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1. 1Introduction

A practical problem in which the results of the present
paper may be useful is as follows. The experimenter is inter-
ested in a certain event, say A , defined in terms of behavior
of the subject (e.g., choice of one of the two displayed stimuli
which are to be discriminated).

The experimenter needs the probability PS(A) . where s
denotes the subject. To estimate this probability one should
make a series of independent observations on the same subject,

a procedure often not feasible for reasons such as memory or
learning effects, or simply subject‘'s boredom.

In such cases, one often makes the assumption that PS(A)
does not depend on s , and proceeds to estimate P({A) using
data for large groups of subjects, each tested once or twice.

The crucial issue in such a procedure is the inter-subject
variability of PS(A) . The present paper gives, among others,
methods of assessing this variability, and testing the hypothesis
of equality of average PS(A) in two groups of subjects, under
the constraint that at most two observations are taken for each
subject. In a sense this paper constitutes a statistical counter-
part of an earlier paper written by one of the authors (see Barto-

szynski (1978)).

2. The General Scheme

We shall consider the following situation. Let G6_ = {Gl,...,Gn}

n

be a system of independent experiments. Assume that each experiment

Bl
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may lead to a "success" or to a "failure", with (unknown)
probability of success in experiment Gi equal Py - Our
problem will be to construct methods of inference about pro-
babilities Py in situations, when for some reasons one is

allowed to make at most two independent observations of each

experiment Gi .

Obviously, not much may be inferred about the individual

values p; i we shall therefore construct estimators of "moment-

like" quantities
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Let Xi be 1 or 0 depending on whether the first
trial in experiment Gi leads to success or failure, and

similarly, let Yi be the random variable coding the outcome

of the second trial on Gi .

We assume that different experiments and different trials on
the same experiment are independent; moreover,

P(Xi = 1) = P(Yi =1y =p. , i=1l,...,n . (2)

Denote

E.. = X.Y. (3)

and put

1 n
.V=;“ E Y. (4)




L=%(u+vVv) , 2 (5)

_1 7 -
== Z £ , W=12 - Uv .

The following proposition is an improvement of the similar

proposition proved by Bartoszyfiski (1971):

PROPOSITION 1. The random variables L and W are unbiased

estimates of P and 02 respectively. Moreover, Var L £ 1/8n ,

Var W < 3/4n and Var(wlo2 = Q) s 1/16n .

Proof: By (2) , we have Exi = EYi =Py - Consequently,
1 ¢ -
EU = EV = = ) P, = p . and also EL = p . Since
i=1
- _ _ 2 .
Egii = EXiYi = EXiEYi = p; + We get, by independence of U and V
n n n 2
1 1 2 1 2 -
EW == ) Ef,. - EUV == 7} p- - EUEV = & 1 p; - P
ni=p M = noy=p
(6)
=02

which proves the unbiasedness.
Next, Var X, = Var Yi = pi(l - pi) < 1/4 , and using the

assumption of independence, we can write
1 n
Var U =Var V==_ Y Var X, < 1/4n. Since U and V are

independent, we have

Vvar L = %(var U + var V) < 1/8n . (7




It remains to evaluate the variance of W . We may write

1 B
Var W = Var (= )} E.. - UV)
i=1
' 1] B n
= .z Var g,, + Var UV - = Cov (.g £y « UV)
n® i=1 i=1
_ n . n , n n
== J var §.. + S Var } &, .. -5 Cov (] ¢.., Erern ) |
n2 i=1 i1 n4 i, j=1 1) n3 i=1 ' x,m=1 km 3
i
1 % 1 %
= == Var £,. + — Cov (E.., £, )
n2 i=1 1d n4 i,j.k.m=1 13 km
2 n
R . ) Cov ( €11 &xm ) -
n i, k,m=1
Taking into account the fact that Cov (Eij'gkm) is zero
unless 1 = k and/or j = m , we obtain after some transformations
the formula

n -1 2 n
var W = 3 121 cov (gii'gii)
n
) Aiggi_ll izl j;i Cov {Ess v 4y
1 D
2 n
! n_4 izl j;zti k,zti Cov ({’ij' {’ik) (9)

k#]

We have, if different letters stand for different indices,

L'_----'_———‘
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6.
cov (£, £;;) = Pa(1 - pD) , (10)
Cov (5, £;;) = B;PI(L = p) (1)
Cov (Eij. ﬁij) = pipj(l - pipj) . (12)
Cov (Eij' Eik) = pjpkpi(l - pi) . (13)

Thus, all terms in (9) are nonnegative, and all are bounded

from above by 1/4 . We may therefore write, omitting the second

sum in (9)

n -1 .n 1 _n(n -1 2 .n{n -1)(n - 2)
var W s 3 s v T4 3 * 3 4
n n n
4,1 1
< 4n + 2 + 2n (14)

which gives the asserted bound.

Finally, if 02 = 0 , then all p; are equal. Let their
common value be p . Substituting (10) - (13) to (9), we obtain,
after reduction

var Wjo? = 0) =251 g2 1 - p?. (15)
n

The maximum is attained at p =% and is asymptotically equal
te 1/16n , which completes the proof.

Thus, the bound for the conditional variance Var(wlo2 = Q)
is sharp. One may conjecture that the general bound for Var W
can be improved, even considerably. However, simple numerical data

show that the maximum under constraint 02 = 0 1is ggg the overall

e EEE———
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maximum. Indeed, if n = 6 and Py = -.. = Pg = 0.5 (hence

3% = 0) ., the variance of W equals 1/16n = 8.68 - 10_3 . If

- = = = = 2 _
pl = 0.45 , Py = +-. = pPg = 0.5 , Pg = 0.55 (hence ¢~ =

-4)  yariance of W is 8.69 . 1073 . If P, = P, =

Py = 0.45 , p, = p; = p, = 0.55 (hence o = 2.5 + 107)

8.3 - 10

variance of W is 8.71 « 107~ . Similarly, if Py = P, =
Py = 0.4 , Py = Py = Pg = 0.6 (hence 02 = 0.01), we have
Var W = 8.8 « 10°°, etc.

To make Proposition 1 useful for practical applications,
we shall complement it by specifying conditions under which
the distribution of W is asymptotically normal

For that purpose, we assume that the system Gn is a
beginning of a potentially infinite sequence of independent ex-
periments Gl' G2,... . In short, we assume that n may be
chosen arbitrarily large.

We shall prove

PROPOSITION 2. If

v 2 2 - .

i=1

then the random variable W defined by (5) is asymptotically

normal.

Proof. Since pi(l - pi) < 2pi(l - p;) , we have also

1 pfl-p) == (17)

i=1

and it follows that all three random variablés U, V and 2
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defined by (4) and (5) are asymptotically normal (see e.g.
Fisz 1961).
We shall prove that the joint distribution of (Z,U,V)

is asymptotically normal. Consider a linear combination
aZ + bU + cv (18)

which may be written as

1
n

. [aXiYi + bxi + ch] =

1 i

(19)

I}~

o W2
e~
>3

Each of the random variables ni assumes the values 0,b,c,

and a + b + ¢ with probabilities respectively equal to

2 2
(1 - P pi(l - p;) . P;(1 - p;) and pj . Consequently

- 2
En, = (a + b+ c)pi + (b + c)pi(l - p;) (20)
and also, after some reductions,
_ .22 2 2 2 2
var pn; =a pi(l-pi) + 2a(b-+c)pi(l-pi) + (b® +c )pi(l-pi) . (21)

Since the random variables n; are bounded, it suffices to show
that Z var ny diverges for any a,b,c which do not vanish
simultaneously. If a # 0 , this is true in view of (16), while
if a = 0 , we must have b2 + c2 > 0 , and divergence is ensured
by (17).

Using now theorem from Rao (1965), p. 319-340, we conclude
that the random variable W is asymptotically normal, with mean

0% and variance bounded by 3/4n .

.‘..'.==:;;;a"""-“ﬁiHiﬁ-------......________~,




3. Comparison of systems

Let us now consider two disjoint (hence independent) systems

G(l) and G(Z) , consisting respectively of ny and n, exper-

iments. Let n = n; +n, and let G = G(l) y G(z) be the com-
bined system.
In the sequel, we shall denote by Z(l) and 2(2) the

summations extended over the indices in G(l) and G(Z) respect-

ively.
Let
gt - % Z(l)pi , 43 = % 2(2)91 ' (22)
i 2
- 2 -
i

and let p and 02 have the same meaning as before.

Under the constraints of the preceding section, ﬂamely that
one can have at most two independent trials on each experiment,
we shall construct a test for the hypothesis that 5(1) = 5(2)

Let W , wl and w2 be the random variables defined by (5)
for systems G, G(l) and 6(2) .

We shall prove
PROPOSITION 3. The random variable
K =W - ;;w -~ ——W2 (24)

satisfies the condition EK > 0 , with EK = 0 1if, and only if
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5(1) = 5(2) Moreover, if n 7 » , then for any DNy, n,
2nln2
we have VvVar K < €~ n3 .

proof. Let us write

o =—1I;Z(pi—13)2

1 1 ~(1 (1 -2 ~ - -
=2 ;( )(pi B p( ) p( ) £y %+ % 2(2)(pi B p(2) + p(2) - p)z
_ 1y -(1),2 1 5(2) -{2),2
= =1 ey - P 2+ =1y -
n - - n _ -

+—;}(p(l)—p)2+—r—12-(p(2)—p)2 (25)

n n n n .

_ .1 2 _2 .2 1 =) =\ 2 T2 =(2) =\ 2
‘n°1+n°2+n(p -pf (P p) .

By pProposition 1 the random variables W , wl and W2 are
unbiased estimators of 02 . oi and 0% respectively. Conse-
quently,

n n n n
- 1 2 _ 1= -2, 2512 -2
EK—EW-nEwl—nEWZ-n(p -+ =0 -p-z0 (26)
. . . . . -(1)_ =(2) .
with equality holding if and only if p = p since then

S 5=

To evaluate the variance of K , let us write

_lge . L

_ 1
=1




and similar formulas hold for wl and W2

Using (27) we may write

1,1 ¢ Y 15 (2 1
k=2 L et ) E -5 L Epd - (28)

Conseguently, we obtain

n? var K = JE cov (z(l) gjk' z(l) Ejk) (29) i
ny ?i

:
1 (2) (2 1 i
+ ;5 cov (} Ejk' Y ) gjk) + ~5 Cov (Zgjk, Zgjk) ;ﬁ

2 0 ;

2 (1) 2 (2) l

- o] cov (§ gjk, zijk) - o, cov (} gjk, {gjk) , z

since Z(l)gjk and Z(z)gjk are independent.

By taking into account only those covariances Cov (Ejk' grm)

which are not zero, we arrive, after considerable algebra, at the

formula
2 Py 2y 2 2 ny 22y 2 2
n® var K = (nn ) Z pi(l - pi) + (nn ) Z pi(l - pi)
1 i 2 i
n 2
2 (1) (L) 2 ~
+ 4(;;:) g j;i pjpi(l p;)
(30)
+ 4(;;;) z jzi pjpi(l - pi)
an, (1) ¢(2) , 2
=2 gt ppi (1 - Py -
n"n, i i

(cont.)
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4n
- = 1 1 Wepla - e
n“n i j
2
n 2
2 (1) (1)
(nnl) E_ _];1 pipj (1 - Pipj)
Dy 2 (2 ¢ (2)
(g;;) § j;i p;P;(1 - pypy)

1 (1) ¢(2) 1 (2) ¢(1)
+ = p.(1 - p.p.) + =5 .p.{(1 - p.p.)
2 ]ZL § P;P; Py * 72 g § PPy P;P;
n 2
2 (1) (1) (1)
+ 2(=%) 7} N ) p.p. P, (1 - p.)
L R T 2 21 37k 1
k#]j
Dy 2 (2) (2) (2)
+ 2(—)
nn, :zL j;zfi kg;i PPyp; (1 ~ p;)
k#J3
2
+ Sl I T pypypp; (1 - py)
n?2 i j#ikdi J K3 1
k#j

(1) (1) (1) (2) (2) (2)
) p.p P, (1-p,) =} ) ) pip P (1-py) }.
i jazéi k;zfi 37K T A kA 3Tk i
k#3 k#j

Using now the estimates pf(l - pi) < % . pjpz(l - pi) < 4/27 ,
pipj(l - pipj) < Y% , and pjpkpi(l - pi) < % , we may write, omitting

negative terms in (30):




13.
2 2
n n
n2 Var K < 2 + 1
4n2n 4n2n
1 2
4 n, 2 4 n, 2
v o453 (nnl) nylny-1) + 4.5 (nnz) nyln, - 1)
n 2 n 2
1 -2 1,1
* 3 (nnl) ny(ny - 1) 4(nn2) nyiny - 1)
n,n n.n n 2
12 2.1 1 2
+ + + 27 (=) n;(n,-1)(n, -2)
41,12 4n2 4 'nn 1'"1 1
n 2
1,1
+ 2 4 (nn ) (nz- 1)(n2-2)
+ 2.2 30 (n, - 1)n. + 3n,(n, ~ 1)n,] (31)
4 n2 1'1 2 2772 1 g

Denoting nl/n = X , n2/n =1 - x , we obtain finally from

{31):

Var K ~ %- 2x(1 - x) +

=
ol
~—
- -
+
N,l—'
~3HOn
~
X
+
-
i
L
N
s
Nt

which yields the asserted asymptotic bound 2n1n2/n3 , valid for
all sufficiently large n .

Maximizing with respect to x we obtain

Y




COROLLARY. As n + « , we have regardless of n; and n,

var K s a, ~ 1/2n . (32)

Similarly as in the preceding section, we have

PROPOSITION 4 . Under condition (16), the asymptotic (as

n +» « } distribution of K is normal.

The proof is analogous to the proof of Proposition 2 and
will be omitted.

Propositions 3 and 4 provide means of testing the hypothesis
that 5(1) = 5(2): one may take the random variable K as the
test variable, and use one-sided critical region, large values

suggesting rejection.

4. Applications

A typical application, for assessing the inter-subject varia-
bility of choice probabilities, has already been described in the
Introduction. Somewhat more generally, one may consider the follow-
ing situation.

Suppose that the subjects are trained to perform some classi-
fication task, e.g., classify some objects into binary categories.
Taking one of these categories as '“success”", and classifying the
same set of objects twice by the same group of subjects, one obtains
a variety of possibilities of applying the results of this paper.

Let pij be the probkability that i-th subject will classify j-th
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j Yij be 0 or 1

depending on how the j-th object was classified by the i-th

object to the chosen category, and let xi

subject on the first and second trial.

Fixing i , and taking a large set of objects, one can estimate
the variability of pij under changes of j ; if this variability
is large, one may want to identify objects which are easier, or
more difficult, to classify.

On the other hand, fixing j , and varying i , one can test
whether there exists sufficient homogeneity among classifying sub-
jects; one can also test the hypothesis, using Propositions 3 and
4, that the two groups of subjects are equally well trained, etc.

If there are more than two categories in the classification,
one can apply the same technique by fixing one category. However,
if one can ensure not two, but four independent classifications
for each person, then one can define '"success" as the event "iden-
tical classifications on two successive trials".

Letting pijk , k=1,2,... denote the probability that i-th
subject will classify j-th object into k-th category. the proba-

bility of success in this case is

2
Ip =v,, .
p iik ij
Again, one can test variability of vij under changes of sub-
jects and objects.
Finally, observe that the above ways of testing the quality
of classification by human classifiers is independent of the con-

cept of "true category" of the object, and applies equally well

4
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to classification schemes in which such concept makes no sense

(e.g. grading students®' papers, etc.).
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