table AIC summarizes this information. The conclusion which can

be

reached from Table AIC is that the number of enrollment samples is

consistent with the dimensionality presuming a simple Logic is

employed. This is known to be the case for the Texas Instruments

device which uses the following simple region specification. The

Logic employed is to require that the measured vector x lies within a

distance t of the reference vector r. That is

E (X)2 < t (A46)

The variable t is allowed to be a function of individual. Equation

A46 thus defines a circle of variable radius in feature space and is a

very simple example of the second type of Logic which we discussed.

Based on Tables A7, A&, A9, and AIC, it would appear that ten

samples taken at enrollment is a reasonable number. A rather

compelling argument for using such a small number is the observation

that no practical access conror device can require too many enrollment

samples. If this were the case it would be unacceptable to both users

and agencies deploying it. As a conservative measure to guard against

possibly unusable data, we r-commend that the minimum number of

enrollment samples be doubled to twenty.
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8~fl ~,TABLE Al"

THECRETICAL AND, ACTUJAL DIIAENSICkALITY
OF FEATURE SPA.C E F ,OR THREE ATTRIBUTES

TheoreticcL Used
Dimension- Dimension- EnroLLment

Attribute Device slits aLity atity Samptes

Spt'sch TI 40C%' 4CC 4C0* 4

FViigerprint Catspan SlIC >4C C >

Signature Veripen < 1L ~ 0 C- 6

*ProbabLy not Lineraty incdcpendent.
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A.4 IUM8ER OF SESSIONS FOR EACH SUJECT

As we have shown in Section 1.0, N samples are required for Type

I error testing and K subjects must be included. Thus, at Least

N' a N/K samples per subject are required in the data base. This note

is concerned with the question of how many sessions should be used to

coLLect the N' samples.

As a basic premise we assume that as the number of sessions

increases, the cost of coLlection wiLL go up. This is reasonable

since in any data coLlection there are the overhead expenses of set-up

time, travel time, subject coordination, and general organization. In

fact, it is usuaLLy the case that the time devoted to overhead items

dominates the total time aLlocated. Therefore, we should minimize the

number of separate sessions.

It wiLL not ordinarily be possible, however, to coLLect aLL the

required data in a single session because the physioLogicaL attributes

being measured are subject to Long term variability over and above the

short term variability which wouLd &pear at a single session. Let g

be the measurement vector and Let H (x) be the distribution of x

measured for the subjects at the ith data coLLection session. The

Long term distribution, F(x), might be found be averaging the single

session dintribution,

FN Z 14.(x) (A47)

F~~x) - 3 SN ±
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The distribution F is normalized if each H. is normalized. Figure A5

shows how a set of different H. can build zn F. The vector x is

shown as a scaler for ease of presentation.

We now postulatc that the session-to-session variability is due

to some hidden paremeter y. For example, suppose variability in

fingerprint measurements is caused by variability in skin moisture.

Then y would meAsure moisture content. Thz postulate implies that for

each y value (y is a vectcr), there is a unique H(x,y). As different

cotlection sessions are concucted, y will vary in tine according to en

unmeasured law and will result in different H distributions. That is,

if y(t1 ) is the value of y at the time of the ith observation, ti,

then

H(x,y(t4 )) = H.(x) (A48)

Let 6(y) bg the temporal density function of y. That is G(y)dy is the

probability that a rancom sample of the hidcen parameter will produce

a value between y and y +dy. Then

+0

F(x) f G(y) H(xy)dy (A49)

A hidden variable y may always be postulated. Gne may take y as

time itself, for example. However, the existence of a cistribution

6(y) which can be normalized is an assumption which we make. This

assumption is equivalent to stating that the Long term variability in

the parameter x is bounded. Since time is bcun~cc in the access

control situation of interest to us herc, the function G(y) must

always exist. The trivial case is whcn no hidden p3rameter other than

A-4C



FWx

FiueAb A set of H.(x) observed at different sessions build a total

distribution FNx) (not shown at same vertical scale)
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time exists and G mey be taken as the reciprocal of the time over

which the data collection will occur, tN -ti . The interesting case is

when y returns to the s3me value, making G a non-constant function of

y.

In Section I.L we considered the problem of determining the

number of subjects the data base should include. We used the notion

of an undiscLose6 subgroup and, as an extreme example, considered that

for orie subgroup the Type I error p was the highest possible value.,

I.C. We then argued that the Type I error quoted for a verification

system should be the average over the population. A subgroup with a

value of p a 1.0 could comprise a small fraction of the population

(nameLy 1') and still permit the access device to meet specifications

if the rest of the population had p x 0. If a data base were to

contain few subjects, the probability of measuring the correct value

of p for the population would be small since the sample would

frequently contain too few or too many members of the poorly

performing subgroup.

The results of Section 1.0 can be used to determine the number of

data collection sessions required. In predicting the time averaged

performance of an access conroL system, the worst case would arise

when the hidden parameter y took on only two discrete values. When

y = y,, the subject has p = p = 0.0. This case occurs 99% of the

time, so G(yI ) =.99. However, when y =Y 2, the system performance

degenerates to a value of P = P2 =.C, with G(y2 ) = .01. The time
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averaged Type I performance is .01% and stiLL meets specifications.

The hidden parameter y which governs the temporeL variability of x is

now: anaLogous to- the hidden subgroup which governs vatiabiLity over

subjects. We can thus state that 35-6 different data coLLection

seisons are required to assure that any hiclden paramcter y does not

possess statistics which will make the predicted Type I error

erroneous. These sessions must, of course, be collected at times

separated by an interval such that y will have a high probabiLity of

charnging.

Thc number of sessions is zappaLLin@Ly Large. However, by making

some reasonable zssumptions, the number can be reducec. If we assumTe

the temporal vcriability in measured attribute, x, is the szme for all

subjects (only one 6(y)) but is uncorrelzte6 in time between different

subjects, then the result over many sessions can be inferre. from the

results over many subjects. For example, suppose we have 4CC subjects

who are enrolled at one session and~ tested at a ( ter session with a

time interval Long compared to the time for vari~tion in x. If there

were a~ hidden parameter with the .Cl probabiLity o f occurrence and

p = 1.0, then the most probable occurrence is for 1". of the su~jects

to be rejected. As we show in Table AZ, thce 40LI subjccts permit

determining of p of .01 with almost 2%conficeence. Thus, if on,:

satisfies the requirement on number of subjects, he wiLL 6Lso satisfy

the reqtiirement on sessions if two sessions (counting enrollment) are[ used.
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APPENDIX B

PAR SPEECH PROCESSING (PSP) SYSTEM

The PAR Speech Processing System is a flexible and easily

expanebLe systen within which a variety of speech processing tasks

have been implemented. Data is stored in files in established

formats, processing is carried out by independent tasks operating on

these files, each implementing a single function.

There are four basic types of files: waveform files, containing

digital speech data; encoded data files, containing linear prediction

encoded speech data; phoncme library files, containing the phonemes

used in construction; &nd coveriance files, containing covariance

matrices for phonemes used in phoneme recognition. Figure el shows

the different file types and Lists the programs and functions as they

I&re related to the files. The following is a short description of

each program.

Record: This task digitizes an analog speech signal using the

LPA11-,((*). The sampling rate is 12.C kHz and has 12 bit (+/- 2048)

(*) DEC PDP 11 series Laboratory peripheral
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Record: Digitize speech siQnal
PLayback: Convert digital waveform to analog signal
Encode: Encode speech into cross-sectional areas
Edit: Extract portions of a waveform file
DispLay: DispLay raw or processed waveform
Dump: List out data values
ScaLe: ScaLe waveform to 12 bits

ENCODED DATA

Decode: Decode cross-sectionaL areas into digitaL waveform
Change: Modify voicing, pitch parameters
DispLay: DispLay time history of cross-sectionaL areas
Dump: List out data vaLues
Construct: Construct an encoded utterance

PHONEMES

Enter: Enter a phoneme into a Library
DeLete: DeLete a phoneme from a Library
Dump: List the phonemes in a Library
Average: Average many frames and enter into a Library.

COVARIANCE MATRICES

Covariance: CaLcuLate a covariance matrix for a fiLe
Invert: Invert the covariance matrices in a fiLe
CLassify: PreLiminary cLassification
Dump: List entries in a covariance fiLe
DeLete: DeLete entries in a covariance fiLe

Figure Bi

B-2



PAR SPEECH PRGCESSING (PSP) SYSTEE

accuracy. Data is stored in waveform files, as 2 byte unformatted

integers, 512 bytes/block. The star't and sto- of digitization is

under operator control and the duration is limited only by the largest

contiguous space on disk.

Playback: This task plays a digital waveform back out through

the LPA11-K at 12.2 kHz. Start of D/A conversion is under operator

control. The file can be auditioned repeatecly or c new file can b-

auditioned.

Encode: This task encodes a digital speech signal into Linear

prediction coefficients. The output file contains c frame label, if

known, frame voicing, pitch pariod (if voiced), gain factor, fifteen

linear prediction coefficients, fifteen reflection coefficients, and

fifteen cross-sectional areas. These are 4 bytes, unformatted.

The encoding employs the auto-correlation method, as explained in

Section 3.3.3. The computation is carried out using Robinson's

recursion [13. The reflection coefficients which are intermediate

results of this c&lculation are used to calculate the cross-sectional

areas using

A l+km m
_ 1 l-ki m = 1, 2, 3 .... M

Am 1

where A arc the cross-sectional areas and k are the reflection

coefficients.
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Voicing is detected using a cyclic auto-correLation, which is

calcul4ted by taking the inverse fourrier transform of the power

spectrum. This function, r (n), is searched for its maximum between

n*2 and n=256. If r. (np )/rY(i) n , where t = 0.35 and n is the

Location of the peak value, then the frame is called voiced, with a

pitch period of P = np/fs, fs is the sampling frequency, otherwise,

the frame is calLed unvoiced with P a 0.

Edit: This task allows a section of a waveform file to be

cxtracted one placed in another file. This is useful in eliminating

the Long silences before ano after utterances, and in selecting short

portions of Long utterances for processing.

Displcy: 14aveform files can be displayed on a Tektronix 4014

storage tube display terminal in two formats. The raw data can be

displayed, with only the frame boundaries and frame numbers marked.

14 the filc has a corresponding encoded data file, then thc trame

Label (if known), voicing, pitch period, at.d frame number are

displayec. Both displays are 1C frames/line, 4 Lines/page (see Figure

IS2 and 81).

Dump: This task simply prints out the actual data values

contained in a waveform file (Figure 84).

Scale: This task scales date from greater than 12 bits to 12

bits. It aos not scale data up from less then 12 bits.

6-4



~-. ~lot

4on

4m_ _ 
fy f"--- -

In4

r:1

044
vi a

* S S



0 0

-j-
iL1



V I II

* 4 v4 I n u r

- I n In

i tI II

wo
0.j.4.4I4 1 9.4 .

1(' 1.4 M.4 1~~~(

0 I It It

G. W. C'

I (a .. 4 M

.5 
('ICU Utchm CUMIO

0.LI (n v r.

IV

~ .4 .4 i

I I

U) 1 .41133



PAR SPEECH PROCESSING (PSP) SYSTEM

Decode: This task is complementary to the Encode task in that it

creates a digital w3veform from an encoded data file. The Linear

prediction coefficients are used to design a digital filter whose

excitation is a pulse train for voiced speech or Gaussian distributed

random noise for unvoiced speech.

Ch3nge: This task aLLows 'he user to modify the voicing decision

and/or pitch period for any frames in an encoded data file.

Display: This task dispLays the time history of any one of the

fifteen cross-sectional a reas as a bar graph. There are ten frames

per Line, 4 Lines per page, and the display is LabeLed with the frame

label (if known), the voicing, pitch period, and frame number (Figure

65).

Dump: This task lists out the data contained in an encoded data

file, frame by frame (Figure 86).

Construct: This task constructs an encoded data fiLe according

to a string cf phonemes specified by the user. The data values used

to construct the string are gotten from the appropriate phoneme name,

a relative factor for the pitch and gain, and the duration. Control

cf the pitch &nd g&in &nd duration gives the user control of the

prosody of the utterance.
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The construction program reads the phonemes out of the Library by

pairs. Starting with the f4,rst ;nd se-cond it first duplicates tnem

for the duration specified in a buffer. Then transitions are

calculated for the cross-sectional crees, gain end pitch. Then new

values are calculated for the Linear prediction and reflection

coefficients are caLcuLatod as thi first phoneme is written to the

output encoded data fiLc, frame by frame. The third phoneme is then

read in, duplicated, and transitions bctween it and the sccond phoneme

are calculated. The second phoneme is output, and the procedure

repeats until the Last phoneme is output. Such a ccnstructed

utterance can then be decoded and auditioned. This is the speech

synthesis task. Figure U? shows the utterance construction

processing.

Enter: Phoneme values can be belected from en encoded dzta file

and inserted into a library.

Delete: Phoneme entries in z library can be deleted.

Dump: The phoneme entries in a Library are listed out by this

task (Figure BZ).

Average: Many frzmes of an encoced data file are everage by

this task and entered into z library as a phoneme. This is useful for

phonemes that can be made as sustainec sounds, such as vowels, nzsals

and fircatives. A waveform consisting of only one sustained phoneme

s-1 1
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PAR SPEECH PROCESSING (PSP) SYSTEM

is enccoed, then averaged, then entered into the Library.

Covariance: A Library containing at Least fifteen different

occurrences of the same phoneme is used by this task to calculate a

covariance matrix for that phoneme and enter it into a covariance

matrix file, along with the mean value.

Invert: This t ask inverts the covariance matrices in a

covariance matrix file and generates a file in the same format, but

with the inverted matrices in place of the covariance matrices. The

matrices are stored in upper triangular column form since they are

symmetric.

Dump: This task lists out the entries of a covariance or

inverted matrix file (Figure C9).

Delete: This task deletes entries from a covariance or inverted

matrix file.

Clzssify: This task uses the inverted covariance matrix file to

nominate phoneme names for each frame of an encoded data file, using a

VahaLanobis weightec nearest mean vector logic E23. The phoneme names

are inserted into the label fields of encoded data file. The user can

use these cs a guide in making the phoneme selection for entry into

the library.
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PAR SPEECH PRGCESSl-G (PSP) SYSTEtM

Any of these tasks may be ,dtered without affecting the file

structure or other tasks and cny new tasks may be accoC, using the

same fles, and/or creating any new files needed. This is the key to

flexibility and extensibility. Figure 610 shows the general

processing flow in this system.
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