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An Introduction to the Finite Element Method

The finite element method views a structure as an assemblage of
structural elements interconnected at a finite number of node points.
Consider the plane elasticity problem in Figure 1.

Figure 1

We wish to determine both the deformation and stress fields for the region
loaded and constrained as shown.

The essence of the finite element method is as follows:

(1) subdivide the continuum into a number of small simple
u elements, as shown in Figure 1

(2) assume a form of the displacement function for each element
type (e. g., linear, quadratic, etc. )

(3) derive the stiffness relationship for each element (i. e., find

Ke in Keu= f)

(4) assemble the element stiffness matrices Ke into the global
stiffness matrix K (this is easy since stiffness can be added
algebraically)

(5) solve global matrix equation Ku = F for the displacement
vector u (i. e., the components of u are the displacements
at the grid points)

(6) knowing the displacements everywhere, compute stresses.
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The above will be illustrated by a simple example. We wish to derive
a triangular membrane element which is suitable for plane elasticity
problems (such as in Figure 1).

Consider the element and coordinate system shown in Figure 2.

0 (X3J'"JI)

0

Figure 2

The vertices of the triangle, called grid points or nodes, can displace
in either the x- or y-direction. Thus, the element shown has a total
of six degrees of freedom (two per node).

We assume displacement functions of the form

u = a 1 + a2 x + a3 y

v =a 4  a5 x + a6 y ()

where u and v are the displacement components in the x and y
directions, respectively. Define the vectors a and u by

a1  u

a v
a . u = (2)

a6 v

u3

v 3

where ui and v. are the u and v components at point i
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Writing equation (1) at each node yields

u = y a (3)

where
1 0 0 0 0 0

o 0 0 1 0 0

1 x 2 0 0 0 0(4

o 0 0 1 x 2 0
1 x 3  y3  0 0 0

LO 0 0 1 X 3  y3

The inverse of y exists and is given by

x2 y 13  0 0 0 0 0

-y3  0 y 3  0 0 0

-1 1 X 3 -X2  0 -X 3  0 x 2  0(5)
2Y3 0 x 2 y3  0 0 0 0

O -Y3  0 y3  0 0

O x3-x 0 -x 3  0 x2

The strain components of interest will be grouped into a strain
vector C

( yy v/ y (6)

Y xy ~U/ay + va

For this example, a J
I = a 6  (7)

a3+ al5
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Relating the strain vector c to the vectur a defines B:

= Ba (8)

where, in this example,

[ 0 0 0 0

B 0 0 0 0 0 0 (9

-0 0 1 0 10o

Thus,

c= Ba = Ba u (10)

Corresponding to the strain vector is the stress vector

Crxx
a a ( y(11)

- yy
axy

For linear, elastic materials, the stress and strain vectors are related
by Hooke's Law:

a = Dc (12)

where D is a matrix of material constants. For example, for plane

stress i-otropy D is given by

D - v 1 (13)-- 1,-v2 0 0 (1-v)12_

where E and v are the Young's modulus and Poisson's ratio for the
material.

Thus, from Equations (10) and (12),

a DBa u (14)
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I
To summarize, Equation (14) gives a formula for the stress components
for an element given the displacements u of the node points. The
matrices D , B, and a depend only on material properties and geometry.

The final step for the element is to compute the element stiffness
matrix k. The general result will be

T BT
k = B DBadV (15)

V

where the integration is performed over the volume of the element.

To derive (15), let P be the vector of forces at the nodes. Applying
an arbitrary virtual displacement 6u at the nodes, (10) yields

6c = Ba 6u (16)

By the principle of virtual work, the work done by P at the nodes must
balance the internal dissipation of energy; thus,

uT T
6 P 6c a dV (17)

V

Substituting (16) and (14) into (17) yields

6 uT P : 6 uT  T BTu P= 6ua DBcrudV

V (18)
T T BT

buT ( a D B o dV) u

V

For (18) to hold for an arbitrary variation of displacement 6u
.TBT

P = ( T D B a dV)u (19)

By definition, the parenthetical expression in (19) represents the stiffness
matrix for the element; hence, (15) is proved.

For the triangular membrane element, all matrices in the integrand
of (15) are constant, so that k becomes

k- x 2 Y3 t(a B DB a ) (20)
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where t is the membrane thickness. This matrix is shown on page 3-7.

Note that equations (8), (10), (12), (14), and (15) are general, so
that they apply to other finite elements as well as to the triangular
membrane.

For a problem with many elements, the stiffness matrix k for each
element can be computed and assembled into a global stiffness matrix
K for the entire structure. Then, one must solve the system

Ku = F (21)

where u is now the vector of nodal displacements for the entire structure,
and F is the vector of loads applied at the nodes. Equation (21) is
basic to the finite element method.

It is apparent that (21) is merely a generalization of the familiar
expression for a one-dimensional spring:

kx = f (22)

Thus, it is not too surprising that, for time-dependent problems, the
analogy still holds and one obtains the matrix equation

M'ud+ Bdi+ Ku = F(t) (23)

Here, M and B are mass and damping matrices, respectively, and the
dots over u indicate differentiation with respect to the independent
variable t (time).

In essence, the approach outlined above approximates the displacement
solution by a set of piecewise polynomials. It can thus be shown to be a
variant of the Rayleigh-Ritz method.
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DEMONSTRATION PROBLEMS

See "NASTRAN Sample Problem Computer Output" by G.C. Everstine and
M.M. Hurwitz (DTNSRDC/CMLD-81-04) for problem solutions.

1. Cantilever Beam with Point Load

r -x

5 lb
5/8" diameter steel beam

For steel, E = 30xIO
6 psi, v 0.3, p 7.324xlO-41.b-sec2 /in

4

Find displacements, stresses, and reactions.

IA. Arch Under Static Pressure
A@ __..p = 1 si

0 iplane of sym.

60"11

91 y 2x I

plane of sym. SECT. A-A

Material: Steel
Subcase 1: Pressure Load
Subcase 2: Gravity Load
Subcase 3: Solve a ring-stiffened cylinder problem by changing

B.C. at e = ± 40° to planes of symmetry.

lB. Rin)-Stiffened Cylinder with Pressure Load

(Modeled using conical shell elements)

Find displacements for same cylinder as in problem IA, Subcase 3.
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1C. Symmetry Example

At Point 7,

Y 3 x Sym. B.C.: ux = uy = uz = 0
y x" x y z

Anti-Sym.: Rx = Y = z = 0

~F 1000.lO

Find displacements by modeling only one-half of structure.

ID. Linear Steady-State Heat Conduction

For the arch structure of problem IA, find the steady-state
temperature distribution due to a uniform applied heat flux at a = - 404 of
0.0025 BTU/sec-in 2 , with the edges at Z = 0 and Z = 96 imeqed in an ice
bath (320 F). The thermal conductivity of steel is 7.175xI0"- BTU/sec-in-OF.

1E. 2-D Poisson Equation (Torsion of Triangular Prism)

Compute the maximum shear stress in

a twisted bar whose cross-section is -- 2G6

an equilateral triangle of altitude 0

a = 0.09 m. The bar has a shear

modulus G = 80 GPa and is subjected X

to an angle of twist per unit length

0 - 0.04 rad/m. (The exact solution

for the maximum shear stress is Gea/2.) a

2. Static Analysis with Inertia Relief

1 (0,0.L)- ~ x F 1000., E 10 v = 03

(-l'-l) (1,-1) m2=m5=250., m,=500., A=l.

F

1 -y
3. Natural Frequencies and Modes

Find natural frequencies and mode shapes for beam of problem 1.

(INV, GIV, FEER, and eigenvalue APPEND)
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4. Differential Stiffness

60" k = 2 lb/in
F = 25 lb

k M = 25 lb-in

same beam as in prob. #1

Find transverse deflection.

5. Buckling

For the beam of problem 4, at what value of F and M (assuming F
and M are numerically equal) will buckling occur?

6. Piecewise Linear Analysis

Find the displacements and stresses for the following frame:

y

-~x

2/ \ nonlinear material prop.

linear material prop.
5

F = 1 00000 lb

7. Complex Eigenvalue Analysis (Direct Method)

Find the damped natural frequencies for the beam of problem 1
with a dashpot (c = 0.25 lb-sec/in) connected in the y-direction
between point 13 (at x = 60) and ground.

8. Frequency Response (Direct Method)

AA

7511 _F(t) = 0 Cos A

F0 = 1 lb , w = 2rf

Find steady-state displacement response at f = 3 Hz and 7 liz for
beam of problem 1.
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9. Transient Response (Direct Method)

Find time-dependent response for beam of problem #8 with F(t)
given below:

,F(t), lb

2--

5 10 15 20 t, msec

Problem 9A restarts from t=lOO to illustrate TRD CONTINUE.

10. Complex Eigenvalues (Modal Method)

Same as problem #7, except use modal approach.

,1.& H1A. Frequency Response (Modal Method)

Same as problem #8, except use modal approach. (INV and GIV)

12. Transient Response (Modal Metnod)

Same as problem #9, except use modal approach.

13. Normal Modes with Differential Stiffness

For the beam of problem #1, find the flexural natural frequencies
for the beam spinning about the y axis at 1.5 Hz.
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WORKSHOP PROBLEMS

y Stiffened Cantilever Plate

-T
1 6 2

0 30" A= - 0.4"

material: steel (E = 30xlO6 psi, v = 0.3, p = 7.324x10 -4 lb-sec 2/in4)

This structure will be used for all types of analysis.

Suggested F.E. mesh: 6x4 mesh of plate elements covering the 30"x]2"
region with beam stiffeners
(Note existence of plane of symmetry.)

1. Static Stress Analysis. Determine stresses and displacements for
a. uniform unit pressure load on plate in -z direction
b. gravity load in -z direction
c. sum of (a) and (b)

la. Plotting.
a. Plot undeformed structure.
b. Plot static deformation for pressure load of problem #1.
c. Make matrix topology plot of constrained stiffness matrix (KLL)

for problem --l.

lb. DMAP. For problem #1, starting with the constrained stiffness matrix
(KLE- and load vectors (PL), write a DMAP ALTER to R.F. 1 to:
a. compute displacement vectors (to be called UTEST)
b. compute the residual (RESID = PL - KLL x UTEST)
c. compute error ratio

ERRI RESID . UTEST
PL UTEST
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d. print UTEST, RESID, and ERRI and check with NASTRAN's values.
e. do problem Ic both before and after grid point resequencing

to reduce matrix wavefront.

2. Inertia Relief. The plate is free-free (for this problem only) rather
than cantilevered. Determine stresses resulting from a 100 lb. normal
point force at the center of plate.

3. Normal Modes. Find the lowest 3 natural frequencies and modes.

4. Differential Stiffness. The load is a uniform downward (-z) pressure of
2 psi plus a 20,000 lb uniform line load at the free end in the
-x direction. Determine the displacements.

5. Buckling. Find the factor by which the load of problem #4 should be
scaled to induce buckling.

6. Piecewise Linear Analysis. Determine the stresses and displacements for
a uniform downward 10 psi pressure load on the plate. Assume that steel
has the symmetric stress-strain relation:

G
107

30000
psi

.001 E

7. Complex Eigenvalues. Add uniform viscous dampers in the z-direction
which are attached between the plate and ground along y=3 and y=9. The
total damping along each line is 2.4 lb-sec/in. Find the damped
frequencies and modes.

8. Frequency Response. Compute frequency response at the free end to
sinusoidal load at the free end of each stiffener: F = 10 cos 21ft,
where f = 30, 32, 34, ... , 44. z

8a. Random Response. Determine the power spectral density (PSO) function
and rms value of the z-displacement at the center of the free end
(x=30, y=6) for the input normal force FSD (relative to the loading of
problem #8) at the free end of each stiffener given on the following
page.
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PSD , lb2-sec

100

50

10 20 30 40 50 60
f,hertz

8b. Plotting. Make XY printer plots vs. frequency of the responses
computed in problems #8 and 8a.

9. Transient Response. Determine the first 75 nsec of response at the
free end due to the following normal load at the end of eacn
stiffener:

force, lb (Try At = 1 msec

10 50 60
10 20 30 i/t, msec

-100

9a. Plotting. Make XY plot (both on paper and on plotter) for transient
z-displacement response at center of free end.
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TIME AND CORE ESTIMATION

The general approach to estimating NASTRAN CPU run times is to

identify those functional modules which will be most time-consuming,

estimate the CPU time for those modules, and then assume that the total

CPU run time equals about 140% of the sum of the estimated times.

Every rigid format generally requires stiffness matrix and mass matrix

generation and at least one matrix decomposition. The methods for computing

these times will be given first. Other details for each rigid format will

then be given.

Core requirements are usually thought of as the core required to have

a "no spill" condition for decomposition. These requirements will be

discussed in the Matrix Decomposition section.

Matrix Generation

The functional modules for stiffness and mass matrix generation are

SMAI and SMA2 for Level 15 (and below) and EMG for Level 16 and above. The

CPU times,for various machines, for the generation of one element stiffness

matrix, for various elements, are given in Table 7-1 for NASTRAN Levels 15,

16, and 17. The time required to compute an element lumped mass matrix is

negligible, while the time to compute an element consistent mass matrix is

approximetely the same as the time required for the element stiffness matrix.

Matrix Decomposition

The time required to decompose a real, synrmetric matrix with no spill is

T = -M(nb (b3 )  Level 15 and below) (7-1)

12
T = 1 MnC2ms (Level 16 and above) (7-2)

where

T = CPU time

n = order of the matrix

b = matrix semi-bandwidth

C = matrix rms wavefrontrms
M = machine time constant (see Table 7-3)
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Table 7-1.

ELEMENT MATRIX GENERATION TIMES FOR NASTRAN

No. of CDC 6400
Element Gauss Pts. Time (S c) ' Remarks

BAR 0.27
BEAM 0.22 MSC/NASTRAN
CONEAX 0.43 per harmonic
HEXAl 2.0
HEXA2 4.0
HEXA (8 nodes) 0.80 MSC/NASTRAN
HEXA (20 nodes) 5.60 MSC/NASTRAN
HEX20 6.40 MSC/NASTRAPN
IHEXI 2 1.0

3 2.5
4 5.5
2 0.2 heat conduction

IHEX2 2 5.0
3 12.5
3 4.0 single precision (DTNSRDC)
4 27.5

IHEX3 3 31.0
4 68.0

1S2D8 3 2.2 single precision (DTNSRDC)
IS3D8 2 2.4 Sperry/NASTRAN
1S3D20 2 13.4 Sperry/NASTRAN

3 39.2 Sperry/NASTRAN
PENTA (6 nodes) 0.33 MSC/NASTRAN
PENTA (15 nodes) 1.80 MSC/NASTRAN
QDMEM 0.60
QUAD i, QUAD2 2.02
QUAD4 0.30 MSC/NASTRAN
ROD 0.06
SHEAR 0.30
TETRA 0.40
TRAPAX 2.20
TRAPRG 1.05
TRIAAX 0.55

TRIAI,TRIA2 1.52
TRIA3 0.14 MSC/NASTRAN
TRIARG 0.63
TRIAX6 1.05 MSC/NASTRAN
TRIM6 0.28
TRMEM 0.15
TUBE 0.06
WEDGE 1.20

*See Table 7-2 for conversion factors for other computers.
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Table 7-2.

CONVERSION FACTORS FOR OTHER COMPUTERS

To Convert the CDC 6400
Times in Table 7-1 to ,ultiply by

CDC 6500 and Cyber 73 1.0

CDC 6600 and Cyber 74 0.33

CDC 7600 and Cyber 76 0.05

Cyber 172 0.65

173, 174 0.45

175 0.12

176 0.05

IBM 360/50 2.0

65 0.60

75

85 0.18

91, 95 0.15

370/155 0.75

158

165 0.18

168

195

Univac 1108 0.33

7-3



TABLE 7-3

Timing Parameters

(real arithmetic, sec)

I P
M U S

CDC 6400 15 140 12

6600 5 70 5

7600 0.6 2

UNIVAC 1108 14 50 10

IBM 360/b5 20 125 50

75 12 75 30

85 2 40 10

91 0.4 50 2

95 0.32 25 2
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The timing equations (7-1) and (7-2) are just the expected dominant

terms of the full timing equations, which may be found in the Theoretical

Manual. For Equation (7-1), the number of active columns outside

the band (in the Level 15 sense) is assumed to be small, as would normally

be the case if a bandwidth resequencing program is used.

The core required to perform a real, symmetric decomposition with no

spill is

N = b(b+5)p + PROG (Level 15 and below) (7-3)

N = C2

2max p + PROG (Level 16 and above) (7-4)

where

N = the number of decimal words required

b = matrix semi-bandwidth

p = 1 for CDC, 2 for IBM and UNIVAC

PROG (given in decimal words) = 20000 for CDC, 30000 for IBM,
25000 for UNIVAC

Cmax = matrix maximum wavefront

The first term on the right-hand sides of Equations (7-3) and (7-4) may be

termed the working storage W.

The Level 15 formula, Equation (7-3), assumes a small number of active

columns.

The bandwidth, b, and wavefront terms, Crms and Cmax ' required in

equations (7-1) through (7-4) may be computed, using BANDIT, as follows:

Multiply the required term (b, Cmax' or C rms) obtained from BANDIT by

6 - IMPC + SPC + PS)
G

where

SPC = number of degrees of freedom SPC'd

MPC = number of dependent degrees of freedom MPC'd
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PS = number of degrees of freedom constrained on GRID cards

G = number of grid points in the problem

(This formula represents the average number of free degrees of freedom per

grid point.) If a significant number of degrees of freedom are OMIT'd,

then it may be assumed that b=n, C =n, and C =n//3-. (n=matrix order)max rms

For real, unsymmetric decomposition with no spill, for both Levels 15

and 16, the time and working storage required are each p times the amount

required for real, symmetric decomposition on Level 15, where p=4 for CDC,

2 for IBM and UNIVAC.

For Level 16 complex, symmetric decomposition with no spill, the time

is 4 times as long as Level 16 real, symmetric decomposition, and the

working storage must be twice that required for Level 16 real, symmetric.

For Level 15 complex decomposition, both symmetric and unsymmetric,

and for Level 16 complex, unsymmetric decomposition, the time is 16-20 times

longer than Level 15 real, symmetric decomposition. The working storage

required is p times the amount required for Level 15 real, symmetric

decomposition, where p=8 for CDC,4 for IBM and UNIVAC.

Forward-Backward Substitution (FBS)

Forward-backward substitution (FBS) is the second (and final) step

required in the solution of a set of simultaneous linear equations. (Matrix

decomposition is the first step.) Normally, FBS times are relatively small.

However, it is not uncommon for FBS times to be significant. The time

required for FBS is:

rn2bnrM + [I 2nbI (Level 15) (7-5)

2nCavg (rM + [ Ps) (Level 16) (7-6)

where

r = number of right-hand side vectors

C vg = average wavefront (determined from BANDIT)

W = working storage

Once again, the terms in Equations (7-5) and (7-6) are the dominant ones in

the full timing equations. Brackets mean "next larger integer".
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Matrix Multiply and Add (HPYAD)

A B = D (7-7)
mn np nip

T = mnpA (p H + [np+ mp ] p ) (Level 16) (7-8)W s

where PA is the density of the A matrix and the timing constants are
given in Table 7-3.

Multipoint Constraints (MPC)

In raultipoint constraint elimination, three multiply-add (MPYAO)
operations are performed. If we use the notation of Equation (7-7),
then the matrix orders of the three multiplications are:

1. m = d, n = d, p = i, p = density of stiffness matrix (BANDIT)

2. m = i, n = d, p = i, p = density of stiffness matrix (BANDIT)

3. m = i, n = d, p = i, p = density of multipoint constraint
transformation riatrix

where:

d = number of MPC equations
i = (total number of degrees of freedom in the problem) - d

The density of the transformation matrix may be estimated as the ratio of the
number of degrees-of-freedoi in MPC equations to the total number of degrees-
of-freedom in the problem.

Guyan Reduction

OMIT partitioning and Guyan Reduction may be time-consuming processes.
One real, symmetric matrix decomposition is required, tile order of the
matrix being the number of degrees of freedom in the o-set, i.e., degrees
of freedom omitted. Also, there will be as many FBS's as there are degrees
of freedom in the a-set, i.e., degrees of freedom not NIPC'd, SPC'd, or
ONIT'd.

For some of the more commonly used rigid foriats, additional ti-ding

details and core requirements are as follows:
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Rigid Format 1

In static analysis, usually, the only ,iajor time-consufring operations
are stiffness matrix generation, real symmetric decomposition, anu
TFlultipOint constraints.

Rigid Format 3

Time for one eigenvalue (Functional Module READ) by INV = one decomposition

+ 8 FBS

Time for Givens method = An3M, where

A = factor of 5-10 depending on the number of eigenvectors requested,

5 for none, 10 for all

n = matrix order

M = multiply times as previously given

The core required for Givens method is computed as though the matrix were

full, i.e., bandwidth = maximum wavefront = n.

Rigid Formats 4 and 5

The differential stiffness matrix time is approximately the same as

the linear stiffness matrix time.

Rigid Format 8

Time for one requested frequency (Functional Module FRRD) is approxi-

mately the time for a matrix decomposition. In Level 15, the decomposition

is always complex, unsymmetric. In Level 16, the decomposition depends on the

matrix, and, therefore, may be real or complex, symmetric or unsymmetric.

The inclusion of DMIG cards will automatically trigger an unsymmetric

decomposition.

Rigid Format 9

Time for transient integration (Functional Module TRD) = one

decomposition per time step change + two FBS per time step (with r=l

in Equations (7-5) and (7-6))

Inclusion of DMIG cards will automatically trigger an unsymmetric

decomposition.
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Rigid Formats 11 and 12

The dominant time in these rigid formats will come from the eigenvalue

analysis required to compute the requested mode shapes, not from the frequency

response or transient response analyses. Therefore, the time will be

approximately the same as in Rigid Format 3.

If the user adds the times for stiffness and mass matrix computation to
the times given for these rigid formats, and increases the total time by about

40%, the result should be close to the total NASTRAN CPU time.
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BASIC PLOTTING

Types

1. structural -

undeformed or deformed
orthographic, perspective, or stereoscopic projection

2. X-Y

3. topological displays of matrices
4. contour

Structural Plotting (Theory)

The model is defined in the basic coordinate system (XYZ).
The plotter coordinate system is denoted RST. The XYZ system
(fixed with respect to the structure) is oriented with respect
to the RST system (fixed with respect to the plotter) in two
steps:

1. overlay XYZ on RST in some order

2. rotate XYZ w.r.t. RST by the angles y, 6, a (in
that order), which are the angles of rotation about the T, S, and
R axes, respectively.

For orthographic plots, NASTRAN then plots the projection in
the ST-plane. For perspective plot:, NASTRAN also needs to know
the location of a vantage point and of a projection plane (plotter
surface). Stereoscopic plots consist of two perspective images,
each with a slightly different vantage point, which are viewed
simultaneously using a stereo viewer.

Deformed plots also require the user to specify the scaling

to be applied to the deformation.

Structural Plotting (Practice)

1. All NASTRAN plots are written on a file called PLTl or
PLT2 (usually PLT2). Therefore, using system control cards, user
must request computer operator to mount a plot tape of that name.
At some installations, plot files can be written to disk.

2. Insert plot control cards into the case control deck
immediately before the Begin Bulk card. (See next section.)

3. If necessary, request that the plot tape be processed
(i.e., plotted) by the plotter.
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Piot Control Cards (Structural Plots)

1. Example 1: undeformed plot

PLOTID z JOHN DOE, NSRDC 1844
OUTPUT(PLOT)
PLOTTER SC MODEL 4020
SET I 4, 8, 10 THRU 27, 41
ORTHOGRAPHIC PROJECTION
AXES Z, X, Y
VIEW -40., 30., 0.
FIND SCALE, ORIGIN 1, SET 1
PLOT SET 1

2. Example 2: deformed plot

Insert the following before FIND card:

MAXIMUM DEFORMATION 3.

Replace PLOT card with

PLOT STATIC DEFORMATION, SET 1

Plot Control Cards (XY Plotting)

1. Example 1:

PLOTID = JOHN DOE, NSRDC 1844

OUTPUT(XYPLOT)
PLOTTER = SC 4020
parameter cards (optional)

XYPLOT DISP RESPONSE 2,5/16 (Tl)
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STRUCTURE PLOTTER

S

y

x

SR SR

(a) Initial Position (b) y =300

Y VY

S R

R

V y S

x R x s

(c) v 30, e 300 (d) = y = 300, 300, 300
(Plotter hill Plot on the S-I Pidre)

Figure 2. Plotter - model orientation.

13.1-7 (NASTRAN Theoretical Manual)
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Perspective Projection
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NASTRAN Plotting at DTNSRDC

The CAI.COMP plotter, model 936, is used to process NASTRAN plots

at DTNSRDC. Since this model is not supported directly by NASTRAN, the

"plotter" specified by the user is NASTI'Lf, the general purpose plotter

package. The plotting output written by NASURAN on tile PLI2 is then

interpreted by a post-processor called PLTTRN936, which was written by

J.M. McKee. The output from PLTTRN936 is written on a tape (assigned by

the user) and processed by the CALCOP 936.

Thus, the PLOTTER card in the plot request packet of the NASTRAN

Case Control Deck is

PLOTTER NASTPLT, MODEL T, 0

The additions to the CDC system control cards are as f-,1lows:

1. Prior to the NASTRAN execution card, insert

REQUEST,PLT2, *PF.

2. After the NASTRAN execution card, insert

CATALOG,PLT2,...

REWIND,PLT2.

ATTACH,PLTTRN,PLTTRN936,ID=CANY ,MR=l.

UNLOAD,TAPE3.

REQUEST,TAPE3,HI,S,RING,VSN=XXXXXX.

PLTTRN.

3. The MT parameter on the job card must be increased, if

necessary, by unity.

In order for PLT2 to be written on disk rather than on tape, PLT2

should be listed after the FILES parameter of the NASTRAN card, which

precedes the ID card. Thus, for example,

NASTRAN CONFIG=6,FILES=(NPTP,OPTP,PLT2)

A plot request (form 10462/26) must be submitted to ADP Control tor

each tape.
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NASTRAN ELEMENTS

Elements are defined on connection cards (e.g., CBAR, CROD),

which list the grid points to which the elements are connected

and refer to property cards (e.g., PBAR, PROD), which define

qeometrical properties (e.g., A, I, J, t, etc.) and in turn

refer to material property cards (e.g., MAT1) , which define

material properties (e.g., E, G, v, p).

The elements contained in level 17 are summarized and

categorized in Table 9-1 (p. 9-8) and described (by category) as follows:

One-dimensional elements

CBAR (beam)

based on simple beam theory

assumes uniform properties over the length

assumes shear center coincides with elastic axis

includes extension, torsion, bending in two planes, shear

ends may be offset from defining grid points

any 5 of b forces at each end may be set equal to zero

using pin flags

6 DOF/point

CROD (rod)

special case of beam with only axial and torsional

properties

no offsetsor pin flags

2 DOF/point (ux , Rx

CONROD (rod)

same as ROD except properties are included on connection

card

CTUBE (tube)

a rod of circular cross-section, either solid or hollow

CVISC (viscous rod)

extensional and torsional viscous damping properties rather

than stiffness properties
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y

rwo-dimensional elements 3

CTRMEM (triangular membrane)

constant strain triangle (CST) -

2 DOF/point (ux , u y) 1 2

CQDMEM (quadrilateral membrane)

two pairs of overlapping TRMEM's

CQDMEM1 (quadrilateral membrane)

linear isoparametric quadrilateral membrane element

2 DOF/point (ux , u
y

inefficient since a 4x4 Gauss quadrature is performed

instead of 2x2

most accurate of the quadrilateral membranes in >ASTR

CQDMEM2 (quadrilateral membrane)

four non-overlapping TRMEM's

2 DOF/point (ux , u
x y

more accurate than QDMEM

CTRBSC (basic bending triangle)

3 DOF/point (u_ , R x, ry)
z y

normal displacement u varies as (incomplete) cubic inz
x and y

used as building block for other elements rather than

as stand-alone

CTRPLT (triangular bending plate)

three non-overlapping basic bending

triangles joined at centroid (the

Clough bending triangle)

3 DOF/point (uz , R x , R )z x y

CQDPLT (quadrilateral bending plate)

two pairs of overlapping basic bending triangles

3 DOF/point (uz , R x , R )

9y
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CTRIAi (membrane and bending triangle)

superposition of TRMEM and TRPLT

5 DOF/zoint (u , u , u , R , R
x Y z x y

i = 1: nonhomogeneous panel (e.g., sandwich or honeycor

construction

i = 2: homoqeneous panel

CQUADi (membrane and bending quadrilateral)

superposition of QDMEM and )DPLT

5 DOF/point (ux, u y, u , R x , Ry

i = 1,2: same as for TRIAi

CTRIM6 (triangular membrane)

linear strain triangle (LST)

six nodes (three corner, three mid-side)

thickness can vary bilinearly in x and y

2 DOF/point (ux , uy)

most accurate of the NASTRAN membranes

CTRPLT1 (triangular bending plate)

six nodes (three corner, three mid-side)

3 DOF/point (uz, Rx, Ry)

normal displacement u z varies as (incomplete) quintic

in x and y

thickness can vary bilinearly in x and y

CTRSHL (triangular shallow shell)

a combination of TRIM6 and TRPLT1

shell surface (which need not be flat) is approximated

quadratically in x and y

5 DOF/point (ux, uy, UZ, Rx, Ry

CSHEAR (quadrilateral shear panel)

resists the action of tangential forces applied to its

edges but not the action of normal forces

usually used in combination with rods or beams

1 DOF/point (in-plane along diagonal)

9-3
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CTWIST (quadrilateral twist panel)

bending analog of shear panel

equivalent for bending action to a pair of parallel

shear panels

L DOF/point (moment having axi.s perpendicular to dia J'iai

and in-plane)

Three-dimensional elements

CTETRA (tetrahedron)

constant strain tetrahedron

3-D analog of TRMEM (CST)

4 vertices, 4 triangular faces

3 DOF/point (Ux, U y, u z

CHEXAi (hexahedron)

8 vertices, 6 quadrilateral faces

superposition of 5 non-overlapping TETRA

elements (HEXAl) or 10 overlapping

TETRA elements (HEXA2)

3 DOF/point (ux, uyf uz

CWEDGE (wedge)

6 vcrtice6, 3 quadrilateral faces and

2 triangular faces

superposition of 3 TETRA's

3 DOF/point (u, uyI uz )

CIHEXi (isoparametric hexahedron)

8 vertices, 6 faces

linear (i=l) , quadratic (i=2) , or cubic

(i=3) shape functions

8 (i-l), 20 (i=2), or 32 (i=3) nodes

isotropic materials only

3 DOF/point (Ux, Uy, u
x z
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Axisymmetric Elements

CCONEAX (conical shell)

for axisymmetric thin shells

includes membrane, bending, and transverse

shear effects

loads may be non-axisymmetric since

motions are expanded in Fourier

series in aximuthal coordinate r

5 DOF/point (normal rotation is excluded)

CTORDRG (doubly curved toroidal ring)

for axisymmetric thin shells z

axisymmetric loads only

includes membrane and flexural behavior

membrane displacement function is complete

cubic

flexural displacement function is complete

quintic

5 DOF/point (ue is excluded)

CTRIARG (triangular ring) z

solid of revolution element for thick-

walled axisymmetric structures

loads must be axisymmetric

linear displacement function
Jr

2 DOF/poi..t (ur, uz)

CTRIAAX (triangular ring)

generalization of TRIARG which allows non-axisymmetric

deformation by expanding motions in Fourier series

in aximuthal coordinate

3 DOF/point (ur, u, uz) z

CTRAPRG (trapezoidal ring)

similar to TRIARG except trapezoidal shape r
9- r
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CTRAPAX (trapezoidal ring)

similar to TRIAAX exce-pt trapezoidal shape

Miscellaneous Structural Elements

CONMi (concentrated mass)

allows input of a 6x6 symmetric mass matrix at a

grid point

CDUMi (dummy element)

an element for which the user has written his own

FORTRAN subroutines and incorporated them into NASTR N

Scalar Elements (connect DOF's rather than grid points)

CELASi (scalar spring)

CMASSi (scalar mass)

CDAMPi (scalar damper)

Rigid Elements

CRIGDl (rigid element)

all 6 DOF of dependent grid points are coupled to all

6 DOF of the reference grid point

CRIGD2 (rigid element)

selectcd DOF of dependent grid points are coupled LO

all 6 DOF of the reference grid point

CRIGD3 (general rigid element)

selected DOF of dependent grid points are coupled to

6 selected DOF of one or more reference grid points

CRIGDR (rigid rod)

a rod which is rigid in extension/compression

Non-structural Elements

CAXIFi (axisymmetric fluid element)

CFLUIDi (axisymmetric fluid element)

CSLOTi (acoustic cavity slot element)

CHBDY (heat transfer boundary element)
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Miscellaneous

CNGRNT (identical elements indicator)

designates secondary elements identical to a primary

element to avoid regeneration of the stiffness 
and

mass matrices
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TABLE 9-1 -Element Summary

1- D 2-D 3-D AXI-SYM.

CBAR CTRMEM CTETRA CCONEAX

CROD CQDMEM CHEXAi CTORDRG

C-ONROD CQDMEM1 CWEDGE CTRIARG

CTUBE CQDMEM2 CIHEXi CTRIAAX

CVISC CTRBSC CTRAPRG

CT RPLT CTRAPAX

CQDPLT

CTRIAi

SCALAR CQUADi RIGID NON-STRUCT.

CELASi CTRIM6 CRIGDi CAXIFi

IMAkSSi CTRPLTl CRIGDR CFLUIDi

CDAMPi CTRSHL CS LOT i

CSHEAR CHBDY

CTWIST

MISC. STRUCT. misc.

CONMi C NG RNT

CDEJMi
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THE APPLICATION OF STRUCTURAL SYMMETRY
IN FINITE ELEMENT ANALYSIS

Summary. A brief review is presented of the fundamental concepts involved
in the systematic application of structural symmetry in finite element
analysis.

BACKGROUND

Since structural analysts are frequently called upon to analyze

structures possessing symmetry, it is essential that the fundamental

concepts of symmetry be sufficiently well understood that symmetry can be

exploited systematically and with confidence [1,2]. The motivation for

wanting to exploit symmetry is clear: when symmetry is present, the

engineer need model only a portion of the structure, thereby saving both

his time and the computer's time, with the former probably being the more

valuable. For example, a structure possessing one plane of symmetry can

be analyzed by modeling only one-half of the structure, whether the loads

are symmetric or not. Even with nonsymmetric loads, in which case the

half-structure would have to be analyzed twice, the analyst still benefits,

since a half-structure generally costs much less than half as much to

analyze as the complete structure would.

SOME MOTIVATING EXAMPLES

Consider first the following two-dimensional example of a simply-

supported beam

2

IM

Figure I
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The symwnetry present here is probably obvious, so that the analyst who

wanted to model only one-half of the beam's span would determine (probably

by inspection) that the symmetry boundary conditions to impose at mid-span

are

u 0, R3 = 0 (1)

(for the 2-D problem) where uI and R3 are components of the general 3-D

displacement and rotation vectors

u= u i + u2 j + U3 k
(2)

R = 1 i + R2 1 + R3 k

(It is assumed here that grid points possess six degrees of freedom (DOF).

Generalization to situations with more DOF per node presents no problem.)

Only slightly less obvious than the situation in Figure 1 is the

following 2
S3 1

Figure 2

in which the load is now antisymmnetric. In this case, the antisynmetry

boundary condition to be applied at mid-span is

u2 = 0 (3)

a condition which many analysts would probably arrive at by inspection.

Consider now the following two-dimensional beam structure

2

Figure 3
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Like the preceding two examples, this problem can also be solved by

modeling only half the structure and applying the appropriate synmnetry

boundary conditions. However, unliKe the preceding two examples, the

reliance on intuition alone in the application of symmetry would probably

fail. Thus, what is needed is a systematic procedure to follow with regard

to symmetry. The following sections summarize such a procedure.

TYPES OF SYMMETRY

In structural mechanics, the most commonly encountered types of

symmetry are planes of symmetry, axes of symmetry, and centers of

symmetry. Each type of symmetry is characterized by some symmetry

operation (reflection, rotation, etc.) which can transform the Structure

into an equivalent configuration [2]. The symmetry operation which

characterizes a plane of symmetry is reflection in a plane, as, for example,

in Figure 1. An axis of synmetry, exemplified by the structure in

Figure 4,

Figure 4

is characterized by a rotation ahnut an axis. In this case, a rotation

of 120' would transform the structure and its loads to an equivalent

configuration.

The third type of symmetry, the center of symmetry, has as its

symmetry operation an inversion through a center (e.g., Figure 5). In

Figure 5, the center is labeled 0.

We observe that the above specifications of the symmetry operations

characterizing a particular structure's symmetry are not necessarily

unique. For example, we could also characterize the symmetry of

Figure 5 as a sequence of two reflections, one in the 2-3 plane followed

by one in the 1-3 plane, or vice versa. Figure 5 also serves as an

3
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2

Figure 5

example of a structure with an axis of symmetry (with a rotation angle of

180).
In general, the plane of symmetry can be viewed as the fundamental

type of symmetry, since it can be shown that all symmetry transformations
of finite figures in 3-D reduce to successive reflections in not more

than three planes (which might not even be symmetry planes) [3].

The identification of the symmetry possessed by some structure

requires not only geometrical symmetry but also symmetry with respect to

material properties. For example, if the beam in Figure 1 were made of

steel on the left half and aluminum on the right, there would be no

symmetry to exploit. In general, many other properties may also play a

role In deciding the presence of symmetry for some problems (e.g., thermal

radiation problems might require symmetry with regard to color).

Finally, although loads have been included in some of the examples

above, the application of symmetry, as will be seen, does not depend on

the loads' being symmetric. Thus, in determining the symmetry possessed

by some structure, only the structure (in the absence of loads) need be

considered. In this case, the identification of the symmetry possessed

by a structure is generally merely a matter of inspection.

LOADS

Once the symmetry properties of a structure are identified, the

loads can be addressed. The question of whether or not a given system of

loads is symmetric or not depends on the structure to which it is applied.

Specifically, a system of loads, when applied to a structure possessing

certain symmetry, is defined as spnetric if it is brought into an

4



equivalent configuration by the synmetry operations of the structure.

The system of loads is defined as antisyroetric if the symmetry operations

plus a negation of signs of all loads brings them into an equivalent

configuration. For example, the loads of Figures 1, 4, and 5 are symmetric,

the load system in Figure 2 is antisymmetric; the load system in Figure 3

is nonsymmetric (i.e., neither symmetric nor antisymnmetric).

In general, any nonsymmetric system of loads can always be

uniquely decomposed into the sum of a symmetric and an antisymmetric system

of loads (e.g., Figure 6).

S A4 !M 1 2 3 S 13
MM + im1 I 2 ,

Figure 6

In Figure 6, the symmetric part of the load F and the antisymmetric part5
F are given by
a

Fs  F + F2)

(4)
Fa 2 (F1 - F2

where points 1 and 2 are image points of each other.

THE GUIDING PRINCIPLE

The principle upon which all applications of symmetry are based is

that "equivalent causes produce equivalent effects," or more generally,

"the effect is at least as symmetric as the cause" [1,4,5]. In the

context of structural mechanics, the practical effect of this principle

is that symmetric loads produce symmetric effects (displacements, stresses,

etc.), and antisymmetric loads produce antisymmetric effects. In any

case, the structure must be symmetric in order for the principle to apply.
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BOUNDARY CONDITIONS

When only a portion of a synnmetric structure is modeled, the basic

principle provides the tool to derive systematically the symmetry (or

antisymetry) boundary conditions.

Emphasis here will be restricted to planes of symmetry since the

symmetry plane has already been identified as the fundamental type of

symmetry.

Consider, for example, the beam of Figures I and 2. We wish to

derive the symmetry and antisymmetry boundary conditions to be applied

at the mid-span (point M) if only half of the beam's span were modeled.

This is done by (1) considering in turn each displacement component at that

point, (2) applying the synmetry (or antisynnmetry) operations characterizing

the structure to that component (assumed to be nonzero), and (3) observing

whether or not that component may in fact be nonzero and not violate

symmetry. The symmetry operation for the beam of Figure 1 is merely a

reflection into the 2-3 plane containing point M. The antisymmetry

operations consist of the same reflection followed by a negation of sign.

For example, for the beam of Figure 1, assome uI >O at M. The reflection

results in an image of u, having opposite orientation. The additional

negation of sian (foi antisymmetry) yields a result coinciding with the

original configuration. Therefore, uI must vanish at M in order not to

violate symmetry, but u1 may be nonzero for nonsymmetric motion.

Similarly, we find that u2 and u3 vanish at M for antisymmetry and may be

nonzero for synretry.

The rotational degrees of freedom require slightly different rules.

Consider the following problem which is clearly symmetric. The axial

vector representation of the synmetric bending moments in Figure 7 shows

that the reflection of an axial vector into a plane requires an additional

Figure 7
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negation of sign compared to how ordinary vectors reflect.

Returning now to the beam of Figure 1, the application of the

symmetry operation (reflection) to the rotational components RI, R2 ' R3

indicates that, for symmetry, R2 and R3 must vanish in order not to

violate synmetry, and R1 = 0 for antisymmetry. To summarize, the boundary

conditions to impose at mid-span (point M) in Figure l are

u1 = R2 = R3 = 0 for symmetry

RI = u2 = u3 = 0 for antisyrwetry

Since the choice of coordinate directions in Figures 1 and 2 is

arbitrary, the generalization of the results in eqs. (5) is the following:

points lying in a plane of symmetry can suffer no translation out of the

plane and no rotation about in-plane lines. The antisymmetry boundary

conditions are that the complementary degrees of freedom are constrained.

The complementary nature of the symmetric and antisymmetric boundary

conditions is a general result which follows from the observation that the

only distinction between antisynetry and symmetry is an additional

negation in the symmetry operations.

NONSYMMETRIC LOADS

As illustrated in Figure 6, any general loading system can always

be uniquely decomposed into the sum of symmetric and antisynetric

systems. For the structure of Figure 6, for example, the analyst would

model the left half, say, and solve the problem in two steps: (1) the

symmetric part of the load is applied along with symmetric boundary

conditions at M, and (2) the antisymmetric part of the load is applied

along with antisyietric boundary conditions imposed at M. Thus, we have

Figure 8, where the symmetric (S) and antisymmetric (A) boundary

42 3

IMI

Figure 8
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conditions are given in eq. (5).

Observe that addir the two solutions in Figure 8 yields the

solution of the original problem only for the left side of the structure.

To obtain the solution for the riht side (when only the left side is

modeled), the two solutions can be sjbtracted:

4 3

0 G D Gis A-I I a

Figure 9

Taking the difference of the S and A solutions has the practical effect

of reversing the role played by the left and right sides. Thus, even

though only the left side is modeled, the entire solution can be obtained.

MULTIPLE PLANES OF SYMMETRY

Consider the rectangular region below possessing the two

symmetry planes indicated:

4 4 t2
I3

Figure 10

This problem can be decomposed into four parts, as follows:

t 1 . tl1 1 1 1 1 i

Figure 11

8



Here, the upper right quadrant, say, is modeled, and the four combinations

of symmetry and antisymmetry boundary conditions (S-S, S-A, A-S, A-A) are

imposed on the points lying in the two planes of symmetry. The four

solutions can be combined in various ways to yield the solutions in all

four quadrants.

FREE, UNDAMPED VIBRATIONS

The foregoing discussion has been devoted exclusively to statics

problems. Free, undamped vibration prublems (eigenvalue problems) can

also exploit symmetry. The calculation of all natural frequencies and

mode shapes would require one eigenvalue run for each unique combination

of symmetry/antisymmetry boundary conditions. For example, the region of

Figure 10, which has two orthogonal planes of sywvetry, could be solved by

modeling only one quadrant and applying, in turn, each of the four

combinations of boundary conditions.

It is interesting to observe here that the total number of degrees

of freedom (DOF) involved in the four component problems of Figure 10

exactly equal the original number of DOF contained in the complete problem

[5]. This follows as a direct consequence of the symmetry and antisymmetry

boundary corditions' involving complementary sets of DOF. Thus, we have
"conservation of DOF.' If this were nor so, we would have the disturbing

situation in which the mere applicdtion o symmetry results in the

creation or destruction ot DOF. The purpose of applying symmetry is, of

course, to solve (with less effort) the same problem rather than a

different problem.

TIME-DEPENDENT PROBLEMS

All of the preceding results for statics problems also apply to

transient (time-dependent) situations, except that the entire history of

time-dependent loads must be decomposed into symmetric and antisymmetric

parts. This is illustrated in the context of underwater shock response in

reference 7.
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FINITE ELEMENTS IN SYMMETRY PLANES

Special consideration is necescary to treat the situation in which

elements lie entirely in a plane of symmetry (i.e., the grid points which

define the element lie entirely in the plane). For example, in the

stiffened plate shown below,

y

z - - - - -

Figure 12

the beam stiffener (modeled with beam elements) lies entirely in the xz-

plane, which is a plane of structural symmetry. Although the symmetry

boundary conditions are unaffected by this situation, care must be

exercised in computing the geometrical properties of a beam element lying

in the symmetry plane. In particular, the properties for each "half-

element" should be specified so that the "half-element" receives one-half

the total stiffness rather than one-half the cross-section. For example,

properties such as area A, cross-sectional moments of inertia Il, 12 and

I2, and torsional constant J would first be computed for the full cross-

section before entering one-half of those values. (Note that J and one of

I1 or 12 do not depend linearly on individual cross-sectional dimensions).

To prove the validity of the above approach, we need only treat

each half of the symmetric structure as a "super element" involving many

grid points. Then, if the two sides were to be recombined using the usual

rules of matrix assembly, the resulting stiffness matrix would have to be

the correct stiffness matrix for the entire structure. Thus, when an

element is cut in half by a symmetry plane, each side receives one-half

of the total stiffness.

10
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A RETURN TO FIGURE 3

The third motivating example used earlier (Figure 3) is now seen

as a routine application of symmetry. Let us characterize the symmetry of

the structure as the sequence of two reflections, one in the 1-3 plane

containing the center 0 and one in the 2-3 plane containing thE center.

By considering in turn each of, say, six DOF at the center point, we find

that the displacement vector at point 0 must satisfy

u I = u2 = R1 = R2 = 0 for symmetry

(6)
u3 = R3 = 0 for antisymmetry

Thus the problem can be decomposed as follows:_
__T\ S: - A

Figure 13

where the S and A boundary conditions are given in eqs. (6).
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GRID POINT SEQUENCING C014SIDERATIONS
IN FINITE ELEMENT ANALYSIS

Summary. A brief review of the definitions of matrix bandwidth, profile,
and wavefront, and their implications in finite element analysis, is
presented.

BACKGROUND

Many problems of scientific and engineering interest reduce to the

numerical problem of having to solve a large set of linear algebraic

equations such as (in matrix form)

Ax = b (1)

where the vector b and the square matrix A are known, and the unknown

vector x is sought. In finite element and other applications, A is also

sparsely populated (i.e., it contains far more zeros than nonzeros),

since the procedure under which finite element matrices are assembled

dictates that the off-diagonal matrix terms coupling any two degrees of

freedom to each other are zero unless those degrees of freedom are

common to the same finite element. It also follows that the locations

of the nonzero matrix elements of the matrix A depend solely on the

ordering of the unknowns. Thus, it is possible with sparse matrices to

choose an ordering which results in the nonzeros' being located in such a

way as to be convenient for subsequent matrix operations such as equation

solving or eigenvalue extraction. Many such algorithms have been

expressly written to operate very efficiently on matrices possessing small

bandwidth, profile, or wavefront. This is accomplished by avoiding

arithmetic operations on matrix elements known to be zero. As a result,

the execution time for a "band solver", for example, would be O(NB ) for

large N and B,where N is the matrix order and B the bandwidth. For a

given structural model, N is fixed, but B depends on the ordering of the

unknowns (grid points). Clearly, in this case, it is desirable to reduce

B as much as possible.
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DEFINITIONS

Although the definitions to be given here are reasonably stdndard

(at least in finite element circles), uniformity of definitions and

notation among the various workers in the field does not yet exist.

Given a symmetric square matrix A of order N, we define a "row

bandwidth" bi for row i to be the number of columns from the first nonzero

in the row to the diagonal, inclusive. Numerically, bi exceeds by unity

the difference between i and the column index of the first nonzero entry of

row i of A. Then the matrix bandwidth B and profile P are defined as

B max bi (2)

N
P 7 b. (3)

i=l 1

Let ci denote the number of active columns in row i. By definition,

a column j is active in row i if i i and there is a nonzero entry in

that column in any row with index k i. The matrix wavefront W is then

defined as

max ciiSN 1(4)

Sometimes ci is referred to as the row wavefront for row i. Since the

matrix A is symmetric,

N N
P = z b. = z c. (5)

i=l 1 i=l

The wavefront W is sometimes called the maximum wavefront W toma x

distinguish it from the average wavefront Wavg and root-mean-square

wavefront W rms defined as

rms N
2 c. -avg N i~l 1 (6

Wrms k il c; (7)
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As a consequence of the above definitions, it follows that, for a given

matri x,
W W W B N (8)
avg rms max

The first two inequalities would be equalities only for uninteresting

special cases such as diagonal matrices.

We define the degree d of node i to be the number of other nodes

to which it is connected; i.e., to be more precise, d. is the number of

nonzero off-diagonal terms in row i of the matrix A. (This implies, for

example, that diagonally opposite nodes in a quadrilateral element are
"connected" to each other.) Hence, the maximum nodal degree M is

max (9)
M=iN di

The number of unique edges E is defined to be the number of nonzero off-

diagonal terms above the diagonal. Hence, for a synnmetric matrix,

I N
E d d. (10)

Thus the total number of norizeros in A is 2E+N, and the density c of the

matrix A is

2E+ N
N 
2

Note that, in the above definitions, the diagonal entries of the

matrix A are included in bi and ci (and hence in B, P, Wma x , Wavg, and

W rms). Therefore, these definitions differ from those of some authors,

but conform to those, for example, in the NASTRAN literature. Except for

the rms wavefront Wrm s , it is easy to convert the various parameters from

one convention (including the diagonal) to the other (not including the

diagonal).

Also note that, in this context, the order N of the matrix A is

sometimes taken to be the same as the number of nodes. In general finite

element usage, however, each node (grid point) has several degrees of

freedom (DOF), not just one. For structures having, say, six DOF per

node, the actual DOF values of B, Wmax ' W avg, or Wrms would be (in the

absence of constraints) six times their corresponding grid point values.
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Example

The above definitions (2)-(7) can be illustrated by the following

simple example. In Figure I is shown a matrix of order six. In each row

and column a line is drawn from the first nonzero to the diagonal. Thus

bi is the number of columns traversed by the solid line in row i.
bi ci  c
1 X 3 9

1 X X 5 25

3 t- 4 16
3 3 9
4 X- 2 4

6 X- ---- 1 1

= 18 =18 Z=64

Figure 1 - Example illustrating definitions of matrix

bandwidth, profile, and wavefront.

Similarly, the number of active columns ci in row i is the number of

vertical lines in row i to the right of and including the diagonal.

Thus, from the above definitions, B=6, Wmax=5, P=18, W avg=3.0, and W rms=3.3.

THE RELATIONSHIP TO STRUCTURES

Consider the one-dimensional six DOF system of six scalar springs

shown below. 2 3
-- -4 5 6

Figure 2

For each spring, the element stiffness matrix is

k [1~ (12)

where k is the spring stiffness. For the nodal numbering indicated in

4
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Figure 2, the 6x6 system stiffness matrix looks like

"× X

X X X

K :X X X (13)
X X X x

X x

X X

where an X indicates the location of a nonzero entry. From equation (13)

and the definition (2), the matrix bandwidth B is 4. Observe that the

bandwidth can also be obtained directly from the structure (Figure 2) by

adding unity to the maximum numerical difference between connected node

numbers (node 1 is connected to node 4). The same result is also

obtained for the following numbering:
27 31v V

15 F

Figure 3

This is because, from the point of view of the matrix connectivity, there

is no difference between the structures in Figures 2 and 3, since the

ordering of the unknowns is the same. Some structural programs (e.g.,

NASTRAN) allow the user to specify grid point numbers as in Figure 3,

rather than consecutively from 1 to N. However, in order to compute the

matrix bandwidth directly from this structure (by looking at the maximum

numerical difference between connected node numbers), Figure 3 would

first have to be simplified to Figure 2.

To illustrate the difference that sequencing makes, consider instead

the following numbering

2 3

.. 6 5
4C

Figure 4

5
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Here the bandwidth is 6, so that the ordering of Figure 2 is to be

preferred over that of Figure 4. However, a still better sequence (i.e.,

one with a smaller bandwidth) is

65

4

Figure 5

where B=3.

The same concepts can also be applied to two- and three-dimensional

structures. For example, consider the plate below modeled with a 2x4

array of quadrilateral elements.

11 12 13 14 15

6 7 8 -9 10

1 2 3 4 5

Figure 6

Here the grid point bdndwidth is 7 (recall that all nodes in a given

element are "connected" to all other nodes in the same element). A better

sequence (i.e., one with a smaller bandwidth) would number first across

the "short" direction ("short" in the sense of number of nodes rather than

actual distance):

3 6 9 12 15

I 114 B5
5 8 11

1 4 7 10 13

Figure 7

With this sequence the grid point bandwidth is now 5.

In general, the plates of Figures 6 or 7 have more than one DOF per

node. Thus, although it suffices to consider only grid point bandwidth

6
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wher picking an ordering, the actual DOF bandwidth which the equation

solver encounters would be much larger. For example, structures having

6 DOF/node and a grid point bandwidth of B would have a DOF bandwidth of

6B.

Although the above discussion was written from the point of view of

matrix bandwidth, similar comments could be made instead from the point

of view of matrix profile or wavefront. For eample, NASTRAN's level 16

contains a decomposition routine which operates fastest on those matrices

having smallest rms wavefront.

AUTOMATIC RESEQUENCERS

Although the preceding sections define the various terms and show

how one might compute the bandwidth, profile, or wavefront for a given

matrix, such calculations would clearly be very tedious for all but the

smallest structures. Even more difficult, in general, is the job of

resequencing the nodal labels to reduce the parameter of interest. This

is especially true for large, complicated meshes or those generated

automatically on a computer.

Fortunately, a large number of algorithms have been developed to

automate the assignment of grid point labels, given the connectivity of

the mesh. Since it is clearly impractical to check each of the N!

possible sequences associated with a given matrix A of order N, each

algorithm attempts some (presumably) rational strategy for arriving

quickly at a grid point sequence.

For NASTRAN, for example, two preprocessors are currently being used

to resequence nodes: BANDIT [1-3], which uses the Cuthill-McKee [4] and

Gibbs-Poole-Stockmeyer [5] algorithms, and WAVEFRONT [6], which uses the

Levy algorithm [7,8]. Some good comparisons of several resequencing

algorithms have been made by Cuthill [9] and Gibbs, et al [10].
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3. Input:

a. max iramn: a - *ndard NX.ASTRX\k datl- ti, l1 u- XAJ'TRA thn NIA A)
S option cards , i4 JIpr;

b. ~inm~:S option cards, BEI~CN Ei'ULK, elefxent connection card -,

a. printed output

b. punmched output (SEC;P cards or entire deck-)

c. file (unit 81 contajiing complete deck plus SEQGP cards, this file
is suitable to be used aS input to NASTPAN

5. Elements- Reco -e':

CELASI CELAS2 CDAPIPI CDAP2 CMASSI
CMASS2 CROD CTUDE CVISC CDAMP3
CDAPIP4 CELAS3 CELAS4 CMASS3 CMASS4
CAXIF2 CAXIF3 CAXIF4 CBAR CCOMEAX
CFLUID2 CFLUtD3 CFLUItD4 CHBDYv CHEXAI
CHEXA2 CHTTR12 CIS2D4 ClS2D8 CIS3D8
01SD20 COMMI COH~M2 CON4ROD COtP EM
CODP7EMI CODMEPM2 CGDPLT COUADI COUAD2
CSHEAR CSLOT3 CSt.0T4 CTETRA CTORDRG
CTRAPRC CTRPSC CTRIAI CTRIA2 CTRIARG
CTRMEM CTRPLT CTUIST CUEDGE CDUPMMY
CDUflI CDUM2 CDUM3 CDUM4 CDUMS
CDUM6 CDUM7 CDUM8 CDUfl9 CTRIAXE
CTRlM6 CDAM~P49 CELAS4S CPMASS42 CDAPIPas
CELAS22 CMASS2t commit* CONVM2* COMROD*
CIHEXI CIHEX2 CIHE)X3 CTRAPAX CTRIAAX
COUADTS CTRIATS CQDPMEM3 CHEX8 CHEX26
CTRPLTI CTRSHL CRlGDI CRIGD2 CRIGDR
CBEAM CFTURE CHEXA CPE4TA CQUAD4
CTRIA3



6. Reduction Approach: Uses Cuthill-McKee (CM) and/or Gibbs-Poole-Stockneyer
(GPS) methods to reduce matrix bandwidth, profile,
wavefront, or ims wavefront.

7. Core Requirements:

Total Core = Program + Working Storage

w4here Program = 47K 8 words on CDC

= 145K bytes on ItM

= 24K words on UNIVAC, Honeywell
M

Working Storage Required = ( - + 8)N

where N = number of grid points

M = maximum nodal degree (the maximnm number of nodes connected

to any node)

NW = integer packing density (integers/word)

Working Storage = open core on open core versions of BANDIT

CDC: NW = 6 for N s 510

5 for 510 < N - 2045

4 for 2045 < N ! 16380

3 for 16380 < N - 524286

IM \= 2 for N - 32766

TNTVAC, Honeywell: NW = 4 for N _< 508

3 for 508 < N - 4095

2 for 4095 < N - 262142

8. $ Option Cards:

a. location: anywhere before BEGIN BULK

b. general format: SK-WRD1 KEYWORD2

c. rules:

(1) $ in column 1

(2) KEDWORD1 starts in column 2

(3) keywords separated by one or more blanks

(4) no embedded blanks in keywords

(5) the first two letters of each keyword are required for
recognition

TM-184-"-03
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9. $ O)tion Cards: (default underlined)

a. For General Use:

$SEQUENCE (NO, YES) Is resequencing to be performed?

$GRID N Upper bound on nunder of grid points.

This card must be used with olid elements and MPC's since
default NI (mximumj nodal degrce) is about 19. It is
recommended to use it with all runs since it is used for
efficient allocation of core.

$CONFIG N Computer model (from NASTRAN, manual).

Used in estimating NASTRAN deconqosition time.

$CONTIG N,N1,L N = computer model (from NASTPAN manual)

M = computer for wtich decomposition time
estimate is desired if different from
one BANDI°T is on (M=l for CDL,
2 for IBM, 3 for UNIVAC! .

1, = flag to request printout of all
N. .STR\N multiply-add time constants
(0 = no, 1 = yes)

$PUNWH (NO.\T, SE_QG__PE__ , ALL.) What should be punched?

$CRITERION (BAND, PROFILE, WAVEFRONT, RMIS) Miat should be reduced?

Recomnendat ions:

BAD for NAS'TR-N Level 15.5 and below
RMS for NASTRAN Level 15.9 and above and .MSC NA.%STRAN

$NMFTHOD (0M, GPS, BOTII) By what method?$MUC (NO, ES) Take W aPC's into account?

"YES" generates, for each NIPC equation in deck, additional
connections between the independent points and every other point
to which the dependent point is connected. Dependent points can
be eliminated from connection table by Lsing $IGNORE.

$PRINT (MIN, MAX) What printed output?

'"IN" is adequate for most purposes. '"MX" generates
additional connection tables and nodal lists.

$IGNOREi GI,G2,... Grid points to ignore.

Nodes ignored are eliminated from the connection table and
sequenced last. This should be used, for example, for nodes
of very high degree compared to other nodes in the structure.

$ADD N Add N to new sequence numbers.

May be used to avoid duplication of internal numbers if not
all nodes of a structure are being sequenced in one rnm.

3
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$EL2aETI'S (NO, YES) List BANDIT's element library?

$APPEND CNAME NCON IFLD User-defined connection card.

CNAME = name of connection card (e.g., CBAR) left-adjusted
starting in colun 9.

NCON = number of connections on card (i.e., nodes in
element) _> 1.

IFLD = NASTRAN field number on parent card in which first
connection appears - 9.

NCON and IFLD may appear anywhere in columns 17-32 separated
by one or more blanks. No long-field connection cards may
be defined. Connections must be listed consecutively on
parent and continuation cards, if any. Each $APPEND card
defines a new element type.

b. For Particular Users:

SKNASTRAN (NO, YES) NASTRkN to follow BAN"DIT? (IBM)

"YES" generates a condition code 5 after a successful completion.

$INSERT Location of cards to insert.

$INSERT N Number and location of cards to insert.

May be used by remote users to insert checkpoint dictionary
from disk file into executive control deck.

$LINES N Number of printed lines per page.

$PLUS + User-defined plus sign.

Allows user to input his own special plus sign, if necessary.

$DL\U2NSION N Dimension of a scratch array.

$HICORE N Amount of core requested in words. (UNIVAC)

c. For Program Developer

$TABLE (NO, YES) Output connection table?

$START Gl,G2.... User-supplied (0I starting nodes.

$DEGREE N Ignore nodes of degree exceeding N.

$SPRING (NO, YES) Generate scalar springs?

The springs (CELAS3) have same connectivity as original
structure.

10. Installation-dependent Remarks:

a. On CDC machines, the automatic reduction of field length at
execution time should be suppressed, e.g., with an RFL card.

b. Unless modified locally, IBM and Honeywell versions are not
open core programs, but fixed core. Hence, calls by BANDIT for

more core require the change of two statements in the main program.

4 T-184- 77-03

LL)



11. Additions to BAV)IT version 9:

a. Open core and HICORL on UNIVAC.

b. Eliminate backspace of Unit 5 on IBM and Honeywell.

c. Min. nodal degree printout in sumnmary.

d. User-selected (M starting nodes fix.

e. Case Control card counter.

f. New Level 17 configurations and time constants.

g. Subroutine READIT efficiencies.

h. Recovery of SEQGP cards generated by (31 if abort in GPS due
to exceeding scratch dimension.

i. $APPEN D card to define connection card at execution time.

j. CRIGDl with ThRU option.

k. Warning for illegal ILNDDATA format.

1. Optional printout of multiply-add time constants.

m. Reset of $DPhE-SION value if $GRID declared.

n. Time and disk space efficiencies with MP( equations.
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2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES. CONTAIN TECHNICAL DOCUMENTATION
OF LIMITED USE AND INIEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THF ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE BY CASE
BASIS.



I1


