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to describe the scattering of electromagnetic waves from rough surfaces.

A perturbation technique was used to develop a two-scale composite model
for describing electromagnetic wave scattering from rough surfaces. The
bistatic scattering cross section of lossy dielectric rough surfaces was
derived. Corrections to the shadowing functions for non-Gaussian surfaces
were derived in general. Explicit expressions were derived for exponentially
distributed surface heights in the case of backscattering. An exact solution
for the coherent wave scattered from a rough surface was obtained In the form
of an Integral equation. The exact solution for the coherent wave includes
the effects of diffraction, which are important at low grazing angles. The
objective of this contract has been successfully met.
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1.0 INTRODUCTION

As radar systems designs become more complex and versatile, their per-

formance becomes increasingly sensitive to the operational environment. This

places an increased burden on the designer to incorporate the effects of the

envitonment in system design studies. However, before this can be done. it is

F necessary to develop an accurate model of the environment. In the case of

ground clutter or multipath, this means that there is a need for rough sur-

face scattering models. Such models must not only be based upon sound physi-

cal principles but also exhibit agreement with measurements.

The purpose of this study is to provide improved models for surface scat-

tering from terrain in the microwave frequency range and near grazing inci-

j dence. The basic approach entails applying the composite surface scattering

theory to a lossy, rough dielectric surfaice . As long as- the inci-

dent angle is not too near grazing and the surface is reasonably free of sharpii edges or cusps, the composite model should be a reasonable description of the

scattering process. Since the composite model is based upon the combining of

two asymptotic scattering theorien, it is approximate. Thus, an additional

goal of this study is to investigate new techniques for improving the compos-

ite model. As a first step toward obtaining improvements to the composite

model, a rigorous new formulation of the problem of coherent scattering from

a rough surface is developed. The intent of this work is an attempt to gain

a better understanding of the interplay between the statistical surface param-

eters and the scattered field. Such understanding is an absolutely essential

prerequisite to modeling more complex factors such as vegetation and snow

cover.



1 .1 Summary of Results

Section 2 corrects an error in the composite surface scattering model.

In particular, it is shown that shadowing is improperly accounted for and this

error is corrected. In the corrected version of the composite model, it is

shown that the -onvention-il shadowing iunction multiplies both the zeroth and

first order incoherent scattered power perturbation terms. Thus, even for a

perfectly conducting surface the first order term will go to zero for back-

scattering at grazing incidence due to the shadowing function. The first

order perturbation power suffers an additional atteauation due to the shadow-

ing of unfavorably oriented large scale surface slopes; however, this effect

is relatively small compared to the impact of the conventional shadowing func-

tion.

Section 3 demonstrates how the shadowing function for non-Gaussian surfaces
K

may be easily obtained from existing shadowing theories. The important

surface characteristic in the general case is the probability density func-

tion of the large scale slopes in the plane of incidence, Explicit results

are obtained for a surface characterized by a roughness whose probability den-

sity function is exponential. The results of this study are particularly im-

portant for terrain scattering because terrain height cannot always be described

by a Gaussian probabllity density Futnction.

Section 4 extends the composite model to bistatic scattering from a

lossy, dielectric, rough surface. The details are presented for three cases

of increasing complexity; backscattering from a surface with only small scale

roughness, bistatic scattering from a surface with only small scale roughness,

and, finally, bistatic scattering from a composite (largr and small scales of

roughness) surface. This approach is a logical progression from the simple

to the ecomplex and is therefore beneficial to the reader. Furthermore, this

2



approach facilitates checking the results of the perturbation theory against

existing solutions.

section 5 discusses one technique for relating the joint probability

denaity function of the surface heights to the joint density function for the

slopes. The technique was originally obtained from an analysis of optical

scactering from a rough surface but its relevance to this problem has apparently

been overlooked. Although the technique is not always applicable to measured

data, there are cases where it can provide the desire~d transformation.

Section 6 develops a new approach to the problem of coherent scattering

from a perfectly conducting rough surface based upon the magnetic field inte-

gral equation. In contrast with the classical multiple scattering formalism

which leads to an infinite number of integral equations, this approach results

in a single integral equation of infinite dimension. The infinite dimension-

ality is a consequence of retaining all orders of surface height derivatives

in the averaging process. The major benefit of this approach is that it is

possible to put the mathematical operation of truncating the dimensionality

of the integral equation into one-to-one correspondence with the neglect of

higher order surface height derivatives. Comparisons with the multiple scat-

tering approach results show very good agreement in domains where both theories

are valid. This approach also shows that in order to neglect surface slopes

the product of teRayleigh ruhesparameter adthe rssurface slope must

be much less than unity; that. is it is not sufficient to simply require the

mean square slope to be small.

3



2.0 A CORRECTION TO THE COMPOSITE SURFACE SCATTERING MODEL

2.1 Background

In [1], a solution to the problem of backscattering from a randomly rough,

perfectly conaducting surface comprising both large and si 11 scales of rough

ness was presented. As a direct consequence of the stipu~acion that the sur-

face roughness was a zero mean jointly Gaussian process, the scattering cross

section per unit area was ..etermined to be the sum of two terms, i.e.

pp 0 m [aO,(Q,0)]0 + ,0e,,)( 10 1 The [a (0,)01 contribution is
pppp 0(Od1)p

dominant near normal incidence and results from the shadow corrected optical

like reflection from properly oriented facets or specular points on the sur-

face. The [a 0
1O,(•)]I term is due to Bragg resonance scattering from the

small scale surface features with appropriate accounting for the resonance

broadening effects of the large scale surface undulations. Although shadowing

is formally accounted for in a correct manner in the [(O tpm,
pp

there is an error in the exact representation of the shadowing function which

leads to an incorrect estimate of the effects of shadowing on large angle of

incidence scattering. Thc goal of this section is to correct the above error

and to properly account for the effect of large scale shadowing on the small

scale scattering term.
.1

2.2 Discussion of the Error

The analysis presented In [1] relating to the determination of [a p,(0,0)]
ipp

is correct up to and including equation (23). The problem with the analysis

following (23) is a result of inadequate attention to the definition of the

shadowing function R(6,4) . That Is, R(O,ý) , as it appears in (23) of [I],

can and should he expressea as follows;

R(O,ý) p(O) k o (2.1)

-- -

I~ ZX B r, ,B
4_. :"'!

•': . . ... . . . . ... . . . . .. ... _. • •. L" A



where

is the probability that an incident ray having directicn •lwill intersect a

point on the large scale surface with orthogonal slopes rx and Ay n_ will

not be shadowed by any other part of the surface regardless of the height C

of the point in question. The symbol <,>• in (2.2) denotes the ensemble

average over all values of large scale height r, and the notation P(0)(,

t is the same as that employed by Sancer [21 in his excellent analysis of the

effect of shadowing on [ap (0,1)00 . It should be noted that as a result

uf the integrations in (23) of [11, the shadowing function R(0,ý) is equal

to p(), evaluated at the specific large scale slope values given by

ky /Ban koy/B whr -2k sin 6 cos •,ko -2k sin 0sin ,
Ux koxB and wher ox o

LlB - 2koeos 6 is the angle of incidence relative to the normal to the mean

=i• ~( -•0) plane, and ý is the azimuth direction of incidence. i

In order to more clearly understand and therefore rectify the error in

[1], it is beneficial to repeat equation (23) of ill, i.e..,

2r( J koSyl)1( Y2)f pp k X oýylx) oxp o2 _•

e(-koxAX dody pp(0• B 'B 'B B

• 2"•"exp -J2 (ko Ax + koyAy) -4k2o c~20• [I - O•(Ax,Ay)] dAxdAy

-• -•(2.3)
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where Ax = x2 -x. and Ay - .y In (2.3) I 1  is orte if the point
2 

2
1' YI' 9 C on the large scale surface having slopes l and •Ylis
2 2 2 2 2

illuminated and zero if it is shadowed. The function f p is defined in [1],

C 2 is the mean square height of the large scale surface, and p,(.) is the

normalized aut~correlation function of the large scale surface height. It

should be noted that the left hand side of (2.3) represents the Fourier trans-

form of the <b> term (from AxA y- space to k k -space) and (2.3) isox oy
supposed to show where the transform variables appear in the result. Such know-

ledge is essential to accomplishing the convolution of (2.3) with the small

scale surface height spectrum because this convolution determines [O, oi"

That is, in the convolution k and k must be replaced by k -k and
ex oy ox x

k -k where k and k are the new variables of integration (see (32) ofoy y x y

[1]).

If R(O,ý) in (2.3) had been replaced by its precise definition, as given

by (1), the problem of determining where k and k appear in the rightox oy

hand side of (2.3) would have been correctly solved. Unfortunately, this was

not done. instead, i(O, ) was incorrectly written as (l +C 0)- and, through

the use of trigonometric manipulations, C was expressed in terms of k and
0 ox

k (see equations (24) through (28) in [1]). This development failed to rec-oy

ognize that C does not, in general, depend upon the transform variables in0

(2.3). That ir, if one changes the transform variables from k to k and
ox x

from k to k , C would still only depend on k = -2k sin 0 cos andoy y o ox o

k = -2k sin 0 sin 4 . The primary consequence of this error is to provide an
oy 0

incorrect formula for R(') for use in all equations following (28) in [l].

As will be shown, this error fortunately has negligible consequence on the

numerical results presented in [11.

6



2.3 Correct Analysis

The error identified and explained above can be rectified by determining

the functional dependence of the right hand side of (2.1) upon the large scale

slopes x and y since they are replaced by the transform variables k
ix XYox

and k . This can be done in a relatively straightforward manner by general-
oy

izing Smith's [3] results to the case where k is at an angle T1/2 with
i -

respect to the y-axis rather than directly along the y-axis. Such a general-

ization leads to the following;

U(ctnO - Cs - ysin•) (2.4)p(O (il cx'ýP.y) =1 + CO y(24

where C is given by (24) of [1] and U(.) is the unit stip function which
0

is one if the argument is positive and zero if the argument is negative. Of

particular note in (2.4) is the fact that and C appear nly1 in the

argument of the unit step function. Substituting (2.4) into (2.1) yields the

correct expression for R(O,4b) , i.e.
,

k k
U(ctn 0 cos y sin -)

R(0,0) B BTcon )B(2.5) 1
i + C0

If one substitutes k =-2k sin0coso and k -2k sin0 sine in (2.5) 2
suhasrqurd nox 0 oy 0

such as required in the determination of [p 0 , then R(0,0) (1 + C

and it will depend only on the angles 0 and * and the mean square slopes
2 7
x and y of the large scale surface (see equations (24) and (25) of [1]).

However, in the convolution expression for [a 0,' , the unit step function
PP 1

must be retained. That is, one must use the following relationship;

k -k k o -k [2 cs 2k cosOoR ox X 0 0 k x 1 - i~

iR
2k cosO 2k cos 3+

0 (2.6)

7
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Equation (2.6) leads to a completely different interpretation of the ef-

fects of large scale shadowing on [a 0,] from that erroneously presented in

pP 1

[1]. According to (2.6), shadowing now gives rise to an attenuation factor

)-1 which is common to both [Cpp,]0 !!d [a 0] This result is
( +C pp

merely a consequence of the fact that small areas on the surface capable of

producing strong Bragg scatter, i.e. C r y 0 , are as equally shadowed

as the areas properly oriented for specular reflection, i.e. 9x = k ox/B and

k/B . This statement zan be easily verified by noting that for both

sets of the above values of C and , U(ctn0 - xcos - sin ) = 1A

in equation (2.4) and so R(O,ý) = (I +Co)-I Since both the [(pt,]0 and
0 0

[0p'a terms suffer the same attenuation due to shadowing, the transition

region in 0 (where [aT decreases and [a ,11 becomes predominant)
r[pp 0 pp1

is independent of shadowing effects. Since shadowing results from the slopes

of the large scale surface structure and since the large scale slopes are not

the important surface characteristic in determining the transition region,

this result demonstrates that the theory is self consistent.

The unit step function in (2.6) serves the very important purpose of es-

tablishing the limits on the integrals in the convolutional expression for

[apr']l (see (32) of [I]). However, before this aspect of the problem is con-

sidered, it is worthwhile reviewing the physics behind the reason for the unit

step function in (2.6). The unit step function appears in (2.6) because there

is a certain range of surface slope values for which the probability of having

an incident ray shadowed is identically one [3]. This result may be readily

understood by referring to Figure 2.1. In (a), the slope of the surface is

negative at the point of Intersection and the incident ray is not shadowed in a

small neighborhood of the point. In (b), the surface slope is equal to the

slope of the incident ray (ctnO) and the ray is therefore tangent to the surface

8
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Incident Ray

SurfaceSO --- ,ILar(Je Scale

............................. 
(a )

(b)

r,9, (b)

_______ _____

(C)

Figure 2-1. Diagrams explaining the reason for the unit step
function in the sbadowing function. Only portions
of the large scale surface are shown since the small
scale structure does not impact the shadowing.

9
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at the point of intersection. In this case the point may or may not be shadowed

in a small neighiborhood of the point, depending upon the surface curvature. In

(c), the surface slope exceeds the slope of the incident ray and the ray is

necessarily shadowed by some portion of the surface in a small neighborhood

of the point. aus all points on the surface will be shadowed if their

slope, In the d 1 rection of the incident ray projected onto mean plane, exceeds

rthe slope of the incident ray. Stated another way, the probability of such

an event is one. This is the physical reason for the unit step function in

(2.4) and subsequent equations involving the shadowing function.

In order to retain the physical significance of the ,!rit step function,

it is desirable to deal with a particular form of the equation for [Opp, (0,1)]1

i.e. equation (40) of Ill,

4 -
1 ,k (I+ C)

~o0,(0AS ~ ___(2k cos 0 + k 2k cos 0 + k )
pp - o x ox 0 y oy7/i 22

" U(ctnO +"Fx cos+ F,y sin4) Fp2 (_ ,x y ~ pp' x

S F2 F2

Y-exp2. 21 (2.7)
2 2 •d

2r, x 2C ZY-

where I is defined in [1l. Equation (2.7) expresses the convolutional

broadening of the spectrum about the Bragg wavenumbers kox and k y as a

direct consequence of the distribution of large scale slopes; that is, x

and t, are equivalent to 1 and r, It should be pointed out that the

correct expression for the shadowing function has been used in (2.7). The

curve in the •x y-plane separating the regions where the step function is

10



zero and one is a straight line, i.e. r xCos• + Fy sin4 = -ctne . Except

for special values of 0 given in Table I, tile step function in (2.7) will

consequently give rise to a coupling between the Cx iad Cy integrals. More

specifically, the lower (upper) limit on the Fx integral in (2.7) is given by
x

- (ctnO + C sin 4)
Cx cos(.

for cos 8 > 0 (<0) . From an analytical point of view (2.8) represents an

irritating consequence of shadowing. From a practical standpoint, the restric-

tions imposed by (2.8) may not be numerically relevant for a large range of

incidence angles as demonstrated by the following arguwent. The dominant fac-

tor in the integrand in (2.7) is the slope dependent Caussian term which is

equivalent to the probability density function for the large scale slopes. For

most practical purposes, the effect of this term is to truncate the range of

integration in (2.7) to about a +±3-sigma excursion from = 0 . The

± 3-sigma excursions for and y are ±-34U2 and ±3 , respec-
Sy %x t

tively, and substituting these values in the unit step function argument

yields the following requirement

-I V ýý cos. ±3 V sine >-ctnO (2.9)

for the unit step function to be unity. If 0 < 4 < 7T/2, the "worst casc"

situation occurs when x = -3/s and ffi 3 orx RZx ky

2-
""3 / x cos + 3 sin4 < ctn0 (2.10)

The worst case situation occurs when the left hand side of (2.9) is most nega-

tive. Thus for numerical purposes and all values of 0 satisfying (2.10),

one can replace the infinite limits in (2.7) by - x and - 3 .

LI 11A __
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TABLE I I

Integration Limits for Eqn. (2.7) and

Sa Multiple of Ir/2

*x integration y integration I
x y

limits limits

lower upper lower upper

o -ctn 0 co -.W 00

T1/2 -00 - ctn 00

71 -CO ctn -0 _o

37/2 -c 00 ctnO

1i

•I•• 2.2\ z•12
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Conditions similar to (2.10) can be obtained for other ranges of * in a

straightforward manner.f

It is implicitly assumed that the upper limit on 0 resulting from (2.10)

also satisfies the optical criterion required of the large scale surface*,

namely that 4k2 C cos 2 0 >> 1 . For moderate slopes there will. generally beo ]
a gap between the maximum value of 0 resulting from (2.10) and the upper

bound on 0 resulting from the large scale surface optical criterion. In

this case, one must necessarily revert to the more exact limits such as given

by (2.8). What is happening in this situation is that the + 3-sigma support

of the slope density function in (2.7) is overlapping the region of the

••y-plane where the unit step function is zeio. In fact, if one could go to

ihe grazing incidence limit (6U1T/2), it is readily observed from Figure 2.2

that only half the plane is encompassed by the integrals in (2.7). Thus,

in addition to the attenuation of [a near grazing incidence due to the
ppl

(1 +Co) factor, there is another reduction factor resulting from the shadowing

of points on the large scale surface having positive slopes (see Figure 2.1).

It should be remembered that although the impact of the unit step function upon

the limits of the integrals in (2.7) is somewhat involved, it is a direct con-

sequence of the rather simple slope-shadowing limitations explained in Figure

2.1.

Ths- analysiL• pr-?s-nted above does not alter the general composite surface

scattering theory set forth in [1]. It does, however, correct and expand the

theory :Ln [1] a.-; It relates to the effects of shadowing upon large angle of

incidence backc-a~trering froi a randomly rough surface. This additional analy-

Ais was neces•stateO by the use of an incorrect functional form for the shadowing

function in [I].

*This criterion haS also been called the stationary phase approximation 141
an.d the dea!? phase modulation condition [5].

13
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2.4 Discussion of Numerical Example

The use of an incorrect shadowing function in Sections I through IV of

[1] was primarily a sin of omission. That is, since nearly all the results

in Section I through IV cf [1] were formal in nature, it was not necessary

to use the erroneous shadowing function given by (28) of [1]. However, the

numerical example comprising Section V of (1] does require attention in order

to properly account for the effects of large scale shadowing. In the example

presented in [1], R was set equal to unity because the large scale slopes

were relatively small. According to the analysis presented above, this step

is not justified for all angles of incidence. The correct effect of shadowing

is addressed below.

2 2
As in Section V of [l], it is assumed that r 2 = r 2(O,C') and v-he

pp' pp

2 2 2
surface height spectrum is isotropic, i.e. °lx= r z 91t /2 and

S(k ,k ) (4 yT Substituting k eos a k k ksi~n - k an
x y x xy

dk dk = krkda in (32) of [11] and using (2.6) above for the shadowing func-
x y

tion yields;

22r2
2k2  2 1010)+)0 0 p' k cos (a -)

[ ppo]i = F S(k)U tn0 + tan 0 4-
13 Jta 2k cos 02 2 j 0S•E cs2(lCo o kd

d

1 2 si 2  2 . ~ 2 2 2
ex2 [4 sin 0 + k2 + 4kk sin0 cos (u-o)I 4k C Cos 0 kdkda (2.11)

0 0 / 0 ot

The unit step functionL is unity whenever kcos(a-ý) > -2k /sin0 • Since the
0

minimum value of cos(a-0) is -1, this inequality will be satisfied for all

t if k is restricted to less than 2k /sinO . Since the range of k from

0

2ko/sin@ to -o for cos(c-0) > 0 contributes little to the Lntegral in (2.11)
2

(because t is smoll), the k-integral limits can be approximated by
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[kd,2ko/sin 0]. In this range of k , the step function is unity and the a-

integration can be accomplished with the following result;

2k /sine
2 2 24k • ,(o,O) ksin 0 (k-2k sinO)2

[Got]I S(k) I )exp - op -2 2 k 2 2 xp2 7--72co2
ýAt Cos 0(I+C0 O) kd k 0 tc 0 4t

_ ksin 0 k dk (2.12)

2 2k 0 ct Cos

where Io () is a Bessel function of the second kind. The right hand side of0o

(2.12) may now be compared with the [o 0p,] part in (44) of [1], i.e.
pp1

2 2 24ko r s(0,0) k r- ksin0 k
j S~~k) I ksin 0 0k2 sik sin___ d

2 ,,,k rS 2 cos2 4k 2 2 2 2 2
co2 kd 0o t 0 t ot cO

(2.13)

The obvious differences are the factor (1 +C )-i and the finite upper limit
0

on the integral in (2.12). Figure 2.3 illustrates how (l+Co) varies with

O for 0.0224 which was the value of mean square slope used to construct

Figures 3 and 4 of 113. Of particular note in the plot of (1+C is the
0

fact it does not start to decrease until 0 exceeds 850; at 87.50

(I14 = -2.5 dB. The value of 0 = 87.50 is the point at which 4ko2 C2 os2 .10

and, consequently, represents the approximate limit of the large scale theory.

That is, for 0 > 87.5' the analysis of the scattering from the large scale

structure on the surface can no longer be accomplished using optical techniques.

The effect of the finite upper limit on the integral in (2.12) is much less
draati. I fct t te 4:22 2

dramatic. in fact it the 4k 4 cos 0 1 10 criterion is ignored and the limit
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of 0 - 90* is taken in (-,12), it can be a!-)wn* that the finite upper limit

gives rise to a 3 dB reduction from the value o" (2.13) at 0 - 90. This eame

conclusion can also be obtained from (2.7) and it is a direct consequence of

the fact that all positive slopes are excluded from considoration at 6 w 90'

(see Figure 2.1). Within the range of validity of the optical criterion, the

finite upper limit on the integral in (2.12) gives rise to much less attenua-
tion than the (1 + factorL

In view of the above analysis, it is concluded that the numerical results

presented in Section V of [1] are correct as they were presented. Determina-

tion of the spectral division wavenumber kd is in no way altered by the inclu-

sion of the correct shadowing function. The curves shown in Figures 3 through

6 of [1] are correct because they do not encompass the range of 0 where shadow-

ing is important (0 >85°). As noted above, the onset of shadowing effects

occurs approximately where the optical criterion (4k 2 cos 2 0 > 10) is io-

lated, i.e, 0 Z 87,50 , for the numerical example presented in [l]. However,

for larger slopes shadowing must be considered since it will cause a signifi-

cant reduction in 0, near grazing incidence.

2.5 Summary

In the analysis presented in [1], it was correctly demonstrated how one

includes the effects of large scale surface feature shadowing on the backscat-

tering cross section of a composite surface for large angles of incidence.

Unfortunately, an incorrect form for the shadowing function was used in [1]

whichi led to the erroneous evaluation of the impact of shadowing upon large

angle of incidence scattering. In this section, the correct form of the shadowing

*To show this one can apply Laplace's method to asymptotically evaluate (2.12)

as cos 0-) 0. However, it must be remembered that the maximum of the integrand
occurs at +.he upper limit of the integrand as cos 0- 0 and this impacts the
"evaluation of the integral. 161.
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function has been presented and included in the formulas obtained in [1).

Particular emphasis has been placed upon the physical si-itficance of shadow-

ing as it eftects large angle of incidence scattering. It has been shown that

shadowing leads to multiplication of both (aoil] and 1(3 0 ]1 by the fac-

tor (1 +C which causes [a oil and, thus, a, to go to zero near
0o pp'1

grazing incidence for a perfectly conducting, randomly rough, composite sur-

face. Furthermore, there is another effect which leads to an additional 3 dB

attenuation at grazing incidence (0L-90*)*. This effect results from those

slopes which, with probability one, will cause the point on the surface having

these slopes to be shadowed. At grazing incidence, all positive slopes are in

this class.

A reevaluation of the numerical results presented in (1] revealed that

use of the coi.ect shadowing function did not alter any of the results rela-

tive to the choice of the spectral dividing wavenumber kd Furthermore, none

of the curves presented in [1] were affected because they only encompass the

range of 0 from 0 to 70* and the effects of shadowing were present for 0 Z85%.

Also, techniques were presented relative to overcoming some of the analytical

difficulties resulting from the use of the correct shadowing function.

*It is reemphasized that exact grazing incidence cannot be addressed by this
theory because the optical criterion assumed of the large scale surface fea-
tures is violated. The -3 dB figure is significant only in its magnitude rela-
tive to the effect of the (1 +C )-1 factor.

0

19



ke ferences

1. Brown, G. S., "Backscattering from a Gaussian-distributed perfectly con-

ducting rough surface," IEEE Trans. Antennas & Propg., AP-26, pp. 472-82

May, 1978.

2. Sancer, M. I., "Shadow-Corrected electromagnetic scattering from a randomly

rough surface," IEEE Trans. Antennas & Propg., AP-17, pp. 577-585, September,

1969.

3. Smith, G. B., "Geometrical shadowing of a random rough surface," IEEE

Trans. Antennas & Prop&., AP-15, pp. 668-71, September, 1967.

4. Kodis, R. D., "A note on the theory of scattering from an irregular surface,"

IEEE Trans. Antennas & Propg., AP-14, pp. 77-82, January, 1966.

5. ltagfors, T., "Relationship of geometric optics and autocorrelation approach

to the analysis of lunar and planetary radar," J. Genphys. Res., 71,

No. 4, pp. 379-83, 1966.

6. Erdelyi, A., Asymptotic Expansions, Dover Publications, New York, Sec-

tion 24, 1956.

20

... ....... .



3.0 SHADOWING BY NON-GAUSSIAN RANDOM SURFACES

3.1 Background

Shadowing of random surfaces was originally introduced [1] as an ad hocJ

correction to the results provided by physical or geometrical optics approxi-i

mate theories of rough surface scattering. Sancer [2] subsequently demonstrat-

ted how shadowing could be rigorously accounted for in the optical limit for

random surfaces. Furthermore, he showed that previously derived expressions

for the effects of shadowing based upon purely geometrical considerations (3, j
4] were directly applicable. Using Sancer's results, Brown [1,6] showed how

shadowing could be rigorously included in a formulation for scattering from

random surfaces characterized by many scales of roughness, i.e. composite

rough surfaces.A

While shadowing theory is reasonably mature, it has only been applied to

jointly Gaussian random surfaces. The Gaussian results are probably adequate

for the ocean but they are questionable for terrain and completely inadequate

for sea ice fields. For sea ice, water first fills all surface depressions

below mean sea level and then freezes. This eliminates all surface height

excursions below mean sea level and the probability density function of the

surface roughness is clearly non-Gaussian. For these reasons, it is important

to extend shadowing theory to the point where it can easily accommodate non-

Gaussian surface statistics; such is the purpose of this section.

3.2 Analysis

The special case of backscattering is chosen to illustrate the approach;

this minimizes some uf the conceptual details associated with the more general

bistatic case. It turns out that the extension of the results to the bistatic

geometry can be accomplished almost by inspection. The analysis presented by

Smith (4] is general to a point in the development; howeve~r, there are a number

21



of integrations which must be accomplished In order to arrive at the final.

expression for the shadowing fumction. Tn the case of a jointly Gauanian
surface these integrals can be performed and a closed-form result is obtained

for the shadowing function. For non-Gausslan surfaces, the required integra-

tions appear to be, at best, formidable. The purpose of this section is to

show that if the height and slopes of the surface are independent random vari-

ables then the final expression for the shadowing function is drastically sim-

plified.

For the reader's convenience Smith's notation will be employed in this

section and his Figure 1 is essentially repeated here as our Figure 3.1. There

are three critical relationships from Smith's paper [4] which are required.

If S(F,O) is the probability that no part of the surface will Intersect the

incident ray (at an angle 0 with respect to the normal to the mean flat sur-

face) on its way to point F on the surface then S(F,O) is given by K

S(F,O) = h(p-q) exp g- (T)dT (3.1)

where h(*) is the unit step function, p = ctn0 , qo is the slope of the

surface in the y-direction at F , and g(T)AT is the conditional probability

that the surface will intersect the incident ray in the interval (T,T +AT)

given that it does not intersect the ray in (0,T) . The function g(T)AT "s

determined by the behavior of P3 (f,qjF,T) which is the joint probability of

the height • and y-slope at the point (x 0,y =T) conditioned upon the 1
0 1

height (0o) and y-slope (qo) at point F ; in particular,

22
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ili" Figure 3-1. Shadowing geometry. The incident ray lies in

the x = 0 plane and the slopes of the surface at
Sthe point F are 3ý/Dx =po and DC/DY= qo
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A
ti

"f" p) -- (F.•.T o + d't

g (T) AT AT (3.2)00 +PJTgou)Ao + WE \*

dq fP 3 (c,qjF,T)dE

The average of S(F,O) over all surface heights with po - 0 and qo -1/A

is the desired shadowing function R(O) , i.e. the probability that a back-

scattering specular point on the surface will not be shadowed.

Smith proceeded to evaluate (3.2) in the Gaussian case by assuming that

the heights and slopes at F were uncorrelated with those at y =T . Here

it will be assumed that decorrelat on idplies statistically independenceS

and that the height and slopes are independent; thus,

P 3 (,qjF,T) P PI(O)P 2(q) (3.3)

where PI() is the height probability density function and

Co

P 2 (q) = 22(p,q)dp (3.4)

-00f

where P 2 2 (p,q) is the joint probabiliLy density function of the x and y

slopes. Substituting (3.3) into (3.2) yields the following

g(I) = 1 (°+ r (3.5)

I 'l (•)d•

-CO

where

OThis is not true in general so the following analysis applies to a restricted
class of non-Gaussian surfaces.
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r - (q- p)P2 (q)dq (3.6)

The denominator of (3.5) is recognized as the distribution function for

evaluated at E +]T , i.e. FI(C+ op) . Also, 1P1 (o+pT) in (3.5) is

equal to the derivative of the distribution function evaluated at 0 = +•1T

Consequently, (3.5) becomes g(T) - [r/Fl( o+pT)]dF (C0+J))/d(Co+]I)

Substituting this result in (3.1), making the change of variable Tj +PT

0

and noting that dF1 /F 1 - d(Rn F1) yields

CO

S(0,F) h h(p -q) exp r/P d[9nFl(n)] (3.7) 4
0 f

0

where hn denotes the natural logarithm. Since F1 (O•) = 1 , (3.7) reduces to

the following;

S(6,F) = h(p-q ) F1 (o)r/U (3.8)

Remembering that P (Co) dF Q,)/d°, the average of (3.8) over all values

of o simplifies to

00

or
h(P - qo)

0 0 F/11 + 1 (3.10) ,

since Fl(-.w) f 0 and r/p + 1 > 0 . With qo - 1/p , the shadowing func-

tion appropriate for backscatter reduces to the following simple expression;
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R(0) = + (q/11-1)P 2 (q)dq (3.11)

where, in summary, ji ctn e , 6 is the incidence angle, and P2 q) is

the probability density function of the slopes of the surface in the plane of

incidence defined by the incident ray and the normal to the mean surface. It

is interesting to note from (3.11) that for normal incidence (O6 0) R(O) I 1

whereas at grazing incidence (6= =1/2) R(IT/2) - 0 since U - 0 and

b f qP2 (q)dq > 0. Thus, these basic properties of the shadowing function are
0

independent of the detailed properties of the slope density function. COne can

easily verify that (3.11) is identical to the results obtained by Smith for j
the special case of a jointly Gaussian surface. V

The form of (3.10) compared to Smith's results, i.e. (23) of [4], suggests

that the above result can be directly translated to the bistatic case and, in-

deed, this is the case. For the bistatic case, a generalization of Sancer's

[2] results will be given. It should be noted that the inequalities Involv-

ing the angles of incidence (0) and scattering (6) , just prior to Sancer's

equations (49), (50), (54) and (55) should be reversed. With V.=ctn and

1 = ctn 0 , Sancer's results are easily generalized by replacing his Co by I
(Po)/P° and C2  by F(Ip)/i.

3.3 Example 1

To illustrate the above results, the backscattering shadowing function

R(O) will be determined for the exponential joint slope density function in-

troduced by Barrick [7], iLe.

P2 2 (p,q) - exp (p + q (3.12)
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2
whe,:re w is the mean square slope of the surface roughness. P22 (p,q) in

.13.12) represents a surface whose roughness is isotropic, w2/2 ( <p2 > <q2 > ,

with statistically dependent slopes. That is, the Joint density function can-

not be expressed as a product of the marginal or individual densities. The

calculation of the marginal density P2 (q) , using (3.4), is reasonabiy straight-

forward and the result is as follows;

P2(q) - 2qJ K1 ( q/6 w) (3.13)

2 6

where •(.) is one of the modified Bessel functions of order one [8]. It

4s interesting to compare this density with a Gaussian, i.e.

(q = 1 exp(- q /2w2)

and this is done in Figure 3.2 where the normalized densities P2 (q)w are

plotted as a function of the normalized slope q/w . It should be noted from

' ,lots in Figure 3.2 that the "exponential" density shows a much greater

prc ability of occurrence of small slopes than the Gaussian. This result is

in agreement with one intuitive approach for generating a surface character-

ized b. (3.12), e.g. one strongly filters all surface height excursions below

a ce tn level to eliminate the possibility of large negative height excur-

sions. This process increases the probability of small slopes at the expense

S• of the large slopes.

Substituting (3.13) in (3.11) and using tabulated integrals of Bessel

functions given in (9], the following closed-form result is obtained for the

backscattering shadow function R(O) ;

RI() K [KI(x)L (x) + LI(x)Ko(X) (3.14)
7 2 (x) + 2+ 1
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where x- (r/w)ctn 6 and the Ln(6) , n 0O or 1 , symbol denote, the modified

Struve functions [8]. Using asymptotic forms for the special functions in

(3.14), it may be readily verified that R(O) = 1(x-o+) and R(T/2) - O(x-O) .

The modified Struve functions may be computed from tables given in [8] for

x - 5 and by a power series for smaller arguments.

Figure 3.3 compares (3.14) and the shadowing function for a Gaussian func-

tion obtained by Smith [4] for a range of rms slopes. The shadowing function

for the exponential joint slope density is larger because the marginal slope

density given by (3.13) exhibits less likelihood for large slopes than the cor-

responding Gaussian density. That is, the larger slopes are the source of

more significant shadowing.

3.4 Summary

The shadowing theory developed by Smith [4], while sufficiently general

to deal with any joint slope density function, involves what appears to be a

number of rather complicated integrals. Under the assumption that the sur-

face height is statistically independent of the surface slopes, it is shown

that Smith's theory can be reduced to a single integration involving the mar-

ginal density function for the slopes in the plane of incidence. Using this

result but without regard to the specific form of the marginal density func-

tion, it can be shown that the backscattering shadowing function is unity at

normal incidence and zero at grazing incidence. Because the final result in-

volves an integration or smoothing process, it is amenable to the use of

histogram data for the marginal slope density. A

This theory is applied to an exponential joint slope density represent-

ing an isotropic surface for which the slopes are not statistically indepen-

dent. The backscattering shadowing function for the exponential and Gaussian

joint slope densities are compared and it is found that the Gaussian surface
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produces stronger shadowing. This result is found to be a consequence of the

greater likelihood of large slopes with the Caussian density.

! References

1. Beckmann, P., hadowing of random rough surfaces, IEEE Trans. Antennas &

Propag., Vol. AP-13, pp. 384-388, May 1965.

2. Sancer, M. I., "Shadow-corrected electromagnetic scattering from a randomly

rough surface," IEEE Trans. Antennas & Propg., Vol. AP-17, pp. 577-585,

September, 1969.

3. Wagner, R. J., "Shadowing of randomly rough surfaces," Report No. 7401-6012-

ROOO, TRW Systems Gp., Redondo Beach, CA., 1966.

4, Smith, B. G., "Geometrical shadowing of a random rough surface," IEEE Trans.

Antannas & Propg., Vol. AP-15, pp. 668-671, Sept. 1967.

5. Brown, G. S., "Backscattering from a Gaussian-distributed perfectly con-

ducting rough surface," IEEE Trans. Antennas & Propg., Vol. AP-26, pp. 472-

482, May 1978.

6. Brown, G. S., "Corrections to 'Backscattering from a Gaussian-distributed

perfectly conducting rough surface,' " IEEE Trans. Antennas & Propg., to

be published.

7. Barrick, D. E., "Rough Surface Scattering Based OnThe Specular Point Theory,"

IEEE Trans. Antennas & Propg., Vol. AP-16, pp. 449-454, July 1968.

8. Abramowitz, M.and I. A. Stegun, Handbook of Mathematical Functions, Chs.

9 and 12, U. S. Govt. Pr'nting Office, May 1968.

9. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrali, Series, and Prod-

ucts, Academic Press, New York, 1965.

31



I
4.0 BISTATIC SCATTERIN(U FRtOM ISSY RANDOM SURFACES

4 ,k5round

Prior to the mid-1960's, electromagnetic scattering from randomly rough

surfaces was modeled using either perturbation theory or physical optics (1].

Pirst order perturbation theory appeared to do a reasonable job of analytically

describing the scattering process when the surface roughness was small in terms

of the electromagnetic wavelength and multiple scattering was negligible.

Physical optics produced meaningful results in and about the specular scatter-

ing direction when the surface exhibited very large but smoothly undulating

height variations. Unfortunately, there were numerous attempts to apply these

theories to situations where the implicit assumptions in the models were vio-

K. lated. These attempts usually assumed some surface parameter such that the

scattering measurements and the "model" were brought into agreement. However,

it was very quickly recognized that these attempts were highly suspect because

of their failure to satisfy certain fundamental principles.

As more and more rough surface microwave scattering measurements were

acquired, it became obvious that neither first order perturbation theory nor

physical optics were ifldividually adequate for all angles of incidence and

scattering. Conversely, it appeared that physical optics seemed to do a good

modeling job near the specular scattering direction while first order pertur-

bation theory was reasonably accurate for all other scattering angles. Almost

simultaneously, researchers in the U.S. 121 and the U.S.S.R.[3,4] began to

advocate the combining of these two diverse theories in what was later to be

called the composite surface scattering model. In this model, the surface

was considered to be made up of both large and small scale surface features

(height and spatial wavelength) relative to the electromagnetic wavelength,

X 0 The large scale surface features were considered to be responsible for
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the physical optics-like scattering near the specular direction. The small

scale surface structure gave rise to a perturbation field (to the optical.

field) which was the dominant scattering mechanism away from the specular

scattering direction. The interaction between the optica&l and first order per-

turbation fields was assumed to be totally dependent upon the tilting of the

small surface structure by the larger gently undulating features [51.

More recently, rigorous first order boundary perturbation theory has been

applied to the problem of backscattering from a perfectly conducting, Gaussian

distributed rough surface [6]. The results of this analysis indicated that

much of the original work on this problem could be rigorously justified.

Furthermore, additional insight was gained in regard to such aspects of the

problem as shadowing (see Section 3 of this report), spectral dichotomy, and

the tilting interpretation. A logical extension of this latter theory encom-

passes bistatic scattering from a lossy dielectric surface. The purpose of

this section is to present the details associated with such an extension.

Before the details of scattering from a composite dielectric surface are

presented, it is illuminating to consider two much simpler cases. The first

is backscattering from a dielectric surface having only a small scale rough-

ness while the second case addresses bistatic scattering. The advantages of

this approach are that it leads to familiarity with the perturbation technique

and it sets forth the principles that will be used for the composite surface.

4.2 Backscattering From A Dielectric Surface With Small Scale Roughness

The geometry for this problem is shown in Figure 4-1. The mean or aver-

age surface is the z =0 plane; the random roughness rs superposed upon

this plane is positive for s >0 and negative for rs < 0 . Below the rough

surface (z <ý ), the relative dielectric constant of the medium Is e and
s r

the relative magnetic permeability is taken to be the same as for free spacc,
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Figure 4-1. Geometry for hbackscattering from a randomly roughsurface having only smali scale roughness s.
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i.e. 11 -1 . Above the rough surface (z > ), the medium is free space,
r 's

i.e. c - I and Ir1 1

Provided that the roughness is small with respect to the electromagnetic

2 2 2
wavelength X , e.g. 4k << 1 where k - 271/X anid C is the mean

00 0

square height of the roughness, the scattered field ES can be expressed as

follows;

E E E+ 6 E (4.1)4

where 6o-i is the field scattered by a surface having no roughness (the zeroth A

order perturbation) and 61 is the scattered field which depends on the rough-

ness to first order only (the first order perturbation). The primary assump-

tion in (4.1) is that higher order terms such as 0( . 0(2 3) etc., are
S S

0.

negligible. The zeroth order perturbation field 6°E is trivially determined A

since it is just the field reflected by an infinite, flat dielectric interface.

Both Mitzner (7] and Burrows [8] have obtained particularly useful expressions .

for 6VE . The Mitzner result is more straightforward but it is restrict-d to

small roughness perturbations superposed on a flat plane. Burrows' solution I

for 61E is somewhat more complicated but it is more general in that the unper-

turbed surface need not be planar or even deterministic. For small scale rough-
1

nefis on a plane, the Burrows formulation requires a bit more effort in computing

61E than Mitzner's result. For a composite surface, only the Btrrows result

is sufficiently general to address this problem.

At first glance, the Burrows expression for 6 1.A appears to be somewhat

cumbersome and confusing. However, if it is realized that the result is obtained

OMitzner's result can actually be applied to any unperturbed surface for which
the wave equation is separable. For the problem considered here, the surface
is restricted to a plane.
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from an application of reciprocity then the notation becomes more meaningful.

Basically, one deals with two incident electric fields of the form

-~A

E = E e E i E exp( or) (4.2a) "

and 
i

Ei= Ei e' E,= E exp( jki°) (4.2b)

where the primed field may have a different polarization and direction of inci-

dence than the unprimed field. Burrows' expression for the first order per-
AJ

turbation (electric) field scattered in the direction -11; and polarized in

the e direction is as follows [8];

2
1 A k exp( -.jk P)-* + +BIHV

_- 0 0 AZ•"" "" • -" 1

- 4R E- E- D[ + AB.H' - .1- D. dS (4.3)
OR E CI~ s 0

0 0 f
S I

where it is assumed that 6 H-e is measured in the far-field of the rough

surface. The distance R is measured from the origin of the reference co-

ordinate system on the mean surface to the point of observation or measurement

4+^1
of 6'E'e' and c is the permittivity of free space. The fields E' , H' ,

D' and B' are the fields on the unperturbed surface (S ) due to the primed
0

incident field while AE A AeD and eB are the discontinuities in the

fields on the unperturbed surface (So) due to the unprimed incident field.!0

Thus, to determine the ep-polarized component of the scattered first order

perturbation field in the general direction k one merely sets e' =e ands p

k'-= -k in the expression for the primed incident field E' , computes the

resuluing fields E' ' H,' B' on the unperturbed surface S and sub

stitutes these results in (4.3).

:• For backscattering ks =-ki so according to the above receipe, k = ki
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which in the coordinates of the geometry shown in Figure 4-1 is as follows;

kil = k- = k (- sinO cos4 - sinO sin¢9 - cos02) (4.4)

Contrary to previous analyses [11, the direction of incidence specified by

the angle * should not, at this point in the development, be arbitrarily set

to some convenient value such as 0 or w/2 . The reason for this is that the

surface may have anisotropic roughness and the orientation of the x and y

axes of the reference coordinate system should be fixed relative to this sur-

face characteristic and not the direction of incidence.

Since the fields inside the surface integral in (4.3) are the fields

induced on the infinite planar dielectric s•,rface S , it is convenient to

further categorize the problem according to ".e polarization of the incident

fields. For both E and E horizontally polarized, e and e' are
1AA

orthogonal to the plane formed by the unit vectors k. and i = where n^

is the normal to the mean or unperturbed surface. In this case both e and

• 14
e are totally tangential to the mean plane. For both E and E .erti-

A

cally polarized, ' and e' are parallel to tr.: plane formed by k. and

A

n ýz

4.2.1 Horizontal Polarization

When e and e' are tangential to the mean or unperturbed surface, the

fields E , E', D and D' (when evaluated on So) are entirely tangential to '
*S . Since the tangential component of the electric field is continuous across

an interface, AE O . Furthermore, since there is no change in 1r across

the boundary and the lower medium is assumed not to be perfectly conducting,

AB and Al are both zero on the interface. Consequently, (4.3) reduces to

the following;
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k exp( -jk R) d
SE (4.R'E)s d S 0(4.5)

0 0 J
S

0
The total E'-field on the surface S due to Ei is given by

(I+Rh) Et (SO) =EoE(1+Rh) exp (-j ^le)' (4.6)

where Rh is the Fresnel (field) reflection coefficient for horizontal polari-
+ ^4

zat ion and r L xx + y or just r evaluated on S . The discontinuity in

D is given by 3

AD = E, (0) - r Ei(z=0) (4.7)

and

E(z0-- = (+) Ei (So) (4.8a)

+ ÷ |E(z •O0) = Th E. (So) (4. 8b)

where Th is the Fresnel (field) transmission coefficient for horizontal

polarization. Combining (4.8a) and (4.8b) in (4.7)yields

AD = C [+Rh - cTh Eils)

or

Ai) = cl+Rh-Er lh Eo exp(-jki r ) ei[+h_- h] (4.9)

Multiplying (4.7) by (4.9) and realizing that T = 1 + R yields
h Rhyed

÷ ÷2 2 (C +
AD- = - E (l+RE) -l)exp(J2ki) (e.e') (4.10)

Substituting this result in (4.5) produces the desired result for the first

order perturbation field polarized in the e' direction
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l.• o~ exp(-jk R)( +R)(E-1) exp(-j 2i r dxdy

where S-c' - 1,

2I
cosO- sin2 0

Rhi
cos 0

and so

2
2_ 4 (r-l) cos 02(I+%)(- -) 2 (4.12)

S~Cos 0 + r - sin20

There are several points to note about (4.11). The derivation of (4.11)

was considerably simpler than the Rayleigh-Rice approach [1]; this is because

all of the difficult work was done in obtaining (4.3). Equation (4.11) is an

expression for the scattered first order perturbation field, a more meaning-

ful quantity than the average scattered power when dealing with phase sensi-

tive systems. The average of (4.11) is zero because <rs> =O; however, the

average of <b5'Eo•-' 2> or the incoherent power is not zero. At the beginning

of this section e' was specified to be in the same direction as e , thus

S'E.e, represents 6IEhh where the double-h subscript denotes horizontal

polarization on transmission and reception. It is now possible to examine the

consequences of cross-polarized sampling of the scattered field. In this case

e' is orthogonal to e ; thus, • is horizontally polarized and e' is

vertically polarized, i.e.

e -eh sin4 + cos9

- cos0cos¢•- cos0s inO y + sin0^
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Returning to (4.3) for this case, it is noted that AE is still zero because

E is tangential to S , eB and 1H are still zero because there is noo0

change in pr across S and the conductivity is assumed finite, and the prob-

lem reduces to evaluating AD.E' on So . However, AD has the direction

e while E is polarized in the direction, consequently, e e e e 0
h hv

and there is no depolarization by the surface. This is just a confirmation of

the fact that first order perturbation theory does not lead to a depolarized

scattered field when the roughness is small scale.

4.2.2 Vertical Polarization

The case of vertical polarization is a bit more algebraically involved

because AE is no longer zero across S . Both magnetic field discontinu-
0

ities, AB and AH , are still zero for the same reason as given above.

Thus, (4.3) reduces to

S= 2kexp( -j k R)f + _ •

6ko eo( ) W -D ' d S (4.13)
41RE c

For vertical polarization, it is customary to use the incident magnetic field

H as the source. Thus, the incident, reflected and transmitted magnetic

fields on S are given by
0

4÷ = exp(-j i4')Hi H e ex( r
4 

A 
+- 41.

H H R e exp(-j k *r N
r. o v hI r _k,

Ht 14 T eh exp(- jIxtr)

where R and T are the Fresnel (field) reflection and transmission co-
V V

efficlents for vertical polarization. On SO the corresponding electric fields

are as follows;
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`11W- - q × ; Et" - kE t× t

AA A

where q -i, r and ki , kr and kt specify the direction of propagation of the

incident, reflected, and transmitted fields. Note that since r± is on S
0

ki- r. = k ktr.r

which is merely a restatement of the fact that the angle of incidence equals

the angle of reflection and Snell's law [91 is obeyed. For backscattering

and similar polarization sampling of the scattered field, the primed fields

are the same as those above.

Although somewhat cumbersome at this stage of the development, it is

desirable to split the fields into components which are tangvntial to and

normal to S . Mhe reason for introducing this transformation is that it
0

will be very useful in the composite surface development and it is therefore

benefV,.93. to ootain some facility with the technique on this easier problem.

ATht- : to is n = while the tangent will be taken as fx eh

A

Thi. -articular choice of t is convenient because T *e selects the com-
V

ponent of that is tangent to the surface. Since AE.T = 0 and AD*n = 0

on S , (4.13) simplifies to0

Sk~kexp(-Jk R) []

0E0 A= rD -A )•)dS
~0 f

, S 0(4.14)

where e' has been replaced by its equivalent 8 since like polarization
v

sampling of the scatte"z Aield has been specified. The boundary conditions

E.T -- 0 and 8).1- - 0 should not be discarded because they will provide some

useful relationships. From AE.T = 0 there results
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[(kL + R v (k r he t h h) )
r

while A6. ft 0 yields

[(k eh) + Rv(k eh) ° • = T (k x eh)xl (4.16) /
i h r hr ht

where AE = Ei +Er -Et and AD6D 1 +Dr -Dt have been used along with (4.15)

and D=,E .

It is now necessary to determine the field quantities inside the integra-
i~4.

tion in (4.14). The quantity AE.n can be reduced to the following form

through the use of (4.15);

A 1 0 )A A

AE-n -l H 1) exp (-4jk r)(k xeh)n (4.17)
r

while (4.16) simplifies D'-fi to

x ) H T r X (4.18)

so

= ^ = 112 T (cr-1) exp (-j 2l1i~r) (kt X~h).i' (.9

(A0n0) ( ) o v r t h(4.19)

Through similar manipulations,

T

AD = - It ---y- (I- ) exp (-jIri ) (kt xeh).T (4.20)0 0 0r,- rt h

r

and

T

S1 vexp(Jkr (4.21)

r
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so

__ i _ (1-t )exp (-j U [(k, X (4.22)( El" ) -'T) 0 Hol 0 E (4.22) -. Le

r

Combining (4.19) and (4.22) and completing the unit vector operations yields

22 rn)(+'.C ().•iO.) 2 r 2 4n" ' ̂ -D T" (4E*rZ H + (•-).SW,,0]op j 2'k .r
a 0 V 2 [r rr

C
r (4.23)

where

2c cos 04
r

Tv

E: COS0 + VEr - sin2 0

Substituting this result in (4.14) and recognizing that Eo 1 H

- i-ki h the final result is obtainedand ev kEu1 b

k2
k exp (-j koRI L (r-1) ffe 2

S*eV" O 4TTR HoT 2 (kr (crl)sin2 O IxP 2ki"rj )sdxdy
~ r 2 [Er +(r J J .-

r
(4.24)

Essentially the same remarks apply to the vertically polarized scattered

field as for the horizontal case. In addition, it should be noted that if

(4.11) and (4.24) are converted to c° or the scattering cross section per

unit area according to

im lim R2

Urn Arn A 2 }
R-- oA-+-IE

0

where A is the illuminated area, Lhe result is identical to the result

obtained by Peake using the Rayleigh-Rice approach [I].
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4.3 Bistatic Scattering From A Dielectric Surface With Small Roughness

For bistatic scattering the unit vectors specifying the directions of

incidence of the unprimed and primed fields are given by (see Figure 4-2)

i -sin icos $ -sin0sinsii 9 - cos 04
(4.25)

k' =-sin O cos* x -sin 0 sin4 9- cos0 zi S S S S 5

and k =k k , k kok The unit vectors specifying the directions of

horizontal and vertical polarizations for the primed and unprimed fields

are as follows;

A

eh -sinai x + cos

A, A

eh -sin x + coss

(4.26)

ev =-cCosa' cosý i - cosOi sin i y + sin0ei z

e -cosO cos" ý - cosO sins 9 + sine z

vS S S 8 S

As A
The normal to the unperturbed surface is n z while the tangents to the

surface for vertical polarizations are given by

A n x X (4.27)

1Equations (4.25)-(4.27) d.-scribe the basic quantities that will be required in

this section.

4.3.1 Horizontal Polarization

4 4.
Since AB and AH are zero, because there is no change in •1 r across

S0  and the conductivity is finite, (4.3) becomes

1j. =k
2 exp(-j k R) f':" -)" ^A 0 0 "" " )--'

• IE .'E. ADSED] E as o (4.28)4i R E 0
.0 f

q S
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x

Figure 4-2. Geometry for bistatic scattering from a randomly
rough surface having only small scale roughness s
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0 0Furthermore, AEis also zero across S° because E is tangential to So •

Thus, (4.28) becomes

2
k0 exp-j k0 R) d 0 (.9

000
-•E •:[ADE' ]sdS° (4.29)

S

On the surface S , the incident, reflected, and transmitted electric fields
0

(unprimed and primed) are as follows;

E exp(-jk 4r )e Eiv E exp( j'.r -r)"e^

Er R exp(-Jkohr))h E r' E Rh' exp(-J .Lr e^

r 0 h r E 0Th exp(-Ji.r h

Et Eo Thexp( - ktor)eh E I h xp-r

o=E 11h t oh t j

where also on the surface S (4.30)0

- *r -= krr kt*r k. r 'r k' -r (4.31)

r-, rj t4. i-i- r IL. t

and the same notation as introduced earlier has been continued. The fields

andand on S are as follows;

AI~ C 0 ~ (+R 1 rl~)xP~~i'.)4

0 h ijh

Using the fact that 1 + R = Th , the product ADE' becomes

2P C... (. % I+ 1 (1-E (e h*e hl exp -j(k +k) -r
S0 1

and substituting this result in (4.29) yields

2
k kexp(-JkoR) +ffe [-i + "

11h 0 47rR Eo (i+I) (+R) (k -l) (e + s dxdy

(4.32)
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• . . . . . .. . . . . ....- !
This result can be easily translated into the angles (01,0i) and (0,,0.)

by the use of (4.25) and

_"_Oh' _cos (_i_-_1;

along with

2cos 0 2cos 0
1 + % 1 1n20+ cos /c+ - sin2 C1 cs + rsin

For ease of comparison, it should be noted that most results similar to (4.32)

AA

express the direction of scattering as k which, in the above notation, is

-k . Equation (4.32) yields 6 , . For cross polarized sampling of the

scattered field, the problem becomes somewhat more involved and it will be

discussed in Section 4.3.3. It .hould be noted that when (s (backscat-

tering), (4.32) reduces to the result obtained in Section 4.2.1.

4.3.2 Vertical Polarization

A- 4'
Since n*E and T-D are disconinuous acre~s the unperturbed surface,

(4.3) reduces to

•=•.a, kexp(-JkoR) ,•. ..

0 0 o
E e(En (Do ) - T (-5(E' "T' 5 d')•sd (4. 33)
v 4OR E° e J o

So

where the scalar product T-r' must be included because the unit vectors T

and T' are not necessarily parallel, e.g. see (4.27). The incident, reflec-

ted, and transmitted unprimed and primed magnetic field quantities are given by

SAexp H exp(- k )ej

Hr H Rt Rexp(-Jk *r r)eh i'r H oRv'exp(-Jk '"r~
Iir H0 Rv ex(-jkr' .L h Hr 0ov r,

"u H T exp(-j e H' H TV' exp)- hk'*r"t ov t h t 0 V t pLh

47 (4.34)
t4



while the corresponding electric fields are

A +

Er k 1  r

o 0

0or o~=~.E~'H r

+"4

noato in H L kr Hr 4.352)i

0 0_

the electric field be continuous across S , i.e. E. =0 and 6E'-T' ^-f 0 ,

T A

(. xeh).*? + xh~ e).t - (k xe )4

VElk

r (4.36)

A R'.• +%(k'• x',).•,- _• x•).•,

r

Similarly from the continuity of the normal component of the D-field across

S , i.e. AD'i = 0 and - 0 , there results

0

).q). + Rh( A X .

(ki~ x)eh)n + Rv(k r v(k t eh)

(4.37)

(ki xe^').A, + A' •;x|)a=• '•v xh'),

(ki e h v R h r hv t, h I

USiiarly (4.o thcontimlity othe e n sorm of* the ' yieldsA I k 48 n krY

(4.37



11 Tv +"

- °-- r H 1 )exp 4k 4r (k^ X h -A (4.38)

and

D - Hoe T' exp(-jk r.r)(k' X n')-f (4.39)
0 0 0 r v i *t' xht

In a similar fashion, (4.36) is used to simplify the expressions for AD^r

and E TV with the following result-

T v A A

DT° / proc H - xp(_ i ki r.)(k xe)T (4.40)
00 0 - -th

r

and

E TV H v exp(-j k r(kx teh)-T

r
SAA

Substituting (4.38) - (4.41) in (4.33), noting that T'T' = cos(06-4 s)

and simplifying the unit vector operations yields the following result for

V

exp(-JkoR) (Cr-l) 2

*A2 Ho 4 T 2 rSin sinO + AEc-si• )0 sin )

r

8 kOS(i-s rfexp[-i +i').r ))}sdxdy (4.42)

where E Ho ,'° and
0 0 0 0

2C cosOi
T -l+R ffi

v v r cos0+ + 26.
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and Tv T Tv(0, -Os) . Equation (4.42) is 61lEw, and it is easily shown

to reduce to the result for backscattering in Section 4.2.2. when 0i- s

and 0 =0 . Once again it should be emphasized that the most difficult
S

part of obtaining (4.42) is evaluating the terms (k xeh)°T and (k'tX8h').T1

in (4.40) and (4.41). As noted previously this is a consequence of the fact

that the difficult analysis was finished once (4.3) was derived and the actual !

evaluation of (4.3) is very straightforward. Finally, comparing the 0

values resulting from (4.32) and (4.42) with the corresponding results obtained i
from the Rayleigh-Rice theory [10] shows complete agreement.

4.3.3 Cross Polarization

As shown in Sections 4.2.1 and 4.2.2, depolarization for scattering by

small scale roughness is a second order effect in the plante of incidence.

If, however, the scattered field outside of the plane of incidence is computed,

it will be found to have a nonzero cross polarized component. This result is

simply a consequence of the fact that the unit vectors eh' and e are
v

not fixed with respect to the surface-centered coordinate system and they

change their directions as the observation point moves out of the plane of

incidence. This, of course, is a purely geometrical effect and it has nothing

to do with any change in the basic scattering mechanism.

The derivation of the results follows essentially the same pattern as

set forth in the previous sections. There is one point that should be noted

because it simplifies the algebra somewhat. For the case of the incident

field horizontally polarized (8) and the scattered field vertically polarized

(@ ') , the unprimed field quantities should be obtained from

E E exp(-j ki.r )eh while the primed fields should be obtained from

H' = Hoexp(-j ki'r.) . For the incident field vertically polarized ('e)
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and the scattered field horizontally polarized (eh) , the unprimed fields are
"1. 4- -),

obtained from Hi = H exp(J kier )e while the primed fields are to be de-

rived from E exp( -j k0-.rA)e8 . This approach is consistent with the
re f

technique of obtaining all field quantities from the horizontal (C^ or eh)

field for planar surface reflection.
With EgO H= I~o�- , the following expressions for 61Eh, and 6IE h

0 0 00 hv' vhi
result;

. k k2oexp(-JkR) (cosOi cos0 sin( s-_i )( (r-1) r-sin2O

(coso c -+sin2 )0 ( Ecos O + / +sin)20
r I r S r s

• exp J ('i+') dx dy (4.43)

h "^ k2oexp(Jk R) H osicoso ssn (s-).(r-1) Vr-sin 2 6

0 (Cose +VfE -si2 (F-cos0&c rsin 0_

Iexp j (t,+k)r,] ~dx dy (4.44)

where, in summary, the angles are defined in Figure 4.2, r, =x + y , and

and ki are defined as koki and kok , respectively, where k and

k,' are given in (4.25).

When comparing (4.43) and (4.44) with the cross polarized scattered fields

resulting-from the Rayleigh-Rice approach [10], 4i should be set equal to .IT

The expression for 61 Evh, agrees with the results in [10, pg. 706]. The

expression for 61E v, is, however, the negative of the ahv coefficient in

[10, pg. 706, eqn. 9.1-69]. Normally this difference is not important because
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"%•1 is squared and then averaged to find the incoherent power. However,

if one is dealing with circular polarization the sign does become critical.

To resolve this issue, a special case can be constructed whereby a should

agree with avv or 61 Ehv' 6'Evv . This special case involves taking

•i = and s =0 and 6 0 in th2 expression for a or 6 1 E and

comparing this result with shv and 61F for 7T , s = 71/2 , and

s = 0 . In this special case both 61 E, and 61Eh, should be polarized

in the -xA-direction. Comparing (4.42) and (4.43) for this special case shows

that indeed 1E = 61 Ev However, evaluating CL and a from (10]

results in aw = ; consequently, there does appear to be a sign error

in the expression for ahv and (4.43) is correct.

This section completes the development for scattering from a dielectric

surface having only a small scale roughness. Once agai.n it should be emphasized

that the purposes of Sections 4.2 and 4.3 are (1) to check the Burrows pertur-

bation approach against the conventional Rayleigh-Rice results and (2) to il-

lustrate the actual mechanics of evaluating the Burrows expression for the

first order perturbation field. Hopefully, this latter purpose, if achieved,

ahould considerably simplify the transition to the composite surface case.

4.4 Bistatic Scattering From A Dielectric Surface With Composite Roughness

For small scale roughness superposed on a planar surface, the Burrows

perturbation formula (4.3) is particularly easy to evaluate. This results from

the fact that one deals with the fields on an infinite planar surface and, for

such a surface, the fields are easily described and related through the Fresnel

coefficients, Snell's law, and the equality of the angles of incidence and

reflection. For a composite surface, the unperturbed surface is not planar

but it is assumed to be very gently undulating. More specifically, the unper-

turbed surface is actually defined such that it contains no spatial frequency
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components which are smaller than yk° , where y is a constant which is

greater than unity. Of course, it is desirable to have y as large as pos-

sible but this is not always practical since the small. scale height must satisfy

2 2a
4ko << 1 [61 . However, if y can be made sufficiently large then the

scattering from the unperturbed surface can be treated using physical optics.

Physic -nt'-cs assumes that the surface may be considered to be locally planar

and tL.'I ilelds on the surface can be accurately approximated using Fresnel

th, Nry. This approach is recognized to be essentially the same as the small

scale roughness on a planar surface problem. The one important difference is

that for the gently undulating unperturbed surface, the local normal is no

longer entirely z-directed and, in fact, depends upon the slopes of the large

scale surface. This means that one must construct a local coordinate system

on the undulating unperturbed surface and compute the surface fields required

in (4.3) in terms of this system. This must be done for both the unprimed and

primed fields because they have different angles and directions of incidence

for the general bistatic case.

For the unprimed fields, the important unit vectors are k. and n^
1

which is the normal to the large scale or unperturbed surface. These two quan-

tities are important because they form the local plane of incidence. One next

constructs unit vectors e h and e v which are orthogonal and parallel,

respectively, to k, and , . These unit vectors are also horizontally and

vertically polarized, respectively, with respect to the local piane of inci-

dence. Any arbitrarily polarized unprimed incident field can now be decomposed

into components parallel to e and e since the incident field must be

transverse to k1 . The unprimed field quantities required in (4.3) can then

be computed as in the previous sections. The exact same construction ofe

&A e and the decomposition of the primed incident field must be performed
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in order to compute the primed fields required in (4.3). Fortunately, this

is easily accomplished by simply changing 06 to 0 and to in

the unprimed quantities.

Before getting into the actual details, there are a few other points that

should be noted. All of the above noted manipulations are going to lead to

the following changes in 6 1E obtained in equation (16) of [6]. First, the

factor P , Is going to depend on c , the angles and directions of inci-pp r

dence and scattering (01 i, 0s ) , and the slopes of thb large scale or

unperturbed surface (r, , r, ) . The only other change is that the exponen-

tial inside the surface integral will become exp[-j(ki+i)'r£] where

r f xx + y^ _ X because of the generalization to bistatic scattering.

Except for correcting [6] to properly include shadowing, as detailed in Section

2, all other aspects of the solution presented in [6] remain the same. Com-

bining 6'E from this analysis with Sancer's result [11] for essentially So6

yields the total scattered field. Furthermore, it should be expected that for

backscattering the dielectric nature of the surface should have an almost

negligible effect upon the wavenumber at which the surface height spectrum

is partitioned into large and small scale sub-spectra. Finally, because there

is no discontinuity in magnetic properties across the unperturbed surface and

the conductivity is assumed to be finite, AB and Ali in (4.3) will be zero.

This fact holds true regardless of any tilting of the locally planar surfat.e.

The first task at hand is to constrict e"h and 8 Since e h is
AA

orthogonal to 1oth k. and , it is given by

I RA

XA (4.45)

whe re k. = kix x+ kiy + kiz and the kiqt,q =x,y and z , are obvious from

(4.25). The normal to the large scale surface is given by
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n 2 2 n Z X + n19y + n z.z (4.46)

1+I +• + Z'2

Expanding the cross product in (4.45) yields

h =h + hy + h1 (4.47)

where

(k iy n •z- kiz n Zy) (kiz nx - kix n9Z)

i n, ×i X ×

(k(ix n•iy kiy x )1j.

L^ J

and e~h is completely determined. For the unit vector e the expres-

sions are more involved because e must be in the plane form by k and fn
i £i

and also orthogonal to ^ Rh For the reflected and transmitted fields k
goes to k and k . This will not change the direction of e because

r beas

k i and t are all coplanar. This will, however, alter the direction of

Av; this is easily understood by noting that kq eh ^ and ev form a

mutually orthogonal triad of unit vectors. Thus, if eh does not change

direction but k does, then ev must necessarily change direction. What

this means is that we must find a new e for each value of k. This is
q

easily done by the following equality;

A ~Aa
e v k x k q(4.48)

where q i, r, and t . Note that it is not necessary to divide the rhs of

(4.48) by the magnitude because it is unity, i.e. 6 h and q are mutually
A q

orthogonal by (4.45). The unit vector e may also be written as
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e v V X + v y + 1 Z (4.49)

where

v -(k h k hy v h h-(khz
yx h z qz ky qz - kqxhXz

v q (kq It ky h(z k y qy hXx)

and C q is completely determined for q i , r , and t . For the primed

fields, eh and ^q are obtained by merely replacing k by , q - i,
qv q

r, and t, in the expressions for egh and 'ev

The incident, reflected, and transmitted unprimed fields on the unper-

turbed surface will now be decomposed into locally horizontal and vertical
components. If the incident field is of the form E 2 E a

on the unperturbed surface where ea is its polarization direction then Ei ,

E and E can be written as follows;
r t

A iE E e +E eh th v A

E e +Er e
Er e~ h +Ev etv (4.50)

-~ ti t -%tS"• = ~EtEt VE E eh + Ee
11t h v +

where

E= E exp(-jk -r (6 *eg
11 o q a a*

E Fv 0 exp(- j kq- r)( aeq) (4.51)

and q = i, r, t • The corresponding magnetic fields are given by

0~ AIo 4 r- - k X E (4.52)
q q 6 qt
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where / c /r for q - i and r, and tt 1. Expanding (4.52) yields
qt r tt

H E e + E C

MV (h EIe+Erell
0

H. Eh e + E eAh

0

: 4 r'o' r t t

From Fresnel theory, the ea -component of H is equal to R times the
thr v

+I
eh-component of Hi , so

rE =R E (4.53)
VV V

Similarly, the ae -component of H is equal to Tv times the ^eh-component

of Hi so

Et-- £ E (4.54)

Equations (4.53) and (4.54) can now be used in (4.50) to express all of the

fields in terms of E and i.e.V

Ei Eh eth + EV eV

i i b R Eiv ̂

-~~~ rAjE% =E eh + RE ee (4.55)

£ IA T
Et Th E eh + I ^ t

V I

r

@The subscripts "." on Rv, Rhl, Tv, Th means that the angles in the appropriate
Fresnel formulas must be defined with respect to the normal to the large scale
-surface, n 57
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where N1  and E are given by (4.52) with q - i . The corresponding D1-fields

V4
are; D, E D = C E , Dt I rc E . The primed fields may be obtained f

o0i r o r o or tFA Aq ALb~ A A q
from (4 55) and (4.51) by replacing kq by kq ' h by eth , e tv by eV and

by changing e to whatever scattered field polarization is to be sampled,

say, eb.

The appropriate form of (4.3) is

k 2 exp( - koR)

b 4wREc [(AE°t 9 ) (Dt - At) 'E 4] d So (4.56)
0 0 f

S
0

where the shadowing factor has been temporarily omitted from the integrand

since it can be added at the end of the development. The (AEsnR) is equal

to (*7 + Er-Et n£ or using (4.55) and noting that n" e 0

T

2.f fE °v +RV evn• - e 2 . ~n£) . (4.57)

rI

Equation (4.57) can be simplified somewhat by using the relationship that

results from AD-rýL 0 . The final result is

S^ = Ei at-- .^ t.^

rAEn9 T ( n (4.58)£ v
VCr t

4,

For D'.n ,k

n t o r v ( fn) (4.59)

so the product of (4.58) and (4.59) can be written as follows

(AEn ) (D'-n.) =E exp j(ik ) Tv Tv 9tn e n (.0, o .r' 4o(rl)T' T %£)(et v ig) (4.60)
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It can be shown that

sinO

e

rI

and

At A sin0O
e n
r 

i

where

A2

sin 6 , -(ik.

AA2

sin0 1 k

so (4.60) becomes

Eexp- (ki+ki).r](D••i n E E (Cr-1)T 'T

(4.61)

For the remaining term in (4.56), the important parts are (AD) and

(EI') where the p-subscript denotes tangeatial to the large scale surface,
)p

i.e. the normal component of D is continuous across the boundary so AD-n£ =0

The tangential components of the AD-field can be found by decomposing A• into

^ and T£,where 11fin eh'ie

components directed along e

(AD) + (ADpe9h) eA9h + (6-7 ) ^% (4.62)

'Ising
AD, E=+R E£rT e~h + O Ei(e-Tv ev)

So h rh0v
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Ii
and simplifying this expression with the aid of

, I
T I

(v. + R [e -T et)+=I

r

which results from (Ar) 0 yields
p

(AiD) E 1  ( h+R C ) E ((E: ' ) - T (e ( T
v . v.v r )v

r

(4.63)

The appropriate expression for (f ) is
p

(E') E Tac' +e -(e * (T) w (4.64)
p h th~ L v /r v 9,

bining this result with (4.61) and substituting into (4.56) yields the follow-

ing result;

E k 2exp(_JkoR) 
j-_•IFab= 0 0 0R3 ra(g g)l(x'y)exp -L ( Ik')f"r, sdd

(4.65)

where 6oEat is the scattered first order perturbation field for an incident

(olarization ot an ed byatakig polarization tehb d o(x4y) is unity on the

illuminated parts of the surface and zero for the shadowed parts, and
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Sr 2 + 2 *A *i A Ait ~( E T Vý T v ) [ qI ir ab +• +," (ea )vebLev ) x sin 0£ sin 2 i
ab ' x y Ir

A Ati

+o a-sinzaio o C (inid' e Iectrc i E + ) )Ti T
^i r Li sin s 0 i b I h 1s Z

* kieki' (t ei Zkitj +I fav-~ehT'L~

eb=Polarization of the scidettee electric field (=Es eo
AA +O A )C

s e s Ca tt ake fln O C•rdk

-T~ V@ ' = A-I'•

(An A i t A OA _ s2 e01

se of te ele-ri % "4.6

+ A

A 'L x " ' y .+..

k k k i =-sine01 Cos ~x -sine0 sin4 1 Y CosO01 A

tit k 0 ; k I-sinO 6sCos S ~-sin 0 sin -CosO A

A Ai XL , k xn l

Ah ih k J.~ it

sinO =-k nI sine'

+r xi + y A + rZCos = (-k ).n^i COS~j k
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T =2r cos 0 2e coa 6
C iT r Ti rv+ C: C O S 0 • i + V/ r s I ein 2 r 1 C Co s 6' + V C. s i n,.2 9 V: •-

2co Y. i r"--r'

•2co . 2cos 6•

Cos 0 + d sin 2 6o COSO +ý -sin2 e!1
Sr 8i r X

Attempts have been made to compare (4.66) with the equivalent factor

resulting from the "tilted-plane" approach [5] but, unfortunately, the cor-

respondence is not easy to establish. It appears that such a comparison

might best be accomplished by comparing numerical values of (4.66) with the

corresponding factor from the "tilted-plane" approach (5].

Equation (4.65) is the desired result. From this expression, one can

easily obtain 00 from
ab

" lim lim •41R 1 1<+Eb2> + It 2> 4670ab = R-oA A -A E [2 1Ab 1E abI > (4.67)

0

VI

along with the development given in [6] and as corrected in Section 2. The

contribution of the zeroth order incoherent power <16°Eab> has been previ-

ously obtained by Sancer [11] and his results can be used directly in (4.67).

i
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5.0 A USEFUL RELATIONSHIP FOR THE JOINT SLOPE PROBABILITY DENSITY FUNCTION

5.1 Background

The incoherent power scattered in and about the specular direction de-

pends upon the joint probability density function (jpdf) of the large scale

slopes. The jpdf for the large scale slopes is also important in determin-

ing the degree of "tilt" or k-space broadening imparted to the small scale

Bragg scatterers. Ideally, one would like to measure the jpdf for the large

scale slopes, the roughness spectruxi of the small scale heights, and the corn-

plex dielectric constant of the surface in order to predict the average scat-

tering properties of a specified section of terrain. That is, these surface

measurements would be substituted in the rough surface scattering model which,

in turn, would provide an estimate of the average coherent and incoherent

scattered power. From a practical point of view, measurements of the jpdf

for the slopes and the small scale roughness spectrum are very difficult to

obtain and the difficulty increases as the radar or electromagnetic wave-

length decreases. For example, in the case of an L-band system with 4

X = 30 cm, the small scale part of the scattering model will require sur-
0

face height spectral measurements of surface undulations having wavelengths

of less than about 90 cm because XBRAGG (X/2)csc Gi for backscatter.

For the large scale features of the surface, the jpdf for the slopes repre-

senting surface features having spatial wavelengths greater than about 90 cm

is required. Obviously, spectral information on the small scale features is

going to be the most difficult to obtain. However, even the jpdf for the

large scale slopes is going to be difficult to estimate. It is not unrea-

sonable to expect that we can obtain measurements of the jpdf for the large

scale heights and even the correlation function for the heights at least some-

what close to the 90 cm spatial resolution. However, this information must
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somehow be translated into the jpdf for the surface slopes and this is where

the difficulty comes in. We ignore the possibility of a direct measurement

of the jpdf of the large scale slopes for arbitrary terrain because such a

task appears to be too difficult to even contemplate.

The question basically boils down to the feasibility of translating or

converting measurements of the jpdf for the surface heights into the jpdf for

the surface slopes. The purpose of this section is to point out an analyti-

cal means for accomplishing this transformation and suggest that the scheme

be attempted on an experimental basis. The relationship is not new and, in

fact, results from some earlier rough surface scattering analysis. However,

it has apparently gone unnoticed at least insofar as it applies to this very

real world problem of translating the height jpdf into the slope jpdf.

5.2 The Transformation

Perhaps the oldest approach to estimating the quasi-specular incoherent

power scattered by a rough surface is now called the autocorrelation approach.

Basically, one assumes the validity of physical optics, interchanges the

order of spatial integration and ensemble averaging in the expression for the

scattered power, and assumes Gaussian surface statistics with the final re-

sult that the average scattered power is dependent upon the behavior of the

surface height correlation function near lAti = 0[1] . In the mid-60's,

Kodis [2] showed that the average scattered power could alternatively be

interpreted in terms of the number of specular points on the surface and the

absolute radii of curvature at the specular points. Barrick [3] subsequently

linked these two approaches in the high frequency limit where both are valid.

In the process of establishing the similarity between the autocorrela-

tion and specular point approaches, Barrick obtained a relationship between

the jpdf's of the surface heights and the stirface slopes. In particular,
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Sif P CC is the jpdf of the x and y surface slopa components and

0 (k xk y) is the joint characteristic function for the surface heights

t4(xl,Yl) and C2 (x2 ,Y 2 ) then [31

00

where tAx = x1 - x2and Ay = Yl- Y2. In (5.1) the quantities qx,qy and

122

P ae limte Rim folows kql q ky k q ;A A~ t hud
qz qoe that,, -wf 4I 20z

Sis how the (AxAy) variation comes about in (5.1).

If an and(5.1) can be used

diretlyto obtain the Jpdf for the slopes. In cases where 0 i•(.) is

qbare from measured data, it is not imediately obvious that (5.1) is of

practical use since the behavior of the joint height characteristic func-tin

tinwill not be known in the limit of k -• and k -•o . However, consider
i y

the followitig reasoning as a means for obtaing estimates of p1(.,.)

Since alic2 is the two-dimensional Fourier transform of the jpdf for

d height, it can be obtained nfo ericaly by using a Fast Fourier Transform

obtain the measured jpdf height data. The result of this operation will beo

any ateby i 2 . Because of measurement noise and particularly quantiza-

Ation noise in the measured height Jpdf data, i will be limited to values

less than, say, k < K and k < K . The maximum value of k that can
x-- x y-- y obe achieved in (5.1) is therefore max(Kx/qtKy/qn ) . If q is small then

1 2th egt tcnb bandn-ial y usn aIatFuie rnfr

lesthe n r sulting adk K . h maximum value of k cant bevrcag. Th rnfr aribe

0
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in (5.1) will be given by Kxqx/q and K q /q which may also be large,x x z yy zA

depending upon q and q Thus, if q is near zero and P is corn-

puted using the following;

L
•x - z •Y - 4•2 -L=k Kx ky -Ky ;Ax,Ay)

2 xy

K q K q
exp A x AY dAdxdAy (5.2)

qz qz

it may turn out that P is a sufficiently good estimate of P as to
x y x y

be useful in the scattering model. Unfortunately, this approach breaks down

when q or q 0 ; however, it may be possible to get close enough to

xy

qx =0 or qy =0 to infer the behavior of P along these lines in the

q ,q -plane. The limits on the integrations in (5.2) symbolically denoted I
x y

as ± L , will be determined by the correlation length of the surface, i.e.

the separation distance for which the surface height correlation function

is essentially zero.

An alternate approach to estimating P is to examine the asymptotic

behavior of $ as k -K and k -)K . From this behavior, it may be
C x x y y

possible to generate an asymptotic functional dependence of IP on k

and k . By repeating this procedure for different values of Ax and Ay ,

it might be possible to also generate or build-in the functional dependence

A I
of 1P on Ax and Ay . In this manner, the dependence of 0 upon

k ,k ,Ax, and A is obtained at least in the limit of moderately large k

and k . This functional form could then be transformed according to (5.2).
y

The major problem hert: is that the accuracy of the result will depend directly

upon how precisely the surface height correlation function is known near

Ax =0 and Ay =0 . This statement results from the fact that the behavior
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of the transform of a function as k-+ - is directly determined by the behavicr

of the function as Ar +0 [4]. 1
The problem of converting height Jpdf data into slope jpdf results is

definitely not easy. Even with the use of (5.1) the problem still poses a i

number of numerical complexities, primarily because of the required limit as

k ÷-o . However, as discussed above, (5.1) does provide some hope in solving I
0

what is otherwise a totally untractable problem. It is felt there is suf-

ficienc hope as to warrant further investigation of the utlity of (5.1) in

the solution of this problem.
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6.0 A NEW APPROACH TO COHERENT SCATTERING FROM A PERFECTLY CONDUCTING

RANDOMLY ROUGH SURFACE

6.1 Background
A3

Among those involved with the applications of rough surface scattering

theory, the statement is frequently made that coherent scattering is reason-

ably well understood and adequate models exist for the phenomenon. Because

of the paucity of electromagnetic scattering data [1], one must go to the

acoustic field to appreciate just how truly erroneous this statement is! The

acoustic data [2,31 show that for scattering from an agitated water surface

all models are accurate for small Rayleigh roughness parameter. However, as

either the frequency or surface roughness is increased or the angle of inci-

dence i.s decreased, the data show a significantly stronger scattered field

than is predicted by physical optics and the inclusion of shadowing in the

model only makes the situation worse [4,5]. The acoustic experiments are im-

portant because they were designed in such a manner as to eliminate one postu-

lated reason for why early electromagnetic data did not agree with the physical

optics model [6]. A model based upon pure geometric optics has been developed

[7] but it tends to overestimate the mean scattered field. Furthermore, this

analysis appears to be based upon a questionable transition from a single

sinusoid surface to a random surface and it provides no justification for the

use of geometric optics for a situation which i-s clearly fraiught with diffrac-

tion and multiple scattering effects. DeSanto [8] has formally solved the

problem through the use of a diagram expansion me~thod for calculating the

stochastic Creen's function for the rough surface. DeSanto 's results became

even more significant when lie recently showed [9] that the fl.1st correction

term to the 7'iysical optics result did indeed increase the level of the aver-

age scattered field. Unfortunately, it is difficult to interpret the physical
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basis of the higher order correction terms, each of wh.ch involve the 301U-

tion of an integral equation whose complexity increases with order. The

need for further analytical and experimental research on this problem is there-

fore still great.

The purpose of this section is to present a new approach to the coherent

scattering problem based upon averaging the magnetic field incegral equation

describing the current induced on a perfectly conducting surface by an inci-

dent field. The motivation for this return to fundamentals is as follows.

First, it is desirable to investigate solutions to stochastic scattering prob-

lems which do not require an arbitrary closure assumption. Second, it is

absolutely essential to have a solution wherein mathematical simplifications

can be put into one to one correspondence with physical approximations. Finally,

acquiring a better understanding of the coherent scattering problem is vital to

the accurate modeling of rough surface multipath effects.

6.2 Analysis

The analysis will be presented in two phases. In the first phase the

surface roughness will 5e assumed to be arbitrarily distributed. In the sec-

ond phase, the surface roughness will be assumed to comprise a Gaussian pro-

cess. Restriction of the problem to a Gaussian surface permits the detailed

examination of certain simplifying assumptions and also the comparison with

DeSanto's [10] results.

6.2.1 Preliminaries

The rough surface is assumed to be perfectly conducting and infinite in

extent. The surface roughness C(x,y) Is stipulated to comprise a zero mean

statistically homogeneous process with the mean surface equal to the z 0

plane. In the following development,position vectors will be denoted by
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r r rt+z2 with r txA+yA and for a point on the surface z=-(xy).

Using an exp(j wt) time convention, the incident magnetic field is given by

H('r) H 1 h exp (J -jki)

where for vertical polarization h- = , while for horizontal polarization

h sin 0, - cos 0, and the karat symbol denotes a unit vector. The field

is assumed to be incident along the positive x-axis so the incident azimuth

angle is also zero, i=0 . The incident wavevector is given by

k = -k (sin O0 + cos 0 Z)

where 0 is the angle measured from the z-axis or the normal to the mean sur- A
i

face and k = 20 X is the free space wavenumber.
0 0

The current J induced on the surface S by the incident magnetic
S 0

field must satisfy the magnetic field integral equation (MFIE), i.e.

- " 1 x(n) x Js(ro) XV og - I )dS (6.1)J ()1 = 2fa(r) Xii(r) + f()XXg•rr 1 d

S JfS
S

0
-- 4

for rCs In (6.1) fl(r) is the upward directed unit normal to the surface

and g(r-ro1) is the free space scalar Green's function where, in expanded

form,

- - y 9+ ^z

x y

exp( -j kr - r)01g(14r- r° 0T •

-- r0

It should be noted that the gradient operating on g in (6.1), when evaluated
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I I
on the surface z (x ,y , treats the random height as if it were inde-

pendent of the coordinates x and yo . Expanding the double cross product

in (6.1), converting the surface integration to an integration over the z 0

plane through dS 1+ C + I; d , and multiplying both sides of
p l a e h r o g h d S V X0 Y O0 0

2 2Y
(6.1) by Vi + + yields the following,

bx y

J(r) 2n"('r) x H (r) + T- [n(r)-Vog) J(ro)- [I(r).J(ro 0)Vog drt (6.2)
0

where

• 2 2 +r(• I + •x+ •y J(r) (6.3a)

Xyn r) -x• r. y• z (6.3b)

and the integration is over the entire z = 0 plane. For future reference,0

the quantity I(r) will be called the equivalent flat plane current because

it is referenced to the z -0 plane. Using the fact that Is(r) must beis 0

2 2tangential to the surface and I + C2 + r. > 0 , there results"x y

Jz(ro =• Jx(ro +•Y JY(r° (6.4)
z 0 x X 0 y y 0

0 0

Equation (6.4) can be substituted in the right side of (6.2) to yield coupled

integral equations for J X() and Jy () . The coupling is a consequence of

the term [n(r)'J(ro)]Vog which, with the substitution of (6.4) in (6.2)

yields the iollowing x and y-components;

@All limits on the integrals in this section are (-coa) so they will not be
explicitly shown.
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o x x xo y YOo
0 00

where r0 is x or yo It should be noted that these terms are propor-

tional to the difference in slopes at rt and rt . Thus, if the surface is
0

very gently undulating, these term, should be very small. In the analysis to

follow, these terms will be ignored; thus, the problem reduces to the assump-

tion of no depolarization or the case of a surface having slopes which are very

slowly varying with r . Actually, the analysis can be carried through for

the vector or coupled equation problem it, essentially the same manner as to

be presented here. However, because it does tend to symbolically complicate

the equations it is better to introduce the approach with the scalar problem.

6.2.2 Arbitrarily Distributed Roughness

Ignoring the n.J term in (6.2) yields

2[n(r) x H1 (r) ] + Jt-M- + *y + ((r) 2T xax y ay acXf r) 0 0 q 0

(6.5)

where ^q = x or 9 . Computation of the equivalent flat plane current is not

truly the desired end result; what is really sought is the average scattered

field <E > which in the Fraunhofer zone is proportional to

<J(r) exp (Jks r,)>exp[j(ksxx+ksyY)] dt (6.6)

(where it has been assumed that the averaging operation denoted by <-> and

the surface integration can be interchanged). The averaging operation in (6.6)

implies an average over C and all other random variables upon which J()

depends. Clearly, from (6.5), J(r) depends on the slopes Cx and y; further-

more, experience indicates that J(r) should also depend upon the curvature
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components of the surface (x,, ) . In point of fact, J(r) evaluated
*xy yy

at rt depends upon all higher order derivatives of the surface height which

are correlated with the surface height and slopes evnluated at rt . This
0

means that, for the general case, J depends upon all higher order derivatives

of the surface height. Thus, in order to accomplish the average in (6.6) the

quantity J(r)exp(jk z) must be multiplied by the gl point oint p roba-

bility density function

pl (C,VC,V r•,'V3• 1I
,V24,

2 nand averaged over CVCV C..., where V is a symbolic notation for all

n-th order derivatives of the surface height evaluated at the point r . Thatt

is,

<J(r)exp(jksz)> - f . J&r)exp(jks •)p 1 (,VV2,-

° d~dVC"" (6.7)

The right side of (6.7) can also be written as the convolutions of the infinite

dimensional Fourier transforms of J(r) and p,(-) as follows;

<> n-)-- (2,,)n I f. 0' " n(D n

d$1 d$2 dO3. 0g (6.8)

1 2

where Bnis an n-dimensional "vector" and

VC+ff Vn-
~J(01,00, la ff , .. fj (r)exp [J (O• ý+52. +6 -~-?.nl)].'

l2' n 1 n

n-1
* dI dVC...dV nl (6.9)
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(k8 l -f S-6 d f- - f P.-,VC-..--.--. IV.., 0-p~ (ko 15J;I

-_M 2Vr,+..."n-Vn-~l• d4 dV4 ...dvnl (6.10)

The notation is a bit cumbersome here, so explicitly writing a few terms may

be helpful, e.g.

B 3° V2 =xxCxx + OxyCXY + 0 yy Cyy

+ 3 X!
i~i 84" .= xxx xxx + X [Xyxxy + Y 8XYY~x + yyy yyy

Since CD is the Fourier transform of p.9 it is the sigl point Jon charac-

I

tersi function for the random surface. Note also that J is the Fourier

transform of J with respect tý- __all the random variables upon which it depends

(an 1-afinite number in general).

According to (6.8), J is required in order to compute the average scat-

tered field. This suggests (6.5) should be multiplied by

exp(j .z • + k kn+lVar) (6.11)

n=l

and then averaged. By expressing the averaging integrations as convolutions

of Fourier transforms, an integral equation for J in (klk 2 ,k 3 ," )-space

can be obtained. The average of the term on the left side of (6.5) is given

by
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< n-= .. 7iq ~

ni n=lC1

"P p (C ,V C , ... -)d ý dV r,-...

-lim 1rn . q(rt,0002 ... ) •(kll , "'k2  )
WOW (2 f)

•d dB2 ... (6.12)

The source term cn the right side of (6.5) can be written as follows;

2ýq.[ XH()] ffi 2H [Co +Cx x +C yy ] exp (-jk C- jki'r ) (6.13)

where CO, C and C are determined by the polarization of H but are inde-
x y

pendent of the random surface variables. Thus, the average of tne product of

this term and (6.11) is given by

K2Q[ x H (r) 2H exp (iJik" )[C0 + iC k + j Ca A C a~

k -k ) (6.14)

+ Th (2•-(n!)
where k2  is symbolic for the variables k and k The

term does not appear in (6.14) because no convolutions are required - only

straightforward Fourier transforms. The symbols akk and ak denote the
2x 2y

partial derivative operators a/ak2x and a/ak2y respectively.

The average of the product of the integral term on the right side of (6.5)

aad the exponential factor in (6.11) is somewhat more involved than the aver-

ages of the other terms in (6.5). First, the two ppnt . jon probability d4e-.

sity function
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ii
P2 ,o,,oo,2,oo "0 0 0rt t - t)

0

must be used because of the additional set of random variables Vo V2

* in thi-s term. Thus, the average can be written as follows;

K f( _•;y .+i n +l.Vnq/
Jq(ro)drt exp Jk i+i ki• •0 0~ 0 0 n = 1j

ax x° ao 50 (r)ep" n

n-l

• (,o,V,Vo,. ) dt dr, d° dVr, dV " (6.15)
o

Assuming that the order of the integrations can be arbitrarily interchanged,

the C-integration can be written as a convolution of the C-Fourier transforms

of the Green's function Jerivatives and p2 (-) . Noting that

F• •o° ' ~= - exp(igo•) F• a{
g r__r __rr , t 11C

where F denotes the Fourier transform with respect C and is the

transform variable, and sibstituting

gArto)=F ght') = g(ert'C)exp(J~O )d4, 
•

ag(AArrl ag3

t to oC (er tX•o 
f 5a, =b exp(J~o 0)dC

in the convolution integration with Art r - rt yield& the following form
t

0
for (6.15);
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i-
:•<*> = 2Tr ... x ax° Cy Dy° - (ert'Coo) Jq( ro0)

f 0 0

nlo (6.16)

where the tilde symbol denotes the Fourier transform of p 2 (.) with respecr

to "

The go-integration in (6.1,6) can also be written as a convolution as fol-
o

lows;

f f II ,,,-.

JO>. ýjx t -er0'

(20) 2  y ay ax t o) Jqlr

.(j1-, Z 1,ý 0..
•k 1(kl-oo,, 0o-3l,VC,Voto, ')drt d~odoldVýdVoIo"Zx k fn )P2( - 01n=l 0

((,. 17)

where the d-lde over J and the second tilde over p2  denote the Fourierq

transform with respect to ýo . The remaining integrations over V",V

are simply Fourier transforms, so

1* 2 f* a.~r k + j ay ak(e f2 2(2w)2 'ox0 ~ Yo •~

q (r010 2 ( 1 -o~oo olk2Voo k3 V0 0, d t do0 1od 0 C0 00oc(

(6.18)

where
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- t '' 2
(k 0 ývk V I c,V

2 2 0o2k3'V2

ooxprj k.

,lo, o ,VC,VooV2*o,V2o', n k
n-l

24
*dr dV d

is the Fourier transform of p2  over all variables except V o • C2IV3
0 00 0 0

It should be noted that the differential operators a and B in (6.18)
k2x k2y

operate only on p2  The integrations in (6.18) over V ,ol ,V C
-2 * 00 0 0 0 0

can be written as convolutions of the Fourier transforms of J and p, i.e.q ~

lir I (Art,030) Dg(Ar t o)01
<> . f... f + j a - i(A2 n! ii ax k Dy k r, t 0o)

n-• (2r)2(2r) o 2x o 2y

q(r t 1 1 ' 2 ' 3 " ) P (k l - o ~ -31 'k21- A k 3 '-0 3 " ' )dr t dl~o d~ l ". (6 .19)
-q t 293 P2  1 - 2 '3

0 Z 0

where

0 (,B,•2,!3,..- ) = .. ( , o,V ~, '...) exp n•-±o 4 J

n=l

2
dVroP0 dV 0 r

~ 3

and

+ I

k 00 300 3

* (±P~iZ fn~i~r7dV d2 ...

n=1
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The function '2 Is the transform of the two point joint probability den-

sity function; thus, it is equal to the two point joint characteristic func-

tion ." Substituting (6.19), (6.14), and (6.12) back into the average of

the weighted [by the term in (6.11)] equation (6.5) yields

lim f 'f - ...)4),(k-1",k02'd "
n_>- (21T)n! ql 2' )•2"

2H exp 1 kl-kzk k )
210 dx([.1 r)Co + J Cxa + JCy' 4'3

2x yk 2 y] *.=~~~~~ 20ep(Jirt O+JC + j y •I(-kz2k3 )

+lim 1 ff "f ( grt'° kx --- ky- ÷ ""o + Y

+ link 2 ~n! l*ax k D y k - tO
n-K (211) (27r) Jo 2x o 2y 0

"2(k1-ao a0o-••2 3133 ")~J (r "03' a )drtd° 0 "

42(k1-10 ,1 0  , 2 p29 3 ' 3' _.q t l 2'D 3s to 1 2

(6.20)

Substituting Ax x-x , Ay f y-yo , and A tr in the right most

0

term in (6.20) yields the following;

lim (r .. a_( , , "')D)I (k -•lk2")d d 2n + ( 2 ) n ' ~q 'l ' 2 9 * 1 - 2'2

02H exp (-Ci.rt)[CO + J Cxak + j Cy k 11 (kl-ktz'k2'k3'."

(27T)-2f ... ___ 
t~ ierloD or t +1,0))

+

+ -K lira a•)- kgAt'3 + J M~y k + •'•At'0

i (27)' 2x "' 2y 0t

CD3, (k -ak4 a(rt-A~rt 9l02, .. ")dert dodOldg2

"€2 (1 - o V- 1'29 2- 9 3 3' ) q t t " ""

(6.21)
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The single potia joint characteristic function (D is independent of A&r• rt

while the two point joint characteristic function depends on Ar through

the correlation function. Since all terms in (6.21) musL exhibit the same

dependence upon r and only J and exp(-Jkir) are functions of rt

(6.21) implies that q can be written as follows;

.1 q(r t~ 112''') q (01 0(32, '') exp (-Jki r ) (6.22)

Substituting this result in (6.21) and rearranging terms produces the following

integral equation for jq(1 l, 1 2'') ;

n-*o (270 Jqli2 ' I

r (er x ) i 'g°(r ,A

- t + j 0 6t(2Ak)2 DAy + t(to 013

nf.

(21T a o2x 2y

= 2H [Co + j Cx + j Cy ak I (kl-kz k 2,k3,"') (5.23)

Before a detailed discussion of (6.23) is presented, it is advisable to review

the mathematical meaning of the various terms, e.g.

÷ + - C o + n 4Jq(0IX 2'...) exp(jk rt d . ,q (rt,,V, r .. )exp a1• + i On+l V ,

nal

* didVi dV2 C . (6.23a)
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•I (kl-81•2-g2''' ) = " i(ý,Vý'V2r"")exp (tg)•j (ntg~).n 11+111
n=l

diOdV, dV2 "C (6.23b) I

(Ar to f = g(ert,r) exp Qo)dC (6.23c) it 0

-) exp(j%r,)dý (6.2 3d)

and

;I 112 (kl-5o o-' k2 a- k3- 32" "2 .....

i15 2 ý(),•oVr"Vo o V2•'V r'o,
4s 2+ 2 4 2 2 ý

[:I -00r + i(O-$~r Z ,j O or,01

n=1 n=l

dý d° dVC dVo•° (6.23e)0 0

Also, equation (6.22) confirms DeSanto's earlier analysis [81 in that it shows

that the coherent scattered field is specular in nature. That is, if the aver- 4

F .age in (6.6) is written as a convolution such as in (6.8) and (6.22) is sub-

stituted for J the rt-spatial integration will yield a product of S-func-
Aq t

tions, e.g.

fexp (-ik' 'r exp (jk r 4tdrt 6(k _k )6 (k _ki (6.24)

which shows that the scattered field is nonzero only for k =kx and
six

k -kBy iY
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6.2.2.1 Discussion of Results

Equation (6.23) is an integral equation for iq( (a,'2, 3 ,'.) ; if this

function can be determined, the exact amplitude of the scalar scattered field

may be computed as follows;

I,,4. 4.
tim q 0' ('0 2'". (DI (ksz-a1'-aV2'-•3 ")dgld02 d03""

nw ( 2 Wf)n ... q l
(6.25)

The quantity jI, from (6.22), is proportional to the Fourier transform of the

equivalent flat plane current with respect to all the random variables of which

this current is a function. Caution should be exercised in any attempt to at-

2tach a physical meaning to jq because in transforming from C,VC,V2•,

to , the stochastic character of the random variables is lost.
In fact this is the fundamental reason behind working in ... space.

That is, if one were to average (6.5), weighted by the exponential factor in

(6.11), in the conventional manner of multiplying by the appropriate joint

density functions and integrating over all random variables directly without

going to the transform space, the stochastic nature of the random variables

would prohibit one from obtaining a single equation such as (6.23). It is

well known that a conventional average of integral equations such as (6.5)

leads to an infinite set of integral equations [11] because one does not know

the average of the product of J and the kernel inside the integral in (6.5).
q

What hias been shown here is that if the averages are expressed as convolutions
i

in t ransformspace rather than direct integrations over the random variables,

it is possible to obLain a single integral equation because the transformed

product of J and the kernel term can be factored. The price that one pays
q

for the single integral equation is that it has infinite dimensions because

all order derivatives of , which have a nonzero two-point correlation with
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r.
must be included. In fact, the primary difference between this approach and

the conventional method [1l1 which gives rise to an infinite set of equations

is the following. In the conventional approach, one attempts to solve for

the average of the desired unknown quantity without trying to explicitly deter-

mine its dependence upou the randcm parameters in the problem. In the approach

presented here the exact 2apjosite is done on in the transform domain where

the stochastic character of the random parameters enters only through the

kernel and the correlations between parameters. Furthermore, in the conven-

tional approach it is frequently difficult to aLtach physical significance to

auv truncation (closure) or partial summation of the infinite t~et of equations.

In the method presented here, truncation of t1he infinite dimensionality of

(6.23) is determined entirely by the relative magnitude of the correlations

between the random variables.

There is one potential problem with (6.23) which may make it less attrac-

tive than the conventional. approach. In the infinite equation soluticn, all

the integral equations are of the second kind and, thus, normally amenable

[10] to numerical solution. On the other hand, (6.23) is of the first kind

which is usually rift with problems [12]. This is certainly a point to be

considered in the future; however, there are two reasons why it may not be a

problem. First, the desired quantity is (6.25) and not simply j ;thus
q

problems associated with the accurate recovery of Jq from (6.23) may vanish

when computing (6.25). Second, since (6.23) is obtained from an integralI

equ~ation of the second kind, this may also minimize some of the problems nor-

mally associated with equations of the first kind.

There are a number of interesting results that can be obtained from (6.23)

without specifying the forms of the one and two-point joint characteristic

functions. In the physical optics approximation, the term in (6.23) involving



the Green's function is ignored and, according to (6.25), the amplitude of the

average scattered field is thus given by

2H1o ( rn [Co + J Cx k~ + J Cy 3k lc~~(k s-k izk 2xik 2yO,...) (6.26a)

k 2x-ýO 2]D
k2y

The terms involving the parCial derivatives with respect to k2x and k2y

are equivalent to the following average;

K)? e1xpi(k-ki)0> (6.26b)aq •- xj(sz-kiz)

where q = x or y . For a statistically homogeneous process, r is uncor-

related with 3C/ax and 3j/ay 1.31. Consequently, the average in (6.26b)

is the product of averages of the slope and height factors and if the slopes

are a zero mean process then (6.26b) is identically zero. Thus, (6.26a) re-

duces to 2H1 C 0 (k sz-kiz ) where 4(') is the marginal characteristic func-

tion for the surface height. In the physical optics limit the specularly scat-

tered field is independent of the slopes provided the surface is statistically

homogeneous and the slopes are zero mean.

The function j corresponding to the physical optics approximation
q

0
(denoted by j may be obtained from (6.23) by inspection, e.g.

q

.o ÷ -4-• -k z .4- (

q(0, 2 ,Q3 ,''') 212Ho60 -k.1) 6 (03) C6((3) 6(2) - j C 6'()6(y)
i=3 1 o2x 2y x 2x 2y

- jCy 6 (•2) ,o'(y)} (6.27)

here -() is the Dirac delta and 6'(-) is its derivative. The next level

of approximation Is the so-called Born approximation. In this approach, one

solve,; for q(l = <Es> by moving the term containing the Green's function
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transform to the right side of (6.23) and substituting j0  [from (6.27)] in

q

this term. This leads to an approximation for the complex amplitude of the

scattered field which is valid when the term containing the Green's function

transform is small compared to the source term; in particular, the result isI;
as follows

<E>B 2H lm u C + r c + +j Cya ) (ks -ku ,k 2 ,0,O,
6 0 0 x k y k 1 Jl2

2x

2y

2H ai( •(to) kg(Art 10e)-
+__o 2 _ +j _im-j----0+g (Arto )ex(iJkl.Art)%-11"27 2 i k ff i x -k2 ~ )

$2x)2x 2XkO

Sk -*0
2y 2y

"o(k- '-ki'OO"') 2 s 0-iz' 2x 0-0x 2x' 0,0 •)

COP2 (ksz-0o,0o-kiz,O~~,,By0,0,'') j C0 0 iZ2x

S(k -6 a~ -k ,O,k 0,-I3,O0)0'..
C n2 sz 0 0 iz 2 y" 2 y dart do (6.28)

where, as a reminder, the arguments of 42 are the transform variables cor-

responding to the following order of random variables (CoC/ax,a/aY,

2 2
ac /a . oIo'V "'" )" The B superscript on <E > in (6.28) denotes

the Born approximation.

One final result that should be demonstrated is the limit of a perfectly

flat plane. In this limit the correlation function for the heights goes to
2 2

the mean square height, <C C = > 2 <C2 > , while the mean square slope,

curvature, rate of change of curvature, etc., go to zero. Consequently,

1 (k l-lS 2-;2 3-3 ") ffi =D (kl-01)

4 -. 4 (k • 4l3(D 2 (k -oB-lk 92- 2k 3'-3'' 0 =0lk -goHo-l 1
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The Creen's function transform 'g(Art,%o) is an odd function of 50 because

J - o and j is an even function of 00 . Thus, the term in (6.23)

involving the Green's function transforms Is zero and (6.23) reduces to

Lira I . (l,23..)•(kl_-0 da dB2..n1O (21T 1)

= 2Ho C •l(k-kz) (6.29)
0 a 1 1 iz

which yields the proper value for <E as k Ak and also

j = 211 CS(•l-ki) ri 6(a (6.30)

3 o 
.i302)

Furthermore, the inverse transform of (6.22) is given, in this case, by

J (rt,,) 211 C exp(-j k ý-Jk.rt) (6.31)
q t 0 0 iz it

4.4

and this is a valid transformation since Z does not depend upon rt. It

stiould be noted that this is the case of a randomly elevated plane and yet it

produces the same results as the physical optics approximation. ThIi corre-

spondence leads to increased suspicion of the physical optics result. That

is, physical optics treats the problem as a randomly elevated plane.

6.2.3 Joint 1_Gaussian Distributed Roughness

The results of the previous section are important because they provide a

rigorous mathematical foundation for the multivariate approach. They are also

general in that they are valid for any zero mean statistically homogeneous

roughness. While it is possible to obtain certain asymptotic solutions such

as with the physical optics and Born approximations or in the case of a ran-

domly elevated plane, it is difficult to appreciate the power of this approach

without seeing it applied to a specific surface height distribution. This is
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particularly true in regard to reducing the dimensionality of tihe integral

equation. That is, given the form of the single and two point joint char-

acteristic functions and (6.23), how does one go about determining which sur-

2
face parameters, i.e. ý,Vr,V2C.,' are important and over what range of

values? To accomplish this goal, the jointly Gaussian surface has been se-

lected. There are two reasons for this choice. First, the Gaussian surface

has been extensively studied by others [2-101. Second, the jointly Gaussian

density and characteristic function have known closed mathematical forms;

something which is difficult, at best, to obtain for other distributions.

The purposes of this section are to demonstrate how one goes about solving (6.23)

for a Gaussian surface, obtain asymptotic solutions, and compare these results

with others.

The surface is assumed to be zero mean, jointly Gaussian, and statis-

tically homogeneous. With u 2  the column matrix
2I

Co

u= Vl (6.32a)

V o o
0 0

and C the square covariance matrix

2
<C2> <ýr,o> <r-V4> "

0

<Co• <CJ > <Co.Vr,> •..,

<Vre. *> <V. •o*> <V • *V " '
00 0000
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the two point Joint probability density function is given by

2 I'2 2 2 2]

(6.33)

-- -T
where the T superscript denotes the transpose of u2 , i.e. U is a row

matrix, and ,C 21 is the determinant of the covariance matrix. With V2

the column matr l.x of transform variables

"k

IIff k2 (6.34a)2 2
• ! 1

the two point joint characteristic function is given by

4 .
= exfijt-V C V/2 (6.341b)"D2 29 29- 2

The terms in the covariance matrix are typically as follows;

V< o> R(Art) <x > -R

<r > = 0 > = -R (Art)
XY Yo yy t

< >r, > RR(ert > R Rx(ertx x t x xx xxx t

00

< > R (r
y x yyo xyy t

> -R (At > R (Art)
<(<( rYo:,xx> == Ry(rtx (Art)÷ <yyo> =Ryy (Art)i

<1 1> = it> (Ar )

where Ar = rt -r , the x and y-subscripts denote differentiation with
*ii t to 90

90



respect to Ax and Ay ,respectively, and RC/rt) Is rthe surface heightcorrelation function. The above results follow from the general relationship

11311

whrespc to nx and y aresponecatively andtegers. I h uraehih

(6.35)0a (-1 Byn apy Axm~ Ay niq

where m, ni, p, and q are nonnegative integers.

If u is the column matrix

U 2 (6.36)

and C I is the covariance matrix

2 2
<V <2cr> <v•.-Vr> <(.V2 2> ''..

the aingle point joint prcbability density function is given by

2 11/2 -

~,) liii j( 27r )n Cij1 exp [U I C I U 1 / (6.38)

and the corresponding joint characteristic function is

= exp{- 1V V1 /2} (6.39)

where V is tde column matrix of Lranslorm valriab lus
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ii

V, 2 (6.40)
3

The diagonal elements in (6.37) are the mean square (or variance) parameters

of the surface. The mean square height is a - <r, > , the x and y-components

of the mean square slope are, respectively, S x x > and S y 2>, and

one can similarly define the mean square curvature components, rate of change

of curvature, etc. It should be noted that these variance parameters can be

obtained from (6.35) evaluated at Art - 0 . Furthermore, in order for these

variances to be finite, there are certain analytic properties required of

R(Art ) in the neighborhood of Art = 0

Equations (6.34) and (6.39) provide the joint characteristic functions

required in (6.23). However, these functions still depend upon an infinite

number of transform variables and this will make the manipulations iore dif-

ficult co follow. The crucial points to be made can be accomplished just as

completely if only two transform variables are considered. Since the two most

important surface parameters are usually the height and slopes, these will be

selected for the demonstration. In order to eliminate the other surface

parameters, it will be necessary to assume a very gently undulating surface

which has a vanishingly small mean square curvature, rate of change of curva-

ture, etc.; that is, <(vnz)2> 0 for n > I . Under these conditions,

-lk kC(kD-8 1 ,k 2al g-2 ) (6.41a)

lCD(kk,k2 ,- 2 , -3 -2 (6.41b)
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and in (6.23)

,2, 39 l () (6.41c)

because the joint probability density functions go to Dirac deltas, 6(Vnrj) 0

while J is independent of the Vn• . Under these circumstances, (6.23)

reduces to the following form;

(ff ' f) I rt'Bo) aF
(27T) (2,) 2  J 22X

+ ay ky +i (A'rtsao ,2(kl-lo,ýo-1l k2'--•2)exp(j-•i Art)d&+rtd dOld !
+ j tY k K2 2)d rd 1 2

a211{[Ckz(:( (6.42)
= o o + J +J Cy 'k- (2)

where, because the height and slopes are independent for a Gaussian surface,

the single point joint characteristic function b is been factored into a prod-

uct of margiral cntracteristic functions for the height and slopes. It should .'

be noted that (6.4,2) is exactly the equation that would result from assuming

that the ctrcema' *-.pends only upon the random surface height and slopes.

However, as noted above, (6.42) is valid only when the variances or mean

square values of all the higher order surface derivatives are vwnishingly .imall.

The remaining portion of this section shall be devoted to two goals.

Usinp the height and slopes as examples, an attempt ii]J be made to obtain

some quantitative measure of when, say, the slopezi can be neglected relative

to the height. Hopefully, it will thet) bhe 1ossible to generalize tOis result

to the point of also estimating the required smallness of the curvature

variance, the rate of vh;n ge or ctirvatur&. vai-tance, et~c. In order that they

93r. . . . . . .
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1
may also be ignored. This is an extremely important issue since the solution

of (6.23) in any more than three dimensions (height and two components of

slope) is highly impractical. The second goal is to study the possibility

of solving (6.42). That is, since (6.42) represents surfaces which are not

unreasonable, its solution would represent a considerable breakthrough in the

understanding of scattering from rough surfaces.

After some straightforward manipulation of the characteristic functions,

(6.42) may be written as follows;

rl
l 10 0 (~ -ý )~ 4) (k-f

(q(12x'2yI(I(k 2x-02x) 2j( 2y)

1~2_ 2
2 G(Ar to'k 2  2) exp P (o-R)(0o-1) (1o-k) - (S +R xx)B2X k2x

(2in) 2  ox

- (S +R- (k _0) l~2+ Ry a) + (f0 _0 )(R k2 +R ky

-Rxy (( 2 yk2 x + 2 xk 2y)] exp (jki.At)dAt dKd1 dft2x d2ydi
011

= 211o +iCx + c C (D)(kl-kz)(i(k2) (6.43)

2x y 2y .J

where S < r, > , Sy2 = < 2> , and G is the term involving the Green's
x y y

funct'.on transforms which is as follows;

4. 4÷ Dg(Atr o

G(r •'21 '2) = Ax x x x k2 Ay y2-2

+ k 2y] + gr,(Art,-o) (6.44)

The term in (6.43) involving G does not converge very rapidly as Ar 9 •
t
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so to avoid potential problems this asymptotic behavior will be subtracted

out. That is, since the correlation function and its derivatives go to

zero as Ar this term asymptotically approaches, for Ar sufficiently
t t

large,

2 2 2o exp k23 -( . WS k

exp(j.ier dAer d° M F(19,kl,1,t2) (6.45)

The Ar t-integration in (6.45) can be easily accomplished with the following

result;

~~ 2 _xkx + 4 +

r(.) +- 13(kit,So) ) kAy(ktto0 (-S k2y (kito)

exp[-c 2 (a a 0 k )S 02 xk 2  a k2 ]d13 (6.46) L
where the triple tildes denote the three dimensionat (AxAy,C)-Fourier I
transform, the subscripts on the denote the derivatives of g(Ar r,)

t

with respect to the indicated variable, and k = kx x + kiy9 is the trans-

verse part of the incident wave vector. The o -integration is difficult to0 i
perform directly because of the Gaussian factor in (6.46): however, it can be

accomplished by using Parseval's theorem to rewrite (6.46) as an integration

over the product of inverse Fourier transforms (with respect to o That is,

with

OThe 40 factor arises because g is 41O times the conventional free space
(Greon's Function vxp(-I kor)/4Trr
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47rk exp(-Jk 1•j)

i ±ix- + ix
Ax- g(t (itR)exp(-jfo 0 z)d8o0  2 k z

(6.47a)

+j k fI~ z t'ao)p (-j 1zdo 41kyep-k 151z1)f

Ay - Jg(k2T i)eXp(-Jzoz)do 2

(6.47b)

II
g(+ it'z) 21T g(k it g)exp(-JO 0z)dO° 2 1.f exp(_Jk iz IZI)sgn(z)(64)

= • 2(6.47c)

where k is the z-component o; the incident wave vector, and [14, pg. 631

I z>O

sgn(z) 0 z =0 (6.47d)

-1 z<0

anl

4I

S[ 110,)~2 z2 02zi2 k,+ ý1 - 4;ýk

_ f exp a l - J goz.doi Q(z) (6.47e)

(6.46) may be written as follows;

(Sk k
2 2 -J •-2x)

r( )2= 22x y k2yF 2y],k2 k-21• yki, z k J2

+ 2T sgn(()) Q(-z)exp(-jkIzIZI)dz (6.48)

Completing thc z-i.ntegtation yields

re96exp Sk 2A 2  Sk (6.49)
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where

2 24

ri (S k kl F+r kk~f rk +
e~fcL r ~2 Ux ixe2x LoYzt 2Y ~ !)I erfc [ 2

2~~~~2~ 2~~ (1 ( k1ý /k z~\Ij k 1 /k

i-f ex[ok 2 (+ +(xl )) k~rc 212e (2(k-i) (62 0

C 2

20 exp ( -Iit. tk dB p k d rfp-1 - (2 -d(

211xC a k ICSfk c 2+ S) (6.50)
z -ic k2 /2

ýj where Krf(e) is given bopelow tand t ero addendum o n Substitu tinga(6.49)me nsta

the43 creaion fuh mnnteo and allo f itsderivative s ar e i toga beselts in thero
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R w -. ..-.......... ,

K(Ar til~o()l~k~k2(,2 = (Art, 1• ,k 2 ,fl 2) exp i- (; 2 -1H)(1o-(3 1 )((3-k 1 )

2 2

-(S + R, )0 k2  -(S 2+ R ~( 2 k2  (kx( + R 1 )Yx 22 y ,, 2y 2y - o x1 -y +,,,x.y] 1!
+(J0 -(3 1 )(R k +Ryity) - R (02 k +B 32k 2 y) (6.52)

0 1 x 2x Y 2y xy 2y 2x 2Xy

Equation (6.51) is an exact integral equation for the function j underq
the conditions that all surfrce height derivatives of order two or larger are

negligible in a mean square sense and depolarization is negligible. Having

obtained j , the amplitude of the mean scattered fleid may be computed as
q

follows; i

fjEf >()( -I)~..( c
s > f q 1('i, 2xo2y ) 1(k sza1 (_(2x)D (_02y) d 21 d 2

(6.53)

6.2.3.1 Discussion of Results

Attention will now be directed toward studying the surface conditions

which permit a simplification of (6.42) or (6.51). Of particular concern are,

the range of surface parameters which result in a one dimensional simplifica-

tion of either (6.42) or (6.51). In expanded form (6.42) takes the following

for;m

(21 3 q (q 1 2x' 2)q(k - l )(1(k x-o l 4Kk y y 2o a

2 . S 2
- 2 k2x - Rkxx-2x + (oo-o 1 )Rx - Rxyo2y + J My - k2y - Ryy o2y + (o 0 -ol)Ry

- Ro y2x + Jr] exp i{ZI+j k.Art dArtdoJ d3 1 d 2xdo2y

=2HV -jC S 2ok 2-j C 2 k/2] ]1'(kkl-kiz•(k (6.54) )
x x 2x/ y . 2y 2l.. (6.54)
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where

i= - (ao -R) ( Aok )-(S2+R )a kx(S2+Ry) k - (k (R +R

+ (o-i)(Rxk2 x+Ryk 82 yk2x+2xk2y)

When (6.54) can be essentially reduced to an integration over the height

transform variable ( , it is reasonable to expect that the equivalent planar ]
current is approximately independent of the surface slopes. If this is true

then j (01,8x,8 ) assumes the following approximate form;
q 1 2x a2y)'

(81 (6.55)Jq(B 2x'02y) q Jq( WUM(06(2y) (.5

arid substituting this simplification in (6.54) yields

{ ff 2
21- 8 (1Z,(k 1-61)4(k 2 x)4(k 2 y) (l - 7) 2 )Ax f- k +R ( 00 )01

+ j IL ~S 2 k+R (00-81a + W+

(Bo-aI) (Rk 2 x+Rk exp (j ki rt) dertda d1

K01 x2 y 2 yit o li

2-H o- j Cx S k2  -iCy y 2 . 5

(6.56)

One way of satisfying (6.56) is to take the exponent which depends upon R

and R to be very small. The maximum amplitudes of R and R are of order
y x y

S o end SO , respectively. Introducing the normalized height transform vari-X y

ables o 0 /ki, ril = 81 /ki and K1  k /ki , the exponent in question can

be ignored provided

kia S << i k aoS << 1 (6.57)
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[I
Assuming that (6.57) is sntisfied, (6.56) reduces to the following;

(21)2 x 2tx YY Ay M

{I
•exp (- (2R)(o-01) (00-k1) exp(j ki.er,) dArt dO dO1

a 2H[C _ j CxS~2 x/k - j i S csk y21 -kiz) (6 58)j

Equating like powers of k and k, (6.58) yields three equations for jq8)2x 2y' (658 yilstreeuain1o

Since it is not at all clear that these three equations will yield the same

J(l) it is further necessary to assume that S2 << I and S << 1qlx y

Thus, (6.58) finally becomes

2- ffl exn)k-)-)2 --

a 0 2H° Co 0 D(ki-kiz) (6.59)

which is the desired result. It should be noted that although the solution

of (6.59) will not satisfy (6.58) exactly, the stipulation of small mean

square slopes insures that the difference will be small.

The approach presented abo'ie for reducing the dimensionality of (6.42)

or (6.51) is by no means unique, i.e. there may well be many other equally

valid techniques. However, the end result and the conditions are expected to

be the same. The condition of small mean square slopes permits ignoring the

terms in (6.58) which exhibit a linear dependence upon k2x and k2y . Condi-

tion (6.57) or the assumption that the product of the rms slopes and the Ray-

lei-h parameter (k iz) is very small is necessary in order to eliminate th.e

coupling between the height and slope resulting from the integral term in (6.5).
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Of these two sets of conditions, it is obvious that (6.57) is the more dif-

ficult to satisfy because as k a increases the rms slopes (S and S ) willSiz x y
have to necessarily decrease. This is a very important condition because it

shows that (6.59) is valid only when an increas• in rouglmess height is accom-

panied by an increase in the horizontal scale of the roughness. Thus, the

validity of (6.59) is intimately tied to the interplay between the rms surface

slope and the electrical height of the surface roughmess. To the author's

knowledge, this is a new result and it further illustrates the power of the

multivariate approach. That is, reducing the dimensionality of the multivari-

ate integral equation can always be directly linked to ignoring, due to small-

ness, some physical property of the surface. This is one clear advantage th,,t

the multivariate approach enjoys over the conventional multiple scattering

approach because it is most difficult to translate closure of the multiple

scattering equations into an equivalent surface assumption.

Having demonstrated how one goes about determining when the slope effects

in (6.42) or (6.51) can be ignored, it is now possible to back up and estimate

more definitively when the curvature, rate of change of curvature, etc., effects

can be ignored. This is a somewhat tedious task and will be saved for future

studies. However, it is clearly obvious that the dominant smallness assump-

tion is going to result from the statistical coupling or correlation between

the surface height and the order of surface height derivative in question.

Regularizing the Art -integrand of (6.59) at infinity leads to the slope
t

independent analog of (6.51), i.e.
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2-- fj(f ) 0(kl'B1)(I 1 ii ,'xp _ (2. R) (0o_3 M (-k1)
f ( 2 0)2J.ol

- a {0 W) _ k } J

2H C D (kl-k (6.60)

where r(.) is given by (6.49) and (6.50). In the limit of a randomly ele-

vated plane R-o2 and (6.60) reduces, as it should, to the physical optics

result for the mean scattered field. Introducing the normalized variables

n o/Tiz k KI kl/kiz

(6.60) becomes

kk. k'- iiz 1z 2 k02

2I fjq(k~iznl)(kiz[Kl-•i ] p exp k (l- (l1-0p ) () ) -27 q z1 (27F)2 i

exp{ k iz a (no-rl) (0o-K1)} exp(jki'Art)dAtr dr .,r( ,$,K --k°2 O.°2b0)/(27T)?}

dni =21 C 4 (kizK -11) (6.61)

where p(Ax,Ay) = R(Ax,Ay)/o2 is the normalized surface height correlation

function. If k iz << 1 then (6.61) may be approximated as follows;

21z jqkzl)(z[-l] IT kfz (kz)2 j exp -(k z)(1 oq) 0q-<>7r 1 (270)2 i

• p(AxAy) (rj-il 1 ) (0l1 K1 )exp(jki'Art)dArtdno - r(n 1, Kk 2 =0,O2 =O)/(21T)- d1

Z 2~1 C ¢(k iKK --lI) (6.62)
0 0 iz L

10
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where the exponential term in (6.61) containing p(Ax,Ay) has been approxi-

mated by a two term power series because k ao << 1 . Consistent with the

"previous assumptions of small mean square slope, curvature, rate of change

of curvature, etc. p(Ax,Ay) may be consicered to vary much more slowly with

Ax and Ay than g (Art,k rin) and so (6.62) becomes

tiz 0

1 -2

S* exp (k- (o-rI)(k o-Kl)}dro - 1(k)lKl k2 ffi0o, 2 =0) (21T) Zd1

2211 Co (k i[K -1]) (6.6 3)

Since the integral term is multiplied by (kizO)2, it is much smaller than r(*)

because kiz << 1 ; thus, for small Rayleigh parameter the integral equation

for jq(k z 1) becomes

"-f (27 t
q 2z

"-" fiq(kiznl)(kiz[KIl-l]) (1 - r(l ,Kl9k 2=0, 2 =0)/(21T) drI

22H C D(k(k [ (6.64a)

000i 1- 1) K-I

Sthor innterms of r s and 1

00'liz

q izl

1I'L.L' &hr t: t iff ome~ |ntLLurt, bil~g COil•i.W(•|lL*it'H oI (| ,(t/4) whit hd wil I a,,w I'v &oiil-.

F sidered. First, one way of achieving a small Rlayleigh parameter is to let 0i
10 0

ori emso n
(a (Dk I (O~k-k 0 )/1032 d

LTJ.. 1.



be very near grazing incidence (0 1 U/2) . Near grazing incidence is where

approximate optical theories predict a strong dependence on the mean square

slope due to self-shadowing (4,5]. However, (6.64) exhibits no dependence

upon the surface slopes and, in fact, is determined entirely by the Rayleigh

parameter k iz . This discrepancy between (6.64) and approximate optical
izi

theories does not appear to be a consequence of any of the simplifications
leading to (6.64) because these same simplifications are inherent in the

approximate theory (except for k. o S << I which is trivially satisfied

near grazing incidence). The lack of dependence of (6.64) upon the surface

slope variances is also in agreement with rigorous boundary perturbation

theory which, in turn, is accurate for k cl << 1 Thus, (6.64) clearly

establishes the inaccuracy of shadow corrected optical approximations for

near grazing incidence or, morc correctly, for small Rayleigh parameters, at

least for the case of coherent scattering. One possible reason for the fail-

ure of the shadow corrected optical approximation is that it assumes that the

current induced on the surface is zero on the shadowed parts of the surface.

However, this is at complete variance with (6.64) which, for k. a suffici-
iz

ently small, predicts no shadowing of the incident field. In fact (6.64)

shows that for a sufficiently small Rayleigh parameter, the average scattered

field appears to result from a randomly elevated plane.

The average scattered field for the case of k a << I can be obtained
iz

by first solving (6.64) for j (0 and then convolving this result with
q

(D(k k-), s -kz , to find the average scattered field. There is, how-
8z 1 sZ t

ever, a more direct approach to computing <E > which results from the special
s

form of (6.64). Writing F'(') in its integral form as given by (6.46) yields
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7r f ff 0 1 iz (2l 1 1 C

° exp [-2(°-6)(1)°)] 00(k "d O)da° do 1 / (2w) 2  (6.65)

Since

c(k 1 - 3 exp[a ( o2  i) (a ~k1  exp(~0 (k -_2 a~~2

( c((k l o)• oO- 1)

and

<Es (a)> = (0 )(DO- Jq()(o-i) do 1

(6.65) may be rewritten as follows

fE ( -- + )d) o/t2 )f2

<Es(kl)> 2H1 Co4(k-k) + <Es (go>' ( -o) '0 (ki Bo

(6.66)

Furthermore, since

S(k , Po) = 47r 2
2 2t go - k -*c

0 iz

where c is a small positive quantity, (6.66) reduces to the following sin-

gultar integral equation of the second kind for <E >
S

r to((k-o)
<(k)> 211 0C 0 (k1 -ki) + iJ 2o 2 • <E _(•_ 0)> dB (6.67)

0 iz0
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This equation hears a remarkable resemblance to a result obtained by DeSanto

2[8,10], which he stated was valid in tile limit of R -* . In comparing (6.67)

with DeSanto' s result, there are two factors that should be noted. First,
DeSanto's equation has a 8o In the denominator of the integral rather than

in the nnmeratc This difference appears to result from the manner in which

he treats the singularity in ag/i . In (6.67) the • in the numerator
0

results very simply from the following transform relationship;

e. Ort 0tI;) J/3 (Ar t8)

For k. (3 << 1. this difference will have no essential effect upon <H (k )>

A second point to he noted is the fact that DeSanto's result corresponding to

(6.67) is actually based upon the assumption that

2 "+ "i0

0 Art 0

R(Art) = (6.68)

0 Ar #0
t

rather than R -•o as stated in [9] and [10]. Since the correlation func-

tion in (6.68) differs from zero only over a domain of zero measure, substi-

tution of (6.68) in (6.60) will thus yield (6.67). In fact (6.68) was dis-

covered by searching for the form of R(Ar ) which would reduce (6.60) to
t

(6.67). However, it must be remembered that (6.60) is based upon the assump-

nItion that the variances of Vn ,n1l,2,..., are all very small and it is not

in•nediately obvious that (6.68) satisfies these conditions. Thus, although

(6.67) can be obtained in the same manner as DeSanto derived his correspond-

ing result, there remains some question as to the meaning of the expressions

for <E s > Aside from these minor differences, it is most encouraging that

these two significantly different mathematical approaches give rise to very

similar equations for the average scattered field.
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When the Rayleigh parameter becomes mod':rate to large, (6.67) can no

longer 1. r igorously justified and (6.60) must be solved. Since the only

major difference between (6.67) and (6.60) is the appearance In (6.60) of

the termi involving integrations over Ar and I , It would appear that

(6.60) should be readily uoluable also. Unfortunately, no aviytical approxi-

mations have been found for this term. Since this term is roughly equivalent

to the average of the ?-derivatlve of the Green's function, it is extremely

important to the determination of 3 or <E > Quite obviously, future efforts
q 5

on this problem should concentrate on the approximate analytical evaluation

of this term. If analytical approaches prove fruitless, then numerical inte-

gration techniques should also be consid red.

6.3 Sunmary

The purpose of this section is to develop an alternate approach to the

problem of coherent scattering from a perfectly conducting rough surface.

Since the conventional multiple scattering approach is difficult to interpret

in terms of the statistical properties of the surface, it is desirable to have

an approach which clearly shows the dependence of the mean scattered field

upon the various surface parameters. the approach developed in this section

leads to a single integral equation of infinite dimensions for a function

which when convolved with the joint characteristic function for the height,

slope, curvature, etc. leads to the coherent field. The Integral equation

has infinite dimension because the mean scattered field depends upon all order

derivatives of the surface height. Particular attention is given to a Gaussian

surface which has negligible curvature, rate of change of curvature, etc. It

is shown how one links reducing the dimensionality of the integral equation

to conditions on the surface parameter. In particular it is demonstrated that
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the equivalent planar current induced on the surface can be taken to be inde-

pendent of the surface slopes whenever the slope variances are small and the

product of the Rayleigh parameter and the rms slope is small. For near graz-

ing incidence it is found that there is no justification for the inclusion

of a shadowing function. Comparing these results with those obtained from

multiple scattering theory shows a great deal of agreement and, in addition,

[ some further insight into certain limiting approximations,

In summary the multivariate approach introduced here has the following

positive qualities;

0it is very straightforward,

0 it is sufficiently general to cover any surface height

distribution,

it clearly shows the dependence of the scattered field on

measurable surface parameters,

eone can, in a straightforward man'ter, deduce when the various

higher order surface height derivatives are important,

. h ehiu can be extended to the general vector case, an

6 the basic approach can also be used to determine the incoherent

field.

The only negative aspect of the approach is that it will require the evalua-

tion of some very complicated and difficult integrations which. in essence,

stem from averaging spatial derivatives of the Green's function.J
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