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An Invariaut Infinitesimal Theory of Motions

Superposed on a Given Motion

by

J. Casey and P. M. Naghdi

Abstract. This paper is concerned with the construction of an invariant
infinitesimal theory of motions superposed on a given motion. -The development
i applicable to any material but special attention is given to elastic soclids.
Included as a special case is an infinitesimel theory of elasticity with the
tollowing properties: (1) It is properly invariant under arbitrary (not
n.cesgarily infinitesimal) superposed rigid body motions, (2) it reduces Ly
specialization to the theory of rigid bodies undergoing finite motion, and

(3) it can be brought into correspondence with the classical linear elasticity
throush a suitable reinterpretation of the symbols in the constitutive equatiun
of the latter.
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1. Introduction

The theories that describe the finite deformations of continuous media,

most notably the theory of finite elasticity, all satisfy correct invariance

requirements*. In contrast, as is well known, the classical theory of inifinitesi-
mal elasticity does not satisfy correct invariance requirements; the theory of
infinitesimal deformations superposed on s finite deformation is not an
invariant theory either*. A further example of a theory of practical importance
that does not satisfy correct invariance requirements is that of "physically
nonlinear" elasticity in which the deformation is assumed to be infinitesimal,
while the constitutive equation is nonlinear in the infinitesimal strain.
Statements have occasiocnally been made in the literature*--with evident
Justification -- regarding the physical meaninglessness of infinitesimal theories
which fail to satisfy full invariance requirements, it being pointed out that
such theories could not possibly apply to any material undergoing finite
deformation. The purpose of this paper is to introduce an invariant infinitesi-
mal theory of motions superposed on any given motion. This includes, of course,
as a special case an invariant infinitesimal theory. While our method of
approach and all of the kinematical and kinetical results hold for any material,

we devote special attention to elastic solids.

fo this we mean invariance requirements under superposed rigid body motions,
which embody the idea that all motions of a body which differ only by a rigid
motion are mechanically equivalent. We do not employ here the principle of
material frame-indifference (or material objectivity) which is used by some
authors as an alternative tc invariance requirements under superposed rigid
tudy motions.

*It is rather disconcerting that an infinitesimal theory of a deformable medium
(such as the classical infinitesimal elasticity) does not include as a special
case that for which the deformation is zero, i.e., the theory of rigid bodies.

»

¢ ee Coleman and Noll (1961, p. 245) and Truesdell and Noll (1965, p. 117).
Reference may nlso be made to a related remark by Truesdell and Toupin
(1960, p- 72’4).




1.1 Examination of the usual infinitesimal theory

The main reason that infinitesimel theories do not satisfy invariance
requirements, which are met by the finite theories, lies in the different
behavior exhibited by the infinitesimal and the finite strain tensors when an
arbitrary rigid motion is superposed on a given motion of a body ®. To elaborate,
recail that the finite (relative) strein tensor defined by E==%(E-£), where C
is the Cauchy-Green measure oi deformaetion and £ the identity tensor, is
invariant under superposed rigid body motions. A consequence of such invariance

ic that E must take on a constant value for all rigid motions of ®; by choice

it is arranged in the definition of E that this constant value be zero. Under

certain conditions, the infinitesimal strain tensor e furnishes a linear approxi-
mation to E and is used in constitutive equations intended to describe the
mechanical response of certain materials. This inevitably leads to the fol-
lowing difficulties: (1) the only rigid motions for which e equals zero are

the translations, and (2) the strain e is not invariant under arbitrary super-

posed rigid motions of the body ®. Indeed, if contrary to (2) the tensor e
1 were invariant under arbitrary superposed rigid motions, then it would be zero
for all rigid motions and this would contradict (1).

To illustrate points (1) and (2), consider the classical linear theory of

elastic solids whose constitutive equation relative to a homogeneous unstressed

reference configaration OK can be written as
I~




where Kle] is linear in e, T is the Cauchy stress tensor, X is a constant
fourth order tensor and oP 18 the mass density of the body ® in configuration
oi’ When an arbitrary rigid motion is superposed on X, resulting in a motion

+
5 > it is generally regarded as a physically acceptable assumption that the stress

vector t (representing surface force per unit current area) be unaltered apart

1-

+
from orientation’. As a consequence of this, the Cauchy stress tenscr T in

+
the motion X 1is related to the stress tensor T in the motion X by
+ T i
L =aIe . (1.2) i

In (1.2), % is a proper orthogonal tensor function of time which corresponds

; to the rigld rotation in the superposed motion, and 9? is the transpose of %.
For the special motion in which the body ® remains always in its reference
configuration, e¢=0 and hence T=0 by (1.1). Then, if (1.2) were satisfied, T
should equal zero for all rigid motions. However, if we use the definition of

infinitesimal strain e [see Egs. (2.8) and(z.lh)5],we see that the value of e

1

in a rigid motion is

+(Q-D)} =-3e-D%D) - (1.3)

T=-% ox(QDNQD] , (1.4)

which contradicts the result noted above. On this account in the classical

linear theory of elasticity it is stipulated that only rigid motions which are

themselves infinjtesimal be allowed to enter the theory, because e given by

(1.3) is approximately zero for such motions; and, in turn, T given by (1.4)

Ysee Green and Naghdi (1979) for the motivation and precise meaning of this
terminology.




15 approximustely zerv aiso. ‘Thus, we See that the usual method of constructing
the infinitesimal theory of elasticity -- which results in the choice of . as a
strain measure -- forces us to exclude the class of finite rigid motions from

the theory, despite the fact that general physical considerations [embodied in

Eq. (1.2)] require that T=0 for all rigid motions.

3 The discussion in the preceding paragraph pertains to the effect of a
purely rigid motion. We now turn to a related examination of the constitutive
equation of a linearly elastic solid when a rigid motion is superposed on a
given motion. To this end, we observe that even if E’were zero for all rigid
motions it would still seem undesirable that e be altered under arbitrary super-
posed rigid motions. For, if e is used as an ingredient of the constitutive
equation characterizing the mechanical response of a material, the resulting
theory will then predict that the response should in general change when the
body is imparted an arbitrary (i.e., not necessarily infinitesimal) superposed
rigid motion. It is easy to show that if 5? and § differ only by a rigid motion
then the measure Sf calculated for the motion Ef is related to the measure e

f.or the motion X by the equation

2e" = 2e- (@-D)T(e-1)  (@-D(E-D+ {(@-DEDY (1.5)

~ ~

where F it the deformation gradient in the motion X. Utilizing (1.1) and (1.5)

+
we find that the Cauchy stress in the motion X may be expressed as

oKl =T-% o gg[(g-yT(g-g)] +3 e 5[(9;;)(2—5)+{(g—5)(§;£)}T] ,  (1.6)

o}

G
with the constant tensor X remaining unsltered for a given material. However,
it we vse (1.2) and (1.1), we are led to the relation

T = T+ (Q-DT+T(Q-

(1.7)
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The right-hand ~.d:s of (1.6) and (1.7) sre in general unequal and consequently

T+ is not given Ly x[e+] as it ought to be. Furthermore, this behavior will be

~

reflected mathematically in the failure of the differential equations of motion

h
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to transform correctly into the equations describing motions which differ from

|
i
&
i
1
!
i
!

i a given motion only by a rigid motion. Of course, if both (F-I) and (Q-I) are
taken to be negligible in (1.5), (1.6) and (1.7), then these equations yield

the approximate relations

+ + +
3 me 5 ﬁ[g ] ~ T, T ~T (1.8)
and hence the result
|
+ '
T~ P Kl . (1.9) ‘

The latter procedure is the one adopted in the classical theory of (infinitesi-
mal) elasticity. It is then said that the infinitesimal strain tensor is

invariant under infinitesimal superposed rigid body motions and that the

constitutive equation (1.1) is ir rariant under infinitesimal superposed rigid
body motions. An analysis that parallels the foregoing can be carried out for

. 8
the usual theory of infinitesimal deformations superposed on a given deformation .

1.2 Nature of results for a properly invariant infinitesimal theory

The construction of an invariant infinitesimal theory is effected here by
the simple device of first removing from any given motion X, the translation and
rotation at any one particle Y of ®, called a pivot in section 3, arriving thereby
(see Eq. (3.2)] at a motion zf. The invariant behavior of the finite strain
tensor E implies that the finite strain tensor Eﬁ in the motion &f takes on the
same value as E at corresponding values of their arguments. We next assume
that the displacement gradient of ﬁf is small. The linear approximation Ef to

*
E 1is the measure upon which our infinitesimal theory is based. As shown in

~

*
section 3, the strain tensor e is invariant under arbitrary superposed rigid

body motions of B and takes on the value zero for all rigid motions of ®.

§See Sec. 68 of Truesdell and Noll (1965), where additional references can be
found.




Within the framework of the present paper, the constitutive equation of @

linearly elastic solid takes the form+

*. T
I, = P E(Z;t)l“[s ]R (Z;t) P

(0]

where R(Y,t) is the rotation tenscr at the particle Y at time t. When X is

+
transformed into X by an arbitrary superposed rigid motion of ®,

o (

+ * +# * +
) = QR(Y,t), e *e =e and T is given by

~ A A

. +
L) » R (Y,t

2t

+
T

+ o+, ¥4+ +..T
PR e IR (1,t7))

oPQR(L N L QR(L, )Y

- Q18

~

¢ that (1.10) is indeed an invariant constitutive equation. Recalling (1.2)

*
w= denote the Cauchy stress tensor in the motion X by

*
1" = RU(LE) TR(L,E)

in which case {1.10) takes the appealing form

* *

E T 0P E[i b

Haprily the last equation is identical in form to (1.1), which allows the
infiritesimal theory of section U4 to be brought into direct correspondence
witl. tne (classical) linear theory of elasticity by a simple reinterpretation
.f the cymbols ~mployed in the latter theory. We emphasize that, in contrast

+

Lo

(1.1), the constitutive equation (1.13) is invariant under arbitrary super-
pes-d rigid moticns of @®.
The conceptual adventages of an approximate theory based on the strain

»
measure e rather than on e lies in the fact that such a theory is properly

BA
‘We emphasize that for a particular choice of pivot, Y is fixed in (1.10)

and R(Y,t) varies with time only.

..IIllIIIllIIIIIIIlllIlIllIlIllIlIIlIﬁliii.iiﬁﬂiliiillhhnﬂn.n.nﬁ.--

(1.10)

(1.11)

(1.12)

(1.13)




invariant under arbitrary superposed rigid motions, rendering the results
physically meaningful, and that the theory includes as possible motions the
entire class of rigid motions. In effect, by following the scheme outlined
above, we are able to approximate the finite theory while keeping the invariance
requirements intact. It is precisely the fact that the invariance requirements
are themselves approximated in the classical infinitesimal theories that leads
to the shortcomings of these theories mentioned earlier. While the usual method
of linearizing a finite theory involves the systematic approximation of every
equation of the theory, our results demonstrate that, if meaningful physical
results are to be derived, it is essential to distinguish between invariance
requirements which are to be kept intact, and the remainder of the finite

theory which may be approximated. Indeed, by first removing (from all
particles of the body) a rotation and translation from a motion &land then
performing approximaticn, the present method (sections 3 and 4) yields a

properly invariant theory.

1.3 Outline of contents and additional remarks

Sections 2 and 3 are concerned, respectively, with some preliminary back-

ground material and the construction of an invariant infinitesimal strain
measure. Some aspects of these make use of the notions of equivalence relations
and equivalence classes, the relevant details of which are elaborated upon in
Appendix A of the paper (following section 5). Using the results of section 3,
an invariant infinitesimal theory of motions superposed on a given motion is
developed in section 4 and begins with two independent motions l& and 2§,Of the

same body composed of the same material. Removing from bpth motions the trans-

lation and rotation at any one particle Y of B while maintaining the same stretch, ;

* *
we arrive at two motions lx and 2X . This is followed by introduction of the

* *
gradient H of the relative displacement field X -.X taken, at each instant of

~ ~

¥*
time, with respect to the configuration occupied by ® in the moticn 151 at that

instant. The gradient H is unasltered when rigid motions are superposed on either

X or .X, or both. We next assume that H is small and we derive a relationship

7.




Al . N . . *
‘q. (L.31)] vetween the Caucny stress tensore for the motions lX and
~

r_
o
[
[+
[z

)\(. witic! Is properly invariant under arvitrary superpcsed rigid body motions.
This ol our main result.

A raoted earlier in this section, our methed of conctruction involves the
remcval from all moticns the translation and rotation at any particle Y. 1In
sectlon Y, wo examine the nature of the results irn section 4 when a pivet Y/

Loochosen instead of Y. Tt is chiown that the infinitesimal thecry counstructed

EER AN #e pivot coincider, to within terme of o(e”), with that cunstructed

wito oo Divot, The vrimificance of this result is that it dues not matter
i onrticie fooenhooen s pivot.,

e Uoce olesing tiide section, 1t i¢ desirable to cumment on & recernt paper

x ctoroeiios wva Corrin (1379) recarding the impossibility of an exact linesr

, ool iee ey for elsstic solids,  These authors consider a constitutive

‘ . . §

X e ctior t0 vhe form T~ Qili:, where U is a ecnstant fourth order tenscr and
-t Lo ot displocemert cradient. In the theories of finite deformaticn

itote orequired that det(H+I)>7 5 snd, hence, H is restricted %o belong to ccome

orower cgueet ot the set of all second order tenscrs. Imder superposed rigid

. . - . ;s . ot t ) .
ol onott one U oopeys (1,27, while H is transformed into H =F -1=Q i+Q- 1.
+ - - . P \ - R S
coerte Lnet 0 aleo belorgs to § cince det{H +1I)- (det Qldet(H+1)>0 for
2 ~ X 2 TR

v Tter o propor orthogonal . It ie readily apparent that the constitutive

1.

0

l

I, HE€ g, could not generally be properly invarisnt under

~

roiorery superpeged rigld vody moticns.  Indeed, setting H= 0, it follows
~ A

oa-1 fur i1l proper crthoconal Q. The only @ for which thic is

their tevelopment, Posdick and Serrin place a stronger a priori restric-
q ot i i t 5 "of @. 1f D' is a proper
*ia un i that reguires H to belong Lo some subset D7 of . prop

LYend o f @, then only thone o are allowed to appear in the invariance requirements

e b notation Hois that of Fosdick and Serrin (1979). 1In the present puper,
v e ondingg quantity 1s denoted by G,

f.




that result in ﬁf:=g’li-%- £ also belonging to 8'. 'To accommodate this restric-
tiovrn on the choice of %, Fosdick and Serrin (1979) replace the invariance
requirements of the general finite theory witli restricted invariance require-
ments which involve some proper subset of the cet of proper orthogonal tensors. 1t
may conceivably transpire that the ~onstitutive equution Z::Q[g], with H,H+€ ) RS J
tuen possible for non-cero 9' Fosdick and ‘"errin show that thic ic in f=ct v i
the case and g must still be zero.

In contrast tou Fosdick and Serrin (1979), the puint of view tuken in the
oresent paper is that there are compelling physical grounds for retaining the
full set of preoper orthogunal tensors in the invariance requirements of any
theory of deformavle media, including the approximste theories. Thug, the
domain of a constitutive response functicon must be large enough to include all
those tensors (e.g., £+) derivable from any tenscr in the domain (e.g., E) by
a superposed rigid body motion with % an arbitrar:y proper orthogonsl tensor.

It is then a consequence of the development of the present paper that a linear

constitutive equation of the form (1.13) is physically meaningful, in that it

satisfies full invariance requirements.




2. General background. Treliminaries and notation

censider a body ® which, in a fixed reference configuration oﬁ’ ueeupies o
rmr_iun’r QR embedded in a three-dimensional Euclidean space &; we dennte Lhe
vuundary of DR by aoR. Choosing a fixed origin @ in €, we identify each particle
X «f B vy the position vector X of the place it occupice in R. £ motion of @ ic
a mapping X which assigns a position vector fﬁr&(&,t) to each particle X @t each

instant t of time (-o<t<a). In what follows, we need to consider three sepzrate

metions of the body; and,for this purpose, we introduce the notation

r;viz Ql)i(:)i’t) ) (0’203132) > (2-1)
wiere .it'i° Ctatements involving dﬁ are understocd to hold for values ©,1,2,
s« find 1t convenient to speak of aﬁ in the singular. Thus, we say that the
innece oF RR in the motion Qﬁ‘wjll te dencted by R- ( R t). The moticn
A ﬁ;'~2ﬁ£’t) in wiich X remains ar i fur 1l t is called the identity motion.

Wei note Thot “x;-OK(X) and mﬂz:o(lﬁ‘. Ir. vur analysis of motions superposed un

a ivan motion, (X willl represent the given motion and 2X a motion that is close
- I ~

te .X in a sense to be made precice iuter. We assume that at each fixed t, the
. o . > . ) -1 .
mepoing of ® intoe R by (2.1) pussesser e smooth inverse denoted by aX . lnder
! 8 - X
tnece sssumptions, R is also a region with boundary 3 R:’&i<aqﬂ>t)- Clearly,
o o O
ne idertity moticn is its own inverse. The current configurotion of ® ut ewch
fixel £ in the motiun X is the mapping « of ® into € given by k= X o «, where
o~ o~ o' 2% o~ O~

M
cignifies the composition of mappings . For any subset (or part) SC® of the

+ o)

L region is regsrded here as a nounempty connected and compact subset of €
naving + plecewise smooth boundary.

»

it woild be more correct if in our notation we distinguished the mapping X
irom the vartial mapping x which at each fixed t takes X into x. Ctrictly
sprakKing, the mapping Xt nds an inverse th while X does not. ulmllarly, our

notation aﬁ 'rax ok stands for the relation aﬁt:: X4 O K invclving the partial

mappings a~¢ and X;. However, cuch a notational distinction leads to undue

nlumsiness In later equations of the present paper.

10,




body, we write = Oac(s), apz ax(op,t) and aap= ax<aop’t)’ where 3 @ is the
poundary of the region OP and aaP that of qP.

2.1 Notation and terminology

Before continuing with the kinematics, we mention some mathematical
terminology that will be needed in what follows. Any linear mapping from V,
the three dimensional translation vector space associated with the point space
&, into V will be called a second order tensor. The trace and determinant
functions are denoted respectively by tr and det. The transpose of a seccond
order tensor Iiwill be denoted QT, while the inverse of ’AV if it exists will be
denoted by i_l. The usual inner product on V is written a - E for any two
vectors a,b €V and the (induced) norm, or magnitude, of a is given by Hi\\=\[i_7—;{ .

The set of second order tensors can be provided with an inner product

A-B= tr(A~T§) and a norm HI'\\JH=\(-1§T~ for any second order tensors A and B. The
tensor product i@g of any two vectors i’EEV is the second order tensor defined
by (ig}l)}i:}l' u a for every vector u. We recall the formulae tr(fi%R) =a-b,
(282)" =0®g and (230)(s3d) =" ¢ 884 (280)(28), (481)* (c8Y =2 2 b4,
which hold for all vectors ?},’E’E,’E, in V. The convention of summation over a
repeated Latin index will be employed, but summation will not be performed over

a repeated Greek index.

In order to express certain expressions in component form, it is convenient
to employ two fixed right-handed orthonormal bases {EA} and {Ei} in V, the former
basis being used for vector fields defined on the region OR and the latter for
vector fields defined on other regions. Thus, for example, we write X=XA3 and

~

olx: o’xi s (¢=1,2). Furthermore, a second order tensor A may be represented by
Ay 2885 Am &% O Pun Sn® S

A s (eigej), etc. Any linear mapping from the set of second order tensors into

as appropriate, where Aij =g, +A e,=

~1 ~ ~J

itself is a fourth order tensor. 1In particular, the tensor product 832@ 28%

11.
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of any four vectors E,’E’E,’,d;.ev is a fourth order tensor. It is useful to

define an inner product of the fourth order tensor a®b®c®d and the second
order tensor u®v, u,veEV, by (a®b®g®d)[u®v] =c.ud.v a®b, which
yields a second order tensor. Any fourth order tensor a may be represented

as @=0, 4, %5 %50822, " kPSP BT Yk, S B8P kB e ot

where, for example, aijkl,= e * Q‘[f\a{@g‘z]gj = (E«i®ij) . 9,[24{8211- The

transpose CZT of a fourth order tensor @ is that unique fourth order tensor

with the property that B- Q[A]=A . aT[B] for all second order tensors A,B.

. T T_
Clearly, Q —(CIl e Si ®e Be, _o,uiJ Sl®e Qe 852

2.2 Kinematical and kinetical results associated with the motions (2.1)

Having disposed of the foregoing notational preliminaries, we return to
further consideration of kinematics. The deformation gradient QE, associated

with the motion a)i’ relative to X is defined by

3 X

F=-2 X,t) , J=det (F)>0 . (2.2)
o~ X T~ o o~

For the identity motion oﬁ’onI and OJ= 1. Being invertible, ozF possesses a

unique polar decomposition in the form

F R U , (2.3)
o~ o~ O~

where the (local) rotation R is a proper orthogonal second order tensor and
o~

12.




the right stretch org' is5 & symmetric positive-definite second order tensor. Alsoc,
the right Cauchy-Green measure of deformation org and the Lagrangian finite strain

tensor E are given b
o g y

-2 R, E=HCD . (2.4)

C =
o~ o

?
b
%

We note that oR-= oH: C=1 and OE=O. The relative displacement field associated

i~ o~

ith th otio is th i - i
wi e motion af)& i e mapping o& o& with the values

2= (XX (Xt) = x-X (2.9)
and its gradient, namely
3l X~ x)
G = aud = - o
Y —t‘—agg (X,t) = F-I (2.6)

is called the displacement gradient. In the case of the identity motion, we
have u=o0 and G=0.
Onv  ~~ O~ A~
A motion a2$+ of @ is said to differ from oﬁ by a superposed rigid body motion

(or simply by a rigid motion) if and only if

+ +
1 : ng (E’at ) = a%(t)gg(g,t)w“ag(t) » bt o=t+ a (2.7)

for scme proper orthogonal second order tensor-valued function on(t) of time,

some vector-valued function or%(t) of time, and some real constant c’{a. The

+ . ) + + +
configuration of B, at time t , in the motion X is K = X o K. The class
o o~ o~ o~ O~

| of rigid motions of ® consists of those motions o?g which differ from the
identity motion X by a rigid motion, being given by (2.7) with a=0. A
translation is a rigid motion whose rotation is £ i
It is demonstrated in Appendix A that the statement "differs by a rigid
motion" is an equivalence relation on the set M of all motions of ®. This

allows M to be partitioned into disjoint subsets (equivalence classes) each of

13.
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which comprises all motions of 8 &and only those, which differ from one another
by a rigid motion. Thus, each equivalence clasc comprises those motions of ®
which are regarded as mechanically indistinguishable. The equivalence class
which cuntains - 11 motions that differ from a given motiun X by a rigid mction
is denoted by K(&). For example, th: equivalence class K(O')&) contains the

T entire set of rigid motions of ®.

| We alsu recall from Appendix # tnat an equivilence clure ic determined vy
any one of its members. If, instead of a motion Xs We begin with & motioun 8
and piace all the members of M that are equivalent tc g i a class K(E), we find

that .v:(g) = K(&).

We may regard (2.7) as defining a function W taking M into M such that fur
fixed velues of Q, a and a in (2.7) X+=w( X).
o~ o~ o' o~ ~ e

The symmetric and skew-symmetric parts of og are defined by

=3 G-G6) (2.7

Vg

T
G+ G
! e (owor~) ?

respectively, and Oe:o‘izo since OG=O. It follows from (2.4), (2.6) and (2.-)

that

-
Ta,

+

E= e G
o~ o~ o~

! Fecslling that tr{ o G) =] G‘,]z which equals zero if and only if G =0, it
: a o~ o~ o~

1 ic clear from (2.9) and (2.6) that if and only if Q’P;: I and hence if

E= e
S o
11 and cnly if Q)‘(‘ is a translation.

+ +. + ~
' From the deformation gradient F =—%— (X, t ) of X 1in (2.7), and (2.2),
o~ B?i ~o a~ 1

we readily obtain

= Q(t)F , J = det( F+) = J>0 . (2.10)
[« od o o~ [+ 4

14,
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+
Then, using F to define, as in (2.3) and (2.4), the tensors R+, U+, C and
o~ o~ “a~ “a~
+
E, it follows at once that
fo' o4
+ + + +
vV, ¢=¢6, E=E , R = Q(t) R . 2.11)
a~ o~ o~ o~ o~ o~ o~ o~ o~

The relative displacement field associated with ozf is ali+= (w)‘(f-ox)(x,ag) and

its gradient is I. H-nce, in view of (2.10)l and (2.6),

t- F' -
o~ e~ o~
+ \

G = Q(t) G+ Q(t)-I , (2.12;
o~ o~ o~ o~ ~
+

su that a(i is neither unaltered, nor unalterec¢ apart from orientation under

all superposed rigid body motions of ®. Similarly, the symmetric and skew-

+ + +
symmetric parts of G , i.e., e and w are related to e and W in (2.8) ty
o~ o~ ar~ o~ o~

+ T T ’
2 = 2 - t)-1I t)-1}+ t)-1I} G+ t)-1} G ‘.
o L (Q)-11( Qle)-1}+ { Q(t)-13 6+ ({ a(e)-1} 6)" ;
(2.13)
+ T T :
2 = 2 + t)- + t)-1} G- t)-1} G
oo e ae) - QT e @)1 6 (-1
T T 1y
where use has been made of the identity (Q-I)" + (-£) =- (g~~) (Q-I), for any
orthogonal tensor Q.
Since in the identity motion 054’ oz=o§=o~= OE‘:E_ while oE=.8= OE: OY‘-E,
it follows from (2.7), (2.10), (2.11), (2.12) and (2.13) that in any rigid
_ + + +
motion, denoted for convenience by x , we have X (X,ot )=OQ(t)Ox(X,t) + alt)
and
+ +
[ OE - 05 = og.(t) 4
]
} At + + )
F o:,—oll—i’o'v—g’og oQ(t),I..’
: (2.14)
] + 1 T
r - HAO-TTD
i
+ 1 T
o b aw- )




Clearly, by (2.1&)5,0?‘*:9' if and only if Q(t)=1I. Hence, the only rigid
motions for which the tensor ng vanishes are the translations. It follows
from this that as is not invariant under arbitrary superposed rigid body
motions of @. For, if it were invariant, then it would equal zero for all
rigid motions of ®.

In the language of equivalence classes, if a& and Q&f belong tu the
same equivalence class, then (2.11)3 holds. As is well known, the
converse is also true. The finite strain tensor ag can therefore be used to
characterize the strain of all motions in the equivalence class K(&i). In
particular QE==9 for all rigid motions, i.e., for the equivalence class K(oﬁ)‘
In contrast, we have just seen that as does not give the same value for all

motions in K(&ﬁ); in particular,ai is not zero for all motions in K(ox) but

only for the translations.

Let ap be the mass density in the configurastion aﬁ’ &E the body force
field per unit mass in the configuration aﬁ’ ag’the ocoutward unit normal to the
surface 3 P, t the stress vector acting on this surface and T the

o o~ a~
associated Cauchy stress tensor. Then, in any motion &&, from conservation

lawz for mass, linear and angular momentum follow the results

t=Tn , T = , (2.15) |

T
o~ v v o~ O

div T+ p b= p Vv
o o~ o a~ [* g

In (2.15), ddiv is the (right) divergence operator with respect to aﬁ’ having

a component representation

3 T
. 2 - 1 20
e N NPT (2.16)

16.




and ai is the particle velocity in the motion d& and is given by

3 X
= —-a% (l(‘,t) s

\'4 X
[+ ad [* ad

with a superposed dot signifying material time differentiation. For o =0,

X =

v=0. The unit normal n is carried by the motion X into n in
O~ O~ ~ O~ o~ O~

accorcance with the formula

(FH n
o~ ST ’
NE™DT nl
the inverse of which is
FT n
= o~ o~
02 T
lE ol

+ +
Denoting the mass density in the configuration a£ by o{p and applying

(2.15), to the motion a&f’ we obtain

It follows from (2.18), (2.19) and (2.10)l that under the transformations

+ .
(2.7), n is carried into n+, the outward unit normal to 3 P, with
o~ o~ a

+
ot UV R

We adopt the usual assumption that the stress vector oEf for the

motion X  is related to t by
o~ (¢ od

+
RO

l7o

A —

(2.17)

(2.19)

(2.20)

(2.21)
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and it then follows with the aid of (2.15)2 and (2.22) that the Cauchy stress

+ +
tensor T i i
"y in the motion &5 is related to &E by

£+=a%(t)£a’%rr(t) . (2.24)

The balance of linear momentum in the motion x+ is written as
a~

+ +

. + + o+ .
Jivo I re p=op v (2.25)
where
+
2 T..
diV+ T+ = ——-g-—l-'l e, s
(o4 O~ 3 + Ad
, ¢ (2.26)
+ o0 X +
dx' = OW+ (5; t )
3 t o
o
For later reference, we note that by (2.7)1, (2.16), (2.26)1, (2.21), (2'15)h
and (2.25),
+  _+
div. T = Q(t)div T ,
o ar a~ o o~
(2.27)
o+ .
v b= Qt)( v~ b)
o~ o o~ o~ o~
2.3 Classical infinitesimal deformation
taving disposed of the above preliminaries, in the remainder of this
swction we discuss the main ingredients of the usual method of constructing
infinitesimal theories. The theory of infinitesimal elasticity is derived
*
from the finite theory by setting lx==2X:=x and introducing as a measure of
smallnesc the nonnegative real function*
¢ = ¢(t) = sup '\'\g‘()ﬁ,t)n R (2.28)

X€e R

*

In the infinitesimal theory it suffices to consider two separate
motions X and oX. Accordingly, in this case, we drop the subscripts 1,2
from quantities associated with X+

fThe smoothness of X and the compactness of OR ensure the existence of
e(t).

18.




where sup stands for the supremum (or least upper bound) of a nonempty
bounded set of real numbers. If E,(E) is any vector- or tensor-valued functiun
of G defined in a neighborhood of G= 2 and satisfying the condition that therc
exicte a nonnegative real constant C such that Hg‘(g)n<Cen as ¢—0, then we
write :{:’Q‘(en) as ¢—0

Before proceeding further, we recall the following well-known resultc:

(a) E-L=G=0() , (b) E-I=-G+0(c) =0) ,

(¢) U-L=g+0(e") =0e) , (1) C-I=2e+0(?) =0() ,
(2.29)

(e) E=e+0(e%) =0e) , (£) Ul-I=-e+0(e) =0le) ,

(g) R-L=w+0(e") =0(e) , (n) R -I=-w+0(e") =0(e) ,

4s € =0, In view of (2.29e) and (2.29g), € and w are referred to as the

infinitesimal strain tensor and infinitesimel rotation tensor, respectively.
For sufficiently small values of ¢, € approximates the finite strain E and
E,“',L approximates the finite rotation Ii

Again in the notation of Appendix A, a motion gém is said to differ from

a motion X by an infinitesimal rigid motion if and only if

8(X,7) = {I+W(E)IN(X,t)+d(t) , 7 =t+d (2.30)

~

for some skew-symmetric tensor-valued function Y\J‘(t) of time, some vector-
valued function g(t) of time and some real constant d. It is shown in
Appendix A that the statement "differs by an infinitesimal rigiq motion" i
not an equivalence relation on M. It is further shown that if a motion 8
differs from a motion X, by a rigid motion, as well as by an infinitesimal

rigid motion, then gmust differ from x by a translation in which case W=0

19.
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in (2.30) and Q=1 in (2.7). An infinitesimal rigid motion is & motion that
differs from the identity motion Ox by an infinitesimal rigid motion; and,

hence, is of the form
8K, m) = {I+W(t)}x+a(e) . (2.31)

We note that the determinant of the deformation gradient of the motion § in

(2.30) is equal to det(I‘Hi(t))det F= (l+%"”"f,(t)H2>J> 0, so that the condition

of the form (2.2)2 is satisfied. It follows from the result mentioned earlier

in this paragraph that the only motions in In that are both rigid and infiunitesimal
rigid are the translations. We observe that the deformation gradient, displace-
ment gradient, finite strain tensor, infinitesimal strain and infinitesimal

rotation tensor associated with the infinitesimsl rigid motion (2.31) are:

"

W), E=EWI(eN(t)

~

- LMe) 5 g

~ o~

(2.32)
e=0 , w=W(t)
It follows from(2..114)3 ,(2.28) and (2.29) that in any rigid motion the
infinitesimal strain tensor satisfies
2 .
e = 0(e”) as e=0 , (2.32)
with
e = [l alt) -1 . (2.34%)

Furthermore, to within terms of 0(62) as e—0, G is skew-symmetric and coincides
with w, in view of (2.lh)l, (2.29,g) and (2.34). The relationship between
rigid motions and infinitesimal rigid motions is now apparent: the limit of a

rigid motion as ¢ of (2.34) tends to zero is an infinitesimal rigid motion.

20.




Under superposed rigid body moticns (2.7), from (2.11)3 and (2.9) follows

that

e+'+-(g+)TG+ - e+

~

GTG (2,55

oj—

o=

and by applying (2.28) to both G and G' we obtain

i+: E+Q“2) as ¢e€—=0 |, (

2%
L
R

i.e., if in every motion (including the motions ﬁf in (2.7)) the norm Hgﬁ is
kept small, then e is approximately equal to ET‘ However, if a finite rigid
vody motion is superpused on a small deformation, then ¢ given by (2.28) ic
small while HE+H computed from (2.12) need not be small. It is then clear

from (.2.13)l that

" = e-{a(t) - 117(Q(t) -1} +0(e) as e=0 .

—~
no
8
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X
$.1 Construction of the motion y
as

3. A properly invariant infinitesimal strain tensor

From among the particles of ®, let one denoted by Y and called a pivct

m

pe chosen. Then, by (2.1), (2.2) and (2.3), we nave

. o X 1
- Qg&(l{,t) ) jag— (¥,8) = ali(i,t)wli(z,t) , (3.1) |
x |
where Y= y= «(Y). For any motion X we can construct a motion X =m( X) Ly i
~ 0~ O~ o~ o~ o~

removing from aﬁ the translation and rotation at the pivot Y, while maintaining i
at all particles of ® the stretch (and hence finite strain) experienced in the
motion aﬁ' In order to achieve this construction, it is necescary and suf-

ticiont th~ tf

« * * T
Cti = st (Esdt )= 02“ (z’t){u&(i’t) ‘G)L(Yat)}"'"Y >
(2.2
*
t =t- ¢ ,
o [0

¥
where aC ic a real constant. The configuration of ® at time t in the moticn
o

3 * ¥
X ic denoted by £ = X o «. In line with the notation of section 2, we
G~ o 2% o~ O
* *

* > < ¥*
write © = X ( Pyt Jandd P = X (3 P, t ) for the region and its boundary
a o~ o o4 o} o~ < o

*
occupied by any part $C@® in the motion X . It may be noted that application

Y~

of 3.2} tu the identity motion reproduces the identity motiocn, i.e.,

X o= T Xt X

(=4

Different choices «f the congtant ¢ in (3.2), merely result in a
a

* »

reparametrization of X witn t  replaced by at plus a constant: and the came
o~ o

*

position x  is reeched, except possibly esrlier or later depeunding on the volao

o~ 1
of the zanstant o, We regard all such parametrirzations -- correspondin te
i
v
differerc- choices ¢f ¢ --as representing the same motion X .
o o~
. . . . T, o o
We observe that (3.2) is of the form (2.7) with a@,(t): R (Y,t),
~ a~ o~

fThis will be made clear by (3.1%) and the remarks following it.

ro
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5 »
(Y5t, Y snd a--~-c . Conrequently, X v » mewmber of Lhe

~ ~ a -

p T
alt) - Ho(Y,t) x
Vs i.e., the class of mutions which differ from X

equivalence clase K X
QVV
by =« rigld moticn., We now state and prove un easy

Theorem 3.1. Two motions lx and ?x of @ differ vy s rigid motion if

. x «
nd only if () -—n(zx), or equivalently % = x .
rrects e first prove the necessity. If ] and 2X differ by o rigid
motion, then by (2.7) we have
; + \ +
XXt ) = g(t)eﬁ(ﬁ,t)*'g(t/ > b=t {oe

for vome proper orthogensl tensor-valued function G(t) of time, some vectl or-

salued thinction it of time and some constant o.  Ls in (Q.ll)u, it follows

K(X,t)s and, in particular, ¢t the pivot

R(LE) = q(t) R(Y,E) . (5o

R
pplyinges (4.2 to the motion X we obtain X =n(2x) with
* . T
2& (&;t} = 25 (Ef’t){Q?&(}i’t) - 2§(X’t)}+ }: s (.2

Y

where we have chosen the parameter ¢ in (3.2). to be zero. Again, lzl:;zﬂli)

2

is obtained from (3.2), with a choice of L€ =-a, so that
+ + +
X <}13t> = 5 (Z,’t ){l}i(i’t >'l£(,¥.’t )}'*XI
T,, ,* - \
= Ry, )a(t) (X (Gt) - x(Y,t) Y+ ¥

-

CoX (Xet) (Geed

I - o ;o \ . -
{4.% 0, (“.n and {(3.9) have been used.

where

We row twrn to thue cufficiency. Tupposge




and denote the rotation tensors in the motions l)( and X by .K and R, respec-

2 2

tively. Then, it follows from (3.2) that
* T \ .
l& (Z("t) = 15 (Za,t-’-lC){l&()E/,t*-lc) = li(er,t-'.lC)} + }v H4

* T .
X (X,t) = R (I’t+gc){2£(§2t+2c> - ’)\(J(Z‘,t+2c)}+£ R

2

for some constants jc and ,c. Also, from (3.7) and (3.8) we have

T
X(Kote) = R(Y,t+¢) R (Y, 6+ c)

Yotre) X(X,t+

2

+ X(Y,t+ c)

~A T

T
¢) R (Z‘st+2c)22&(’¥':t+ec) s

- R(Y,t+ R

1~~~ 1

which is of the form (3.3) with

T
Q(t) = JR(¥,t+c-c) R (Y,t)

T
a(t) = | X(¥,t+c-pe) - R(Y,0+ c-50) R (Y, t)5x (X, t)

This completes the procf.

In the language of equivalence classes (see Appendix A), Theorem 3.1 may
va Steted as K(ly = }((2)£) if and only if :r(l>£) =1~1(2)£). It ie clear from
Theorem 3.1 that the function 7, defined on M through (3.2), maps every
motion in an equivalence class K(g) -- consisting of motions that differ from
9 by a rigid motion -- into the motion E*:TL(E)‘ Since he; is itself & member

* *
of the class K(§., we may write K(¢ )=1K(8) and note that § can be used tu

letermine the equivslence class. Recalling the function w defined following

1&.7  we may write

2k,

(3.3.)




mow = 1
~ ~

for every choice of Q, & and a in (2.7). The mapping m extracts from o=
> o ~

proper subset
n={n(g)[gem} = n(m)

The notion of invariance under superposed rigid body motions implies that the
mechanical response of a body ® in the entire set of motions W 1s completely
determined by its response in the subset n <M.

Recalling the definitions (2.2)1, (2.5) and (2.6), the deformation
gradient, the relative displacement and the displacement gradient in the

S
moticn aX are, respectively, given by

¥*
3 X
* n, *
F :___Q___ (X: t ) 3
O~ 3§ ~a
* * »* ¥*
S 7 (X =X (X, b )= X "%
* *
G = F -1
(e o~ o~

Also, similar to (2.3), (2.4), (2.8) and (2.9), associated with the motion

X
X Wwe have
(}b\l

* * * * * * *
P RT U, o= ()T P s (U,
o~ Q~ O~ Qe o~ [*'d i~

* * * * T *
E =2(C=-I)= e +3( G G
a~ 2(Q~~) a~ Z(CYV)Q'V 3

* * * T * * * T
e =5(G +(G)) , w =35(G -(G)")
O~ o~ o~ o~ o a~

Cince (3.2) is of the form (2.7) with QE?(Y,t) playing the role of d%(t)’ it

follows from (2.10), (2.11) and (3.12) that

N
N

(3.12)

(3.13)




Fo= R (Y,t) F J = det( F = J>0
O o (~’ )0"“ ’ € ( ) > )
* #* * * T (‘j lh)
y = U, ¢ = ¢, E = E , R = R(Y,t)R
a~ a~ o~ o~ o~ o~ o~ ~ e~
%* * * *
We note that for the identity motion x, F = R = C = U =1 and
Om~s” O Onr~ O~ On~v ~
* * * *
E= G = e = = 0.
(o2 O~ O~ O ~

*
The position vector and rotation at the pivot Y, in the motion X by

Qir~

(2.2 .14), are:
\“'")l and (3 lh)o are

* * * *

s XLt =, R(L ) =1, (3.15)
while (3.1&)3,5 show that for every particle of ® the stretch and finite
strain in the motion alf retain the values they had in the motion &i. It is
clzar from the foregoing that (3.15) and (3.114)3 are necessary conditicns for
the validity of (3.2). It is easy to prove that they are also sufficient. In
this connection, we recall the well-known fact that a condition of the form
(3.114\3 for the stretch implies that the configuration aﬁf is related tou a£
by a rigid displacement, so that
X062 = &) XKt + ale) - g (3.19)
fur some proper orthogonal tensor-valued function O((E(‘t), some vector-valued
function o121’:‘(1;) and some real constant a;' Consequently, applying the gradient
cperator to (3.16)l and evaluating the result at the pivot ¥, we obtain
FR(Y, 1) = Q(t) F(Y,8) . (3.27)
a~ ~a o~ o~
Then, applicstion of the polar decomposition theorem to (3.17) and use of
(4,147, results in
¥ * - : L
& (D b)) R(Gt) (3.10) |

and hence by (3.15)2 we deduce




(S 12N - PR e atmeasry Il.
-

= T
2(t) = RU(Y,t) . (3.19)

Next, substitution of (3.19) into (3.16)l gives
* * ’I‘ —_ N
ok K b) = B X(Xt)+ alt) (3.20)
and after imposing (3.15)l on (3.20), we have

- T L
Qi(t) = Z' QB‘ (Z:t)a&(z‘,t) 5 (i-r-’-~)

*
g5 that a& is of the form (3.2). This concludes the proof thet (3.19) and

(3.1&)3 are sufficient as well as necessary conditions for the validity of

(3.2).
*
Thus, the motion && can be obtained directly from X in accordance with
v~

(3.2) or indirectly by imposing the condition (3.15) and (3.14)_, which are

3
equivalent to (3.2). The conditions (3.15) and (3.1&)3 involve the idea
that the translation and rotation may be removed at a particle of the

body while maintaining the stretch (and finite strain) at all particlesi.

For later reference, we record here certain results at the pivot Y,

! namely
* * * ¥* *
QB’ (zaat ) = o2 (XS (Y’dt ) = E(Y9t> ":E s Ql’i = 9 3 (3.22)
obtained with the use of (3.15), (3.14), ., (3.12)_ and (3.13), _.
1,3 3 L,

It is important to note a property of the formula (3.2): Having obtained

¥* *
a§ from &&, if (3.2) is now applied to o itself no motion different from

¥ x* *
will r sinc = b irt 15). I
aﬁ emerge, e l(&ﬁ ) o% by virtue of (3.15) ndeed for any

positive integer m

*A similar idea has been often stated in the context of classicel infinitesimal
elasticity; see, e.g., the last few lines in section 18 of Love (1927).
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m
To=n o, (3.0-)
~

r~

I . . . . .
where 7 stands for m applications of the function m. This conclusion ualsc

*x
rollows from Theorem 3.1 since a§ ,being a member of the equivalence class

» N *
B X ), must be mapped into X .
Q~ Qr~

*
3.0 Invariance properties of the motion aX

consider next the motions aﬁ and a&f in (2.7). It follows from (3.11)

that

+ . % \ \ * .
= = = e )4
(&) = (mow)( x)=nl{x)= x , (5.2,
whorei oy (5.2)
4+ * N + 4,,T, + + + +
) (X,t) = { R (Y, t X, t )- Y, t )}+Y 3.24
(1 &st) = { R(L )1 { X (X b )-gx (L, t))1+Y ( )
Wit o chosen equal to 2 Thus, according to (3.24), when & rigid body
. . R . . . . +
motion ig cuperposed on a given motion &i resulting in a motion &X , by
. . N + (3 . *
applying (3.2) to X we again arrive at X .
a~ o~
*
ny substituting Ji in (2.7)1, we cen generate the equivalence
Sy, . Co . +
clags ¥ X ) which coincides with K( X) and K( X ). We note that
o~ o~ o~
; o “ ¥ o+ * , * 4, . .
T = X oor (X ) ) = X , where { X ) is the motion given by (2.7)
o o~ o~ o~ o~
b X is replaced by X , L.e ( x")+ ( x*)
AN SELD O PR 2 8 «Co = .
o~ Yook > o ~' O~
I cubsequent developments we need to have available explicit relaticn-
*
orips between variocus kinematical quantities calculated from the motions X
A
nd ﬂqx - . With the notations
+ ¥
a( x) .
+ % i~ +% + X “ A
R gx (t) 5w = (X7 - X)Xt (3.20)
1 ith definivi lleling (3.13) for R %, U7, ", &', ¢* e
LT, it . . 4 4 Ot
< with definitions paralleling (3.13 or o e aL > g o

‘

JﬁF , it rfollows at cnce from (3.24) that

*vlunrly, (2.24) also follows directly from (3.25), (2.11),, (2.7)1 and (3.9,
inteed these were the very equations which led (through Theorem 371) tu
Ta10.




+ % * +* * +% *
F = F R u = u s = G s
i a~ a~ a~ o~ o~ o~
+x * +% % + % *
Lieyo, gh=c , ET-E (35.27)
+x * +% * 4% *
R = R s e = e s W = W
o~ o~ o~ ar~ o~ O~

We note that in the notation of (3.26)1, oEf* denotes the gradient of the

: +y* + . ot *o+L o
motion (a£ ) ::E(&ﬁ }, while a{ = (QE )’ in keeping with (2.10)l stands for

the gradient of a motion (alf)+ which differs from a&f by a superposed rigid
body motion. The significance of the results (3.27) lies in the fact that
while motions which differ from each other by a rigid motion (and thereby
belong to the same equivalence class),in general have different values for

G, e and w [see (2.12) and (2.13)], but have the same values for

- ¥ *
G, e and w .
~ ~ ~

It is worth making an observation here for the special case of rigid body

+ .
motions. Since for a rigid motion X =(»(ox), it follows from (3.11) and (3.2)

~

that

= = = 3,28
mlx ) = (mowl( ) =1l ) = X (3.26)
so that the entire equivalence class K(Ox) of rigid body motions is mapped into

* ¥* * * * * *
the identity motion oﬁ' Consequently, the values of F , R, C , U, E, G, e

~

and w* in any rigid motion coincide with the values of these fields in the

identity motion X. Thus,using the notations of (3.26) and (3.27), for any

rigid motion:

+% * +x * 1

Qnv O~ ~ On~v O~ ~
+ % * +% *
= CcC =1, U = =1 ,
On O~ ~ O~ O~ ~
(3.29)
+ % ¥ +x% *
E = E =0 Py G = =0 ]
O~ O~ ~ Onv O~ ~
+% * + % *
e = e =0 , w = w =0
Onv O~ ~ Onv O~ ~




To— ”mm-w—-———‘

The results in (3.29), especially the last two of (3.29), should be contrasted
with tihuse in (2.14).
we now proceed to establish two theorems which are, respectively, the
converces of (3.27)6 and (3.27)8.
Theorem 3.2 let X and X €M and o}::m(o&)’ (@=1,2). 1If
lik(i,t+a): 2Ef(§)t), where a is a real constant, then (i) 1% =% and
(ii) X and 2Ediffer by a rigid motion.
Proof. If lg*(g,ua):zg*()i,t), then lg(%,t+a)=25()~(’,t) by (3.14) and

{131} is obtained as a well-known result and then (i) follows by Theorem 3.1.

* , * * .
Tncorem 3.3. Let ,x, X €M and 3 :TL(Q&) (a=1,2). If 18 (i,t+a):2i (§,t),
* *
wiere a is a4 real constant, then (i) 1% =, and (ii) 1% and X differ by a

risid ;motion.

Prouf. Taking a component representation of (3.12)l relative to the basis

3 x.
* * B o i * 20)
N T X, (}i’at Je; ®e, (3.20)

- *
where lt -t +a, 2t =t, it follows from the smoothness properties of the motion

X that
o7
* * ;
= F, 3.31)
aFiA,B o iB,A ? (-3
where { ) A stands for a( )/BXA. These are the compatibility conditions for
SA

srirtenas of the deformation gradient. Now put

"
V(Kt) = Vi, e ®ey = F (X t4e) -

N
~—

22*()£,t) . (3.

[}

- . 3.33)
Via,B ~ Vim,a (3.33

surthermore, decomposition of V intc its symmetric part A and skew-symmetric
’ ~ ~

] part I, namely A:=}(V+VT) and B:-%(V-VT), when referred to the basis [EMQDSN}

~

30.




P

1
= 3 +
ey = 2(8Vin 8y
_ 1 -
By = 2@V giVin) o

e, - e,. Hence, by (3.33) and (3.34),

where giM= PRy

-A = . &
Bn,n Mk, = B,k

* *
By hypothesis, ,e (X,t+a) =8 (X,t) and it follows from (3.13)5, (3.12) and

(3.32) that

z? =~V {2.30)
and hence
A=0 , B=V . (.37,
Moreover, in view of (3.35) and (3-37)1,
=0 .38)
By, ’ (3
so that B is independent of X. Consequently, we may write (3.32) in the form
* * .
B(t) = ;F (X,t+a) - ,F (X,t) (3.37)
where (3.37)2 has been used. FEvaluating (3.39) at the pivot Y, it follows from
(3.13)l and (3.15)2 that
¥* *
E(t) = lE (Y~:t+a) - 22 (!‘,t) ’ (5\-,4“‘ !
so that éT(t)==g(t). But by definition BT(t)==-B(t) and we conclude that
g(t) =0 . (3.41)

31.




“ith the belp of (3.41) and (5.29), integration of (3.3y) yvields

* ”
X Ctea) = Xt vale) («.h2)

~

whers «(t) is some vector-valued function of time. Evaluating (2.42) at the

~

pivet ¥ osnd invoking (3.15)1, we conclude that

“ecnrlling the remerk on parametrization following (2.2), part (i) of the

*

#
UOrollarx j.1. If e =0 in a motion X, then X =X and X is a rigid motion.

The proct Yollews at once by setting 2X==OX and lx=:x in Theorem 3.3.

¥
In anticipation of our later use ¢f e as an infinitesima: strain
(yv

¥
sprroximsting the finite strain tensor E |, we need to make some observations
at\l

fere.  Pirct we recall thet two escential properties of any satisfactory finilte strain
mens e ﬂref: 1) It should give the came value for two motions if and only if
tres. metions differ by a rigid mction (in this sense it can ve used to

shnrscterize 21l motions that belong to the same equivalence clase);and (ii) with

its ure ons chould be able to calculate exactly the change in length of materinl

liase in = given motion.

* ¥
'n view of Theorems 3.2 and 3.3, along with (3.27). ., beth E and o
(),8 o~ o~
4 Al ¥ . . . .
icfy property (i,. Also, the tensor QE satisfiee property (ii), but, in

I~

o

* % R £ * N
deneraly e does net’.  Indeed, we may deduce from L;.lj)? that¥ e = ¥ 4if
‘ X~ 2 o~ o~

Froperty 7117 impiies property (i) but not converrely.

“he clarcicsl infinitesimal strain tensor ol in (2.%)] fTor e it (2.20e¢) |
sotirtice ceither 7§ nor (ii).

N

Tivee wreement Mers parallels that used immediotely fHllowine (2.9),




* *
and only if aX is a rigid motion in which case both o and aE are zero 50

*
that o satisfies property (ii) only for a motion which is rigid.

~

»*
Turning now to the kinetics, we denote by °(p the mass dencity in the
»* * N * *
configuration K , b the body force per unit mass in K , n the outward
(o2 O~ o~ o~
* * *
unit normal to the surface 3 aP 5 at the stress vector on 3 aP and

*
CYT the associated Cauchy stress tensor. Field equations of the form (2.15)
- #
with an asterisk added then hold for the motion aX . Furthermore, recalling

m
that aR‘(Y,t) in (3.2)l plays the role of aQ(t) in (2.7), it follows from

(2.21), (2.22), (2.23), (2.24) ana (2.27) that

* » T » T
= = R t = t
O‘p Olp s C!E' R (Z',t)ag > e mli (Z‘at) ’
* T
T = R (Y,t T R{Y,t
2= B T R
(3.44)
* ¥*
div. T = RT(Y,t) div T ,
o a~ o~ T~ o o~
. % * T .
- b = - b
v . O#R:' (z’t)(@‘ﬂ GN) 5

* . s .
where div is the divergence operator with respect to position in the con-
e

<
figuration K and is defined in a manner paralleling (2.16).
o' d

. . ¥ s +x
Similarly, associated with the motion (ax ) we have the quantitiec A
ad
+ +* .t +% +% +¥ . +¥ .
o *, b, v , n , t , T and the operator div . Then, remembering
o ar~ Q~ o~ a~ a~ a

(3.27)1 and the conservation of mass, it follows that

Also, with the help of (3.&&)2 3,47 (2.24) and (2.11)h, we obtain
220

33.




+x X +¥ *

n - n
Q~ o~
with the use of (3.24), (3.&6)l and the balance of linear momentum, we also

iy e

Lot¥ +x% N
div T = div p s
o -~ o o~
(b
* 4% . % + % *
v = v ’ = Db .
o~ o~ a~ o~

S Properly invariant infinitesimal theory

In the next scection, we construct an infinitesimal theory of motions
Superp:fed on any given motion. This includes, as a speciul cace, an intinite:si-
awrt thaedry of motions, i.e., motions superposed on the identity mction oﬁ'
However, it is instructive at this stage to elaborate oriefly on the infiniteci-
mal theory.

The infinitesimal theory developed here is derived from the finite theory i
Yy

vy ¢ msigering as a measure of smellness (acsocisted with the motion X the

worneative real function

* * x * * . \
e =¢ (t)=sup |3 (Xt )] . {(=.b-)
XZEOR

It i, diwpertznt to note that, in defining a measwure of smallness, we do not o

It 2.2 use the displacement gradient G in the motion X. Instead, we first

* X
canow irte X s m(x; and use the displacement gradient G in our definition

n this way, the came € 1is associzted with overy motion in the
- * s * . » -
cgwiveaionee cluer K{X ) and the motion X is made to represent this entire
~ ~

elooe e tae infinitesimal theory ac well., As in (2.29), we c2n readily

Lt the expressions




(a) E*-L:E*=g(e*) >
() (ED)-L=-a"+0((e")?) = o),
() U -T=e+0((e)?) = 0"
(@) ¢ -L=2"+0((e)%) =0() ,
(=l
() E =e +0((e)?) =0 ,
x -1

) E)T-r=-w +0((e)?) = 0

* * *
as € —0. In particular, we note that e is a linear approximation‘ tc E =E.

* ¥
In view of this and the invariance condition (3.27)8 of e , we refer to e as
"~ ~

*
sn invariant infinitesimal strain tensor. Likewise w 1is an invariant
w invariant

infinitesimal rotation tensor.

Ccneider any smooth curve C in OR that joins Y to a given X. Let C be
parametrized by its arclength S2 0 so chosen that S=0 at Y. The unit tangent

veetor 7(8) at a point ﬁ(S) on C is given by

T(8) =

EJL"I%I

Denoting the value of € at X by L, we may, in view of (3.12), calculate the

* * ~
displacement u (X,t ) of the particle X in the configuration ¥ by means of

the expression

w () = u (v,t) +jLG*(§(S),t*)T(S)ds
O~ ~ ~
= | G R(s),t")xs)as (fevl)

3

“wre aleo the remark tollowing the Corollsry 3.1.




wioer L cw0 0 nay been used. Then by the usual inequalities for integrals

P

Tt Witk L S A

2
e [N

all for all second order tenscrs A and all vectors a,

rset that Ur(8)ll =1, it follows from (3.51) that

" * i . = * . . * .
e ) s e (REE),E G )las s e Lo (5.92,
~ ~ ARl ~ ~
G
ity U oenen f, for every X in OR, a smooth curve joining Y t. X can be
~ ~ ~'
iooet Wwhaeo o lengtl, is finite, it followe from (4.v0) that
* N RN * (o
u (Xyt ) = O J as ¢ —u . S
~ ~ ~
- * . . . N e ’I\
crer ey ir view of (5.12) ., X approximates X to within terms of (e ) uc
o< ~ Onr ~
e = .
Pinally, we note that it follows from {2.12) and (2.13; ihat
* T T - \
G =R (Y,£)6+R°(¥,t) -1 , (3.54;
~ a4 ~ ~ ~ ~ ~
whil-
* T . .\
2e = 2e- {R(Y,t)-I}E (Y,t)-1]}
~ ~ ~ N P~ ~ -~ ~
LT N L N
+{RO(Y,t) - 136+ ({r (Y.t)-13}G) s
IERRE
- T -
2w o= owA R (Y,t - k(Y,t)
~ ~ r~ ~ ~
T . v N - T
+{R(Y,t) - I} - ({r(Y,t)-1]G) .
fa ~ ~ "~ ~ ~ T~
YW now make a comparison between ihe invariant infinitesimal strain messure
: b tte- usnal infinitesimal measure e. Suppose that e in (2.28) ig small ror
*
.l tinee e ment gradtients. Then, G satisties
*
G = 0(e) as ¢=0 ‘o

oview of (2,995 and

6.




« 2
4o G-w(Y,t J+0(e7) = O(e) as e~0 (407

derived from (3.54) with the help of (2.29a,h). It follows from (3.959),

3

toscther with (2.29s,h,, that

* 2
€ -’%+g(e):O(e)as e—~0
(:J/')('
wo=w-w(Y,t )+g(e ) = 0(e) as e =0

* * *
i ince the linearized G ,e and w were obtained by separate linearization
procedures, we observe that (3.57) is consistent with the sum of (3.58)1
A (7088
- 2

7.
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develop here in the cense of gection 3, a properly ivvariant infinitesi-

mal theory of motions superposed on o given motion and then conaider the e

ol an elastic material.

Jeneral results for motions superposed on a given motion

*
[+ is convenient to define the "difference motions" x' and ¥ ' by

-1 ¥ * LI p .
§'~:2£OJAJ )y X r = X o(]£ T (h.1)
ier, by (2.1) and {3.2),
X * % xoE -
Zi - )ﬁd'(li’t) s ei - ),S, /(l£ ,t ) s (L&(
. , A . N * * ¥* . f
wiere we nhave taken 5C = ¢ in (j.2)2 go that 2t =t =t In (4.1, X
r orecente o deformation whose superposition on lX results in 2X. Similarly,
. s * * . *
the cuperposition of X oon g% yields 25
41 application of the chain rule of differentiation to (4.1}, torether
ith “ne use orf (2.2, (3.12)1, (3.1u)l 5 (2.18), (2.19) and (3.‘@;2 leads t
s 4
, X 1 , , )
1% b = F = = !
LT (pot) = JBiF T I =det(E) = ,d/10 >0,
.
e, N o ox ¥, ® -1 X, N
;:1 = * (lx :t ) 25 (]’I; J > J "= df‘t(’}: /) g 2J /lLJ > ! bl
3. X
1~ o
(4.0
P RS, R R(Y, )
~ o SRSV P )
~1. T =1 T
e L™
2~ B / “l\m o ? 2~ h * \-]_\T x
HED) ) ) WOE ") ") 0y
#t, we introduce the difference motion
X e (x)7 (.0
~ 2% 1~

cinted with the motions on thne right-hand cide of (2.7)1. The gradient f

wit recpeet to

+ . L+ . o o )
JBe will be dernoted by F/O. In view of {4, (2. ')1 i




+ 4 +.-1 i n, T
L SRS I A C A (L.

Further, considering the difterence motion

B + %
x e (x)

*.=1
2% D(\lx ) ) (I‘U/J)

o - +. % . + . . R
wtiose gradient with respect to (lx ) is denoted by F ', by (3.245, (h.1)

- 1

snd (h.3?j w-- have

+Xy * g +% *y

-

& relative to _« is

*
Now the displacement field h of the configuraticn o 1%

iven oy
* * L
h = X -.X , h(X,t)=_,x -.x . (L.5)

* * * * *
For = fixed value of t , h (X,t ) can be expressed as a function of (lx ,t )

in the form

-

—
ko]

o+
{

(0 o () (e

* * -1 *
= {2§'<3(l§,) - % o (% by }( x ). (%)

*
2lsc, let a function h at each time t Dbe defined by

* ¥ =]

h = E O(lX ) . (k.17

hen, recalling (h.l)e, from (M.S)z and (4.9), we obtain
¥ ¥ v ox * - * % N ;
pX =% = hlx e ) = (T )Xt ) (%.11)

—_ *
wher- X ie the identity mappim;f.f on the region R . We note that at the

1

srrent pocition of the pivot

‘.‘ . . » . . a .
L owverear is used to distineuish between thic mapping and the identity

motiln X,

s~

39.




X * .
h(ly ,t ) = 0 (h.12)

~

sy (3.15)1. Ry (L.11), (1#.3)3 and (4.10), the relative displacement gradicnt of

fowith respect to lx , namely

on «
,}i - N« (li{, ), (15
91X
*
wnl the gradient of h with respect to X are given by
an
1 .
* * -1 * 4 ~ * * a .
L= F (.7 -1= - = =H = -.F . b1y
2ol ((B) 7= -1, = HGF = P - F (h. 1k
* *
i, the difference E ~ . E of strains, with the help of (3.132) and
2~ 1< 2,3
L.l L, i Of the form
X ¥ | ¥ T T T * Co
oE i = (E A v HHLE (el
. . +% . . . +4 % :
e displacement field h associated with the motions (Qx ) (a=1,2) is
defined in a monner paralleling (4.8). Thus,
¥ +\ % +, ¥ + +. ¥ + ¥ o
s ) - X)L nT) = )T - () (4.10)
Tnen, in view of (3.24) snd (M.S)l,
R o e (%17
+x N . +
it 1. oonvenient for cuwr present purpose to express b x(X,t) as a function h
Cop
+ + . +, %=1
R o X)) ;
(415
A 4 4 +3 —+ +
LT s Ox ) ) = T XD e

+ . . 3
i) hae toen wred and where X denotes the identity mapping on the

Clas

K X \
S U <]x',» { R5t). Inspection of (3.24), (L.17), (h.l&s)l and (L.10)

Loy,




=+ =
sleo in view of (3.24), Xo# Xeo It now fullows from (4.13) and (M.l that

! . . . +
the retative displacement gradient H , nhamely

ah+
+ ~ + A
E B +‘x ((l)’i) 3t) s (h.. )
alyx )
Satisties
+
’}i ~ ’}i . ()4.1,'.11

4.2 Results for an elastic material

. . . . .3

Now corsider the body ® to be composed of an elastic material”. Thuo, 1.t
¢ ve the =lastic struin energy per unit mass in the configuration «.

Y~
+ * . . . )

arthermore, let ae and e denote the strain energy per unit mass in the

. . + * ) . + .
¢ nfisurations « and « , respectively. We assume that ¢ = ¢ and it

Ot~ o~ o a

then follows that ae C S A nonlinearly elastic solid may be characterized

by the constitutive <quation

A TA T
T =% p F{De( E)+D e( E)} F (N.02)
ol = 2Pl (B e(w)}dN , { )

A A
where ¢=¢( E) and the notation De(ag) stands for the derivative of the
o o~
A . . TA A T . .
function e at the point aE’ while D e(aE)::{De(aE)} . We cbserve that in view

, N . + .
of (2.17) (2.11), and (2.21) the value QE of the stress tensor given by

1’ 3
+
(L.22} for the motion aX catisfies (2.24), so that (4.22) is a properly
* »

invariant constitu-ive equation. The Cauchy stress QE in the motion &é LG
the form

* LA * TA ¥ ¥ T

T =L%p F(De( E)+De(E F b.ox

L= ke EToe( B +pe( EDE) (5.22)

and we observe that (3.’46)l is satisfied. To continue the discussion, let 1X b

“n arvitrary known motion of ® and X some general motion. Having constructed
~

¥

¥
L motions lx and X , Wwe employ as our measure of smallness associated with
P~ ~

2
tBy an elastic material we mean a Green elastic material for which a potential
Minction £ is assumed to exist. In this subsection, the symbol € is employel
to pepresent, the elastic strain energy o€ s 8S well as the quantitiec o + oy

* . . s g .
¢ it thia need not be confused with the use of ¢ for a different. purpose in
corl e parts of the paper, C.g., in kys. (2.28) and (2.29), or with the wre or
‘n (Lol and eosewhere in subsection 4,2, "




X amd X the nonnegative real functiou

1~ e
— —_ % X 8
e =e(t )= sup X“Q(li ,tﬂ)ﬂ . (hoob)
s _
X st

¥ 1lowing thie same line of reasoning that led to (3.53), it may te deducod trom
(4.17) and (b4.24) that
* * —_ —_
hi.x ,t ) = 0(e) as e -0 . e

~

. . - . .
ooty with tne use of the polur decomposition of F' 7/, i.e.

3
* X *
{ T :
Ff=rR"U" , i
~ ~ Land

. *
whvere X Y and U Y are proper orthogonal and symmetric pocitive definits tenscro, roopeo-

tively, we obtain estimates for verious kinematical quuntities. Thero rre:
* - d - —Q
(v) 7' -IT=H=0() , (b) (F*')l-L:-Heu(e\ el
W uT oL = A 406 < 0(e) L, (@) (U Ther s rumTiaE s (@
L}
_2 ; T Lo "YV —(?\ -
fe) ‘E‘,xl-i:%(g’ﬂT)"'O(e )=g(€) P (f) (R%‘I) _LZ-L\:-£J‘+L(€ N\Gx .
i * * 1 * T T * -D —_
! - F = % + + = )
(8) oE - E =3(E ) {HAD}E +0(e7) = 0(e)
sg €—0, where (4.15) has been used in deducing (h.2.g).
*
Asgunming sufficient smoothness, we expand De ( ) in a Taylor reries cboat
x _
tre point |k and invoke (4.24) and (L.:7g) to oblain
A % <*, 2 — L
D(?h)z De( )+ De( 1 1 ) {+H l-J+o(e ) as =V, (b
lr,"'\ € /\ . . . .
whers U e( L ) iz the second derivative of ¢ at ]E . kecallin: the definition

o the tronspose of a fourth order tensor, we note the symmetry conditien




NN 2A * 2 A 2 A X ‘
2 Parcp 1) = Do R s (h.2)
. A
which fulluws from the assumed smoothness of e¢. With regard tu the relation-
* *
ship between the mass densitiec 1P and 5P, from (2.15)1, (3.1&)2, (3.&&)1, }

(k3] ), @nd (4.14) it may Le deduced that
-
< % -1 * —_—
LP =P {det(yg)} = 1P {1-tr §+o(32)} as €—~0 . (h.40)

dabstitution of (4.28) and (4.30) into (4.23), with a=2, snd uce of ‘h.1lh,
4

tuesetner with (4.23), with o =1, leads to the approximstion

* T . .
F](F,\’ 3 [

T 4 T H 4 H LT F K[ L

. 1
T o= (-tr )17+ T H ~1~+21°1~~(1§

, |
5 ) (1it”)

where terms of O(EQ) as Z-'O have been omitted. The fourth order tenscr

Yo% . ¥
h = thCDNA®e 8e ®e is defined by
" _ 12 2 A A * 2 A x o
Xanep = {DABCDe( E )’“DABDc‘( E )+DBACD (1B )+ D5 00 (LED) (b 2) :
In view of (4.29) and (4.32), K possesses the symmetries
) |
lé ¥apcp ~ ¥pacp T Yampc T Yepam (bozs) »

We now proceed tc show that the expression (4.31) is unaltered when, in accordunce
with the transformations (2.7), rigid body motions are superposed on &E resulting

+ =t . . .
in the motions &i . First, defining ¥ in a manner analogous to that in which

- —_—

K was defined by (k.32), we observe that X' =X. Using (L4.31), the stress tens.r

+r o, . L
2T in the motion (2x ) is given by:

*hue to the ymmetry cf the term in square brackets in (4.28), it is only the purt {

1 ﬁ « N o 1
D r(De( L )'FDAEDP ( E )) that contributes to the expression. 1

L3.




+ %

. +x +%, + +_+x
2£ (H )T ¥

. +
= (b-tr )T+ T (H 5045

1 % A=t % T, + +.T +% +#,T
+E 0 E KTGET) W s (1)) F IGE )

~

* * ]
C(l-tr H).T 4+ T W an T
~ 1w 1~ ~ ~ Lo

PO * T
+3 0  FR(ED

~ o~

T ¥ * T
(He ),k J(,F )
= T s (}*- ";'4 /i

wiere (4.2C) has been used along with equations (3.46), (3.&&)1 and (3.27)1
with @ - 1. Therefore, by (4.34), the transformation property (3.&6)1 with o- 2
is raticfied whengﬁf is given by (4.31), so that (4.31) is a properly invariant
cxprescion. The significance of (4.3L) is that the relation (4.31) trans-
vrma correctly when arbitrary finite rigid motions are superposed indepen-

lerntly tand possibly simultaneously) on both X and _X.

In crder to derive an expression for the traction vector EEf’ we note wy
L, thet
WEH™ R = 10k m () p +0(E®) s 50 (b
l and hence by (h.})7
S RN SRS A SIS R L (hos

it orhen follows from {3.44) (2.15), (L4.21) and (4.30) that when terms of

N 1,2,3’
_(; sre omitted
* 1 - ( )t
= - tr + 8
Lomal-te et M Y
. +! 1 * vn“ L1 +1 }’..M Ui ,
ABURSR SNV R SR ST U (AT S A SO

4.3 invariant infinitesimal ~lasticity

e results of Yhe mubsection .o cnn e eacily cpeeiad ot t wie by

creneriy invariant infinitesimal theory
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Then, cicvarly
. . * * X ) - :
li - 1& Lo 1& - oﬁ, s lE = £ > lP = OD . (.9

he strece tensor in the motion (X - x is obtained from (Lk.e2) with F= 1,
~ )~ O ~

k voand 1o osdiven vy

o~
: A TA )
LA sl e (e
secumins a stresc-frec rotorenoce conficuration O(, we take
Lo Lol (bl
and herce by {%.hh)u
* R N
11 S (h.h2)

In keeping with (h.35)2 we suppress the subscript 2 in all quantities associated

* * * *
with the motioun 2X==X- Thus X becomes X , 2F becomes F , etc. Then, by
(4.1), (h.38)l and (h.39)2, we have
*
X' =% s %X (heli3)

since X_l:=ox. Furthermore, by (4.3)

ok and (u.39)3,

3

*, *

F'"=F . (b))

~

From (u.8)l, (l+.39)2 and (3.12)2 we obtain

* * * * * ) .
B ()i,t ) = (X - X)(X,t ) = E ()4_?;&‘.

~ O~

“rd we gee from (4.44), (h.lh)l and (3.12)3 that

Ls.




A L]

H=-F -1 - 3 . (i

~

— *
Comgequantly € iu (L.2h) becomes equal tooe of (3.47). In view of (<) oana

SRR . the tensor .}(— defined in (4.32) vecomer K, wher:
“ s ~ ~
1020 N oA 2 A > A
= = 1)+ 4 , () o
Mapep = Wl pepS(0) + Dy pop€ (00 + Dy 8 (1o b, 8000 ) Ve

Thir Ir the vame quontity that appears in equation (1.1). Witn the holp o f

e, \u.;QJs,h, (k.47), (L.46) and (3'13)h’ specializim: (L.31 ) we dedues
trne desired constitutive equation for linearly elastie sulid, which wics
recurnded ewrlier (see Eq. (1.13)). Having been cobtained as a speciinl cufe ot
(4,21, cleurly (1.13) is properly invariant under the transformatiun (2.7)
with o= 2 suppressed. Alternatively, the invariance of (1.13) can be
estatlished at once from (3.27)8. It is then seen that (3.&6)1, with o=2
supvressed, is satisfied when 2* is given by (1.13).

* *
liext we obtain an expression for the traction vector t =_t . First, by

;h.jt'l, (h.39)2’3 and (2.18) we note that

n = n . (L4.45)

It tnen fcllows from (4.36), (4.L46) and (3'13)h that

* * 3
n = .n = (l-#on +e n) n--(G*)T n (Lh.b

2~ ~ Onv ~ Cr

*
whers terms of O(EQ) or equivalently of 0{(e )2) have been omitted. Now it

. « kS
toliows from (L.L2), together with (2.15) in the form Lo L o, that

3 .
lE = 2 . \“‘1.“"')

Wit the nelp of (h.39)3 L2 (h.u6), (3'13)h’ (4.48), (4.90) and recalling thot

1

“o{uzer to K it follows from (4.37) that

¥ » .
E TP i[g ]OE : He ok

Lo,




This expression agrees with that derived from (1.13) and (4.49) when terms of
g(EQ) are omitted.

To complete the infinitesimal theory of motions superposed on a given
motion, it is necessary to insert (4.31) in the equations of motion written
in terms of the quantities appearing on the right-hand side of (3.hh)5’6, and

*
to express all quantities in terms of the variable 1% -

u7.




%. Conseguence of a change of pivot

*
Tt is evident that the moticn X depends on the choice of pivot. 1In
o~
this section,we examine how cur results behave when cne particle Y’ is chesen
fur pivot rather than another Y. We temporarily attach a subscript Y to

*
quantities associated with the motion X 1introduced in (3.2). In a manner

*

*
paralleling (3.2), we define a motion X,,=n,,( X ) associated with the pivot
o~y Y e
7' as follows :
¥* * % T " ’ N B
= = - +Y r.
Xgo = XyXot ) = RO X(X,t) - X(Y,t))+Y" (5.1

= O((Y’) being the position vectsr of the particle Y’ in the refercence

*
configuration K The defcrmation gradient aFY' in the motion (5.1) satisfiss
the relations
* * ]
Fr, = R(Y',t)F= RY F. , (5.2)
Y ~ o~ o~ oY
Wwhere
= T I Ko o F e -
R = R (Y,t) R(Y',t) = R_(Y',t) 5.3)
o~ Q.v('v, )Q""'("',) Q.VY(‘Vy \

*
is the rctation at the particle Y’ in the motion gﬁX’ and where use has been

"
made of (B.lL)l,é. We may, as in (2.13) and (3.12)3, define tensors QEX”
..4‘ N-&- ﬂ& ﬂ* % d *
" 1 H

a0’ @Y gl XY ooy BN Wl

then readily seen that

*
;, associated with the moticn X It is

=Yt

K Yand t.
b v an ot

one ancther by a constant, but in view of our remark (following (3.2)) on

* * *
le could replace t = t, of (3.2). by t_,, with t , differing from
o a ¥ 2 a Y o

* * *
parameterization, we take t_,= t. =1t .

a7 oY

L3,




n *
e« u,, - S, B
ar(v\/’ Y 7 g~y QEY > QE ! oi‘r >
5T L
v T Gy o
"a - X
T LA T ()
* . =l T, =T =T * =T » T
2e., =2 e, -{R-I R°-I}+{ R*-1I} G + R°-1} G
et 2y LRIV (E 13+ (B0 oy (1) 67
* * _JI‘ - _JI\ * _411 **T
2w =2w,+ K- K+{ R-T} G_ - R -I} G .
o~y oY o~ o {aw ~}a~Y ({c»v ~}oe~Y)
L] » *

Aleu, Llet p./s be the mass density in the configuration K,,= X_,,¢ K und 1:,
a Y Y oa~Y o~ o~

®
the Cauchy stress tensor zssociated with the motion XY" Then,
O~

* *
YT o0y
* r d * -_—
T, = Rr(\f’,t) T R(Y',t) = BT 7. R R
a~Y o~ o~ o~ o~ o~y o~
whero (3.uu)l ), and (£.3) have been used.
2
It follows from (3.40h) and (©.3) that
T - *.2 * * .
K" -1 =- w+ =0 s e =0 Gt
LTl Q((GY) ) N(eY) as e, , (9.5)
whHere
- *
w=- w (Y, t L
o~ ozY( ‘o ) (o)
v, in view of (;.M}5,6’7,
P * —_— * 2 *
= 3 - O =
Sy = 3y et olley)7) = 0(ey)
P ¥ *.2 % : :
) = + = fra
LT oy 0((ey)7) = 0ley) (o)
* ¥

- *.D ¥
S s e 0((eg)®) = Oley)

"
i

Tnoacsorderes with (5.3)2, when V' ie chosen as pivet, the infinitesi-

3

*
Ctrain tencor el coincides with e, (corresponding to the pivet Y) Lo
o~ oY -

49.




* * *
within terms of (t‘v) ). Furthermore, it = 0f gY) e
N Y F IR SN
i loow Trom o) and (5o0) that
* * * o *

< -
" = vl (g ) P 30 (‘.‘»\
v ceLY ~,\(t'x" ) Sy ‘ T
Thers-fore, the choice of pivot I immeteria! in the inrfinicocimel theory.
seturning to the more genera: cace of small on larce, associated with
* * /
Lo motions  x. g (o= 1,00 we may inteodnce w dirrerenes motion 4 tn the
o A v 1
*» /
14 o . : v . 7 5 .o 5
e manner oas the difference motion X, Wwas odefines Inod “.1.. Tt ds ther
* / * /
v, ety that =, tihe deformat i pradient, of Ky, satlstion e
Tl Lon
-, 1 ) v = . i N
P o Al i ¢t [ T = BT T (t
R(y/ .t ¢ . w{y",t) = K P R =R_, 1, Sie
Do SRt p i e) e gl s Ry T
viere ol and (.- tave been e wnd where T 7 and U dare proper urthoronsl
5 i v tonuore, respectively. Likewise, considerins
gl et fiebds oo, aad b Pt form (L) preacddents
. ~ ~i
: SLoaet o, wr Ie Ml it relioawe o cnce that
) Lt bl - Cs
) }l.,/ - - ,,\h { )‘}‘. -1 . ( .
~ - D I~ o~
cree L i . Cr dni. The tmonre cf cneliness in (hooh
HEREEE SURR IR P SRS TE SRS SRS SN 1. wWith T cinte a reasure of cpolo-
e Comesne i th Pors
c i S S J s (AR
: oo R T
RS
~i
Wl R KL Wyt It rollewe from th. . Ly and (a2 o0 the

i




e, 1 oudyhence ny (D01 00 and (270,

{
Ry =
P S =2 - ,
ol By fl“)(ey) s ey =Y Hie

LeXt we observe that (3.13)1, (u.lu)l and (4.24) lead to the

relations

v -1 LIN2 xo-]
JUL) gt LR, I+H +H,+H
“NY <2q YLy (R Q f&%ﬁl
R at eTe (F e T
I+ H vk + o (el) a0 e — . !
~ \1~4 ~Y A 1Y ~ X N
e rire ’J'\‘—l U' may be written in the form
1Y 2~ ‘
( « ‘_l * N . — —
JUL) T = T+ S(H +H, + Y} Foo+ o - .
LNY) 2 1 .V. {' k i\ i}1~'1' ~ €-3' € .
+ . . . - . :
where ¥ is a skew-symmetric funct?.n cof J(eY). Tre syumaery o0
L . . ES
)a‘\{ places a further restrictivn on Y, nuamel;

* T.1 T * - -
t = 3 - ' N hnd
1~w(1~ R S, +{Y }1 Ty (15X) (G - ¥R, (Ut lel o ey =

. ;o oA * .
Uoing (9.150) and (5.17), we may express 2UY in the form
~

»*

*. T 1 T * » AR
- R 2 + - ) i oag —_
S0 = (R B ) - ¥ RY un v (55 e G
wirtuernore, in view of (3.13), (h.1k) , (5.16) and (h.27e)
) 1 T‘ —? ¢ -
QB'Y ) {£+:(E _~Y +Y} R +9,( - {R +x}1liY+‘;’,(€y, wCoel T

Sdepting the notation

2 tfunction ¥ mty Le written as a linear function of H\ It is not difticult t.
chow tiat ¥ alweye oxicte i ie unique.

tIn particulsr., it .7 1, .17) implies that v =0.

©1l.



W) = MH (Tt ) - Ha(F,t ) ¥yt =W () = 0(5,) as ey~
GO0 = S ) - LY e =) = 0(E,) a6y
it fullows from (5.17) and (5.3) that

-,
€

as ; -0
Y)

= (LU0 )R o v

Ther, by (5.14) and (k.27e),
* 4

Ryt = LR () U TR+ 0D as &0

Ir vepticnlar, it is clear from (5.20) and (5.22) that

*r= A N SR - - .
Brr @t = 1o B e ) Ee0@®) - 1r0E,) ae Ty

Next, we return to (5.11) and make use of (5.21) to obtain the

following estimates for HY" its symmetric and skew-symmetric parts and fir
~~

>/
w .
B AR

~

=T _ , = -2\ _ -

EY/ = ]}i {}iY Vi(YY HIE}«J'Q'(SY) = Q{SY> s
1y Ty _ L
,‘T(EY/*’; = 218 {H +H~y} R +O(€ ’

' =T T = -2
ey ) = BRSO LR+ o(ey)

* . _*1
= +
By 15,{53{ }R O
c e
!
.x,
1Y ic used es a pivot,then the stress tensor T, is given by (h.41)

2~

‘witi, » cubscript Y attached to all quantities) while if Y’ is used, ”Ty, is

clvern by




Y V\‘l 1‘ rI‘
oLy (L-tr Horhy Ly 1y Byt o

Lt P * T
+ .;lp.{/ 1 v/ h /(( ) HY +”Y )lFYI](lEYI)

whero ii’ is defined similar to that in (4.32). We now proceed to

sinw that (9.25) implies (L4.31). To this end, we first note

trom (4.32) and (5.&)3 that K., = K. and also recall from (5.24) that Hy, ie of

~Y' TRy
2(e,) so that the error term in (5.25) is of O(EQ) Then,with the use of (.0)

\

w2 deduce from (5.25) that

— =T % — =P
oLy = (I-tr Hyu )R R Ty R SR
_II\
* R 15 ﬂy R }i‘{ o
T % =
toR My R Ty R R
—_ * T * * T =T

+
=

1Py o 1Eye ?iY[(lFY (§Y’+5Y’)1§Y'}(1§Y') ok

_J)L — \
+ g(eY) as eY—~O , (Lo20)

where (5.21) has been noted in writing the error term. With the help of (4.24),

.21 and (H.2) it is readily seen that

—2
tr EX' = tr E¥+~Q(GY) s

— =T -2
SRR = LAWYy ')+ 0(ey)
_ ‘ - Lo
2&11,{, 1’11 :,}\{IY_YL(YY/)+9(€Y) s (a0
JE lF:,, = {T+w(yy’ ]F + o ) ) i

»

1 I =
0 = )
(1Fy )" (Hy oty )lPY' ‘1Fy (}{Y*HY 1~Y*L( v

!
|




as EY-oO. Substituting the latter results in the appropriate terms of (9.20¢)

we find that

=T * o x

(1-tr H,) R R° T R = (1-tr BT, +vi(yy ) Ty
R * T f e
25- 1% 1 Hz R =Ty HY 1 YW(YY )+0(e ) (4.2%)

* * T T * * T
¥ * T T, _*
= 1y Bl GEY () m Gy +0G0)

as ¢, ~0. Inserting the results (5.28) in (5.26) we conclude that

P = (L-tr H).T +H, .T.
oxy ~ r B ) Tyt 0Ly

T
* ﬂy iy
L% %= * T H:’E, * * T
+ 3Py 1Fy Kyl (F) (B ), PTG Fy)
- - N
+0(ey) as €,=0 , (5.27)

which was to be shown.
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Appendix A

This appendix provides certain mathematical developments concerning
equivalence relations and equivalence classes (used in sections 2 and 3),
which pertain to the procedure employed in the construction of invariant
infinitesimal theories. 1In particular, we discuss the two relations "differs
2y a rigid motion" and "differs by an infinitesimal rigid motion."

Theorem A.l. The relation ~= "differs by a rigid motion" defined int (2.7) ic
an equivalence relation on M, i.e.,

(a) x~ for every X EM (Reflexivity).

(b) If X,8 €M and X ~§, then g~% (Symmetry).

~

(c) If X,8,8€M and X~3, ¢~8, then X~8 (Transitivity).

(v) If X ~@, then )i()h(‘,t+a)=%(t)g()£,t)+i(t) by (2.7). Hence,
T
8(X,7+b) = P(1)x(X,7) +b(7) with 7=t -b, b=-a, P(7)=Q (t),

b(1)=-q (t)a(t) so that g~x.

~

)
(¢c) If X~¢ and ¢~9, then )i()i,tﬁa)=g(t)g(£,t)+a(t),

~

s

+
Q(X,t) =£(t-b)g(X,t-b) +E(t-b) with Q,P€6 the set of proper

orthogonal tensors and a,b constants. Hence, x()’g,'r+c) =S~(-r) (X,7) +E,(T)

)

with 1=t-b, c=bsa, 5(1)=Qq(t)B(r) €6’, e(r)=q(t)b(r) +a(t), so that
X~

The set K()ﬁ(}) = {gem | 2"'25} is called the equivalence class of X in the

equivalence relation ~ and any member of it is called a representative of K()L)-

We recall the standard results$

*we supprestc the index o in this appendix.
+

Il

“ee, for example, van der Waerden (1970, p. 10).




l
T
;
!

(i) K(y:x(g) if and only if X~8
(ii) U K(X)=mh
X €m ~

(ii1) K(x) # K(8) implies K(x) N K(8) = ¢ .

Thus 21l the motions in M which are equivalent to one another (i.e., differ
from one another by a rigid motion) and are regarded as being mechanically
indistinguishable, belong to the same equivalence class. Clearly, an equiva-

lence clasc is determined by any one of its members: if instead of X, W2 bezin

witih the motion @ and place all the members of |n that are equivalent to § in the game

2lass we arrive at a class K(g) which is identical to K(E). Furthermore, the

squivalence classes cover M,and distinct equivalence classes are disjoint.

We may therefore partition W into disjoint subsets, each of which contains all

thoce motions, and those only, which differ from one another by a rigid motiomn.
As was pointed out in section 2, since the Lagrangian finite strain tensor

E remains unaltered under superposed rigid body motions, it may be used

to characterize the equivalence classes of M. Adopting the convenient

notation E(%,t; 5) for the Lagrangian strain at % and t in the motion &ﬁ we

record the following

Theorem A2. For any §,X €M, @~X if and only if E(X,t+a 3 2) = E(X,t s X) for

~

some constant a. The necessity part of the proof follows immediately from (2.l)

2
snd (2.7), while (as remarked in the proof of Theorem 3.2) the sufficiency pert
is well known.

In view of Theorem A2, and the result (i) notéd aﬁove, we may state
Theorem AJ. For any X,Q €M, K(’)s) = K(g) if and only if E(g,t 3 ’i) e E(i,t‘m :g)
"

9 has the same

~

for some constant a. In fact, we may now say that the relatiocn
Lagrangisn finite strain as X" is an equivalence relation on M which genecrates
the same partition ss the equivalence relation ~.

Next, recalling the definition of E in (2.4), we observe at once
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Theorem Ab.  The Lavrangian finite strain tensor has a value zero for the
A

identity motion, i.e., E(X,t; X)=
~ ~ U

RO

We may ure Theorems A2 aund A4 to show that the value Ezzg characterizes
the equivalence class of rigid motions:
Iheorem AS. X €M is « rigid motion if and only if E({,t; §)=:2 (for all
(X,t)).

trooi: 1f X is rigid then X~ X and hence by Theorems A2 and Ay m(X,t 54 .

~ ~

Conversely, if E(i,t; £)=:g, then E(Eﬁt ;§)==E(£,t ;O}) by Theorem Al urd hence
vy Theorem A2, &"o& so that &lis rigid.

We have employed the formula (2.&)2 in the proofs of Theorems A2 and Ab.
Alternatively, we could characterize the notion of strain in a rather general
way by assuming that our strain measure satisfies Theorem A2f. The strain
associated with the class of rigid motions would then be some constant (tensor),
not necessarily zero. The tensors C and U in (2.4) satisfy theorems paralleling
Theorems A2 and A4 with both these tensors having a value £ for the class of rigid

motions. From the foregoing theorems and remarks, it is evident that an

] essential feature of the notion of strain is that it characterizes un entire

class of motions rather than simply a motion. In particular, the Lagrangian
strain tensor E defined in (2.1+)2 characterizes equivalence classes consicting
of motions that differ from one another by a rigid moticn and which are regarded
as being mechanically equivalent.

Turning next to the infinitesimal strain tensor e= S<£’t; E) in the motion
X, which is defined by (2.8)1, and the relation "differs by an infinitesimal

rigid motion" we establish the following three results of interest:

*Uf course, it would not be possible without other assumptions to relate such a
concept of strain to the change in length of material line elements. While
this may appear strange, we remark that in the theory of elastic-plastic
materials a tensor Ep’ called plastic strain appears, which only by introduciu.-
an addition assumption can be related to the (permanent) change in length of
line elements.




”" : . ar T . . . . .
aiffers by ar infinitesimul rigl: motio.n," o 10

m

Theorem Av. The relation
“n cquivalence relation on M.

;;;;g. While the relation saticfies the reflexivity property, it tuiic ¢
cnticfy both the symmetry and transitivity propertics of an cquivalence relo-
tion. To elaborate, let 8 €M differ from ﬁéfm by an infinitecimal ricid motio.
Then, (2.20) hold and }J(')\(’,t) = {£+H(t)}_l(6(z(,'r)-d(t)). Ir y were Lo differ

from 6 vy an infinitesimal rigid motion, then it would be poscible tc wxXproess

coovq-l .
f1+Wit}} = ac the sum of I and a skew-symmetric tensor ard it wculd then fo!low

o
that tr({LA(4)}T-1) = 0. However, tr({I#i(t)} D) = er({Iai(1))h) -3 22
e - - - 1+w
RITC
Lei ()l where W(t) =uyple) Bep - e B ) ruysle Beg- 559 )
1 2 2 2 _1 2
. "95“32853'53831) and w° = ‘”12+‘°13+“’23"2“‘i(t)“ . Therefore

fr({1#(t)}"1-I) =0 implies W(t)=0. Since 8 can be chosen with W(t)#£O0, it
follows that the symmetry property does not hold. That the transitivity
oroperty does not hold may be shown by observing that for any two skew-

c:mnetric tensors El and Ee, tr{(zjgi)(zjye)-zj==tr{§iw2} = ~a *G s where o

nd w, are the axial vectors of y& and Ee, respectively. Cince wl and Ee can

~.

: chose . 1 - -8 = i : at the
be chosen so that w w, 1is non-zero {e.g., E& Ye’ég] it follows that the

product (I+wl)(I+%e) cannot always be expressed as the sum of I and a ckew-
vymmetric tensor.

it is clear from the definition (2.30) that if A differs from X by

“n infinitesimal rigid motion, then the displacement gradient H = -1 of 8 |

Zhe

with recpect to position x=X(X,t) in the motion X is skew-symmetric and the i
P~ N ~
e s . L1 HT .
wicclsted infinitesimal strain $(H+H ) is zero.
~

wefore proceeding further, we recall that in the finite theory, one is

soncerned with & set of motions which differs from a given motion X by rigid

retivnc.  In contrast, in the infinitesimal theory cne is concerned with a cet




of motions which differ from 5 by infinitesimal rigid motions. It is natural
tu ask to what extent these twu sets overlap, the answer to which is contained
in

Theorem A7. if a motion g&m differs from }vem by a rigid motion and if it
alsu differs from X by an infinitesimal rigid motion, then 2 must differ from
ﬁ only by translation.

Proof. Let g differ from X by a rigid motion and separately consider § dif-

fering from X by an infinitesimal rigid motion. Then, from (2.7) and (2.30),
we have Q(t-a)=I+W(t-b) for some proper orthogonal Q, skew-symmetric W and
real constants a,b. Taking the determinant of both sides of the latter equ:-

tion, and recalling that det{Q(t-a)}=1, det{zﬂfn’v(t-b)] =1+ %HW(t-b)H2, yields

fW(t-b)l| =0 and hence W(t-b) =0, %(t—a) =1I. Consequently, e()’s,t+a) =)£()£,t) +i(t),

i.c., 8 differs from X only by translation.
By setting x==ox in Theorem A7, it follows at once that the only motions
which are both rigid and infinitesimal rigid are the translations, i.e.,

G(X,t+a) =

X X(X,t) +

1

(t). 1In view of Theorem A7, the equivalence c¢lass K(E)

and the set of motions that differ from X by an infinitesimsl rigid motion have
a non-empty intersection comprising those motions which differ from motions in
K(&) by a translation, but neither of the two is a subset of the other. In
particular, the set K(O§) of rigid motions and the set of infinitesimal rigid
motions intersect in the set of translations, but neither of the two sets
contains the other.

As noted in (2.32), the infinitesimal strain tensor e vanishes in an
infinitesimal rigid motion: the converse is well known and may be proved by a
simpler version of the argument used in the proof of Theorem 3.3. It was shown
tollowing (2.9) that E(i,t; £)=:g(£,t; &) if and only if X is a translation.

More generally, we can prove the following

i iy




\ 0 o

Theorem A©.  Suppose E,EEEm and vag. Then, the following three statemuntc are

qulvident: 1) E(X,tre sx) - e(X,t59)s (2) 8(X,t) = x(X,t)+alt),

~

ASETAARE i‘.‘*t\"u}.";’” + E(t); (3) E(Z{.’t“‘ IX) :S(X,t ; 8) =0, where Q is proper
rrocoaonal, oa,b oare vectors and o 1s a real constant.
“roet. Inwhat follews, it will be shown that (1) implies (2), (2 impli-c {

(2. sud (3) implies (1). Hy Theorem A2, X ~@ implies E(X,t++ X ) - E(X,t : §)

’

36
, T. "~ (., .
(X,0) - I} {x (,t) - I}, where a formula cf the type (2. o
~ 38

vensured., 1€ E(X,t+a 1 X) =e(X,t ; 8), then == (X,t) - 1Y%= " and hence
49 = ~ At~ ~ ‘3§ ~ ~
—353 ‘n,tt e 1. Consequently B(X,t) =OX(X,t) +a(t) and X(X,t+s) (. X ¥,n 0

ctelishing {2). Statement (3) then follows at once. likewico, Jtotement

trivislly from (3).

(g
v
r
#
)

A1 immediate corollary of Theorem A8 is that the orly ri.id n.ti.nc 1r

wil v« O oare the translations. (This was shown by a differecnt met:ad

o~ ~

Ca \

£l wine 2.4,
“te rigrificance of Theorem £ is that the infinitesimel cirain oan v oo,
rortregt to the finite strain tensor E, cannot be used t¢ choract.rize i
=quivalence classeg K(E) of M. The usual method of constructing infivitecim:
shecrder, which invelves the use of e as a gtrain measurs, destroyo the vpecls

coructare eongisting of the partition of W into disjeoint sels of

¢l

metions that

1 fter from one ansther by a rigid motion. If the infinitecimnl theorice r-

o ceo invariant under artvitrary cuperposed rigid Lody motions, thi

6
™
jeo]
o
o
s
i

ctricture must ve preserved. The method introduced in section 2 dcer prcorve
tLir chraeture,

T the ~ontext of this appendix, our construction of an invariant

trtiniterimel tneory may be viewed as fcllows: By means of the mappiie 7 of T

~

*
vt vy o o particular member X is singled out to represent the -utire clicse

.

14 in the {nfinitesimal thecry. The invariant infinitesimal ctruin

e X,t UX! in the motion ¥ is defined to be the usual infiniterimezl strain




i s S o

* *
tensor evaluated for the motion X , i.e., e (X,t;X)=e(X,t;m(x)). Ey
Theorem 3.2, this construction preserves the structure induced by m by the

equivalence relation "differs by a rigid motion" and hence the infinitesimal

*
strain measure e may be used to characterize the equivalence classes K(x)

in M. In particular, the entire class of rigid motions is characterized by

13
e =0.
~ ~
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