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ON GOODNESS OF FIT TESTS FOR THE WEIBULL AND THE
EXTREME VALUE DISTRIBUTION WITH ESTIMATED PARAMETERS

by
Mahesh Chandra

Nozer D. Singpurwalla
Michael A. Stephens

1. Introduction

The two parameter Weibull distribution has found many applications
in the biological, engineering, and the hydrological sciences. For
instance it has been used by Doll (1971), to describe the observed age
distribution of many human cancers. Its use for describing failures
of electrical and mechanical components is well documented in the
engineering literature, and in a comprehensive study, Benson (1968)

discusses its use for analyzing flood data.

In this paper, we address ourselves to the problem of testing the

null hypothesis H that a given random sample belongs to a Weibull or an

o
extreme value distribution with unknown parameters. The test statistics will

be EDF statistics, i.e., those based on the empirical distribution function,

and we present tables of critical values for testing HO.

A foundation for developing the tables of critical values is the

recent theory by Durbin (1973) on the weak convergence of an '

‘empirical"
stochastic process. This stochastic process is based on the empirical
distribution function and estimates of the unknown parameters. The

statistics that we discuss can be represented as well-behaved functionals

of this empirical process.

o
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2. Preliminaries

The two-parameter Weibull distribution is given by

1 - exp (- (%) B) , £20 (2.1)

=0 , Ootherwise;

P(T<t)

the scale parameter § and the shape parameter f are both assumed to be

positive,

If we make the transformation X = -1nT, where T has the distribu-

tion (2.1), then X is said to have the extreme value distribution.

P(X<x) = F(x) = exp {—exp— (éig)i, - < x < ™ (2.2)

1 . :
where a = -1né and b = E are the location and the scale parameters,

respectively.

The tests that we discuss in this paper are for the extreme value
distribution. To make a test of fit for the Weibull distribution we
shall take the negative of the natural logarithms of the supposed
Weibull data. Thus, we wish to consider the case of testing whether
the distribution of a random sample Xl’ X2, ey Xn’ say F, is an
extreme value distribution with unknown location and scale parameters
a and b , respectively. Specifically, we wish to test the null

hypothesis

HO: F(x) = G(x)

for all x and for some (a,b) , where G(+) is the distribution F(.)

given by (2.2).

When a and b are specified, the H, is said to be "simple,"

0
and the test reduces to testing the hypothesis that the independent

random variables
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(Xi-u) ( (fi-a>>
= = - -\ = < 1 <
Zi G b exp |-exp b » 1 <i<nm

have a common uniform (0,1) distribution. The Kolmogorov-Smirnov test

is based on the statistic

/n  sup IGn(t)-tl (2.3)
0<t<1
where
1 ° 8
G (t) == ¥ 1\G\—]<t], 0 <t <1, and (2.4)
o " -1 b/ o

where I(E) denotes the indicator of the event E. Under the null
hypothesis, the "empirical® stochastic process

Wn(t) = v/n (Gn(t)—t), 0 (2.5)

[
(ad
|~

satisfies
W (t) 45 W0 a0 Bo,ig ., (2.6)

. d
where —> denotes convergence in distribution, and wO

the Gaussian process determined by E(wo(t» = 0, and
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0 0 .
E(W (s)W (t)) = min (s,t) - st, 0 < s, t < 1. gﬁ’lﬂ,ll denotes the
space of functions on [0,1] which are right continuous and have left-

hand limits.

When HO is composite, an analogous test statistic and a4 con-

vergence theorem are obtained; these are discussed below.

3. Asymptotic Results When Hois Composite

When a and b are not specified HO is composite, and we

shall use (én, Bn) , the maximum likelihood estimators of (a,b)

Following Stephens (1977) we call this situation Case 3. (Cases 1
and 2 refer to the less important cases in which only a is unknown

or only b is unknown.)

Let
xi-an
Y = <
n,1 b > 1 <i<n,
n
and define
1 n
H(0) = 2 TGy <), 0t = (3.1)
i=1
and
Y () = /n (H (£)-t), 0t =1, (3.2)

Then from a theorem of Durbin (1973) and the appropriate regularity

conditions, the empirical process{Yn(t); 0<t < l}is such that

0 .
Yy d, Y in O-[0,1] ,

0 . . .
where Y is a Gaussian process determined by

£x0 )= 0 L0 < Ul
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and

ev2 (310

min(s,t) - st - 1.108(slogs)(tlogt}
+ . 257(slogs)(tlogtlog(-logt))

+ . 257(slogslog(-logs)(tlogt))

(3.3)

.60793(slogslog(-logs)tlogtlog(-logt)), 0 < s, t < 1 |

The above has also been shown by Stephens (1977). Tle statistics of

interest in connection with HO are:

(i) the one-sided Kolmogorov-Smirnov statistics

+

D = sup Y_(t) Iy
0<t<1

D = -inf Y (t)

0<t<1

(ii) the Kolmogorov-Smirnov statistic

+ —
D=max(D,D) Iy

(iii) the Kuiper statistic

(3.6)

(3.7)

"
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(iv) the Cramer-Von Mises statistics

1
w? =f vi(t)de (3.8)
0 n

(v) the Watson statistic

2 1 2 1 2
U =/ YO(t)dt - [f Y (t)dt] . (3.9)
o © o "

and the Anderson-Darling statistic

2

1 Y
a2 =f o8 g (3.10)
0 t(1-t)

As a consequence of the continuous mapping theorem, the limit

laws of D+, ﬁ—, D, V, wz, U2, and A2 under HO’ are given by the laws of

0 + — 0 2
the random variables sup Yo(t), —-inf Y (t), max (D, D), S(Y (t)"dt,
0<t<l  =0-~txl

1 : z = o .2
[./0. (Yo(t)dt’-):Z - (‘[U YO(t)dt) ] , and lim f { (1) dt,
1

>0

respectively.

7

4. Sampling Distributions of the Test Statistics

Stephens (1977) has found from theoretical work the cumulants
. I : . . 2 2 2
of the limiting distributions of W™, U, and A, and has uscd these
to approximate the distributions. The pth quantiles of these limiting

distributions, together with a modification for these variables when

the sample size is finite are given by Stephens (1977, Table 1).




+ -—
The sampling distributions ot D , D , D, and V have also been

obtained by Stephens (in some unpublished work), using Monie Carlo methods,

for samples of size 10, 20, and 50. Using these finite sample results,
Stephens uses an extrapolation of the quantiles for finite =n , to obtain

the corresponding asymptotic quantiles. The smoothed Monte Carlo points

are given under Case 3, in Table 4.0. Also given in Table 4.0 are the quan-
tiles of the distributions of D+, D, D, and V when only the scale parameter
is unknown (Case 1), and when only the location parameter is unknown (Case 2).
The points for Case 2 were obtained by Monte Carlo methods similar to those

for Case 3, but for Case 1, we include some exact points given by Durbin (1975).

Durbin's paper is concerned with testing for exponentiality but, with
some rearrangement, his points apply for Case 1. This is because, in Case 1,
b in the extreme value distribution is known; then if we make the transforma-
tion y = exp(-X/b), it is easily shown that the distribution of y is the
exponential distribution F(y) = l-exp(-Ay), v > 0 , where A is exp(a/b).
Thus the problem reduces to testing that y has the exponential distribution
with A wunknown (since a is unknown). Durbin has found the exact points
for /nD+, vnD  and /oD for this situation, and has given extensive tables
for n < 100 . Durbin's exact points have been used where possible in
Table 4.0, Case 1. Because the transformation y = exp(-X/b) 1is monotonically
decreasing, the D+ calculated directly from the X-values will equal D
calculated from the y-valiues, and D—(X-values) will equal D+ (y-values’;
therefore the values in Table 1, Case 1, for /hD+ are Dutbin's values for
v/nD~  and vice versa. Values of vnV in Table 4.0, Case 1 are obtained from
Monte Carlo methods; asymptotic values for /nD+, VoD  and vnD are obtained

. . . . . . + -
by extrapolating Durbin's exact points, bearing in mind chat vnD  and vnD

should have the same asymptotic distributions.

A e ein

e A b
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A scvcond method of obtaining the asymptotic sampling distributions of

the variablces (3.4) through (3.10) is suggested in Wood (1978), and involves

A . . - . . 0 . - .
a direct simunlation of the Gaussian process Y . Specitically, tiae process

0 . . N . . . . .
Y  is approximated by its finite dimensional distribution, corre-

sponding to an evaluation of the process at k equally spaced points in the

unit interval., Ten thousand multivariate normal random vectors with

the covariance matrix given by (3.3) were generated using the extended

precision version of a program trom the IMS Library. The empirical

distributions of the supremum, the intimum, and the ditference between

the supremum and the infimum of the resulting multivariate normal vectors
. . - Nt

were then tabulated, thus approximating the limit laws of vn D

7 )

- - . - .2 2 2 .
yn D , nb,and vn V. The limit laws of W, U7 and A~ were approximated

by using numerical integration technigques. VFor this. we used subroutine
QSF from the IBM Scientific Subroutine Package. In order to obtain
the quantiles of the true approximating limiting distribution, (i.e.,

for for k = ®), extrapolations from finite values of k must be

performed; how this is done is explained in Sectior 4.1.

Since Stephens (1977) has already obtained the quantiles of

. . 2 2 : . :
the limiting distributions of W", U, and A" using theoretical methods,

. . (VI .

the main purpose served by simulating the process V is to obtain
. I N, -

the quantiles of the limiting distributions of vn D, Yn D . /n n, and
/n V by this alternative method. The Kolmogorov-Smirnov statistics
D, D, and D are known in similar goodness-ot-fit sitvations to have
relatively low power. However, they are commonly used in practice and
+ - .
)] and D are very useful for one-sided tests; thus a comparison of the
two mcthods of obtaining quantiles, both involving extropolation, would

be valuable. We now proceed to this comparisoun.

B
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4.1 Results of the Monte Carlo Simulation and Extrapolations

in lables 4.1 througn 4.4, we give the quantiles of the limiting

distributions of the test statistics (3.4) through (35.10), obtained

from statistics 10,000 replications of the process Y

In order to obtain the

0
, and using

kK = 29, 99, 89 and 119 equally spaced points.

quantiles of the distributions when k

1

is infinite, we shall plot the kth quantile versus J:i , for each of

the test statistics and extrapolate to zero.

are for p = 0.75, 0.90, 0.95,

For example, in Figure 4.1 we show a plot of the 0.75th quantile

versus L , for k = 29, 59,

vk
The dotted line is our linear

quantile of the true limiting

0.975 and 0.9Y.

89 and 119, tor the test statistic

extrapolation to obtain the 0.75th

distribution (i.e., when k = @), In

Figure 4.2, we show the plot for the 0.90th quantile. Also shown

on the vertical axis of Figure 4.2 by an asterisk, is the 0.90th

I

The cuantiles considered

\
s

. . . . . + .
quantile of the asymptotic distribution of D ohtained by Stephens,

and given in Table 4.0. In Figures (4.3) through (4.5), we show

analogous plots for p = 0.95, 0.979, and 0.9Y. Similar plots, for

. ~ 2 2 2 . .
the other statistics D, D, V, W', UT,and A~ , ar» given in

Figures (4.6) through (4.23).
Figures (4.17) through (4.23)
the limitiog distributions of

(1977, Table 1). Since thesc

provide us with a benchmark for assessing the accuracy ot

The asterisks on the vertical axis of

represent the appropriate quantiles of
2 2 2 .

W, U,and A” obtained by Stephens

have been obtained theoretically, they

the simula-

tions of the asymptotic process, and also give us some guidelines for

extrapolations.

e ———— -

o
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Examination of Figures (4.1) through (4.23) suggests the
toltlowing comment s: : ;
(a) The plots of the pth quantile versus ~J->, for

Vi

all the variables considered here, are approximately

lLinear for small values of p , say p = 0.75 , but

- —— ————— e

tend to curve down for the larger values of p ,

especially for p = 0.99. Figure (4.1) is an

example of the former and Figure 4.1 is an cxample

of the latter. We should expect the curve to be

U ] .
monotonic in -—— , and the curving down
1.
n

suggests that, as k becomes larger, the

. 0
accuracy of the simulation of Y may

become suspect. @

(b) The linearly extrapnlated values shown in the
plots are, in most instances, larger than the
corresponding valucs obtained by Stephens (i.e.,
those indicated by the asterisks). However,
parabolic extrapolation, also shown in the plots,
gives asymptotic values much closer to the

. . . 2 2
asterisks; since the asterisks for W, U, and
2 . . )
A" can be regarded as quite accurate, it appears ¥

that parabolic extrapolation is to be preferred

to linear extrapolation.

- 10 -
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4.2 Simulating the Maximum of a Brownian Motion Process

In comment (a) above, we have noted that it appears that the
direct method of simulating the asymptotic process by its discrete
analogue evaluated at k points may lead to inaccuracies when k
becomes large. 1n order to investigate this possibility further, it
was decided to simulate the following Brownian motioa process, for
which the distribution of the maximum is well known. The process

{w(t); 0 <t <1} has mean 0 and covariance.
Y
LE W(s)W()! = min (s,t) . (4.1)

In order to approximate the process, we obtain %(r) at k +1
equally spaced points on the interval (0,1), i.e., we evaluate
{%(j)/k); j=0,1, ... k} by generating multivariate normal vectors
as described above. Siegmund(1978) has shown that the distribution

of the maximum of this discretized process can be apvroximated by

A,
P{ max W(i/k) > x} = 2{1 - ¢ (x + '583)} (4.2)
e - vk
0<j<k
1 * _t22
where @(x) = —— / e t dt , Siegmund's result is exact when k

is ianfinite.

In Table 4.5 we show the quantiles of the distribution of
Mk = max.i U(j/k) » O _ j ~k, for k = 20, 30, 50, 60, and 90, obtained
by simutatrion, using 10,000 replicaiions, and thesce are compared with
the results given by Sicgmund's approximation (4.2). In Figure 6.24

these results are shown granhically. The results of this simulation

g T e e e

S2a mea s e e
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indicate that it would be difficult to use the simulated points
alone to obtain the correct intercept on the y-axis; the turning-
down effect is again present when k becomes large. Also, it
appears as though either linear or parabolic extrapolation would
give reasonable results, the variability in the Monte Carlo points

making it difficult to distinguish between these methods.

5. Quantiles of Limiting Distributions of EDF Statistics

In view of comment (b) above, supported by the above results,
it seems reasonable to extrapolate parabolically ¢o obtain asymptotic
percentage points in Figures 4.1 to 4.16 for statiscics D+, D_, D,
and V. The results are given in Table 5.1, for D+, D, D, and V;
the values given by Stephens' Monte Carlo method are included for com-
parison. It is clear that there is negligible difference between the
values, in terms of the percentage level, so that the mean of the two
estimates (or of all four for D+ and D which should have the same
quantiles) might be taken as a reasonable compromise till more accur-
ate methods of finding true values are available. Table 5.2 lists
the quantiles of the asymptotic distributions of all the EDF statistics,
using this compromise estimate for D+, D, D, and V , and Stephens’

theoretically calculated values for wz, Uz, and Az.

6. Further Remarks

(a) The above extensive study was motivated by the desire to
compare two methods of obtaining asymptotic quantiles of test statistics

which are functionals of a process which is asymptotically Gaussian.

- 12 -
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By a comparison of the two methods, even though cach one is based on
Monte Carlo simulations followed by extrapolation, points are obtained

which we feel will be accurate for practical purposes.

(b) The second method, of directly approximating the asymptotic
process by simulating a discretized version at k points, is a naturally
appealing one. However, indications are that it is very difficult to
preserve accuracy as k becomes large. We have to be cautious, since
we do not always know what to expect of the calculdted quantity (in our
case, values of functionals of the process) as k becomes larger. How-
ever, we had one good indication, given by Siegmund's approximation for
the quantiles of the maximum of the Brownian motion process, which sug-
gests that these quantiles should vary monotonically in k . This was
not the case for the simulated results; and although we must remember
that these are subject to sampling variations, the evidence overall in
these studies suggests that increasing k will not necessarily give
better asymptotic results, probably because the bandling of k

multivariate normal vectors produces inaccuracies.
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ke a e

v + -
Upper Tall Cuantiles for EDF Statistics vn D, vVan D

/o b, Vo V.

Monte Cario techaoique Used

Table 4.0

(For explanation of Cases 1, 2 and 3, and the

sco Section 4)

Statistic nip .90 .95 .975 .99
oot 10 .872 969 1.061 1,152
Case 1 20 .878 .979 1.068 1.176

50 .882 .987 1.070 1.193
® .886 .994 1.104 1.207
/o oh 10 .988  1.135  1.273 1.419
Casc 2 20 1.003 1.152 1.282 1.432
50 1.012 1.168 1.287 1.439
® 1.019 1.174 1.289 1.44L
o bt 10 .685 .755 .842 897
Case 3 20 .710 .780 .859 926
50 727 .796 .870 .940
w .732 .808 .876 .951
VR 10 .773 .883 . 987 1.102
case | 20 .810 921 1.013 1.142
50 . 840 .950 1.031 1.171
@ .886 .994 1.104 1.207
Va oo 10 1.012 1.162 1.275 1.409
Case 2 20 1.006 1.150 1.280 1.432
50 1.001 1.142 1.290 1.448
o 1.019 1.17 1.296 1.456
Voo oo 10 .700 .766 . 814 892
Case 3 10 L715 .785 .843 .926
50 724 .796 .860 <944
o0 .73 .81 .87 96
- 39 -
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Table 4.0 (Continued)

statiscice nip .90 .95 .975 .99
nou 10 934 1.026 1.113 1.206
Case 1 20 954 1.049 1.134 1.239

50 .970 1.067 1.148 1.263
o .990 1.086 1.200 1.300
vnoD 10 1.141 1.270 1.390 1.520
Case 2 20 1.152 1.281 1.403 1.525
50 1.157 1.286 1.411 1.528
w 1,161 1.290 1.417 1.530
Ya b 10 .760 .819 .880 . 944
Case 3 20 .779 .843 .907 .973
50 790 .856 L9253 .988
w .797 .868 .932 1.001
Y 10 8 1.547 1.650 1.772
Case 1 20 0 1.575 1.685 1.813
50
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|
Table 4.1 g
| !
{ Asymptotic quantises* (Estimates) oi EDF Test !
‘ Statistics for the bkxtreme Value Distribution f
With Both Parameters Lstimated f
i
; , | 4
} i pth Quantile ;ﬁ
L ] : ;
[ 1 T T ! 1
; i L R e B S N B e B Ve At }5
E L ) | P | | ] -
! | ' i 4
t 0.010 ! 0.198 ( 0.197 ; 0.264 | 0.489 | 0.015 | 0.014 | 0.098 |
! | ! f ! i ¢ | K
©0.025 | 0.224 | 0.226 1 0.299 | 0.537 | 0.018 | 0.017 | 0.116 |
| | ’. | |
1 0.050 ! 0.250 ! 0.251 |0.326 {0.581 |0.021 }0.020 |0.134 |
, ? i ! ; i ( :
| 0.100 ¢ 0.280 | 0.281 | 0.35% ¢ 0.637 |0.025 |0.024 |0.158 | ;
; | i | i [ i | ;
' . ] : } . '
00,250 | 0.us4 | 0,343 | 0,421 0.739 | 0.035 |0.032 |0.213 | 5
! i i ! '
1 0.500 ¢ 0.429 ? 0.427 ; 0.505 | 0.871 | 0.049 | 0.047 | 0.295
i ! i
0.750 | 0.336 | 0.532 | 0.611 |1.032 {0.072 |0.068 | 0.417 |
1 H
| 5,900 | 0.030 ! G.649 i 0.721 |1.199 |0.100 | 0.095 | 0.569 i
! . %
0.950 | 0.728 1 0.725 3.791 ! 1.310 0.123 0.117 0.696 '
; i
0.975 10.790 i 0.794 | 0.853 1.401 0.146 | 0.138 | 0.820
i !
: !
1 0.990 0.368 | 0.877 0.925 | 1.521 10.175 | 0.165 0.979
1 l ! i . ! | .

“Based on divect simulation of the asymptotic process,
using k = 30 intervals and 10,000 replicates




Table 4.2

Asymptotic Quantiles* (Estimates) of EDF Test
Statiscics for the Uxtreme Value Distribution
With Both Parameters Estimated

- 42 -

: 1 ol
5 . % pth Quantile
! i 1 - ~ 5
: i ot | D I D Voo W v | AT
i 4 | | 4
] ‘ i
'+ 0.010 10.230 0.232 0.300 0.554 ! 0,016 0.016 0.113
l 1 i
i 0.025 i0.258 0.256 0.327 0.596 ] 0.019 0.018 0.132
10.050 [O.ZSl 10.279 0.352 0.636 | 0.022 0.021 0.150
i !
; 1 0.100 ;0.311 0.311 10.387 0.694 0.026 0.025 0.173
F o §
| 00250 50.373 0.375 EO.452 0.799 0.035 0.034 0.229 !
; ‘ | '
! U.500 30.459 0.461 ! 0.541 0.941 ! 0.050 0.048 i 0.316
| . ; i |
+ | '
! ¢ 0.750 1 0.567 0.565 0.644 '1.103 0.073 0.070 0.446
" 0.900 !0.681 0.685 0.753 1.265 0.103 0.097 0.607
1 0.950 i0.760 0.755 0.825 1.379 0.124 0.118 0.728
| |
t i
i 0.975 10.832 0.824 10.892 1.474 0.146 0.138 ¢ 0.853
: | ! i
- 0.990 !0.916 1 0.923 0.974 1.584 1 0.183 0.173 1.056
: | | i
*Based on direct simulation of the asymptotic process,
using k = 60 intervals and 10,000 replicates

e —— e e L



T-410

Table 4.3

Asymptotic Quantiles*® (Estimates) of EDF Test
Statistics for tihe Extreme Vaiue Distribution
With Both Parameters Lstimated

pth Quantile

b p : _ { n pr T
| | ot 1 b LoD vooow U A
'i 1 ] | !
10.010 %0.248 0.244 10.317 | 6.579 r5.016 £ 0.015 [ 0.115 i
b i | ' |
%o.oz5 10.269 {0.270 1G.342 | 0.626 |0.019 §0.018 0.134

| ; i i
1 0.050 ?o.zgz 0.295 '0.368 | 0.669 0.022 %0.0Zl 0.152
1 0.100 10.323 §0.325 |0.400 | 0.722 10.026 |0.025 |0.179

[«

Eo.zso 1 0.387 10.387 10.463 | 0.824 {0.035 :0.034 |0.234
; : ( : :
1 0.500 | 0.472 | 0.470 :0.551 | 0.961 |0.049 |0.047 |0.320 |
i s { | \
%0.750 30.581 10.579 10,654 | 1.122 10.073 |0.069 0,448
| 0.900 | 0.694 | 0.691 |0.761 | 1.295 10.101 |0.096 |0.610
' 6.950 %0.768 i0.751 50.828 1.388 |0.123 10.117 {0.726 .
' 0.975 10.834 | 0.823 Eo.sss 1.476 |0.143 |0.136 |0.833 | |
;0.990 i0.918 !0.909 ;0.983 1.597 [0.171 |0.164 |1.010
: 1 | z
]

*Based on direct simulation of the asymptotic process,
using k = 90 intervals and 10,000 replicates
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Table 4.4 . 4
.
!
Asymptotic Quantiles® (Estimates) of EDF Testc !

Statistics for the Extreme Value Distribution .
With poth Parameters Estimatea i

; % pth Quantile t
. : . —
: ’ i i ; D" i h E v i 32 j
g 0.010 | 0.2 E 0.254 Eo.azs f 0.598 | 0.037 | 0.010; 0.125
E 0.025 ; 0.281 i 0.278 | 0.352 E 0.633 é 0.019§ 0.019; 0.140 ,
' 0.050 | 0.304 10.3035 |0.378 i 0.683 | 0.022 0.021° 0.138
| 0.100 : 0.338 é 0.334 g 0.407 | 0.739 | o.o33§ 0.031 0 0.185 "
Z 0.250 f G397 i 6.395 i 0.472 % 0.844 | 0.035§ o.oza{ 0.1
| 0.500 | 0.4 | 0.480 [0.559 1 0.983 |0.051 0.048¢ 0.329
| ! | | ; |
L 0.750 1 0.591 {0.585 E 0.666 | 1.146 g 0.074 | 0.070 1 0.459 ,
. i | ! : . ~
1 0.900 | 0.705 ! 0.702 0773 11.309 10.102 0.098 ) 0.624
L 0.950 i 0.778 i 0.775 | 0.u38 % 1.406 E 0.122§ O.llb§ 0.738 1
10.975 | 0.861 | 0.835 | 0.895 | 1.492 0.1422 0.135 | 0.841
| 0.990 | 0.930 | 0.918 | 0.965 | 1.608 . 0.169 0.161 | .99
L 4 . L ; 1 [ L : ]

*gased on direct simulation of the asymptotic process,
using k - intervals an! 10,000 replicates

i
—
to
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Table 4.5
Quantiles of tne Distribution of ﬁh » the Maximum of i
n
a 3rownian Motion Process Discretized at k Points i
‘,
! : ; , P
i pti Quantile by i otn Quantile by ’
¢k p Simulation i Approximation (4.2) : i
. .
.90 | 1.5725 1.5146 §
20 |.95 1.9318 1.8296
, .975 2.1466 2.1196 :
§ .990 2.5053 2.4696
I I
i .90 1.6049 ; 1.5386 }
| 30 .95 1.9362 i 1.8536 ;
| .975 | 2.2495 ; 2.1436 |
| .990 | 2.5815 | 2.4936 |
j | | |
i ! f M
% .90 1.6376 i 1.5626 !
50 .95 1.9798 ; 1.8776 !
{ L .975 | 2.2085 | 2.1676 |
! + ¥
; 990 | 2.5407 | 2.5176 {
! | 1
i 1
-; | |
: .90 1.5997 ! 1.5697
i 60 1 .95 1.9416 ! 1.8847 E
; | .975 2.2583 2.1747
: .990 2.4642 2.5250
. | :
! *T )
| .90 1.6239 1.5835 |
l !
| 90 | .95 1.8913 1.8985 |
| .975 | 2.1240 2.1885 |
3 .990 | 2.4625 2.5385
1
L | :
i
!
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i
i
Tabic 3.2 P
b
P
Asynmptocic Quantiles ot edF Yest Statistics ;
For the sxtreme Value Distribution ?
With Both Parameters Estimuted 0
L pth Quantilie :
1 - T - - : Ve ES
PP i,/h " 1v/ab !vabp i /o Vv ] wo Le A” |
i i 1: % ! !
.75 1 .62 4 .62 | .70 [ 1.22 | .126 | .073 L4T4
.90 . .73 1 LT3 { .80 |1.37 | .142 L .102 | .637
| ! ! oo !
|95 .8l 4 .81 | .87 | 1.48 | 2150 1 124 757 .
I ' t | i ! i
L9751 .87 | .87 i .9 % 1.56 | .158 | .i46 .377 !
\ . ! ! !
L9900 .96 f .96, 1.01 11.67 |.170 | .175 ]1.038 .
L L i i { ' { |

*From Stephens (1977, Table 1, Case 3)
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