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Avallability Codes

Dist i Special ' By P. K. Bhattacharya, University of Arizona
Q\ ’ | j \ ABSTRACT

Avail and/or

Consfder the hypothesis HO:B = 8> 0 in a linear regression model
vhere the cdf of Y - gx s unknown and Y is subject to the truncation
Y < Yor Testing H0 on the basis of n independent (xi’Yi) with Xy
Seee X is équiva]ent to testing the underlying homogeneity of the in-
dependent Vi = Yi - BOX% subject to progressive truncation Vi v

=Yg - Boxi- For analyzing astronomical observations a test has been pro-

pused in the literature, which computes the sequential ranks Ri of Vi

among Ni "comparable" Vj,
empirical cdf Hn(t) of (ZRi - 1)/2Ni with t bya K-S statistic.

j <1 satisfying Vj < W and compares the

Since (2Ri - ])/ZNi are neither indenendent nor exactly uniform [0,1],
the applicability of the usual asymptotic null distribution of the K - S
statistic in this context needs justification which is orovided in this

paper under a sufficient condition requiring that the rate of progressive

truncation is not too severe.

]This research was supported by NSF grants MCS-78-01108 and MCS-80-02774. !
i

Key Words: Truncated Regression, Hubble Diagram, Testing Homogeneity
Under Progressive Truncation, Kolmogorov-Smirnov Test,
Sequential Rank, Asymptotic Distribution, Brownian Bridge.
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1.  Introduction
Consider a linear reqression model in which Y} - HX}, ij=1,2, ...
are iid with cdf F. Suppose we observe (x},Y;) only if Y; <Y and
let (x*ji,YEi) = (Xi’Yi)’ i =1, 2, ... denote the observable pairs. Then
Y], Y2, ... are independent and

PLY.

j :y] = F(”‘”(y;)’o) = BX'I)/F('YO = Exi).

Fis continuous but otherwise unknown, Yo is a known constant and we are
interested in inference about the regression coefficient :.

In the non-truncated case, Theil (1950) proposed a ronparametric
estimate of : based on Kendall's tau and Sen (1968) derived its asymototic
oronerties. Bhattacharya, Yang and Chernoff (1980) developed a modificaticr
of Theil's estimate to suit the truncated case. In an entirely different e--
proach to the truncated regression problem, Turner (1979) used a Kolmogorov-
Srirnov test based on sequentiai ranks for testing Hozs =i 0 in ana]yzing

astrononical observations where truncated scatter diagrams called Hubble

diagrams are obtained as plots of luminosity distance versus redshift of
various celestial objects.

To describe the test statistic in a sample of size n, arrange

Xys wons X @S X g€ aee <X (equal x's being arranged arbitrarily)
and define Yni = Yk if Xoi =k Under HO' the residuals Vni = Yni
- .—'Oxni are iid observations subject to progressive truncation Vni W

* Y0 " C0%ni with Wy 2 or 2W

nn since SO is positive. Each vni
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, because the

is comparable to only those Vn ni

i J < i for which an W
conditional distribution of an given an W is the same as the dis-

tribution of Vni under HO' Conseaquently, under HO‘ the rank of each

Vni among comparable an, j < i, 1is uniformly distributed over all

possibilities. Formally, letting

Spi T N = Vg vy Moy = ® Shge
(1)

Rni = rank of V,; among {an:J € Sni:’ i C (ZRni - 1)/4Nn1,
Turner heuristically argues that under HO’ the g,y are asymptotically

unif [0,1], so that their empirical cdf Hn(t) should closely resermble t,
+ -
and D_ = vn sup [H (t) - t] can be used for a one-sided test of H_..
n n 0
0<t<1
This argument can be justified when there is no truncation, because

then N

= i and Rni are independent with P[Rni =r]=1/r, 1 <r i,

ni
as shown by barent (1965) and Bhattacharya and Frierson (1981). Under trunca-
tion, the validity of D: as a test statistic is not so obvious, because
the behavior of Nni and Rni become more complicated and the Eni become
dependent. Yet a Monte Carlo study supported the fact that the asymptotic
null distribution of D; is what it should be if Taq vere iid unif {0,1].
In this study, Xoi “ere taken to be i/n, : =1 and Yni were

unif [0,c] + ax i subject to the truncation Y . <y, where ¢ >y, - 1.

This was achieved by generating Vo s unif [O,Wni] with Wi T Yt i/n.

Fifteen cases involving Yp ® 2.0, 1.5, 1.1 and n =10, 25, 50, 100, 200
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were considered with 100 runs for each case and Dn was computed for each
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run. The asymptotic cdf of D: from independent unif [0,1] is 1 - e
having mean v«/8 = 0.6267, st. dev. V{4 - =)/8 = 0.3276 and upper 10%
and 5% vpoints 1.07298 and 1.22387. The relative frequencies of D:
lying above the theoretical percentage points and their means and standard
derivations for the fifteen cases are given in the following table. Though
the Monte Carlo experiments tend to give rise to somewhat smaller values
then expected from the theo}etical distribution due to discreteness of the

E there is strong indication {especially in respect of the mean) that

ni’
the asymptotic behavior of D: is not affected by truncation.

The purpose of this paper is to examine how far Turner's procedure
can be justified in the presence of truncation so as to explain the above Monte
Carlo results. The main result is a sufficient condition for the applicability

of the usual asymptotic null distribution in this context which requires

i
Lim inf min i"(/28) 5

F(w . )/F(w .) >0
Moo kn<i§n = M "

172,
ky =0

for some 0 < § < %- and some sequence {k } such that k -~ = and n
as n - . The condition means that the rate of progressive truncation is not
too severe.

In the above Monte Carlo experiments, Vni were unif [O’Wni] with

Woi = ¥g - i/n. letting t = i/ny, and h(t) = tl/2-5(]

ni - t), we have

1 i
i'(‘/z*é)jzlr(wni)/F(wnj)= - (/2e8) i/nyg) 101 - tnyg)”

1/2-5t-(l/2+<s)“ )1/2-5

> (nyy) - )log(1 - )7 > (nyg) /2 h(e).




+
Table. Monte Carlo results on the behavior of Dn from indenendent

observations on unif [0,yy - i/n], 1 <i < n: Each case
based on 100 runs.

Relative Frequency

n Yo Above 1.07298 Above 1.22387 Mean St. Dev
2.0 .08 .06 .569 .289 |
10 1.5 .02 .02 .564 .251
1.1 .08 .06 .627 .291
2.0 .08 .04 .572 .296
25 1.5 .08 .04 .578 .276
1.1 .07 .06 .589 .294
2.0 .07 .03 .601 .297
50 1.5 .06 .04 .618 .307 H
1.1 .09 .05 .598 .307
2.0 .13 .08 .680 .327
100 1.5 .15 .07 .684 .327
1.1 .12 .06 .672 .315
2.0 .08 .02 .582 .288
200 1.5 .08 .05 .590 .308
1.1 RY .03 .614 .309
A1l Cases .0873 .0473 .609 .301
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1 ) -1/2
Hence for & - 2 and kn »» at a rate slower than n .
i
min i'(]/2+6)'; F(wni)/F(wnj) > (nyo)]/2'6 min h{t)
kn\lin j= kn/ny0<t_-_l/y0
1/2-46 .
= (nyo) /2 m1n(h(kn/ny0),h(l/y0)}
. 1/2-6 1/2-6
= m1n{kn/ (1 - kn/nyo),n / (1 - l/yo)}

not only stays positive but tends to + « as n » x, This exolains why

the effect of truncation appears to be negligible in these experiments.

2. Joint Distribution of {Nni’R 1 <§ <n}l.

ni’’ - -

Let U ;= F(Vni) and a; = F(wni)' Then 1 >a, > ... >2a, >0

and Uni are independent unif EO,ani]. Formulas (1) for S ., N

ni ni’ ni

£ . are equivalently expressed by substituting Uni and a

ni for Vn

ni i
and w . respectively. We now obtain the distribution of {Nni} and the

conditional Histribution of {Rni} given {Nni}'

Theorem 1. For each n, {Nni} is a Markov chain with

)m-k+1

i)k-l(] - a

r - (] - T - m
PING g4 = KING = md = () /2, n,i+1/ 30

< - 3 = i {
for 1 <k <m- 1, starting at Nn1 1 and for given ‘Nni}’ Rni are

w conditonally uniformly distributed on {1, ..., Ni} and are conditionally

independent.

S .» N

Fix n and suppress n in the subscripts of A Uni’ ni

ni
and R .. Thus 1 > g 2...2a > 0, Uys wvos U, are independent




unif [O,ai]. S; P

=4 2 <a;) No=# S; and R. s the rank of U;

among {Uj:j € Si}' For Ni m and Si = {“il‘ cees vi.} with

im
- . < . , . i

Vip S err < Vi = T let Uij U“ij identify the random vaviables
{Ui:j € Si} in their appropriate order in each of the random sets Si'

For brevity of notations, denote the collection Ni’ Si and

{Uj:J <'1,J ¢ Si} by Ci' Let Ri]’ cees RiNi denote the sequential ranks
» R * * 5

and ki]’ ey RiNi the usual ranks of Uil’ ey U iNi’ i.e., Rij and

y * * * * *

Rij are the ranks of U*. among Ui]’ cees Uij and Ui]’ veey UiN

i

1)
respectively. Clearly, 'Ri = Riy = Ry - The following property of the
i

U;j's is immediate.

* *
Lemma 1. Uﬂ,..” %N.

are conditionally iid unif [O,ai] given
i

From Lemma 1 we draw the following conclusions.

- Nl - oprp =
Lemma 2. P[Ri = rlCi,Ri], e Ri,Ni-ll = Ny' =P[R, = rlNi],

Per <N,

Proof. By Lemma 1, R

LR R N.

s Ri,Ni-l and R, 1 = R, are sequential

ranks of random variables which are conditionally iid given Ci and the first
equality follows from a known property of sequential ranks of iid rv's

(see Bhattacharya and Frierson (1981), Lemma 1). The second equality is

obvious because this conditional probability depends only on Ni'




Lenma 3. P[N].+

y = KIC R, ey Ri’Ni_],Ri]

N; k-1 Nj-k+1
= (k-l)(ai+l/ai) (- ai+]/ai) = P[Ni+1 = klNi] for 1 <k <N+,

1 3 * * * *
Proof. The order statistics (Ui(l)’ cens Ui(Ni)) of Uil’ e UiNi

~

are conditionally independent of their ranks (ﬁi]’ e Rey ) and hence of
i
their sequential ranks (Ril’ cees Ri N.-1 Ri) given C. since the two rank
. t ]' b
vectors are in one-one correspondence. The first equality now follows because

N k 1if and only if U?(k-]) S < U?(k) and the second equality is

i+l
obtained as in Lemma 1.

The next lerma follows by standard arguments involving conditional

expectations and we omit its proof.

Lemna 4. Let X, Y, Z, T be random variables mapoing a probability
space into appropriate ranges. Suppose T and Y are conditionally inde-

pendent given X, and Z 1is determined by X and Y. Then T and 7 are

conditionally independent given X.

Proof of Theorem 1. The crucial thing to observe is that (N],R]),
oy (Ni-]’Ri-]) are determined by Ci and Ril’ cens Ri.Ni-l‘ Hence
(N],R]), cees (Ni-l’Ri-])’ Ni are determined by Cis Ril’ cees Ri,Ni-l
and  (N,Ry), ..., (N;sR;) are determined by C., Rips +oos Ri,Ni-1’ R,

Using this fact in conjunction with Lemmas 2, 3 and 4, we conclude that for

2<iz<n,
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We summarize this in the following theorem.

N
-
=
e
1
=

PLR, = rl(NR ), e (Ny_poRiq)uN] = PIR,

and

P[N]+] = kI(Ni’R])’ ey (N‘i’Ri)] = P[N‘i+] = kINi]

N, -k+1

N.
j k-1 i
(k-])(ai+1/ai) (1 - ai+]/ai) , 1<k< N, + 1.

The theorem now follows because (N],R]) is trivially (1,1) and for k =1
or 2, P[N2 = klN],R]] = P[N2 = k] s given by P[U] > a2] =1 -a,/a; and

P[U] < a2] = a,/a; respectively.

3. Asymptotics

By Theorem 1, Eni © (ZRni - ])/ZNni are conditionally independent

. - , _ v . .
given n (an’ ey Nnn) with conditional cdf Gni(tlnn' increasing by jumps

ni The question is, how small should

of WMy at (2= 1)/2N gy T <r < Ny
the eni(t’”n) = Gni(tlnn) - t be so that the normalized empirical cdf Hn(t)
of the Eni® viz. Xn(t) = n-]/z[Hn(t) - t] will behave like the Brownian

bridge B*(t) on [0,1]? We discuss weak convergence of the empirical cdf of
conditionally independent random variables in the Appendix, which may be of

some interest in itself, and show that Xn(t) converges weakly to B*(t)

n
provided that n’V2 ;Ieni(t,nn)l converges uniformly to 0 1in probability
(Theorem 4). In the present context, |eni(t,nn)| < (2Nni)']. Hence a suf-
. s . o172 % p
ficient condition for the desired convergence is n ;Nni — 0 as n » =,
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L_e.n,m_a...;_' P[N]” = klc.' ,R'Il, e ey R],N]-] ’Ri]

N.-k+1

N.
o 3 k-1 i - = ¢k -
= (k-l)(ai+l/ai) (1 - ai+]/ai) = P[Ni+] = klNi] for 1 < ko Ny+ 1.

3 3 * * * *
Proof. The order statistics (Ui(l)’ ey Ui(Ni)) of Ui1’ ey UiNi

are conditionally independent of their ranks (Ril’ ceos RiN ) and hence of
i

their sequential ranks (Ril’ ...5 R Ri) given Ci since the two rank

i’Ni']’
vectors are in one-one correspondence. The first equality now follows because

N.

- . . x * . .
i1 k if and only if Ui(k-]) <54 < Ui(k) and the second equality is

obtained as in Lemma 1.

The next lerma follows by standard arguments involving conditional

expectations and we omit its proof.

Lenma 4. Let X, Y, Z, T be random variables mapping a probability
space into appropriate ranges. Suppose T and Y are conditionally inde- j
pendent given X, and Z 1is determined by X and Y. Then T and Z are f

conditionally independent given X. |

Proof of Theorem 1. The crucial thing to observe is that (N],R]),

s (Ni-]’Ri-l) are determined by Ci and Ril’ ey Ri,Ni-l' Hence

(N],R]), cees (Ni-1’Ri-])’ Ni are determined by Ci’ Ri]’ cees Ri,Ni-l
i

and (N],R]), cens (Ni’Ri) are determined by Ci’ Ril’ cees Ri,Ni-l’ R..

Using this fact in conjunction with Lemmas 2, 3 and 4, we conclude that for

2 <1ic<n,




PIR, = r1(NsR))y ey (N,

; =

and

P[Ni+1 = kI(Ni,R]), cens (Ni’Ri)] = P[Ni+] = klNi]

N ko] N -k
) (k-])(ai+]/ai) (- ai+]/ai) ) 1 <k <N, +1.

The theorem now follows because (N],R]) is trivially (1,1) and for k =1
or 2, P[N2 = kiNl,R]] = P[N2 = k] s given by P[U > a ] 1 - ay/a; and

P[U] < a2] = a,/a, respectively.

3. Asymptotics

By Theorem 1, ¢ . = (2R

ni - 1)/2Nni are conditionally independent

ni
given =n = (Nn1’ cees N ) with conditional cdf Gni(t}qn) increasing by jumps

of IN_; at~ (2r = 1)/2N 55 1 <r < Nos.

ni The question is, how small should

the .( " )= (tlnn) -t be so that the normalized empirical cdf Hn(t)
of the i viz. Xn(t) = n']/z[Hn(t) - t] will behave like the Brownfax
bridge B*(t) on [0,1]? We discuss weak convergence of the empirical cdf ¢t
conditionally independent random variables in the Appendix, which may be of

some interest in itself, and show that Xn(t) converges weakly to B*(t)

n
provided that n-]/2 ;leni(t,nn)l converges uniformly to 0 in probability

(Theorem 4). In the present context, lx tyn )| (2N ]. Hence a suf-

ficient condition for the desired convergence is n']/2 §N;i 2.0 as no o

We summarize this in the following theorem,
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Theorem 2. As N - o, Xn(t) = n']/z[Hn(t) - t] converges weakly

to the Brownian bridge B*(t) in Skorokhod topology on D[0,1] orovided
n

that n /2 51 Ro,
]*n‘l

We now derive a condition in terms of severity of the rate of

progressive truncations, which guarantees the above convergence.

-1/2 $-1 p : .
Theorem 3. n ZNni — 0 as n -» « oprovided that there is a
1

sequence kn -+~ o with knn']/2 -+ 0 such that for some 5§ > 0,
. . .-1/2-6 |

(2) 1im inf min i ) ani/an > 0
N Kk <i<n i=1 J

Proof. For arbitrary ¢ > 0, choose n so large that

(3) 201 - &) ' "0 (knn'])(l's)/z} < - knn']/z

holds for En and §<1 satisfying the hypothesis of the theorem. Since

N. > 1, theevent (N . > il1*®)/2

+ < j < impli
ni 2 ni K, 1 <i<n) implies

n n
N R N S R UL

-1/2 Tp(1-012 (=822

A

knn + 2(1-6)

by (3). Hence for sufficiently large n,




Lo

N

n n ‘
(4) p(n1/2 {Nn} > el < kX+]P[Nni < i(1+8)/2y

From the definition of Spi given in (1) it is clear that

i i
N.=#S.= JI V)= T2 ..
ni LS (-m,wni] nj 351 M di

where for each i, the indicator random variables Zn ELIRERE Zq jj are
1] aly

independent with means F(wni)/F(wnj) = ani/anj’ 1 <j<i, sothat ENni

i
= Ja./a .. By (2), there exists a > 0 such that for sufficiently large n,

1
= _s(1+8)72 1724
bpi = .Z]ani/anj ! > 1 a

>0, k_+1<1i<n,
j n

Using Theorem 1 of Hoeffding (1963) we now have

(1+8)/29 _ o
(5) PN . < i ] =PIN. - ENni < -bni]

ni ni

< exp[-Zbii/i] < exp[-ZuziZG]

for k, +1 < <n. From (4) and (5) it now follows that

n -1 n

pin1/2 ]ZNni sele § 225
n

n
exp[-2a2i26]< J exp[-2a"x" " ]Jdx
k

n

which converges to 0 as n - « because f;exp[-ZazxZGde < ®

k +1
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Appendix
Consider a sequence of random vectors {nn} and a triangular array
of random variables {sni,l <i=<n}, n=1,2, ... such that for each n,
the ini are conditionally independent given "n with conditional cdf's

ke

Gni(t!”n)’ We obtain a sufficient condition for weak convergence of ap-

propriately normalized empirical cdf's of {gni}, viz.

n
X (t) = n'/2[p] ]ZI[O,t](E'm') -t], 0<t<

to the Brownian bridge {B*(t),0 < t < 1} 1in Skorokhod topology on D[0,1].

Write

2 . -1/2 7 -172 §
- Xn(t) =n %J[O,t](gm"”n) +n %-Eni(taﬂn)o

where J[O,t](gni’”n) = I[O,t](gni) - Gni(tlnn), 1 < i <n areconditionally
independent given "n with conditional mean 0 and conditional covariances
Gpi(sin )1 - G .(tin)} for 0<s<t<1, and eniltong) = Gnilting) - t.

Suppose the following condition holds.

Bt st e o e capEED
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n
Condition A sup n" 271 (b )1 20 as n -
n
Then n" 12 Ztni(t,nn) converges to 0 in nrobability uniformly and hence

1
in Skorokhod topology, so that it is enough to show that

n
(€) Yn(t) -/ %J[O,t](gni’nn) L. B*(t)

in Skorokhod topology on D[0,1]. The following theorem says that we need

nothing more than Condition A for the required convergence.

Theorem 4. Under Condition A, Xn(t) 2, B*(t) in Skorokhod topology

on D[0,1].

To prove Theorem 4, we need the following extended version of

Theorem 15.6 of Billingsley (1968).

Theorem 5. Suppose that the finite-dimensional distributions (fdd)
of {Yn} converge to those of Y and that Y is left-continuous at

a.s. Suppose further that
(7) ELIY, () = ¥ (6, (t) = Y ()], T < [sp(ty) - 2 ()12

for t; <t <ty and n > 1, where y >0, a> %. and ¢ =~ are a.s. non-
decreasing random functions (depending on "n) converging pointwise in
probability to a continuous (hence uniformly continuous) function ¢ on

[0,1]. Then Y, 2, v,
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Proof of Theorem 5. Using Billingsley's notation, we need to show

that for given ., +) we can find : such that P[w"(Yn.S) > ] »
for sufficiently large n. Proceeding as in Billingsley's proof we arrve
at a counterpart of his (15.29) with 'n in place of F, from which it

follows that for § = (2u)']. u positive integer,
" : P '2'\ . . 21-]
p[w (Ynl') 2ot I ln] 2K1 [vn(]) = n(O)]Vn »

Vo= max- max [: ((2i + 2):) - + (2i4)), max [: ((21 ¢ 3)¢) - : ((2v + V' 0
n 0i-u-1 " n Oci<u-2 " n

For given .', let B . = -- :sup :n(t) - +(t) - ' . By the hypothesis of
- t

the theorem, ‘n actually converges uniformly in probability to :, so

P[B; ] -‘/2 for large n. Now choose : such that s) - :it)

for s -t - 2. Then for ny € an" .:n(s) - :n(t)‘ <3 for

s-t -2, sothat V - 3.' and :n(l) - :n(?) < 1) - (0) + 2

- 2.3(1) - :(0): for small «*'. Thus for n_€ 8 _,,
n Ny

PLw (¥, .6) ~ o in ] - a7 D) - (@32

Choosing ' so that the RHS of the last inequality is -]/2. we now have

PLw' (Y 18) > €] < 4k YLe(1) - 5(0)3(3¢)2 ! o prBS L1 .

and the thoerem is proved.
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Proof of Theorem 4. By Condition A, it suffices to show that (6)

holds. We first show the convergence of ffd. Fix a positive integer r,

r
0 - ty et tr <1, Moy s A real and write tni © jz‘ij[O.tj](:ni'”n)'
Then nl® Tt pn 9T conditionally independent given "in with
r
. ' - . ! ]/2 | [ \ 2 ]/2

E(.,; ") = 0s 1z, are bounded by r adl = (r } lj ) and
r RYPL
TV ) o= e . i | B* * = - .« . .
') n(tJ) n TH"‘ Using CoviB*(s),B*(t)] = s{1 -t), 0 -s .t .1,
we have

2 ar(o Bt ) = le(-t)v2 (0 )

i =V L t = oLt 'tu + ) “-l-ut. ‘t~| 'Y

ar 1 J 3 j=1 JtJ( J 1<j<j’<r JJ ) J

2 " a9 . .
and Var[f-an(tj)Inn] = n ; Var[;ni!rn] is nbtained by substitut.ng

n i;‘Gni(tj:qﬂ)‘] - Gni(tj.‘qn)‘
"
=n ,£‘1tj + !'n"( j'nn)}((] hd tJl) - Cni(tjt.ﬂn)'

: 2 .. L . 2
for tj(l - tj.) in the formula for . Since %AJB (tj) is N(0,s7),
we only need to show that

-1/2% i
(8) Tim P[n {Cui < ay) = #(y) for all y,
N-e

where t is the cdf of N(O0,1). For arbitrary ¢ >~ 0, let
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2,2
n

AR

A= tan 2T ()l <l e vl For o €A
N “n° i “ni j'"n Lz Jork. ror g net |

< Ky with K, = (6r - 4)“An2/u2. Hence for small ¢, q/cn lies between

1+ ISTRITY that

(9) [2(oy/oy) = 2ly)] = 2y + Kylyle) - oy - K lyie).

On the other hand, for "n € AnE with small ¢, we use the bound on ni

to obtain the Berry-Esseen bound

n
(10) IP[n']/Z]Zcm- < oyln 1 - elay/o,)]

< n-]/? 3/2 < -1/2

C{Kz/(]- K]c)} 2n CK

2

with X, = rLAchz and a universal constant C. Since ¢ > 0 1is arbitrary,

(8) now follows from (9), (10) and the fact that 1lim P[Anc] = 1 by Condition

N+

A. To complete the oroof of Theorem 4, we only need to verify that Yn

satisfies the conditions of Theorem 5 with y = 2, a =1, :n(t)

n
= n"ZGni(t{nn) and 3(t) = t. The conditional moment inequality (7) is
1
n
established by easy but tedious algebra which we omit and n']fGni(t‘wn)
1
n
-t = n']gcni(t.nn) uniformly converges to QO in probability by Condition A.
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