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SUMMARY

. This report is one of the final in a series on forecasting methods
and forecast performance for Army demands in the wholesale supply system.
An extended data base of 48 quarters is used and a summary of results from
both old and new forecast methods is presented. The analysis is more intense
than in [8]; forecast algorithms are used on various item activity classes ,f
with the intent of detecting patterns which could indicate where certain -
algorithms work best. It was hoped that ultimately a synthesis of procedures
for forecasting by item classes would be developed. However, the evaluation
results as found in the report present no clear cut improvement to the current
method for active items. In [4], a new forecast procedure is recommended for

inactive items..
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CHAPTER 1

INTRODUCTION
1.1 Overview

This report is one of the final in a series on forecasting methods and
forecast performance for Army item demands in the wholesale supply system.
An extended data base of 48 quarters is used and both old and new algorithms
are evaluated. A more intensive analysis is made herein than in [8];
forecast algorithms are used on various item activity classes with the
intent of detecting patterns which could indicate where certain algorithms

work best. It was hoped that ultimately a synthesis of procedures for fore-

casting by item classes and for interfacing across classes could be developed.
However, the evaluation results as described in this report present no clear

[ og
cut improvement to the current method for active items. In (4], a new fore- ;4

cast procedure is recommended for inactive items. §

1.2 Scope

The specific reasons and scope for this report are listed:
a. IRO continues to maintait and expand a data base of aviation
parts' demand. The data base of report [3], quarterly data for 9700 items from
1967-1973, has been extended to a file of 13900 items for years 1967-1977.

The analysis herein concentrated upon the years 1971-1977, the Vietnam war

having less impact than in the earlier file.

b. Several of the algorithms in [8] utilized forecast parameters
(e.g. Kalman k-factors) which were obtained [r:m statistical properties of
agpregate time series of demand and of flying hours over that earlier 7-year
time period. In this report we update these parameters (as well as compute
parameters for new types of algorithms) based on a later 7-year period 1971-1977.

c. Reports,[7]),0f superior performance of moving average forecasts .

i incorporating a Trigg tracking signal by the TARCOM Systems Analysis Group
led IR0 to modify such a Trigg algorithm and to test it with the expanded

data base.

d. Preliminary success of the Trigg tracking signal led IRO to
develop other refined algorithms which utilized other switching signals for

fixing the length of past history used in a current forecast.




e. Changes have been made in the supply simulator since it was used

as one of the performance measuring tools in [g8]. Additional improvements
developed during the course of the work have been included in the final

simulation analyses.

1.3 Findings

For the cursory reader, the table on page 6 1is probably the best culmina-
tion of the many results and tables in the body of the report. At a glance
one can see the basic breakout of the analysis per stratification class. (See
bottom of page). A 95% confidence interval was plotted for the mean difference
in performance (as measured by the simulator) per item between the alternative
algorithms and standard (1794) for the indicated stratification classes. In
each case, none of the alternative algorithms performed significantly better
than the standard (each confidence interval contains zero).

The final candidate forecast algorithms considered for this analysis
were:

1794: the current 8 quarter moving average

KAL: a modified Kalman filter (see [9]) which is similar to

exponential smoothing.

IROTRIGG: a switching scheme between an 8 quarter and 4 quarter moving
average, with some extra weight given to the current

quarter's demand.
MED4: a 4 quarter moving median.
MOVD: a 8 quarter moving average on demands only.

It should be noted that these findings are limited to the more active classes
, of items. Report [4%] has been written which deals specifically with items
exhibiting low demands.
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CHAPTER IT
DATA

2.1 Description

The IRO demand history file includes 11 years of requisitions and demand
by quarter accumulated from the AVSCOM Demand Return & Disposal (DRD) files

e e

from 1967 thru 1977. Flying hours covering the same period as the demand
data were obtained from DCSLOG. The file contains a sample of 20,865 items
from all those in the system in 1966 and subsequently entered.

The data base is limited to recurring demands for which program data
was available. SSA and Grant Aid demands were eliminated as were items not
purchased thru central procurement, based on the last recorded IMPC code.
Every attempt was made to drop items subject to logistical transfer.

Previous IRO forecasting projects used an older 7-year data base [3],
compiled in much the same way from the DRD files. The only significant
difference in the new data base is the inclusion of items with trivial demand,

essential for forecasting demand for inactive items.

2.2 C(Classification

Each item was classified as low dollar value (LDV) or high dollar value
(HDV) according to whether the demand rate averaged over the 11 years was
less than or greater than or equal to $50,000; and the requisition rate was
less than or greater than or equal to 100 per year. Items with over a million
dollars of demand per year were dropped.

The items were further divided into dynamic (DYN) and non-dynamic (NON)
based on the Federal Stock Class (FSC). The dynamic components were considered
to be those that experience high rotation rates; i.e. rotor blades, trans-
missions, and turbine engines. For more detail see Cohen [3].

The data breaks out into the following four groups:

HDVDYN 86
HDVNON 262
LDVDYN 1169
LDVNON 19348

20865

Some of the simulation and other forecasting work was done using the

last 7 years of the 1l year data base, thus eliminating the 1967-1970 period

7
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subject to the Vietnam war. LDV and HDV divisions were recreated based on
the demand in the last 7 years. The new breakdown of items for this period

1971-1977 is:

HDVDYN 54
HDVNON 224
LDVDYN 1199
LDVNON 19384

20861

Four items were eliminated which had over one million dollar demand, based on

the last 7 years.

2.3 Aggregate Series

The graph on page 9 illustrates the aggregate series of all the items
for demand (D), flying hours (H), and demand divided by flying hours (D/H).
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CHAPTER TII

KALMAN FILTERS

3.1 Basic Forecast Methods

As noted in references [8], [9], "Kalman Filters' are, for a general ciass
of statistical processes, optimal forecast procedures, in the sense of mini-
mizing mean square forecast error. These algorithm- have a general exponential
smoothing structure where the smoothing weights themselves are variable and
updated. |

In this section the most important Kalman algorithms that were tested ?

are briefly summarized and designated with code names. Complete mathematical

descriptions are found in the Appendix to this chapter. All algorithms operate
on the demand per flying hour time series D/H in order to predict a rate value.

Forecasts for demand in a future period are then made by multiplying the rate

estimate D/H by the program (flying hours) for that future period.
KALMAN - Original Kalman filter algorithm investigated in reference [8]. o
Updated k factors for D/H for the period 1971-1977 are

oeh ol

used.
KALNEW1 - Kalman filter with a nwalfcation to the formula for updating
the weights. New kD/H factors are used. (See Section 3.2)
KALMANS -~ A switching signal is used to choose either the current
observation of D/H or the KALMAN estimate.
KALMANSMA? - As in KALMANS but replace current observation by current
2 quarter average.
KALNEWLS - As in KALMANS but uses the KALNFWl estimate.
KALNEW1SMA2 - As in KALNEW1S but replace current observation by current
2 quarter average.
KALNEW1SMA3 - As in KALNEW1S but replace current observation by current
3 quarter average. .
KALREL - Current weighting value in original KALMAN procedure is -
adjusted by a ''relevance' function which tends to put
more weight on current observations. . )
KAL2SPK - An a priori two spike distribution on zero value and a non-

zero value for kD/H 1s assumed. Bayesian updating is ’
applied to the spike probabilities and the estimates from
2 Kalman filters (for k = 0 and k # 0) are appropriately

weighted. 10
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3.2 K-factors for Kalman Algorithms

A parameter ky i8 needed to obtain the changing values of weights applied
to past and current observations of a time series variable y in a Kalman
forecasting procedure. The details on the mathematical theory of Kalman k
factors and on the statistic formed from empirical forecast errors can be
found in [9]. Suffice it here to say that the mean square error on y over L
periods when using a moving average of B periods is a function of k and of a
variance q2 of the process mean. The functional relations can be solved to
find estimates of k.

The tables present the average k values for D and D/H processes for
items falling in various requisition classes. The 1967-1973 table is a re-
finement of the table for that same period in [8], a result of correcting
a not completely innocuous bias in data processing; kD did not change much,
but kD/H now does not increase continuously as requisition activity goes up.
The period 1971-1977 indicates generally higher values of kD’ kD/H; hence
relatively more stability in the processes D, D/H than in the Vietnam era.
There has also been a shift in the column trends in the later era, an indica-
tion of a change in demand patterns by requisition class. The 1971-1977 k
values are probably more representative of "normality” but should be updated

about every three years or with changes in war or economic environment.

3.3 Appendix A ~ Mathematical Addendum

Basic Notation

observed value of process in period n.

y -
: For all algorithms listed, Demand/Flying Hours, D/H
was the utilized observation variable y in the empirical
analysis.
X = mean of process in period n.
Q; = eatimate of mean of process at end of peried n,
?;(1) = forecast at end of period n of the process value L periods

later.
Except for a few cases with assumed deterministic trend

components in the process model y (which did not perform
well), our processes assume stochastic fluctuations in
the future around the current mean; therefore a best MSE

forecast'?n(z) = Q; is used in the cases below.

11
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Hn+l = flying hours in future period n+x.
H(n,L) = total flying hours, period n+l to ntL.
’~
D(n,L) = forecast of demand over L. periods based on information thru
end of period n
o+l ~
= 41_ y () H " = an(n,L)
n+l
KALMAN
A /~ ~
= + -
xn xn—l Gn (yn xn—l) (A1)
1+ k Gn
n+l 2,.2
+ +
1 k G“ k (Hn/Hn+l)
AL N
yn(\) =X

k 1s updated every 4 quarters based on the current 8 quarter moving
average estimate of yearly requisitions. (Table lookup)

KALNIWD

As above with

1 +kG (u "y, ")
G, = (A3)
3 +
1+ k Cn(Hn+1/Hn) k

KALMANS
In reference [ ] the formula for the MSE of a one period (quarter)
forecast for moving average of M periods applied to the Dynamic Mean process is

M+1) (2M+1

. 2
MSE, = q [k + /M + P (A6)

So in ternms of two moving average mean square errors, solving (A4) for k,

(MSEy - CM)-(MSEN- cy)

=( N c,)- L (45)
N
where C. = 1 + L7 QI-1)
I 61
For N= 4, M= 8 and R = MSE/MSE4
Then (AS) leads to
k ¢ .5 1if and only if R2Z 1.5 (A6)

We approximate the effect of k Iinferred to be quite small by putting all

weight (Gn-l) in a Kalman a]gorithmlzp the current observation Yy




The above relations lead to the following heuriatic, hybrid algorithm

employing a switching signal.
Let
N
Zn(j) = ] quarter moving average after period n.

MSE_(§) = (1) MSE__ (D) +a & _ @) - v’ @7)

Then
1€ [MSE (8)/MSE_(4) ¥ 1.5],§n(z)= v,

N N A A
otherwise yn(z) =X, "X 1 + Gn(yn xn-l)

where Gn is given by (A2).

a was chosen to be .8 based on empirical testing.

KALMANSMA2

The reasoning applied here to obtain a heuristical switching signal

algorithm is similar to that of KALMANS. We wish to know when it is appropriate

to use an MA2(2 quarter moving average) on y (i.e. D/H).
Note in (A2), that when flying hours are stable (ang,ﬂn+1), G

approaches .67 for k = .7. An exponential smoothing weight of .67 is equivalent
(in the sense of average weighting of all past history) to a moving average

base B = 2,
For N= 2, M= 8 and R = MSES/MSEZ, then (A5) leads to:

k < .7 if and only if R > 1.728 (A8)

Then using the notation of (A7), define KALMANSMA2 as

y +y
A n ‘“n-1
1f [MSEn(S)/MSEn(Z) > 1.728],yn(z) =

A N "~ A
Otherwise yn(l) -x tx + Gn(yn - xn_l)

where Gn is given by (A2)

KALNEW1S
Use Gn computed via (A3) in KALMANS procedure.

15




KALNEW1SMA2

Use Gn computed via (A3) in KALMANSMA? procedure.

KALNEW1SMA3

Since k = 2 implies steady state C = .5, which in turn indicates
a moving average base B = 3 (see reasoning in KALMANSMA2), equation (A5) is
used with N = 3, M = 8 to find i

k =2 if and only if MSEB/MSE > 1.288

3
Hence the following heuristic for KALNEW1SMA3:

y +vy +y
. gy = .0 n-1 n-2
if [MSEn(B)/MSEn(3) > 1 288],yn( ) 3

N
X

~ ~ N\
1y = = -
Otherwise yn( ) a xn-l + Gn(yn xn—l)

where Cn is given by (A3)

KALREL
S = 1% TT & pr =l (49)
n+l
1+ k Gn
where An+1 = (A10)

2,.2
1+k Hn/Hn+l

If 0< r < 1, then more weight is applied to the observation
Yo+1® The factor r can be defined as the value of a rei~vance function,
which measures in some manner the relevance of the current observation.

Extending the theory of{3a] to our models, a relevant relevance function

may be formulated, viz.,

2.5 0@ (1+Kk G +kuw/m )y )
\ n+1°D > . n n’ _n+l 4._? (A11)
= i D | -
r = min 31. " H; Vel ?n} ‘
! \

~
where qp * standard deviattor of demand mean based on items’requisition
class. See Table
2.5 is an adtustable value which here bounds the difference

A
between rthe new ostimate x and the observation to be no

more thar .95 standard deviations of the process.
i6
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This procedure hedges towards Y41 28 @ new estimate 1f the error

magnitude ]yn+1 -?n' is large.
KAL2SPK

A two-spike distribution for the item's k~factor is assumed ~ around
values k = 0 and k = kD/H’ where the latter is tabulated by the item's requisi-
tion class. The probabilities z, of k = kD/H are updated as below and used in
combining the Kalman estimate‘Q; from (Al) for k ¥ 0 with Yo the Kalman estimate
for k = 0, {.e.

~ ~
yn(l) =z x + (1-zn)yn (a12)

If W, v, are proportional to the probabilities p (error in period n/k) for
k = kD/R and k = 0 respectively and assuming normality of errors, then it can

be shown for the Dynamic Mean model,

1 2
v - exp [ - (y - x _,)7/2 BY,) (A13)
v, = L exp [ - (y - y“_1)2/2 Vol (A14)
4;3
where
A2,.2 A2
V0 qD/Hn-l’ qp, tabulated variance of demand mean.
oy
B'(l+k-—i——' +an_1)
H
n

BV, = theoretical variance of error.

0
Straightforward application of Bayesian updating yields new z

zn-lwn
z = — (A15)
nooz v + (1 zn_l)vn
REGKBNEWSMA2

This algorithm, see [9], 1s the closest weighted average analogue to
a Kalman filter's weighting of past history; in addition a switch is incorporated
ala' KALMANSMA2. Hence referring to the section of KALMANSMA2
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y +vy
A n n-1
if [MSEn(S)/MSEn(Z) > 1.728],yn(1) = 5

otherwise

Y @) = v (A16)

n Ju1 n-3+17n-1+1

B
- 2

where wn—j+1 Hn--_1+1/§=1 Hn—i+1
Base period B is determined from the nearest integer [- ]

B = 1+ 6k (A17)

2

and k is updated every 4 quarters based on the current 8 quarter moving

average of yearly requisitions (Table lookup on kD/H)'

3.4 Appendix B - Structural Changes in KALMAN to obtain KALNEW1

With a slight change in the assumed process model, the Dynamic Mean model
(see [9] Chapter IT), the updating formula for the weight in period ntl applied

to the current observed value Yokl of the process btecomes

q2 + rz G
G - n+l n n (B1)
o+l 2 + r2 G + r2

qn+1 n n n+l

instead of equation 2.5 in [9]. Tf as in [9] Chapter IV, it is assumed that ri,

the variance of y_ = D_/H_, varies with 1/HS, and that r2/q2 = , then
n n n n n’ 'n /8

2 2
1+ (Hn+1/Hn) kD/H Gn
Gn+1 - 2,2 (B2)
1+ (thtg kD/HGn + kD/H
as opposed to 1+ k Gn
Gn+1 = (B3)

2,.2
1+ k Gn + k Hn/Hn+1

as given in [ J.
Equation (B2) is the basis for the KALNEW algorithms. Note as k becomes

large (B2) and (B3) behave similarly.

18
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CHAPTER IV

IRO TRIGG TRACKING SIGNAL

4.1 Background
The IRO-TRIGG is a modified version of the TACOM New Parameter method
described in [7]). It utilizes a TRIGG tracking signal to determine whether i
the series is stationary (constant mean) or not and uses an adjusted eight or }
f’

four quarter moving average respectively as the forecast.

The tracking signal is the ratio between a weighted average of the
algebraic (signed forecast) errors and absolute (non signed) error, while E_
using a standard eight quarter moving average (MA8) as the forecast. If the i
series is stationary, the MA8 will do well in forecasting the constant mean [
of the system, and the over and under forecast errors will be on average
algebraically sum to zero. On the other hand, if the series is following a
trend, then the MA8 will always underforecast (trend positive) or over forecast
(trend negative) and thus the algebraic sum of the errors will differ by the
absolute sum only in sign. '

Thus if the signal is close to *1, then the series is following a trend .*
whereas if the signal is close to 0, then the series is stationary with a

constant mean.

4.2 Computation

Let:
n
Demand
MA8(n) = 1/8 ¢ ¥, where Y - Flying Hours in quarter i
{=n-7
n
MA4(n) = 1/4 ¢ Yi
i=n-3
AMAB(n) = alYn + (l—ul)MAS(n) (0 <o, s 1)
AMAS4(n) = azYn + (l-az)MAé(n) (0 :_az < 1) ;

ERROR(n) = Yn - MA8(n-1)

MALE(n) = aERROR(n) + (1-a)MALE(n-1) (0<ac<1l)
(Mean Algebraic Error)

MABE(n) = o/ERROR(n)/ + (1-a)MABE(n-1)
(Mean Absolute Error)
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TS(n) = MALE(n)/MABE(n)
(Tracking Signal)
Forecast

= (AMA8(n) 1if |TS(n)| < 8 (0 < B < 1)
{AMA4(n)  1if |TS(a)| 2 8

Yn+1

Initialization for Tracking Signal

Ref [ ].
Let: 7
MA7(7) = 1/7 L Y,
1
ERROR(8) = Yo - MA7(7)
MALE(7) = 0
7
MABE(7) =(1.25/7)L/Y - MA7(7)/
1
Then

_ o ERROR(8)
TS(8) = =5 [ERROR(8) | + (1-a)MABE(7)

4.3 IRO-TRIGG Parameters

The IRO-TRIGG forecast procedure depends on certaln parameters which have
to be determined prior to the forecast. These parameters may be selected
subjectively or empirically by experimentatiou. Remarks and observations
concerning these parameters are as follows:

Remarks

a. The @y and e, parameters define the weights given to the past
observation when computing AMA8(n) and AMA4(n), i.e.
n-1
AMA8(n) = W_ I Y, + W Yn

R S

where Wl = 1/8 (1-01)

d W = a
an 5 1/8 (1+7 1)

Hence as a; > 0, AMA8(n)

and as ay -~ 1, AMA8(n)
20
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i
Similarly l
% D1 * :
AMA4(n) = wl L Yi + wz Yn .
n-3
W = 1/4 (1=
where L = 1/4 (1 2)
*
and W2 = 1/4 (1-3 o

) ;

also as o, * 0, AMA4(n) + MA4

2 .

R N |

GZ 1, AMA4(n) Yn 1

So if a, is small and ul is large ‘ j
then the AMA8(n) will do better then AMA4(n) in forecasting a

non-stationary (trend) series,

also AMA4(n) would do better then AMAB(n) in forecasting a stationary 3

series. i

Since this 1s counter to the logic of the switching process, careful 4

judgement should be made when selecting the combination of values for Gl and GZ.
b. The a parameter determines the amount of weight given to the

latest error when using MA8 for computing the tracking signal. i

« ERROR + (1-0) MALE(n-1)
o[ERROR| + (1-%) MABE(n-1)

TS(n) =

(Tracking Signal)

1
Now as & + 1, TS(n)~ gggg >4+ 1 ]

independent to the type of series being forecasted. Therefore for a large,

the TRIGG signal may incorrectly identify a trend condition.

c. The B or threshold parameter identifies the region in which
the tracking signal indicates a stationary or non-stationary series. The
larger the g the more confidence is given to correctly identifying a non-

stationary series, but less confidence is given to correctly identifying a

stationary series. From the previous paragraph, it is obvious that g and g
are related and that as a gets large B should likewise get large in order to

maintain the same level of confidence.
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Observations: (Results from experimentation with data base)

a. We found that ay =a, = .15 worked as well or better then any other
values selected for experimentation and these values were somewhat robust.

b. The best o level was found to be .66,contrary to the small o implied
in the remarks. The switching process was very sensitive to changes in this
parameter. For g = .66, the tracking signal indicated a non-stationary process
74% of the time.

¢. It was surprising that changes in the B level made little difference
in the statistical results. g8 of .5 was choser.

d. The IRO-TRIGG with parametersa1 =a, = .15, a = .66, and g = .5
was the final model chosen to represent the tracking signal technique. This

method performed better then the other alternatives not listed in the report.

A.4 Structural Change tc the TACOM New Parameter Aleorithm

As mentioned earlier the TRO-TRIGG forecast algorithm is a modified version
of the TACQOM Yew Parameter algorithm cited in [7]. The changes as described
below were made in an effort to make the forecast technique more consistent with
the underlying theory of the TRIGG tracking signal.

a. Computing the Tracking Signal. insiead of using the errors from the

actual forecast as done by TACOM, the IRO version uses the errors from an eight
quarter moving average forecast in computing the tracking signal. By so doing
the tracking signal becomes a monitor for trends. The eight quarter moving
average will lag behind any trend in the data which will result in a trackinrg
signal close to + one. Since the tracking signal is computed independently
of the actual forecast, it is not effected by any switch in the forecast
technique and will continue to indicate a trend as long as there is one.

b. ay
two empirically found parameters o, and a, which adjust the amount of weignt

1
given to the current observation in both the eight and four quarter moving

and a. Constraints. The TACOM New Parameter algorithm utilizes
A

average computations(0 <oy <D, (0 <a, < 1) . The IRO-TRIGG version also

uses these parameters but constrains their values so that the adjusted four
quarter average still responds faster to changes (trends) in the data than
the adjusted eight quarter average. (This will not be the case if oy is

sufficiently large and a, is sufficiently small as noted under remarks,

2

section a.).



c. An Additional Empirical Parameter a. When computing the TRIGG
tracking signal, an exponentially smoothed algebraic error is compared with

an exponentially smoothed absolute error. The TACOM New Parameter algorithm
uses a smoothing constant of .66 for these calculations. The IRO-TRIGG
version considers this a smoothing constant as an empirical parameter which

needs to be estimated.
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CHAPTER V

CURRENT AND OTHER FORECAST METHODS

5.1 Current - 1794

The current Army method of forecasting estimates the demand per program

*
(flying hours) at end of period n using

8 8
/N
=z r
* j=an-j+l/j=1Hn-j+l

This may be written in terms of a weighted moving average on y = D/H:

8
x =L W Y
n =1 n-j+1 n-j+1
H
W o _n-jtl
n-j+1 8
T
i=lHn-i+1

5.2 Moving Median (MED4)

In an effort to eliminate the effects of spikes in the data, a simple
four quarter moving median on D/H as described below was used.
Let s(n) = kyn—3’ yn-—2’ yn-l’ yng be the last four observations
and let
te the ordered array of this set

C1,n’ Y2,0° 3,0 Y4,0)

where yi,n i'yj,n for 1 < j

Then

MED4 (n) = y2,n : y3,n
and

41 = MEDA(n)

Several data experiments were performed on the length of the base period

and the four quarter base appeared to perform best.

%
A period = one quarter of a year, so 8 quarters or 2 years of history is used.
24




5.3 Moving Average on Demand

To support Cohen's [3] findings that the use of program data (flying hours)
improves forecasts a simple eight quarter moving average was applied to the

demand gseries D.

Let Exn_7, xn—6""’ﬁ;g be the latest eight observation
mea 2, -]
en X4l = xn_1/8

i1=0




CHAPTER VI

EXPERIMENTAL DESIGN

6.1 Overview

From our ?revious experiences we have found that there is no clear cut
way to evaluate forecast algorithms in an inventory management system. With
this in mind, an ad hoc sequential step wise experiment was designed where
both forecast methods and evaluation procedures were eliminated and/or refined

after each step. As a result both a best forecast algorithm and a best

R

evaluation method may be determined. The details of each step are as follows:

6.2 Step 1: (13 forecast algorithms, 9 statistical error measures)

For the first step, the four major data sets described on page
were used. After appropriate initialization, each forecast algorithm was used
to make a one quarter and a four quarter forecast for every quarter of each
cseries. These forecasts were compared to the actual demand of the series and
the errors were rolled up within classes of series. Various error measures
were computed for 13 forecast algorithms, 6 series classes, and 2 forecast

horizons. The experimental layout is as follows:
Data Sets:

Low Dollar Value Non-Dynamic (LDVNON) conzisting of 54 items
Low Dollar Value Dynamic (LDVDYN) consisting of 224 items

High Dollar Value Dynamic (HDVDYN) consisting of 1199 items

High Doliar Value Non-Dynamic (HDVNON) consisting of 19384 items

Forecast Horizons

1 quarter

4 quarters

ERROR Measures:

Let xij

F1 = index set of forecasts for ith item

7?1 = cardinal size of Fi (number of times a forecast was made)

be the demand (for the ith item) in the jth quarter

E,, = error (x X ), jeF

14 13 ~ *13 1
AVGi = gverage demand for item i

(double 12 month moving average starting after the

first noq&fero demand)




Simple Averages

The first error measures considered were simple averages of tra-

ditional measures.

-

N
MAD = %- X %%— L |Eij| ’ :
1=1 "1 JF ﬁ
’ o (Mean Absolute Error) ) E
N !
MSE -% b -}\—- L (Eij)2
1=1 " jeF
i %
(Mean Square Error)
N
BIAS = %-z l; 2 E,
=1 "1 geF, 3

Percent Error Measures

The simple averages give more weight to items with high demand
frequency. Since the items were stratified into homogeneous classes it was
desirable to give equal weights to each item in the class, hence the following

percent error measures were considered.

N E,
AVG % of Forecast = %- T %—- L l§;1l
1=1 "1 JeF, "1
N E
AVG % of Actual = %- r = g ';11’
1=1 M JeF, M1y
N E
1 1 ["14]
AVG 7 of Both == I = 1I —
N (=1 Ny J‘Fi 1/2 (x1j + xij)

Relative Error Measures

Now since many of the series were quite variable, the denominator
of the percent error measures did not reflect the steady state demand of the

item hence the following relative measures were considered.
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LN E,.
RELATIVE BIAS = & I i~ I K%%"
i=1 "1 jeF, 1
N tE,
RELATIVE MAD = %- 1 L : 1AVG
i=1 Mg JeF, i
2
N E
RELATIVE MSE = %- £ %—- X KV%l
=1 ' jeFi i

Forecast Algorithms: (refer to Chapters III, IV, V for definiticn)

KALMAN
KALNEW1
KALMANS
KALNEWIS
KALNEW1SMAZ
KALNEW1SMA3
KALMANSMA2

Series Classifications:

Class
Class
Class
Class
Class

Class

Average

Average

Average

1

2

3 Average
4

5 Average
6

Average

Annual
Annual
Annual
Annual
Annual

Annual

6.3 Step 2: (5 forecast algorithms, 6

IROTRIGG15-75
IROTRIGG25-25
REGKBNEWSMA2
CURRENT 1794
KALREL
KAL2SPK

Dollar demand between $0 and $5000
Dollar demand between $5000 and $50000
Dollar demand greater than $50000
Number of Requisitions between 0-3
Number of Requisitions between 3-12

Number of xequisitions greater than 12

error measures)

This step consisted of evaluating five forecast algorithms over a

four quarter forecast

the same as Step 1.

horizon.

The data sets and series classifications were

Four of the five algorithms were the best ranked ones

from the previous step and the error measures were those which appeared most

consistent and/or easiest to understand.

suggested after Step 1 was completed.

as follows:

The fifth algorithm, MED4, was

The algorithm and error measures are

it s




ERROR MEASURES: (refer to pages 27, 28, 29 for definition)

REL MAD

REL MSE

% of Actual

% of Forecast
%X of Both
Bias

Algorithms:

1794
KALNEW1
RALNEW13MA3
IROTRIGG
MED4

6.4 éteg 3: (Statistical vs Simulation Evaluation)

This step 18 the most complex of the three. Samples from five of
nine stratification classes were taken and both statistical and simulation
analysis were used to evaluate the remaining four algorithms. The following
table gives a count of items samplea in the 3 x 3 dollar demand versus
requisition stratification.

Yearly Dollar Demand

0 - $5000 $5000 - $50000 > $50000
Strat Class 2 3
o
@« ' 1
§ |o
o N = 335 N = 100 N =4
-l
ale Analyzed Analyzed
=] —
] i 4 5 6
EN N = 124 N = 230 N =17
~ :
E ~ Analyzed Analyzed Analyzed
" 7 8 9
A
N = 98 N = 64 N = 115




Forecast Algorithms:

The five remaining forecast algorithms cousidered for the
analysis were:

KALMAN
1794
IROTRIGG
MED4
MOVD

Moving D was added to the list of those previous tested to
determine if the results from Cohen's report [3] still appear valid. That is,
do forecast algorithms utilizing program data perform better than those
forecasting on demand only.

Statistics:

In an effort to better relate error measures to inventory per-
formance, the following procedural changes were made to the way the statistics
were collected.

(1) Forecast only after a demand; this is the only time a
reorder point may be triggered and where the forecast is actually used
(alternative would be periodic review which wasn't considered).

(2) Use only the item's PLT as a forecast horizon; again this
is what would be used in an inventory system.

(3) Use a simple eight quarter average for the forecast if the
item had been inactive for a year prior to the demand triggering the forecast;
this would handle the migration of an item from an active strat class to an
inactive one without unduly penalizing the algorithm which would normally work
well in an active class and does poorly in the less active class.

Along with these procedural changes, additional inventory measures were
considered. An overforecast error in predicting demand impacts the inventory
control system differently then does an underforecast. Overforecasts result in
carrying too much stock and increase the possibility of being stuck with
obsolete items, whereas underforecasts increase the possibility of not
satisfying a customer's orders and in the case of the Army may reduce the
readiness of a weapon system. Since there 13 not a natural tradeoff between

these two types of errors, the following separate measures were developed.
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Notation

For the given 4th demand series ixi;E and its corresponding S rng

requisition series (the number of requisitions at time j)

L
let Di.t(JL)-}j.‘-1 xi,t+j be the demands over £ periods from time t
2
Ri't(L)-i-l ri,t+j be the number of requisitions over % periods
from time t
~ L ~
ELi’t(l) - (Di’t(l) - Di’t(z)) = §-1 (xi’t+j - xi’t+j) be the

errors over lead time £

UPi = unit price of the ith item

Overforecast Measure

EL, |, (®) AX
OF() = % max%—“‘* 0\ D (8 up
JeF, 1,1® 1. 1

- :Z:Fi max [ELi’j(s),o_\_ UP,

is the cost of the extra stock purchased for periods of eight

quarters for the 1ch item.

N
I OF()
1=1

oF = %
I UP, T D, (8)
t=1 1 JeF, 1

is a percent of the total dollar demand spent on extra stock.

The base period of 8 is used to represent the long term effect of an

overforecast,




Underforecast Measure

) EL,, (PLT)
UF(i) = ¢ max --——Ll—————y 0-1 R, ., (PLT)
jer, { N GEY 13

is an estimate of the number of requisitions not satisfied for the ith item, i.e.

e ———————

if demand is underforecasted, say by 207%, then it is implied that 20% of the

requisitions will not be satisfied.

(Rij(PLT))

is an estimate of the percent of the total requisition not satisfied over all the
items.

The base period 1s the procurement lead time of the item which is the
quickest time stock could be replenished aficr a new order is placed. 1In an
underforecast situation the reorder point will probably be crossed within a
PLT.

Simulator

The final analysis was done with the IR0 Simulator of the Army
wholesale supply system, a description of which is found in Cohen [2].
Algorithms are compared in the form of cost-performance curves; the curves are
traced thru several ")\" points for each forecast procedure, the lambda ())
values reflecting an operating policy which relates to the cost of a backorder.
Actual demand and flying hour time series for items in any of the various data
groupings are used in particular simulation runs. All algorithms have the i,
same starting conditions prior to accumulating performance statistics. To do
this during the warmup period (2 year) all algorithms utilize an 8 quarter moving

average on demand. Of course, also during warmup, the algorithms obtain their

various starting values where needed.
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To determine if the curves are statistically different, a fixed cost

analysis 1s done on the difference between the performance of the current
policy and the test policies for each item. Histograms of these differences
are displayed and statistical tests are used for comparison. Details of the
test procedure are found in Section 7.3.

There have been many changes made to the simulator since used in reference
{8]. The most noteworthy are:

(1) Excess costs (projected from assets above RO at end of simulator
run) are accumulated and averaged into operating costs only on items coded ‘
terminal or obsolete or on items with trivial (nearly zero AYD) demand. However,
end of simulation stock is also stratified into 1 to 15 years of supply over
all items and presented as a simulator output for each forecast policy.

(2) Previously, forecasts could be updated in between quarters
(at time of buys) using moving, interpolated, quarters formed from actual
quarterly data. Now forecasts are updated only on the actual quarters.

(3) The current PCER tables utilized in the VSL module were previously :
adjusted for lead time by a theoretical factor of 1/SL from base values. Now,
the PCER base values do not change, in order to reflect conservatively the

i empirical observation that percentage error increased with lead time L. i

(4) The constraint that safety level be no more than the expected

lead time demand quantity is lifted.

(5) The simulator now incorporates the effects of phased deliveries.

(6) The point estimate of an item's order size in a current inter-
polated time interval (obtained previously from the interpolated requisition

and demand history) is now smoothed (averaged) with previous order size computations.
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CHAPTER VII

ANALYSIS AND RESULTS

The results from the data experiments described in the previous chapters
are analyzed in the next few sections.

In each step algorithms were eliminated based on their performance when
compared to the alternative methods while using several error measures. The

final analysis was performed via the IR0 simulator on the resulting five

techniques.

7.1 Step 1 (Rankings based on 9 statistical error measures)

The tables in this section summarize the comparative performance
(rankings) of the algorithms from which initial screening decisions were made.
For each of the four data base groups, and within stratification classes
(dollar demand and average yearly requisitions) for each group, the algorithms
are ranked ("1'" being best) based on values across the many error measures
described in Chapter V1. Rankings are done for both 1 quarter and 4 quarter
forecast error measures.

After a study of the ranking patterns in these tables, XALNEW1,
CURRENT, KALNEW1SMA3, IROTRIGG 25—25* were chosen for further statistical
and sinmulation investigation. KALNEW1SMA3 was chosen over
KALNEWLISMA2 because of our conservative tendency to use the last 3 quarters

(MA3) of data rather than only the last 2 quarters. Current 1794, of course,

is chosen as the base for improvement. MED4 was developed later in our study.

*
The ''25-25" refers to the ay, oy values in hendredths.
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7.2 Step 2 (Ranks from four quarter error measures)

Four tables are presented in this section, one for each of the
four item groupings - LDV dynamic and non-dynamic items, HDV dynamic and
non~dynamic items. Each table presents rankings of the five candidate items
for two stratifications, by annual dollar demand and by annual demand fre-
quency (requisitions). The relative performance rankings in terms of 6
error measures are tabulated; it should be noted that all but the last are
relative or "percent" error measures.

The algorithm MED4 was statistically evaluated and ranked only for
the measures REL MAD and REL MSE. These two measures, incidently, are
the most consistent, in the sense that their rank orderings most frequently
agree with a consensus rank ordering across all the measures in a stratifica-
tion class.

A pattern of some note in the tables: 1794 and KALNEWl are often
ranked closely ("paired') compared to the KALNEWISMA3 - IROTRIGG pair. The
latter pair tend to perform well in less active classes (1, II, V, VI),
their tracking signals reacting to fluctuations, while the 1794-KALNEWl
algorithms weight more past history and hence gerform well on items with more
stable D/H values, i.e. the active classes (1I, III, V, VI).

There is no dominant algorithm across all strat classes and tables.
In Step 3 we focus upon the statistical and simulator performances of the

algorithms in a three by three stratification.
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7.3 Step 3 (Simulation and final statistical results)

In this section the performance results via simulated cost effec-
tiveness and statistical error measures are analyzed. The final four
algorithm candidates, MED4, 1794, KAL1 (formerly coded KALNEW1), Trigg
{(IROTRIGG), along with MOVD (moving average on demands) were used to compute
forecasts in various simulation runs over five classes (active items) of the
3 x 3 data stratification described on page 29. The simulated cost -
performance curves are captured in pages 44 -~ 50 where performance is measured
in terms of the average of the time weighted backorders as opposed to average
days wait which was reported in the previous studies. (This transformation
of performance measures has no impact on the simulation results but does
make the comparative analysis easier, ref [g])).

The table on page 5] contains the statistics from the various error measures
for each of the five data classes and for both a one quarter and PLT forecast
horizon. The second part of the table compares the within class ranks of

the statistical measures and the simulation results which were ranked at a

fixed cost as described in the next section on Final Analysis.
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Since there are obvious discrepancies between the simulation ranks and
statistical ranks a decision had to be made as to what results should be
used for the final analysis. Much experimentation was done with the simulator
but inconsistencies with the statistics continued to plague the results. A
discussion with Prof Mueller of the University of Ghent (Belgium) revealed that
work being done on an unpublished PhD thesis using Monte Carlo methods indicate )
that minimum mean squared error forecast techniques are not necessarily optimal
methods when applied to inventory management models. This fact along with our
belief that the IRO simulator best represents the Army management system com-

pelled us to use the simulated results for our final decisions.

7.4 Final Results (Evaluation of Simulation Results)

In an effort to determine if there is a statistical difference between
the cost-performance curves generated by the simulator the following fixed
cost analysis was employed, details of which are in [&].

For each class of items, a fixed (current) cost is computed by running the

simulator using the standard forecast algorithm (1794) and the ) value the
Commodity Command presently uses. The resulting cost represents the inventory
cost presently incurred to manage the class of items. Also during this rum,
the performance of each item is arrayed in a data file for future analysis.
For the alternative policies (forecast algorithms) several Ag are used
to generate the cost-performance curve for each policy. Using the shape
of this curve, a spline technique is used to determine the performance of each
item using the alternative policy at the fixed cost. Distributionr(histograms)
of item performance for each policy at the current cost are found in
Appendix A.
To better measure the difference between the alternative methods and
the standard, the difference between the individual item performance for the
alternative and the standard were computed. (It is shown in the basic
statistical literature that these differences will be less variable due to
the elimination of extraneous effects and will measure only the difference
in methods.) The distributionsof these differences are found in Appendix B.
Statistically testing for zero means for each of these difference
distributions is equivalent to testing for a difference between the standard
(1794) curve and the alternatives as plotted on pages 44 to 50. The results of

these tests are captured on the next page where 957 confidence intervals are
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displayed for each distribution of differences for each class of items tested.
(Note if these intervals do not contain zero, then the null hypothesis of
zero mean is rejected at an o level of 5%) The rankings found on page 52
taken from this table by looking at the mid-point of each interval and
ranking them from left to right.

Findings ;

(1) Using the IRO simulator as described in this report, there is no
statistical difference in the simulated performance for each cf the five
stratification classes for the following comparison.

KALMAN vs 1794
IROTRIGG vs 1794
MED4 vs 1794
(2) MOVD performed worse than 1794 and the other alternative algorithms

for the more active items - Class 8 and 9.

Note: MOVD was the only algorithm not using program data.
(3) There was no difference between MOVD and 1794 for less active classes
7, 6, 5, 4.
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CHAPTER VIII

CONCLUSTON
8.1 Findings
In an earlier report by Orr [8], the candidate of final choice for
forecasting was a Kalman filter algorithm. This choice was based upon its
dominance in statistical forecast accuracy and its savings over the current

method as projected from cost-performance curves produced from simulator runs.

cy e =

There was little difference amongst the algorithms' curves for LDV items,
and so most of the savings was driven by HDV items.

From the current viewpoint it appears that the savings might not have
been statistically significant. At the least, the algorithm's gimulated per- }
formance has not been robust against the changes that have occurred (see below)
since that report (although its relative forecast accuracy has held up).
Presently we find "Kalman" working well on some of our groupings of items
and the current (1794) method (among other algorithms) working well on other
items. The improved statistical tools [6] we use now show, in any case, that
no aigorithm's cost-performance curve is significantly better than another's -
for active items. 1In several cases a few items can influence the performance
rankings.

It is not possible to 1isolate the impact of individual changes made since
the earlier report when comparing the differing results. However, such changes
were:

a. The data base was extended from 7 to 11 years and more items were

captured. The last 7 years of the 11 were used in the current analysis, so
much of the Vietnam era from the earlier time series was not influential.

b. It is possible that a different small group of items might now be
driving the HDV savings.

c. The statistical analysis program was overhauled to be more flexible
and capture various error measures.

d. Changes in the simulator were made. Several of these could narrow
the potential difference in performance amongst the algorithms, e.g., excess
cost savings were accumulated only for some items, a standard moving average
forecast superseded all algorithms in periods of very little activity, fore-~
cast updates were made only after quarters with demand.

e. Some changes to the algorithms themselves werr made. Theoretical

t

adjustments were made to the "Kalman' to produce several versions; also, the

"k" parameters were updated to reflect the later 7 years of history that were

used, 56




8.2 Postscript

This table consolidates statistical results of one of the more meaningful
error measures, MAD/AYD, for the four algorithms - by data group and by
requisition class. This relative error when multiplied by an algorithm's
current forecast of average yearly demand, AYD, yields an estimate of the mean
absolute deviation (error) in a year's demand. The theory and formulas in
[9] can be used to convert this estimate to a variance of lead time demands,
the latter a necessary variable in computing safety levels in the VSL EOQ
module of CCSS.

It is apparent that the choice of a final algorithm dictates the percent
errors to be used in VSL EOQ. The present PCER tables in that module should
be superseded by an expanded, refined version of these tables bty requisition
class (and perhaps by dollar demand). The MAD/AYD for the inactive class
(0-3 requisitions) would be based upon current work on algorithms for inactive
items, and not upon those values in this current table, which for some entries

are suspect.

8.3 Recommendations

For active items (greater than 3 requisitions a year) the current (1794)
forecast procedure should not be replaced.

The percent error (PCER) tables in the VSL EOQ module should be over-
hauled using the statistical byproducts of this current research and of the
inactive item research.

A plan for consclidating the current algorithm (for active items), the
pending algorithm (for inactive items, including NSO & insurance) and the

consequent lead time demand variance procedure should be instituted.
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APPENDIX A
HISTOGRAMS OF INDIVIDUAL ITEM PERFORMANCE AS DETERMINED
BY SIMULATOR
FORECAST METHOD DATA STRATS
1794 ST9 (stock fund)
KAL ST8
IROTRIGG ST?
MED4 ST5
Frequency
Scu.lc b} “:‘S-loJr am G ?
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