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TECHNIQUES FOR MICROWAVE IMAGING

By
D. L. MENSA

SUMMARY

This dissertation presents a number of techniques for obtaining high-resolution microwave
images. The development of these methods is directed to imaging with radars using wavelengths
of 5 to 50 millimeters; however, the results apply to any form of wave propagation involving
reflections of coherent signals.

A system for obtairing two-dimensional images is described which combines pulse com-
pression and synthetic aperture processing of signals reflected from rotating objects to achieve
resolution in range and cross range. Both the pulse compression and synthetic aperture process-
ing are accomplished by discrete Fourier transforms (DFTs) implemented by fast Fourier
transform {(FFT) algorithms. Examples of images are presented which demonstrate resolution of
three wavelengths using a signal bandwidth of approximately 1.5 GHz and an object rotation of
10 degrees. The principal limitation of this technique is the image degradation which results
from focal aberrations in the unfocused synthesized aperture. These limit the achievable resolu-
tion and the maximum size of objects that can be imaged and produce space-variant. point-
spread functions which are diffraction-limited only at the center of the object space.

Focusing the synthetic aperture leads to a point-spread function which is diffraction-
limited and space-invariant. The required focusing operation is implemented by mapping the
recorded signals through a polar transformation and subsequently processing the data with a
two-dimensional Fourier transform. By this method, the focused synthetic aperture can be
extended to a full 360 degrees and provides resolution of less than one-quarter wavelength. Such
resolution performance in both range and cross range is obtained even with monochromatic
irradiation, as demonstrated by images processed from simulated and experimental data.
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The focused aperture using monochromatic signals provides a high degree of spatial
resolution and it is best suited for imaging sparse arrays of point objects due to large sidelobes
in the point-spread function. The quality of the reconstruction is enhanced by using wide-band
irradiating signals which provide a reduction in the sidelobes of the point-spread function. The
use of several discrete frequencies also allows reduction of the sidelobes but induces low-level
radial artifacts in the image. The use of several discrete frequencies offers a practical alter-
native to wide-band signal instrurentations which are always more complex. In measurements
restricted to fixed monochromatic irradiation, bistatic-angle diversity offers a practical way of
simulating multifrequency measurements. Examples of images reconstructed from experimental
data using bistatic-angle diversity show excellent correlation with theoretical results.

The dissertation concludes with the application of an iterative method for image reconstruc-
tion which uses a priori knowledge of the finite object size to establish the space-limited nature of
the spectral function. The process uses the analytic nature of the spectrum of a bounded object to
extrapolate the limited measured spectrum. The analytic extrapolation of the spectrum as a means
for improving images reconstructed from focused synthetic apertures is considered. Several ex-
amples are shown which demonstrate that the technique is inadequate except in the restrictive case
in which the object bound is precisely known a priori.

Publication UNCLASSIFIED.
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CHAPTER 1
INTRODUCTION

THE CONCEPT OF MICROWAVE IMAGING

Radar sensors respond to electromagnetic waves which are scattered when the wave
propagation is disturbed by the presence of the object. The fields incident on the object induce a
distribution of currents which in turn establish the scattered fields. For purposes of this work, a
radar image is defined to be the spatial distribution of reflectivity corresponding to the object.
Adhering to this definition, it follows that the radar image can be considered a collection of
complex reflection coefficients assigned to an array partitioning the object space. This notion is
consistent with the IEEE definition (reference 1-1) which states that an image is '‘a spatial
distribution of a physical property such as radiation, electric charge, conductivity or reflec-
tivity, mapped from another distribution of either the same or another physical property.’

In order to properly characterize the object, an image must provide a spatial, quantitative
description of the object's physical property of interest with fidelity which equals or exceeds
the discrimination limits of the eventual observing system. The complete characterization of
complex objects may require several images which differ as a function of the viewing angle.
Useful optical images present spatial distributions of optical reflectivity with sufficient detail
for the object to be uniquely perceived by a human observer. Similarly, a radar image presents
a spatial distribution of microwave reflectivity sufficient to uniquely characterize the object
illuminated. Although the similarity of microwave images to optical images can convey useful
information, the quality of the microwave image should not always be judged by how closely it
approximates the optical image, but rather by how faithfully it represents the spatial distribu-
tion of microwave reflectivity.

An essential feature of any high-quality image is resolution, the ability to distinctly repre-
sent two closely spaced elements of the object, the resolvable spot size being inversely related
to the aperture size of the imaging system. Because the human visual system is equipped with
apertures of the order of 10 wavelengths, an order of magnitude greater in terms of wavelength
than the largest of microwave apertures, human observers are accustomed to perceiving images
consisting of millions of resolvable elements; as a result, optical replicas of microwave images
often appear primitive by standards of optical images. Nevertheless, microwave images convey
unique information a..d, in some cases, can display object features not otherwise obtainable.
Figure I-1 is an example of microwave imagery obtained by synthetic aperture processing
described in reference 1-2. This type of image. generated by processing radar data collected

bav. V. IEFE Stundard Dictionary of Flecrical and Fleetronios Terms, New York IFEE Ine, 19770 p. 361,
Jensen, Ho, L Co Graham, L. 1 Poreellogand 0N Teiths “Side-fookmye Aoborme Redar, Scientitic American.
October 1977, pp. 84-95.

o —
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Frgure 11 Exampies ot Terramr Imagery by Airborne Synthetic Aperture Processing

g from an airborne platform. provides a two-dimensional map of terrain features. Figure 1-2 is

] another example of microwave imagery obtained by raster scanning the spot of a focused
antenna across the obrect and mapping the magnitude of the received signal for each spot posi-
tion. The upper figure i~ @ photograph of a scale model ot @ boat. the Tower figure is the
microwave image ohtained using a wavelength ot 3 millimeters.

Imazing methods can be divided into two major categories according to the process

employved: in place imaging, and objectmotion imaging. In the tirst method, the image s derived
trom ahservations ot the obiect held in o fixed attitude relative to the imaging systems: the
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resulting image is derived from and can be uniquely associated with a particular object orienta-
tion. In the second method, the imaging process requires ielative motion between object and
imaging system: in some cases, the resulting image is derived from and associated with a range
of object orientations. Both imaging methods are useful but proper interpretation of the images
must take into account the method employed.

The objective of this research is the development of techniques for obtaining high-
resolution microwave images with particular emphasis on methods which minimize hardware
requirements and exploit signal processing. The principal applications for the microwave
images are:

1. Analytical and physical simulation of radar target signatures for determining responses of
radar sensors.

2. Diagnostic methods for the identification and alteration of radar reflectivity components of
complex objects.

1 METER

Figure 1-2. Microwave Image of Boat Scale Mode! Obtained by Focused Spot Scanning




3. Nondestructive and noninvasive testing for imaging through media which support
microwave propagation.

4. Object recognition systems which use the image as an identifier unique to a particular
object.

The immediate application of the techniques to be considered is microwave imaging of
reflective objects in a controlled environment. Typical applications employ microwave radiation
with a wavelength of 3 centimeters to image objects with resolution of 2 to 3 wavelengths. The
object dimensions are of the order of 100 wavelengths and the observation distance of the order
of 1,000 wavelengths. Althongh these are the intended applications, the imaging methods con-
sidered have general applicability to environments outside the taboratory and to other forms of
coherent wave propagation. The direct application of these methods to acoustic imaging for
medical diagnoses and nondestructive testing is feasible because modern instrumentations allow
coherent measurements of acoustic fields.

The following paragraphs outline the major aspects of individual chapters and identify
those parts which constitute original work.

Chapter 2 presents essential background material; it summarizes theories pertinent to
coherent imaging which have been interpreted in terms of the research objectives. With the
exception of some interpretations and observations, the contents of the chapter are not original
and are traceable to major references.

Chapter 3 describes an experimental system and signal processing algorithms for
obtaining two-dimensional (range and cross range) images from experimental data. The system
concept has been described in the literature, however, the implementation to practically achieve
range resolution of less than two wavelengths constitutes a unique development. Original con-
tributions in this chapter consist of analyses of the image degradations which result from
Doppler processing. This process is analyzed in terms of an equivalent unfocused svnthetic
aperture which is subject to phase errors when steered throughout the object space. The
analyses determine the limits of resolution. the maximum object size that can be imaged. and
the resulting space-variant, point-spread functions. Experimentally derived images of complex
objects are presented; among these are novel images of a human bodyv. An additional
unique aspect of the work is the extension to two-dimensional apertures synthesized by object
rotation about two orthogonal axes. When combined with range sorting. this procedure allows
three-dimensional resolution.

Chapter 4 develops the processing required to produce a focused synthetic aperture for con
tinuous wave (CW) irradiation. This allows the synthesis of a circular aperture which surrounds the
object and results in a high degree of resolution. The process required to focus the aperture is also
developed for the case of wide-band irradiation and point-spread functions for both CW and wide-
band cases are derived. The effects caused by substituting several discrete frequencies for wide-
band irradiating signals are determined. The feasibility of simulating wide-band imaging by
multistatic measurements using CW irradiation is established and experimentally confirmed. The
results of the focusing procedure ay plied to a wide-band irradiation are identical to those recently
published in an application of optical processing of radar data. With this exception, the contents of
this chapter are original. The achievement of high-resolution, two-dimensional imaging using
monochromatic irradiation and the analytic development of point-spread functions which have
been experimentally verified constitute the significant contributions of this chapter.




In Chapter 5 the effectiveness of an iterative algorithm to exirapolate spatial spectra
obtained from the focused synthetic aperture is tested. The algorithm is a two-dimensional
adaptation of a one-dimensional version which has been described in the literature to
extrapolate band-limited time functions. The strategy of the algorithm is, therefore, not original.
The application to enhance two-dimensional images derived from synthetic aperture data, the
algorithm implementation using two-dimensional FFTs, and the quantitative demonstrations of
achievable results constitute the original parts of this chapter.
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CHAPTER 2

FUNDAMENTAL IMAGING TECHNIQUES

In this chapter, the basic techniques applicable to microwave imaging are developed. The
treatment is limited to one-dimensional resolution in order to develop a conceptual foundation
with minimum mathematical complications; extensions and combinations of the basic processes
to achieve multidimensional imaging are considered in subsequent chapters. The emphasis in
this chapter is placed on establishing fundamental concepts and relating results reported in the
available literature to the meeting of the objectives.

RANGE PROCESSING

The most basic method of radar imaging involves discrimination on the basis of range.
The determination of range is accomplished by measuring the round-trip delay of the transmit-
ted signal and computing distance using knowledge of the propagation velocity. The time delay
between a distinct feature present in the transmitted waveform and recognizable in the received
waveform is measured with electronic circuits. The range measurement is fundamentally a cor-
relation process, the time delay which maximizes the correlation between transmitted and
received waveforms corresponding to the two-way range. The most readily mechanized system
for range measurement is the pulse radar which provides inherent time markers by the leading
and trailing edges of the pulse. The round-trip propagation delay 1 for a reflector at range R is
2R/c, where ¢ is the propagation velocity. Thus a pulse of duration T corresponds to 2 range
increment AR = ¢T/2, and two points separated by greater distances will produce dis-
tinguishable pulses allowing resolution.

The resolution of closely spaced object features can be accomplished by narrowing the
transmitted pulse width and increasing the system bandwidth B such that BT = 1. thus yielding
AR > ¢/2B. A time-bandwidth product approximating unity is inherent to the class of pulse
radars in which a carrier is amplitude modulated by a pulsed waveform.*

*Processing 8 coherent burst of repeated pulses constitutes an exception to the unity time bandwidth product
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The measurement of range can be treated more generally from a communication theory
viewpoint. Two significant aspects of the mzasurement process are: accuracy and resolution;
the former constitutes the ability to provide an unbiased estimate of the absolute range, the lat-
ter is the ability to distinguish closely spaced objects. The standard deviation of a range
measurement error in the presence of gaussian noise is (references 2-1 and 2-2):

O = CKBPEN) T (1)

where B is the signal bandwidth and E/N is the ratio of signal energy to two-sided noise power
spectrum level.

FEquation 2-1 indicates that an arbitrarily high degree of range accuracy can be obtained
by using signals with large bandwidth or high energy. In imaging applications, however, the
accurate determination of range is of limited significance while resolution of range is of primary
interest. If object points at different ranges are to be distinguishable at the receiver, the signal
waveform must be as different from its shifted self as possible (reference 2-3). The autocorrela-
tion function of the signal waveform s(t), expressed by:

R(r):f SO ¥ (4 ) dt (2-2)

must be as small as possible except in the vicinity of 1 = 0, the ideal being a delta function.
Because the autocorrelation function and the power spectrum of a signal constitute a Fourier
transform pair. a narrow autocorrelation function corresponds to a wide bandwidth. The conclu-
sion is that a high degree of range resolution always requires large signal bandwidths in ac-
cordance with:

AR S (2-3)

This is the generally accepted measure of resolution, the precise expression being dependent on
the specific definition of resolution.

The use of matched filters and correlation receivers allows resolution commensurate with
the signal bandwidth independent of the particular waveform. The class of signals characterized
by large time-bandwidth products has the advantage of providing reduction of the time-
bandwidth product in the correlation process (reference 2-4). While for waveforms with BT ~ 1,
the postdetection bandwidth is of the same order as the predetection bandwidth, waveforms
with BT >> 1 allow a reduction in either bandwidth or time duration (or their combination) by a
factor equal to the BT product. This feature facilitates the recording and postdetection process-
ing of high-resolution signals and is important for applications requiring data acquisition and
storage.

Regardless of the method employed, range resolution allows the sorting of reflected signals
on the basis of range. Figure 2-1 shows a radar observing a three-dimensional object; when
range-gating or time-delay sorting is used to interrogate the entire range extent of the object

Skolntk . M1 Radar Handbook New York MoGraw-Hill Co 1970, pp. 4-6.
Woodward, P M Probahiits and bitormation Theory With Applicanons to Radar, Oxtord  Pergamon Press, 1964, p 108
Probabilitn and itormation The ory With Apphcanons 1o Radar. Oxtord  Pergamon Press. 1964,
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pp 115-11%8
24 Rihaoreh . AW Prnceples of Fagh Resobition Radar. New York  MoGraw-Hill Co., 1969, pp $3-54
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space, a one-dimensional image of the object, termed a range profile, will result. The range
sorted echoes from a three-dimensional object consist of the vector sum of signals received from
all object elements contained in the range cell, weighted by their respective amplitude and
phase. The phase factor includes both the phase inherent to the reflection coefficient and the
phase associated with the two-way propagation delay; the amplitude includes both the
magnitude of the reflection coefficient and the spreading loss due to distance. The range profile
is therefore a cell by cell sequence of the resultant magnitude of the phasor sum of signals from
all elements contained in a range-resolution cell.

Range resolution provides one-dimensional imaging restricted to a single dimension of the
object. Without additional resolution in other dimensions it is relatively limited; it can, however,
provide rudimentary imaging of special objects for which the range profile is of interest. The
utility of this process will emerge when considered in combination with other methods of resolu-
tion. This process is a form of in-place imaging because the range profile can be obtained
without relative motion between object and imaging system.

OBJECT SPACE

RANGE RESOLUTION
CELL

Figure 2-1. Range Mapping of Three-Dimensional Object by Range-Gated Radar.

DOPPLER PROCESSING

Doppler processing is a widely used method for obtaining spatial resolution of objects
irradiated with coherent waves (references 2-5 through 2-7). The basis of Doppler processing is
the observation that the frequency shift of signals reflected from a moving object is directly
proportional to the radial component of velocity between the object and a stationary source and
receiver. For the special case of a rotating reflector and a stationary source and receiver, the

2.5 Brown, WM. and L. J. Porcello. “An Introduction 1o Synthetic Aperture Radar,” 1EEE Spectrum. p. 52, September 1969.

24 Brown W.M.and R. Fredricks. “Range-Doppler Imaging With Motion Through Resolution Cells.” TEEF. Trans. Aerospace
and Flectronic Systems. AES-5, pp. 98-102, January 1969.

2.7, Hagtors, R.and D. Campbell. “Mapping of Planctary Surfaces by Radar,” Proc. IFEE. Vol. 61, No. 9, pp. 1219-1225,
September 1973,
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Doppler shift of the reflected signal is proportional to the lateral offset of the reflector
measured along an axis normal to the axis of rotation and to the line-of-sight. Doppler process-
ing of signals reflected from a two-dimensional object rotating in a plane, therefore, yields
resolution in cross range.

The simple spectral analysis and the fact that Doppler processing requires only CW
signals constitute major advantages. Implementations of spectral analyses required for cross
range sorting can use filter banks for analog processing or fast Fourier transform algorithms for
digital processing. CW is the preferred mode of operation for coherent sources, and narrowband
receivers, used with CW signals, are inherently simple.

The essence of Doppler processing is presented in the following statements. Let d be the
radial distance of a reflecting point from the center of an object rotating with angular rate Q, as

shown in figure 2-2. The transmitted signal is given by e({t) = Re[exp (jw,t)]. At time t, the
distance r from a remote (R, >> d) source and receiver is approximately:

r= RO - d sin (Qt) = R() -dsin 0 (2-4)

where Q is the angular rate and 9 is the rotation angle.

R Figure 2-2. Two-Dimensional Rotating
Object Geometry.
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Assuming that the object motion is negligible during the signal round-trip travel time, the
received signal is a replica of the transmitted signal delayed by the round-trip time 2r/c, and
expressed by:

ep(t) @ Refexp (jwgt - jdmr/N)]

= Re{exp liwgt - j4mRy/A +j2m/) 2d sin (21)]} (2-5)

The first term of the exponential argument is the carrier phase; the second term is a constant
phase shift due to the round-trip delay associated with the constant range R,. The third term is
a variable phase shift determined by the varying range and constitutes the Doppler shift. The
phase variation can be expressed as a function of either time or rotation angle; in either case,
the effect being described is the variation in received signal phase attributed to variations in
the round-trip distance.

The Doppler frequency is equal to the temporal phase rate of the complex envelope of the
reflected signal.

.1 d¢ -2 dr _ N
f, = 2; a{ = ‘)\ ;i? = 282d/\ cos (§2t) = 282x/\ Hz (2-6)

where ¢ is the phase shift corresponding to the round-trip delay indicated by the last two terms
in the exponent of equation (2-5), and x is cross range. The phase can also be expressed as a
function of the rotation angle 8 = Qt in which case the angular rate of change of phase is:

1 d¢p -2 do . cycles
= = = =% — =2d/hcos 0= 2x/A - -~ (2-7)
e ¢ df X do “ radian

The frequencies in equations (2-6) and (2-7), denoted by subscripts t and 6 to indicate time and
angle, respectively, are equivalent expressions; the angular and temporal frequencies are pro-
portional to the instantaneous cross-range coordinate and differ only by the scale factor, Q.
Processing signals reflected from rotating objects recorded as a function of angle yields results
identical to those obtained by processing signals recorded as a function of time for fixed rota-
tion rate Q. Both methods are termed Doppler processing in the literature; if a distinction is re-
quired, the former process may be termed temporal Doppler processing and the latter angular
Doppler processing.

The equivalence of equations (2-6) and (2-7) allows considerable flexibility in practical in-
strumentations which can be slanted toward temporal or angular processing. In the former
method, the object is rotated at a constant angular rate. On-line processing is accomplished by a
bank of contiguous frequency filters or by analyzing the sampled signal with Fourier transform
processors of sufficient speed. Off-line processing can be performed by recording the signal for
subsequent analysis; in either case, the signal is usually frequency-translated by w, to retain
only the complex envelope. In the latter method, the object is stepped in uniforin angular
increments and a series of static measurements is made of the phase and amplitude of the
received signal. Providing the Nyquist sampling criterion is met, a sequence of such meas-
urements is identical to the phase history that would be observed with a continuous rotation.

2-7
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The direct relation between Doppler frequency and cross range allows spectral analysis of
the signal to separate contributions of several reflecting points on the basis of cross range. The
frequency resolution for f, varies inversely with the processing time duration T. Thus,
Afy = 1/T and, from equation {2-6), the cross-range resolution is:

. A
Ax = A Ar, = o

1_ A (2-8)
ALO T ¢ §

2260

where 48 is the angular change during the processing time T.

Equation (2-8) indicates that fine cross-range resolution requires processing over a large in-
terval of both time and angle. However, the instantaneous frequency of the echoes reflected
from a particular point may vary considerably over a large processing interval, depending upon
the angular position and rate of rotation of the object and the distance of the point from the
center of rotation. The variation in the instantaneous frequency imposes limitations on rota-
tional speed, maximum cross range, and the number of pixels in the final image. To examine
how the cross-range resolution is limited by the variation in instantaneous frequency, let the
Doppler frequency space be divided into small uniform frequency intervals, Afy, corresponding
to the cross-range resolution cells of width Ax. Assume that the object can be enclosed in a cir-
cle of radius R. It is required that the movement of a particular reflecting point be confined to a
single resolution cell during the processing interval T. If the rotational velocity Q is constant,
the reflecting point will move most rapidly through a cross-range resolution cell when 8 is + n/2.
Thus, Ax > QRT or Ax > R(Af0). Combining this with equation (2-8) gives:

al> R (2-9)

5

If the restriction of equation {2-9) is violated, Doppler frequency analysis will produce degraded
imagery. To illustrate this degradation, we consider signals from various locations on a rotating
object processed over a finite interval. Figure 2-3 shows the locus followed by each point object
as it rotates over 0.15 radians; the observation distance, Ry, is 1.0004 and the theoretical resolu-
tion according to equation (2-8) is 3.34. The phase of the signal received from each object point
considered individually is shown as a function of rotation angle in the left column of figure 2-4;
the amplitude is constant and not shown. The Fourier transform of the received signal for each
case is shown in the right column plots of figure 2-4. Because instantaneous frequency is equal
to the rate of change of phase, the shape of the Doppler spectrum is determined by the phase
history. In each case. the peak of the spectral response coincides with the cross-range coordinate
of the point at the center of the processing interval; however, the nonlinearity of the phase
history causes spectral spreading with degradations which are more pronounced as the phase
history deviates from linearity. As the phase nonlinearities increase beyond the values shown.
the spectral responses no longer exhibit a single peak thus producing severe image degradation.

By performing a Fourjer transform, multiple Doppler frequencies present in the composite
signal are separated. Doppler processing is particularly suited to imaging rotating objects due
to the relation between frequency and cross range; however, other geometries involving relative
radial motion among object elements can be utilized. Imaging a three-dimensional object with
Doppler processing yields resolution along an axis normal to the axis of rotation and to the
radar line-of-sight, as represented in figure 2-5. Unlike for the range-mapping case, in which
range profiles could be associated with unigue aspect angles, the cross-range profiles obtained
by Doppler processing require that the object be rotated through a range of angles. Therefore,
the cross-range profiles cannot be uniquely associated with a discrete aspect. but only with a
range of angles necessary to induce the required relative motion, albeit small.
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Figure 2-3. Locus of Points Observed on a Rotating Field.
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Figure 2-5. Cross-Range Resolution of Three-Dimensional Object by Doppler Processing.

SYNTHETIC APERTURE PROCESSING

A high degree of resolution in the cross-range direction can be obtained by scanning a
highly focused beam across the object. In order to achieve the minimum focused spot dimen-
sion, the aperture which forms the scanning beam must be focused at the object plane. The
lateral extent of the focused spot is approximately:

A= ARU/D (2-10)
where

A = wavelength

D

aperture dimension

R,= observation distance

If the focusing system is shift invariant, resolution of two adjacent object points lying in a
plane normal to the line-of-sight can be expected if their separation is greater than the spot
dimension. This is the Rayleigh resolution criterion (reference 2-8).

For a fixed wavelength and observation distance, the resolution is improved by increasing
the aperture dimension. A typical application of the imaging process requires imaging objects of
the order of 3 meters with resolution of the order of 6 centimeters from a distance of 25 meters
using a wavelength of 3 centimeters. The required aperture dimension given by equation (2-10)
is 25 meters. Because the short measurement distance places the object in the near field, the
aperture would require focusing in order to achieve the stated resolution. This requirement, and
the large dimension at the aperture constitute major disadvantages. These difficulties can be

28 fenkins, I AL and HoFL White, Fundamentals of Optics, New York: McGraw-Hill Co., 1950, p. 293,
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avoided by synthesizing an equivalent aperture by sampling fields present at discrete points on
a surface conforming to that of the physical aperture. The fields are sampled with a small sen-
sor which is sequentially stepped through incremental distances small enough to avoid aliasing.
The subsequent coherent sum of the stored sampled values is equivalent to a signal that would
be received by the physical aperture. By this method, an equivalent of a large physical aperture
is synthesized by a sequence of field samples obtained with a small sensor. If the aperture can
then be made to scan a focused beam on the object plane, an image of the object can be formed.

In the following section, the characteristics of synthetic apertures are established and
related to those of physical apertures. The physical aperture can be treated as an array of iden-
tical elements, excited simultaneously for transmission and summed coherently upon reception,
as shown in figure 2-6. The device connected to the array elements performs a summation on
reception and equal power division on transmission. The response of the array to a unit-
amplitude point object is the superposition of field values received by the individual elements;
each receives a contribution from signals transmitted by all elements. The normalized complex
field received from a distant point object by the nth element is given by:

v, = exp [—_ilrr)\-l (d + dl)] + exp [-j:n,\" (d_ + dz)] ‘o

+exp [—i.?rr)\_l d + dN)]

N
v = exp (-j.'hr)\-l dn> Z exp (-j:n,\'l di) (2-11)

i=1

TRANSMITTER

RECEIVER

Figure 2-6. Physical Aperture Modeled as an Antenna Array.
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The output of the entire array is the sum of signals received by each element.

N N N
v, = Z v, = Z exp (—jlﬂ)\- dn) Z exp (—jlﬂ)\-l di)
n=1 n=1 i=1
N 2
v, = E exp <—j31r)\_1 dn> (2-12)
n=1

The term inside the brackets is the one-way array response; it represents the response of the ar-
ray if it were used to receive signals from a source located at the distant point. The response of
the array when it is used for both transmitting and receiving (two-way) is the square of the one-
way response. The cross products generated in the squaring process represent the coupling
terms associated with signals received by one element from transmissions by all elements.
Equation {2-12) shows that the two-way response of the array is simply the square of the one-
way response, an intuitively satisfying result when the array is viewed as a linear system obey-
ing reciprocity.

The synthetic array is formed by sequentially transmitting and receiving with each in-
dividual element and subsequently coherently summing the received signals. The array
geometry is identical to the preceding case. The response of the synthetic array will be:

N

N 2
. -1 . -1
v, = E exp (—1417)\ dn> = E [exp (—JZn)\ dn):l (2-13)

n=1 n=1

The response of equation (2-13) differs clearly from that of equation (2-12). The former
represents the square of a sum, the latter represents the sum of squared terms. To illustrate the
difference, the far-field response of a real and synthetic array are determined. The array con-
sists of N identical elements separated by d, and arranged in a line as shown in figure 2-7. The
response of the real array is:

n=+N/2

v(g) = E exp [_ilrr)\-l nd (sin 8)

n=-N/2

Let u =sin #. then

n=+N/2

v(u) = E exp (_i27'r7\_l ndu)

n=-N/2

5

sin lrrdu}\-l (N + H]
viu) = (2-14)

sin [ndn/\_']




Figure 2-7. Linear Array of
N ldentical Elements.
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The response of the synthetic array is:

n=+N/2

v(u) = E exp (j4n)\-| ndu)

n=-N/2

sin [anu)\_l (N + l)]
v(u) = = (2-15)

sin [Zm\_l du]

The two responses are plotted in normalized form in figure 2-8. The one-way responses of both
real and synthetic arrays are identical; however, the two-way responses differ considerably.
This is a consequence of the coupling terms which arise when the array is used for both
transmitting and receiving. The two-way response of the synthetic array is equivalent to the
one-way response of a real array of twice the length. This feature, of significance in applications
requiring maximum achievable resolution, is often overlooked when analogies between synthetic
and real apertures are established.

HOLOGRAPHIC PROCESSING

One of the most significant developments in optical imaging has been the concept of
holography. In this case, the imaging is performed by recording a pattern of light intensity
which is used to reconstruct a replica of the light waves associated with an object. A viewer
observing these reconstructed waves perceives an image of the original object. The hologram en-
codes and stores a record of the waves diffracted from the object. Although microwave imaging
concepts can be developed independently of holography, many of the intermediate steps in the
recording and reconstruction processes for microwave imaging are directly analogous to
holography. If recording microwave data and subsequently reconstructing an image from such
data are performed optically. microwave imaging and holography become identical processes.
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From a review of the literature, it is apparent that the holographic process applied to coding
and image formation from synthetic aperture microwave data was indeed the vehicle by which
the two disciplines were joined to achieve significant contributions (references 2-9 through 2-11).

The concept of optical holography is briefly reviewed for the purpose of establishing fun-
damental similarities and differences between optical and microwave imaging. The intent is not
to provide a comprehensive summary of optical holography, available in references 2-12
through 2-14., but to consider the holographic process in the context of microwave imaging.

In optical holography. the object image information encoded on the hologram is the inten-
sity pattern of the interference between the object and reference beams. The complete image in-
formation is contained in the complex amplitude (magnitude and phase) of the field associated
with the object. Because phase sensitive optical storage media are not available, a recording of
the interferogram of the object and reference wave is used to store the object complex field in-
formation in the form of a pattern of intensity. This elegant encoding scheme allows the subse-
quent retrieval (reconstruction) of the complex field. The generation of additional images and
noise beams is a consequence of the intensity encoding process. The following development
summarizes the procedure for recording and reconstructing a holographic image.
If ﬁT = Ug exp [jut + jéy (x.¥)] + Uy exp [jwt + ¢y (x,y)] is the superposition of complex object
and reference waves incident on the hologram or x-y plane, the intensity of the light pattern on
the plane is:

—x 1 . .
E=UpUg/2 = 3 Uogexp Lot + jog (xy)l +

+ Up exp [jwt + j¢R(x.y)]},
%UO exp [-jwt —j¢>0(X.y)] +
+ Up exp [-jwt - jog (xy)1}

L= UZ/2 + UR/2 + U Uy cos [0 (xy) = 6 (xy)] (2-16)

2-9. Sherwin, C. W.. J. P. Ruina, and R. D. Rawcliffe. “Come Early Developments in Svnthetic Aperture Radar Svstems.”
IRE Trans. Military Flectronics, pp. 111-115, April 1960.
2-10. Cutrona, L. )., E. N, Leith, C. J. Palermo, and L. J. Porcello. “Optical Data Processing and Filtering Svstems.” 1RYE
Trans. Information Theory, Vol. IT-6. pp. 386-400, June 1960.
2-11. Cutrona, L. J., E.N. Leith, L. J. Porcello, and F. W. Vivian. “On the Application of Coherent Optical Processing
Techniques to Synthetic-Aperture Radar,” Proc. IEEE, Vol 54, pp. 1026-1032, July 1966.
12. Goodman, J. W. Introduction to Fourier Optics, New York: McGraw-Hill Co., 1969.
13. Smith, H. M. Principles of Holographv, New York: Wiley and Sons, Inc., 1969.
14. Goodman, J. W. “dAn Introduction to the Principles and Applicarions of Holography,” Proc. TEFI, Vol. 59, No. 9,
pp. 1291-1303, September 1971.




is expressed by:

Ugge =1 Ug exp [iwt + jop ()]
. 2 2
= UR/: exp le + J¢R(Xy)l lU()+ URI
2 . . )
+ UR UO/Z exp [jwt + :J"’)R(“-y) - J¢>0(x.y)l

2 . .
+ UpUy/2 exp [jot + i®o(xy)

replica of the original object wave termed the virtual image.

i Ug cos [wt + ¢, (xy)] and Ug cos wt + d)R(x.y)]

The output of the square law detector is:

2
Vitxy) = Uo{cns [t + q)o(x.y)] + Up cos [wt + ¢>R(x.y)‘
2 2 2 2
= Uy cos® [wt + o (xy) + Up cos® fowt + ¢R(x.y)|
+ 2 Uglp cos [wt + g5 (xy)] cos [wt + ¢p (xy)]
SOQUARE
OBJECT LAW
SIGNAL DETECTOR

REFERENCE
SIGNAL
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Figure 2-9. Signal Processing Model for Simulation of Optical Hologram Recording.

The reconstructed wave, obtained by passing the reference wave through the recorded hologram,

{2-17)

The first two terms constitute noise beams associated with undiffracted light from the reference
and object waves, the third term represents a real image of the object, and the fourth term is a

The information contained in the holographic record can be obtained by electronic or com-
puter processing of measured values of the object wave field by the system shown in figure 2-9.
The real signals representing the object and reference waves are, respectively:

(2-18)




Expanding the above expression and removing the high frequency terms yields the output of
the low-pass filter.

LI R S
Witxy) = Ug+ UL+ VU cos [0 (v ) - op by (2-19)

The right side of equation (2-19) is identical to that of equation (2-16), indicating that the signal-
processing model of figure 2-9 is equivalent to the process used in optical holography. The
squaring and low-pass temporal filtering of real signals vields identical results to the intensity
of the summation of complex signal inputs. Image reconstruction using a hologram formed with
the recording process of figure 2-9 will yield the twin images and noise beams precisely as in the
case of optical holograms.

A second method involving a multiplicative detection scheme is shown in figure 2-10, and
analyzed as follows.

OBJECT - /)(\ | vLowrass
SIGNAL e o FILTER

Figure 2-10. Alternate Signal
Processing Mode! for Recording
image Information

REFERENCE
SIGNAL

The output of the multiplier is:
Vitxy) = l'o cos [t + O (x¥ ) Up coy |wt + oR(\._\)I

=, UyUg cos 2wt + o (xy) + oR(\.y)I

+ UG U cos [0 1x3) = 6 (xy)] (2-20)
l.ow-pass filtering suppresses the first term to the right of the equality leaving:
| I
Wixy) = UL cos o iny) - o oY 12-21)

Equation (2-21) is similar to equations (2-16) and (2-19) except for the omission of the bias terms.
Reconstruction of the image by multiplication with the reference yields:

1
Uppe = Ug vos ot + OR(\'.yH X U()l:R cos [, (xy) - g‘)R(x.y)]
(- 2 ) 2
= s Ul cos fut + g tan)] + s U Ug cos ot + 20 NV - Gt (2-22)
2-18




The first term is a virtual image constituting a replica of the object wave, the second represents
a displaced real image of the object. The signal processing method of figure 2-10 is effective in
removing the noise beams analogous to the undiffracted light in the optical hologram, but re-
tains the twin images inherent to the holographic process.

The holographic imaging process is summarized in figure 2-11. Figure 2-11a shows the
situation for conventional imaging. The object wave consists of light scattered by the object
which propagates to the aperture of the imaging system and produces an image of the object.
The disposition of the illumination source is arbitrary. The formation of the hologram, depicted
in figure 2-11b, is a record of intensity of the interferogram of the object and re‘erence waves.
The object waves are identical to those in figure 2-11a, and the disposition of the reference
waves is again arbitrary. The reconstruction of the hologram is shown in figure 2-11c. If the
reference waves are precisely as in figure 2-11a, the reconstructed waves at the right of the
hologram are identical to those of the original object in figure 2-11a. As previously shown, the
waves to the right of the hologram contain additional images which can be separated from that
of the object.
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{a} Imaging Process.
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i A
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(b} Hologram Recording.
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N
N
N
N
N
N
N
N
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N
§
\ 3
HOLOGRAM IMAGING IMAGE
\ SYSTEM PLANE
REFERENCE APERTURE
WAVE {¢) Hologram Reconstruction.

Figure 2 11 Coherent Optical Imaging and Holography
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In microwave holography (reference 2-15), the field amplitude scattered from an object
coherently illuminated from a transmitter is mapped over a prescribed recording aperture by a
coherent detector which is scanned over the aperture. The detected bipolar signal, representing
the complex envelope of the time-varying field, is added to a bias level sufficient to make the
resultant always positive. The resulting signal is used to produce a film transparency with an
amplitude transmittance function which is real and positive. The area probed by the detector
represents the hologram aperture, the reference signal for the coherent detector represents the
reference beam, and the signal scattered from the object is the object beam.

Microwave holography facilitates the possibility of independently scanning the transmitter
and receiver. This process, termed scanned holography, exhibits some advantages in resolution
(reference 2-16). When radar is used for imaging. the natural scanning process is one in which a
collocated transmitter and receiver are made to scan a prescribed area. In radar terminology,
this is the monostatic condition, in contrast with a bistatic condition in which the transmitter
and receiver are moved relative to one another. The significant advantage'of |monostatic scan-
ning is a two-fold improvement in resolution over the bistatic scanning. Figure 2-12 shows the
bistatic and monostatic scanning cases. In figure 2-12a, the transmitter is stationary and the
receiver is moved from position A to B. Signals received from two extreme locations on the scan
differ in two-way path length by Ax; in figure 2-12b, the transmitter and receiver are both moved
from position A to B and signals received from these two points vary in path length by 24Ax.
Because resolution is directly related to observed phase differences, the resolution performance
is doubled for the monostatic scanned condition. As pointed out in reference 2-16, this type of
scanning is equivalent to halving the wavelength used for bistatic scanning.

OBJECT POINT

4

Figure 2-12a. Monostatic Field
Scanning Geometry

-
T HA RB
205 bahat, N H Hich Resobstion Microwaye Holography and the Iiagoig ot Remoic Obiccn. Optical Fngineening
Vol TN S pp 4992508 September 1978
206 Hildebrand B P oand KA Hames.  Holography by Scanning.” Journal of the Optical Society of Amerca Vol. 89,
Necbopp V-6 Lanuany 1969
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OBJECT POINT

Figure 2-12b. Bistatic Field
Scanning Geometry.

In any holographic imaging method, either conventional or scanned, the process is one of
recording the diffraction pattern of the object falling onto a plane. The diffraction pattern is
essentially the Fourier transform of the object illumination function; reconstruction of the image
provides resolution in the cross-range direction similar to what would be achieved by an
entrance pupil equal in size to the hologram. (This assumes a recording medium which is not
limited in spatial frequency below the maximum spatial frequency of the diffraction pattern at
the hologram.) Although the holographically reconstructed image is focused at all ranges. the
image is basically two-dimensional; resolution in the axial dimensional being performed
subjectively by human observers. This feature constitutes a significant difference between
optical and microwave imaging; while two-dimensional imaging is satisfactory for visual
observation of optical images, meaningful microwave images are generally required to be three-
dimensional because radar sensors respond to relative spatial attitudes of object points in all
three dimensions.

RELATION OF IMAGING METHODS

Imaging with microwave energy allows the achievement of direct resolution in the radial
direction by using wide signal bandwidths and time delay sorting. This feature is completely in-
dependent of resolution in the cross-range dimensions which makes use of diffraction
phenomena.

Cross-range imaging by Doppler, synthetic aperture, and holographic processing leads to
fundamentally similar results because each of these processes depends on the physical proper-
ties of fields diffracted from irradiated objects {reference 2-17). The various approaches differ
only in the initial viewpoint adopted to formulate the problem. Each of these processes utilizes
the complex field incident on an observation surface which results from fields diffracted by the
object. The angular interval, A8, used to observe signals received from a rotating object for

2070 tenth b N Quav Holograpiue Techmgues i the Microwave Regron.” Proc, IFEE. Vol $9. No. 9. pp. 1305-1318,
Septemeer 1971
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Doppler processing can be considered to form a synthetic aperture which is a circular arc
subtending an angle equal to 46. If the fields observed on this aperture were encoded on a'record-
ing medium, the stored information would constitute a hologram. The hologram could be used
to reconstruct an image of the object which would be identical to that obtained by Doppler
processing or by the response of the synthetic aperture focused and steered to all points of the
object space. In the chapters to follow, we adopt the viewpoint which leads most directly to the
required analysis.
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CHAPTER 3

TWO-DIMENSIONAL RANGE AND CROSS-RANGE
IMAGING OF ROTATING OBJECTS
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CHAPTER 3

TWO-DIMENSIONAL RANGE AND CROSS-RANGE
IMAGING OF ROTATING OBJECTS

We now outline a method which combines two processes described in the preceding
chapter to produce two-dimensional microwave images. The object is rotated about an axis nor-
mal to the line-of-sight and combined time-delay sorting and Doppler processing are used to
resolve the object space in two-dimensional resolution cells as shown in figure 3-1.

RADAR  TTeea -
OBJECT SPACE
‘ Figure 3-1. Two-Dimensional Resolution of Rotating Object. ;
3 Resolution in range does not require object motion and is obtained by use of wide-band signals
and time-delay sorting; by this method. backscattered signals associated with iso-range cells,
represented by the shaded area in figure 3-1, can be isnlated. As the object is rotated, the signal ;1

associated with each range cell varies. For each range cell, the variations resulting from a finite
rotation angle can be processed as described in the preceding chapter to obtain resolution in
cross range. By this method, resolution in range and cross range are independently obtained.
The former by the use of bandwidth and the latter by Doppler processing. The result of the
combined processes is a two-dimensional image of the object formed in the radial (range) and
normal to the radial (cross range) directions lying in the plane of propagation.

bl -

A specific method for obtaining two-dimensional resolution is outlined in the following sec-
tions. Examples of images obtained by processing signals from an experimental microwave
system are presented. Finally, the advantages and limitation of the imaging process and inter-
pretations of the images are discussed.




RANGE RESOLUTION

The required high degree of range resolution is achieved using large signal bandwidth and is
given by the relation:

AR = © (3-1)

where

AR = extent of range resolution cell
¢ = propagation velocity
] B = signal bandwidth

As stated in the preceding chapter, the achievable resolution depends on the signal bandwidth
and is independent of the particular waveform. Because the application being considered
requires that received signals be coherently recorded for subsequent processing, a waveform
with large time-bandwidth product is utilized. This feature allows the implementation of a cor-
relation receiver which provides bandwidth compression, thus facilitating the instrumentation

E necessary to sample and store the received signals (references 3-1 and 3-2). Perhaps the simplest
correlation receiver of large time-bandwidth signals is implemented by using a linear-FM or
1 chirp waveform. Figure 3-2 shows a simplified block diagram of an experimental system which

operates by illuminating the entire object with a broad beam radiated from a small aperture
antenna and receiving backscattered signals with a similar adjacent antenna. This instan-
taneous frequency of an RF carrier is linearly deviated about f, by + B/2 during a period T.
The signals transmitted and received from a point object at range R are expressed,
respectively, by:

ept) = ET ll({;) sin (ert'“l + 7Bt- 'l') (3-2)

epith= ISR ”<[ ]-_*T) sin [37{!‘0(! -+ aBT - r)l] {3-3)

The output of the mixer is described by the low frequency terms of the product of
transmitted and received signals which, when using the relation r=2R/c, reduces to:

- Loy b hl
e (y=F 1 - Ri cos 47BR t+ 2t - -7BR} 2R (3-4)
o 0 T- 2R cT cT ¢

3-1.  Rihaczek, A. W. Principles of High Resolution Radar, New York: McGraw-Hill Co., 1969, pp. S1-56.
3.2, Skolnik, M. 1. Radar Handhook. New York: McGraw-Hill Co., 1970, pp. 20.2-20.4.
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The first term in the argument of the cosine function represents a frequency proportional to
range, and the second term represents a range-dependent phase factor. For parameters of the in-
tended application, T >> 2R/c; that is, the signal duration greatly exceeds the signal round-trip
travel time, therefore, the last phase term in equation (3-4) is negligible and the term in the first
brackets can be well approximated by t/T. Equation (3-4) can thus be properly approximated by:

e (1) = E, I(YT) cos [(4nBRT“c“) ty (47{ foc'l) Rj) (3-5)

Because the signal frequency is proportional to range, Fourier analysis of the signal in equation
(3-5) provides a measure of range. If the object consists of several reflecting points, the com-
posite signal will be a linear combination of signals of the form of equation (3-5) and, by the
superposition property, the Fourier transform will accomplish range sorting. By this process,
the object space is subdivided into range resolution cells.

The second term in the cosine argument of equation (3-5) is a phase angle proportional to
R and to the frequency of the undeviated carrier. This phase term, essential for subsequent
cross-range processing, is identical to that which would be observed with a CW measurement
using frequency f,. The range sorting process, therefore, preserves the phase information which
is to be employed for cross-range processing.

The magnitude of the Fourier-transformed signal provides a range profile of the object
with a resolution which is determined by the signal duration., T. The temporal frequency
associated with an object at range R is:

._ 2BR
fr= - - (3-6
cT '
The spectral resolution, Af, of a sinusoid observed over a period T is in the order of:
: I
At = - (3-7

Combining equations (3-6) with (3-7) and associating the spectral resolution Af with the range
resolution AR, yields the relation invoked previously:

AR= - (3-8)
2B

Signal processing for range resolution consists of sampling the output of the mixer and per-
forming spectral analyses using discrete Fourier transform (DFT) algorithms. Details of the com-
putations are deferred to a subsequent section. The theoretical impulse response (point-spread
function) of the system is shown in figure 3-3. Reduction of the range sidelobes can be accomplished
at the cost of slightly degraded resolution by conventional window functions applied to the time
waveform (reference 3-3). Figure 3-4 shows the theoretical impulse response resulting from
weighting the signal waveform with a Hanning window.

3-3.  Harris, F. J. “On the Use of Windows for Harmonic Analyses With the Discrete Fourier Transform.” Proc. IEEE. Vol. 66.
No. 1, pp. 51-83, January 1978.
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An experimental system operating at a center frequency of 10 GHz (A = 0.03 meter) with a
bandwidth of 4 GHz was assembled and tested to obtain high range-resolution images. The
period of the frequency sweep is approximately 100 milliseconds resulting in a mixer output
signal frequency of 8 kHz for a measurement range of 30 meters. When the 4 GHz bandwidth
signal backscattered from a point object is received, mixed, and Fourier transformed, the result
is a spectral response near 8 kHz with a bandwidth of approximately 10 Hz; this is a bandwidth
reduction factor of 4 x 10%, as given by the BT product. The time-bandwidth product of
4 x 108 is a relatively high value by practical standards. In order to achieve such high band-
width compression ratios in this type of receiver, it is necessary that the frequency sweep be
highly linear. The experimental system employs a subsystem for maintaining sweep linearity.
This feature is not a significant aspect of the research and is reported in reference 3-4.

Experimentally obtained range responses to a point object are shown in figures 3-5 and 3-6.
Figure 3-5 shows the magnitude of the spectral lines computed by the Fourier transform and figure
3-6 is the envelope of the spectral lines. The data were processed using a Hanning window; some of
the sidelobe structure is due to residual nonlinearities in the frequency sweep. Resolution is
demonstrated by the response to a dual-point object in figure 3-7. Figure 3-8 shows a collection of
range profiles taken for 1-degree increments of aspect angle of a corner reflector; the range profiles
display the angular response of the reflector. Figure 3-9 shows an individual range profile for a
relatively complex shape of a missile body. Several scattering centers can be associated with the
physical structure. Figure 3-10 shows an ensemble of range profiles for the missile body at a
number of aspect angles.

The range profile of the object obtained with the linear-FM system constitutes a
one-dimensional image of the system; the magnitude of the range profile for a given range is the
resu't of the coherent summation of returns from all object elements contained in a particular range
cell.

CROSS-RANGE RESOLUTION

As indicated in the preceding chapter, a high degree of resolution in cross range can be
achieved by forming a large synthetic aperture. The aperture is synthesized by the process of scan-
ning the sensor over a surface, storing the received signals, and subsequently coherently process-
ing these signals. We assume a priori that resolution in range has been accomplished by time-delay
sorting methods and we therefore deal with signals backscattered from sections or slices of the ob-
ject space contained within a specific range-resolution cell.

When large apertures are required, a significant practical advantage results from forming the
synthetic aperture by holding the sensor fixed and rotating the object through a range of angles
equal to that which would be subtended by the aperture. The equivalence of observing a rotated ob-
ject with a fixed sensor displaced along a circular arc is illustrated in figures 3-11 and 3-12. In
figure 3-11, the object described in the object-fixed coordinates (x,y) is viewed from an angular off-
set 8. In figure 3-12, the object has been rotated through the angle 8, and the sensor is collinear with
the initial object axis y. In both cases, the relative aspect angle is identical, and the positions of any
arbitrary point in the object coordinate frame, relative to the radar are identical. It should be noted
that the equivalence of object rotation to sensor rotation is maintained only if the transmitter and
receiver are fixed relative to one another, a condition typically inherent to radar systems.

34, Mensa, D. L. A Linear FM Svstem tor High Kesolution Radar Backscartering Measurements " Pacific Missile Test Center
Report, TM-80-24, Point Mugu, California, August 1980.
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The svnthetic aperture is formed by recording the output of a single. fixed sensor for a
number of object angular positions, and subsequently coherently adding the resulting signals. The
process of rotating the object generates a circular arc aperture centered in the object center of rota-
tion which thus becomes the focal point of the aperture.

The operations performed are summarized as tollows:

1. A microwave transducer with sufficient angular beam width to uniformly illuminate the
abject. is held fixed and is used to transmit and receive microwave signals.

2. The object is rotated through an array of angular positions and complex recvived signals
(phase and magnitude), corresponding to cach position, are recorded.

3. The signals are processed to effect steering of the synthetic aperture beam across the
object. Preprocessing or postprocessing corrections for errors induced by the measurement
geometry are introduced.

4. The results of signal processing are displayed to provide a visual image of the object.

The following paragraphs present analyses of the first-order limitations of the rotating-
object imaging. The synthetic aperture formation. the processing required for beam steering, the
limit of resolution, and the focusing errors are considered.

SYNTHETIC APERTURE FORMATION

The synthetic aperture 1s formed by coherently summing received signals which are
sampled at sequential angular positions, as diagrammed in figure 3 13. The coherent signal sum-
mution is the essential feature of the synthetic aperture formation; this requires that the signals
be available in complex {magnitude and phase) form. Because the sensor is sequentially moved
atong the aperture plane te obtain samples of backscattered signals. some form of storage
deviee is required to retain the complex sampled signals for subsequent summing. In synthetic
aperture processing applied to terrain mapping, the signal information is encoded on film in a
manner analogous to a hologram (references 3-5 through 3-7). In our application, the coherent
data are sampled, digitized, and stored on magnetic tape for input to a computer memory.
Dretails of the instrumentation are presented in a subsequent section.

The aperture response corresponding to the process in figpure 3-13 1s represented by the sum:
! i

[ Z Ny
B

where
G = the aperture response
ViR the complex signal observed at the angle 8,
L Broawn, WM and 1L Poreella Vi I con o Svndhietie Aperiure Redar . WELE Spectram, pp $2-62

September 1969

14 ateer RO Noprhoon Apernoe Rades Svsiern, Theore wnd Design. New York, Academie Press, 1970
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Figure 3-13. Conceptual Synthetic
Aperture Forming Process.

COHERENT

TRANSMITTER F—— RECEIVER — SIGNAL
STORAGE

The signal V(8 is the complex envelope of the received signal, represented by the magnitude
and phase of the received signal relative to the transmitted signal. The sum of signals received
along the aperture is maximum when all signals samples are in-phase. This condition prevails
for a point reflector located at the center of rotation, but the phases of signals backscattered
from a point in any other location will vary across the aperture thus reducing the magnitude of

the summed output.
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We consider next the processing required for steering the aperture beam, that is, for directing
the peak response of the aperture to a specific point on the x axis. In order to steer the beam to an
arbitrary x coordinate, a phase correction must be applied tc each sampled field value prior to the
summation. The required phase corrections are those necessary to force the summed signals to an
in-phase condition. To derive the required correction, consider the geometry of figure 3-14 in which
the complex amplitude of the field backscattered from a point object on the x axis is sampled along
a circular aperture with radius R, where Ry >> x .. If the collocated transmitter and receiver are
moved through an angle 8. the phase of the signal will be advanced due to the shortened length. The
received signal phase corresponding to the distance r is:

l/Z

¢ = -4mr/\ = 4/ A [R(ZJ - 2xR ) sin 0 + le

~ —47r/‘)\[R0 -xsin 0+ .\(Z/ZR0 (3-9)

The above approximation is obtained from a binomial expansion of the bracketed term, and
omitting high order terms usiug the condition Ry >> x.,,.. The sampled field values are forced
to be in phase if the above phase is subtracted from the sampled values prior to coherent sum-
mation. Let V (6) be the complex field sampled at the angle 6; the response of the synthetic aper-
ture steered to the point x is:

Gix) = Z\/x(f)) exp [-4n/Mx sin 0 - %2 R, - Ryl (3-10)
]

Factoring phase terms not involving 6 outside the summation and defining u = sin 8 allows
rewriting equation 3-10 as:

GEx/N) = exp {f4mN(Ry + % IR 2 V, (1) exp =210 2x/N) {3-11}

u

where G and V, are suitably redefined to permit the new arguments. If the sum is performed
over uniformn increments of u, it represents a DFT where u and (2x/A) are independent variables
of a Fourier transform pair. The term outside the summation is a complex constant that does
not affect the magnitude or intensity of the response. If the synthetic aperture is formed over a
small angle (u < n/6), the small angle approximation u 6 results in the beam being steered by
a DFT applied directly to data sampled in uniform angular increments. The DFT provides a
computationally efficient algorithm for determining the response of the aperture steered over
the entire range of x. The steering process is inherent to the DFT which applies to the aperture
a phase term linear in 8, and proportional to the coordinate to which the aperture is steered.

The aperture beam can be steered to any value of x, each requiring a distinct summation.
If an FFT is utilized for computation speed, the number of samples in the output transform is
equal to the number of data samples. Thus, if N data samples are transformed, the aperture is
steered to N different values of x. The propriety of the transform operation requires sampling
consistent with the Nyquist criterion.

3-18
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LIMIT OF RESOLUTION

Consider again the geometry of figure 3-14 with two identical point objects located at
x = 0 and x = Ax. The received signal is then the superposition of the two individual signals ex-
pressed by:

VA_\l()) =exp [-4mR/A} + exp [-id7/ A R, - sz/?_R“) (3-12)




When the composite signal observed over a finite angular interval, A8, is Fourier transformed.
the two signals can be resolved if their relative phases change at least n radians, as the observa-
tion point varies from the center to the edge of the aperture (reference 3-8). The angular aperture
required for resolution therefore satisfies the following equality which. by noting R, >> Ax.
yields the result presented in reference 3-5:

47{/?\[R0 -R,+ Ax sin (A0/2) - Ax/?_RO] =7

s N (3-13)
4 sin (A6/2)

Equation (3-13) expresses the Rayleigh resolution criterion. The consequence of using the aper-
ture for both transmitting and receiving results in an additional factor of 2 from the resolution
expression for optics. The above equation expresses the limit of resolution for point objects
near the center of the object space for which phase variations across the aperture are essentially
linear. This maximum resolution can only be achieved over a limited region of the object space
as shown in the following section.

FOCUSING ERRORS

In order to determine the focusing properties of the imaging process, the response of the
aperture to a point arbitrarily located in the object space is determined. Figure 3-15 shows the
circular aperture centered on the center of rotation and an arbitrary point in the object space.
Because the entire aperture is equidistant from the object center, the response to a central point
is maximum and the aperture is said to be focused to the object cunter. The distance between an
arbitrary point on the aperture, identified by the angle 6, and an arbitrary point in the object
space (x,y). is:

5
T xy) = R“ ll 2Ry cos B~ xsin ) + (x7 + )‘2)5'R6 (3-14)

Field values reflected by a point at (x,y), sampled at the aperture, exhibit a phase angle cor- t
responding to the two-way path length. The normalized amplitude of the received field is: i

5] i
Vidxy) cexp g R UM 2y con - xosin R+ (x4 _\'2) R ( {3-15) :
! ) 0 a 0 s

Equation (3-15) expresses the phase variations observed across the aperture. When signals
sampled across the aperture are coherently summed over 8 to synthesize the response. the
resultant magnitude is reduced from the resultant of a similar sum for an object point at
x =y = 0. The coherent summation of signals expressed by equation (3-15) for a point-object at
{x.y). represents the response of the aperture focused to x = y = 0 to a point object located at
{x.y). If a phase term equal to the argument of the exponential of equation (3-15) is subtracted
from each signal sample prior to summation, the phase variations will be corrected and the

-

3-S. Brown, WM. and L. 1. Poreelio In Meroduction 1o Svnthetic Aperture Kader, WL Spectrum, pp. 8262,
September 1969,
3-8 Ribicszek, AL W Pranciples of High Resolution Radur. New York  MceGraw-Hitl Co L 1969, p. 451
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summed signals will be in-phase. The result of the summation will then be a maximum; this
operation p.ovides diffraction-limited focusing of the aperture. The response of the focused syn-
thetic aperture to a point object at (x,y) is thus:

s

5

Gixy) =Z Vidxy)exp iHnR” A [I P2 cos - x ) R4 (7 + _\'ZI R, s (3-16)
[+

The focusing operation constitutes a significant computational burden; equation (3-16) indicates
that a distinct phase correction must be applied for each combination of 8 and (x.y). If the argu-
ment of the exponential term in equation (3-16) is expanded in a series with terms of order 2 and
higher neglected, and the following approximations are made,

R . XS NI/, cos o~ ]
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equation (3-16) reduces to:

Gxy) = exp [H(R, + yIA] Yo VI0xy) exp (-jtaxd M) (3-17)
8

The phase term outside the summation has no effect on the resultant magnitude which can be
expressed as:

GO = | 7 Vi) exp (=210 2x'\) {3-18)
]

Equation (3-18) represents a DFT sum, indicating that an approximate image can be ob-
tained by Fourier transforming the field values sampled along the aperture. The assumptions
required for the DFT approximation are that the observation distance be large relative to the
object dimensions, and that the angle subtended by the aperture be small. The DFT allows a
significant reduction in the computational load offering the feasibility of near real-time imaging
in some applications.

The development of equations (3-18) and (3-14) indicates that, in the limit of large observa-
tion distances and small angular apertures, the DFT is a valid approximation for both steering
and focusing. Using equation (3-16) to process sampled field values steers the synthetic aperture
beam to any point on the object plane and produces diffraction-limited focusing; using equation
(3-18), the DFT approximation steers the aperture beam which remains focused to the diffrac-
tion limit at the object center, but becomes defocused when directed to other points in the object
plane.

The nature of the focusing error can be determined by the following consideration. When
sampled field values are processed with a DFT, a sequence of phase corrections linear in 8 is
applied; although this has the effect of steering the aperture in a general direction determined
by the particular phase slope, it does not provide the phase correction necessary to exactly
focus the aperture to any particular point. As a result, the response of the aperture thus syn-
thesized is decreased from that of the focused aperture. Figure 3-16 shows the equivalent
geometry of the synthetic aperture formed by the various processes. The unsteered aperture, in-
herently focused to the object center, is represented by sampled locations along the circular arc
centered on the object center. The steered focused aperture, formed by applying a phase correc-
tion to the sampled field values, such as to bring them to an in-phase condition, is a circular arc
centered on the coordinates (x,.y,) to which the aperture is focused. The differential path length
representing the required phase correction is denoted by 4. The DFT-steered aperture is formed
by applying to the sampled field values discrete phase corrections proportional to x and 6. This
quantization in beam steering precludes a general tangency between the DFT-steered and
steered focused apertures, and the results in phase errors corresponding to the differential path
length denoted by ¢. Processing the data with an N-point. DFT is equivalent to generating N
steered beams, each formed by a phase correction proportional to x. Each of the N beams is
only approximately focused in the vicinity of the x coordinate due to the phase errors inherent
to the DFT approximation.

To develop the response of the steered aperture, we consider the sampled aperture
geometry of figure 3-17. The phase of the signal reflected from a point object located at x,¥y,.
and received at an aperture coordinate 8, is

Ly
4 . - -7 2 B L e H 2 2 ’ .
otx v = N Ry + 2Ry cos - x Dsin )+ xs 4+ v s (3-19)
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The DFT of the sequence of signals observed across the aperture is represented by:*

Glxg Yo%) = D exp [i00x,.vo0,2] exp (527 2,6, /) (3-20)

n

where $(x.,y:8,) is defined in equation (3-19). Equation (3-20) is the response to a point reflector
located at x,y, of the aperture steered to x,. The form of the response of the steered beams can
be determined more easily by allowing the observation distance, R, to approach infinity.
Rewriting the bracketed terms of equation (3-19) in a binomial expansion and assuming
Ry >> x, + y, provides an expression for the phase variation across the aperture in the limit of
infinite observation distance. Equation (3-20) can then be rewritten as:

. . 2
G (X, ¥,i%) = Z exp {—J41TR0/7\ [I ty, cos O -xg sin t'?n,)/R0 + (xg + y(z))/?- R,

n
-[jln()n 3xk/>\]} (3-21)

The above expression can be rewritten by factoring terms not involving 8 outside the summa-
tion, yielding:

G_i{x, .y x. ) =exp {~j47r [RO/)\ + (xi + yi)/Ré]}

exp{—j47r/)\[(ky0 cos O - x, sin 0) +x, 0"]} (3-22)

The subscript on G indicates that the response applies to an infinite observation distance; we
shall subsequently refer to it as the far-field response.

The general form of the response for the central beam (x, = 0) is shown in figure 3-18, which
plots the intensity. |G2|, given by equation (3-22) for x, = 0 and a total aperture angle of 30
degrees. The contours are lines of constant intensity for uniform increments of 0.1 times the
peak value. The peak response of the unsteered beam occurs for x, = y, = 0. because signals
reflected from this point and received across the aperture are in phase. As the location of the
object point deviates from center, phase errors developed across the aperture cause a reduction
in the magnitude of the response. The precise shape of the response for each beam is determined
by plotting equation (3-22) for each beam. A tractable exprec-ion for estimating the size of the _
main response of the beams can be developed by establishing a phase-error criterion. The )
response of an aperture without phase error has a maximum amplitude and minimum beam
width; when the aperture is subject to phase errors, the magnitude is redaced and the beam
width broadened. The limit of allowable phase errors is somewhat arbitrary but a criterion
which is generally accepted (reference 3-1) allows maximum phase errors of n/2 radians at the
edges of the aperture. If the errcr is quadratic across the aperture, the peak magnitude of the
response is decreased by less than 15 percent and the spatial response widened by less than 10
percent (reference 3-6).

“bor this development, the amplitude variations of the observed signal are jepored. and a point reflector is assumed to provide
unit-magnitude received signals at all aperture clement pogitions. This approximation is consistent with the far-field assumption.
31 Rihaczek, A, Wo Principles of High Resolutton Radar, New York: MeGraw-Hill Co., 1969, pp. S1-56.

36 Hareer, RO, Svuddcne Aperture Radar Svvdems. Theorvoand Desen. New York, Academic Press, 1970,
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By adopting the 1 2 radians maximum phase error. we can detcrmine the boundaries of

tocations of point objects 1n the x v space which result in aperture phase errors equal to the
preserbed bt Points insade these boundaries will be imaged with some degradation; points
outside these boundaries will be imaged with @ magnitude reduction dictated by the deviation
trom the boundary  Fhe phase of signals retlected from o point object located at x v, and
recenned at the end and center of the steered aperture, are given respectively by the exponent of
equation (3 2htord - © Zand A - 0 The phase ditferenceas then:

S <> \ <' ()’ : 323
C A ] "\

O 1~ the total angle subtended by the aperture tor which a maximum phase error of n 2 radians can
oceur at either edge ot the aperture

Figure 3-19 shows the focal zone pattern, defined by equation (3-231 when the N sampled data
are processed by an N-point DET to produce N steered heams. The focal zones are contiguous
without overlap. The ‘sones can be made o overlap by computing additional beams,
accomplished by padding the sampled data with seros and computing an M-point DFT where
M > N. The following observations can be made from figure 3-19: (1) the depth (y extent) of the
focal zones remains unchanged with x, and {2} the peak response for a beam steered to x,
oceurs for a point-object location x such that -+, . The maximum response of a particular
heam occurs for a location slightly offset from that to which the beam is steered; the offset, which
increases with x,. results from perfornnng the DFT using equal increments in 8. rather than in
u = sin 8. This limitation could br removed at the cost of increased instrumentation or computa-
tional complexity. The lateral ¢xtent of the object space in which points can be imaged, can be
defined somewhat arbitrarily by the condition of having the x, coordinate to which the beam is
steered. fall on the boundary of the focal zone of the k'™ beam. This condition is shown in figure 3-20
in which the overall extent of the ohject field is shown in heavy lines. Responses for beams of a
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Figure 319 Far Field Focal Zones of DFT Steered Beams.
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Figure 3-20. Spatial Extent of Object Field for DFT-Steered Aperture.

30-degree aperture steered Lo values of x| denoted A through E in figure 3-20 are shown in figures
3-21 through 3-25, obtained by using equation (3-21). The contours are again lines of constant inten-
sity with increments 0.1 times the peak value of the unsteered beam. The offset in the response of
the steered beams can be noted in these figures. Figures 3-26 and 3-27 show responses for the aper-
ture steered to an x, coordinate 2 and 4 times that for point E, respectively, These figures illustrate
the severe degradations for beams steered to large lateral offsets.

In the preceding analysis, the allowable degradation has been established by the arbitrary
selection of 72 radians maximum phase error. This is relatively conservative because it limits
the degradation to a 15 percent reduction in intensity. The general dependenze of the focal zones
on the aperture angle is valid for aperture angles less than 1 radian. For larger apertures, the
phase errors become excessive and the n/2 radian error criterion is no longer valid. For the
majority of applications, this restriction is satisfied and the dimensions of the object field can
be quickly estimated for a given aperture angle, using the relations shown in figure 3-21. In the
limit of small apecture angles, the lateral and longitudinal extent of the focal zone for the cen-

tral beam become respectively:

(023N A
AN - ~
S (e ) 26

0237 0.25) A
‘. - - - (3-24)
. ¢ > R
Lo t@ ) F- 1 -0 b -

Noting the following inequality between the lateral and longitudinal field extents cited in
figure 3-20.
1 12s 012%
. Q.08
(G 2y - s D I = conte ) 13-25)
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Figure 3-24.  Response of 30-Degree Aperture Beam Steered to Point D.
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we conclude that the maximum radial distance of a point object that can be imaged with
tolerable degradation is limited by the depth of field established by the longitudinal extent of
the focal zone. Because the lateral (cross range) resolution and the depth of field both depend on
the aperture angle, a fundamental relation between lateral resolution and maximum object
dimension can be established. The ratio of field depth to the width of the lateral resolution cell
is given by the aspect ratio of the focal zones in figure 3-20. Let Ax be the lateral resolution cell
size; then, from figure 3-20:

. REY
Ax o 0es (3-26)
A s (G 2)
The number of lateral resolution cells contained in the field-depth extent is:
H =) Y
Sin (9,2) (3-27)
1 - cos (072)
The total extent represented by N cells of dimension Ax is:
0.25X
D= NAx = - - 3-28
1 —cos (O/2) ! )
Combining the above three equations to eliminate © yields:
D 0.25
- = : (3-29)
A . {0.252
1 - cos |sin -
Ax
\ - 0.25 (3-30)
Ax {0252 ‘
I - cos {sin -
A Ax ;

Equations (3-29) and (3-30) are plotted in figures 3-28 and 3-29, respectively. These two relations
establish the limits of object size and the number of resolution cells. The above limitations are fun-
damental effects resulting from sensitivity of the Fourier transform to phase errors inherent to
the circular motion of rotating object points. The limitations were derived by adopting a
tolerable phase error of n/2 radians; if the limitations are violated. some degree of resolution
can still be expected at the cost of imaging degradation.

The preceding analysis was based on the assumption of infinite observation distance. This
implies that phase errors are due only to the DFT approximation to steering a circular aperture.
A finite observation distance induces an additional source of phase error that can be analyzed
by using the phase from the exponent of equation (3-20) and omitting the subsequent binomial
expansion and the simplifying assumption, Ry >> x_, + y,. The phase error for a finite observa-
tion distance, R, is again equated to n/2 radians to define the focal zones.
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Figure 329 Maximum Number of Resolution Cells. N, Versus Lateral Resolution, Ax

A computer program was used to perform a numerical search to define the boundaries
established by equation (3-31). The results can be summarized as follows: Each beam exhibits a
tocal zone very similar to the farfield case; however. the focal zones are aligned with the axes
of the beams which are now radially disposed about the center of the synthetic aperture (which
15 also the location of the physical aperturel. This constitutes the principal difference from the
far-field case in which the beams are parallel to the yv-axis. The consequence of this effect is a
radial distortion of the object space from rectangular coordinates to a set of polar coordinates
with origin at the point of observation. In most applications, this distortion is a minor effect.
However, it can be corrected after range and cross-range imaging is performed. Figures 3-30
through 3-34 show plots of near-field focal zones. The conditions are identical to those used for
the far-field responses shown in figures 3-21 through 3-25. but the ohservation distance. R, was
25 meters and the wavelength 0.03 meter.
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T, O-DIMENSIONAL RANGE AND CROSS-RANGE IMAGING

We now describe parameters of a system used tor collecting experimental data and
present  examples of images obtained from the data. Because the implementation of the equip-
ment is not central to the research. specific details of the hardware are omitted and only aspects
pertinent to the signal-processing are discussed. A block diagram of the experimental setup is
shown in figure 3-35. System parameters have been selected to provide equal resolution in range
and cross range, and adjusted to accommodate sample numbers, which are powers of 2, in order
to exploit FFT algorithms.

[Por the examples presented here. the microwave system was operated with a center fre-
guency of 10 GHz and a bandwidth of 1.57 G1lz. Linear modulation of the transmitted signal
frequency was triggered by an angular encoder connected to the object rotator; the chirp period
was 51.2 milliseconds. The low-frequency product of transmitted and received signals, nomi-
nally a 5 kHz tone, was sampled at a 20 kHz rate, converted to six-bit binary words, and
recorded. The sampling rate was sufficient to avoid aliasing errors and produced 1024 samples
of data during the chirp period. After the sampled data were recorded, the object was rotated to
the next angular position and the process was repeated until the object had undergone a com-
plete rotation. Fach block of 1024 data samples was multiplied by a cosine-squared weighting
{Hanning window (reference 3-3)) 10 reduce range sidelobes and padded with 1024 zeros., as
shown in figure 3-36. The data were processed by a 204&point FFT to produce 2048 spectral
samples. of which 1024 were unambiguous. The frequency index corresponding to the center of
the object range field was identitied, and 64 complex spectral samples (real and imaginary} on
each side of the center were retained. The 128 spectral samples represent a range space of 20 feet (6
meters).

The angular increment between data hlocks was 0.14 degree which satisfied the sampling
criterion for signals from scatterers with a maximum cross range of 10 feet {3 meterst. Sixty-
four such angular increments constitute the 9-degree angular extent of the aperture. The 64 in-
dividual spectra were placed in columns of a two-dimensional array. Each row was multiplied
by @ cosine-squared welghting to reduce cross-range sidelobes in the subsequent FFT and the
array was padded with 64 additional rows containing zeros. The configuration of the array is
shown in figur: ©-37. The final operation was a 128-point FFT applied to the data {magnitude
and phase of the range profiles) in cach of the 128 rows.

The structure of the array in figure 3-37 is summarized as follows. The samples forming
cach columun are obtained hy Fourier transforming the real input data and they represent the
magnitude and phase of the sum of signals reflected from all poirts contamed in each range cell.
Fach row. in turn. represents the cariation in the content of a varticular range cell. Fourier
transforn ing the content of cach row steers tne syvnthetic aperture to 128 different locations, and
thus deseribes a cross-range profile for each range cell. The result is a two-dimensional array
which constitutes the runge and cross range of the objects reflectivity density. The weighting
applied prior to e n transforms suppresses the sidelobes in both range and cross range and the
sero padding enhances the spectral resolution. The process maps the reflectivity distribution of
the object in a 20- by 20-foot square field with equal resolution in range and cross range of the
order to 20 centimeters. The resolution in the two directions has been set equal by proper selec-
tion of parameter values in accordance with equations €3-8) and 3- 73y
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Frqure 337 Configuration of Data Array for Cross-Range Processing

The computational procedure just described performs a 204K%-point FEFT of the recorded
data and discards all but 128 spectral samples. This is because the object occupies a limited
portion of the total range space. The discarding of the unused 1920 samples represents a com-
putational inefficiency which can be overcome by zoom FFT techniques (reference 3-9) in which
the required 124 samples are computed directly. This is accompushed by implementing a digital
band-pass filter operating on the 1024 sample input sequence. decimating to 128 samples and
computing a [2&-point FFT, This operation, properly implemented. provides results identical to
the previous procedure. Although the former method is less efficient. it was used to produce the
experimental images because it minimized development of new computer programs

R0 0mes ROK aad 1oL Enes e Drertdd Tre Soves v New York o Tobn Waley and Soac Ine L 1972 pp 420424,
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The combination of zoom FIFT and increased memory capacity allows a further computa-
tional simplification to the process. The input data can be band-passed and decimated, resulting
in 128 data samples which can then be loaded in columns of a two-dimensional array. For each
increment of angular rotation, a new column is generated until a 128 by 128 array is formed. A
two-dimensional window is then applied to the array and a two-dimensional FFT is computed.
General purpose computers currently available have sufficiently large memories to allow the
direct computation of 128 by 128-point two-dimensional FFTs.

In order to test the computational process, simulated data were generated to represent the
idealized signal reflected from a linear array of four independent point objects shown in figure
3-38. The composite received signal is given by the sum of four signals, each expressed by equa-
tion (3-5) with the range corresponding to each point. The simulated received signal was
computed for 0.14-degree angular increments and processed as an actual signal would be. The
intensity of the resulting images is shown in figure 3-39. Each image is obtained by processing
data from a 9-degree sector. Three computed images are shown for angular sectors centered on
0. 36, and 90 degrees. The response of the central point represents the point-spread function of
the imaging system and conforms well to the theoretical resolution of 20 centimeters. The
sidelobes in the point-spread response are adequately suppressed by the windowing. Responses
of points in the other three quadrants are symmetrical to those shown. The point-spread func-
tion exhibits some degradation for object points displaced from center. Images of points near
the boundaries of the object space are reduced in intensity by a factor of two and the spatial
response is broadened. The degradation for points with large offset in range from the center of
rotation is due to the focusing error described in the preceding section. Points with maximum
cross range are also imaged with similar degradation because they traverse more than one
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Figure 3-38. Coniiquration of Linear
Array of Four-Point Obsects.
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range-resolution cell in the course of the 9-degree rotation. This effect is reduced by the window-
ing process which decreases the effective angular extent. A slight artifact is noted at the right of
the 90-degree image. This is aliased leakage from the response to the left caused by the periodic
nature of the FFT. It is not significant and can be avoided by ensuring the object is well con-
tained in the unambiguous image space. Figure 3-39 represents the imaging performance of the
process described. Subject to the degradations noted over the extent of the image field, the
method is adequate for two-dimensional imaging of objects and represents the limit of
achievable performance with relatively simple standard FFT algorithms.

The effect of windowing the data prior to Fourier transforming is demonstrated by
processing the identical data with a rectangular window replacing the cosine-squared window in
both {range and cross range) transforms. The results, shown in figure 3-40, differ from previous
results in the following aspects: thé resolution of the central point is enhanced, minor sidelobes
caused by the abrupt truncation of the rectargular window are evident, and the off-center points
are imaged with increased spreading and reduced peak magnitude. This degradation is a result
of the increased effective width of the windows. This decreases both the depth of field and the
size of the range-resolution cell, thereby causing more smearing than in the previous case. All
subsequent images are processed using the cosine-squared window.

Several examples of images processed from experimental data are shown in the following
figures. Figure 3-41 is the image of two 4-inch diameter, 6-inch length cylinders oriented with
their longitudinal axes parallel to the axis of rotation. The two cylinders are diametrically op-
posed 48 inches from the center of rotation. Due to their small physical size, the cylinders
behave essentially as point objects. The image field is free from spurious responses, artifacts,
and noise. The slight difference in peak intensity is caused by errors in vertical alignment of the
cylinder axes.

Figure 3-42 is the image of a missile body shown superimposed. The image was obtained
by processing the range profiles shown in figures 3-9 and 3-10. This example demonstrates the
value of two-dimensional imaging: resolution in cross range allows the separation of the two
scatterers at the rear of the missile which would not be separated by range processing alone.

Figures 3-43 and 3-44 are images of the body of the author. These data were obtained by
rotating the body supported in the supine position about a vertical axis. The superimposed
ellipse indicates the area covered by the rotated body; the inscribed arrow indicates the orienta-
tion with the point of the arrow denoting the head position. The arrow outside the ellipse in-
dicates the direction of viewing. The level of microwave exposure for these images was
0.05 mw/cm?2, a value well below the accepted safe level of 10 mw/cm? The images show con-
siderable backscattering from regions of large bone structures. Although the utility of such
images has .ot been established, they nevertheless constitute the first reported measurements
of the radar reflectivity density of a human body.

Figure 3-45 is an image of another missile body in the orientation indicated by the
diagram. The single response at the far end of the image field is a range marker. The front part
of the missile, denoted by the head of the arrow. is imaged with considerable range extent. This
is caused by multiple internal reflections of signals penetrating the transparent radome. The
multiple reflections constitute time delays which are interpreted in the imaging process as ex-
tended range. An additional feature of interest is the minor ridge along the zero cross-range axis
which is caused by low-level reflections from the anechoic enclosure used for the measurements.
Because stationary objects generate no change in phase as a function of angular rotation of the
test ob,ect. they do not produce a Doppler shift, and are therefore imaged with zero cross range.
Their range position, however. is properly imaged because range imaging i% accomplished in-
dependently of object rotation. The result in this type of two-dimensional processing is that
images of stationary objects are collapsed on the zero cross-range axis.
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EXTENSION TO THREE-DIMENSIONAL IMAGING

In the preceding sceetion. we deseribed a miethod tor twa-dimensional
time-delay sorting to obtain resolution in range and object rotation for reso
along an axis normal to the axiz of rotation ol the object. This techni
imaging three-dimensional objects if resolution is obtained in the second
by using fan beams to irradiate selected slices of the object. When the entir
irradiated. however, the images represent projeetions of the three-dim
distribution on the two-dimensional image plane. In some applications, su
scattering centers on known objects (figures 3-10 to 3-15). the lack of re
dimension is not critical. In these cases. the location ot retlecting points
the two-dimensional image because the obiect shape is known. Thus, a prio
used to remove ambiguities not resolved by the imaging process. When ima
without a priori information of the reflectivity distribution, however. thre
tion may be required to unambiguously define the image.

In this section we outline a method to obtain resolution in both cros:
rotation of the object about two mutually orthogonal axes. The signal conte
resolved by the same method used in the preceding section. is coherently
tion of the two rotation angles. We again adopt the viewpoint that obsery
with a stationary radar is equivalent to observing a stationary object with
spherical surface. This condition is shown in figure 3-16. in which the obj
angles 8 and w about the y- and x-axes. respectively. The total angular
form a two-dimensional aperture which is a section of a sphere. Forvach ra
the object is found by a two-dimensional DI'T of the received signals sam
the two angles Hy.. The result is a sequence of two-dimensional images tor ¢

Because the angles © and ¥ are relatively small (<. n 6). the ~v b siz0d g
tangular and the point-spread function, hix vl is separable in recin sular ¢

by the product hy(xr hytvl As a results cach of the relations derised for
synthetic aperture applies 1o the two-dimensional case. The required signe
extensive than in the preceaing case bhecause a one-dimensional DEFT s

dimensional DET to process the <ignal content of each ronge cell as a tuncet
Although more stored data and computations are reguired tor the two-d
aperture case than for the one-dimensional case, the types ot data and comy
resolution in the sccond cross-range dimension can thus be achiovea ot t
storage capacity and computation tine.

The physical implementation of the two-dimensional synthetie apertun
rotating the object about two orthogonal axes This can be accomplished hy
svstem or by ousing other mechanisms by which the object can be inde
rotated relative 1o the radar axis. Although these procedures tor obhtan:
resolution are a direct extension ot the two-dimensional case. exjperment

feasibility of this process have not heen attempted and constitute a potential t
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CHAPTER 4

FOCUSED SYNTHETIC APERTURE PROCESSING

In the preceding chapter a method for two-dimensional imaging of rotated objects was
described. The resolution in range was shown to be determined by the signal bandwidth and the
resolution in cross range by the angular extent of the synthetic aperture. Signal processing con-
sisted almost exclusively of Fourier transforms, which can be implemented by highly efficient
FFT algorithms. The Fourier transform is the exact operation required for range processing and
no approximations are involved in its application. However, its use in synthetic aperture
processing constitutes an approximation which limits resolution. The image produced is subject
to focusing errors which are predominantly range-dependent; consequently, Fourier transform-
ing signals which are received from a rotating object results in an imaging system which is
space-variant and does not provide a difiraction-limited image throughout the object space. In
this chapter, methods are considered for focusing the synthetic aperture in order to obtain
diffraction-limited, space-invariant, point-spread functions. As shown in the preceding chapter,
focusing errors are phase factors which depend on the wavelength of the irradiation. In the
following section we develop the focusing process for the case of CW irradiation with a single
wavelength. In the subsequent section, the analysis is extended to include polychromatic or
wide-band irradiation.

SYNTHETIC APERTURE FOCUSING FOR CW SIGNALS

Consider the problem of obtaining a two-dimensional image of an object by processing
reflected signals using a source and receiver located in the cross-sectional plane. The cross sec-
tion is characterized by a two-dimensional distribution of scattering centers, denoted by gix,y),
which is termed the reflectivity density function. The geometry is shown in figure 4-1 which
depicts an object being uniformly illuminated by a stationary CW source while reflected signals
are recorded as a function of the object rotation angle.* The observation distance is assumed to
be sufficiently greater than the object extent so that iso-range contours can be assumed to be
straight lines normal to the line-of-sight. The objective is to obtain a reconstruction of g(x,y) by
processing the received signals from various aspect angles. The term ‘‘signal’’ is taken to mean
the complex envelope (phase and amplitudel of the received CW carrier. The formulation is
directly applicable to planar objects and to three-dimensional objects when a fan beam is used
to selectively illuminate a particular cross section of the object. If a three-dimensional object is
uniformly illuminated, gix.y) is interpreted as the projection of the three-dimensional reflectivity

»
When imaging complex reflective objects, parts of the object may he shadowed by other parts. In our development, we assume
that shadowing does not onecur,
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Figure 4-1. Imaging Geometry
L for a Planar Object.

J)
L

STATIONARY
SOURCE/RECEIVER

density onto the xy-plane. The imaging process is tomographic in nature because the
reconstructed image can be a slice of the object obtained from measurements of signals
propagating in the plane of the slice. This is the case when a fan beam is used. The process,
however, differs from conventional x-ray tomography (references 4-1 through 4-4) in which the
image is reconstructed using measurements of line integrals or projections of the object density.
As shown in the following analysis, the imaging process being described reconstructs the image
from measurements of total reflected signals.

Assume the observations are started with the sensor aligned with the y axis; x is then the
cross-range coordinate and y is the range coordinate. When the object is rotated through any
angle 8, the range and cross-range coordinates become v and u, respectively. For a fixed 6, the
signal from a particular range, v, is given by the reflectivity density integrated over u for a
fixed v. This assumes that all reflectors from a given range add in-phase or, equivalently, that
the reflection coefficients are of equal phase.

+oa
p(v:6) 05./- go(uv) du 4-1)

—o0

4.1. Scudde:, H. ). “Introduction to Computer Aided Tomography,” Proc. IEEE. Vol. 66, No. 6. pp. 628-637, June 1978,
4-2. Kak, A. C. "Computerized Tomography With X-Ray. Emission, and Ultra-Sound Sources.” Proc. IFEE. Vol. 67, No. 9,
pp. 1245-1271, September 1979,
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where
g, (uv) = elxy)
x =ucos@-vsin b
y =usin 0+ vcos 0

ptv;6) is a line integral consisting of a projection of the reflectivity density onto the v axis. It is
a one-dimensional function of the single variable v; with the second variable, 6, interpreted as a
parameter to denote the orientation of a projection.

The total signal received is the integral of signals along the projection modified by a phase

factor determined by the round-trip phase. If the propagation velocity in the medium is
constant, the signal is expressed to within a generally . mplex constant by:

40
+oo
G = f p(v:0) exp (j4mv/N) dv = ff go(u.v) exp (-j4mv/A) du dv (4-2)

The integrals can be expressed with infinite limits because the integrand is zero outside the
bounded object.

The relation v =y cos 6 - x sin 8 allows equation (4-2) to be expressed as:

+ oo
GO =ff g(x.y) exp [-i47/X (y cos § - x sin 0)] dx dy (4-3)

If the variables f, and f, are defined as:

fx A 2(sin 8)/x

fy 4 -2(cos o/

Then equation {4-3) can be written as:

+ oo

G(f‘.ry) =ff gOxy) exp [j2mif x + f‘yy)l dx dy (4-4)

—0o

Equation (4-4) has been expressed as a two-dimensional Fourier transformation. If G(f‘.fy) were
known for f,.fy running from - to + =, gix,y) could be readily determined by an inverse

Fourier transformation resulting in:

+ oo
g(x.y) =ff G(I"J"y) exp |-j21r(f\x + l"vy)| dl'x dfy
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Equations (4-4) and (4-5) would then form a two-dimensional transform pair symbolized by:

REX.y) ﬂ*(.‘(t‘.tyl (4-6)

gix,y) is the spatial function, G(f,.(y) is the corresponding spatial spectrum; f, and fy are planar
wave spatial frequency components in the x and y directions, respectively.

Equation (4-5) shows that g(x,y) could be determined by Fourier transforming Gif,.f,)
which is related to the observed data. Because gix.y) is space-limited, Gtf,.f,) extends over the
entire f f -plane. However, the constraints f, = 2(sin 6)/4 and f, = -2(cos 8)/A show that the ac-
tual data are limited to values of Gif,, f,) falling along a circle in the f, f -plane with radius 2/4.
In the following analysis, we determine how the limited sample of the spatial spectrum afforded

by the measured values G(8) affects the reconstructed image.

Let é(x.y) be the reconstructed reflectivity density obtained by setting G(f,.f) = 0
everywhere except on a circle of radius 2/4. The radial symmetry allows simplification by convert-
ing to polar coordinates as defined in figure 4-2. The terms ggix,y) and gp(r,y) are spatial descrip-
tions of the object in rectangular and polar coordinates; and Gpyif,.f,} and Gp(p. 0) are the
corresponding spectral functions expressed in rectangular and polar cooré/inates. The expression
for the reconstruction 1n polar coordinates is:

w 2m
Qplr. v ff Gp(p.0) 8(p - 2/N) exp [-j2mpr cos (6 ~ Y} d6 p dp (4-7)
00

The values G ,12/1.6) are precisely the observed data G(6) as described in equation (4-3).

f
v \]
OBJECT SPACE SPATIAL FREQUENCY
COORDINATES COORDINATES
x f
x
r

Figure 4-2. Space and Frequency Domain Coordinates.

Equation (4-7) expresses the response of a circular line aperture which surrounds the
object and is focused to each point in the object space. The exponential term is the phase correc-
tion required to bring signals received from an object point at r,|y to an in-phase condition.
Although equation {4-7) is expressed as a single integral as a result of the radial symmetry, it
constitutes a two-dimensional Fourier transform. The two-dimensional operation is required to
focus the aperture to all points in the object plane.




The point-spread function of the imaging system can be obtained by employing the
transform relation:

Ep(r. ) = F [Gplp. O] [8(p - 2/N) (4-8)

Y

Because g, (r, ) = ¥[G,(p.0)], equation (4-8) becomes:

Bp(r.¥) = gp(r. ) ¥ h(r.Y) (4-9)

where h(r. ) = f[6(p - 2/} and the symbol 12\' denotes two-dimensional convolution. The calculation

of h{r, Y)'is performed by a Fourier integral in polar coordinates.

o 27

h(r. ) =ff 8(p - 2/N) exp [-i2mpr cos (8 - Y] dO p dp ]
00

2n
h(r) = (2/)\)f exp [-j2mr2/A cos (8 - Y] dO = 4m/X J (471/N) (4-10)
0

The reconstruction g(r, ) is a convolution of the object reflectivity distribution, g(r. y), with
the function h{(r, ). which is the point-spread function of the imaging process. The point-spread
function, expressed by equation (4-10), exhibits radial symmetry with a central lobe width
(radial distance between zeros adjacent to the peak) of 0.4A; the zero-crossing spacing is not
precisely constant with r and the first sidelobe is 8 decibels (dB) below the peak. Its magnitude
squared is plotted in figure 4-3.

Figure 4-3. Intensity of the Point-Spread Function for the !maging Process.




The interpretation of the point-spread function of the process is that object points will be
imaged as a central peak of width 0.{A, surrounded by monotonically decreasing circular
sidelobe ridges and valleys. The imaging process is linear and shift invariant; therefore, the
form of the response is uniform throughout the abject space. The image response to multiple
point object is the superposition of point-spread functions, each weighted by the amplitude of
the object point and shifted to the spatial coordinates of the object point. Because the first zero
of the point-spread function occurs at a radial distance at 0.2d from the peak, two point
objects separated by more than 0.24 will produce an image in which they are resolved.

Figure 4-4 shows the intensity of the image reconstructed from data computed to simulate
a signal received from a point object. The simulated wavelength was 0.03 meter and the image
field was calculated for an area of 0.5 Iy 0.5 meter and consisted of 125 by 128 pixels. The object
point was disposed at a radial distance of 0.15 meter and 300 uniform angular increments were
used for a complete rotation. The reconstructed image conforms to the theoretical point-spread
function and, not being centered, confirms the shift invariance of the imaging process. Small ar-
tifacts result from plotting the radially symmetric response on a rectanguiar format.

-—-025m

Figure 44. Intensity of Reconstructed Image of a Line Object (N = 0.03 m).

In order to confirm the practical performance of the imaging process. a microwave
measurement of a dual-point object was conducted and the image was reconstructed from the
recorded data. Synthetic data corresponding to parameters duplicating those of the test were
also generated and processed. The test object was a pair of identical rods 0.64 centimeter (¢cm) in
diameter and 34 ¢m in length. The rods, separated hy 17 ¢m and mounted vertically on a
rotating support, were irradiated by a radar with a wavelength of 0.06 meter from a distance of
approximately 20 meters. The rotation axis was parallel to the rods and normal to the radar
line-of-sight. The test object is essentially a pair of line objects because the rod diameter is
small relative to the wavelength: the projection of the line objects onto the xy-plane is a pair of
points. The reconstructed image ticld is a 125 by 128 eell array spanning 0.5 by (0.5 meter. Figures
15 and 46, displaying the intensity ot the images reconstructed from real and synthetic data.
show excellent correlation The inuage artifacts are induced by interference between the periodic
sidelobe structure of the two obiect responses.
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The imaging process can be considered from a spatial spectrum viewpoint with the
reconstructed image interpreted as a synthesis of elemental plane-wave components. Consider
the reconstruction of a single point object of unit amplitude with coordinates (x,,y,).

+0
GR(t'x.fy) =ff Br(xy) exp [j2m(f x + t'yy)] dx dy (4-11)

Jol

If g {x.y) = 8(x - x_.y - ¥}, equation (4-11) becomes:
Ggifof,) = exp i2m(Ex + £ y,)] (4-12)

The spatial spectrum of equation (4-12) has constant magnitude and linear phase; that is, the
spectrum contains all spatial frequencies and has a phase linear with frequency and propor-
tional to the displacement of the object. The reconstruction of the spatial function is obtained
by evaluating equation (4-7) for G(6) corresponding to ggix.,y) = dix - x,.y - y,). Algebraic
manipulations after converting the result to rectangular coordinates yield:

2
g (xy) = (:/7\)/ exp {-§2 [2 N sin O(x - x ) - 2/ cos O(y - v )} df {4-13)
0

Equation {4-13) indicates that the reconstruction is formed by a spectrum of planar wave com-
ponents each with spatial frequency of 2/4, directed over the complete range of angies from 0 to
2n. The reconstruction can be visualized as a superposition of sinusoidally corrugated infinite
sheets of fixed corrugation spacing 2/2 and orientations varying from 0 to 2n. The amplitude of
the corrugation is defined by |G(6)|: the displacement normal to the corrugations is defined by
the phase Arg [G(8)], and the orientation is 8 = tan'!(f, /- f,). Figure 4-7 shows the real part of an
elemental function of the reconstruction process. The superposition of such elemental functions
represented in equation (4-13) yields a central peak whose width is less than one-half the cor-
rugation spacing, A/4, with the peak occurring at the point where the corrugations add in phase.

Figure 4-7  Elemental Function
of Reconstruction Process.




Point-spread functions corvesn L (o purtiad circular apertares of 180, 90, 60, 30, and
10 degrees are shown in agures -1~ throagh 1020 The plots wore generated by carrying out a
numertes! LLegration of equation (101 over o lisited range of oo The range axis (v)is normal 1o
the center of the aperture. The point spread function broadens most rapidly in the range direc
tion as the aperture angle decreases. A the ongubar oxtent of the aperture decreases, the widths
of the point-spread function in the range and crossrange directions approach the limits derived
in the preceding chapter:

A Ay - A t4-1-h
AN (A"

As the angular extent of the aperture increases to surround the object. the point-spread function
becomes radially symmetric with width 0.44.

YA A A A A A A
025 m 6] 025 m

Firgure 4-8. Point Spread Function for 180 Degive Parti. Aperture (N 003 m)

Figure 49 Pount Sproad £ oo tion tor 90 Degeee Pacsoy Apnertyre A 003 m)
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Figure 4-10. Point-Spread Function for 60-Degree Partial Aperture (N = 0.03 m).

Figure 4-11. Point-Spread Function for 30-Deqroe Partial Aperture (X = 0.03 m).
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Figure 4-12. Point-Spread Function for 10-Degree Partial Aperture (N = 0.03 m).

The operations required to implement the imaging process consist of obtaining received
data samples corresponding to uniformly spaced positions on a circular ring in the spatial fre-
quency domain and performing a two-dimensional Fourier transform. This operation inherently
focuses the aperture throughout the object field and produces a point-spread function which is
diffraction-limited and shift invariant.

The reconstructed image is a good approximation to the reflectivity density of the objects
considered in view of the very limited sampling of the spatial spectrum. The relatively large
sidelobes in the point-spread function result from the discontinuous nature of the annulus in the
spectral domain. The reconstruction obtained by setting all unmeasured values to zero is subject to
question. Because the object is space-limited, the spatial spectrum extends to infinite frequencies
and therefore cannot be zero everywhere outside the annular sample. Thus, it can be stated
unequivocally that the unmeasured values of the spectrum cannot be everywhere zero. The

possibility of improving the reconstruction by extrapolating the spectral data is considered in the
next chapter.

Although the imaging process can be analyzed from a spatial viewpoint, additional insight
is obtained by considering the process from a spatial frequency viewpoint. Bacause the object
image and its spatial spectrum are related by a Fourier transform, a description of the spectrum
over the entire frequency plane is equivalent to complete knowledge of the object in the spatial
domain. Such knowledge, therefore, would provide an exact reconstruction. The data obtained
from object rotation using a single wavelength constitute samples of the spectrum along a cir-
cular arc of radius 2/4 where the angular extent of the arc is equal to the angular rotation of the
object. Figure 4-13 illustrates the spatial frequency domain representation. For small angular
apertures, the circular arc is suitably approximated by a straight-line segment and the spatial
response is adequately approximated by a one-dimensional Fouricr transform of the observed
data. From this consideration, the nature of the approximation incurred by using a one-dimen-
sional Fourier transform for synthetic aperture processing can be visualized. Unfocused syn-
thetic aperture processing is equivalent to approximating a circular segment of the spatial spec-
trum as a linear segment. The processing required to focus the aperture is the evaluation of the
two-dimensional Fourier transform along a circular arc.
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Figure 4-13. Spatial Frequency Sampling Obtained From Object Rotation
3
2 The principal advantage of focused synthetic-aperture processing using CW signals is the
é high degree of two-dimensional spatial resolution achievable without use of wide-band signals.
In contrast. the conventional method of obtaining range resolution by time-delay sorting re-
quires wide-band signals. The disadvantages of the CW method are the high sidelobes in the
] point-spread function which limit the dynamic range of the image and the degradation in image
resolution if object points cannot be viewed over large angles (> 7 radians). The method,
therefore, allows high-resolution imaging of sparse arrays of object points which are small com-
pared to a wavelength and are of nearly equal magnitude.
.
SYNTHETIC APERTURE FOCUSING FOR WIDE-BAND SIGNALS

The quality of images reconstructed from a focused synthetic aperture using CW signals
is limited by the restricted sampling of the spatial spectrum along a ring. In order to improve
the reconstruction, the spatial spectrum must be determined over a greater part of the frequency
plane. The use of wide-band signals discussed in the preceding chapter affords the possibility of
extending the region in which the spectrum can be measured. Because the use of a CW signal
provides a measurement of the spatial spectrum on a ring of radius 2f’c. using a signal of band-
width Af extends the measurable spectral region to an annulus with radial extent 24f/c.

We develop the concept of coherently processing a wide-band signal to form a focused syn-
thetic aperture in order to achieve diffraction-limited imaging. Consider a planar object ir-
radiated by a monochromatic signal of frequency f from a distance R and angle 6, as shown in
figure 4-14. The terms r and y locate a point in the coordinate frame fixed to the object. Assum-
ing R, >> r established the iso-range lines as parallel and normal (o the line-of-sight. The signal
reflected from an object point is expressed by:

vty = R, {«:\p (aty g exp —HTH\'"' lR” ~1cos (- ) ] } 4-15)
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The first bracketed quantity expresses the temporal variations due to the transmitted signal
carrier; the second bracketed quantity is the complex envelope which represc ~ts the modulation
imposed on the carrier by the propagation delay and object properties: o is a complex constant
which includes the reflectivity of the object and the attenuation due to the propagation distance.
The term exp (j4nfR,/c) in the complex envelope expression is a constant phase factor which
plays no significant role; for convenience, it can be included in o. The remaining term deter-
mines the phase variations in the received signal; it is the significant part of the complex
envelope and is given by:

G 0) = exp [jdm e ™! cos (0 - W) (4-16)

The general behavior of the complex envelope can be shown as a function of f and 8 by display-
ing the iso-phase lines which satisfy the equation:

20 = dwtre Y cos (0 - ) (4-17)
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Figure 4-14. Planar Object
Imaging Geometry
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Integer values of n map loci ot pomts in the t -4 plane for which the phase .~ uniform and equal
to +2nn Figure 3415 shows plots of equation 4 17 tor 1 I meters noramng from 0 to 100,
f from 0 to 10 GH/ and tH (i trom v 2 va v 1 2 The -0 phase iimes andicate the evelic varia-
tions of the complex ~pgnal envelope oo 0 tunction ot oand » Foxamimation of figure 415
indicates that rthe locat spacing ot the 150 phase Lones an che vertiead o and hornizontal 18 direc-
tions are inversely proportional to the range and cross range conrdimates ot the object, respec:
tively This can be vernttied by ditterentiating equation t4-17)
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By referring to tigure 4-14, the bracketed quantities in equations (4-18) and (4-19) are seen to be
the coordinates of the reflecting point measured along.and normal to the line-of-sight; these
distances are the range and cross-renge coordinates of the object point relative to the sensor.
For a fixed angle. the spacing ot the iso-phase lines is uniform and varies inversely with range;
for a fixed temporal frequency the spacing of the iso-phase lines varies inversely with cross
range

Over limited regions of the f - 8 plane. the 1so-phase lines are approximately linear and
uniformly spaced: over such regions, therefore. the variations in the complex envelope are
uniquely described by the horizontally: and vertically-directed spatial frequency components of
the iso-phase line plot. A two-dimensional Fourier transform ot the complex signal over the
limited region will produce an image of the point properly located in the range and cross-range
space. For an object consisting of an array of point reflectors. the f - 8 map of the complex
envelope is a superposition of maps for single reflectors, properly shifted in position and
amphitude in accordance with the location and magnitude of the point reflectors. The superposi-
tron properties of the Fourier transform provide the decomposition required to image individua!
retlectors. 1 the processing is limited to a restricted region, the two-dimensional imaging is
represented by a scaled Fourier-transform pair between (x.y} and (£.6), as illustrated symbol-
wally in figure 4-16.

FOURIER
TRANSFOIRM

' e

2 ¢ {RANGE"

o ——
2t ¢« CROSS RANGE

Fiqure 4 16 Fourier Transtorm Retat.on Between Compiex Envelope and Object Point Coordinates

The method described has been applied to optically process microwave data (reference 4 5).
however, imaging can be performed by processing the sampled received signal using a computer
trefesence 160 If optical processing 1s used. the recording of the fringe pattern represented by
figure 415 1s by necessity real and the Fourer transform will exhibit conjugate images and
background illumination due to undiffracted light If the processing is performed digitally on a
record of complex envelope, an unambiguous image is obtained.

The variations of the complex envelope in the vertical direction on figure 4-15 represent
the object response as a function of the temporal frequency of the transmitted signal. This is
precisely the response produced by the hinear FM system described in the preceding chapter
with the following minor modification required to account for the fixed range R, If the
reference signal of the linear FM system is subjected to a delay equivalent to the range R, the
resulting signal can be expressed by:

v RE T Ty enp [-3mBIR (T vt R O 14-20)
4.9 Brown W M oand | ) Porcello An Introdiac om0 Svnthe e Aperture Radar. ILEL Specttum. p S22, September 1969

4-6 Chen, €. C and H € Andrews Mudtr Frogrenoy Tmagme of Radar Turnabie ate LEEE Trans on Aerospace and
Flectrome Svstems. Mol AES 16, No 1o pp 19220 January 19840
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B = total swept bandwidth

R = ditterential range measarod wiony the ane of sieht trange - R
t= center of fregaetioy of ow et haneiea !t
T = chp period
Substituting f = Bt T for the instantancous frequency deviation of the transmitted signal

yields:

v = Rk,{l»”llu By exp |-pdmitR o+ R .,»l} 4-21)

Because the instantaneous frequency of the transmitted signal varics hinearly during the chirp
period. equation (421}, suitably scaled. represents the variation of the complex envelope as a
function of the instantaneous frequency of the irradiating signal. With the exception of the
constant phase term represented by the 1ast term of the exponent. equation (4-21) is a real signal
representation of the complex envelope of equation 4 161 The output of the coherently
demodulated linear FM system can be made to modulate the intensity ot a vertical line on a
cathode-ray tube or a film tran<par. nev, recording an ensemble of closely spaced vertical lines.
each corresponding to a unique ohservation angle. results in o fringe pattern such as that
represented by figure 115 The recording. remimscent of a hologram. contains information on
the magnitude and spatial position of the object point. which can be coherently processed by op-
tical means

Whether optical processing is used on the real record of intensity or computer processing
on the complex signal envelope, the tmuage resolution 1> determined by the size of the f -6 region
used. When processing consists of i Fourier transtorm, the usable region is hmited to a max:
imum size such that the iso-phase lines »re essentially linear Fourier transforming data from a
larger region in order to increase resolution, results in image degradations as described in
preceding chapters. An optical approach tor improving the achievable resolution termed sec-
tional processing. 1s presented in reterence 17 By this method, larger processing apertures are
ubtained by using lenses as matched filters to compensate for curvature of the Iringes in the
f - 8 plane. The limitation of this methes is that a different matched filter s required to op-
timize the image of each part of the object: the final image must then be produced by
photographically superimposing image sections which have been individually processed.

The eftect of phase curvature being deseribed s wdentical to that discussed in preceding
chapters dealing with Doppler imagang and synthetie aperture processing: the cause s the non
linear variation in the phase of recenved signals resulting from the circular motion of rotating
objects. In the section to fatlow, we develop methods ot compensating for phuse curvature by
using tne a priori knowledge that the motion s circular

We note trom equation (1 17 that the hnes ol constamt phase correspond to g constant
productr oo (00 Uy, which by expanding i atrigonometric identity can be written as:

Peos (- Q) s than o vt o0 oa 4-22)
47 Brown. W M oand B ootk S YN S I RO T Moo fEe e W PRI T E LD Trans Actospace
and Flectrona Svstenis VT NES = 9% oY Tamar, Tl
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Equation (4-22) represents a constant expressed in terms of a set of mutually orthogonal coor-
dinates, f sin 8 and f cos 6. which have been rotated through an angle y. It is thus possible to
determine a transformation which maps the curved lines of figure 4-15 into a set of straight
parallel lines. The conformal mapping of G(f,8) into a new function, G'(X.Y), is accomplished by

the following relations, illustrated in figuie 4-17:

X =1tsin 0
Y = -feos (4-23)
Y
)
t
4
:> - X
f
[
— ()
X - tSING
Y -tcost

Figure 4-17. Transformation for Mapping GIf. ) Into GIX. vI

The function G(1,0) = exp [j47 tre™! cos (0 - Y of equation (4-16), therefore maps into the function.
G'(X.Y) = exp ||47rr.."|(,\' sin Y - Y cos ) 14-24)

Substituting the rectangular coordinates of the point object shown in figure 4-14 into equation
(4-24) yields:

GIX.Y) = exp [4re iXn + Yy (4-25)

If the iso-phase lines of the complex envelope expressed in equations (4-24) or {4-25) are plotted
in the X.Y space, they will consist of a set of parallel lines rotated from the X axis by the angle
¢. as shown in figure 4-18. The following observations about the fringe pattern plotted in the
X-Y space can be m.ade.

1. The fringes for a point object are parallel lines with orientation determined by the angular
position, y. of the point object.

2. The fringe spacing is inversely proportional to the radial coordinate, r, of the object and is
given by c¢/2r.
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The Fourier transform relation between G'(X,Y) and the spatial distribution of reflectivity
g(x,y) can be formalized as follows. For an ensemble of point objects, denoted by g(x,y), the com-
plex envelope is the superposition of terms as equation (4-24) weighted by g(x,y) resulting in:

+ oo

G(X.Y) =ff gxy) exp [2m(2c™ Xx + 2¢7 M vy)] dx dy (4-26)

-

Equation (4-26) is a two-dimensional Fourier transform between the pair
(x.y) = (2X/c,2Y/c). The spatial function, gi(x,y}, is obtained from the Fourier transform of equa-
tion (4-26) which is:

+ a0

g(x.y) =ff G'OX.Y) exp [-2m(2c™ Xx + 207 vy d(2X/e) d(2Y/e) (4-27)

—o0

This formally establishes the Fourier transform relation between the complex envelope function
mapped in the X-Y space and the spatial distribution of the object’s reflectivity. When a single
temporal frequency, f;, is used in a CW measurement, G'(X,Y) is measured only on a circular
ring of radius 2fy/c as shown in figure 4-19. In this case, G'(X.Y)=§[2c7!(f - fo)] where
f2= X2 + Y2 We note that this is precisely the result of equation (4-7) derived in the preceding
section. The result of the latter treatment is more general because it allows for wide-band ir-
radiating signals; the results are, of course, applicable to the special case of CW irradiation.

2,y
c Yy
y
X =fSING
Y =fcosf
2
¥
c o
r*(?x:(x

Figure 4-19. Spatial Spectrum Region Sampled
by a CW Measurement at Frequency '0‘
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The preceding treatment demonstrates that mapping the complex envelope of the received
signal in a polar format corrects the phase nonlinearities induced by the object rotation and
simultaneously focuses the entire aperture for all wavelengths. By subsequently processing the
corrected data with a two-dimensional Fourier transform, a diffraction-limited image is
obtained. In order to perfectly reconstruct the object reflectivity density, the spatiul spectrum
must be known over the entire spatial frequency plane; this corresponds to an impulse point-
spread function. In all practical cases. however, the spatial spectrum is measurable only over a
limited region and the point-spread function is spatially extended. The image reconstructed
from a limited region of the spectrum is:

+ =
glx.y) =ff HEXY) GOXY D eap =2 27t + 207 b yy phaexior dey o
+ oo
-ff Heef 20l D) Gt/ 2et 2 exp =2 x + )] df di (4-28)

where H(X,Y) is a window function which accounts for the spectral bound. The point-spread
function, h(x.y), of the imaging process is determined by the inverse Fourier transform of the
window function. Several radially symmetric functions and corresponding point-spread func-
tions are shown in figures 4-20 through 4-24. These were determined analytically using two-
dimensional transform pairs tabulated in reference 4-9. A notable feature of these plots is the
nearly identical width of the central portion of all the point-spread functions. Evidently, the
ability to discriminate between two closely spaced equal point-objects is determined principally
by the high spatial-frequency components. As the radial extent of the spectral window
decreases, however, the sidelobes of the point-spread functions increase considerably.
The sidelobes constitute image ambiguities which are not fully removed when a limited region
of the spectrum is used for the reconstruction. A heuristic interpretation of the process for
reconstructing the image of a unit-amplitude point object located at x,y = 0 can be made as
follows. Each point (f_{.) in the spatial spectrum represents a complex planar wave component
exp A lf x o+ £v)]0 Kach pair of diametrically opposed points, therefore. represents a
cosinusoidally corrugated sheet with orientation corresponding to that of the spectral point-pair
as shown in figure 4-25. The spatial reconstruction corresponding to an extended spectrum,
therefore. consists of the superposition of such corrugated sheets. A spectrum consisting of a
circular ring, as shown in figure 4-20, represents a centinuum of sheets of equal corrugation
spacing and differing orientations. The superposition of these corrugated sheets have a common
maximum; for all other spatial locations, some cancellation occurs. The incompleteness of this
cancellation gives rise to the residual sidelobes. As other spectral components are included in
the superposition, sheets with different corrugation spacings are included and the cancellation
is more complete. Finally. it all spectral components are employed. the complete cancellation
results in a recons<truction which is maximum at the origin and zero elsewhere.

The presence of large sidelobes in the point-spread function is significant because it limits
the ability to distinguish images of objects with small magnitude in proximity to those with
large magnitude. In an attempt to reduce the sidelobes, we may consider using tapered windows,
analogous to the use of time windows to reduce spectral leakage associated with finite observa-
tion intervals (reference 1-10). Figure 421 shows the point-spread function resulting from a
radiallv tapered window which is an annulus with cosinusoidal cross section. The result,

49 Bracewell, R he Foweser Prannpores oo s Appticcznons New Yook MeGrnn il co 1965 pp 244-250,
4100 Haros b o1 O e T oe e Wndones oo Harmtoni bigfvas Wodh s Dot Foerer Prarmstorm.” Proe, YETE.
Vol 66, Noo 1, pp. ST-K3, Lanuary 1978

4-22




Hip) - cic (PN'2)

Figure 4-20. Intensity of Point-Spread
2\ Function Corresponding to a Disk
Spectral Window.

S/ S S S LSS S
_2A x =0 +2\

Hip) = circ (BN2) - circ (pN)

Figure 4-21. Intensity of Point-Spread
Function Corresponding to a Wide

s S S S S S S S S SS Annulus Spectral Window.

-2\ x=0 +2A




NS

H ///./_ . ’
N\
“?_v v//

Intensity of Point-Spread

Function Corresponding to a Narrow

Figure 4-22.

Annulus Spectral Window.

22

- 20N

S

tho!

|

%

S S

s

X -

0, i P o At s 72

Intensity of Point-Spread
Corresponding

Saectral Window.,

Figure 4 23.

Function

to a Ring

4.24




intensity of Point-Spread

Function Corresponding to a Tapered

FH
(a]
©
S
3
—_ S m
3 - g
S &
© v
o .S 32
_ O3
S « ¢ &
N <
= ®
Q 3
= 3
2 w
=
&
]
1
~<
2
IS
o~
@
o
bl
“
3
T

2\

< -

< -

BN

=22

Spatal Function Corresponding to a Special Pomnt-Parr

Figure 4 25

23




observed by comparing figures 4-24 and 4-21, is that the sidelobes of the point-spread function
for the tapered window are increased over those for a uniform window of equal radial extent. A
more complete analysis of the use of taprred two-dimensional windows applied to annular spec-
tra for smoauthing the sidelobes in the point-spread tunction is presented in the apperndix.

In some applications, measurements over a continuous range of temporal frequencies to
achieve a spectral annulus of sizable extent is not practical due to limited instrumentations.
For such cases, we consider the alternative of performing s number of measurements using
discrete temporal frequencies to sample the spatial spectrum over a number of concentric rings.
In the limit of diminishing ring spacing. the continuous and discrete frequency cases become
identical. Of practical interest is the imaging performance achievable with relatively few (<10
discrete frequencies. We expect that periodically sampling the spatial spectrum over discrete
rings will result in image artifacts due to ambiguities associated with the discrete spectral
sampling. Exampies of analogous ambiguities in multifrequency acoustic holography are shown
in reference 3-11. Owing to the linearity properties of the Fourier transform, the point-spread
function and the image can be obtained by the superposition or responses corresponding to in-
dividuod rings Thus. if 2 1 is the radius of a discrete spectral ring. the point-spread function

n
tor N orings i~

N\

R 2 ll'l—lﬁl /\h) (4-29)

n 1

Figures 4-26 and 4-27 show point-spread functions for window functions consisting of five and
three spectral rings which arce unmiformly spaced between 1% and 2/A. The central part of the
point-spread functions are very similar to the corresponding continuous annulus of figure 4-21.
Figure 1-27, the three-ring response. shows a circular artifact with radius 22 which is due to
periodic spectral samipling The ambiguity artifact is not visible in figure 4-26 because it occurs
outside the plotied ranpge. Figures 123 and 4-29 are expanaed quadrants of the point-spread
functions which illustrate the presence of periodic circular artifacts. A uniform spectral separa-
tion between rings, Ap, corresponds to a spatial period in the space domain. Ar, given by:

A ' (4-30)
Ay

Substituting the coordinate relations shown in figure 4-19 leads to the equivalent expressions:

<

Ar = (4-31)
2 At

A (1-32)

A QAL

where f indicates the temporal trequeney of irradiation.

Using the above relations with 4A,, ~ u.h 4 and 0.25 4 for the three and five-ring spectrum leads
to Ar = 2i and 4A. which coincide with the spacing between the ambiguity artufacts in figures
4-28 and 4-29. Note that the circuter artitacts diminish in magmtude as their radius increases.
This means that close spacing of the spectral rings causes low-level artitacts at large distance
from the central region of the pointc spread tunction; of course, a smali number of closely spaced
rings is equivalent to a narrow spectral annulus with attendant sidelobes

4110 Simpson, oG, HoH Barrent, 1oy Sabokoand Ho Do Toasier ey Jan oo [ o dreetee Dgery
Optical Fngineering Vol T4 N pp Bboedod, Sepioant 200 bee 1) 7
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The nature of the periodic ambiguities can also be established by the following develop-
ment. The point-spread function for a single spectral ring of wavelength  is Jy(4nr/d); the point-
spread function for several rings is the superposition of J(.) functions with differing arguments.
In the superposition, the central peaks of the functions add constructively while the circularly
symmetric sidelobes tend to cancel. At some unique radial distances, the sidelobes will reinforce
and the superposition will increase by the same factor as the central region. Because the
magnitude of the sidelobes decreases monotonically with increasing distance from the center,
the magnitude of the periodic ambiguities decreases similarly with increasing radius. To a good
approximation, beyond the first zero, the following approximation can be made (reference 4-12).

1,

,
J()Mnr/)\) = < "3\) cos (4mr/N - w/4) {4-33)
™1

The magnitude of the oscillations decreases as (r)’”2; the intensity of the periodic ambiguities
therefore varies inversely with r. This behavior is verified in figures 4-28 and 4-29.

SPECTRAL SAMPLING FROM BISTATIC MEASUREMENTS

In the preceding section, image reconstruction using data from discrete spectral rings was
considered. Because the radius of a particular ring in the spatial frequency domain is 2/A, data
for concentric rings are obtained from measurements at multiple temporal frequencies. In some
applications, however, the available instrumentation will not permit changing the frequency of
the transmitted signal. In this section, bistatic measurements are considered as a means of
sampling the spatial spectrum over discrete concentric rings while retaining the convenience of
using a single irradiating frequency.

In a bistatic geometry. the transmitter and receiver are spatially separated in contrast to a
monostatic condition in which the two are collocated. The angle of separation, measured relative
to the object center, is called the bistatic angle. In order to compare the two conditions, consider
a point object with coordinates r.¢ observed by monostatic and bistatic radars located at large
equal distances R, and angles 6 relative to the object center, as shown in figure 4-30. The
elements of the bistatic radar are symmetrically displaced from the monostatic radar axis by
the angles /2, where f is the bistatic angle which lies in the plane of the object. As the angle 6
is varied, the phase of signals received by the radars will vary due to the changing round-trip
distance. The complex envelopes of signals received as a function of the angle for the
monostatic and bistatic cases are, respectively:

Gy (0) = exp (RGN ) exp 42w A" [2r cos (6 - @)} (4-34)
and

(iB(()) = exp (-j4m RO)\") exp {jZTr)\'l [reos(@-9+B/2)+rcos(f-¢- S/’?_)]% (4-35)

4-12. Frmert, H and R. Karg. “Multi-Frequency Acoustical Holography,” IEFE Trans. on Sonics and Ultrasonics.  Vol. 26,
No. 4. pp. 279-286, July 1979.
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Figure 4-30. Monostatic and Bistatic
Radar Configurations.
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Applying the trigonometric identity cos (A + B) + cos (A - B) = 2 cos A cos B to equation (4-34)
results in:

Gyt = exp |—_|47{R“/\‘I ) exp i|_‘7r [(con 3 DA 2 con o - Q)I! (4-36)

Comparison of equations (4-34) and (4-36) shows that the variable parts of the complex envelope
have identical forms with exception of the factor cos (/2). This indicates that results of
measurements with a bistatic angle  are equivalent to results that would be obtained with a
monostatic geometry using a wavelength A sec (3/2). This fact has been recognized in radar
work and is known as the bistatic equivalence theorem (reference 4-13). The increase in effective
wavelength resulting from the bistatic geometry allows measurements made with multiple
bistatic angles and a single temporal frequency to simulate measurements with multiple tem-
poral frequencies. Two practical methods consist of: (1) sequential measurements made by
displacing the transmitter and receiver about the monostatic axis, or (2} multiple measurements
pertormed simultaneously using a single transmitter and multiple receivers. For this latter
geometry, the effective aspect angle, 8, is defined by the bisector to the bistatic angle. The loca-
tion of the transmitter and receiver is not restricted to the plane of the object. Other locations,
including in a plane normal to that of the objects, are possible.

In order to test the practicality of the bistatic method, experimental data from a set of
measurements performed on a two-point object using different bistatic angles were used to
reconstruct an image. The test object was the pair of thin vertical rods described earlier in this
chapter; the rods, separated by 34 centimeters, were irradiated by a wavelength of 6 centimeters
from a distance of approximately 5 meters. Separate measurements were made using bistatic
angles of 0, 58, 83, 102, and 120 degrees. This provided five spectral rings with radii uniformly
spaced between 1/4, and 2/A, simulating the window function shown in figure 4-26. The images
reconstructed from data obtained from measureinents at each bistatic angle are shown in figure
4-31. The results il'ustrate the decreasing resolution as the bistatic angle is increased and the ef-
fective wavelength is increased accordingly. The combined image, formed by superimposing the
complex amplitud:s of the individual images is shown in figure 4-32. The results show excellent
correlation with the theoretical point-spread function of figure 4-26; the magnitude and locations
of the near sidelobes and of the ring artifacts are in close agreement. The image reconstructed
from the five spectral rings shows a marked improvement over that from a single ring. The
results demonstrate that the bistatic method is an effective way of simulating multifrequency
imaging while using a single irradiating frequency. A different reconstruction can be obtained
by superimposing the magnitude (rather than the complex amplitude) of the individual images.
The result of this superposition, shown in figure 4-33, indicates a lesser improvement in the
reconstruction than the complex amplitude superposition. In this case, the sidelobe structure is
averaged while in the complex amplitude superposition, some cancellation in the sidelobes oc-
curs. We hasten to caution that the validity of the bistatic equivalence theorem requires that the
amplitudes and location of the scattering centers not be altered by the bistatic geometry. This
situation prevails for point objects and simple shapes, however, it is expected that when com-
plex objects are observed at large bistatic angles, the bistatic equivalence may not be
applicable, especially if corner reflectors are present or if the bistatic geometry alters the
shadowing of some reflectors by others.

4-13. Kell, R. E. "“On the Derivation of Bistatic RCS From Monostatic Measurements.” Proc. IFEL. Vol. §3, pp. 983-988,
August 1965,
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The results reported in this chapter are summarized as follows. When the complex
envelope of signals reflected from rotating objects is Fourier-transformed to form a synthetic
aperture, the point-spread function of the imaging process is degraded from the diffraction limit
and is space-invariant. Focusing the synthetic aperture leads to a space-invariant, diffraction-
limited, point-spread function. The focusing operation is accomplished by transforming the com-
plex envelope to a polar format which maps the amplitude of a point reflector as a planar wave
in a two-dimensional transform space. An array of point reflectors, therefore, is mapped as a
spectrum of planar wave components with amplitude and direction corresponding to the
magnitude and location of each point. A subsequent two-dimensional Fourier transform decom-
poses the spectrum to reconstruct the spatial function. The focusing operation extends the re-
quired signal processing from a one-dimensional Fourier transform to a two-dimensional Fourier
transform and therefore considerably increases the required computation. The focused aperture
for a discrete frequency provides a high degree of spatial resolution and is usable for imaging
sparse arrays of point objects. This limitation is due to the presence of large sidelobes in the
point-spread function which limits the dynamic range of the imaging process. The quality of the
reconstruction is improved by using wide-band signals which provide a point-spread function
with reduced sidelobes. The use of a number of discrete frequencies allows reduction of the
sidelobes but induces low-level circular artifacts. Using discrete frequencies offers an alter-
native to wide-band signal instrumentations which are always more complex. In measurements
restricted to fixed frequency CW operation, bistatic-angle diversity is a practical way of
simulating multifrequency measurements.
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CHAPTER 5

AN ITERATIVE METHOD OF IMAGE RECONSTRUCTION

The imaging methods presented in the preceding chapter were shown to provide exceptional
resolution performance, demonstrated by point-spread functions with central regions of width less
than one-half wavelength. The fidelity of the reconstructed images is limited by the high sidelobes
of the point-spread functions which restrict the ability to distinguish images of objects with small
magnitude in proximity to objects with large magnitude. The sidelobes, which result from spectral
components missing in the measured spectral data, are increased when the measured spectrum is
highly discontinuous. In some cases, the sidelobes can be suppressed by two-dimensional tapered
windows. Windowing is an effective method for sidelobe control when many independent samples
of data are available; the loss of measured data due to the windowing process is then not signifi-
cant. When only small amounts of measured data are available, however, windowing can severely
degrade the image.

The study of spectral estimation obtained from a small number of data samples has recently
stimulated researchers to re-examine the concept of windowing and to consider alternatives for im-
proved spectral estimates which are based on a more fundamental viewpoint. The method of max-
imum entropy appears to be the most active, judging by a number of significant papers which are
presented in reference 5-1. The fundamental objection to windowing stems from the fact that, in the
process, valid measured data are purposely altered and unmeasured data are arbitrarily set to zero.
The philosophy of maximum entropy reconstruction, stated in reference 5-2, requires that '‘all ex-
tensions of measured data be consistent with the available data and a priori information, and be
maximally noncommittal regarding unavailable data.”” Assume that measurements are performed
to obtain limited samples of a process and from these an attempt is made to describe, to the max-
imum extent possible, the process from which the samples were obtained. In order to estimate
{reconstruct) the process we should: (1) accept the available data without alteration; (2) ensure that
extrapolated data are consistent with all a priori information about the process; and (3) be as un-
biased fnoncommittal) as possible about data which are not measured and cannot be extrapolated.
In spite of their apparent sensibility. the above steps are often violated when data are processed to
obtain spectral estimates. Consider, for example, the case illustrated in figure 4-24 of the preceding
chapter in which spectral data, obtained over an annular region, are windowed to reduce sidelobes
in the point-spread function. Two violations of the above premises are evident: (1) valid measured
data corresponding to the edges of the annulus are altered; and (2) unmeasured data are arbitrarily
set to zero. The latter is a clear violation in nearly all practical applications, in which the spatial
spectrum being sampled corresponds to a spatially bounded object and is therefore a space-limited
function.

5-1 Childers, DG Fdu Modern Spectrom nalvas New York TFT Press, 1975
s-2 Ables, VoG Mavimum Friropy Spectral cnalvas . Astronomy and Astrophysics Supplement Senies. Vol 18 pp. 383
I3 fune 1974
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A funcuon gix) is said 1o be space limited it it equals zero outside a fintte region. The tunction
a1x1 s savd to be band hmited i its energy is finite and Fourier transtorm Gif ) is 7ero outside a
tinite region (references 523 through 5-500 A band limited function is analyvtic over the entire domain
rmeaning that the function has o dernivative which s contineous in the domainfreference H-a
Because the bourier transtorm relations are reciprocal, the spectrum of a space-limited function is
aaalyvtie and the spatial tunction corresponding to s band-limited spectrum 1s anaiviic. Because an
analviie function cannot be zero n a finite region, except for the trivial case when it is zero
everywhere, a function cannoet be simultaneouslv space limited and band hiniited. In the case of un
object known to be spatially bounded. defining the spectrum to be zero everywhere outside a finite
region poses o contradiction. With no additional information, the reconstruction should be based
on a ~pectral function. which coincides with the measured data over regions for which they are
availuble, and on an analytic extrapolation elsewhere.

An iterative procedure for extrapolating a given segment of the spectrum of an objeo
xnown to be space limited is presented in references 5-7 and 5-8. Figure 5-1 is a representation
ot the computational procedure. The known portion of the spectrum is treated as band limited
and Fourner transtormed to reconstruct an image of the object. This is subscquently modificd by
setting the imayge Lo zero outside the known extent of the object. Subsequent to this moditics:
tion, the object function 1s Fourier transformed and the resulting spectrum is corrected by
replacing it with the known spectrum in the region where it is known. The process is repeated 1o
~ucvessively extrapolate the measured spectrum and thus improve the reconstruction

The above procedures are mathematically formulated for a one-dimensional case s
tollows. We seek to determine the Fourier transform gix) of a space-limited functicn Gef oo
terms of a known portion G f). The iteration starts with the transform of the kncan oo
measured spectrum:

g Gt orenp i |-$/T?‘\\ A Jr

where Vs the region tor which G is known, The nth iteration proceeds by compun ng the v s
Fourier transform of-

‘u” NN N \
P (A
'(I AN N\
whichis given by
bt Eishenp [PHERE VA -3
1 A n AN \
\
ARR) Parsabee v Siondd doelvvs New York o MoGiiaa il oo 1T g I T
-l Brocowel R Hhe fovertor Transtorm andd £ Apadnoc o Nes Y b Moce cn i o b e e 1o
Pone . G €00 Raraibor and 0 Maishall Dine topreoge 2 o B St Ny e Proc i N onoel N
P Y6208 Febrgy 1973
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()nH\) =

The nth step ends by computing the Fourier transform:

4 x
g0 = f Gt ) exp =4t x/A] df

-

KNOWN
BAND-LIMITED
SPECTRUM

where X is the known spatial bound of the object. Next, the following new function is formed:

UPDATED SPECTRUM
CORRECTED IN -—
KNOWN REGION

FFT

FFT

UPDATED OBJECT
TRUNCATED TO
ZERO OUTSIDE
OBJECT BOUND

Figure 5-1. Computational Procedure of Iterative

5-5

KNOWN EXTENT
OF OBJECT

Reconstruction M. thod.

(5-4)

(5-5)




Figure 5-2 shows qualitative examples of spatial and spectral functions at various steps of
the iteration. The double arrows indicate a Fourier transform operation. The limited spectrum
can be viewed as the sum of the true spectrum and an error spectrum. The error spectrum is
zero in the region where the true spectrum is known and is equal and opposite to the true spec-
trum outside this region. Because in the known spectral region the error spectrum is zero, it can-
not be an analytic function and its Fourier transtform is therefore continuous. When the spec-
trum is transformed to the object domain, the algorithm sets the error object to zero outside the
known extent of the object. The truncation, however, has no effect on the true object because its
extent is equal to or less than the truncation window.

MEASURED SPECTRUM TRUE SPECTRUM ERROR SPECTRUM
\/\/ = -’\/\’\/\/\M + e e e S
RECONSTRUCTED
OBJECT TRUE OBJECT ERROR OBJECT

f
+

A~ N~

TRUNCATED OBJECT TRUE OBJECT ERROR OBJECT

_\/L\/J\l_

?

SPECTRUM OF

TRUNCATED
OBJECT TRUE SPECTRUM ERROR SPECTRUM
‘/\/\/\ = AM/\/\N + PN VY W W
MODIFIED SPECTRUM TRUE SPECTRUM ERROR SPECTRUM

BUUN A VUSSR

Figure 52 Qualitative Examples of Spatial and Spectral
Functions at Various Steps of the Iteration.

%

Because the energies of the error spectrum and error object are identical prior to the trun-
cation {by Parseval's theorem), the error energy must be reduced by the truncation process. The
subsequent Fourier transform of the truncated error object is analytic and the new error spec-
trum therefore contains energy in the region where the spectrum is known. Correcting the spec-
trum in the known region reduces the error energy in this region to zero and creates an error
spectrum which is band-limited and therefore has an analytic transform. Thus, at each correc-
tion, first by the truncation in the object domain and then by the substitution of the known
spectrum the error energy is reduced. The fidelity of the reconstructed image depends on the
error-reduction features of the algorithm. Reduction of the error energy outside the object bound
follows directly from the spatial truncation and occurs at each iteration. Reduction of the error
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energy inside the object bound, however, is less direct and depends on the nature of the error
spectrum. As the error spectrum becomes less discontinuous, more of the energy content of its
transform, the error object, falls inside the object Lound and is unaffected by the subsequent
truncation. As this condition is approached. the error reduction process terminates. The reduc-
tion of the error energy, and therefore the fidelity of the reconstruction, are greater if the extent
of the true object is used than if the object size is overestimated. The preceding formulation was
one-dimensional, however, the identical algorithm strategy can be applied to multidimensional
cases by using corresponding multidimensional transforms. The error-reducing feature of the
algorithm is maintained because the Fourler trunsform is a linear operator, and we therefore ex-
pect the algorithm to provide analytic extrapolations of two-dimensional, band-limited spectra.

In order to test the above assertions. the algorithm was used to reconstruct the image of a
disc-shaped object from a limited section of the spatial spectrum. The data input to the
algorithm were computed from an idealized. noise-free spectrum shown in figure 5-3. The total
object space is a square area with side 164: the spectrum is plotted on a square field with side
8/4. The amplitude scale for both functions is logarithmic over a range of 50 dB. The object is a
circular disc of radius A. Figures 5-4 through 5-6 show results at intermediate steps of the
algorithm for the first, tenth, and twentieth iteration. The scales for these and all subsequent
plots are identical to those of figure 5-3. Each plot is a square array of 128 cells on the side. The
Fourier transform operations used in the algorithm are two-dimensional FFTs operating on ar-
rays of 128 by 128 complex point pairs. In this example. as in references 5-7 and 5-8, the dimen-
sion of the object was assumed to be precisely known and the object bound made to coincide

0BJECT 8

RELATIVE
MAGNITUDE
1B

Figure 5-3. True Object and Spectrum
of Idealized Case Used to Test the
\( [’ JA Reconstruction Algorithm.
e ’

SPECTRUM

RELATIVE
MAGNITUDE
(18!

ST Paponlin, A UNow Vavethine o Specme s eads o oy fond Fionree d fctigpedgeon LD Prans, on Cacuts and
Seatems Vol CANDY2 NG 9 pp TS T September 1508
Y Cerchbere, ROW Sipoc Kool Jrecneds fooon Py B e siar Optier Acta Vol 20 N0 90 pp. TO9-7 24, 1974,
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with the extent of the object. The results show that the algorithm converges rapidly to a good
reconstruction of the postulated object, evidenced by the faithful reconstruction inside the ob-
ject bound and the low level of the artifacts outside the object bound. The identical reconstruc-
tion was repeated with the size of the object overestimated by a factor of two; that is, the true
object was represented by a disk of radius 4 while the object bound was a circular region of
radius 24, Figures 5-7 through 5-9 show intermediate steps of the algorithm after the first, tenth,
and twentieth iterations. respectively. These results show that the reconstruction does not con-
verge to the true object; after twenty iterations, the reconstruction inside the object bound is
nearly identical to that obtained in the first iteration. The error energy outside the object bound
is reduced drastically while the error energy in the region between the true object and the object
bound is essentially unaltered. This illustrates the situation described earlier in which the error
spectrum extends smoothly over a large region of the spectrum, and its transform, the error ob-
ject, falls essentially within the object bound. This condition precludes a reduction in the subse-
quent truncation. The preceding results demonstrate that the algorithm is equally effective in
two-dimensional as in one-dimensional applications. The Fourier transform operations in the ex-
amples were performed using two-dimensional FFT subroutines. However, the results are
similar to those for a continuous formulation. We therefore expect the algorithm to be effective
in two-dimensional, sampled data applications.
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Fiyure 54 Spatial and Spectral Responses for Fust tteration of the Algorithm Applied
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Ir. the tollowing section, we consider using the iterative algorithm just described to
improve the images reconstructed from the focused synthetic aperture process described in
Chapter 1. It was shown there that CW reflection measurements, properly transformed, yielded a
sample of the spatial spectrum over a circular ring of radius 2.4 and that the reconstruction
from such data exhibited a radially symmetric point-spread function J t4nr ‘A). Postulating the
spectrum to have zero value everywhere except on the circular ring imposed a band limit and
destroyed the analyticity of the spectrum. As a consequence, the resulting spatial function was
analytic with extended sidelobe artifacts.

The extension of a truncated spectrum beyond its given limits is the basis for achieving
resolution beyond the diffraction limit. Such concepts are theoretically sound, as documented in
references 5-9 through 5-11; however, “'super-resolution’” has not been highly successful in prac-
tical cases due mainly to limitations of noise and measurement precision. In this application,
the objective is not to perfectly construct the spectrum out to some new diffraction limit, but
only to extend it sufficiently to improve the reconstructed image by reducing the sidelobe ar-
tifacts. As shown in Chapter 4, reduction of the sidelobes in the point-spread function results
from broadening the spectral ring: such improvements therefore appear more feasible than the
elusive goal of obtaining '"super-resolution.”

In order to test the effectiveness of the algorithm, simulated data representing ideal
measurements of reflections from a point located at the center of the object space were used.
This is representative of practical microwave images of complex objects which behave as arrays
of isolated point-like reflectors. In such cases, the only available a priori information on the ob-
ject bound consists of the overall object dimensions. While we can reliably establish the bounds
of the array, the bounds of the individual reflectors will necessarily be overestimated because
their location inside the array boundary cannot be established a priori. Unit-amplitude data
were arrayed on acircular ring in a 128 by 128-point rectangular grid spanning the frequency do-
main. The input data array was formed by placing ones in each cell for which the radial coor-
dinate was between 31.5 and 32.5 cell dimensions, and zeros elsewhere. The data input to the
algorithm represent a spectral ring of radius 2/4 arrayed at the center of a square spectral field
of dimension 8/1; the corresponding extent of the spatial domain field is 16A.

Figures 5-10 through 5-12 show intermediate steps in the reconstruction for the first. tenth,
and twentieth iterations. The object bound is a circular region of radius A. At the end of the first
iteration, the spectrum is broadened to a width which is inversely proportional to the object bound.
After the tenth iteration, the response outside the object bound is diminished considerably but the
spectrum is not materially broadened. After twenty iterations. the response outside the object
bound is decreased further but the spectrum is not altered. The reconstruction image inside the ob-
ject bound is essentially unaltered by the algorithm. Figures 5-13 through 5-15 show similar results
for an object bound at radius 4i. The reconstruction outside the object bound is improved
significantly; however, inside the object bound, no significant improvement is noted.

Figures 5-16 through 5-18 show reconstruction from an annular spectral region with inner and
outer radii of 1.5/4 and 2/4, respectively. The object bound is a circular region of radius 4i. The
results are very similar to the preceding case of the ring spectrum: significant improvement in the
reconstruction outside the object bound but no significant improvement inside the object bound.

S-9 v branc, G 1o Resolvimg Power and Diformaron,” Journal of the Optical Society of Amenca Vol 45, Noo 7.
pp. 497-S01, July 1958
S-100 Harnso Lo Iittractron and Resolving Power. " Jourmaf ot the Optcal Society ot Amenea. Vol S4, No 7, pp. 931 -
936, Tuly 1964
S-11. Barnes. € W Object Restoration ana Dirtraction-Limited Tmaging Svstenr,” Taarnal of the Optical Society of Ameniva
Vol S6, N0 S pp. STS-TK May 1966.
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Applied to a Annula. Spectrum (Radius of Object Truncation = 4\).

The results obtained from applying the algorithm to simulated data demonstrate a rapid con-
vergence to an accurate reconstruction when the postulated object extent coincides with the size
and shape of the true object. When the object size is overestimated, the reconstruction inside the ob-
ject bound is not significantly improved by successive iterations. In the limiting case of reconstruc-
ting the image of a point object contained in a large object bound, the improvement inside the object
bound is insignificant. The reconstruction outside the object bound rapidly approaches zero;
however, this can be achieved directly from the bounded-object condition without recourse to the
algorithm. The possibility of achieving significant improvements after many iterations was
eliminated by continuing the reconstruction of the ring spectrum to 100 iterations without signifi-
cant effects. As a result of these findings, the algorithm is considered useful only in restricted cases
where the object bound is accurately known a priori. The algorithm does not improve the quality of
images reconstructed from focused synthetic aperture measurements of complex objects consisting
of arrays of point reflectors. The search for alternative methods of extrapolating space-limited
spectra in such applications should be the subject of continued research.
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APPENDIX

APPLICATION OF TAPERED WINDOWS
TO ANNULAR-SHAPED SPECTRA

As shown in Chapter 4, processing a two-dimensional record of signals reflected from a
rotating object as a function of frequency and rotating angle provides a two-dimensional spatial im-
age of the object's reflectivity density. When mapped in a polar format. the recorded data represent
a spatial spectrum related to the object image by a two-dimensional Fourier transform. Because in
practical measurements the range of irradiating frequencies is restricted to a limited bandwidth,
the available data represent a sample of the spatial spectrum over a annular region. The point-
spread function of the imaging process, given by the Fourier transform of the annular spectrum,
consists of a central peak surrounded by circular sidelobes which generally increase as the width of
the spectral annulus decreases. In view of practical limitations, we therefore seek the best image
reconstruction from narrow annular spectra. In an analogous situation, spectral estimates obtained
from time-limited signals are improved by the use of tapered windows which have been the subject
of considerable research (reference A-1). The mechanism for reducing the spectral sidelobes is in-
tuitively acceptable: discontinuities in the time function represent high frequencies in the spec-
trum and tapering to reduce discontinuities therefore reduces high frequency sidelobes. As a result,
smoothly tapered time windows reduce spectral sidelobes.

Indiscriminate applications of tapered windows to two-dimensional functions may not pro-
duce the desired reduction in the sidelobes of the transforms, as shown in the example of figure
1-24. In this case, a cosinusoidal taper applied to an annular spectrum increased the sidelobe level
rather than decreasing it: however, at first consideration, this appears contrary to the intuitive no-
tion that smooth tapers in one domain decrease sidelobes in the other. This apparent paradox is
resolved in the analysis which follows.

Because the spectra considered are radially symmetric functions, the corresponding spatial
functions, being related by a Fourier transform, are also radially symmetric (reference A-2). This
fact allows each of the functions to he characterized by a single variable expressing the variations
as a function of radial distance. Although the functions are expressible by a single variable, they
are nevertheless two-dimensional functions and must be treated as such when transformed. The

-1 Harris. b0 0 the Eae of Wiondows fon Mmoo, Anagdyvses Witk the Disorcre Fourter Transtorm.” Proc 11ET .
Vol 66, Noo Lo pp. ST-RA Tinuary 1978
A=Y Bracewell Ro The Fogrner dranstoons and s Appicenoors New York o MoGraw-Hill Col 1965, pp. 244-250.
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Fourier transform can be reduced to a one-dimensional integral by use of the projection theorem
which has been widely applied in the analysis of tomographic imaging (references A-3 through A-5).
The theorem states that a central slice of the two-dimensional spectrum at an angle 6 can be obtain-
ed by a one-dimensional transform of the projection of the spatial function onto an axis oriented at
the same angle 6. The theorem can be proved by the following arguments.

Consider a two-dimensional function f(x,y) expressed terms of coordinates u.v rotated
about x,y by the angle 6 as shown in figure A-1.

Figure A-1. Rotated
Coordinate System.

The function f(x,y) can be expressed in terms of u and v by the rotational transformation
=xcosB + ysinf,v=-xsinf + ycos¥b.

fix.y) = f(u cos 6 - vsin ¢, usin 6 + v cos ) (A-1)

The projection of f(x,y) onto the u axis corresponding to the angle 6 is a one-dimensional func-
tion of the single variable u.

p(u:0) = ff(u cos ¥ - vsin 0, usin 0+ vcos 0) dv (A-2)

The notation plu;6) indicates that the projection is a function of the variable u and is unique for
each 8. The one-dimensional Fourier transform of P(u;8) with respect to the variable u is:

P(w:f) =fp(u:0) e " du (A-3)

A-3. Bracewell, RN and AL C. Riddle. Toverseonr of Fan Beamt Scams in Radio Astrononm I'he Astrophysical Journal.
Vol. 150, pp. 427-434, November 1967

A-4.  Shepp, L. A and J. B. Kruskal. “Computerized Tomography The Now Mcdical N-Rayv Teclmology, American
Mathematical Manthly. Vol 85, No. 6, pp. 420439, June 1978

A-S. Mersereau, ROM.and AL V. Oppenheim. Diciral Reconsirsc tion ot Mudttdimenaonal Stenals Prom Their Projections.”
Proc. IFFE. Vol 62, No. 10, pp. 1319-1338, Octoher 1974
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The Fourier transform of the function f(x,v), expressed in polar coordinates, is:

Flw.0) = ./j/\”x.y) N X Ces A+ Wy s A da KN (A-4)

where w and 8 are the radial and angular coordinates in the spatial frequency plane. Equation (A-4),
expressed in terms of the coordinate rotation relations, can be rewritten as:

F(w.B) :fft'(u cos O - vsin O, usin 6+ veos e ' du dv (A-5)

F(wﬂ)=/p(uz0)e.""w du (A-6)

Equation (A-6) is thus shown to be equal to equation (A-3) yielding:
F(w.0) = P(w:0) (A-7)

Equation (A-7), termed the projection theorem, states that the one-dimensional Fourier transform
of the projection with orientation 8 is a section of the two-dimensional Fourier transform of f(x,y)
passing through the origin and subtending an angle 8 with the w, axis.

In our application, we use the above theorem by computing the projection of the annular
spectrum and then performing a one-dimensional Fourier transform on the result. Because both
spatial and spectral functions are radially symmetric, the result completely characterizes the
point-spread function. The recognition that the radial behavior of the spatial function is deter-
mined by the Fourier transform of the projection of the spectral function is significant. All the
features of one-dimensional tapered windows which link smooth tapers to sidelobe reduction are
pertinent to the two-dimensional case if they are applied to the one-dimensional projection of the
spectral function. Thus, smoothing the projection of the annular spectrum determines the
sidelobe structure of the point-spread function in the radial direction.

The upper plot of figure A-2 shows the cross section of an annular spectrum with unit
amplitude for radial values between 32 and 64 units and zero elsewhere. The projection of the
annular spectrum is shown on the central plot and the Fourier trarsform of the projection on
the lower plot. The Fourier transform, representing the point-spread function corresponding to
the annular spectrum. has sidelobes of magnitude 0.3 relative to the peak. The two central peaks
of the projection are the cause of the relatively high sidelobes in the point-spread function. As
the radial extent of the annulus decreases, the peaks become more pronounced and the sidelobes
in the point-spread function increase. Figures A-3 through A-5 show effects of radially tapering
the annulus with functions of the form =~us?¢) for o of 1, 2, and 0.5. Figures A-6 through A-8
show the effects of similar tapers apphed to the inner and outer edges of the annulus. Each of
the tapers resuits in an increase in the level of the sidelobe adjacent to the peak. Note that in
each case. the tapering enhances the peaked behavior of the projection thercby raising the
sidelobe level of the corresponding spectrum. A number of additional tapers were tested for
which results are not shown. These included functions which provided smooth tapers radially
outward and inward. For each taper tested. the sidelobes of the point-spread function were in-
creased over those for the uniform annular spectrum. Although the results are not analytically
conclusive, they support the assertion that smooth tapering of the annular spectra does not
decrease the sidelobes of the point-spread function but rather increases them.
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