AD=A097 008 NORTH CAROLINA UNIV AT CHAPEL HILL INST OF STATISTICS F/6 12/1
CONSXS"ENCV OF REGRESSION ESTIMATES WHEN SOME  VARIABLES ARE SUB~-ETC(U)
FEB 81 P P GALLO AFOSR-BD-DOBD
UNCLASSTFIED MIMEO SER-1097 AFOSR=TR=81-0303

rm
.-
... ;




3 Y Consistency of Regression Estimates
- When Some Variables Are Subject to Error

by

Paul P. Gallo
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series #1328
February 1981

DEPARTMENT OF STATISTICS
Chapel Hill, North Carolina ‘PP!'Wed L6 Public releag

tribution unlimiteq ase 3
L ]

-

81 3 27 016




“WER ®ORCE OFFICE OF SCIENTIFIC RESEARCR mﬂ
NOTICE OF TRANSMITTAL TO DDC

This technical report has béen revieved and 18,
approved for public release IAW m 190-13 (M)«
Distribution i3 unlimited,
A. D. BLOSE

Techuical Information Offices Ww




LELD . NCLASSIFLED

SECURITY CLASSIEICATION OF TMIS PAGE (When Dot bt d)
\Q RE ORT DOCUMENTATION PAGE ,1 ln-.y-'(’)';«/l\.ur'8-.;11-:‘.:1'(1 xrr:f:‘\:ukm

3 GOVY ACCERSION MO U 1 it N7 7 AT R (0 Kttt §

7 JAFOSR[TR-8 1 - /'3 93! ho-Acaoalk

S TYPE NHF REPORY B Pr‘m;._t'n &Jlf"fn
L AR

4. TITLE fand Subiitie)

/

(/

@; ‘Consistency of Regression Estimates When Some <>Q,_'.”L‘¢‘"“!‘ "QF !.( e
—! Variables Are Subject to Error. ¢ Prasemnut o 1d npforT Wuunen

— e d

7. AUTHOR(s) s ALC.Y OR GRANT NuMILE Fyy
) N

/P [Paul P./Gallo [/7 7 [ /arosr-sg-ousy’
9. PERFORMING ORGANIZATION Nnuc‘rvﬂ":t%"é‘i ‘ 0 PR L AAM LFMENT PO E 7T v;-,x

APFM'“ WK LNIT NUMBE WS
University of North Carolina ' é
Department of Statistics. —
Chapel Hill, North Carolina 27514 61102f | 2304 JAS
' 0 ADDRESS S —
' AY "BOrce Gffice of Scientific Researc})/ll/ﬂ Febronmmed®8]

Bolling Air Force Base SRR
Washington, DC 20332 13
T4 MONITORING AGEN Y HAWE A ADDRESS(HI fitfrrent leam t catralling Ol e lﬁ' T N O U ARS af ety
s UNCLASSIFIED

’ ' / Vo 0L ASFICATION LONNGRADING
/0&_/ - > . S oaik Mg
—d

—_— P —emt t e e - e e e o ——

16. OISTRIGUTION STATEMENT rof thia Peport:

Approved for Public Release -- Distribution Unlimited

() = e ioik dof7

17 OISTRIBUTION STATEMENT (¢ hatonct evstoreit ton Wuch JO, 11 Jiliorant boome Mogrssis)

' SUPPLEMENTARY NOTES

. m——— - e ——— - -— -_.ﬁ

19 KEY WORDS Continue on rrerse a:tdc 1} nv::-—lnnn' atvd tdentily by Black suadierd

errors-in-variables model, maximum likelihood estimate, weak consistency

N o

20 ADK“*CY (Conttnio o reverse aife Il necesaory and itdentily hy Blark pant ey
\

T
—For a general univariate "errors-in-variahles" model, the maximem
likelihood estimate of the parameter vector (assuming normalitv of the
errors), which has been described in the literature, can he cxpressed 1in an
alternative form. In this form, the estimate is computationally simpler, and ,
deeper investigation of its properties is facilitated. In particular, we 3“

demonstrate that, under conditions a good dcal less restrictive than those
which have been previously assumed, the estimate is wecakly consistent. S

DD ,"S™ . 1473  €0irion of 1 nov 88 13 oBsOLE TE UNCLASSTITED ;:j J 06 ‘7

stl,;“v"v I SN TAY Y TR VEERY S N Y BN LY SRR YRR BT BUNTYY IF W)




—

_ -
Accession For

[NI1S GRART K
DTIC TASB i
M ed o |
CONSISTENCY OF REGRESSION ESTIMATES it tont ton. _ | |
WHEN SOME VARIABLES ARE SUBJECT TO ERROR | “ - """
Bv e
by _Distrihuﬁi;n/
Paul P. Gallo* Availe:trity Cades

Looad nnafeor

L}gw;ﬂl

1

!
Lict

tt
A

For a general univariate 'errors-in-variables'' model, the maximum
24

University of North Carolina at Chapel Hill

— -

Abstract

likelihood estimate of the parameter vector (assuming normality of the
errors), which has been described in the literature, can be expressed in
an alternative form. In this form, the estimate is computationally
simpler, and deeper investigation of its properties is facilitated. In
particular, we demonstrate that, under conditions a good deal less
restrictive than those which have been previously assumed, the estimate

is weakly consistent.
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1. Introduction.

The estimation of linear regression parameters when some variables
cannot be ascertained due to measurement or observation error is a
problem with a long history in the statistical literature, yet one with a
considerable recent emphasis. We consider a general "errors-in-variables"
model in which some subset of the variables is observed with error (much
of the literature concerns the case in which all variables are subject to
error, with particular cmphasis on models with just one independent

variable; sce Moran (1971) and Kendall and Stuart (1961, Chapter 27)).

Our model is
nzl = X1 Bl + X2 BZ + € nC = X2 +U,
nxp; plxl nxp, ple P2

where Bl and BZ are vectors of regression parameters to be estimated, Y

and C consist of observable random variables, X, and X2 consist of

1
constants but X1 is known and X2 is not, and € and U are composed of
random variables such that the rows of [U ¢] are i.i.d. with mean zero
u €u

and unknown non-singular covariance matrix [ = 2 1 (Models such
o

T
as this with the independent variables being constants have generally
been referred to under the title '"linear functional relationship.” A
related model in which the variables are stochastic has been called a
"linear structural relationship'; see Madansky (1959) for discussion.)
Although in our discussion n will vary, there should be no confusion if
we do not subscript the matrices involved.

We consider maximum likelihood estimation under the assumption

that the errors are jointly normally distributed. It is well-known that




the supremum of the likelihood is infinite unless we impose additional

structure on ¥ (and furthermore, that under any conditions on I which
yicld a solution to the likelihood equations, the estimate obtained is
the same as that obtained by the method of weighted least squares). The
assumption most frequently made in the literature, and one which we will

adopt, is
(1.1) £=0"L =0 with Zo known .

The most detailed results along these lines can be obtained from the work
of Gleser and his students, who considered multivariate regression

models. In our model, let

=
H

. _ -1
[C Y]" RIC Y] with R=T1- X (X]X))7" X{ ,

1.2)

o]
|

= A (2'1 W) (x; (A) denotes ith largest eigenvalue of A) ,
p2+1 (o] i

and

g' = (gi gz) is an eigenvector associated with 6 .
1x1

Healy (1975) has shown that if g * 0, then the MLE's of Bl and BZ

exist and are given by:

A -1
By = 818,
(1.3)

A 1y ov. A
By = (Xi xl) XI(Y es,) .




In Section 2, we demonstrate that the MLE can be expressed in
alternate forms which are easier to interpret than (1.3), as well as
computationally simpler. These 'simpler forms' also facilitate deeper
investigation of certain properties of the estimate. In Section 3, we
consider one such aspect: we demonstrate that ‘31 and 82 are weakly
consistent estimates under conditions weaker than those which have been #

previously shown.

2. The MLE under Normality.

In this section, we will make use of the following obvious notation:

X = [X X)) 5 Zul fo 0
=[x, C] pp |22 o 0 3
' = ' '

ot = [B] B3] P=p* Py

Ut = [0 U]

we define Zs’zfxo’z:uo analogously. Also, let H = [C* Y]' [C* Y].

The main result of this section is:

Theorem 1. In our model, if the joint distribution of the errors is
absolutely continuous with respect to Lebesgue measure, then the

normality-MLE of B exists almost surely and ig given by

A ‘1 oy
BZ = (C'RC - BZUO) (C'RY ezeuo)
(2.1)

A . _1 ' Y C/\
By = (X{ X))~ X (Y-CBy)

with 6 and R given by (1.2); we also have




8 = *_ -1 .
(2.2) B (C*' C 6):60) c*'y 9}:2“0) R

with 6 = y-l

s Y = largest root of |Zz - yH| = 0.

In the form (2.2), 8 can be viewed as a modification of the ordinary
least squares regression estimate, which is known to be inconsistent in
the errors-in-variables (E.I.V.) case. In fact, the estimate seems to
operate much like the 'method-of-moments' estimate described by Fuller
(1980). In an E.I.V. model in which Zu and Xeu can be consistently and
independently estimated but are otherwise unknown, Fuller has proposed r

estimates such as

A_ % _A -1 X _A*
B = (C*C*-nI}) " (C*'Y-ni}) .

Under the assumption that n'I?X'X converges to a finite matrix,

1 8 consistently estimates 02; hence

Healy (1975) showed that n~
n-leZuo g Zu in our model. Thus, while Fuller's method requires an

"external' variance estimate, the maximum likelihood approach in effect

produces its own ''internal' estimate. Of course we do not get this for
free; the price we have paid is the additional structure that we have
imposed upon I.

In proving Theorem 1, we will make use of the following result:

Lemma 1. Under the conditione of Theorem 1, 6 = )\p +I(Zgl W) Zs not an
2

etgenvalue of C' RC with probability one.




61 G2

Proof. Let G = be the matrix of normalized eigenvectors
rroot g

Gop G
lxl -1 -1
associated with the (ordered) eigenvalues of ZO W, with F=G

partitioned similarly. Thus

(2.3) z&lw = GDF
A 0 1 1

with D = , A = diag(3;(Z "W),...,A_ (£ " W)). Equation (2.3)
0 0 170 p2 o]

implies that

(2.4) C'RC = (zuocn+zeuocn)(x-elpz)ls11 + elpz .

11" Leuglz; and Fyy are

non-singular a.s. if the error distribution is absolutely continuous; it

From Gleser (1981), we infer that Zqu

follows from a result of Okamoto (1973) that the eigenvalues of Zc')l W are

distinct with probability one (all we need is 6 = Ap (Z(_)l W)), in which
2
case A—elp is non-singular. The result follows since (2.4) implies
2
that C'RC- GIp is non-singular a.s. a
2

Proof of Theorem 1. From the definition of & and G,

] - \ -
C'RC oxuo C'RY ezeuo G12

(2.5) =0 .
] - ¥ ' -
Y' RC ezeuo Y'RY -6 G22

(leser (1981) has shown that G22 # 0 a.s., in which case the MLE exists.
As mentioned above, 6 has multiplicity one a.s., so the left-hand matrix

has rank p, W.p. 1, and solutions to (2.5) will be determined by




equations corresponding to any P, linearly independent rows of that

matrix. In light of Lemma 1, the first p, rows will do:

(2.6) (C*'RC -GZUO)GIZ + (C'RY- 62 )622 =0

€Uuo

= -G, .61

= -1 [
12522 = (C'RC - eiuo) (C' RY - BZCUO) .

By (1.3), this is @2, which demonstrates (2.1).

For the second part of the theorem, note first that

from which it follows that 6 of eq. (2.2) is the same as that of (1.2)
A

(in this part of the theorem, we want to express B in a form which does

not explicitly refer to our partitions of the matrices involved).

Now according to (2.2),

-1

>

\i 1]
X3 X X1C

1 171 Y

it

c'X

—

w>
[3S)

[ TV o
1 c'C GZuo cC'Yy ezeuo

rExi xl)'1 s xl)'1 X} CQC* X, (X} xl)'1 -} xl)‘1 X

,_é

(with Q = (C' RC- ezuo)'l)

5
|
-QC" X, (X} xl)'1 Q J'c' Y-er

] -1 [} - -1 ty o - v -1 v’—’
G4 X)X Y - XD X3 CIQEET Y -8z ) - QCT X, (X)X T X V]

-1 ,
QUC'Y -6z, ) - QC' X (X4 X)) Xp Y

which implies




8
B = QC'RY -05_ ) = (C'RC 1 (crr
By = Q(C' RY - .Cuo) = ( -ezuo) ( Y—e):euo)
Ro= xrx) 7 xrey-ch
Bl = ( 1 1) Xl(Y-CBZ) .
These agree with (1.3) and (2.6). 0

3. Consistency. i
. - A . {
Various results concerning weak and strong consistency of £ in our

model and related models have been described by Healy (1975), Bhargava

(1975), and Gleser (1981). Generally, all require that

(3.1) lim n” ! X' X exists and is positive definite .

Tree
Such a condition on X is much stronger than conditions which have been
shown to be sufficient for consistency of the usual linear regression

estimate (the special case of our model with Py = 0). In recent vears,

results of increasing strength and generality on this matter have been
produced: see Eicker (1963), Drygas (1976), Anderson and Taylor (1976),
Lai et al. (1979). Conditions on the errors vary somewhat among these

papers, but the condition on X which is crucial to all of them 1s

(3.2) AP(X'X) > 3as n > o

We would like to find conditions "intermediate' between (3.1) and (3.2)

A
which are sufficient for weak consistency of 8.

Theorem 2. If the following conditions on X are satisfied:

(A.1) N (X'X) e as ns




e

(A.2) xil(x' X)Aé(X' X) > o as no+ow,

and the joint distribution of the errors possesses finite fourtl moment,
A
then @8 5 £ as n > =, (Note that we are obtaining consistency without

using the assumption that the errors are normally distributed.)
The fellowing simple lemma will be useful:

lemma 2, (1) xl(Xé RXZ) < xl(x' X) ;

(4) letting (X'X) 1= [ L Ly 1, A (LLY) < xi(x' )t
pxpl pxpz

Proof. Since (Xé R)(2)°1 is the lower right-hand submatrix of (X' .\')-1,

nf z'(x'X)'lzs inf z'(Xém(Z)'lz=x (x;R\',)‘l
=1 Hzll=1 Pp = <

> A (XX) 2 A (X3 RX,)

Noting that the non-zero eigenvalues of LZLé and LéL2 are identical,

(i7) follows similarly since LI'ZLZ is a lower right-hand submatrix of

(X'X)'Z. .

s}

Proof of Theorem 2.

>
|

-1
= (C*' (% . gy X1y _ prk
(C*' C SZUO) (c*'y BXCUO)

' -1 "k * k1% - * Z - * -1
(I« (KX)75 (X'W* + UK X+ (UF'UX - nzd) + (no” - 8)3% )

' -1 ' * 1 - * 2 -
x (X*X) 7 (X'Y + UX'XB + (U*' e - nzf ) + (no 0)2gu0) -
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Clearly, it will suffice to show that:

d) xxnlxur8o
i) xrxnTuexBo

Gii) «xrx)t e - nz*) By

Gv) Ino® - slxrxytBo

B

(v) (x'X)'1 X'Y > B

wi) xrx)Yourre - nt ) %o

Eicker (1963) has shown (v) when Ap(X' X) » o, which is of course true by
(A.1); (i) also follows immediately from his work under the same
condition.

Note that U*'U* - nZl’; = Op(n%) if the errors have finite fourth
moments, so (iii) holds if (X' X)_1 = o(n'l’i), which follows from (A.1).
The same argument demonstrates (vi). (X' X)'1 U*' X = L, U' X; the
(i,j)th element has mean zero and variance [ X12<j . P{ I, Py where P. is

k
™ colum of Ly. Thus (ii) is satisfied if

the i
max diag(X'X) - max diag(LzLé) -+ 0; this is seen to be equivalent to
(A.2) using lemma Z(Z<).

Letting k henceforth denote Al(X' X)'l, we need only demonstrate
(iv), which is equivalent to k(8 -noz) B 0. Note that 6 = Ap +1(Z(;1 W)
oK Wne’ 1 i

if and only if k(© —noz) = ) +1)); we will show that

P2 P2
this converges to zero in probability. lLet
1
_1 X5 RX2 Xé RX2 B
D = k=¥ As the product of a positive definite

BZXé RX2 BéXé RXZ B

matrix and a positive semi-definite matrix of rank Py» D has P, positive

P e bms s e
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eigenvalues, its other eigenvalue being zero. Now

-1 2
k(Z0 W - no Ip2+1) -D
1 )(éRlJ+U'RX2 U'RXZB'*XéRe
= kZo
BéXéRU + c'RXZ BéXéRs + c'RXzBZ

+ kz(')l{[U e]' [U €] - nI} + kz(‘)l[u €' R-1)[U €]

1l

NH + M2 + MS’ say .

Using arguments ecssentially the same as before, erl 0 by (A.2) and
-1
Lemma 2(7). M, does likewise since k = o(n %). Finally, noting that
. 2 .
E] R is idempotent, we deduce that E[N%] = -0 kp11p2+1. The diagonal
elements of the positive definite matrix ZoMS are positive with
expectations going to zero; thus they are op(l) themselves.

Consequently, M3 B 0.

Since eigenvalues are continuous functions of a sequence of
matrices, it follows from the above discussion that
; -1, 2 P _ naly B .
' )\p2+1(k(2o W-no Ip2+1)) > xp2+1(D) = 0, and hence k(6-noc™) > 0. [

Our assumptions (A.1) and (A.2) are intermediate in the sense
mentioned earlier: either one implies (3.2), while both are implied by
(3.1). Condition (A.1) requires that X'X ''gets large' at a faster rate
than does (3.1) (it can be seen by considering the demonstration of
(iii), e.g. in the proof of Theorem 2, that (3.2) is too weak a condition

for our model). A simple example in which (3.1) is too weak to ensure

consistency, but where (A.1) suffices, is a situation where p = P, = 1,
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and the independent variable varies linearly with n. Condition (A.2)
will also hold much more generally than (3.1); it is satisfied, for
example, if (A.1) holds and the independent variables are bounded.
Finally, while our requirement of fourth moments of the errors is not
particularly restrictive, we could weaken it if we were willing to
strengthen (A.1) (for example, we would require only finite (2+6)th

-1
moment, 0 < & < 2, if n [2(2+8) 7] )\p(X' X) + © as n » ),
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