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I. Introduction

he objective of the present investigation is to make a comprehen-
sive experimental evaluation of a recent theory of elastic~plastic
impact and to modify the theory to provide a more realistic description

of the impact characteristics. Previous work has included investigation

of subsonic localized impact damage in glass , ZnS , transforma-
- 3 ( L’M ‘ ml’ ' ) -
tion toughened zirconia (TT—Zrd;B , and other ceramics .

A major advantage of the theory is that it provides a means to predict the
response of a material subjected to {mpact loading using contact character-
istics determined by static loading tests. The assumption that the damage
induced at a particular maximum static load is the same as that resulting
from an equal maximum impact load has frequently been invoked or surgrst-

o B Lo

LA recent report describes similarities and differences in
damage induced by static and impact 1oadiAE‘ELT’“A preliminary evaluation
of the theory of elastic-plastic impact using limited data showed that the
theory yields promising results T The present report describes certain

modifications of the theory and a more complete evaluation of the theory

based on more extensive daca.‘

j
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II. Experimental Procedures

Glass, CVD ZnS, and TT-Zr0Q, plates described in Table I were pre-

2

pared as follows:

Glass—--Larger glass plates were cut using a glass cutter to form

the square specimens.

ZnS--The square plates were used in the polished condition in which

they were secured from the manufacturer.

TT-ZrOz——The calcia partially stabilized zirconia plates were pre-
pared at CSIRO where they were aged at 1300°C for various periods of time
to form three grades in which the KIC increased with increasing aging time
(as fired, 0 hours; under aged, 30 hours; peak aged, 48 hours). At
Ceramic Finishing Company the TT—ZrO2 plates were polished on one surface
using 1/4 pum diamond powder as the last step. These specimens were frac-

tured in earlier experiments and the remaining ends of these specimens were

used in the present experiments.

The physical properties of the materials are listed in Table TI.

The plates were coated with a thin layer of soot by moving the plates
back and forth through a candle flame until a layer of sufficient thickness
was formed. The imprint of the sphere in the soot layer was used to measure
the contact radius. The assumption that the radius of the imprint repre-
sents the contact radius, including the effects of variation in soot layer

thickness, is discussed in a later scection.
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The specimens were subjected to either static or impact loading. The
static loads were applied using a table top, Instron testing machine.

When the glass spheres were used as indenters, the spheres were fastened

to the crosshead and the glass or ZnS plates were placed on the load cell.

R

The tungsten carbide spheres were fastened to the load cell and the TT-ZrO2

specimens were fastened to the cross head because of problems involved in

gluing the very small spheres to the cross head. i
For impact loading, the spheres were coated with a thin layer of alum-
inum to improve their reflectivity and accelerated using a gas gun with

compressed N, gas. The specimens were mounted on a steel plate with a

2
large surface perpendicular to the path of the sphere. The impacting and
rebounding velocities of the spheres were measured using photographs taken
using a camera with anopen shutter. The spheres were illuminated at known
time intervals using a stroboscope and the velocities were calculated by
dividing the distance between images by the time interval.

The contact and indentationradii were measured using a grid in the

eyepiece of a microscope.




8
III. Review of the Theory
~
1
The theory of elastic-plastic impuct( ) is based on the following
empirical relations for static loading:
- £
n ==k /r) (N
¢ o
1] 1 r" b
n' =xk'(r./r) (2)
i"o

where n and n' are the contact and indentation pressurcs, respectivelv;
r is the contact radius, r, is the indentation radius, and v, » ', & and
c i

]

L' are contact characteristics that are determined from log-log plots of

nvsr /r and n' vs r. /r .
(& (8] 1 4]

The characteristics § and ¢' account for work hardening and other
material characteristics that control the deformation under static loading
conditions. The characteristic ¥ represents the pressure at which the
1

contact radius equals the radius of the spherical indenter. Likewise, «

represents the pressure at which the indentation radius equals the radius

of the spherical intenter. At high r/r ratios, Equations (1) and (2) no
O
longer apply because of deformation of the sphere amd increasing errors
in the geometrical assumptions., Also, for a given material we would
1

expect k to be less than o', because r, is less than v for all r < v
1 ¢ 4

so that the indentation area is less than the contact arca and n is less

than n',




The pressures are taken to be the load divided by the projection of

the area, so that (1) and (2) can also be written in the form
) )
p = wxr S(r Jr )ot? . (3)
o ¢’ o

. el 2 542
Po=mk'r (ri/ro) (4)

An expression for the impact loading contact radius can be derived by
assuming that the sphere remains rigid. Then, the work done by the load
as given in Equation (3), to the point of maximum penetration, can be
equated to the initial kinetic energy of the impacting sphere. This

. *
yvields

[

o+
MEFD )7y (5)
© 2ETT :
(6]

3 o

By assuming that equal static and impact loads result in equal contact

radii we can substitute for r. in Equation (3) using Equation (5) to get

the following cxpression for the impact load

P =rxur 2[ﬁ£§i£%}ﬁ v (6)

rknr
3]

* -
This method neplects the stress wave energy and the fracture surface energy.
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10

Similar manipulations provide expressions for the indentation radius,
penetration time, depth of damage, remaining strength, contact time, and
coefficient of restitution. The equations used in the present work are
given in Table I11 which alse includes equations for completely elastic

. - . 17,27
response which will be referred to as the Hertzian cnso( ’ ).

Moditication of the Analyses

(18,19)

Roesler and others used dimensional analysis and energy argu-

ments to derive cequations describing the variation of crack size (¢) due

to varying contact load (P) in the "far field" where the effects of the

nature of the particular contact are considered to be small, In the Torm

) 20) ... . .
used by Lawn and Marshall this cquation is

Te 3/2
P = —=c / (N
X
-_—
in which K is the critical stress intensity factor and y is a constant

I¢

LR

that accounts for geometrical and "rict i
The equation was incorporated into the original analvsis of elastic-plastic
impact to permit caleulation of the depth of damaye and the remaining
strength.  However, in an investigation of penectration of damape during

. . . Co - . . . . (2
single point diamond prinding of ceramics, Kirchner, CGruver, and Richavd

found that for diamond points with varving sharpness, the depth ot damage

(¢) varied systematically with the lenpth of contact even in the "fav tfield"

where the effect of contact characteristics was expected to be minimal.

v et s i eonB
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List of Svmbols

Contact pressure

Indentation pressure

Resistance to Penetration

Resistance to indentation

Modified

Exponent characteristic of the variation of the contact

pressurce with increasing load

Exponent related to work hardneing

oy

Modified ¢

Radius of impacting sphere

Mass of impacting sphere

Contact radius

Indentation radius

Maximum load perpendicular to the surface

i =1 for sphere

» 'l, -
Young's modulus = 2 for plate

L, 2 as above

Poisson's ratio j

dast.




e

a, B

Ic

[¢]

15
9 2 2,72
Q = "1‘6-[(1—\)2) + (l—vl)El

Impact velocity

(1-vi)

K. = e ——
j ﬂh]

Coefficient of restitution
o+2
Indentation diameter
Crack length
Constants determined from static data

where P/di = g + Bcl/2

Critical stress intensity factor

13

Proportionality factor accounting for unknown geometrical and

frictional factors

Depth of the disturbed zone

e BB e Ea e ke

e ek aio | w2

[



. . (22
Based on the above observations, Conway and Kirchner ) analyzed

penetration of surface damage for the case in which a "disturbed” zone
is formed under the contact. This "disturbed" zone may be formed as a
result of plastic deformation, shear cracking or crushing under the con-

tact. This analysis yielded a relation of the form

P oz ct/? (8)
o]

in which z, is the depth of the disturbed zone. A proportionality factor
can be introduced which accounts for other characteristics of the contact
and variations in KIC from one material to another. Similar relations
might arise as a result of line contact loading, wedging, or residual
stresses.

Shear failures under contacts have characteristic flow or crack
patterns that follow shear stress trajectories(ZB). Based on the shapes
of these patterns there appears to be a direct relationship between the
depth of the disturbed zone and the contact width. Therefore, it may be
appropriate in many cases, such as single point diamond grinding with
diamonds having various degrees of sharpness, to substitute the contact
width for % in the above relation.

A "disturbed" zone has been observed in ZnS statically indented by

glass spheres.  When the indentation diameter (di) was substituted for 2,

. ; 1/2 . .
in the above relation and l’/di was plotted vs ¢ / a good linecar fit was

(8,9

observed




Based on the above experience, relaticn (8) has been substituted for
Equation (7) in the original derivations of the equations for calculating

the depth of damage and the remaining strength after impact.

Remedies for a Problem in Measuring rC -

As mentioned previously, one should expect ¥ to be less than X' because !
rC > r, in all cases. However, experimentally one finds that, as shown in
Figure 1, the extension of the data representing the contact tends to
intersect the data representing the indentation at a point r < r, rather

than at r = T, Two possible explanations of the observation were con-

sidered:

1. The elastic recovery in the plane of the specimen surface may

decrease r. substantially(zg).

2. The increased discontinuity at the rim of the indentation with
increasing indentation size may cause r. to increase less with
load than otherwise expected. 1In terms of the graph this implies
a shallower slope than the original contact radius curve and an

intersection at r ¥ r .
c

It is unfortunate that the cause of the difficulty is not understood because

the remedies implicd bv the above explanations are quite different. In the

first case it is reasonable to assume, beenuse the yield otress in ox- !
ceeded, that the correct curve is simply shifted to the right as indicated

in Figure 2, so that it intersects at r = T This is the same as substi-

tuting K' for K. 1In the second case the data at low r /r0 would be considered
o

to be relatively good but the errors would become greater at higher values
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of r /r . Therefore, in this case it is reasonable to connect the pood data
¢ [&]

points at low r)/r” values with r = r, as shown in Figure 3,
¢ ¢ ]

In any event it was decided to assume that «' and to refer to this
case as the modified clastic-plastic theory. One would expect that if the

other choice had been made the resulls would have fallen, in most cases,

between those of the original and modified theories.

o
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1V. Determination of x, x', £, and ¢'

In the case of the ctabicoi- o Toadod apocima, n oana ntowere de tormine i

|
by dividing the applied load by the contact area and the indentation arvea,
respectively. Then, n was plotted vs (rc/ro) and n' was plotted vs r‘,/r0
on log-log plots as suggested by equations (1) and (2). ¢, ', &, and &'
were calculated {rom the slopes of these plots (Table TV).

The orviginal data were less accurate than desired. The principal
problem involved measurement of the contact radius. The soot laver which ;

is used to measure r. must be thick cnough to provide a distinct contrast

at the edge of the impression so that an accurate measurement can be made,
but, if the soot layer is too thick, the sphere will pick up soot from
outside the contact area. In some cases this results (n an irregular
boundary. The minimum radii were measured in these cases,  Because the

soot laver was applied manually the thickness varied to some extent from

specimen to specimen.

The data points representing cases in which the

soot layer is definitely too thick are noted on some of the praphs.  In

weneral, the r, measurements are more accurate and less scattered than
i

the r measurcements,
¢

One benetfit of substituting v' for v as is done in

the modificed theory is that it suppresses some of the effect of inaccuracies

in the r measurements.,
¢
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V. Experimental Evaluation of the Elastic-Plastic Impact Theory

Glass Spheres on Glass Plates

This material combination involving glass spheres and glass plates
represents an end member case in which the response at low impact velocities
is almost completely elastic. Therefore, one would expect the Hertzian
elasticity theory to provide a good description of the impact. The contact
characteristics were ¢ = 2.2 and x = 126 GPa. The glass does not indent
permanently so §' and «' were not determined.

The contact radii predicted for various impact velocities are compared
with the Hertzian theory predictions in Figure 4. The Hertzian theory
fits the data best as expected but both theories yield reasonable approxi-
mations. At the highest impact velocibies above 100 msnl crushing occurred,
increasing the contact radii above the values otherwise expected. At inter-
mediate velocities ring and cone cracks formed in many specimens. There is
no definite evidence that the presence of these cracks affected the contact
radii.

The loads predicted for various impact velocities are plotted in Figure
5. The predictions of the two theories agree at low velocities but at
higher velocities the elastic-plastic prediction leads to higher loads
than the Hertzian theory. Again, because the response of the glass is
clastic, one would expect the Hertzian theory to vield the best results.

The impact indentation radii and coefficients of restitution were

not calculated for impacts of glass spheres on plass plates because the

absence of indentation prevented determination of v' and 7',




Elastic —plastic theory
£ =220
B K=125.6 GPa 2

o

O

®)
|

H

@)

@)
/

Contact Radius — um
ol
o
o
=

I
1Y)
-
N.
(®]
- |
_.'
-
@
o
-
<

200} }3%

— O New data

Tolo] = + Earlier data

R. M. Gruver, p4l

B April, 1976 Notebook

0O | 1 1 1 L1 1 1 I | | | {
0] 20 40 60 80 I00 120 |

Impact Velocity —m-s™! |

Ficure b cambaricon of Ueorebioeal dmiact ocanteot il foroctart te-plactie
ard oclastieity (Hertoioan) theorics Colans plares o 5o dinmete
REETRES ."-;v'nvrv:;).




5000+~

4000

3000
Elastic-plastic

theory
2000+

Impact Load -N
|

Hertzian Theory
1000

O 20 40 60 80 100
Impact Velocity—m-s~!

Figrure S Comparicon of theoreticoal dmpoe' Toeobs Soon o Dot be oy bt fo
Hertoian Lheori.o o, (;fl:a:'.:i Gty 4o adiam e e o laan vy te e ),




,
\
,
\
\
,

In contrast to the case of glass on glass, impacts of the plass

spheres on the ZnS plates yield an elastic-plastic response. Under
- —
static loading conditions, indcﬁfszT;;;—hcrc first obscerved at a 40 N load
but a load of 72 N was necessary to obtain a measurable indentation. Inden-
tations were observed at all impact sites. Impact velocities less than
-1 . . .

about 19 ms were impractical because the curvature of the trajectory
made it difficult to hit the target.

The static contact characteristics are given in Table IV. The recently
reported values which were § = 0.71, «x= 4.9 GPa, &' = 0.34, and ' =
3.0 GPa were used to calculate various predicted curves which are compared
with the Hertzian theory and experimental results.  In some cases ¥ was

' as described in Section 111. These results

assumed to be equal to «
are called the modified elastic-plastic theoryv results.

The contact radius results plotted in Figure 6 show that the contact
radii are only slightly larger than the Hertz theorv predictions and sub-
stantiallv less than the other predictions. There are several factors
contributing to errors in these predictions including the strain rate
dependence of the {low stress, neglect of the stress wave energv, neglect
of the fracture energy, and so forth. The above data supports our earlier
conclusion that the most important source of error is the strain rate
dependence of the flow stress(g). As the strain rate increases, the flow

stress increases and the material responds more elastically than it does

under the static loading conditions used to determine the contact character-

istics. This more elastic response shifts the results toward the Hertzian
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theory curve. It is interesting that this shift occurs so uniformly

over the range of velocities. In this connection, it is well to remember
that each impact results in a wide range of strain rates. During the early
stages of the impact process the highest strain rates are encountered but
these high strain rates involve a relatively small volume of material.

F Later in the process, the strain rates are lower and involve larger volumes
of material. Apparently, the effect of averaging over these various strain

rates and volumes of material is a smaller impact velocity dependence of

the contact radius than might otherwise have been expected.

The impact indentation radii calculated using the elastic-plastic
theory and the modified elastic-plastic theory are plotted in Figure 7
where the results are compared with the experimental data. The calcula-
tions overestimate the indentation radii mainly because the strain rate
dependence of the flow stress increases the elastic response compared with
that expected based on the static contact characteristics.

The predicted impact loads are plotted in Figure 8. The impact loeoad
was not measured so there are no experimental data for comparison. There-
fore, comparison is made primarily with the Hertzian theorv. 1In the
elastic-plastic case, vielding occurs at the contact which decreases the
average pressure in the contact compared with that expected during a com-
pletely elastic response. Yielding also increases the penetration of the
sphere into the target. The net result is that the maximum impact force
or load is less in the elastic-plastic case than it would be in the elastic
case. The values indicated for the elastic-plastic theory scem to be too
high in relation to the Hert: theory but those for the modified elastic
plastic theory scem reasonable enoupgh althouph we do not, as yet, have an

independent means of evaluating them.
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One possible explanation of the high calculated values of impact
load is that the theory overestimates the contact radii (Figure 6) so
that the contact areas are overestimated. When these areas are multiplied
by the contact pressures, the resulting load values are overestimated.

In an attempt to evaluate this effect the experimental contact radii
were combined with the contact pressures to calculate the impact loads
with the results shown in Figure 9. The resulting loads are about 50%
as great as those represented by the theoretical curves. While this result
seems reasonable there is, so far, no independent way to check this
result.

For impacting spheres, the coefficient of restitution measurements
provide a sensitive means to assess the energy losses that occur during
the impact process. In ideal elastic impact, the sphere rebounds at the
original impact velocity, the coefficient of restitution is one, and there
are no energy losses. In an actual elastic impact, there are stress wave
energy losses, the sphere rebounds at a velocity slightly less than the
impact velocity and the coefficient of restitution is slightly less than
I, frequently in the range from 0.9 to one. In these cases, the measure-
ment of the cocefficient of restitution is a relatively sensitive means
of estimating the stress wave cnergyv.  When there is an elastic-plastic
response the situation hecomes more complicated bhecause both indentation ;
energy and stress wave energy contribute to the losses and the coefficient
of restitution may decline to very low values. Nevertheless, because of
the sensitivity of the velocity in responding to the energy losses, coef-

ficient of restitution measurements represent an effective means to determine

how well a model corresponds to reality.
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The coefficients of restitution calculated using the elastic-plastic

theory and the modified theory at various velocities are plotted in Figure

10 where they are compared with the experimental data. The predicted curves

greatly underestimate the measured values apparently because the strain rate

dependence of the flow stress causes the material to respond much more .

elastically than would be predicted based on the response under static
conditions.
One of the principal objectives of the present program is to predict

the crack sizes and the remaining strength after impact damage. Figure 11,

. . . 1/2 . '
which is based on the relation P/d; « ¢ , was presented in a recent

‘ {
8 ) ;
rcporL( ). The data for c¢ > dc’ where d is the contact diameter which is i
: ¢

used to define the boundaries of the near field, were fitted by

2
prd; = 2.76 x 107 ¢/ 4 7.87 x 10° (9)

Substituting the above equation in

(742) (1 +1)  20042) (€1 41)

(+6) (5, 742)  (£46) (5" +2)
P/d; = % knr (—=75) v (10)

(]

yields an cquation that can be used to predict radial crack length.,  The
results of these theoretical calculations are compared with the experimental
data in Figure 12, Althouph the modified theory yields an improvement in

the fit to the experimental data, it is clear that the theory still does .
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not account for the strong variation in maximum radial crack length with

impact velocity represented by these data.

Tungsten Carbide Spheres on TT-Zr0,

Impacts of tungsten carbide spheres on TT-Zr02 yield an elastic-

plastic response despite the fact that zirconia is much harder than zinc

sulfide. The log contact pressure vs log normalized contact radius curves

tor the three grades of TT-Zr0O_, show leveling off of the contact pressure

2
at normalized contact radius values above 0.21. This behavior was not
observed in the other materials. Also, it was not observed in the inden-
tation radius measurements on T’I‘-’/.r()z. The mechanism responsible for the
hehavior is not understood. The possibility that it might occur as a result
of plastic deformation of the sphere was considered. The spheres were
examined by optical microscopy and no evidence of plastic deformation was
observed.  However, it is quite possible that small plastic deformations
could have gone undetected.  Another possibility is that it might be caused
by 4 phase transformation, perhaps monoclinic to tetragonal under the very
hivh pressure conditions existing under the contact.  With regard to both
ot these mechanisms, it is not clear why the leveling off is observed only
in the contact pressure and not in the indentation pressure.

The contact characteristics measured for the three grades of TT_ZN)Z
can be compared (Table V). Although there seem to he svstematic variations,
i view of the nncertainties in the results, these variations mav not be
sipniticant.  The indentation radii obscerved at various static loads on

as-fired and peak-aped TT-Z2r0. are compared in Figure 13, Little difference

2

was observed in the results for the two materials.  Therefore, the aping
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treatment does not seem to have an appreciable effect on the plastic 1
: 1} - b

flow properties of TT—LrOZ.
]
The contact radius vs impact velocity predictions are plotted in /

Figures 14-16 where they are compared with experimental data.  Because ;

the measured contact radii increase with the thickness of the seot layer

but the theory is based on the actual contact with the specimen surface,
it seems reasonable to give added weight to the lower contact radius values
in interpreting these results. Using this appronch, *he orieina)l and
modified elastic-plastic theories overestimate the contact radii. Apgain,
it seems likely that the contact radii are smaller than expected because
the strain rate dependence of the flow stress causes the Ti-Z2r0, to respond
more elastically than expected based on the contact parameters determined
during static leading. It is also possible that the data are slightly
underestimated as a result of the elastic contraction - ‘i1 ] v
remeved.  The Hertzian theory underestimates the contact radii in each
case as expected,

The indentation radius vs impact velocity predictions are plotted in
Figures 17-19 where they are compared with experimental data.  In cach
case, the predictions overestimiate the indentation radii. Again, it scems

likely that the variation in {low stress with strain rate is causing the

miterial to respond more elastically than it does during static indenta-
tion.
The predicted impact load values are plotted versus impact velocity

in Figures 20-22.  The loads, caiculated using the clastic-plastic and the

modificd elastic-plastic theorices, are higher than the Hertzian theory

values reflecting the fact that the contact radii are overestimated as
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shown in Figures 14-16 so that when the contact pressures are summed over

the contact area, the loads are overestimated. As in the case of ZnS, one

way to obtain more realistic estimates is to use the experimental (impact)

contact radii together with the experimental contact characteristics ¢ and ;
£ to estimate the load. However, unlike the case of ZnS, when this was
done the loads calculated using the elastic-plastic theory did not show the
expected reduction,

As mentioned previously, the coefficient of restitution responds
very sensitively to the variations in the energy absorption mechanisms.

In Figures 23-25, predicted values of coefficient of restitution at various
impact velocities are compared with experimental data. Again, the modified
theory yields the best results mainly because in this case the «/r' ratio
is one whereas in the original theory ¥/¥' > 1 and the results are very
sensitive to this value,

The radial crack lengths were measured in the surfaces of the stat-
ically loaded TT-Zr0, specimens, from the edge of the indentation to the
tip of the longest crack. The results arc plotted as suggested by
P/di o cl/2 in Figures 26 and 27. The data for the as fired TT—ZrOz,

plotted in Figure 26, show a linear variation and the data points for

c > di fit the line

9
l’/(li = 7.93 x ]()5 + 1.43 (‘1/" ()

with a coefficient of determination of 0,995,  The data points for ¢ -
were not used for the computation because near the contacts  the crack

lenpths are considered to be transitional and may varv becanse of other

characteristics of the contacts.,
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The Pine does not extrapolate through the origin but instead inter-

cepts the vertical axis at an appreciable load. In ohic reopect the we=firod
TT—Y.I‘O2 is somewhat ditfferent from the ZnS. This diiference has not yet
been explained.

The data for the as-fired, under-aged and peak=aged specimens are com-
pared in Figure 27. Although the data are somewhat sparse and scattered,
the results 1ail to show the expected decrease in crack length with
increasing KIC that occurs as a result of aging. The ch values ranging
- - 1/2 . C .
trom 4.5 to 6.5 MPam were expected to yield a two to one variation in
crack lengths.

The failure to benefit from increased KTc with aging in TT-ZrO2 was
reported previously(lo). In that case it was found that the number of
radial cracks decreased with increasing aging. New data supporting this
observation are presented in Figure 28. It is well known that the stress
intensity factor at a group of radiating cracks decreases with increasing
number of cracks (decreasing spacing). Therefore, it is reasonable to

expect that the increased number of cracks in the materials with lower KI

I
r—— :

might serve to limit the crack propagation compared with that otherwise
expected, yvielding results like those shown in Figure 27.
Another possible explanation is that residual stresses increase radial

crack propagation and that the residual stresses increase with increased

aging, thus oftsetting the effect of the increased K. . This argument is

1c¢

contradicted by the fact that there is no appreciable variation in plastic
tlow properties with aging (Figure 13).

Using the statically determined crack lTength relation (Fquation 11)

together with 2quat ion (10), the theoretical crack lenath vs impact velocity
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curves were plotted and compared with the experimental data in Figure 29.

The original elastic-plastic theory drastically overestimates the crack

lengths. However, the modified theory vield:much more reasonable results,
slightly overestimating the crack lengths at low velocities and under-

estimating the crack length at the highest velocity.
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VI. Summary and Discussion

The analysis developed in this program represents an attempt to
obtain a general, self consistent means to calculate a wide range of
impact characteristics using easily measured contact characteristics
obtained under static loading conditions. Empirical equations are used
to relate the contact and indentation pressures to the normalized contact
and indentation radii. These empirical equations are manipulated using
Newbonian mechanics, Hertzian olasticity and Cracture mechanics methodo
to obtain equations for the contact radius, indentation radius, load,
penetration time, crack size, remaining strength, contact time, and
coefficient of restitution.

The comparisons of the theoretical calculations and experimental
data presented in this report show that the results of the anaiysis can
be used to make reasonable predictions of the response of a variety of
ceramic materials to low velocity impact by spheres. On the whole, the
results were improved by substitution of k' for « in the various equations
to obtain the so-called modified elastic-plastic theory. Further evidence

1/2
C

of the applicability of the relation I’/z0 o to the localized impact

damage case was presented. The exact form of the relation can have an
important effect on the results when crack lenpths are predicted by extra-

. . . L3 »
polation to higher velocities where the commonly used P o« ¢ relation

"_\_—_‘ -
tends to underestimate the crack length.

,J 3
. ! S — ; (8) ot
The fractographic investigation reported recently and the present

report have revealed a number of cases in which the present mathematical




model fails to provide a completelv satisfactory representation of the

impact phenomena:

The extent of plastic deformation seems to depend on the strain
rate dependence of the flow stress. Therefore, the contact
characteristics determined by static indeatation provide only

an approximate representation of the plastic deformation occurring
during impact. The differences in extent of plastic deformation
have important effects in the partitioning of energy among the
various energy loss mechanisms, and the absolute and relative

sizes of the various types of cracks.

The analysis neglects the stress wave energy and the fracture
energy contributions to the energy balance. Although Hutchings(zA)
has determined that the stress wave energy makes only a minor
contribution to the energy losses during impacts in which plastic
deformation occurs, it is a fact that the above-mentioned strain
rate dependence of the flow stress favors responses that are more
elastic than otherwise expected and, in these cases, because the
overall losses are lower, the stress wave energy is proportionately

(5)

more important. Kirchner and Gruver showed previously that the
fracture surface energy makes a negligible contribution to the
energy losses for low velocity impacts of glass spheres on plass
plates. However, at higher velocities crushing occurs at the
impact site and there is a substantial reduction in the coefficient
of restitution indicating a substantial increase in energy losses.
Under these conditions, little is known about the vroporticngine of
the energy among the indentation, stress wave, f{riction, and
fracture energy loss mechanisms.

(25) . .
Marshall and Lawn have shown that residual stresses induced
during static indentations have a substantial influence on the
extent of crack propagation and remaining strength of glass,

(20)

have shown that residual stresses

virchner and Isaacson




n4

induced during single point machining of silicon nitride ceramics
have similar effects., [t is reasonable to expect that residual
stresses are induced during localized impact but the effects of

these stresses are not accounted for in the analysis.,

4. The differences in K[c induced by aging treatments in TT-Zr0, do

not result in the approximately two to one differences in crack

size expected based on the present analysis. Failure to observe
these differences may occur because the increased numbers of cracks

induced in the lower KTC materials mav act to reduce the KI at the '
i

tips of these cracks, thus reducing the crack propagation below
that otherwise expected. This observation confirms an carlier
similar observation and may be important because increasing the

K[(‘ has been recommended by several investipgators as a means to

improve the resistance to localized impact damage.

Because the important role of the strain rate dependence of the flow
stress is not accounted for in the contact characteristiecs, x, &', &, and
£', determined by static loading, it is highly important to develop a
method of determining the contact characteristics by impact tests.  The
present investigation indicates that the theoretical calculations of the
coefficient of restitution are verv sensitive to the « to ' i,  There-
fore, it scems reasonable to attempt to determine the contact characteristics
by fitting the theoretical curves o e con S0Te b0t a0 e it T ey
This procedure would also account for the stress wave and fracture enerpy
logsses,  Development ot this suppested method of determining the contuact

characteristics is recommnended.  The results can be evaluated based on the

self consistency ot the calculated values of the other impact characteris-

tics.
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