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Evaltuation

This contract was concerned with developing improved analytical models
to describe the scattering of electromagnetic waves from rough surfaces.

A perturbation technique was used to develop a two=-scale composite model
for describing electromagnetic wave scattering from rough surfaces. The
bistatic scattering cross section of lossy dielectric rough surfaces was
derived. Cforrections to the shadowing functions for non=Gaussian surfaces
were derived in general, Explicit expressions were derived for exponentially
distributed surface heights in the case of backscattering, An exact solution
for the coherent wave scatterced from a rough surface was obtained in the form
of an integral equation. The exact solution for the coherent wave ingludes
the effects of diffraction, which are important at low grazing angles. The
objective of this contract has been successfully met.
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1.0 INTRODUCTION

As radar systems designs become more complex and versatile, their per-
formance becomes increasingly sensitive to the operational environment. This
places an lncreased burden on the designer to incorporate the effects of the
envixonmenﬁ in system design studies. However, before this can be done, it is
necessary to develop an accurate model of the environment. In the case of
ground clutter or multipath, this means that there is a need for rough sur-
face scattering models. Such models must not only be based upon sound physi-
cal principles but also exhibit agreement with measurements.

The purpose of this study is to provide improved models for surface scat-
tering from terrain in the microwave frequency range and near grazing inci-
dence. The basic approach entails applying the composite surface scattering
theory to a lossy, rough dielectric surface. As long as the inci-
dent angle is not too near grazing and the surface is reasonably free of sharp
edges or cusps, the composite model should be a reasonable description of the
scattering process. Since the composite model is based upon the combining of
two asymptotic scattering theories, it is approximate. Thus, an additional
goal of this study is to investigate new techniques for improving tbe compos-
ite model. As a first step toward obtaining improvements to the composite
model, a rigorous new formulation of the problem of coherent scattering from
a rough surface is developed. The intent of this work is an attempt to gain
a better understanding of the interplay between the statistical surface param-
eters and the scattered field. Such understanding is an absolutely essential
prerequisite to modeling more complex factors such as vegetation and snow

cover.
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1.1 Summary of Results 3

Section 2 corrects an errcor in the composite surface scattering model.
In particular, it is shown that shadowing is improperly accounted for and this .

error is corrected. 1in the corrected version of the composite model, it is

shown that the _onventional shadowing function multiplies both the zeroth and

first order incoherent scattered power perturbation terms. Thus, even for a
% perfectly conducting surface the first order term will go to zero for back-

scattering at grazing incidence due to the shadowing function. The first

order perturbation power suffers an additional attenuation due to the shadow-

ing of unfavorsbly oriented large scale surface slopes; however, this effect

e e e

is relatively small compared to the impact of the conventional shadowing func-

T g e

tion.

Section 3 demonstrates how the shadowing function for non-Gaussian surfaces
may be easily obtained from existing shadowing theories. The important
surface characteristic in the general case is the probability density func-
tion of the large scale slopes in the plane of incidence. Explicit results
are obtained for a surface characterized by a roughness whose probability den-
sity function is exponentiel. The results of this study are particularly im-
portant for terrain scattering because terrain helght canuot always be described
by a Gaussian probability density function.

Section 4 extends the composite model to bistatic scattering from 2

lossy, dielectric, rough surface. The details are presented for three cases

of increasing complexity; backscattering from a surface with only small scale }
roughness, bistatic scattering from a surface with only small scale roughness,
and, finally, bistatic scattering from a composite (large and small scales of
roughness) surface. This approach is a logical progression from the simple y
;
!

to the complex and is therefore beneficial to the reader. Furthermore, this

[a]
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approach faciliiates checking the results of the perturbation theory against
existing snlutions.
i . Section 5 discusses one technique for relating the joint probability
denaity function of the surface heights to the joint denaity functiorn for the
slopes. The technique was originally obtained from an analysis of optical ? %
o scattering from a rough surface but its relevance to this problem has apparently
3 been overlooked. Although the technique is not always applicable to measured :

data, there are cases where it can provide the desirad transformation. D

if Section 6 develops a new approach to the problem of coherent scattering

o i« S0, o A 2.

»i from a perfectly conducting rough surface based upon the magnetic field inte-

gral equation. In contrast with the classical multiple scattering formalism

e

which leads to an infinite number of integral equations, this approach results i

in a single integral equation of infinite dimension. The infinite dimension- .

ality is a consequence of retaining all orders of surface height derivatives

. S SR s e ]

P

in the averaging process. The major benefit of this approach is that it is :

S e e it

possible to put the mathematical operation of truncating the dimensionality
of the integral equation into one-to-one correspondence with the neglect of
higher order surface height derivatives. Comparisons with the multiple scat-

tering approach results show very good agreement in domains where both theories

are valid. This approach also shows that in order to neglect surface slopes

the product of the Rayleigh roughness parameter and the rms surface slope must

v
G b A S bt T+ LSS At A AR vt B i s e

be much less than unity; that is it is not sufficient to simply require the

mean square slope to be small, ;

L
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2,0 A CORRECTION TO THE COMPOSITE SURFACE SCATTERING MODEL

2.1 Background

In {1], a solution to the problem of backscattering from a randomly rough,
perfectly coaducting surface comprising both large and s: 11 scales of rough:
ness was presented. As a direct consequence of the stipu.acion that the sur-
face roughness was a zero mean jointly Gaussian process, the scattering cross
section per unit area was .etermined to be the sum of two terms, i.e,
0;;'(e’¢) = lopg'(6,¢)]0 + [cpg.(0,¢)]1 . The [0p:,(6,¢)]0 contribution is
dominant near normal incidence and results from the shadow corrected optical
like reflection from properly oriented facets or specular points on the sur-
tace. The [Opg,(6,¢)]1 term is due to Bragg resonance scattering from the
small scale surface features with appropriate accounting for the resonance
broadening effects of the large scale surface undulations., Although shadowing
is formally accounted for in a correct manner in the [Op:'(e’¢)]1 torm,
there is an error in the exact representation of the shadowing function wnich
leads to an incorrect estimate of the effects of shadowing on large angle of
incidence scattering. Tha goal of this section is to correct the above error
and to properly account for the effect of large scale shadowing on the small

scale scattering term.

2.2 Discussion of the Error

The analysis presented in [1] relating to the determination of [0pp,(0,¢)]1
is correct up to and including equation (23}. The problem with the analysis
following (23) is a result of inadequate attention to the definition of the
shadowing function R(0,¢) . That is, R(0,¢) , as it appears in (23) of [1],

can and should bhe expressed as follows;

k k
RO = 08 oy, = 5%, 0y = )

i
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where

e kbl

ek il

p(o)(ﬁi | Cox ? czy) - <p(o)(tzi | Gp s Gy ? CEY)>‘52 (2.2)

REAIET> 5 b1 e i

is the probability that an incident ray having directicn ﬁi will intersect a ;
3

point on the large scale surface with orthogonal slopes sz and ng and will

not be shadowed by any other part of the surface regardless of the height Cz

of the point in question. The symbol <°>( in (2.2) denotes the ensemble
g
(0)(.)

average over all values of large scale height ‘z and the notation P

is the same as that employed by Sancer [2] in his excellent analysis of the

L B s . WV

effect of shadowing on [0p:,(9,¢)]0 . It should be noted that as a result

uf the integrations in (23) of [1], the shadowing function R(0,¢) 1is equal

RO

;. to P(o)(') evaluated at the specific large scale slope values given by ;

el i AR s 4 4 e

ch - kox/B and CZy = koy/B where kox - -2kosin Ocos ¢, koy = -Lkosinfisintb, j

VLN

B= 2k°cos 6, 0 is the angle of incidence relative to the normal to the mean

el o sk AR
S

(z=0) plane, and ¢ 1is the azimuth direction of incidencec.

In order to more clearly understand and therefore rectify the error in 1

i35 e

[1], it is beneficial to repeat equation (23) of [1}, i.e.

Lot e el ot 1 Tt g, e

-]

1 -

00  «00 2
3

il

oy

k k k k
»exp(- Sk Bx ~Jk  Ay) dAxddy = R(8,0)E _%!‘- ,_.g_’i ,—%1 ,_%Y.)

| —

A 2 2

L ffexp{—j(koxAx+koyAy) -tokﬁ cos 0 Ty [1 - pz(Ax,Ay)] } dAxdAy
-00 QD

(2.3)
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where Ax = X, - %; and Ay==y2-y1 « In (2.3) I(xl ,yl) is one if the point

2 2
(x1 » ¥y ,Czl) on the large scale surface having slopes szl and Ezyl is

2 2 5 2 2
illuminated and zero if it is shadowed. The function fpp’ is defined in [1],

;f is the mean square height of the large scale surface, and pz(') is the
normalized autccorrelation function of the large scale surface height. It
should be noted that the left hand side of (2.3) represents the Fourier trans-
form of the <> term (frcm AxAy- space to koxkoy-space) and (2.3) is
supposed to show where the transform variables appear in the result. Such know-
ledge is essential to accomplishing the convolution of (2.3) with the small
scale surfuce height spectrum because this convolution determines [Up;,]l .
That is, in the convolution kcx and koy must be replaced by kox-kx and
koy-ky where kx and ky are the new variables of integration (see (32) of
(1n.

If R(0,¢) ir (2.3) had been replaced by its precise definition, as given
by (1), the problem of determining where kox and koy appear in the right
hand side of (2.3) wculd have been correctly solved. Unfortunately, this was
not done. Tnstead, R(0,$) was incorrectly written as (l-i-Co)-1 and, through
the use of trigononetric manipulations, C0 was expressed in terms of kox and
koy (see equations (24) through (28) in [1]). This development failed to rec-
ognize that Co does not, in general, depend upon the transform variables in
(2.3). That is, if one changes the transform variables from kox to kx and
from koy to ky , C0 would still only depend on kox= -2ko sin Bcos ¢ and
koy= -ZkOSin 8sin¢ . The primary consequence of this error is to provide an
incorrect formula for R(*) for use in all equations following (28) in [1].

As will be shown, this error fortunately has negligible consequence on the

numerical results presented in [1].
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, 2.3 Correct Analysis

The error identified and explained above can be rectified by determining
the functional dependence of the right hand side of (2.1) upon the large scale
slopes sz and Z;R,y since they are replaced by the transform variables kox

and koy . This can be done in a relatively straightforward manner by general-

izing Smith's [3] results to the case where ii

respect to the y-axis rather

is at an angle 71/2-¢ with

than directly aloag the y-axis. Such a general-

ization leads to the following;

U(ctnd - Clx cos ¢ - CR,y sin ¢)
1+ Co

PO &y |2y,08y,) - 2.4)

where Co is given by (24) of [1] and U(*) is the unit step function which

is one 1f the argument is positive and zero if the argumert is negative. Of
particular note in (2.4) is the fact that Clx and Cmy appear only in the
argument of the unit step function. Substituting (2.4) into (2.1) yields the

) correct expression for R(8,¢9) , i.e.

k k
U(ctn 6 - _g_x cos ¢ - —(—];l sin ¢)

1+Co

R(0,¢) = (2.5)

I{ one substitutes k_ _=-2k sinOcos¢ and k_ =-~2k sinBsin¢d in (2.5)
ox o oy o

%
pp' 0’

® and ¢ and the mean square slopes

such as required in the determination of |[oO then R(0,¢) = (1 + Co)_1

and it will depend only on the angles

; 2
‘ . ?;!Lx

and 1;9‘; of the large scale surface (see equztions (24} and (25) of [1]).
However, in the convolution expression for [opg,]l, the unit step function

must be retained. That is, ore must use the following relationship;

P kK -k kK -k ] )
i e B o | 00X "X oy Ty
k -k k -k UG“‘B [Zk cose]"““’ [2k cos6 | sin¢
{ R( ox X oy |y - . 0 o
2k cos 0 * 2k cos?d \
(4] () l 4+ Co

(2.6)
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Equation (2.6) leads to a completely different interpretation of the ef-

fects of large scale shadowing on [op:,]1 from that erroneously presented in

[1]. According to (2.6), shadowing now gives rise to an attenuation factor . i

-1 o o
(1-+Co) which is common to both [opp,]0 and [Opp,]l , This result is

.
| Mddedi s

merely a consequence of the fact that small areas on the surface capable of

producing strong Bragg scatter, i.e. sz = ng = 0 , are as equally shadowed

as the areas properly oriented for specular reflection, i.e. clx = kox/B and

A DGR it . B A3 AT e

CZ = koy/B . This statement :an be easily verified by noting that for both

y
sets of the above values of ng and Cly . U(ctnﬁ—l;gx COS¢"C2Y sin¢) =1

L

At

in equation (2.4) and so R(8,¢) = (1+Co)_1 . Since both the [Opo and

P' ]0

st

[Op:,]1 terms suffer the same attenuation due to shadowing, the transition ,
]

region in 6 (where [ ° '
g ( ( PP'IO

is independent of shadowing effects. Since shadowing results from the slopes

decreases and [op;,]1 becomes predominant)

of the large scale surface structure and since the large scale slopes are not

et M A el S d ke

this result demonstrates that the theory is self consistent.
The unit step function in (2.6) serves the very important purpose of es-

I the important surface characteristic in determining the transition regionm,
E tablishing the limits on the integrals in the convolurional expression for

PR P

[Op:']l (see (32) of [1]). However, before this aspect of the problem is con-
' sidered, it is worthwhile reviewing the physics behind the reason for the unit

step function in (2.6). The unit step function appears in (2.6) because there
! is a certain range of surface slope values for which the probability of having i

an incident ray shadowed is identically one [3]. This result may be readily

understood by referring to Figure 2.1. 1In (a), the slope of the surface is
negative at the point of intersection and the incident ray is not shadowed in a 3

small neighborhood of the point. In {(b), the surface slope is equal to the

é slope of the incident ray (ctn0) and the ray is therefore tangent to the surface
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at the point of intersection. 1In this case the point may or may not be shadowed

in a small neigliborhood of the point, depending upon the surface curvature., In

{c), the surface slope exceeds the slope of the incident ray and the ray is .
necessarily shadowed by some portion of the surface in a small neighborhood

of the point. aus all points on the surface will be shadowed if their

slope, in the d*rection of the incident ray projected onto mean plane, exceeds

the slope of the incident ray. Stated another way, the probability of such

an event is one. This is the physical reason for the unit step function in

Lt et K e Sttt et s e bt il anl o an

(2.4) and subsequent equations involving the shadowing function.
In order to retain the physical significance of the wmit step fumectionm, %

it is desirable to deal with a particular form of the equation for [0p:,(0,¢)]1,

[V

i.e. equation (40) of [1],

EEC SN

M e

wk (l +(’ )
[ ppv( ,¢ﬂ S(2k cos 0 E +k ,2k cos ® E + k )

ngy

Ut e i e b L

2
U(etnd +F,x cos ¢ +€y sin ¢) Fpp' (- Ex, -£)

y
S ] ';
cexp| - —— - —X-lgg ar -1 2.7) ]
—3 -jTEJ v 7y kd
chx zgﬁy
where Ik is defined in [1]. Equation (2.7) expresses the convolutional
d

broadening of the spectrum about the Bragg wavenumbers kox and koy as a
direct consequence of the distribution of large scale slopes; that is, Ex -
and Ey are equivalent to sz and Czy . It should be pointed out that the

correct expression for the shadowing function has been used in (2.7). The ;

curve in the €x€y-plane separating the regions where the step function is
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zero and one is a straight line, i.e. Cx cosd + F,y sin¢ = -~ ctnB . Except
for special values of ¢ given in Table I, the step function in (2.7) will
consequently give rise to a coupling between the (;x aad &y integrals. More
specifically, the lower (upper) limit on the E;x integral in (2.7) is given by

- - (ctn@ +£y sin ¢)

X cos ¢

(2.8)

for cos 6 > 0 (<0) . From an analytical point of view (2.8) represents an
irritating consequence of shadowing. From a practicalAstandpoint, the restric-
tions imposed by (2.8) may not be numerically relevant for a large range of
incidence angles as demonstrated by the following argument. The dominant fac-
tor in the integrand in (2.7) is the slope dJdependent Caussian term which is
equivalent to the probability density function for the large scale slopes. For
most practical purposes, the effect of this term is to truncate the range of
integration in (2.7) to about a * 3-sigma excursion from £, =&,=0 . The

t 3-gigma excursions for Ex and Ey are 3V/§§§ and *3 i;g , respac-
tively, and substituting these values in the unit step function argument

yields the following requirement

t'%chi cos ¢ *+3 Cli’ sin¢ > -ctnb (2.9)

for the unit step function to be unity. If 0 < ¢ < 7/2 , the "worst casc"

—
situation occurs when Ex 3 ch and &y 3 /Czy or

[z 7
3 sz cosd + 3 Cﬂ.y sin¢ < ctn 0 (2.10)
The worst case situation occurs when the left hand side of (2.9) is most nega-
tive. Thus for numerical purposes and all values of © satisfying (2.10),
one can replace the infinite limits in (2.7) by *3 (;R_i and =3 I;Q; .
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TABLE I

Integration Limits fur Eqn. (2.7) and
¢ a Multiple of w/2
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Conditions similar to (2.10) can be obtained for other ranges of ¢ 1in a
straightforward manner, |

It is implicitly assumed that the upper limit on 6 resulting from (2.10)
also satisfies the optical criterion required of the large scale surface*,

namely that 4k§ ;f c0s26 >> 1 . For moderate slopes there will. generally be

a gap between the maximum value of © resulting from (2.10) and the upper
bound on © resulting from the large scale surface optical criterion., In b

this case, one must necessarily revert to the more exact limits such as given

il il i e

by (2.8). What is happening in this situation is that the * 3-sigma support

UTRPEA

of the slope density function in (2.7) is overlapping the region of the
Exiy-plane where the unit step function is zero. 1In fact, if one could go to
che grazing incidence limit (6 =1/2), it is readily observed from Figure 2.2

that only half the Exﬁy-plane is encompassed by the integrals in (2.7). Thus, ; f

in addition to the aticnuation of [O near grazing incidence due to the

T

°
pp' 1
(1+C°)1 factir, there is another reduction factor resulting frowm the shadowing
of points on the large scale surface having positive slopes (see Figure 2.1),

It should be remembered that although the impact of the unit step function upon

the limits of the inteprals in (2.7) is somewhat inwvolved, it is a direct con-

el Bl el i L 7 il sl 4 W Lo

s el

2.1,

[T T L R R

The analysic pi2santed above doas not alter the general composite surface

’ sequence of the rather simple slope-shadowing limitations explained in Figure :
{
|

g
|
i
f
:
8
%
i

scattering theorv set forth in [1]. It does, however, correct and expand the
theory in [1] as it relates to the effects of shadowing upon large angle of

incidance backscatcering fron a randomly rough surface. This additional analy-

|
|

318 was necessitated by the use of an incorrect functional form for the shadowing

function in [1}.

*T'ais criterion has also been called the- stationary phase approximation (4]
and the de2n phase modulation condition [5].

R it i ot A IR el < W
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2.4 Discussion of Numerical Example

The use of an incerrect shadowing function in Sections I through IV of
[1] was primarily a sin of omission. That is, since nearly all the results
in Section I through IV cf [1] were formal in nature, it was not necessary
to use the erroneous shadowing function given by (28) of [1]. However, the
numerical example comprising Section V of [1] does require attention in order
to properly account for the effects of large scale shadowing. In the example
presented in [1], R was set equal to unity because the large scale slopes
were relatively small. According to the analysis presented above, this step
is not justified for all angles of incidence. The correct effect of shadowing
i1s addressed below.

As in Section V of [1], it is assumed that pr)' e I‘pﬁ,(O,G) and che

surface helght spectrum is isotropic, i.e, T,zi = le’

‘/ 2 ,,%
S(kx,ky) = S( k;-*-ky ). Substituting Kk cosa = kx , ksina = ky and

2
= CR,t /2 and

::lkxdky = kakde 1in (32) of [1] and using (2.6) above for the shadowing func-

tion yields;

2T o
2

2
2k° 1 %,(0,0) _
[0 °,]1 = LI - f fS(k)U(ctnO + tan 0 + kcos@-9) )
o
0 kd

-

PP 26 2k0 coSs 6
L C!Lt cos (1+Co,

* exp {-— [4](02 sin2 ¢+ k2

The unit step functiou is unity whenever kcos(a-¢) > - 2k°,’sin0 . Siace the
minimum value of cos(o~$) is -1, this inequality will be satisfied for all

a if k 1s restricted to less than 2k°/sin9 « Since the range of k from

2ko/sim3 to ® for cos(o-9) > O contributes little to the integral in (2.11)

(because l;zf_ is smcll), the k-integral limits can be approximated by

15

2 2 2
+ lukko sind cos (-¢)] /loko ;2t cos B} kdkda (2.11)
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[kd,Zko/sin 0] . 1In this range of k , the step function is unity and the a=-

integration can be accomplished with the following result;

2k /sinb
o

252
4k0 I‘pp, (0,0)

CROE s(k) 1_[—k3in®
PPl TF ° ~7 2
CRt cos” 0(1 +Co) . ko cSLt cos” 0

d

272

(k-2k_8in )2

)exp - 2
2
;2.1: cos O

4k
o

kstn® ¥y gk (2.12)

2 2
kQ C!Lt cos” O
where Io(') is a Bessel function of the second kind. The right hand side of

(2.12) may now be compared with the [o 0.] part in (44) of [1}, t.e.
pp 1

2.2 © 2
4k-T =,(0,0) (k-2k sin 8)
o PP S(k) 10<--L‘°ii-‘l-9-—->exp - 0 _—ksinf k dk
k 29

Cli cos2 0 K

2 272 2 2 2
1 o Czt cos Ako c.%t cos © koczt cos 6
(2.13)

The obvious differences are the factor (1 +Co)-l and the finite upper limit

on the integral in (2.12), Figure 2.3 illustrates how (1 +C°)—1 varies with

6 for 2;2; = 0,0224 which was the value of mean square slope used to construct
Figures 3 and 4 of [l1}. Of particular note in the plot of (1 +C°)-'1 is the
fact it does not start to decrease until 6 exceeds 85°; at 87.5°

(1+CO)_1 = -2,5 dB. The value of 0 = 87,5° is the point at which Akgl;-i coszezl
and, consequently, represents the approximate limit of the large scale theory.
That is, for 0 > 87.3° the analysis of the scattering from the large scale
structure on the surface can no longer be accomplished using oprical techniques.
The effect of the finite upper limit on the integral in (2.12) is much less

dramatic. TIn fact it the AROAI’,IZL c:os2 0 2 10 criterion is ignored and the limit
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of O = 90° is taken in (.,12), it can be st,wn® that the finite upper limit
gives rise to a 3 dB reduction from the value of (2.13) at 6 = 90°, This game
conclusion can also be obtained from (2.7) and it is a direct consequance of
the fact that all positive slopes are excluded from considoration at 6 = 90°
(see Figure 2.1). Within the range of validity of the optical criterion, the
finite upper limit on the integral in (2.12) gives rise to much less attenua-

L factor.

tion than the (l-fCo)-
In view of the above analysis, it is concluded that the numerical results
presented in Section V of [1] are correct as they were presented. Determina-
tion of the spectral division wavenumber kd is in no way altered by the inclu-
sion of the correct shadowing function. The curves shown in Figures 3 through
6 of [1] are correct because they do not encompass the range of O where shadow-
ing is important (0 285°). As noted above, the onset of shadowing effects
occurs approximately where the optical criterion (Akoz CEZ o::oa2 6 2 10) 1s vio-
lated, i.e, 6 = 87.5° , for the numerical example presented in [1]. However,

for larger slopes shadowing must be considered since it will cause a signifi-

cant reduction in opg, near grazing incidence.

2.5 Summary

In the analysis presented in [1}, it was correctly demonstrated how one
includes the effects of large scale surface feature shadowing on the backscat-
tering cross section of a composite surface for largs angles of incidence.
Unfortunately, an incorrect form for the shadowing function was used in [1]

whicih led to the erroncous evaluation of the impact of shadowing upon large

angle of incidence scattering. In this scction, the covrect form of the shadowing

*To show this one can apply Laplace's method to asymptotically evalnate (2.12)
as cos 0+0, However, it must be remembered that the maximum of the integrand
occurs at *he upper limit of the integrand as cos 8+ 0 and this impacts the

evaluation of the integral [6].
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function has been presented and included in the formulas obtained in [1].

Particular emphasis has been placed upon the physical significance of shadow-
ing as it eftects large angle of incidence scattering. It has been shown that
shadowing leads to multiplication of both [opg,]0

-1 o o
tor (1-+Co) which causes [opp'll and, thus, opp, to go to zero near

and lop:,]1 by the fac-

grazing incidence for a perfectly conducting, randomly rough, composite sur-
face., Furthermore, there is another effect which leads to an additional 3 dB
attenuation at grazing incidence (0:90°)*, This effect results from those
slopes which, with probalility one, will cause the point on the surface having
these slopes to be shadowed. At grazing incidence, all positive slopes are in
this class.

A reevaluation of the numerical results presented in [1] revealed that
use of the co:i.ect shadowing function did not alter any of the results rela-
tive to the choice of the spectral dividing wavenumber kd, Furthermore, none
of the curves presented iu [l] were affected because they only encompass the
range of 6 from 0 to 70° and the effects of shadowing were present for 62 85°,
Also, techniques were presented relative to overcoming some of the analytical

difficulties resulting from the use of the correct shadowing function,

*It is reemphasized that exact grazing incidence cannot be addressed by this
theory because the optical criterion assumed of the large scale surface fea-

i et o A, MO

tures is violated. The -3 dB figure is significant only in its magnitude rela-

tive to the effect of the (1-+C°)“1 factor.
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3.0 SHADOWING BY NON-GAUSSIAN RANDOM SURFACES

3.1 Background

Shadowing of raniom surfaces was originally introduced [1] as an ad hoc
correction to the results provided by physical or geometrical opties approxi-
mate theories of rough surface scattering. Sancer [2] subsequently demonstr.i-—
ted how shadowing could be rigorously accounted for in the optical limit for
random surfaces, Furthermore, he showed that previously derived expressions
for the effects of shadowing based upon purely geometrical considerations (3,
4] were directly applicable. Using Sancer's results, Brown [%,6] showed how
shadowing could be rigorously included in a formulation for scattering from
random surfaces characterized by many scales of roughness, i.e. composite
rough surfaces.

While shadowing theory is reasonably mature, it has only been applied to
jointly Gaussian random surfaces. The Gaussian results are probably adequate
for the ocean but they are questionable for terrain and completely inadequate
for sea ice fields. For sea ice, water first fills all surface depressions
below mean sea level and then freezes.‘ This eliminates all surface height
excursions below mean sea level and the probability density function of the
surface roughness is clearly non-Gaussian. For these reasons, it is important
to extend shadowing theory to the point where it can easily accommodate non-

Gaussian surface statistics; such is the purpose of this section.,

3.2 Analysis

The special case of backscattering is chosen to illustrate the approach}
this minimizes some of the conceptual details associated with the more general
bistatic case., It turns out that the extension of the results to the bistatic
geometry can be accomplished almost by inspection. The analysis presented by

Smith [4] is general to a point in the develepment; however, there are a number
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of integrations which must be accomplished in order to arrive at the final
expression for the shadowing function. TIn the case of a jointly Gaussian
surface these integrals can be performed and a closed-form result is obtained
for the shadowing function. For non-Gaussian surfaces, the required integra-
tions appear to be, at best, formidable. The purpose of this section is to
show that if the height and slopes of the surface are independent random vari-
ables then the final expression for the shadowing function is drastically sim-
plified,

For the reader's convenience Smith's notation will be employed in this
section and his Figure 1 is essentially repeated here as our Figure 3.1. There
are three critical relationships from Smith’s paper [4] which are required.

If S(F,0) 1is the probability that no part of the surface will intersect the
incident ray (at an angle © with respect to the normwal to the mean flat sur-

face) on its way to point F on the surface then S(F,0) is given by

[=+)

S(F,0) = h(u-qo) exp { - fg(r)dt (3.1)

(o}

where h(e) is the unit step function, Y = ctn6 , q, is the slope of the
surface in the y-direction at F , and g(t)AT is the conditional probability
that the surface will intersect the incident ray in the interval (7,T+AT)
given that it does not intersect the ray in (0,7) . The function g(T)AT s
determ?ned by the behavior of P3(E,qIF,T) which is the joint probability of
the height & and y-slope at the point (x=0,y=T) conditioned upon the

height (&o) and y-slope (qo) at point F ; in particular,
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Figure 3-1. Shadowing geometry. The incident ray lies in
the x = 0 plane and the slopes of the surface at

the point F are 93E£/dx = P, and 3E/dy =q_ .
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.Ilq -u)P,(&.qu,r)I dq
; ) E=E, +ut
g(1)AT = - AT AT (3.2)
qu P,(E,q]F,T)dE :

|

E - The average of S(F,0) over all surface heights with Py " 0 and q, = -1/u

l is the desired shadowing function R(0) , i.e. the probability that a back-

; scattering specular point on the surface will not be shadowed. i
Smith proceeded to evaluate (3.2) in the Gaussian case by assuming that f

the heights and slopes at F were uncorrelated with those at y=7T . Here }

3 it will be assumed that decorrelation irplies statistically independence

and that the height and slopes are independent; thus,

o S bt onre

Py(E,q]F,1) = P (E)P,(q) (3.3)

where Pl(E) is the height probability density function and

a1 2D i it -ttt s

o

P,(q) = szz(p,q)dp (3.4)

-00

T e ——

where Pzz(p,q) is the joint probabil<.y density function of the x and y

RN L P H L

slopes. Substituting (3.3) into (3.2) yields the following

¢ i
) T .1(E°-+uT)

g(t) = (3.5)
go +uTt
P, (E)dE :
-0
where i
®This is not true in general so the following analysis applies to a restricted ]

class of non-Gaussian surfaces.
24
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I'= f(q - )P, (q)dq (3.6)
]

The denominator of (3.5) is recognized as the distribution function for &

T

evaluated at EO-PuT , 1l.e, Fl(go-+ut) . Also, Pl(go-fut) in (3.5) is
equal to the derivative of the distribution function evaluated at ¢ = Co-+u1 .

Consequently, (3.5) becomes g(T) = [F/Fl(go-fuT)]dFl(Co-+uT)/d(£o-+uT)

Substituting this result in (3.1), making the change of variable r]=£°-+uT

and noting that dFllF1 = d(fn Fl) yields

S(8,F) = h(u-q ) exp {-I’/u f dlﬂ-nFl(n)]} 3.7)
' n=tg

where fn denotes the natural logarithm. Since Fl(w) =1, (3.7) reduces to

Ty e I TIPL R T M SRR T

the following;

LTl s 2 e St T PV AL 1St il PRSI £ A

E 5(8,F) = h(u-q ) F, (£)" /¥ (3.8) P

JURTSPIN

[EERIER,

Remembering that Pl(Eo) = dFl(Eo)/dEo , the average of (3.8) over all values

L

of €° simplifies to

e L el . o

i -} H ﬂ

| it P
3018550 = htu-q) | {F DL av ) (3.9)

=00 { ]

Eo ; 3

or : ]

h(u=q_) b
8(py1,59) = T3 1 (3.10)

.

since Fl(-w) =0 and T/u+1>0 . With q, = - 1/u , the shadowing func-

tion appropriate for backscatter reduces to the following simple expression;
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: R(0) = {l + f(q/u -l)l‘z(q)dq} (3.11)
| M

where, in summary, W = ctn6 , 6 1is the incidence angle, and Pz(q) is

the probability density function of the slopes of the surface in the plane of

incidence defined by the incident ray and the normal to the mean surface. It

is interesting to note from (3.11) that for normal incidence (6=0) R(0) =1

whereas at grazing incidence (8=w/2) R(W/2) = 0 since U =0 and

TRICEETE

(=]
.[ qu(q)dq >0 . Thus, these basic properties of the shadowing function are
o

independent of the detailed properties of the slope density function. One can

e

.2

% easily verify that (3.11) is identical to the results obtained by Smith for

b

? the special case of a jointly Caussian surface. {
%i The form of (3.10) compared to Smith's results, i.e. (23) of [4], suggests }
E%; that the above result can be directly translated to the bistatic case and, in- !

deed, this is the case. For the bistatic case, a generalization of Sancer's

[2] results will be given. It should be noted that the inequalities involv-

. R
¢ Sk ol R S

ing the angles of incidence (90) and scattering (0) , just prior to Sancer's
equations (49), (50), (54) and (55) should be reversed. With UW=ctn6 and

u°==ctn 60 , Sancer's results are easily generalized by replacing his Co by

F(uo)/uo and C, by F'(uw)/u .

E! 3.3 Example

To illustrate the above results, the backscattering shadowing function

b

b R(0) will te determined for the exponential joint slope density function in-
;

L

troduced by Barrick [7], i.e.

P22(p,q) = ;35 exp [- V'6(p2 + q?')/w2 ] (3.12)
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whare wz is the mean square slope of the surface roughness. P22(p,q) in
73.12) represents a surface whose roughness is isotropic, w2/2 = <p2> = <q2> .
' - with statistically dependent slopes. That is, the joint density function can-
not be expressed as a product of the marginal or individual densities. The

calculation of the marginal density Pz(q) , using (3.4), is reasonabiy straight-

e

forward and the result is as follows;

REe g

g
T

P, (@) = =25 |a] K, (/B |q]/w) (3.13)
™

Mibdudne baae o)

where K1(°) is one of the modified Bessel functions of order one [8]. It

*g interesting to compare this density with a Gaussian, i.e.

T e
e Y

T T——
T T 1,0 e g~ o e A N I TN ORI T te 3~

2
P,(q) = exp (- q°/2u%)

w2

and this is done in Figure 3.2 where the normalized densities Pz(q)w are

plotted as a function of the normalized slope q/w . It should be noted from
£*  ots in Figure 3.2 that the "exponential" density shows a much greater

prc¢ +bility of occurrence of small slopes than the Gaussian. This result is
in agreement with one intuitive approach for generating a surface character-

ized b (3.12), e.g. one strongly filters all surface height excursions below

a ce: 1in level to eliminate the possibility of large negative height excur-

gions. This process increases the probability of small slopes at the cxpense

of the large slopes.

Substituting (3.13) in (3.11) and using tabulated integrals of Bessel

functions given in [9], the following closed-form result is obtained for the

backscattering shadow function R(6) ;

-1
[Kl(x)l.o(x) + Ll(x)Ko(x)] } (3.14)

(&I

.3 1
R(B) = {F Kz(X) +-2-+
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where x= (V6/w)ctn 6 and the L (*) , n=0 or 1, symbol denote. the modified
Struve functions [8]. Using asymptotic forms for the special functions in
(3.14), it may be readily verified that R(0) = 1(x*>©) and R(1/2) = 0(x=0) .
The modified Struve functions may be computed from tables given in [8] for

x 25 and by a power series for smaller arguments.

Figure 3.3 compares (3.14) and the shadowing function for a Gaussian func-

tion obtained by Smith {4] for a range of rms slopes. The shadowing function

for the exponential joint slope density is larger because the marginal slope

density given by (3.13) exhibits less likelihood for large slopes than the cor-

responding Gaussian density. That is, the larger slopes are the source of

more significant shadowing.

3.4 Summary

The shadowing theory developed by Smith [4], while sufficiently general
to deal with any joint slope density function, involves what appears to be a
number of rather complicated integrals. Under the assumption that the sur-
face height is statistically independent of the surface slopes, it is shownm
that Smith's theory can be reduced to a single integration involving the mar-
ginal density function for the slopes in the plane of incidence. Using this
result but without regard to the specific form of the marginal density func-
tion, it can be shown that the backscattering shadowing function is unity at
normal incidence and zero at grazing incidence. Because the final result in-
volves an integration or smoothing process, it is amenable to the use of
histogram data for the marginal slope density.

This theory is appiied to an exponential joint slope density represent-—
ing an isotropic surface for which the slopes are not statistically indepen-
dent. The backscattering shadowing function for the exponential and Gaussian

joint slope densities are compared and it is found that the Gaussian surface
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produces stronger shadowing. This result is found to be a consequence of the

greater likelihood of large slopes with the Gaussian density.
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4.0 BISTATIC SCATTERING FROM LOSSY RANDOM SURFACES

4,1 Background

Prior to the mid-1960's, electromagnetic scattering from randomly rough
surfaces was modeled using either perturbation theory or physical optics (1].
First order perturbation theory appeared to do A reasonable job of analytically
describing the scattering process when che surface roughness was small in terms
of the electromagnetic wavelength and multiple scattering was negligible.
Physical optics produced meaningful results in and about the specular scatter-
ing direction when the surface exhibited very large but smoothly undulating
height variations. Unfortunately, there were numerous attempts to apply these
theories to situations where the implicit assumptions in the models were vio-
lated. These attempts usually assumed some surface parameter such that the
scattering measurements and the "model" were brought into agreement. However,
it was very quickly recognized that these attempts were highly suspect because
of their faillure to satisfy certain fundumental principles.

As more and more rough surface microwave scattering measurements were

acquired, it became obvious that neither first order perturbation theory nor

physical optics were individually adequate for all angles of incidence and

scattering., Conversely, it appeared that physical optics seemed to do a good

modeling job near the specular scattering direction while first order pertur-

bation theory was reasonably accurate for all other scattering angles. Almost
simultaneously, researchers in the U.S. [2] and the U.S,S8.R.{3,4] begen fo

advocate the combining of these two diverse theories in what was later to be

called the composite surface scattering model. 1In this model, the surface

was considered to be made up of both large and small scale surface features
(height and spatial wavelength) relative to the electromagnetic wavelength,

Ao . The large scale surface features were considered to be responsible for
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the physical optics-like scattering ncar the specular direction. The small
scale surface structure gave rise to a perturbation field (to the optical
field) which was the dcminant scattering mechanism away from the specular
scattering direction., The interaction between the optical and first order per-
turbation fields was assumed to be totally dependent upon the tilting of the
small surface structure by the larger gently undulating features [5].

More recently, rigorous first order boundary perturbation theory has heen
applied to the problem of backscattering from a perfectly conducting, Gaussian
distributed rough surface [6]. The results of this analysis indicated that
much of the original work on this problem could be rigorously justified.
Furthermore, additional insight was gained in regard to such asp-cts of the
problem as shadowing (see Section 3 of this report), spectral dichotory, and
the tilting interpretation. A logical extension of this latter theor§ encom-
passes bistatic scattering from a lossy dielectric surface. The purpose of
this section is to present the details associated with such an extension.

Before the details of scattering from a composite dielectric surface are
presented, it is illuminating tc consider two much simpler cases., The first
is backscattering from a dielectric surface having only a small scale rough-
ness while the second case addresses bistatic scattering. The advantages of
this approach are that it leads to familiarity with the perturbation technique

and it sets forth the principles that will be used for the composite surface.

4.2 Backscattering From A Dielectric Surface With Small Scale Roughness

The geometry for this problem is shown in Figure 4-1, The mean or aver-
age surface is the z=0 plane; the random roughness Cs superposed upon
this plane is positive for CS:>0 and negative for CS'<0 . Below the rough
surface (z< Qs), the relative dielectric constant of the medium is Er and

the relative magnetic permeability is taken to be the same as for free spacc,
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Figure 4-1. Geometry for backscattering from a randomly rough
’ surface having only small scale roughness CB .
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il.e. ur.'l . Above the rough surface (z >Cq) , the medium is free space,
i.e. er=1 and ur=1'

Provided that the roughness is small with respect to the electromagnetic

22
wavelength Ao > €e8. 4k T

<< 1 where k_ = 2w/A and Cz is the mean
o o )
>,
square height of the roughness, the scattered field L% can be expressed as

follows;

> -
E° = 6% + &'E %.1)

where GOE is the field scattered by a surface having no roughness (the zeroth
order perturbation) and GIE is the scattered field which depends on the rough-
ness to first order only (the first order perturbation). The primary assump-
tion in (4.1) is that higher order terms such as O(Csz) s 0(1;33) , etc,, are
negligible. The zeroth order perturbation field 5°E is trivially determined
since it is just the field reflected by an infinite, flat dielectric interface.
Both Mitzner (7] and Burrows [8] have obtained particularly useful expressions
for GIE . The Mitzner result is more straightforward but it is restrictod to
small roughness perturbations superposed on a flat plane.0 Burrows' solution
for 61E is somewhat more complicated but it is more general in that the unper-
turbed surface need not be planar or even deterministic. For small scale rough-
ness on a plane, the Burrows formulation requires a bit more effort in computing
GIE than Mitzner's result. For a composite surface, only the Birrows result
is sufficiently general to address this problem,

At first glance, the Burrows expression for §'E appears to be somewhat

cumbersome and confusing. However, if it is realized that the result is obtained

®itzner's result can actually be applied to any unperturbed surface for which
the wave equation is separable. For the problem considered here, the surface
is restricted to a plane.
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from an application of reciprocity then the notation becomes more meaningful. _ ' ;

I

Basically, one deals with two incident electric fields of the form

e

.
i

~>

m
L]
=
>
=
]

> >
E, exp(—jki-r) (l».Za)’

L T 3 4 e TN

-"v."
E_ exp(- jk/ r) (4.2b) . ‘ g

"

]
|
]
-
o>
=
il

where the primed field may have a different polarization and direction of inci-

dence than the unprimed ficld. Burrows' expression for the first order per-

turbation (electric) field scattered in the direction -‘.;i' and polarized in 1

the &' direction is as follows [8];

T

2 P
ko exp ( —‘]ko")
v 4MR E €
o o

St = f [520 + abole - aB - 38 c_as, @

o}

i 2L

where it is assumed that 61—1508' is measured in the far-field of the rough

™

surface, The distance R 1is measured from the origin of the reference co-

i .
} ordinate system on the mean surface to the point of observation or measurement 1

1541 s TR N
of &'Eee' and €, is the permittivity of free space. The fields E' , H' , E

=> > . .
D' and B' are the fields on thne unperturbed surface (So) due to the primed

> > -> > .
incident field while AE , AH , AD and AB are the discontinuities in the

fields on the unperturbed surface (So) due to the unprimed incident field.

! Thus, to determine the ép - polarized component of the scattered first order

A

perturbation field in the general direction ks one merely sets &' =3p and

ﬁi= —ﬁs in the expression for the primed incident field E;_ , computes the

A, i

g

resulving fields E' , u . D' . B' on the unperturbed surface So , and sub~ 4

stitutes these results in (4.3).

T Y T e —m—n"

: For backscattering KS = —ki 80 according to the above receipe, lti' = 121

36

e ey e e e e e e e
LS T EVIRE K] SAESVRTIUES ST S X ) 4).,-_,;4..13-.@,.-. P 7 7V N % NI |




[ TR
Ao ey e e

AVl it O

which in the coordinates of the gceometry shown in Figure 4-1 is as follows;

121' = ﬁi = ko(—sinO cos X -~ sinOsin¢ § - cos032) (4.4)

Contrary to previous analyses [1], the direction of incidence specified by

the angle ¢ should not, at this point in the development, be arbitrarily set

to some convenient value such as 0 or /2 . The reason for this is that the

surface may have anisotropic roughness and the ovientation ¢f the x and vy

axes of the reference coordinate system should be fixed relative to this sur-

face characteristic and not the direction of incidence.

Since the fields inside the surface integral in (4,3) are the fields

induced on the infinite planar dielectric surface S0 s, it is convenient to

further categorize the problem according tv “::e polarization of the incident

> ->
fields. For both E, and Ei' horizontally polarized, & and &' are

orthogonal to the plane formed by the unit vectors ki and A

=% where 0

is the normal to the mean or unperturbed surface. 1In this case both & and

Y >
e' are totally tangential to the mean plane. For both Ei and E; verti-

and &' are parallel to ti: plane formed by ﬁ. and

cally polarized, & i

A e
n =z .

4.2.1 Horizontal Polarization

~
When & and e' are tangential to the mean or unperturbed surface, the

fields E , E' s D and B (when evaluated on So) are entirely tangential to

S . Since the tangeatial component of the electric tield is continuous across
: > ;

an interface, AE=0 , Furthermore, since there is no change in ur across

the boundary and the lower medium is assumed not to be perfectly conducting,

(4.3) reduces to

AE and M are both zero on the interface. Consequently,

the following;

el ik gk

s e i b A il

S
i RIS, § uialid 2 st

o NG i ol el A 5 L el s

VI SO TR

e

A e




i e gt

HRTE "2V

)
|
&

2
k “exp(-jk R)
§'Eee! = - = 4TRE € > f(As._E')csto “.5)
0 0

S
o

The total E'-field on the surface So due to Ei' is given by

>, _ _ T .2
(1+Rh) By (So) = Eo(1+Rh) exp (~j] ki rJ_)e (4.6)

where Rh is the Fresnel (field) reflection coefficient for horizontal polari~

zation and ;L‘—— XX + ¥y or just r evaluated on So' The discontinuity in

D is given by

AD = SO{Ei(z =o+) -€, Ei(z= o‘)} 4.7

and
E(z=0") = (1 +R) Ei (s,) (4.8a)
E(z=07) = Th F‘i (So) (4.8b)

where Th is the Fresnel (field) transmission coefficient for horizontal
polarization. Combining (4.8a) and (4.8b) in (4.7)yields

" >

AD = eo[l R - er'rh] E, (S,)
or

- \ > .+ ~
AD = co[1+Rh—er’1h]Eo exp(-jk ot )& “.9)

Multiplying (4.7) by (4.9) and realizing that '1‘h =1+ Rh yields
—).-r' - Jp— D 2 2 - - e 0+ A.A' -
AD*E' = €, E, (1+Rh) (s:r 1) exp ( jZki rl') (+e') (4.10)

Substituting this result in (4.5) produces the desired result for the first

order perturbation field polarized in the e' direction
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e T G e

§1 S = k°2E° xp( =1k R)(L+R )2 € -1 > K,or
amr exp( =1k _R)( p) €.~ exp( =32k *r )5 dxdy
4.11)
. where £¢8' = 1,
3 . 2
. cose-qe - sin¢ ¢
E Rh = r
g cos® +Jer - s:l.n2 0
' and so
¢ 2
\ 2 A(Cr-l) cos 0 j
f (1+N9 wr—1)= (4.12) :

2
Lose+4er-sh30]

The derivation of (4.11)

mn it Nl ik

There are several points to note about (4.11).

was considerably simpler than the Rayleigh-Rice approach [l1]; this is hecause

Equation (4.11) is an

all of the difficult work was done in obtaining (4.3).

oo expression for the scattered first order perturbation field, a more meaning-
ful quantity than the average scattered power when dealing with phase sensi- !

: tive systems. The average of (4.11) is zero because <cs>=0; however, the

> A
average of <|§'E«&" |2> or the incoherent power is not zero. At the beginning

kit an

b
: of this section &' was specified to be in the same direction as & , thus

i .
‘ §'E+8' represents GlEhh where the double~h subscript denotes horizontal

et lmdengian

Do polarization on transmission and reception. [t 1is now possible to examine the

consequences of cross-polarized sampling of the scattered field. In this case

A ek _n,

'f e' is orthogonal to & ; thus, & 4is horizontally polarized and &' is

vertically polarized, i.e.

e -'éh= sin ¢& + cos ¢9

e' = €v= - cosfcosdX -~ cosOsing § + sin 02
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Returming to (4.3) for this case, it is noted that Aﬁ is still zero because

is tangential to So s Aﬁ and Aﬁ are still zero because there 1is no

E
i
change in W, across So

+> > +
lem reduces to evaluating AD*E' on §, « However, AD has the direction

direction, consequently, &<&' =3h°8v==0

and the conductivity is assumed finite, and the prob-

6h while E' is polarized in the év

and there is no depolarization by the surface, This is just a confirmation of

the fact that first order perturbation theory does not lead to a depolarized

scattered field when the rougimess is small scale.

4,2.2 Vertical Polarization

The case of vertical polarization is a bit more algebraically involved

because AE is no longer zero across So . Both magnetic field discontinu-

ities, Aﬁ and Aﬁ , are still zero for the same reason as given above.

Thus, (4.3) reduces to

2
k "exp(-jk_R) .
1%t = 0 1T 1% f[AE-B' ~BD+E')C_dS_ (4.13)

4T R Eo g,
S
[¢)

For vertical polarization, it is customary to use the incident magnetic field

ﬁi as the source. Thus, the incident, reflected and transmitted magnetic

fields on So are given by

H & —l: .
oL'hexP(-J i r.l.)

H1 =

i =H R e (-3 K %)
r o v ehexp =3 r Tye
> A -).-b
Ht Ho 'Iveh exp( jkt r,)

where Rv and Tv are the Fresnel (field) reflection and transmission co-

efficients for vertical polarization. On S0

are ag follows;
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u H
-+ o e o ~ -+
E = - — k_xXH H E, = - - k. xH
q €, 4 q t €y T t

where q = 1, r and ki » kr and kt specify the direction of propagation of the

_’
incident, reflected, and transmitted fields. Note that since r, 1is on So ’

3 > > > > I
: ki-pl'= kr-rL = kt-rL
! which is merely a restatement of the fact that the angle of incidence equals §;

the angle of reflection and Snell's law [9] is obeyed. For backscattering

G
i

and similar polarization sampling of the scattercd field, the primed fields
are the same as those above.

! i Al though somewhat cumbersome at this stage of the development, it is

ettt b e ot L L L

desirable to split the fields into components which are tangential to and
normal to So . The reason for introducing this transformation is that it
will be very useful in the composite surface development and it is therefore

henef’ .3l to ootain some facility with the technique on this easier problem.

The - :mal to ~ is @i = 2 while the tangent will be taken as 71 = fi X éh .

2

A ~
Th. particular choice of T 1is convenient because T ~8v selects the com-

. ~ <+ > A
; ponent of e, that is tangent to the surface. Since AE*T = 0 and ADen = 0

21wl

on S° y (4.13) simplifies to

g T n

vl e

2
o 51'-5.@ ) ko ex»p.( — j ko R)
! w 47 . ¢

-

. j [(ak+d) B +8) - (AB+D) @' +D)] ¢ a5,
3 (4.14)

! o

e Ll . s 2ty L,

where &' has been replaced by its equivalent 8v since like polarization
sampling of the scatte~ . .ield has been specified. The boundary conditions
AEsT = 0 and Aﬁ-ﬁ = 0 should not be discarded because they will provide some

useful relationships., From ABsT = 0 there results
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[(ki xe,) + Rv(ereh)]' T = -—;—-— (ktxeh) ' (4.15)
"r

while ADefi = 0 yields

N ’s A s A = A A . A
[, x8,) + R (k_x8)] <& = /&, T (K, x&) 8 (4.16)
where AE = Ei +-l§r —Et and AB-‘-—I;i +—13r _ﬁt have been used along with (4.15)

and -15=E

It is now necessary to determine the field quantities inside the integra-

tion in (4,14). The quantity AB*R can be reduced to the following form

through the use of (4.15);

H T

> A fo) v > > N A~

AEen = -‘/—- H —— (e_=-1)exp (~jk,*r )(k xe )*A 4.17)
Co 0/€—r r i 4 t h

while (4.16) simplifies DA to
2> A _ - ——— - <> .-> A o2
Defi = /uo €y Ho Tvv/f:—; exp ( jki rl_)(&txeh) n 4.18)
SO
+o" +' «NY = 2 - - Y c+ i oh 2
(AE-R) (D' +R) = u_H. T, (c_-1) exp (-3 2k *% ) [_(kt x8,) 8 (4.19)

Through similar manipulations,

T
—)-." - _ . ‘_!-— _ - > .—b "~ ~ .'\
ADeT /uoco I{o » (1 er) exp ( jki rl) (kt Xeh) T (4.20)
r
and
u T
[} ! __v_ - - .—) A
:. H_ - exp (- 3k, ot ) (k x
r
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2

T 2
V(B eT) = 2 V_ 4 E XA Yer

(ADeT) (E' *7) U H % (1-¢ )exp( jk _L) [(ktXeh) r] (4.22)

. Combining (4.19) and (4.22) and completing the unit vector operations yields
\ . (e ~1)
(BE-R) B'+8) - (AB-D) E' D) = wu’1) —5 — e + (Vs 6)exp (- 3 2K, +F )
E J.
t “%.23)
where

T =

v Y/ )
E cos O + er-sin()

i il e S ¢ 208 S

candnt it

Substituting this result in (4.14) and recognizing that E = V/—- H

and €v --k X’éh , the final result is obtained

2¢_cos 9
r
|
\

k, exp( 1k R) (¢ _~1)
& ° 2 2 s
8 ‘E.ev R Eo HoT) = [Er+(cr—l)sin (_;] exp (-12k T, )¢ _dxdy
r

U 7t el e e a1 5 D o £ e, b

(4.24)

Essentially the same remarks apply to the vertically polarized scattered

SRS S

ek

field as for the horizontal case. In addition, it should be noted that if

Bhuably

(4.11) and (4.24) are converted to 0° or the scattering cross section per ;

unit area according to

2 122
0°(0,¢) = Yim lim {4"AR <|8 EZQ}
E
o

R0 A-oo

i bt e e e e o
i3 T LI I - NPT

-

where A 1s the illuminated area, the result is identical to the result

obtained by Peake using the Rayleligh-Rice approach [1].

RG2S Sl .
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§ 4,3 Bistatic Scattering From A Dielectric Surface With Small Roughness

For bistatic scattering the unit vectors specifying the directions of

incidence of the unprimed and primed fields are given by (see Figure 4-2)

k, ==sin 6 6. % ~sin®, sin¢, § - cosO, 2
{ sin 6, cos ¢, X -sin 8, i Y ‘

(4.25)

’:' = - A - . A _ ~
ki sin 68 cos d)s X - sin Os sin ¢s y - cos 9s z

and ti = koﬁi s K; = koﬁi . The uait vectors specifying the directions of

i horizontal and vertical polarizations for the primed and unprimed fields

are as follows;

i 8 =- &
e sin¢i &+ cos¢i 9
A' = - o~ A
e sin¢s x + cosd)S y
(4.26)
~ = - A - A A
e, cosei cos¢t X cos()1 simb1 y + sinOi 2
L I . o . A ~
e, LOhﬂS cos¢s X coses bin¢s y + sines 2z

The normal to the unperturbed surface is f = 2z while the tangents to the

B e L

surface for vertical polarizations are given by

$=A A~ A'=A Ay ’
T n X G T n X e (4.27)

Fquations (4.25)-(4.27) d.scribe the basic quantities that will be required in

P this section,

4.3.1 Horizontal Polarization

> 5
Since AB and AH are zero, because there is no change in U, across

S0 and the conductivity is finite, (4.3) becomes

2
k0 exp (-] ko R)

15 .2 = AT Y ARG l
S1E 3, I T fmu B - abeE'lc_ds_ “-28) i

S

- T - o - R \ - e ae ) ek ————— s am s
—— Lo e UDE OUUPROPTOT S S WO ST 2

PRI SRR
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Figure 4-2.

Geometry for bistatic scettering from a randomly
rough surface having only small scale roughness
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Furthermore, AE 1s also zero across S0 because E is tangential to So .

Thus, (4.28) becomes

2
k) exp( =1k R)
1%, R o > >
Y WRE, <, flAD B'] g, ds, (4+29)

S

On the surface So » the incident, reflected, and transmitted electric fields

(unprimed and primed) are as follows;

b7 = R - k1 o—) a + v o - T .+ Ay
I B exp ( jki r.‘-)eh B Eoexp( 3 ki r‘_)eh
3 = - r o-) F ' = t - T o+ 8!
l:.r E0 Rh exp( jkr r.‘.)éh Er Eo Rh exp( - j kr r-L)e’zh
_: = - T o‘+ & 3 ' = ! - T ' .* &t
Et Eo Thexp( j kt r‘L)eh Et Eo 'I‘h exp( -} kt r‘L)eh

where also on the surface SO . (4.30)

F Ty T2 T et
ki r, kr rJh kt t"L ki r, kr r, kt r‘L (4.31)

and the same notation as introduced earlier has been continued. The fields
AD and E' on S0 are as follows;

>

> > .
AD = €, Eo(l+Rh—erT}1) exp (-] kiori_)eh
e ' _atr Ty A
E E0(1+Rh)exp( jki rl)e

Using the fact that 1 + Rll = 'I‘h » the product AB‘E' becomes

>y 2 ' _ A oA At T
AneE €, EU (1+Rh)(1+Rh)(l cr)(eh eh)exp[ j(ki+k1) r_L]

and substituting this result in (4.29) yields

ko2 exp(-jk R)

I'T.h = o DX y ™ - Y - T P 3
6 E eh' T Lo(]."‘kh)(J.‘H{I")(Cr Al)(eh el'])ffexp[ ;|(ki+k'i)-r‘|_]cs dxdy
(4.32)
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This result can be easily tranaslated into the angles (01’¢i) and (09.¢8)

by the use of (4.25) and
€h°8h' = cos(q)i - ¢s)

along with

2cos B 2cos Bs

1 L+R! =
cos® + /& —sin29
s r s

1+ R'h - 3 I
cos 614- /er- sin 61

For ease of comparison, it should be noted that most results similar to (4.32)

express the direction of scattering as ﬁs which, in the above notation, is
-ﬁi' + Equation (4.32) yields alEhh' . For cross polarized sampling of the
scattered field, the problem becomes somewhat more involved and it will be
discussed in Section 4.3.3. It trhould be noted that when ¢S = ¢1 (backscat~

tering), (4.32) reduces to the result obtained in Section 4.2.1.

4.3.2 Vertical Polarization

> A >
Since n*E and TeD are discon.inuous acress the unperturbed surface,

(4.3) reduces to

2
ko exp (—jkoR)
4TRE €
o o

§'Ea) = .’.[gAﬁ-ﬁ)(B'-S) ~ (BB ETHET] £ ds, 4.33)
$

(o]
where the scalar product T+T' must be included because the unit vectors <1

and T' are not necessarily parallel, e.g. see (4.27). The incident, reflec-

ted, and transmitted unprimed and primed magnetic field quantities are given by

* _3T 22 oo T T g
Hi Ho exp( jki r.L)eh Hi Ho exp( -§ lci r_‘_)cah

> - - e d .-)' A -)' = v _ -)'.-') \,\'
llr Ho Rvexp( i kr 1:'1_)eh Hr Ho Rv exp( -} kr r ey
-> - - <+ .-) A -» ' - N - ->‘.‘P Ad
Ht Ho Tvexp( 3 kt: x‘-L)eh Ht Ho Tv exp(-3j kt r.‘.)eh

(4.34)
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while the corresponding electric fields are

0 [THRN
2 o 2 x 0 Dy o :
= e — X " | - — X
E ‘/s ky X Hy By e Kk X
(o] (o]
H n
] = .,- _9. ,: = * 1 = o V,_o ™o b4 1 ]
E_ 2 kxH E =2 k) X (4.35)
[o] [o]
m m
—a)' = - o i I 4 L 9 k! X +'
E, ‘/eo €. k, X H E kS X H

+ -]
and D = EE , D'=¢ é' . The same notation introduced in Section 4.3.2 is

continued here. From the boundary condition that the tangential component of

> oA >
the electric field be continuous across S0 , i.e. AE*T =0 and SE'*T' = 0 ’

the following relationships result;

T
~ ~ ~ " A A Vv o~ A Ve
(kixeh) T+ Rh(ereh) T = -——E (kt Xeh) T
r (4.36)
Tt
r ATy P VAP S RN SR ST VAP R
(k, x&1)+T" + R (k! x8 1) T = \ﬁtxeh)‘r
r

Similarly from the continuity of the normal component of the D-field across

RS -» ~
S0 , 1.e. Als'n=0 and AD'en = 0 , there results

i h v r & r v t
(4.37)
TV A1y v Dt ANy eA = 0 A tyed .
(ki Xeh)n+Rv(ereh)n /E:Tv (Et Xeh)n
Using (4.37) to simplify the expressions for AE+f and 3' i yields .
48
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H T
> o v > > A
AEsfi = - v-— H — (e_-1exp(-jk,*r )(k %X&)eh (4.38)
60 o ’/E_r r i3 t h
and
- Rl = / — . FTver V(b 1Y oA
| D' ofi Ho€, Ho ve_ Tv exp( -} ki .L)(kc xéh) ) (4.39)

In a similar fashion, (4.36) is used to simplify the expressions for AD-T

and E'e7' with the following result: ]

T R .
ABeT = yb_ € H —Y-exp(—ji: T Yk, x& )T (4.40)
o o ° e i 4 t h
r
and
-)' A' _ uO H TV' _l:' - “/;'XA' Ay ,1)
E'er' = = c 5 exp(~j i rJ_)( ¢ eh) T (4.4
o €
r
Substituting (4.38) - (4.41) in (4.33), noting that TeT' = cos(cbi—tbs) , f

and simplifying the unit vector operations yields the following result for

Gl-ﬁ-év' :

/u exp(-jk R) (e _-1)
2.4 - ¢.2 ) ' r fr —ainl il
§'E ev' e Ho R Tv'l‘V - 5 {ersinei sines + (f:r sin Oi)(er sin Os)

r |

. cos(tt:i -¢s)} ffexp [- i (i:i +_I:i' ).:_L)]Cs dxdy (4.42)

- where E = H vy Je and
(o] (o] (o] o]

. ?,E;r cosei

T =1+R =
v v /.__2__.
€ cosH, + Ve ~-sin" 0
r i r i
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o =om = 2 F ]'. .
and lv lv((& Hg) . DBquation (4.42) is § va' and it is easily shown

to reduce to the result for backscattering in Section 4.2.2. when ¢1==¢s

o i o o 0 A ittt i i

and ei==es . Once again it should be emphasized that the most difficult .

A

part of obtaining (4.42) is evaluating the terms (£t><8h)-? and (ﬁ; Xeh')-?'

i b RO i o

in (4.40) and (4.41). As noted previously this is a consequence of the fact

that the difficult analysis was finished once (4.3) was derived and the actual

evaluation of (4.3) is very straightforward. Finally, comparing the ¢°

kb L

values resulting from (4.32) and (4.42) with the corresponding results obtained

from the Rayleigh-Rice theory [10] shows complete agreement.

4.3.3 Cross Polarization

As shown in Sections 4.2.1 and 4.2.2, depolarization for scattering by : 3

small scale roughness is a second order effect in the plane of incidence.
If, however, the scattered field outside of the plane of incidence is computed,

it will be found to have a nonzero cross polarized component. This result is

simply a consequence of the fact that the unit vectors éh and €' are

v
not fixed with respect to the surface-centered coordinate system and they (

change their directions as the observation point moves out of the plane of

incidence. This, of course, is a purely geometrical effect and it has nothing |

[ N A S

to do with any change in the basic scattering mechanism.

The derivation cof the results follows essentially the same pattern as

Aty s o Baein s s diides v

set forth in the previous sections. There is one point that should be noted
because it simplifies the algebra somewhat. For the case of the incident
field horizontally polarized (éh) and the scattered field vertically polarized

(GJ) » the unprimed field quantities should be obtained from

>
i = Eo exp(-j Q;'gl)éh while the primed fields should be obtained from
' . — 3 —)".'* Al ~
{ H,exp( -] kg L:L)eh . For the incident field vertically polarized (ev)

< 2 1%
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and the scattered field horizontally polarized (GK) » the unprimed fields are

-+ > N
obtained from Hi = Waexp(-jki°;L)eh while the primed fields are to be de-
>
r

&)éﬁ . This approach is consistent with the

T . 1.
rived from E1 Eoexp( h| k1
technique of obtaining all field quantities from the horizontal (Gh or Gﬁ)
field for planar surface reflection.

With Eo = H°¢u07€o » the following expressions for GlEhv' and &'E

vh'
result; |
2 VA ?

Glah = 51Tt - k_exp(-jk R) . coseicosessin(¢s-¢i)(et-1) € -sin es
v v TR 0
(cosBi+\/E +sin20, Y(€ cos B + Ve +8in20 )
r 1 r S r s

°ffex" [-j(i:iﬂ:i').;L]cs dx dy (4.43) i

2 ——

S'E s hesr . k exp(-jk R) EQ . cosB, cos0 _sin($_-¢,)(c_-1) Ver-sin 6,

i A
vh' h TR € o
° (cosG€+V€r-sin208)(Ercosei+Vcr-sin20i)

> > >
°ffexp[—j(ki+ki')°r_|] ?;de dy (4.44)
where, in summary, the angles are defined in Figure 4.2, ;1 = xx + yy , and

-> > A ~
1] 1, !
ki and ki are defined as koﬁi and koﬁi , respectively, where ki and

ﬁ{ are given in (4.25). H

When comparing (4.43) and (4.44) with the cross polarized scattered fields

resulting from the Rayleigh-Rice approach [10], ¢1 should be set equal to 7 .
The expression for 61Evh' agrees with the results in [10, pg. 706]. The
expression for GlEhv' is, however, the negative of the ahv coefficient in
{10, pg. 706, egn. 9.1-69]. Normally this difference is not important because
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GlEhv, is squared and then averaged to find the incoherent power. However,
if one is dealing with circular polarization the sign does become critical.

To resolve this issue, a special case can be constructed whereby ahv should

agree with o or 8'E_, = 8'E . This special case involves taking
vv hv vV
= = = o 1
¢i T and ¢S 0 and BS 0 in the expression for a, or d Evv' and
1 = =
comparing this result with oy and § Ehv' for ¢i =T, ¢S m/2 , and

@ =0. In this special case both GlEvv' and S'E

s should be polarized

hv'
in the - X-direction. Comparing (4.42) and (4.43) for this special case shows

1 _ gl
that indeed § E,y 8 E,, + However, evaluating a. and « from [10]

hv

results in avv =%y 3 consequently, there does appear to be a sign error

in the expression for a and (4.43) is correct.

hv
This section completes the development for scattering fiom a dielectric
surface having only a small scale roughness. Once agafn it should be emphasized
that the purposes of Sections 4.2 and 4.3 are (1) to check the Burrows pertur-
bation approach against the conventional Rayleigh-Rice results and (2) to il-
lustrate the actual mechanics of evaluating the Burrows expression for the

first order percurbation field. Hopefully, this latter purpose, if achieved,

should considerably simplify the transition to the composite surface case.

4.4 Bistatic Scattering From A Dielectric Surface With Composite Roughness

For small scale roughness superposed on a planar surface, the Burrows
perturbation formula (4.3) is particularly easy to evaluate. This results from
the fact that one deals with the fields on an infinite planar surface and, for
such a surface, the fields are easily described and related through the Fresnel
coefficients, Snell's law, and the equality of the angles of incidence and
reflection. For a composite surface, the unperturbed surface is not planar
but it is assumed to be very gently undulating. More specifically, the unper-

turbed suvrface is actually defined such that it contains no spatial frequency
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components which are smaller than Yko s where Yy 1is a constant which is

S L R LS E DIRY- 3. o Aoy ,‘-i

greater than unity. Of course, it is desirable to have <y as lavge as pos-

sible but this is not always practical since the small scale height must satisfy
4k°2 Csz << 1 [6]. However, if Y can be made sufficiently large then che
scattering from the unperturbed surface can be treated using physical optics.
Physics -ofrics assumes that the surface may be considered to be locally planar
and ti+ 11elds on the surface can be accurately approximated using Fresnel
thoory. This approach is recognized to be essentially the same as the small
The one important difference is

scale roughness on a planar surface problem.

that for the gently undulating unperturbed surface, the local normal is no

e st e et SR o i i e U 1L Sl a1 o AL s 3102 i L

AR i bt Nt A D Db it 4 sl T L e

ionger entirely z-directed and, in fact, depends upon the slopes of the large

' scale surface. This means that one must construct a local coordinate system

on the undulating unperturbed surface and compute the surface fields required

in (4.3) in terms of this system. This must be done for both the unprimed and

primed fields because they have different angles and directions of incidence

for the general bistatic case.

4 s -

For the unprimed fields, the important unit vectors are ﬁi and 32

which is the normal to the large scale or unperturbed surface. These two quan-

tities are important because they form the local plane of incidence. One next ;

constructs unit vectors alh and 82v which are orthogonal and parallel, i

respectively, to ﬁi and ﬁl . These unit vectors are also horizontally and

! ' vertically polarized, respectively, with respect to the local ilane of inci-

dence. Any arbitrarily polarized unprimed incident field can now be decomposed

into components parallel to €oh and €ov

!

4

i

since the incident field must be 5
|

The unprimed field quantities required in (4.3) can then i
i

~
transverse to ki .

be computed as in the previous sections. The exact same construction of 8£L |

and the decomposition of the primed incident field must be performed

. : A
: : ad e
i * v
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in order to compute the primed fields required in (4.3).- Fortunately, this

is easily accomplished by simply changing Bi to 68 and ¢i to ¢s in

the unprimed quantities.
Before getting into
should be noted. All of

the following changes in

the actual details, there are a few other points that
the above noted manipulations are going to lead to

GIE obtained in equation (16) of [6]. First, the

factor Fpp' is going to depend on er , the angles and directions of inci-

dence and scattering (Bi ,¢1 ,65 ,¢s) , and the slopes of the large scale or
unperturbed surface (ng ’Cly) . The only other change is that the exponen-

tial inside the surface integral will become exP["j(§1'+E1').;2] where

T, = xk
%

Except for correcting [6] to properly include shadowing, as detailed in Section

2, all other aspects of the solution presented in [6] remain the same. Com-

+yy + 7,2 because of the generalization to bistatic scattering.

L

bining

yields the total scattered field. Furthermore, it should be expected that for

backsca

negligible effect upon the wavenumber at which the surface height spectrum

is part

is no d

> >

the conductivity is assumed to be finite, AB and AH in (4.3) will be zero.
This fact holds true regardless of any tilting of the locally planar surfa:.e.
The first task at hand is to construct €oh and v Since €oh is

A
orthogonal to both ki

where

(4.25).

- ->
dlﬁ from this analysis with Sancer's result [11] for essentially 8
ttering the dielectric nature of the surface should have an almost

itioned into large and small scale sub-spectra. Finally, because there

iscontinuity in magnetic properties across the unperturbed surface and

and ﬁz , it is given by

8 = * .45)
o (4.45)

‘2 = A ~ ~
i kix X + kiy vV + kiz Z and the kiq

The normal to the large scale surface is given by
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and also orthogonal to $2h ;

i, = ‘/ 5 - = nh’i + ng’y9 + nlz'z‘ (4.46)

. Y1l + Cﬂ,x + Z"'Q,y
Expanding the cross product in (4.45) yields ?

aﬁh = hlx X+ hﬂ.y § + hf.z 2 4.47) ;

where ?

:

hzx - (kiy Moz~ kiz nky) ‘ o (kiz Tox kix nkz) i

lﬁi X ﬁzl y Iﬁi X 62| E

:

by, - Ceix May ~ ‘:1y "x) | j

| o
and Gzh is completely determined. For the unit vector aﬁv » the expres- g g

sions are more involved because élv must be in the plane form by ﬁi and ﬁl % g

. For the reflected and transmitted fields ﬁi 3

goes to ﬁr and ﬁt . This will not change the direction of alh because

ﬁi ’ﬁr and Et are all coplanar. This will, however, alter the direction of

N . " ~ A

€ov 3 this is easily understood by noting that kq » Egp and Cov form a

Thus, if 62h does not change P
: 3

must necessarily change direction. What

mutually orthogonal triad of unit vectors.

direction but & does, then &
q Lv

i
¥
i
¥
B

this means is that we must find a new 82v for each value of ﬁq . This is

g easily done by the following equality; ,
D
! 2q = 4 n ! 3
ey = &g X kq (4.48) o

-

Note that it is not necessary to divide the rhs of i 3

where q =1, r, and t .

(4.48) by the magnitude because it is unity, i.e. alh and ﬁq are mutually

orthogonal by (4.45)., The unit vector éit may also be written as
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Aq- qA qA qA
v ™ Vax X + v,l'y y + Vog 2 (4.49)
where )
B e - q.- —
Vox (qu hZz qz hly) vky (qu h%x kqxhlz)
e (k -k _h,)

Yoz qx“ly qy 2x

and 633 is completely determined for q =i, r, and t . For the primed
]

fields, éih and Egv are obtained by merely replacing gq by i; sy qQ =1,
r, and t, in the expressions for €2h and sz .

The incident, reflected, and transmitted unprimed fields on the unper-
turbed surface will now be decomposed into locally horizontal and vertical

-+ > > A
components. If the incident field is of the form E = E% exp (-] ki.FL)ea

=iy

on the unperturbed surface where 38 is its polarization direction then i

> >
Er and Et can be written as follows;

% _ Lioa iAi

Ei = Eh eth + Ev elv

E =e'e +E &F G .50)
t E:h 2h v v *
‘E - Et A +Et AL

t h €2h v Sv

where
‘q - A - . > .—> ~N .A
hh Loexp( qu gl)(ea elh)
n‘q = ] - 3 e .—+ 8 «58 q
D Loexp( qu r_L)(ea elv) (4.51)

and q =1, r, t . The corresponding magnetic fields are given by

\ e vE

- o A -> r

H =¥-2 k xE %
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where th - /E'; for q=iandr, and 8 =1. Expanding (4.52) ylelds

Y - NS U SR A
i H, ( Ep eav * By Sy )
e
F 4o (_.r2r r - )
Hr ‘/po ( Eh Sov + Ev €2h

,e €
T . or _Rpt ot LA
Ht My ( l“h Cov + hv elh)

From Fresnel theory, the Gzh-component of _ﬁr is equal to Rv atimes the
')

"

>
e, ~component of Hi', S0

Lh

Ef = R Ef, (4.53)

-
Similarly, the ézh-component of H is equal to T _ times the gzh-component
-+ L
of Hi s SO

T
v

B = X E‘i, .54)
R

Equations (4,53) and (4.54) can now be used in (4.50) to express all of the

fields in terms of Ei and E;' , 1.e,
v

>
Ei = Eh elh + Ev eZv

> ia A~
B =Ry Bn Con TR E g (4.55)
% L
T
> iaA v
E =T E e + L i~ t
t h2 h & - Ev Coy
r

®The subscripts "&" on Ry, Ry, T,, T}, means that the angles in the appropriate
Fresnel formulas must be defined with respect to the normal to the large scale

.surface, i .
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where E‘.}i and E\i, are given by (4.52) with q=1 . The corresponding D-fields
avre; Bi = coEt , Br = COEr , Bt - eocr'ﬁt « The primed fields may be obtained
q|

from (4 55) and (4.51) by replacing kq by kq' . elh by gz'h. ‘égg by azv and

by changing Ea to whatever scattered field polarization is to be sampled,

say, éb .

The appropriate form of (4.3) is

k Zexp(-1k R)
IRes = o N [¢] 'f. <+ . _ .p...’,
§'E Cb 4TR B e [(AE ﬂz) (' ﬁk) AD E'] ;sd So (4.56)

S
o

where the shadowing factor has been temporarily omitted from the integrand

i

i since it can be added at the end of the development. The (AE'ﬁz) is equal
> -» > .l\ A .I\ =

to (]‘.i +I:r —Et) i, or using (4.55) and noting that e 0,

v t

R,v.n2,> . (4.57)

Equation (4.57) can be simplified somewhat by using the relationship that

The final result is

= A
results from Aben = 0 .,

, ‘ . (e _-1) n
Mg, = B —E— 1 @) (4.58)
’ v /E-; 2 v

A

_}'
For D '“g ,

Brea =6l e BT T @ 8)) (4.59)
B l‘\Q‘ Av o r vx .zv n2 .

s0 the product of (4.58) and (4.59) can be written as follows

”~

.;.A +'.A - .2 _.-> >y .—>‘_ _ '
@) B hy) = 5l exp [ K R F ey e, b,
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It can be shown that ;

At sind, 1

e, *fi, = 3 ,

. v L /?' g i

' I

3 ;

- B

, i

st . sin0p, 3

v 2 S i

r i

3

i

where : i

: ]

, sin 8p, 1-(~k, *f,) ; ;
:
] J
- sin 6 ' ‘Il (- k'.“l) ; §

e,

so (4.60) becomes

e i et A A S i

2 2
o802 A-GR e 8
. +' oA = F 2 - Y i Q i A _ A Oy ._)
(AE ﬁz) (® nl) Eo E:0(8’1:' 1)1v2 Tvg‘ c exP[ j(kiﬂi) rz]
r :
: 1
(4-61) . 3
For the remaining term in (4.56), the important parts are (A_l;)p and S
]

-
(E')p where the p-subscript denotes tangeatial to the large scale surface,

> xoA
i.e. the normal component of D 1s continuous across the boundary so AD'n2=0 .

i kit S e - .

The tangential components of the A-I;-field can be found by decomposing AD into

components directed along gﬂ,h and Ty s where Ty = ﬁﬂ. X 3% , 1.e.

>

-» ~ "N > A ~
(AD)p = (AD°e2‘h) €oh + (AD.TR,) Ty

iJsing

A Al )
)elh * & Ev(e2v+Rv2e2 -Ty ',__ Cov

Aﬁ 1 1+R e_T
€5 En hg'_ rhy
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and simplifying this expression with the aid of

T
v,
Gyt + sz‘“;z:r'?z) - }E—&r CheL
which results from (AE)p = 0 yields
a i n *o 1 At A
(l.\D)p =-c By Q1 +Rh2) (Er -1) CP —E— E, TV}L (Er-l)(ekv.ﬂ
' (4.63)
The appropriate expression for (E')p is
'
@) =gl T, oo +EN };‘_’_—& €y T (4.64)

-> > -+ -
since on the unperturbed surface E' = E;-kE; = E' . The relationship for
(Aﬁ)p(ﬁ')p is obtained by taking the dot product of (4.63) with (4.64). Com-
bining this result with (4.61) and substituting into (4.56) yields the follow-

ing result;

1 Eokoz exp(~jk_R) C e
8B = R Tap (Bgxrbgy) TxsyIexp ) 3 ky+ky ') ory Jzgaxay

(4.65)

where 61Eab is the scattered first order perturbation field for an incident
polarization 33 and scattered polarization Gb s I(x,y) 1is unity on the

illuminated parts of the surface and zero for the shadowed parts, and
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(e ~1) [—s———s ( v, v
_ e ' N S TP L v Ve :
Tab 4 Jl +sz +"9.y (e cegy) (g ) 2 €. 8in 0y, sin0p,
r

ky ok, = gk (R ok}
+\/t-:-sin6 /c-sine ii 2 1 +(
51 sin 02,1 sin 62.1

)TT'
he Dy

CARICRL

~ ~ A ~ ~ A = T
Kk, ok, - (7, °k,) (A, k) (v) ,
i1 21 ' | A ~1 A 2 2
. + @ e )@ @)1 — | Ve_-8in" 6
sin 921 sin e;u a &b fh h!l, €, r %1

Y Ay » (kg xkD
1" A A Ve 2 i T A
+ (e e Y(& *e,, )T <—-—> - sin” 0! . (4.66)
b v a 2h hR. €, €r 21 sin eu sin 02.1
For convenlence, the above terms are summarized below
éa = Polarization of the incident electric field (ﬁi = Eé 88)
Qb - Polarizatioﬁ of the scattered electric field ('I)‘:q = Eiab)
A A A
A . —I;R.xx = Czyy+ 2
Y Vi leq?
Sox Ly
k, =k k ; K, =-sin0 X -sin 6, sin ¢, ¥ 0,z
{ o1 H i sin icos¢ix s 18 n¢iy-—cos {2
k,'=k k' i R'=-sin® cos¢ x-sin® sin(bA—cosO;:
i o1 ? i s s 5 s’ s
-~ ~ ~ »
k xn k' xn A ”~ A A ' ~ A
Soh e &g = —e ezi = e Ky ei = eon K}
&, x4, | k! xa, | v i v
i 4
o
- ' =
sin Gu I kixnzl sinG I ﬁ |
e ~ ~ -~ ~ ~
r, = xXx +yy+ sz cos 02,1 = (_ki)mz cos () = (- k ) n

T R

!*r.!\‘lr!:’




- ey

'
2&:r cos 62.1 28 co3 6

T = T'! =
v v
L |/ - 2 '3 ' v
€. cos e%i + er sin eu € coseu + / sin 921
2cos § 2cos 6
h'q' 0 .+ V —126 hz 86 + Ve in 0}
cosVUpy T VEL —8In Doy cosOpy * VE =8 24

Attempts have been made to compare (4.66) with the equivalent factor
resulting from the "tilted-plane'" approach [5] but, unfortunately, the cor-
respondence is not easy to establish, It appears that such a comparison
might best be accomplished by comparing numerical values of (4.66) with the
corresponding factor from the "tilted-plane" approach [5].

Equation (4.65) is the desired result. From this expression, one can

easily obtain ¢ ° from

ab
g° = lim lim 4R? A [<|50E |2> + <|6'E |2>] (4.67)
ab R A A E 2 ab ab .

along with the development given in [6] and as corrected in Section 2. The
contribution of the zeroth order incoherent power <‘6°Eab|2> has been previ-

ously obtained by Sancer [1l1] and his results can be used directly in (4.67).
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5.0 A USEFUL RELATIONSHIP FOR THE JOINT SLOPE PROBABILITY DENSITY FUNCTION

5.1 Background

. The incoherent power scattered in and about the specular divection de-
pends upon the joint probability density function (jpdf) of the large scale
slopes. The jpdf for the large scale¢ slopes is also important in determin- ‘ E

ing the degree of "tilt" or k-space broadening imparted to the small scale

Bragg scatterers. ldeally, one would like to measure the jpdf for the large ; 4
scale slopes, the roughness spectrum of the small scale heights, and the com-
plex dielectric constant of the surface in order to predict the average scat-

tering properties of a specified section of terrain. That is, these surface

4Lt o s rer arfay i, & e

measurements would be substituted in the rough surface scattering model which,

in turn, would provide an estimate of the average coherent and incoherent : i

scattered power. From a practical point of view, measurements of the jpdf i %

for the slopes and the small scale roughness spectrum are very difficult to
% obtain and the difficulty increases as the radar or electromagnetic wave-

length decreases. For example, in the case of an L-band system with

Ao = 30 cm, the small scale part of the scattering model will require sur-

P
i
3
A
z
3

face height spectral measuvements of surface undulations having wavelengths

of less than about 90 cm because ABRAGG = (AO/Z)csc ei for backscatter.

For the large scale features of the surface, the jpdf for the slopes repre~

P VAL

‘ senting surface features having spatial wavelengths greater than about 90 cm
is required. Obviously, spectral information on the small scale features is j
going to be the most difficult to obtain. However, even the jpdf for the

large scale slopes is going to be difficult to estimate. It is not unrea~-

A e it iabbs o

sonable to expect that we can obtain measurements of the jpdf for the large

scale heights and even the correlation function for the heights at least some-

what close to the 90 cm spatial resolution. However, this information must
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somehow be translated into the jpdf for the surface slopes and this is where |

the difficulty comes in., We ignore the pessibility of a direct measurement
of the jpdf of the large scale slopes for arbitrary terrain because such a
task appears to be too difficult to even contemplate,

The question basically boils down to the feasibility of translating or

todi i e i i Lol At

converting measurements of the jpdf for the surface heights into the jpdf for
the surface slopes. The purpose of this section is to point out an analyti-
cal means for accomplishing this transformation and suggest that the scheme ;
be attempted on an experimental basis. The relationship is not new and, in i

fact, results from some earlier rough surface scattering analysis, However,

it has apparently gone unnoticed at least insofar as it applies to this very

real world problem of translating the height jpdf into the slope jpdf.

; 5.2 The Transformation

Perhaps the oldest apprcach to estimating the quasi-specular incoherent
power scattered by a rough surface is now called the autocorrelation approach.
Basically, one assumes the validity of physical optics, interchanges the

order of spatial integration and ensemble averaging in the expression for the

scattered power, and assumes Gaussian surface statistics with the final re-

i Kt PG i . A e a1 Vet 20 s TR 1 3 ML

sult that the average scattered power is dependent upon the behavior of the
surface height correlation function near IA;I = 0{1] . In the mid-60's,
Kodis [2] showed that the average scattered power could alternatively be

interpreted in terms of the number of specular points on the surface and the

DA Ul o b it ot o i A A "

absolute rcadii of curvature at the specular points. Barrick [3] subsequently

linked these two approaches in the high frequency limit where both are valid.

In the process of establishing the similarity between the autocorrela- ‘

tion and specular point approaches, Barrick obtained a relationship between

the jpdf's of the surface heights and the surface slopes. 1In particular,
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if PC L (Cx,C ) 1is the jpdf of the x and y surface slopa components and
X’y y

°C1C2(kx’ky) is the joint characteristic function for the surface heights

cl(xl.yl) and cz(xz.yz) then [3]

2
q q q
PC 4 (;x q, i z;)' q ) l.'nz tim ‘/:l:bcl?;z(kx kc'.>qz’ky koqz’Ax’Ay)

z ko*m v
" exp(Ikyq, Ax + Jk q 4 )dAx dAy (5.1)

where Ax = X=X, and Ay = Yy " Yy e In (5.1) the quantities qx,qy and

q, are limited as follows; ]qi| <1, 1i=1x,y,z. It should be noted that

¢C r (*) 1is an implicit function of the surface height correlation function;
1°2

this is how the (Ax,Ay) variation comes about in (5.1).

If an analytical form for ¢C r is available then (5.1) can be used
152

directly to obtain the jpdf for the slopes. In cases where () is

¢
518
obtained from measured data, it is not immediately obvious that (5.1) is of

any practical use since the behavior of the joint height characteristic func-
tion will not be known in the limit of kx+m and ky+w . However, consider

the following reasoning as a means for obtaining estimates of PC r (*,°) .
Xy

Since is the two-dimensional Fourier transform of the jpdf for

]
%1%
the height, it can be obtained numerically by using a Fast Fourier Transform

(FFT) »n the measured jpdf height data. The result of this operation will be

denoted by 6 Because of measurement noise and particularly quantiza-

218 °

tion noise in the measured height jpdf data, will be limited to values

?
5%
less than, say, k, < K and k_ < K . The maximum value of k that can
X— % y—y o
be achieved in (5.1) is therefore max(Kx/qz,Ky/qz) . If q, is small then

the resulting maximum value of ko can be very large. The transform variables
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in (5.1) will be given by qux/qz and quy/qz which may also be large,

A
depending upon 9y and qy . Thus, 1if q, is near zero and P is com~

L8y
puted using the following;

2 L
~ q q q A
P ( = __)_(_ F - —2—)- —z-- = ] . ,
2\ "7q * % q, 4 chcg(kx Ky ’ky % b Ax, y)
-L

X’y z
K, LS
. exp(j XX Ax + § L2 Ay) dAx dAy (5.2)
qz qZ
it may turn out that P is a sufficiently good estimate of P as to
Cxcy gxcy

be useful in the scattering model. Unfortunately, this approach breaks down
when q, or qy = () ; however, it may be possible o get close enough to

qx =0 or qy==0 to infer the behavior of PCXE along these lines in the

qx’qy -plane., The limits on the integrations iny(5.2) symbolically denoted

as *L , will be determined by the correlation length of the surface, i.e.

the separation distance for which the surface height correlation function

is essentially zero.

An altemmate approach to estimating P

Cny
behavior of & as k_+K and k_-»K ., From this behavior, it may be
1% X x y vy
possible to generate an asymptotic functional dependence of $C z on kx
1°2
and ky + By repeating this procedure for different values of Ax and Ay ,
it might be possible to also generate or build-in the functional dependence
of on Ax and Ay . In this manner, the dependence of ) upon
£,0y “1%2
kx,ky,Ax, and Ay is obtained at least in the limit of moderately large kx

and ky « This functional form could then be transformed according to (5.2).

The major problem her. is that the accuracy of the result will depend directly

upon how precisely the surface height correlation function is known near

Ax=0 and Ay=0 . This statement results from the fact that the behavior
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of the transform of a function as k+™ is directly determined by the behavicr
of the function as Ar-+0 [4].

The problem of converting height jpdf data into uslope jpdf results is
definitely not easy. Even with the use of (5.1) the problem still poses a
number of numerical complexities, primarily because of the required limit as
ko-*m . However, as discussed above, (5.1) does provide some hope in solving
what is otherwise a totally untractable problem. It is folt there is suf-
ficienc hope as to warrant further investigation of the utilityvof (5.1) in

the solution of this problem.
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6.0 A NEW APPROACH TO COHERENT SCATTERING FROM A PERFECTLY CONDUCTING
RANDOMLY ROUGH SURFACE

6.1 Background

Among those involved with the applicetions of rough surface scattering

theory, the statementc is frequently made that coherent scattering is reason-

ably well understood and adequate models exist for the phenomenon. Because
of the paucity of electromagnetic scattering data [1], one must go to the
acoustic field to appreciate just how truly erroneous this statement is! The
acoustic data [2,3] show that for scattering from an agitated water surface
all models are accurate for small Rayleigh roughness parameter . However, as
either the frequency or surface roughness is increased or the angle of inci-
dence is decreased, the data show a significantly stronger scattered field
than is predicted by physical optics and the inclusion of shadowing in the
model only makes the situation worse [4,5]. The acoustic experiments are im-
pertant because they were designed in such a manner as to eliminate one postu-
lated reason for why early electromagnetic data did not agree with the physical
optics model [6]. A model based upon pure geometric optics has been developed

[7] but it tends to overestimate the mean scattered field. Furthermore, this

. analysis appears to be based upon a questionable transition from a single

sinusoid surface to a random surface and it provides no justification for the
use of geometric optics for a situation which is clearly fraught with diffrac-
tion and multiple scattering effects. DeSanto [8) has formally solved the
problem through the use of a diagram expansion method for calculating the
stochastic Green's function for the rough surface. DeSanto's results became
even more significant when he recently showed [9] that the first correction
term to the rysical optics result did indeed increase the level of the aver-

age scattered field. Unfortunately, it is difficult to interpret the physical
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basis of the higher order correction terms, each of which involve the 3olu~
tion of an integral equation whose complexity increases with order. The

need for further analytical and experimental research on this problem is there-
fore still great.

The purpose of this section is to present a new approach to the coherent
scattering problem based upon averaging the magnetic field invegral equation ;
describing the current induced on a perfectly conducting surface by an inci-
dent field. The motivation for this return to fundamentals is as follows.

First, it is desirable to investigate solutions to stochastic scattering prob-
lems which do not require an arbitrary closure assumption. Second, it is
absolutely essential to have a solution wherein mathematical simplifications

can be put into one to one correspondence with physical approximations. Finally,
acquiring a better understanding of the coherent scattering problem is vital to

the accurate modeling of rough surface multipath effects.

6.2 Analysis

The analysis will be presented in two phases. In the first phase the
surface roughness will he assumed to be arbitrarily distributed. 1In the sec-
ond phase, the surface roughness will be assumed to comprise a Gaussian pro-
cess. Restriction of the problem to a Gaussian surface permits the detailed
examination of certain simplifying assumptions and also the comparison with

DeSanto's [10] results.

6.2.1 Preliminaries

The rough surface is assumed to be perfectly conducting and infinite in
extent. The surface roughness U©L(x,y) 1is stipulated to comprise a zero mean
statistically homogeneous process with the mean surface equal to the z = 0

plane. In the following development, position vectors will be denoted by §
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r = rt+zz with ;t=xx+yy and for a point on the surface =z =(x,y).

Using an exp(jwt) time convention, the incident magnetic field is given by

-+ ~ ]
w3y = H fexp( -3 Ki-?) ;

where for vertical polarization fn-? , while for horizontal polarization

h = sin Gii-cos Oii‘c and the karat symbol denotes a unit vector., The field

is assumed to be incident along the positive x-axis so the incident azimuth

angle is also zero, ¢1=0 . The incident wavevector is given by

@+ ~ A
ki = —ko(bin Bix + cos G:l Z)

where Oi is the angle measured from the z-axis or the normal to the mean sur-

face and ko = 21!/)\0 is the free space wavenumber.

f >
The current JS induced on the surface S0 by the incident magnetic

field must satisfy the magnetic field integral equation (MFIE), i.e.

e A > > 1 L > > —>‘->
Js(r) = 2n(r) XxH (r) + 27 f(r) x f.]s(ro) XVOg(lr rol)dso (6.1)

S
o

for ;CS . In (6.1) ﬁ(-;) is the upward directed unit normal to the surface

e o 2, i H
A L2 e N e T P SO i o e 2 A ST, i s ks A
. s el a3 2 b s s

and g(|—1t—¥o|) is the free space scalar Green's function where, in expanded

form,

R i aEr——

|
i
>

1

f\;
+ |
Y
» N
+
oY
[~}

a(r)

exp(-jkortt-_ltol) i

g(l—;—¥o‘) > >
[r-r
(o]

A ey s e

S e L

It should be noted that the gradient operating on g in (6.1), when evaluated
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on the surface zo - co(xo,yo) y treats the random height as if it were inde-~

pendent of the coordinates X, and Yo * Expanding the double cross product

in (6.1), converting the surface integration to an integration over the z = 0 i
2 T

plane through dS = \/1 + cxz + &, dr, , and multiplying both sides of :
o o o
| (6.1) by \/1 + ci + C)Zr yields the followingt Py

I =@ <wd + 5 | {5O 0 IG) - BHTE) W} aF, 6.
o

where

@) = ‘/1 + ci + C§ ESG) (6. 3a)

Pl + A A ~
n(r) -cxx t,yy ] (6.3b)

and the integration is over the entire 2, = 0 plane. For future reference,

2 Ty (Rl b, B kA e St el ) i

the quantity 3(;) will be called the equivalent flat place current because

IR

it is referenced to the z=0 plane. Using the fact that js(;o) must be

tangential to the surface and Jl + sz + z;}‘:Z > 0 , there results

-+ -+ -+
Jz(ro) = Z;xO Jx(ro) + ?;yO Jy(ro) (6.4)

Equation (6.4) can be substituted in the right side of (6.2) to yield coupled &

integral equations for Jx(-tt) and Jy(-f') . The coupling is a consequence of
A -»>
the tern [A(r)*J(r )1V g which, with the substitution of (6.4) in (6.2)

yields the following x and y-components;

.All limits on the integrals in this section are (~o,©) so they will not be
explicitly shown.
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where no is X, or y . It should be noted that these terms are propor-

tional to the difference in slopes at ;t and ;t . Thus, if the surface is
o

very gently undulating, these terws should be very small. In the analysis to
follow, these terms will be ignored; thwus, the problem reduces to the assump-
tion of no depolarization or the case of a surface having slopes which are very
slowly varying with ;t . Actually, the analysis can be carried through for
the vector or coupled equation problem iu essentially the same manner as to

be presented here. However, because it does tend to symbolically complicate

the equations it is better to introduce the approach with the scalar problem.

6.2.2 Arbitrarily Distributed Roughness

"~

Ignoring the n-j term in (6.2) yields

-~

Iy - 1 9 _, g, 8g >
o) 4+ [8.(0) <H @)1 + f{ aq; y By, + 8L g (55) drto

(6.5)

where q = X or § . Computation of the equivalent flat plane current is not
truly the desired end result; what is really sought is the average scattered

field <Eq> which in the Fraunhofer zone is proportional to

f<"J (r) exp (jk_,0)> exp[3(k_ x +ksyy)] dr, (6.6)

(where it has been assumed that the averaging operation denoted by <+> and
the surface integration can be interchanged). The averaging operation in (6.6)
implies an average over { and all other random variables upon which J(;)
.
depends. Clearly, from (6.5), J(r) depends on the slopes Cx and Cy; further-

-r
more, experience indicates that J(r) should also depend upon the curvature

!
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components of the surface (cxx oy’ yy) . In point of fact, J(;) evaluated

-
at rt depends upon all higher order derivatives of the surface height which

are correlated with the surface height and slopes evaluated at ;t . This

means that, for the general case, J depends upon all higher order gerivatives
of the surface height. Thus, in order to accomplish the éverage in (6.6) the
quantity J(;)exp(jksz {) must be multiplied by the single point joint proba-

bility density function

p, (6.V2,9°7, 9%, 1)

and averaged over C,VC,Vzc,..., where VnC is a symbolic notation for all

nth order derivatives of the surface height evaluated at the point ;t . That

<J(-1F)exp(jk$z g)> -fff J(;)exp(jkSz ) pl(C,VC,VzC.,'“)

° dCdVC.-. (6-7)

is,

The right side of (6.7) can also be written as the convolutions of the infinite

dimensional Fourier transforms of J(;) and pl(°) as follows;

J(B.B B)cb(k vBoyBant b))
o (2“) fff 1 1 2 3 n

<e> = 1lim

> > -+
. dB1 dedBa---dBn (6.8)

-
where Bn is an n-dimensional "vector" and

..B r S > ++ it +.Vn-1 ]
J( 1,32, B = cee J(r)exp[j(Blc By VEH - 4B Z)

. d dVg.--av™ 1

15
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r4 s n-1
d).l(ksz - Bl’-FZ’. - ’-Bn) - fj' * 'fpl(c’VCﬂ eo 4V C)exP[:j (ksz - Bl);

-3 B, Vh. .48 V0] agavge--av™ g (6.10)

The notation is a hit cumbersome here, o explicitly writing a few terms may

be helpful, e.g.

-+

Bp'VE = BT, + 8L

Vg = + +
Ve =B T Bxycxy Byycyy

+ 3
ov o = + + +
BarVE = BrBrxx ¥ PrxyPry ¥ BryyCxyy * ByyyCyyy

Since ¢H.isthe Fourier transform of pl,it is the single point joint charac—

teris '~ function for the random surface. Note also that J 1is the Fourier

transform of J with respect t5 all the random variables upon which it depends

(an iafinite number in general).
According to (6.8), § is required in order to compute the average scat-

tered field. This suggests (6.5) should be multiplied by

exp( &y T + 3 2 k7" (6.11)

n=1

and then averaged. By expressing the averaging integrations as convolutions
~ > >
of Fourier transforms, an integral equation for J in (kl,kz,kB,“')-space

can be obtained. The average of the term on the left side of (6.5) is given

by
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-+ + + - >
<Jq(r)exp(jk1; +3 i kn+1-V“c)> =f--f.]q(r)exp(jkll; +3 2 kn+1°an;)

n=1 n=1

» py (€, VL, - )L dVE- -+

1 ~ * > -
= lim -——'——-i- fooof J (r ’6 ’B ,-0-) ¢ (k ._B ’k _é ,too)
oo (2n)n’ ~q 771772 L1 "1°72 T2
a8 (6.12
The source term cn the right side of (6.5) can be written as follows;
24+ (f xHE ()] = 2H [C_+C. z +C L ] exp (-ik k,°r.) (6.13)
-2 r o0 x’x ycy exp (~jky, &~ ] 1Tt ’

->
where Co’ Cx and Cy are determined by the polarization of Hi but are inde~
pendent of the random surface variables. Thus, the average of tne product of

this term and (6.11) is given by

{28-1a x§1(¥)1> 24 (-3k, ¥ )[c +3jC 3, +3C.d
1 ] n = exp - * o J ]
o it o X k2x y k2y

=

-
. <bl(k1-k kyokyyttt) (6.14)

iz’

where iz is symbolic for the variables k, and k2y . The (Zﬂ)-(“!)

term does not appear in (6.14) because no convolutions are required - only

straightforward Fourier transforms. The symbols 8k and 3k denote the
2x 2y

partial derivative operators 8/8k2x and 8/3k2y, respectively.

The average of the product of the integral term on the right side of (6.5)

and the exponential factor in (6.11) is somewhat more involved than the aver-

ages of the other terms in (6.5). First, the two point joint probability den-

sity function
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must be used because of the additional set of random variabies CO’voco V(z);o,“'

in this term. Thus, the average can be written as follows;

‘ - | \
¢ 98 _ . B8 . 98 s R s ( 2 > on )
<f{ ;x on z;y 3)’0 + ago Jq(ro)drt exp jklt,‘ +j kn+1 \Y 2;/

° n=1

- f_ B _, %, %)\ N 1 .n)
f J { Cx axo Cy 'dyo + 3(,0 Jq(ro) exp (jklt;-'-j kn+1 Ve
n=1l

=Y
. vew Y ce e
pz(c,r,o,VL;,Voz:o, 3 drt dg dco dve dvoz;o (6.15)

o

Assuming that the order of the integrations can be arbitrarily interchanged,
the r-integration can be written as a convolution of the {-Fourler transforms

of the Green's function Jerivatives and p2(') . Noting that

> ->
,c—co) ?Bg(rt-r_t NS

[o]

-> >
'c}g(rt —rto
FC 57 = - exp (jBOZ;U) FC

V]

oz

where FC denotes the Fourier transform with respect ¢ and Bl is the

transform variable, and sabstituting

B(0r,.B,) = r[_’{gmﬁ_.r,)} - fg(ﬁt,c)exp(jsoc)dc

o, dp(Ar,, ) [ ds(Ar D)
B (AT .B) = F, 5¢ =] ——f— ew (B D

i

ks
[

]

in the convolution integration with A—;t yields the following form

for (6.15);

.
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38(Ar ,B ) og(Ar_,B ) :

o> m —— .t o _ — 9 5 (Ar > 3

f f{ cy 5, gg( r..8) Jq(ro)

. ex (jBl; +j e -v“c)~ (k=B ,z Vo VT ,~+)dr dB dz dVrdV g - 1

PLIPG5, n+l Py K17RG 2552 Y5 Y50 t ‘o 0 ° o070 3

n=l ° (6.16) !

where the tilde symbol denotes the Fourier transform of p2(') with respect

to .

The co—integration in (6.16) can also be written as a convolution as fol-

lows;

L
- L BE(AT,,8_) BE(ATL) . s 3
<e> = (2m>2 {' bx _T ~ Y Byo'w B gC(Art‘Bo)} Jq(ro’Bl) ;

,
: exp{ Z K41V c} By (e =B B =B, ,VEV L , -+ )T, dB_dB, dVEdV ¢

n=1 °

Bet

kL

(6.17) 3

where the tilde over Jq and the second tilde over P, denote the Fourier i

; transform with respect to Co . The remaining integrations over VC,VZC,“‘ 3
are simply Fourier transforms, so é

[ f OB 8, 2E(AT .8 ) ) 3

<e> = (2") . { akzx + j -——5-}2———— akzy &, (Ar VR )} )

i

3 G .8) B, B .8 By K,V T Lk, VaL , TTt) dF, dB dB Y © dVeC

q o1 2 1’72 3’ 0o’ t o1l o’ o070 :

° ;
(6.18)

where
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is the Fourier transform of p, over all variables except VOCO,VOZCO,V:CO,'“ .

It should be noted that the differential operators akz and Bkz in (6.18)
X y :

operate only on 52 . The integrations in (6.18) over VOCO,VOZCO,VO 3C0,°" , E
~ - £

can be written as convolutions of the Fourier transforms of Eq and 32 , L.e.

1 f f { 2B (AT, ,8,) 2T, ,B,) s
<e>» = 1im ——————o- cae j————-——‘l‘“—a + 3§ — — 3 -8 T, 8
o (2“)2(2,")n! on k2x Byo k2y z t’ o

SRS

~ > > ~ -> > > > -> 48 dB. - 6.19 :
f (rto’BlyBZ)B:;i"') 82 (k1-80>80"61)k2 ,—Bzak3s_83t )drto BO Bl ( . ) : »
where 4
~ &> > ~ 2 o > n
Jq(rt ,81932y83"") = et Jq(rt ,Bl,VoCO,Vo Co," ') exp{j z B“+1‘VOCO}
-~ o (] n___l 3' 2
e dV g avlp -e- :
0’0 o o L
and

3
3
4
1
i
3
3
:

z A T AT I Y ER T R T
gz(kl—eo,ao—sl,kz,62,k3.é3. )ffEZ(kl B, BBy 1Ky sV T ko VT,

i
.

. '3 P4 o \J n L
exp {j Bn+1 Voc(} dVOz;o dvo Z,
n=1
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The function 32 is the transform of the two point joint probability den-

~
~

sity function; thus, it is equal to the two point joint characteristic func-
tion (bz . Substituting (6.19), (6.14), and (6.12) back into the average of

the weighted [by the term in (6.11)] equation (6.5) yields

3

b 1 ~ e d > -» :
¢ 11 cero | I (x 4By sB, ) D, (k,-B k B »T)dB, dB

ot (zﬂ)n!f f_,q t*P1°"2 L ¥17P1 2 1%

> -> .
= 2H_exp (—jkiort)[co +3ic, aka +3c akzy]cpl (kyk, o k2 k3 )

Bg(Ar »8.) -
+ lim f f { ek + i —83—5 ak - §C(A¥t.Bo)} )
n*®  (2m) (2“) 2x Yo 2y ;

T - O e . 3 * > .o o. > 2 “ee
i ¢2(k1—60’BO-Bl'kZ’-BZ’k:}’-BB’ ) Jq (rt ,81’62 ‘83, )drl’. dﬁodﬁldﬁz

i ~ o o
¥ (6.20)
J | -+ +> >
i Substituting Ax = x-Xx_ Ay = y-y_  » and Ar =t -1 in the right most
5 (o]
é term in (6.20) yields the following;
:
¥ lim f fJ (F,,8,,8 "D kB **)dB, dB
. 1 ’ ’ s’ »k
g e (zn)“ e '
g
2fc +3c 3 +ic 9 (eyk oKy okgnt®)
= 28 exp (=Jk; ‘c)[ ot 3% K, 1%y kzy]cbl 1 12273
3R (AT, ,B ) a”(A*' B.) |
¢ g(Ar t? g(or _, -
+ 1im -(—)—— f{ an -9, +] a/;; o ak + gC(A?t.BO)}
1 n-o (21r) 2x Y 2y |

o

i A A i e Al

-> o> ~ -> + > -»> > o
£ @, (B 8,8y oKy By KBy ) I (7 -07 18,8y By, 1)dAT, d6,d6,dB,

(6.21)

e = 2 nlra e om, “micime <




. -»
The single point jJjoint characteristic function cbl is independent of Art

; _ - .
3 while the two point joint characteristic function depends on Art through ]
% the correlation €unction. Since all terms in (6.21) mus: exhibit the same . .?

~ > > ->
dependence upon ;t and only Jq and exp(-jki°rt) are functions of T,

B e e

(6.21) implies that 3q can be written as follows;

3,80 B,00) = 3 (BaByettt) exp (3K, 0F) (6.22) —
Substituting this result in (6.21) and rearranging terms produces the following 3
A) é
integral equation for jq(Bl,Bz."') H (
14 3 k LB |
n+‘°“° (211-) j ( 187’ ) Cbl( 1"'61’ 2"82' ) E
|3

i
L
~ - [,
ff{ 3B (AT,.8,) 3% (Ar,,B.) w28 B
— j —————-—---- 3, +3j —s1——93  +3g (Ar ,B } .
; (2_") Ky oAy k2y ' t’o ‘ ;
4 O T > o -+ > i ‘
=: + D,k By BBy Ky By Ky Bysttt) exp (g tAr) dbT dBO] 48, 4B, a8, |3
=24 fc +3c.3 +3c 9 (ky=k, ok, K, "") (5.23) |
: —Ho[o jxl( jyk]cbl 1 iz7727°3° '
Before a detailed discussion of (6.23) is presented, it is advisable to review %?
the mathematical meaning of the various terms, e.g. : 3
-
Ch
| 3%
] (B '(; ) = exp(Jk ‘l’ ) J (r o.u g,V **)exp [jB g+ z +1 C] , i
n=1 ; %
B

Lo
. dg Vg avip e (6.23a) 4

|
|
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|
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- T - LI = L 2 L) £y - e _..’ . n

n=1

« dg dl;o dvg dVOI;o *

dg avg dvigee
P -+
g(ar .8)) = | g(Ar ,z) exp (3B r)dg
T 38(AT,0)
g, (Br \B)) = | ——y— exp(iB BT
;v; and
o K mB kB e . 2, ¢°
:;: y (k=B 2B =By oKy s By kg Byy et ) = Py (64T sVTV L VL.V L o oe0)
'exp[j(k-B)c+j(B-B)c +] Tk Jznﬂoo]
: n-l n=1
|
“{

(6.23b)

(6.23¢)

(6.234d)

(6.23e)

Also, equation (6.22) confirms DeSanto's earlier analysis [8] in that it shows
that the coherert scattered field is specular in nature. That is, if the aver-

age in (6.6) is written as a convolution such as in (6.8) and (6.22) is sub-

L

3 ]

f'g stituted for Jq » the ;t—spatial integration will yield a product of §~func-
;55 tions, e.g.

; b < >

? ; ‘]Pexp(-jki r.)exp (Jk_°r )dr = s(ksx_kix)d(ksy—kiy) s (6.24)
f ? which shows that the scattered field is nonzero only for ksx = kix

ksy = kiy .
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6.2.2.1 Discussion of Results

< ;
Equation (6.23) 1is an integral equation for jq(81,62,83,'°‘) s 1f this i
function can be determined, the exact amplitude of the scalar scattered field . ;

may be computed as follows;

1 v e 2 e - —.+ n—+ b 8 +'.'
lin }zn)“'f qu(sl,sz, Y@, (k_~B,-B,,=B,,"**)dB, db, db,
(6.25) §

The quantity jq, from (6.22), is proportional to the Fourier transform of the 1

equivalent flat plane current with respect to all the random variables of which

)

this current is a function. Caution should be exercised in any attempt to at-

tach a physical meaning to jq because in transforming from C,V;,Vzc,"'

>
to 81,82,83,'°~ the stochastic character of the random variables is lost.
: >
1 In fact this is the fundamental reason behind working in 81,82,§3,"° Space.

; That is, if one were to average (6.5), weighted by the exponential factor in

(6.11), in the conventional manner of multiplying by the appropriate joint

= o bkl e il M 251 ke 22 G LB Eondd i

density functions and integrating over all random variables directly without
going to the transform space, the stochastic nature of the random variables

would prohibit one from obtaining a single equation such as (6.23). It is

E well known that a conventional average of integral equations such as (6.5)
' leads to an infinite set of integral equations [l1l] because one does not know

the average of the product of Jq and the kernel inside the integral in (6.5).
What has been shown here is that if the averages are expressed as convolutions

in transformspace rather than direct integrations over the random variables,

< At LR St 0 5l i B, O s i,

it is possible to obtain a single integral equation because the transformed
! product of Jq and the kernel term can be factored. The price that one pays
for the single integral equation is that it has infinite dimensions because

all order derivatives of T which have a nonzero two-point correlation with

84




T

00 DN DA A L, NN 1 AN N ML Al it |

must be included. In fact, the primary difference between this approach and

the conventional methed [11] which gives rise to an infinite set of equations
is the following. In the conventional approach, one attempts to solve for

the average of the desired unknown quantity without trying to explicitly deter-
mine its dependence upou the randuvm parameters in the problem. In the approach
presented here the exact opposite is dJone only in the transform domain where
the stochastic character of the vandom parameters enters only through the
kernel and the correlations between parameters. Furthermore, in the conven-
tional approach it is frequently difficult to attach physical significance to
auy truncation (closure) or partial summation of the infinite set of equationms.
In the method presented here, truncation of the infinite dimensionality of

(6.23) is determined entirely by the relative magnitude of the correlations

between the random variables.

There is one potential problem with (6.23) which may make it less attrac-
tive than the conventional approach. In the infinite equation soluticn, all
the integral equations are of the second kind and, thus, normally amenable
[10] to numerical solution. On the other hand, (6.23) is of the first kind
which is usually rift with problems [12]. This is certainly a point to be
considered in the future; however, there are two reasons why it may not be a
problem. First, the desired quantity is (6.25) and not simply jq s thus
problems associated with the accurate recovery of jq from (6.23) may vanish
when computing (6.25). Second, since (6.23) is obtained from an integral
equation of the second kind, this may also minimize some of the problems nor-
mally associated with equations of the first kind.

There are a number of interesting results that can be obtained from (6.23)
without specifying the forms of the one and two-point joint characteristic

functions. In the physical optics approximation, the term in (6.23) involving

8"
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the Green's function is ignored and, according to (6.25), the amplitude of the

average scattered field is thus given by

ZHO{‘lcim—PO [CO + 3 Cx 8k2 + 3 Cy Bkz ]cbl (ksz—kiz,kZX,kzy,O,O' d °)} (6.26a)
2x X y
k2y+0

The terms involving the parcial derivatives with respect to k2x and k2y

TRIT

are equivalent to the following average:

<%f§ exp L3k -k, )T (6.26b)

TR e ey

; where q = x or y . For a statistically homogeneous process, § 1s uncor-
related with 97/3x and 3;/3y [13]. Consequently, the average in (6.26b)
is the product of averages of the slope and height factors and if the slopes

are a zero mean process then (€.26b) is identically zero. Thus, (6.26a) re-~

duces to ZHO Cocb(ksr—kiz) where @(*) 1is the marginal characteristic func-

]

tion for the surface height. I[n the physical optics limit the specularly scat-
tered field is independent of the slopes provided the surface is statistically

homogcneous and the slopes are zero mean.

The function corresponding to the physical optics approximation

(denoted by j: ) may be obtained from (6.23) by inspection, e.g.

0 > _ _ o > _ '
Jq(ByBybyere) = 2u 8@ k) T8 {0,880 8 (Byy) = 30, 8"(8,08(8y)

- 30, 6(8,,) 8" B, ) 6.27)

e o,

L here §(*) is the Dirac delta and G'(-) is its derivative. The next level

of approximation iIs the so-called Bern approximation. In this approach, one

bilitos: b e s i

solves for qu¢1 = <ES> by moving the term containing the Green's functiom
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transform to the right side of (6.23) and substituting j: [from (6.27)] in

POPIFELRR TR P Y

this term. This leads to an approximation for the complex amplitude of the
3 . scattered field which is valid when the term containing the Green's function

transform is small compared to the source term; in particular, the result is !

as follows

e IRETTETEL ST

B >
<E > = 24 1i c +3c. o +3iC 9 k -k, .k,,0,0,°°"°
: 8 okm+0[° i xkzx ] ykzy]d)l(sz jz2'2 ) f
k +o 1
~ -+
Bg(Ar 8,) og(Ar B8 ) L
j————s————-— k +j — 5k 4-gc(Art,Coi}ex; ] 1'Art)
\217) B, .,k i
2x
i' BZy 2y

a@ (k "B \3 -k gk 909—8 )0!0).'.)
. - - el o 2 'sz 0’0o i272x 2x
{cod>2 (ksz BO,BO k, 10,0, y-jc g

-jc

o, k__-B 8 -k, ,0,k »0,-B »0,0,°+*)
, 32 sz o' o iz 2y 2y }dA;t dBo (6.28)

e 8 A e e S S i

where, as a reminder, the arguments of CD2 are the transform variables cor-

! responding to the following order of random variables (C,I;o,aclax.acli)y,

SRRSO SN

2. .2 .
aco/axo,agolayo,v I;,VOI;O,“'). The B superscript on <ES> in (6.28) denotes

s e

the Born approximation.

One final result that should be demonstrated is the limit of a perfectly

T RPN - S

flat plane. In this limit the correlation function for the heights goes to
2
the mean square height, <T l;o> =0 = <?;2> , while the mean square slope,

curvature, rate of change of curvature, etc., go to zero. Consequently,

>
T
¢2(kl_ao’BD—Bl’RZ’-SZ’kB’—BB"..) =¢l(kl-60+ﬁo-81) = ¢1(k1"81)
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The CGreen's function transform EC(A;':,BO) is an odd function of Bo because

g, =3 Boﬁ and g 1is an even function of Bo . Thus, the term in (6.23)

involving the Green's function transforms is zero and (6.23) reduces to

lim —""‘“f fj (B 2)—[53’.°') Cbl (kl_el) del dgz
ao  (2m)"

= ZHO Co @l(kl-kiz) (6.29)
which yields the proper value for <ES> as k1+ksz and also
38y oByBaur o) = 20 C_ SR -k, ) n JCH) (6.30)
172y 1 *

Furthermore, the inverse transform of (6.22) is given, in this case, by
-> > >
Jq(rt.c) = ZHO(%)exp(-j kizc-j ki'rt) (6.31)

and this is a valid transformation since § does not depend upon r, - It

stould be noted that this is the case of a randomly elevated plane and yet it

produces the same results as the physical optics approximation. Thi-~ corre-

spondence leads to increased susplcion of the physical optics result. That

is, physical optics treats the problem as a randomly elevated plane.

6.2.3 Jointly Gaussian Distributed Roughness

The results of the previous section are important because they provide a

rigorous mathematical foundation for the multivariate approach. They are also

general in that they are valid for any zero mean statistically homogeneous

ronghness. While it is possible to obtain certain asymptotic solutions such

as with the physical optics and Born approximations or in the case of a ran-

domly elevated plane, it is difficult to appreciate the power of this approach

without seeing it applied to a specific surface height distribution. This is
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particularly true in regard to reducing the dimensionaiity of the integral

s it Al Ko dirlnn it

equation. That is, given the form of the single and two point joint char-

acteristic functions and (6.23), how does one go about determining which sur-

;s
i
i
,g
:
3

face parameters, i.e. C,Vc,Vzc,"', are important and over what range of
values? To accomplish this goal, the jointly Gaussian surface has been se- j

lected. There are two reasocns for this choice. First, the Gaussian surface

has beeu extensively studied by others [2-10]. Second, the jointly Gaussian

i NI b il s 2K s TR K bt LR

density and characteristic function have known closed mathematical forms;

something which is difficult, at best, to obtain for other distributions.

FRCENR T S QRS TR

The purposes of this section are to demonstrate how one goes about solving (6.23)
for a Gaussian surface, obtain asymptotic solutions, and compare these results

with others.

| The surface is assumed to be zero mean, jointly Gaussian, and statis- ; |

| tically homogeneous. With 32 the column matrix ; ;

¢ ] L

u, = , (6.32a) :

and E} the square covariance matrix ;

— -

<;2> <gc°> <geVg> - ;
2 P

<L 5> <g > <g VL> e ;
o ° ° (6.32b) .

<Vgez> <Vc-;o> <(Vc)2> e

Voo ¥ Vol o <VOCO'VC>"‘

| . . .
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A
the two point joint probability density function is given by I
, 1/2 - 1
. oy = oy 1 =T = -1-—/
PZ(C:CO,VC,VCO, ) lim [(z“) Q('zl] exp Uz (CZ) uz 2J p
n*e a b
(6.23) ﬁ
- - ]
where the T superscript denotes the transpose of u, , i.e. uér is a row . ?
matrix, and |E}I 1s the determinant of the covariance matrix. with Vé ‘
the column matrix of transform variables E
"1
- -+ ' 4
Lo
v, k, (6.34a) .
L
8, [
5 P
the two point joint characteristic function is given by Lo
§
B, (k58 K, fo e = -VIC,V,/2 (6. 34b) g
A S v M CXPYT "2 M2 2 ‘
; A
!
The terms in the covariance matrix are typically as follows; i
> > f
< > = R(A < > = - A )
& Co ( rt) Cx z;xQ Rxx( rt) ?
- ;
<r £ >=0 < >= -R (Ar i
x “y %o yy ¢ i
+ - :
<7, > = -R < > o= {
’ Cxo x(Art) Cx Cxxo Rxxx(Art) !
-> '
<G g >=0 < >=R_ (A f
y “x ';yyo xyy LTt ;
> -+
< > = ~R < > = i
g Cyo y(Art) Cy Cxxo Ryxx(Art) . |
> -+
<t g > =R__(br) <i > =R Ar
XX xx' ot by nyo yyy( e)
>
< ¢ »=R_(Or
YYo yy( t)
- =) o]
where Art = Et.-;t » the x and y-subscripis denote differentiation with
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e 4
respect to Ax and Ay , respectively, and RiArt) is the surface height

correlation function. The above results follow from the general rclationship

f13]
. ptq miatpiq, 4>
_amhn A pHq 3 R(Art)«
__._;._m = . . q = (—1) o v (6.35)
ax"y axgay 3AX" P3Ay
where m, n, p, and q are nonnegative integers.
1f ;i is the column matrix
-
v
uy = 2 (6.36)
| "

is the covariance matrix

ol

and

- A
<z;2> <C‘VC> <C‘V2C> “oe

== L 2 M 2 v
T . | <VEer> <(VR)T> <ULV (6.37)
<Voger> <VOgeVr> <(VTL)T> ec
N : -

the single point joint prcbability density function is given by

 ql/2 e =l
pz(c.Vc.Vzc,m) = lim [(211)“ }cll] exp [‘- uf(cl) ul/?_] (6.38)

n-—>w

and the corresponding joint characteristic function is

$; (81.'52,'63,“-') = exp {—VlT?:’lVl/z} (6.39)

where Vl 18 the column matrix of transform varfables
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K
E
E

By |
, v, = E2 (6.40)
1
8,
L. : -

The diagonal elements in (6.37) are the mean square (or variance) parameters

of the surface. The mean square height is 02 = <C2> , the x and y-components

of the mean square slope are, respectively, Si = <Z;x2> and Sy2 = <l;y2> , and
one can similarly define the mean square curvature components, rate of change
of curvature, etc. It should be noted that these variance parameters can be

5 .
obtained from (6.35) evaluated at Art = 0 . Furthermore, in order for these

e L T T L SRy T VI O

variances to be finite, there are certain analytic properties required of

R(A;t) in the neighborhood of A¥t =0 . ‘ 3

Equations (6.34) and (6.39) provide the joint characteristic functioms

required in (6.23). However, these functions still depend upon an infinite s
number of transfcrm variables and this will make the manipulations more dif- :
ficult cto foliow. The crucial points to be made can be accomplished just as

completely if only two transform variables are considered. Since the two most

i s W e

important surface parameters are usually the height and slopes, these will be

selected for the demonstration. 1In order to eliminate the other surface

g

parameters, it will be necessary to assume a very gently undulating surface
which has a vanishingly small mean square curvature, rate of change of curva-

; ture, etc.; that is, <(Vnc)2> =0 for n > 1 . Under thesz conditions,

R S S > > x
¢l(kl—61,k2-82,k3—83,' )+d>1(k1-81,k2-82) (6.41a) ' 1

¢ . X -} > - -+ -»>
J \kl"ﬁo'ﬁo-(il okz ’_62 ’k3’_83) > @2 (kl-BO,BO—Bl ,kz ,-82) (6- Alb)




and in (6.23)

e A ol A ol B 1

+ > -» o0 >
3q(BysByaBaaree) > 5 BB, TE S8CBp) (6.41c)

A M 0T

sVt

S %0}

because the joint probability density functions go to Dirac deltas,

Under these circumstances, (6.23)

R R T IV L o T T B B ey P

f while Jq 18 independent of the V'r .

O T

reduces to the following form;

BSMr,B)
ffj (8 ¢(k )Cb(k B ) - —— ff{ --ak
(2ﬂ) 2x

3E (AT, ,8 )
. t o ~ > . g > >
+ 1 —5; aka +gc(Art,eo)}daz(kl—eo,ao-el.kz.—%z)exp(ﬂci-mt)dmtd s;l ag, a8,

POV Sy

(2ﬂ)

it o 3008 L S o W A e s i

et Bt et

+
= 2u°|:c° + 3 Cxaku + 4 cyakzy]cb(kl—kiz)d:(kz) (6.42)

where, because the height and slopes are independent for a Gaussian surface,
the single point joint characteristic function h s been factored into a prod-

uct of marziral cheracteristic functions for the height and slopes. 1t should y

be noted that (&.:2) is exactly the equation that would result from assuming

that the currear #;pends only upon the random surface height and slopes.

However, as noted sbove, (6.42) is valid only when the variances or mean

ki e s

square values of all the higher order surface derivatives are vanishingly .mall.
The remaining portion of this section shall be devoted to two goals.
Using the height and slopes as examples, an attempt will be made to obtzin :

~some quantitative measure of when, say, the slopes can be neglected relative

to the height. Hopefully, it will then he possible to generalize this result

to the point of also estimating the required swallness of the curvature

variance, the rate of cha ge of curvature variance, cte. in order that they
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may also be ignored. This 18 an extremely impcriant issuve sirce the solution
of (6.23) in any more than three dimensions (height and two componenta of

slope) is highly impractical. The second goal is to study the possibility

1
]
!
i
]
]
i
H
3

of solving (6.42). That is, since (6.42) represents surfaces which are not

ot i A, B

unreasonable, its solution would represent a considerable breakthrough in the

understanding of scattering from rough surfaces.

After some straightforward manipulation of the characteristic functions,

(6.42) may be written as follows;

-

~<“z;)mfff] By 1ByuoPay) Dl B Il B Py By ) Y 2

f f G(AF 1B, oK o) exp | = O7-RY (8 -8,) (B -k)) = (5248, )8, 1k,

@m?
3
2 :
= (S 4R By Ky = (k=B (RB, R B, ) + (B -By) Rk, +R Ky ) |
d
R (8. k. +B. k. ) ik,*Ar )dAr, dB_$dB. dB. dB y
- xy( 2y 2x " 2x Zy)] exp (J i rt rt o 1 T2x T2y 3
" . - A

- 2uo[po+j C B + 1€, ]q;(kl-kiz)cb(kz) (6.43)
2x 2y

2 2 2 2 ,
where § 7= <> |, 8§77 =<r7> |, and G 1is the term involving the Green's :

¥ Uy y

funct‘on transforms which is as follows;

l . .
- > > ) 3S(A;t,80) 2 ag(A-;t,Bo) §
GCAr, 5B okyaBy) = "“‘5&"‘"[ S (ko ®y )+ak2x]+3 54 "“[ (kpy~Bay) ¥
~ > ‘
L 3k2 ]+ g (Ar ,B.) (6.44)
y

The term in (6.43) involving G does not converge very rapidly as A;t + ®

: 94




e

80 to avoid potential problems this asymptotic behavior will be subtracted

out. That is, since the correlation function and 1its derivatives go to

-+ -
zero as Art-Hn , this term asymptotically approaches, for A;t sufficiently

B R e ] PSS

large,

> > > > 2 L2 2 .
ffG(Art’Boskz )Bz) exp [" o (BO—BI) (Bo-kl) 'bx Bzxkzx "'Sy Bzykzy]

4

-+ + > >
exp(Jk, *AF ) aAT_dB_ = r(Bl,kl,k2.§2) (6.45)

o T

DT

The d;t—integration in (6.43) can be easily accomplished with the following

| result;

' 2 > 2 P > 2 P
r(+) -f{j B Ry 0By) (5000 + 3 By (R 0B)) (-8l ) + gc(kit.Bo)}

. _ 42 _ _ Py Y- .
exp[ o (Bo B1)(80 k1) Sx82xk2x SyBZyka]dBo (6.46)

where the triple tildes denote the three dimensional (Ax,Ay,;)-Fourier
transform, the subscripts on the z denote the derivatives of g(A;t,c)
with respect to the indicated variable, and Kit = kix;ﬁ + kiy§ is the trans-
q verse part of the incident wave vector. The Bo-integration is difficult to
4 ; perform directly because of the Gaussian factor in (6.46); however, it can be

accomplished by using Parseval's theorem to rewrite (6.46) as an integration

over the product of inverse Fourier transforms (with respect to Bo)' That is,

with®

fThe 47 factor arises because g 1s 47 times the conventional free space
Creen's Function  oxp(-] kor)/lmr

e

3
:
H
i
i
1
L
a
4
|
i
1
§

i s At vk e e Skl i

i,
pan ALY eddmel i,

el ML

ra v h o RN N mh S T



= 4k,  exp(-jk, _|z|) 3
e - ix iz E
8(Kit:'Bo)exp('-;‘Baz)deo 2 kiz ]
(6.47a) %
. amk, . exp(-1k, |z])
g - - iy iz :
fg(kit.ﬁo)exp( JBoz)dBo 2 kiz . p
(6.47b) '
- R0 = | B R 8 exe (-8 2)d8, = T exp(-ky, |z]egn(2) B
¢ | ¢ it 2m (6.47¢)
] i
E where k1z is the z-component of the incident wave vector, and {14, pg. 63)] ;o
;j |
X 1 z>0 J
| 1o
f«t sgn(z) = 0 z=0 (6.47d) ; 3
3 q
;, -1 z<0 i
3 |
ﬂ and §
. exp{ 12 [O (k +B ) 2 - j20 z(k +B ) - l.o‘aglkl]} .
;; o 4o
| 1 2 |
k - fexp [—0 (B,-8) (B k) -3 Boz.] B Q(z) (6.47e)
P
(6.46) may be written as follows; : ;
|
" F(ey = 27 ox '—qzk 8 ] j21r ix Zx) -J2m (_S.Yi_)’_k_y_ f 3
P I. Sy KaxPax =5y KayPay i
g + 27 sgn(z)} Q(-z)exp (- jk l |)dz P

Completing thc z-integration yields

o > 2 2
PC) = V(B ok, ok, exp [ 87y By = 8.7 8, ]

96
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where :
E
s2k, k +s k, k [ ky*B)
Y8, ,k ,.l: ) '32“2 x ix 2x iy 2y exp (- Uzk ) exp -czk 2 1-( 11
1’7172 ki iz k 2
z : iz 7.7 3
jok k +B Jok, k8,
. es.‘f(:[---—-z--ji {2 ( +exp Ozk 2 1 + —-l%-' = }‘|‘ erfe {*( )}]
; . g
e k,+8 jok k,+8 3
2 oo (o2 PR S e W A L O I et
j + 21° exp (-0 klﬁl) exp[ o Liz tl ( K, )}j] erch 3 {2 ( i )}] i
| z iz /. ¥y
E.é : : 1 k
8 o
f k,+8 jok k,+8
il - _ a2, 2 11 . e 11 o
} exp[ o kiz {1 +( ki )}] erfc[ 2 {2+( K )}] (6.50) i
N 4 - iZ H 5
b i
i § i
gii where erfc(*) is the complementary error fuu.tion. Substituting (6.49) in % ]
1% (6.43) in such a manner as to regulariz: the dd;t integral results in the .
N ¢ D
following; : g
1 . x .
- =25 | | [KE 8,8,k K, B,) - RGAT,,8 .8, .k, K, 8,32 R=0,00,1,2)]
t 12712 2
(ZW) i
{ . e . > > - > 2 !
3 exp(Jk *Ar )dAT, 4B - T (B),k),k,,8,)/ (2m° b a8, 4B, a8,
(4 .
Log
3 ] ) .
8 - zuo[c 1C, 8 kyyfy - 16, 8. kzy/?_J Sk DK (6.51) i}

where K(*) 1is given below and the addendum of "8“R=0,n-0,1.2“ means that

the correlation function and all of its derivatives are to be set t zero;
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: ;

> B R > LIS & ) 2 :
K(Arl o(""v“‘ vkl ik21‘)’.}) = (‘(Ar‘_o“”.kz !B?) exp l’ ((’ —R)(BO—Bl)(BO-k1)

2 3
- (S \ - N
(8, + R Bykay = (55 +RU ) By ey = (k) =B (RBy +R B, ) !
+(Bo-—Bl)(ka2x-+Ryk2y) R (BzykZX-t-B2x 2y)] (6.52) : %
i ‘ p
. Equation (6.51) is an exact integral equation for the function jq under f 4
A 3
; the conditions that all surfece height derivatives of order two or larger are ;
;
? negligible in a mean square sense and depolarization is negligible. Having
: obtained jq » the amplitude of the mean scattered fleid may be computed as ; ;
follows; h
H
<k > = —L (8,48, 2B, VD (k_-8.) D(-B, ) (-8, ) dB. df
s T omS q By oByyoByy ) Dk mB) DB, ) D (-8, ) dB,; B,
(6.53)
é
6.2,3.1 Discuasion of Results :
Attention will now he directed toward studying the surface conditions

which permit a simplification of (6.42) or (6.51). Of particular concern are %

the range of surface parameters which result in a one dimensional simplifica-
tion of either (6.42) or (6.51). In expanded form (6.42) takes the following .

form;

7 — 3 (B +By o By I =B MR, =B, )AK 1- -2 1 [y 2&
, (2m 3 fff 1'BaxPyy Iy =By Sy B (z-n)sz[j X

S Y Cw _ _ 98 f o2
{ Sx k2x Rxx82 +(Bo Bl)Rx nyBZy} +J oly { Sy k2y‘-RyyBZy+(Bo‘Bl)Ry

X

. ~ > -» >
- + 2 )k,
{ nyBZX} gc] exp{:rl i ki Art} d.’_‘\rt dBO dBl dBZdeZy

-
= 2H_jS_-jcC s 2k /2 icys kzy/]cb(k ey Xk, XK, )

L X x 2x

98




where

2 .
)= = (0°-R) (B -B) (B k) )= (SEAR, DB, Ky = (STHR. DB, ey = (ky-B.) (R B, 4R B, )

+ (B Bl)(Rx 2x+Ryk2y) R (BZy 2x+ﬁ2xk2y) ;

i Al i

When (6.54) can be essentially reduced to an integration over the height

transform variable (Bl) , it 18 reasonable to expect that the equivalent planar

Tttt dpadi 2t

e

current is approximately independent of the aurface slopes. If this is true

SN LA

then jq(B »B ’BZy) acsumes the following approximate form;

oL i L i ke

1q By rBaByy) ¥ 3,(0)8(8, )88, ) (6.55)

and substituting this simplification in (6.54) vields

1 _ | 98 f_ 2 - o
am qu(sl)‘m‘l By )k, IRk, ) 4 1 2m? ff[j an{ SR By 81)} i

B8 f_ o2 ~ 2 ) )
+ 3 pl {-s T @B |+ B | e {- @68 @) ¢

T >
(B,-By) (R Je, +R K, }exp(J k,*Ar,) dit, dB_}dB,

o i < o

- - 2 - 2 l’ -
?.HO[CO jc.s k2 /2 jJc. s k2 /LlCD(kl kiz)cb(kz )‘-‘b(kz )

One way of satisfying (6.56) is to take the exponent which depends upon R
X

i e

and R_ to be very small. The maximum amplitudes of Rx and R.y are of order

S 0 end S 0 , respectively. Introducing the normalized height transform vari-

ables n_ = B /kiz’ n;, = Bl/kiz and Ky = kl/kiz , the exponent in question can

be ignored provided

S <<
kizosx << 1 kizosy 1
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Agsuming that (6.57) 1is satisfied, (6.56) reduces to the followingy

1 : - . g2y, OB _.q2, 0B L=
2 qu(el)d)(kl Bl) 1 (2“)2 ff[ Jsxk”x 9lAx jsyka ahy + BC]

B ot SR B .-m_‘wmﬂmﬁj

* exp {- (UZ-R)(BO—Bl)(BO-kl)} exp() K, *AT,) dAr _ dB_»dB,

‘ 2 2
>_, 2H_ [Co -3¢ 8, k2x/2 - 16,8 kzy/Z] & (ky =k, ) (6.58)

L S A ek e e

‘ Equating like powers of k.  and k2y‘ (6.58) yields three equations for jq(Bl) .

2x
Since it is not at all clear that these three equations will yield the same

jq(Bl) y it is further necessary to assume that Si << 1 and Sf, <<1.

Thus, (6.58) finally becomes

. 1 { 1 - 2 T > :
; ?“J jq(Bl)d)(kl—Bl) 1-m(2“)2ffgc exp{-(d -R) (BO-Bl)(BO-kl)ﬂk:L Art}dArtdBO

B et (el T L

+ dR, = ZHO Co cb(kl-kiz) (6.59)

1

which is the desired result. It should be noted that although the solution

of (6.59) will not satisfy (6.58) exactly, the stipulation of small mean

square slopes insures that the difference will be small.
The approach presented above for reducing the dimensionality of (6.42)
or (6.51) is by no means unique, i.e. there may well be many other equally
| valid techniques. However, the end result and the conditions are expected to
be the same. The condition of small mean square slopes permits ignoring the

terms in (6.58) which exhibit a linear dependence upon k2x and k, . Condi-

2y
tion (6.57) or the assumption that the product of the rms slopes and the Ray-

leich parameter (ktzo) is very small is necessary in order to eliminate the

‘l‘ coupling between the height and slope resulting from the integral term in (6.5).
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Of these two sets of conditions, it 1is obvious that (6.57) is the more dif-

icult to satisfy because as kizo increases the rms slopes (Sx and Sy) will
have to necessarily decrease. This is a very important condition because it
shows that (6.59) is valid only when an incrcas: in rouglness height is accom-
panied by an increase in the horizontal scale of the roughness. Thus, the
validity of (6.59) is intimately tied to the interplay between the rms surface
slope and the electrical height of the surface roughness. To the author's
knowledge, this is a new result and it further illustrates the power of the
multivariate approach. That is, reducing the dimensionality of the multivari-
ate integral equation can always be directly linked to ignoring, due to small-
ness, some physical property of the surface. This is one clear advantage th.t
the multivariate approach enjoys over the conventional multiple scattering
approach because it is most difficult to translate closure of the multiple
scattering equations into an equivalent surface assumption,

Having demonstrated how one goes about determining when the slope effects

in (6.42) or (6.51) can be ignored, it is now possible to back up and estimate

more definitively when the curvature, rate of change of curvature, etc., effects

can be ;gnored. This is a somewhat tedious task and will be saved for future
studies. However, it is clearly obvious that the dominant smallness assump-
tion is going to result from the statistical coupling or correlation between
the surface height and the order of surface height derivative in question.
Regularizing the A;t—integrand of (6.59) at infinity leads to the slope

independent analog of (6.51), i.e.

101

i et Rl g A G, X it R

SN

o A ar s K

Bt st e

e At

Ly il




LT
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T et

AT

_.E qu(ﬂl)d)(kl"ﬂl 1l- _'(2“) ff 8( «'xp (U R) (B B )(B -k )}

- exp {02 (6,8 @,k } | exe (G, sE ek 08, - T8k Km0, 8,700/ @0 a8y

= 2H, C & (k, -k, ) (6.60)

where T(¢) is given by (6.49) and (6.50). 1In the limit of a randomly ele-

vated plane R-+0  and (6.60) reduces, as it should, to the physical optics

result for the mean scattered field. Introducing the normalized variables

N, = Bo/kiz ny =By Ry, Ky =k [l

(6.60) becomes

k | k
iz iz . 2 2
2m f A I R A b (zﬂ)szg; [QXP{-kiZG (l-p)(no—nl)(no-ncl)}

2 2 . r > - 2
- exp{—- kizo (no-nl) (Y]O—Kl)}]exp(Jki Art)dArtdno-F(nl,Kl,kz—O,gz 0)/(21?)

* dnl = ZHO Co(b(kiz[Kl-l]) (6.61)

where p(ix,Ay) = R(Ax,Ay)/02 is the normalized surface height correlation

function. If kizd << 1 then (6.61) may be approximated as follows;

k
_dz : ¢ - ___,__ _
o faq(kiznl)rb\kiz[»cl nbq1 (zn) (k;,0) fj gcexp{ (k 0) n, nl)(n K )}

. p(Ax,A - K. -Ar )dAE. dn -T % =0,8.=0)/em? Y 4
p(Ax,ly) (n nl)(no—Kl)exx)(j 4 *Ar )dAr dn - (“1"‘1"‘2' ’Bz )/( ) ny

z zuo co cb(kiz[)cl-,l D) (6.62)
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where the exponential term in (6.61) containing p(Ax,Ay) has been approxi-

mated by a two term power series because kizo << 1 . Consistent with the
previous assumptions of small mean square slope, curvature, rate of change |
of curvature, etc. p(Ax,Ay) may be consicered to vary much more slowly witk

Ax and Ay than g (Ar ok, n.) and so (6.62) becomes :
C o !

iz

ky k ~
iz 2 2 o
f 3q(kiz“1)¢(k1z['<1'“1]) 1- (2")2 (k, ,0) f (m,ny) (n ;) g (kit.kuno)

+ e {- (e 0 () (g ban, - Do ey k20,800 /am? an,

T e

= 2110 C, ¢(kiz[|<1—1]) (6.63)

Since the integral term is multiplied by (kizo)z, it is much smaller than I'(*)
i because kizo << 1 ; thus, for small Rayleigh parameter the integral equatiom

for jq(kiznl) becomes

k R R . ,
211 3q k, Nk, (k-0 1D 41 - Tng Kk, ,k,=0,8,= )/(Zn) }dnl

I

| |
£ L

: ol - . ‘
L i 28 C_ <b(kiz[K1 1D (6.64a) B
W b or in terms of Bl and kl -
Py
i L
& b
1 _ _ Y 0 %a 2 .
g - qu(ﬁl)fb(k1 By) {l I'(B, -k, ,k,=0 ’Ez 0)/(21r) }dBl i
i !

= ZHO Co Lo} (kl-kiz) (6.64b)

fhere are some interesting consequences ol (b.64) which will now be con-
3

sidered. First, one way of achieving a small Rayleigh parameter i{s to let 61
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be very near grazing incidence (91"ﬂ/2) . Near grazing incidence 1s where

approximate optical theories predict a strong dependence on the mean square

slope due to self-shadowing [4,5]. However, (6.64) exhibits no dependence ,

“
O
4
L
&
4

Bk el

upon the surface slopes and, in fact, is determined entirely by the Rayleigh

P

parameter kizo . This discrepancy between (6.64) and approximate optical

E ‘theories does not appear to be a consequence of any of the simplifications ; 3

IS

leading to (6.64) because these same simplifications are inherent in the

e g

YA S A NS

approximate theory (except for kizo S <<1 which is trivially satisfied :
52 near grazing incidence). The lack of dependence of (6.64) upon the surface

§ slope variances is also in agreement with rigorous boundary perturbation

Pt

theory which, in turn, is accurate for kizg << 1 . Thus, (6.64) clearly

establishes the inaccuracy of shadow corrected optical approximations for

TR T, T e e
e e e e
el S it

near grazing incidence or, more correctly, for small Rayleigh parameters, at

least for the case of coherent scattering. One possible reason for the fail-

MR

ure of the shadow corrected optical approximation is that it assumes that the

current induced on the surface is zero on the shadowed parts of the surface.

b e -

liowever, this is at complete variance with (6.64) which, for kizo suffici-

ently small, predicts no shadowing of the incident fisld. In fact (6.64)
shows that for a sufficiently small Rayleigh parameter, the average scattered §
field appears to result from a randomly elevated plane. i
The average scattered field for the case of kizo << 1 can be obtained
by first solving (6.64) for jq(Bl) and then convolving this result with
<b(k5z—81), kS = -k, . to find the average scattered field. There is, how-

A

ever, a more direct approach to computing <Es> which results from the special

form of (6.64). Writing 1(¢) in its integral form as given by (6.46) yields




i
1 1
% m jq(Bl)d)(kl-Bl) = ZHO Cod)(kl—kiz) + ) fqu(ﬂl)fb(kl-ﬁl)
;
1 .
) 2. ) 2 a 2 (6.65)
L exp [ o 5,-8,) 8,k B¢ ;,+8,)48, 48, / @

Since

2 2
B )-8y exp[- o (B -8)) @ k) | = exp{- 587 - I (6,807}

TR I AT A TR
. | s e s ety
ll

= Q’(kl-Bo)Cb(Bo-Bl)
' and
! <3_(B)> = 5- f 3B B -8 a8,

(6.65) may be rewritten as follows

F e

|

= 2
<Es(k1)> = 2H Co¢(kl-kiz) + f<ES(B°)>¢(k1-BO) B (kit,Bo)dBo/(Zﬂ)

(6.66)

Furthermore, since

5;- %G, WA = 4 1%

3 g . (k, , = L ———————
[ [ § (o] 2- 2 -
LAl t Bo kiz jC

S
e

T LTI

where £ 1is a small positive quantity, (6.66) reduces to the following sin-

gular integral equarion of the second kind for <l-:s> 3

T TR A

< 3 [ 8208
W <Eglh)> = 2H Coleyky ) v | a2 EB)>d,  (6.67)
\ B "-k, -j&

S o iz
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This equatlon bears a remarkable resemblance to a result obtained by DeSanto

2
[8,10], which he stated was valid in the limit of R>0° . In comparing (6.67)
with DeSanto's result, there arc two factors that should be noted. First,

5 DeSanto's equation has a Bo in the deuominator of the integral rather than

in the numeratc . This ditfercnce appears to result from the manner in which
he treats the singularity in 9g/3C . In (6.67) the Bo in the numerator

results very simply from the following transform relationship;

~ - \ n ~ -+
gc(hrt,bo) jﬁo B (Art'Bo)

% For kizo << 1 . this difference will have no essential effect upon <Es(ksz)>.
‘ A second point to he noted is the fact that DeSanto's result corresponding to

(6.67) is actually based upon the assumption that

R(AT,) = R (6.68)
0 Art $£0

rather than R—>02 as stated in [9] and [10]. Since the correlation func-
tion in (6.68) diffecrs from zero only over a domain of zero measure, substi-
tution of (6.68) in (6.60) will thus yield (6.67). 1In fact (6.68) was dis-
covered by searching for the form of R(A¥t) which would reduce (6.60) to
{6.67). However, it must be remembered that (6.60) is based upon the assump-
tion that the variances of Vnc,n=1,2,..., are all very small and it is not
immediately obvious that (6.68) satisfies these conditions. Thus, although
(6.67) cuan be obtained in the same manner as DeSanto derived his correspond-
ing result, there remains some question as to the meaning of the expressions

for <Eq> - Aside from these minor differences, it is most encouraging that

these two significantly different mathematical approaches give rise to very

similar equations for tie average scattered field.
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When the Rayleigh parameter becomes mod:rate to large, (6.67) can no
longer | . vigorously juatified and (6.60) must be solved. Since the only
major difference between (6.67) and (6.60) is the appcarance In (6.60) of
the term inveolving integrations over A;t and Bo , it would appear that
(6.60) should be readily soluable also. Unfortunately, no anlytical approxi-
mations have been found for this term. Since this term is roughly equivalent
to the average of the y-derivative of the Green's frnction, it is extremely
important to the determinatimm of jq or <Es> . Quite obviously, future efforts
on thic problem should concentrate on the approximate analytical evaluation
of this term. If analytical approaches prove fruitless, then numerical inte-

gration techniques should also be consid red.

6.3 Summary

The purpose of this section is to develop an alternate approach to the
problem of coherent scattering from a perfectly conducting rough surface.
Since the conventional multiple scattering approach is difficult to interpret
in terms of the statistical properties of the surface, it is desirable to have
an approach whicih clearly shows the dependence of the mean scattered field
upon the various surface parameters. ‘the approach developed in this section
leads to a single integral equation of infinite dimensions for a function
which when convolved with the joint characteristic function for the height,
slope, curvature, etc. leads to the coherent field. The integral equation
has infinite dimension because the mean scattered field depends upon all order
derivatives of the surface height. Particular attention is given to a Gaussian
surface which has negiigible curvature, rate cf change of curvature, etc. It
is shown how one links reducing the dimensionality of the integral eyuation .

to conditions on the surface parameter. In particular it is demonstirated that
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the equivalent planar current induced on the surface can be taken to be inde-

pendent of the surface slopes whenever the slope variances are small and the

product of the Rayleigh parameter and the rms slope is small. For near graz-

D1 Pt bttt il et i e )

ing incidence it i1s found that there is no justification for the inclusion

of a shadowing function. Comparing these results with those obtained from

multiple scattering theory shows a great deal of agreement and, in addition, o

e

i some further insight into certain limiting approxiwmations.

; In summary the multivariate approach introduced here has the following

positive qualities;

« it is very straightforward,

« it is sufficiently general to cover any surface height

distribution,

B D L L L PR

J

*+ it clearly shows the dependence of the scattered field on

bt s,

measurable surface parameters,

e i 8 b | i

* one can, in a straightforward manmer, deduce when the vavrious
higher order surface height derivatives are important,

* the technique can be extended to the general vector case, and

* the basic approach can alsc be used to determine the incoherent

; field.

KY
* The only negative aspect of the approach is that it will require the evalua-

o St ok nai

tion of some very complicated and difficult integrations which. in essence,

A anu i

stem from averaging spatial derivatives of the Green's function.
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