The Objectivity and Subjectivity of Life Events

Arthur A. Stone
Long Island Research Institute
and
Department of Psychiatry and Behavioral Science
State University of New York at Stony Brook

January 1981
Technical Report

Approved for Public Release

Prepared for:
OFFICE OF NAVAL RESEARCH
800 North Quincy Street
Arlington, Virginia 22217

Reproduction in whole or in part is permitted for any purpose of the United States Government

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

81325047
Life events have been considered objective or subjective depending on whether or not the events could be verified. This paper revises this concept (Verifiability) by requiring that the events actually be verified, and it presents two new types of objectivity-subjectivity of life events, Item Selection and Event Quantification. Three issues pertaining to the design of life event studies are presented and it is shown that these design issues interact with Verifiability and Event Quantification, sometimes resulting in...
studies with serious threats to their validity. It is recommended that all three types of objectivity-subjectivity be considered when designing life event studies.
The Objectivity and Subjectivity of Life Events

Arthur A. Stone

Long Island Research Institute

and

Department of Psychiatry and Behavioral Science

S.U.N.Y. at Stony Brook

Index terms: Life events, stress, objectivity, methodology
In his classic text on stressful life events, B.P. Dohrenwend (1974) stated that the distinction between "objective" and "subjective" life event measurement had both "...theoretical and methodological importance" for exploring the stress-illness link. In this paper I will extend previous discussion of this distinction, examining its complexity and implications. In commenting on Holmes and Rahe's Social Readjustment Rating Scale (1967), Dohrenwend (1974) stated that "...each of the items on the checklist is an objective event in the sense that its existence theoretically and often practically can be verified independently of the respondent's report of its occurrence and independently of changes in the usual activities that it is likely to bring about" (p. 282, 1974). Subjective events were described as "...both theoretically and practically...difficult or impossible to verify independently of the respondents' reports of their occurrence" (p. 282, 1974). On closer examination it appears that some events that Dohrenwend would consider as objective are partly or primarily subjective; moreover, there are at least three different ways in which an index may be subjective, each of which has implications for study design and interpretation. To provide a framework for discussing the objectivity and subjectivity of life events, four major life event investigations will first be reviewed.

Out of their extensive experience with Adolf Meyer's Life Chart (1951), Holmes and Rahe (1967) developed the first life event inventory, the Social Readjustment Rating Scale (SRRS). They chose events which clustered around disease onset on the assumption that these events might be causally related to illness. The SRRS has 43 events that range over a wide variety of areas, from marriage to health. Because
the authors felt that most of the events required an adaptation from an individual's steady state and because they desired an accurate characterization of the degree of change required by each event, event weighting coefficients were constructed. The procedure for creating these weights was to have a group of subjects magnitude estimate all of the events according to the amount of adjustment required if the event were to occur; these weights which were used in subsequent studies. The Schedule of Recent Events (SRE) is a list of events without the ratings. Subjects indicate which events happened during a specified period, and by summing the weights of checked items a single number indicative of the degree of social readjustment required during the period is computed (the LCU score).

Another checklist, the Life Experiences Survey (LES), was developed by Sarason, Johnson and Siegel (1978). Most of the 47 events found on it were selected from existing instruments (72% from the SRRS). Additional events were generated to cover happenings that occur frequently and that might "...exert a significant impact on the lives of the persons experiencing them" (p. 934). In addition to checking events which occurred during a specified time period, respondents rate a combined desirability-impact scale for each of the checked events. These ratings were obtained every time the checklist was used. The scale anchors range from extremely negative to no impact to extremely positive along a single 7-point dimension.

The Psychiatric Epidemiology Research Interview (PERI) was developed by Bohrenwend, Krasnoff, Askenasy, and Bohrenwend (1978). They created their checklist by asking subjects "What was the last major event in your life that, for better or for worse, interrupted or changed your usual activities?" One hundred and two events were compiled and each was classified by four judges according to its presumed probability of occurrence in various sociocultural settings: whether it was a
gain, loss, or ambiguous; its independence of psychiatric and physical conditions; and, its central figure (self or someone else). A much larger sample of judges magnitude estimated the social readjustment inherent in each event. These ratings were analyzed to determine the proportion of event rating variance which fell into each of three components: universal agreement (all people rated the event in the same way); differences due to social class or other demographic characteristics; and, differences that were unrelated to the previous two classes (considered as error). These proportions were used to classify event ratings as either universally stable, stable within specific sub-groups, or unstable with regard to the aforementioned characteristics.

The last event inventory which we will consider, the Interview Schedule for Events and Difficulties (ISED), varies from the previous instruments in that it is a semi-structured, standardized interview rather than a self-report questionnaire. Brown and his colleagues (see Brown and Harris, 1978) developed the interview to record events which were encountered by their subjects during the last several months. The interview touches on several content areas including health, role changes, leisure, employment, housing, and money. Open-ended questions are used first to solicit information in each content area; specific probes follow-up areas in which there were positive responses. With the help of tape recordings, interviewers rate each event recorded on 28 scales. A partial listing of the rating scales are: the focus of the event (the subject or someone/something else); the degree of emotional preparation for the event; immediate positive feeling; short-term threat or unpleasantness; and, reported positive support during the event. Ratings, then, were a combination of the subject's reaction to the events and the interviewers' impression of the subject's reactions. "...ratings were, therefore, always based on what we were told but occasionally went beyond this to rate what most women would probably have
experienced in similar encounters" (p. 87, Brown & Harris, 1978). Indices of "contextual threat" were also derived for each event by having the interviewer read an account of the event and the circumstances surrounding its occurrence to Brown's research team. Team members were "blind" regarding the subjective reaction to the event and the mental, physical, and social status of the person experiencing it. The members of the team independently rated the degree of short-term (immediate) and long-term (one week) threat that they believed was inherent in the situation given its context.

Ways in Which Life Events Can Be Objective and Subjective. There are several ways in which checklist and interview methods for obtaining life event experience can be objective or subjective. Dohrenwend's definition focussed on whether or not events can be verified (Verifiability). But there are additional criteria which can be used. One deals with the method by which event indices are created, with subjective weighting coefficients or objective categories (Event Quantification). There is also the matter of how events are chosen, with either subjective or objective criteria (Item Selection). The rest of this paper will discuss these distinctions.

Objectivity-subjectivity defined by actual confirmation of event occurrence versus subjective responses defines the first kind of objectivity and will be called Verifiability. According to Dohrenwend's definitions of objectivity and subjectivity, the SRRS events and many of the LES and PERI events are, in principle, verifiable. However, some of the non-SRRS events included on the LES (for example, the items "reconciliation with boyfriend/girlfriend," and "sexual difficulties") would be hard to verify. Because there is no standardized event schedule for the ISED, it is more difficult to evaluate how the events fare according to Dohrenwend's verifiability criterion. Since the content of an interview varies from person to person, an
evaluation of the verifiability of a particular set of events from a few interviews might not apply to other interviews because other subjects could generate a very different set of events. Nonetheless, many of the events that Brown reports appear to be verifiable. Responses to some of the interviewers' queries, however, such as "...have you any relatives who are a worry to you for other reasons?" "Have you ever considered marriage?" "Do you enjoy your job?" "Do you like living in your present house/flat?" and "Do you feel it private enough?" would not be considered verifiable since they rely solely on individuals' opinions.

By Dohrenwend's definition of objectivity, then, the life events collected in the four studies, with perhaps the exception of the ISED, are generally objective: in theory the events are verifiable. But what about in practice? Of these studies, only Brown's group reports that they attempted verification of the reported events; the interview format lent itself to getting the information necessary for this, that is, names of those who could corroborate subjects' reports. We do not know, though, what proportion of the total number of events were verified. Thus, in practice events often go unverified and may better be considered subjective because it is unclear whether or not they actually happened. This paper's definition of objectivity-subjectivity based on event verification goes beyond Dohrenwend's definition in that it requires the event not only to be theoretically verifiable, but to actually be verified.

The second kind of objectivity-subjectivity concerns how event checklist responses are transformed into numerical measures and this is called Event Quantification. The social readjustment ratings of the SRRS, the desirability-impact ratings of the LES, and the readjustment ratings of the PERI all yield subjective indices of life events since they rely on subjective responses of the individual or group that rated the events. The procedure for creating event indices with the ISED
combines the reaction of the respondent and the reaction of the interviewer to the respondents' descriptions of the events and both reactions are subjective. ISED contextual threat ratings are conceptually similar to the SRRS ratings scheme inasmuch as event ratings from a reference group (Brown's small group of "experts") are applied to the events that were experienced by other individuals. Although not stated explicitly, the spirit of the ISED scheme would require that two subjects with identical events and contexts receive the same contextual threat score. Procedurally, contextual threat and social readjustment weighting coefficients differ in that the former are specified in greater detail, namely, by context, age of subject, etc. than the latter which are applied solely on the basis of which events are checked on the SRE. Thus, all of the weighting methods reviewed were subjective.

Note that how event weightings were obtained, from a reference group (as with the SRRS) or from the person who experienced the event (as with the LES), does not change the objective-subjective status of the index because both sets of ratings rely on subjective responses. Furthermore, objective event ratings with relatively little observed variability, for example, death of a spouse, are no more objective than minor events with much intersubjective variation with regard to Event Quantification. Because most people have a similar reaction to a major event does not mean that certain people in particular circumstances will have the same reaction. The scores may be less variable, but are still subjective.

This is not to say that all means of classifying events are subjective. An alternate means of classification is to place events into clearly defined content areas which are not based on subjective reactions. Classification according to family, work, leisure, or other life areas (e.g., Chiriboga and Dean, 1978; Ruch, 1977) depends mainly on an event's content and not subjective reactions to it. One way which this
could be done is to give a score to each content classification by summing, for example, the number of items checked in each category.

The third kind of objectivity, Item Selection, concerns the way in which events were selected for life event checklists. To illustrate this, imagine an event index which is based simply on the sum of checked events. Because there are no event weightings, it may appear that this kind of index is free of any subjectivity. But subjectivity enters into checklist scores whenever the criterion used to select the events was itself subjective. Suppose an investigator desires to have an event checklist of losses to determine if people who experience them are more prone to depression. To construct the list, a sample of subjects are asked to list "losses" they have encountered in the last five years and a checklist is compiled from these responses. The investigator decides to index the concept of loss by using the frequency of loss events recorded during some period of time. If the study's participants view the events as losses, all is well: the score on the checklist represents the intended concept. On the other hand, if the subjects do not view most of the events as losses, a strong association between checklist scores and depression may not be due to the experience of loss but due to some other, unmeasured attribute of the events. This problem arises because the construct loss is not an inherent quality of an event. Thus, scores formed by summing occurrences on checklists whose items were chosen with subjective criteria, such as loss, are themselves in a sense subjective indices.

As in the above example, Item Selection has its most problematic effect when the investigator chooses the events with some subjective concept and uses a simple total of checked events to index it. None of the four life events recording methods discussed earlier used this method. The SRBS events were chosen with an empirical
criterion, that of events clustering around the time of illness onset, and the concept of social readjustment was an emergent property of the events after they were collected. The other studies chose events because they were significant in some way. They had subjects rate the degree of readjustment, change, etc.: the events themselves were not chosen because they were "changing." Clearly, the simplest way to avoid Item Selection subjectivity is by not using a subjective criterion for event selection. A relatively objective method for recording events is to record everything that happens to an individual, as Barker and Wright (1951) did with one child for a single day.

Some Life Event Study Design Issues Which Relate To Event Objectivity-Subjectivity. Before we can discuss the impact of these distinctions on life events research, three life event study design issues must be discussed: the reasons for undertaking a study in the first place; the degree to which event content overlaps with the outcome variable; and, whether the methodology used in the study is retrospective or prospective.

A primary distinction between studies in the life events area is whether the intent is forecasting an outcome (Prediction Study) or revealing the underlying causal network leading to changes in the outcome (Causal Study). This classification is useful because it suggests differences in the appropriateness of methodologies, methods of analysis, and interpretation for each kind of study. Predictive studies attempt to optimize the prediction of the outcome from a number of variables. It is of no consequence that these predictors themselves may be caused by some more "basic" unmeasured variables: what matters is only whether the predictors are reliably related to the outcome (see Cook & Campbell, 1979). Statistical methods such as step-wise multiple regression are often employed in prediction studies. On the other
hand, causal studies, although also interested in prediction, focus heavily on the
interrelationships among the predictor variables. Priorities are assigned to the
predictors on a priori grounds (for instance, based on the temporal relationships
among variables) and analytical methods such as path analysis are used to untangle
the relationships among the variables.

The degree to which the content of life events overlaps with an outcome
measure is another quality of life events studies. Dohrenwend (1974) and Fairbank
and Hough (1979) have developed the concept and labeled it Event Independence.
Briefly, Dohrenwend (1974) describes three populations of events. The first two
populations include events which could be produced by or be concomitants of the
outcome under study, usually a physical or psychiatric illness. For example, the
event "trouble with sleep" is a possible symptom of depression and falls into
Dohrenwend's classification of events confounded with psychiatric illness: such events
are called dependent (on the outcome) here. The third event category is composed of
events which are likely to be independent of illness. Natural catastrophes such as
floods and earthquakes fall into this category as do some of the major events found
on the SRE, LES, and PERL for example, death of spouse. Using events confounded
with a study's outcome measure threatens the validity of any cause and effect
statements because the presumed cause (events) may simply be another way of
measuring the effect (outcome).

The third study design issue concerns whether data were collected
retrospectively or prospectively. Retrospective life event studies rely on peoples'
reports of past events; in some studies, subjects are asked to report events that
occurred within the previous year. Studies which retrospectively assess life events
are seen some period before assessing the outcome (and therefore have a prospective
component) are viewed here as retrospective because they retain many of the biases inherent in the retrospective method. For example, simple forgetting or more complex distortions of memory may affect recall of events which occurred some time ago. Furthermore, the distortions may produce an event-outcome relationship, as in what Brown (1974) has called "effort after meaning." On the other hand, prospective life event studies collect event data prior to the time the illness is evident and only use reports of very recent events.

The Relationship Between the Objectivity-Subjectivity Distinctions and Study Design Issues. The reason for distinguishing between forecasting and causal studies, event independence, and retrospective versus prospective designs is because the way in which event objectivity-subjectivity affects a study is dependent upon how the study fares on these characteristics. Actually, only two of the three types of objectivity, Verifiability and Event Quantification, interact with the study design issues producing various problems for certain designs. Before moving on the the implications of combinations of these characteristics, a general point needs to be made about Item Selection. Item Selection affects what Cook & Campbell (1979) have called construct validity, the degree to which a construct generalizes to other studies in other settings on other occasions. Events selected on subjective criteria, such as loss in the previous example, are not valid if another subject sample does not view the events as losses. A large number of checks on such a questionnaire may not indicate a large degree of psychological loss. On the other hand, objective event selection, which is not necessarily intended to represent a particular subjective construct, does not have this validity problem.

The remaining two types of objectivity-subjectivity, Verifiability and Event Quantification, do interact with the study design issues (predictor versus causal study;
event independence; retrospective versus prospective design). Since each of the
design issues are dichotomies, e.g., a study is either retrospective or prospective,
there are eight distinct combinations (2^3) are possible (See Table 1). The four life
event studies reviewed earlier were retrospective, were exploring causal relationships
among life events and various outcomes, and used independent events (this was not
true for the early SRRE studies, but the later studies selected only independent
events from the checklist); thus, they were all of design type IV. I will consider
several of the eight designs during the discussion of Verifiability and Event
Quantification. Two designs (III and VII) will not be considered at all because they
have such serious threats to their validity. Designs III and VII both attempt to explore
causal relationships with dependent events which, as mentioned in the discussion of
event independence, is impossible to do since dependent events confound the predictor
with outcome.

Turning to the objective-subjective distinction of Verifiability, verified events
(objective on Verifiability) present no threats to the validity of the six remaining
designs. On the other hand, nonverified events (subjective on Verifiability) threaten
the validity of the retrospective designs (I,II,IV). There two reasons for this: the first
is inaccurate recall of events caused by simple forgetting over the long time periods
(several months) which subjects report on. Recent studies by Jenkins et al. (1979) and
Uhlenhuth et al. (1977) attest to the declining number of events remembered during
the past several months. The second reason concerns another type of inaccurate
recall which may also have an effect on the study's validity. "Effort after meaning"
(Brown, 1974) posits that new information can affect the remembrance of older
information. For example, knowledge that one has just contracted an illness (new
information) may cause an individual to look back to events which occurred just
before the illness (old information) and report them, when ordinarily the events
wouldn't have been reported at all.
Clearly, causal, retrospective studies (IV) are seriously compromised by inaccurate recall of either type, but predictive, retrospective studies (I.III) are compromised as well. This is because a researcher doing a predictive study would like to draw conclusions such as "If a person reports N number of events prior to illness report, then there is such and such a chance of the person reporting illness later on." If the study did not yield an accurate estimate of how many events would be reported prior to illness (and this bias would probably be to report fewer events), a statement such as the one mentioned above could well be inaccurate. Prospective studies greatly reduce the problems associated with nonverified events. Effects due to poor recall of events are diminished because the life event measurement period is not be several months long. Effort after meaning is eliminated because the events are recorded prior to the outcome's emergence. Thus, designs V, VI, and VIII are not seriously threatened by nonverified events.

On the remaining objective-subjective distinction, Event Quantification, subjective weightings are generally more problematical for life event studies' validity than an objective manner of quantifying events (e.g., classification by event content). As was mentioned earlier, there are two ways in which investigators have applied subjective weightings. The group method involves applying event weights obtained from a single group to event reports of other subjects: the SRRS/SRE and PERI methodologies exemplify this method. The personal method involves individuals assigning weights to the events they report; the LES exemplifies this method.

Personal weights used in retrospective studies (I.III.IV), that is, weights which are assigned after the outcome has occurred, are prone to the same "effort after meaning" and simple recall biases that were mentioned earlier, resulting in studies
which have serious threats to their validity. However, if personal weights are used with prospective designs (V, VI, VII), the recall bias is greatly reduced. Group weightings are not affected by recall bias since they are predetermined; thus, they may be used with both retrospective and prospective designs. There are nonetheless many problems pertaining to the accuracy of group weightings. For example, because there is much variability around the mean of event weightings, the weights do not truly reflect the opinions of the people experiencing them (Dohrenwend et al., 1978; Wersnow & Reinhart, 1974). But this is not the issue at hand here; our concern is whether or not the subjective weighting techniques, and not the weightings themselves, are objectionable.

Studies which use classification by content (objective on Event Quantification) are not affected by recall biases since they are not subjective. Whether the design of the study is retrospective or prospective is of no consequence to the validity of classifications. Likewise, whether a study is predictive or causal does not affect validity. Thus, this weighting technique does not threaten the validity of any of the studies. It should be evident, though, that very different sorts of hypotheses are addressed with objectively versus subjectively weighted events: an investigator misses the wealth of information contained in subjective weightings (expressed as individual differences) when objective classification is used exclusively.

The life event studies which were reviewed earlier were all of design type IV. We have now seen that this design has problems on the Verifiability distinction because of the biases in recalling events. Likewise, on the Event Quantification distinction, one of the four studies used personal weighting (the LES) which is also a problem with design IV. The point of discussing these problems in context of the three objective-subjective characterizations is not to belabor the weaknesses of the
studies, but only to demonstrate the utility of reviewing studies with regard to the new objectivity and subjectivity distinctions.

In conclusion, this discussion supports Dohrenwend's sentiment which began the paper: the objective-subjective distinction is important in the evaluation of life event studies. Three types of objectivity-subjectivity were explicated. Two of the distinctions were shown to interact with three life event study design issues resulting in various threats to the studies' validity. Neither objective nor subjective events uniformly yield studies without serious threats to their validity. We suggest that in the future, investigators plan their life event studies with the three objectivity-subjectivity distinctions in mind.
References

Footnote

The author gratefully acknowledges the helpful comments of Drs. John M. Neale and Maurice S. Satin on early drafts of the manuscript. This work was supported by the Office of Naval Research and the National Science Foundation. Reprint requests should be sent to Long Island Research Institute, H.S.C. T-10, S.U.N.Y. at Stony Brook, Stony Brook, New York, 11794.
Table 1

Eight Possible Designs
Formed By the Study Design Issues

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Retrospective,</td>
<td>Dependent</td>
</tr>
<tr>
<td></td>
<td>Predictive,</td>
<td>Events</td>
</tr>
<tr>
<td>II</td>
<td>Retrospective,</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td>Predictive,</td>
<td>Events</td>
</tr>
<tr>
<td>III</td>
<td>Retrospective,</td>
<td>Dependent</td>
</tr>
<tr>
<td></td>
<td>Causal,</td>
<td>Events</td>
</tr>
<tr>
<td>IV</td>
<td>Retrospective,</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td>Causal,</td>
<td>Events</td>
</tr>
<tr>
<td>V</td>
<td>Prospective,</td>
<td>Dependent</td>
</tr>
<tr>
<td></td>
<td>Predictive,</td>
<td>Events</td>
</tr>
<tr>
<td>VI</td>
<td>Prospective,</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td>Predictive,</td>
<td>Events</td>
</tr>
<tr>
<td>VII</td>
<td>Prospective,</td>
<td>Dependent</td>
</tr>
<tr>
<td></td>
<td>Causal,</td>
<td>Events</td>
</tr>
<tr>
<td>VIII</td>
<td>Prospective,</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td>Causal</td>
<td>Events</td>
</tr>
</tbody>
</table>
Manpower R&D Program - Distribution of Technical Reports

Part I - Mandatory

Manager, Program in Manpower R&D (13 copies)
Code 450
Office of Naval Research
Arlington, Virginia 22217

Head, Manpower, Personnel, Training
and Reserves Team (Op-954D)
Office of the Chief of Naval Operations
44176, The Pentagon
Washington, D. C. 20350

Assistant for Personnel Logistics Planning
Office of the CNO (Op-987P10)
50772, The Pentagon
Washington, D. C. 20350

Scientific Advisor to the Deputy Chief
of Naval Operations (Manpower,
Personnel & Training)
Office of the DCNO(MPT) (Op-017)
2705 Arlington Annex
Washington, D. C. 20350

Head, Research, Development, & Studies
Branch
Office of the DCNO(MPT) (Op-102)
1812 Arlington Annex
Washington, D. C. 20350

Program Administrator for Manpower,
Personnel, & Training
HQ Naval Material Command (Code 08022)
678 Crystal Plaza #5
Washington, D. C. 20360

Director, Decision Support Systems
Branch
Naval Military Personnel Command
(N-164)
1812 Arlington Annex
Washington, D. C. 20370

Head, Evaluation Section
Naval Military Personnel Command
(N-EC)
Department of the Navy
Washington, D. C. 20370

Director, Research & Analysis Division
Plans & Policy Department
Navy Recruiting Command (Code 22)
4015 Wilson Boulevard
Arlington, Virginia 22203

Military Assistant for Training &
Personnel Technology
Office of the Under Secretary of Defense
for Research & Engineering
35129, The Pentagon
Washington, D. C. 20301

Personnel Analysis Division
AF/MPX
5C360, The Pentagon
Washington, D. C. 20330

Technical Director
U.S. Army Institute for the Behavioral
& Social Sciences
5001 Eisenhower Avenue
Alexandria, Virginia 22333

Program Director
Manpower Research & Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, Virginia 22314
LIST 1
MANDATORY

Defense Documentation Center (12 copies)
ATTN: COO-TG
Accessions Division
Cameron Station
Alexandria, Virginia 22314

Library of Congress
Science & Technology Division
Washington, D.C. 20540

Chief of Naval Research (3 copies)
Office of Naval Research (Code 452)
600 North Quincy Street
Arlington, Virginia 22217

Commanding Officer (6 copies)
Naval Research Laboratory
Code 2627
Washington, D.C. 20375

LIST 2
ONR FIELD

Commanding Officer
ONR Branch Office
1030 East Green Street
Pasadena, California 91106

Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, California 91106

Commanding Officer
ONR Branch Office
536 South Clark Street
Chicago, Illinois 60605

Psychologist
ONR Branch Office
536 South Clark Street
Chicago, Illinois 60605

Commanding Officer
ONR Branch Office
Building 114, Section D
666 Summer Street
Boston, Massachusetts 02210

Psychologist
ONR Branch Office
Building 114, Section D
666 Summer Street
Boston, Massachusetts 02210

Office of Naval Research
Director, Technology Programs
Code 200
800 North Quincy Street
Arlington, Virginia 22217

LIST 3
MUNST CMD

NAVMAT

Naval Material Command
Program Administrator, Manpower, Personnel
& Training (Code C57242)
1444 Crystal Plaza #5
Washington, D.C. 20350

Commanding Officer
Naval Material Command
Management Training Center
Code C9428
Jefferson Plaza, Bldg. 2, Room 100
1217 Jefferson Davis Highway
Arlington, Virginia 22202

Commanding Officer (6 copies)
Naval Personnel R&D Center
San Diego, California 92132

Navy Personnel R&D Center
Washington Naval Office
Building 161, CN
Washington Navy Yard
Washington, D.C. 20374
LIST E
BUMED

Commanding Officer
Naval Health Research Center
San Diego, California

Commanding Officer
Naval Submarine Medical Research Laboratory
Naval Submarine Base
New London, Box 600
Groton, Connecticut 06340

Director, Medical Service Corps
Bureau of Medicine & Surgery (Code 23)
Department of the Navy
Washington, D.C. 20372

Naval Aerospace Medical Research Lab
Naval Air Station
Pensacola, Florida 32508

LIST B
NAVAL POSTGRADUATE SCHOOL

Naval Postgraduate School
ATTN: Dr. Richard S. Elster
Department of Administrative Sciences
Monterey, California 93940

Naval Postgraduate School
ATTN: Professor John Denger
Operations Research & Administrative Science
Monterey, California 93940

LIST 7

Commanding Officer
Human Resource Management Detachment
Naval Air Station
Cape Canaveral, Florida 32996

Commanding Officer
Human Resource Management Detachment
Naval Submarine Base New London
New London, Connecticut 06371

Commander
Human Resource Management Division
Naval Air Station
Mayport, Florida 32243

Commanding Officer
Human Resource Management Center
Pensacola Annex, NAS Pensacola, Florida 32566
LIST 7 continued

Commander in Chief
Human Resource Management Division
U.S. Pacific Fleet
Pearl Harbor, Hawaii 96860

Officer in Charge
Human Resource Management Detachment
Naval Base
Charleston, South Carolina 29408

Commanding Officer
Human Resource Management School
Naval Air Station Memphis
Millington, Tennessee 38054

Human Resource Management School
Naval Air Station Memphis (96)
Millington, Tennessee 38054

Commanding Officer
Human Resource Management Center
1300 Wilson Boulevard
Arlington, Virginia 22209

Commanding Officer
Human Resource Management Center
5621-23 Tidewater Drive
Norfolk, Virginia 23511

LIST 8

NAVAL MISCELLANEOUS

Naval Amphibious School
Director, Human Resource Training Department
Naval Amphibious Base
Little Creek
Norfolk, Virginia 23521

Chief of Staff, Naval Education & Training (N-5)
ACDS Research & Program Development
Naval Air Station
Pensacola, Florida 32508

Naval Military Personnel Command (2 copies)
HRM Department (NMPC-6)
Washington, D.C. 20350

Naval Recruiting Command
Head, Research & Analysis Branch
Code 434, Room 601
801 North Randolph Street
Arlington, Virginia 22203

Chief of Naval Technical Training
ATTN: Dr. Norman Kerr, Code 0161
NAS Memphis (VS) Millington, Tennessee 38054

Naval Training Analysis & Evaluation Group
Orlando, Florida 32813

Commanding Officer
Naval Training Equipment Center
Orlando, Florida 32813

Naval War College
Management Department
Newport, Rhode Island 02840
LIST 10
AIR FORCE

Air University Library/LSE 76-443
Maxwell AFB, Alabama 36112

AFCS (Dr. Frew)
Building 410
Brooks AFB
Washington, D. C. 20332

Air Force Institute of Technology
AFIT/LSGR (Lt. Col. Unstot)
Wright-Patterson AFB
Dayton, Ohio 45433

LIST 14
MISCELLANEOUS

Dr. Edwin A. Fleishman
Advanced Research Resources Organization
Suite 900
433 East West Highway
Washington, D. C. 20014

Australian Embassy
Office of the Air Attache (S3B)
1601 Massachusetts Avenue, NW
Washington, D. C. 20036

British Embassy
Scientific Information Officer
Room 509
3100 Massachusetts Avenue, NW
Washington, D. C. 20008

Canadian Defense Liaison Staff, Washington
ATTN: CORD
2450 Massachusetts Avenue, NW
Washington, D. C. 20008

Mr. Mark T. Hugger
McEer & Company
137 Newbury Street
Boston, Massachusetts 02116

HamRRO
ATTN: Library
300 North Washington Street
Alexandria, Virginia 22314

Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, Virginia 22207

Commandant, Royal Military College
of Canada
ATTN: Department of Military
Leadership & Management
Kingston, Ontario K7L 2W3
Canada

National Defense Headquarters
ATTN: DAR
Ottawa, Ontario K1A 0G2
Canada

LIST 15
CURRENT CONTRACTORS

Dr. Clayton R. Alderfer
School of Organization & Management
Yale University
New Haven, Connecticut 06520

Dr. H. Russell Bernard
Department of Sociology & Anthrop
West Virginia University
Morgantown, West Virginia 26506
Dr. Arthur Elaiwes
Human Factors Laboratory, Code N-71
Naval Training Equipment Center
Orlando, Florida 32813

Dr. Michael Eorus
Ohio State University
Columbus, Ohio 43210

Dr. Joseph V. Brady
Johns Hopkins University School of
Medicine
Division of Behavioral Biology
Baltimore, Maryland 21205

Mr. Frank Clark
ADTECH/Advanced Technology, Inc.
7923 Jones Branch Drive, Suite 500
McLean, Virginia 22102

Dr. Stuart W. Cook
Institute of Behavioral Sciences
University of Colorado
Boulder, Colorado 80309

Mr. Gerald M. Croman
Westinghouse National Issues Center
Suite 1111
2341 Jefferson Davis Highway
Arlington, Virginia 22202

Dr. Larry Cummings
Center for the Study of Organizational
Performance
Graduate School of Business
University of Wisconsin - Madison
1150 Observatory Drive
Madison, Wisconsin 53706

Dr. John P. French, Jr.
Institute for Social Research
University of Michigan
P.O. Box 1249
Ann Arbor, Michigan 48106

Dr. Paul S. Goodman
Graduate School of Industrial
Administration
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Dr. J. Richard Hackman
School of Organization & Management
Yale University
34 Hillhouse Avenue
New Haven, Connecticut 06520

Dr. Asa B. Hilliard, Jr.
Urban Institute for Human Services, Inc
P.O. Box 15068
San Francisco, California 94118

Dr. Charles L. Hulin
Department of Psychology
University of Illinois
Champaign, Illinois 61820

Dr. Edna J. Hunter
United States International University
School of Human Behavior
P.O. Box 26110
San Diego, California 92126

Dr. Rudi Klauss
Syracuse University
Public Administration Department
Maxwell School
Syracuse, New York 13210

Dr. Judi Komaki
Georgia Institute of Technology
Engineering Experiment Station
Atlanta, Georgia 30332

Dr. Edward E. Lawler
Battelle Human Affairs Research Centers
P.O. Box 5396
4000 NE 41st Street
Seattle, Washington 98105

Dr. Edwin A. Locke
University of Maryland
College of Business & Management &
Department of Psychology
College Park, Maryland 20742

Dr. Ben Morgan
Performance Assessment Laboratory
Old Dominion University
Norfolk, Virginia 23508

Dr. Richard T. Mondy
Graduate School of Management & Business
University of Oregon
Eugene, Oregon 97403

Dr. Joseph O'Niedead
Human Resources Research Organization
300 North Washington Street
Alexandria, Virginia 22314
Dr. Thomas M. Ostrom
Department of Psychology
116 East Stadium
Ohio State University
4040 West 17th Avenue
Columbus, Ohio 43210

Dr. George E. Rowland
Temple University, Merit Center
Ritter Annex, 9th Floor
College of Education
Philadelphia, Pennsylvania 19122

Dr. Benjamin Schneider
Michigan State University
East Lansing, Michigan 48824

Dr. Saul B. Sells
Institute of Behavioral Research
Texas Christian University
Drawer C
Fort Worth, Texas 76129

Dr. H. Wallace Sinaiko
Program Director, Manpower Research
Advisory Services
Smithsonian Institution
801 North Pitt Street, Suite 120
Alexandria, Virginia 22314

Dr. Richard Steers
Graduate School of Management & Business
University of Oregon
Eugene, Oregon 97403