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ABSTRACT

Consider the hypothesis HO:B = 80 > 0 in a linear regression model

,'ere the cdf of Y - $x is unknown and Y is subject to the truncation

Y _ yo. Testing H0 on the basis of n independent (xi,Y i) with xI

. < Xn is equivalent to testing the underlying homogeneity of the in-

dependent Vi = Yi - o Xi subject to progressive truncation Vi < wi

= O- X " For analyzing astronomical observations a test has been pro-

Dos:d in the literature, which computes the sequential ranks Ri of Vi
among Ni "comparable" V., j < i satisfying V. < wi and compares the

empirical cdf Hn (t) of (2Ri - l)/2Ni with t by a K - S statistic.

Since (2Ri - 1)/2N i are neither indeoendent nor exactly uniform [0,l],

the applicability of the usual asymptotic null distribution of the K - S

statistic in this context needs justification which is provided in this

paper under a sufficient condition requiring that the rate of progressive

truncation is not too severe.

1This research was supported by NSF grants MCS-78-01108 and MCS-80-02774.

Key Words: Truncated Regression, Hubble Diagram, Testing Homogeneity
Under Progressive Truncation, Kolmogorov-Smirnov Test,
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I. Introduction

Consider a linear renression model in which Y. - ,;x j 1, 2,
J J

are iid with cdf F. Suppose we observe (x',Y*) only if Yt < yo and

let (x*j ,Y* ) (xi,Yi), i = 1, 2, ... denote the observable pairs. Then
i Ji

Y19 Y2 .... are independent and

P[Yi < y] = F(min(yyO) - xi)/F(yo -xi)

F is continuous but otherwise unknown, Y is a known constant and we are

interested in inference about the regression coefficient .

In the non-truncated case, Theil (1950) proposed a nonparametric

estimate of - based on Kendall's tau and Sen (1963) derived its as-r-Ototi:

pronerties. Bhattacharya, Yang and Chernoff (1980) developed a rnodificaticr

of Theil's estimate to suit the truncated case. In an entirely different a-

proach to the truncatec regression problem, Turner (1979) used a Kolrogorov-

Srirnov test based on sequential ranks for testing H: 0 , 0 in analyzing

astronomical observations where truncated scatter diagrams called Hubble

diagrams are obtained as plots of luminosity distance versus redshift of

various celestial objects.

To describe the test statistic in a sample of size n, arrange

xI  .. n as xnl< ... _Xnn (equal x's being arranged arbitrarily)

and define Yni = Yk if Xni = xk. Under H0, the residuals Vni = Yni

-ox are iid observations subject to progressive truncation V

SO with W .. > W since 6 is positive. Each V
0 0 ni w nl- >wn0n
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is comparable to only those Vnj j < i for which V nj wni, because the

conditional distribution of V nj given Vnj Wni is the same as the dis-

tribution of V ni under H Consequently, under Ho, the rank of each

Vni among comparable Vnj, j , i, is uniformly distributed over all

possibilities. Formally, letting

Snni = nj i:Vnj Wnii Nnni Sni,

R ni = rank of V ni among {Vnj: E Sni- " ni =  (2Rni - l)12'"ni'

Turner heuristically argues that under H0 , the :ni are asymptotically

unif [0,1], so that their empirical cdf H n(t) should closely resemble t,

and D+ = sup [H (t) - t] can be used for a one-sided test of H0.n O<t<l n

This argument can be justified when there is no truncation, because

then Nni = i and Rni are independent with P[Rni = r] = l/r, 1 <. r i,

as shown by Parent (1965) and Bhattacharya andFrierson (1931). Under trinca-
+

tion, the validity of Dn as a test statistic is not so obvious, because

the behavior of Nni and Rni become more complicated and the ni become

dependent. Yet a M*onte Carlo study supported the fact that the asynptotic
+

null distribution of Dn  is what it should be if .ni 'ere iid unif [O,lJ.

In this study, x ni were taken to be i/n, = and Yni were

unif [O,c] + 3xni subject to the truncation Yni y0  where c > yo - 1.

This was achieved by generating V ni as unif [O,w ni with wni = yo - i/n.

Fifteen cases involving yo = 2.0, 1.5, 1.1 and n 10, 25, 50, 100, 200
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were considered with 100 runs for each case and D was computed for each

run. The asymptotic cdf of Dn from independent unif [0,1] is I - e

having mean /Tr/8 = 0.6267, st. dev. /(4 - 7)/8 = 0.3276 and upper 10;

and 5% points 1.07298 and 1.22387. The relative frequencies of Dn

lying above the theoretical percentage points and their means and standard

derivations for the fifteen cases are given in the following table. Though

the Monte Carlo experiments tend to give rise to somewhat smaller values

then expected from the theoretical distribution due to discreteness of the

Eni' there is strong indication (especially in respect of the mean) that

the asymptotic behavior of Dn  is not affected by truncation.

The purpose of this paper is to examine how far Turner's procedure

can be justified in the presence of truncation so as to explain the above Monte

Carlo results. The main result is a sufficient condition for the apDlicability

of the usual asymptotic null distribution in this context which requires

lim inf min 1 F(w .)/F(wnj) > 0
n-m kn< <_n j=1 n i

for some 0 < 6 < and some sequence {kn } such that kn - x and n-/1 2kn 0

as n - . The condition means that the rate of progressive truncation is not

too severe.

In the above Monte Carlo experiments, Vni were unif [0,w ni with

Wni = YO " i/n. Letting t = i/ny0 and h(t) = t112 (l - t), we have

-(1+)1) -(1/2+6)( 1"1 2+  Y F(Wni)/F(W 1 - i/ny) (0 - j/nyo)

> (nyo) 1126 t-(12+6) ( - t)log(l - t) "  (nyO) 12- h(t).

4
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Table. Monte Carlo results on the behavior of Dn from independent

observations on unif [O,y0 - i/n], I i < n: Each case

based on 100 runs.

Relative Frequency

n YO Above 1.07298 Above 1.22387 Mean St. Dev

2.0 .08 .06 .569 .289

10 1.5 .02 .02 .564 .251

1.1 .08 .06 .627 .291

2.0 .08 .04 .572 .296

25 1.5 .08 .04 .578 .276

1.1 .07 .06 .589 .294

2,0 .07 .03 .601 .297

50 1.5 .06 .04 .618 .307

1.1 .09 .05 .598 .307

2.0 .13 .08 .680 .327

100 1.5 .15 .07 .684 .327

1.1 .12 .06 .672 .315

2.0 .08 .02 .582 .288

200 1.5 .08 .05 .590 .308

1.1 .12 .03 .614 .309

All Cases .0873 .0473 .609 .301
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Hence for 6 -2and k n at a rate slower than nl' 2

(m/in i F(w )/F(w .) (y) 6  min h(t)

k 'inj=.1 n jk ' ny0 L..ily 0

=(nyo) 126minfh(k n/nyo),h(1/y0))

=min{k112 (I - k/y)n 0-I )n n /y)

not only stays positive but tends to + -as n ~.This exolains why

the effect of truncation appears to be negligible in these experiments.

2. Joint Distribution of (N ni R ni,1 < i < ni.

Let U .i = F(V .i) and a .i = F(w ni). Then 1 > a nl > ... > a nn> 0

and UrI are independent unif [O,a ]). Formulas (1) for N ,ni Rnini L ~niSO n i

niare equivalently expressed by substituting U ni and a nifor V ni
and wn respectively. We now obtain the distribution of {N j and the

conditional distribution of {R ni ) given {N n}.

Theorem 1. For each n, {N .1 is a Markov chain with

prN.km .=' m k-l
1 N. kI k-l )(a ~+/ai (1 - a /an, i+1 n k 1 n~i~ nin,i+l ni

for 1 < k < m -1, starting at N 1 and for given fN 1, Ri are

conditonally uniformly distributed on 0,....,.N i and are conditionally

i ndependent.

Fix n and suppress n in the subscripts of ani U nit S ni N ni

and R ni* Thus 1 >a1 > .. > a n > 0, U1, ... ,9 U nare independent
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unif [O,ai]. Si  Ii i:U. < ai I, Ni = # Si and Ri  is the rank of U

among (U.:j E S. For N. = m and Si N ... Vim} with

Vil< ... < vim = i, let U. = U identify the randini vab-iablesVi j

{U.:j E S. O in their appropriate order in each of the random sets Si.

For brevity of notations, denote the collection Ni , Si and

{Uj:j < i,j V Si } by Ci. Let Ril, ..., RiN i denote the sequential ranks

and k, ... , R the usual ranks of U* U'i. i  .. andillif ""' 1 0 ~ . Rij

Ri are the ranks of Utj among U*, ... IUt and U*i, ... IUi " 13 11 iN.

respectively. Clearly, R. = RiN i  The following property of the

Uj'.'s is immediate.

Lemma 1. U ... I U*! are conditionally iid unif [O,a i] given
ii' iNi

Ci.

From Lemma 1 we draw the following conclusions.

Lemma 2. P[Ri  = rCi.,Ri,, ... , Ri i = = PNR. = r Ni],

< r < N.

Proof. By Lemma 1, Ril, ... , Ri,Nil and RiNi = Ri are sequential

ranks of random variables which are conditionally iid given Ci and the first

equality follows from a known property of sequential ranks of iid rv's

(see Bhattacharya and Frierson (1981), Lemma 1). The second equality is

obvious because this conditional probability depends only on Ni.
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Lemma 3. P[N i+ = kICi,Ril, ... , RiNiIRi

Ni k-1 Ni-k+l
= (k-1)(ai+I /ai d (l -i+l /ai) = P[Ni+ l = kiNi] for 1 < k < Ni + 1.

Proof. The order statistics (Ut(1), ... , ) Of Uti, ... U' ii(N1 d'

are conditionally independent of their ranks (Rii R"" Ri ) and hence of

their sequential ranks (Ri , ..., Ri,Ni_1,R i) given Ci since the two rank

vectors are in one-one correspondence. The first equality now follows because

IN1 k if and only if U* a~lU
Si(k-l) a Ui(k) and the second equality is

obtained as in Lemma 1.

The next lemma follows by standard arguments involving conditional

expectations and we omit its proof.

Lemma 4. Let X, Y, Z, T be random variables mapping a probability

space into appropriate ranges. Suppose T and Y are conditionally inde-

pendent given X, and Z is determined by X and Y. Then T and Z are

conditionally independent given X.

Proof of Theorem 1. The crucial thing to observe is that (NR

(N i 1 ,R1i) are determined by C i and Rill ... , RiN1 Hence

(NIR1), ..., (N i-,R i-), Ni  are determined by Ci ,  RiI, ..., Ri,Ni-l

and (N1,R1 ), ..., (Ni.,Ri) are determined by Ci , Ril ... 9 Ri Ni- is R V

Using this fact in conjunction with Lemmas 2, 3 and 4, we conclude that for

2 < i <n,
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P[R i  = rl(Ni,R 1), .... (N 1  ,Ri1 ),Ni] = P[R i  rIN i] N1  , i r < N.

and

P[N i+ l = k(Ni,Rl) ... , (Ni,Ri)] = P[Ni+ l = kJNi]

N. k-1 Ni-k+l
= (k-l)(ai+l/a .k (1 - ai+i/a i ) , l< k < Ni + 1.

The theorem now follows because (N1 ,RI) is trivially (1,1) and for k I

or 2, P[N 2 = kINI,R] = P[N 2 = k] is given by P[U l > a2] 1 - a2/a, and

P[U I < a2] = a2/aI respectively.

3. Asymptotics

By Theorem 1, {ni = (2Rni - l)/2 Nni are conditionally independent

given nn (Nnl, ..., Nnn) with conditional cdf G ni(tInn) increasing by jumps

of l/Nni at (2r - 1)/2Nnil I < r < Nni. The question is, how small should

the cni(t£n) = Gni(tn n ) - t be so that the normalized empirical cdf H n(t)

of the ni' viz. Xn (t) n/1 1 2 [Hn (t) - t] will behave like the Brownian

bridge B*(t) on [0,1]? We discuss weak convergence of the empirical cdf of

conditionally independent random variables in the Appendix, which may be of

some interest in itself, and show that X n(t) converges weakly to B*(t)

provided that n "112  n converges uniformly to 0 in probability

(Theorem 4). In the present context, leni(t,n)I < (2N n) l . Hence a suf-

ficient condition for the desired convergence is n-1 12 nNn I'  .0 as nas

We summarize this in the following theorem.



8

Lemma 3. P[Ni+ l  klCiRil, .... R i,NIR-i]
N.i  Ni-k+1N/)k-l(l - a /) P[Ni~ l  kiN i] for 1 < k N. + 1.: k-l)( i+i/a i  i+i/ai i+ _

Proof. The order statistics (U .. , U(N) of U il ""' UiJ i

are conditionally independent of their ranks (Ri, ... RiNi) and hence of

their sequential ranks (Ril, ... , Ri 1iRi) given Ci  since the two rank

vectors are in one-one correspondence. The first equality now follows because
N k if and only if U< ai+ l  U*k and the second equality is

U~lI(k-l) 1(k)

obtained as in Lemma 1.

The next lemma follows by standard arguments involving conditional

expectations and we omit its proof.

Lemma 4. Let X, Y, Z, T be random variables mapping a probability

space into appropriate ranges. Suppose T and Y are conditionally inde-

pendent given X, and Z is determined by X and Y. Then T and Z are

conditionally independent given X.

Proof of Theorem 1. The crucial thing to observe is that (Nl ,Rl),

(N i-,Ri are determined by Ci and Ril, ..., Ri,Ni_1. Hence

(N(Ni ,R ), N. are determined by Ci, Ri, ... , RiNl

and (NI,RI), ... , (NiR i ) are determined by Ci, Ril, ..., Ri,Nis R i

Using this fact in conjunction with Lemmas 2, 3 and 4, we conclude that for

2 <i<n,
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P[R i r( ','R 1 ) ... , (N . 1 ,R_ 1 ),Ni] P[R. = rNi1] Ni, i r N.

and

P[Ni+ 1 = kI(Ni,Rl), ... (Ni,Ri)] P[Ni+ 1  kIN.]

N. N. -k+l
(k_11)(ai+l/a i  (1 - ai~ Iai ) I < k < N + 1.

The theorem now follows because (N 1,RI) is trivially (l,l) and for k = I

or 2, P[N 2 = kIN1 ,RI ] = P[N 2 = k] is given by P[U l  a2 ] = 1 - a2 /a 1  and

P[UI < a2] a2/aI respectively.

3. Asymptotics

By Theorem 1, ni = (2 Rni - l)/2 Nni are conditionally indeDendent

given nn  (Nnl, .... Nnn) with conditional cdf Gni(tnn, increasing by jumps

of I/Nni at (2r - l)/2 Nni, 1 < r < Nni. The question is, how small should

the eni(t'n n = Gni(tin) - t be so that the normalized empirical cdf Hn(t)

of the r W Viz.Xn (t)  En-I/2[Hn t) - t] will behave like the Brownf-4..

bridge B*(t) on [O,l]? We discuss weak convergence of the empirical cdf CJ

conditionally independent random variables in the Appendix, which may be of

some interest in itself, and show that X n(t) converges weakly to B*(t)

provided that n- /2  ni(t,nn)' converges uniformly to 0 in probability

(Theorem 4). In the present context, ir ni(t,nn)I < (2Nni)- 1 . Hence a suf-

ficient condition for the desired convergence is n- 1/2 N ni - 0 n

We sunmarize this in the following theorem.
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Theorem 2. As N , (t) n 1 1 2 [H n(t) - t] converges weakly

to the Brownian bridge B*(t) in Skorokhod topology on D[0,l] provided

that n-1 12 n 1  p 0.Nni ,O

We now derive a condition in terms of severity of the rate of

progressive truncations, which guarantees the above convergence.

Theorem 3. n-1/ 2  n R 0 as n - provided that there is a

1 ni

sequence kn - with knn-1/2 - 0 such that for some 5 > 0,

(2) lim inf min 1 /2-  l

(2 _ a ani /a .j > 0.n-).m kn<i~n j=l

Proof. For arbitrary £ > 0, choose n so large that

(3) 2( 6)- -1 n -6/2 (1 - (knI) 1  <2} nn-112

holds for kn and < 1 satisfying the hypothesis of the theorem. Since

N ni> 1, the event {Nni > I ( n + I < i < n) implies

-ni n ni- I  -1/2 n-I2 -I /
n1 /2 <N.' knn + ni -k~

n

nn- /12 + 2(l-6)-](n (1-6) / 2 kl-S)12)n- I / 2 <

by (3). Hence for sufficiently large n,



n, 1~ n-. - -+6-./2

11I

(4) P[n-P112 > d < n1 - k +1

From the definition of Sni given in (1) it is clear that

i i
niI_ ,ni = Z ( iw.]nNni = # S ni I ]-,wI(V n j zn'ji'

I= ni jl

where for each i, the indicator random variables Zni' are

independent with means F(w ni)/F(Wnj) = a ni/anj, 1 _ j < , so that ENni

= ani /a nj. By (2), there exists a > 0 such that for sufficiently large n,
j=1

bni lani/a i(1+6)/2 > .1/2+6
a n nj > , kn + _

Using Theorem 1 of Hoeffding (1963) we now have

(5) P[Nni < i(1+ 6)/2] = P[Nni - ENni < -bnil

exp[-2b i/i] < exp[-2a2 i26]

for kn + 1 < i < n. From (4) and (5) it now follows that

P[n 112  N n exp[-226 < exp[-2ci2x2 ]dx
k n +1 k n

which converges to 0 as n - because f exp[-2a 2x2a]dx <
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Appendix

Consider a sequence of random vectors {n n I and a triangular array

of random variables { ni'l < i < n}, n = 1, 2, ... such that for each n,

the are conditionally independent given n with conditional cdf's

G ni(tnn). We obtain a sufficient condition for weak convergence of ap-

nnpropriately normalized empirical cdf's of [E ni 1, viz.

X (t) = n112[n
-  n - t], 0 t _ 1

to the Brownian bridge {B*(t),O < t < 11 in Skorokhod topology on D[O,l].

Write

Xn (t) n-1 / 2 kd o t](Cnirnn)+ n-I/2 'ni(t,nn)

where J[Olt](ninn) = I (o,t(ni) - G ni(tlnn), 1 i , n are conditionally

independent given nn  with conditional mean 0 and conditional covariances
Gni(Slnn) -G ni(tlnn)) for 0 < s < t < 1, and c ni(t,n n) G ni(tInn) - t

Suppose the following condition holds.

A!
II I I I I li I in I-l~l



13
n

Condition A. sup n - i i.1ni(t' 'nl - 0 as n .

Then n I ni(trn) converges to 0 in nrobability uniformly and hence

in Skorokhod topology, so that it is enouqh to show that

(6) Yn(t) = n- I /12 nJ D. *(tS O,t] ) V Bn(t)

in Skorokhod topology on D[O,l]. The following theorem says that we need

nothing more than Condition A for the required convergence.

Theorem 4. Under Condition A, Xn(t) P) B*(t) in Skorokhod topology

on D[0,1.

To prove Theorem 4, we need the following extended version of

Theorem 15.6 of Billingsley (1968).

Theorem 5. Suppose that the finite-dimensional distributions (fdd)

of (YnI converge to those of Y and that Y is left-continuous at I

a.s. Suppose further that

(7) E[lYn(t) - Yn(t )IYIYn(t2) - Yn(t)I~lnn] < [¢n(t 2) -:n t)] 2 '

for t <_ t < t2 and n > 1, where y > 0,, and are a.s. non-

decreasing random functions (depending on nn ) converging pointwise in

probability to a continuous (hence uniformly continuous) function * on

[O,I]. Then Yn D_. Y.
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P roof_o-f Theorem_5-. Using Billingsley's notation, we need to show

that for given we can find such that P(w"(Y & ) > , IS 1n' 1

for sufficiently large n. Proceeding as in Billingsley's proof we arrve

at a counterpart of his (15.29) with :n in place of F, fron which it
-1

follows that for S = (2u) , u positive integer,

n" n n :n(O)]V 'n

Vn  = max., max [,1[:n((2i +  2)-) n(2i*)] , max [:n((2 i  + 3) ) n ((2i + I'

For given *', let B . .n:Sup :n(t) - :(t) ' . By the hynothesis of
t

the theorem, n actually converges uniformly in Drobability to :, so

P[B c ] .1/2 for large n. Now choose such that (s) - -t)n

for s - t 2-. Then for -,n E B l n(S )  n (t), 3.' for

s - t 2-, so that Vn  3 ' and ,n(l) - - (-n ) :() - :(0) + 2.,

.2:(I) - :(0). for small '. Thus for nn E Bnc,

P[w"(Y n k _- , ,n]  4K,-- [ (I : (0)](3c'2a

Choosing ' so that the RHS of the last inequality is i/2, we now have

P[w"(Y ) > cA) 4Kt'2 Y[(l) - o(O)](3) - + P[Bc 1

n

and the thoeren is proved.



Proof of TheoreTn 4. By Condition A, it suffices to show that (6)

holds. We first show the convergence of ffd. Fix a positive integer r,

r
0 - t tr 1 , . A real and write j

Then n ... are conditionally independent given rn with
*nl nn

r
E(0. ,n)  O are bounded by r (r A )I12 and

r n.. , Vn (t) n- 12n Using CovEB*(s),B*(t)] s(l - t), 0 . s t 1,

we have

r rVa2[-,B*(t ) = , 2
Var .. (1 - t.) + 2 t jt.(1 -t

Y i j1_ lc Ij<j' ~ 'j,

2 r -Y(t n and n I n Var[ ni rnl is obtained by substitut ng

nn n ni~

i n - n n
-1n 1il/ tj + '-ni(lion n))10l t j,) - ni(t j,,nn),

2 r 2
for t(l tj,) in the formula for Since 7. B*(t.) is N(O, 2 ),

we only need to show that

In
(8) im ~n-12 .

(8) lir Pin- ( 1 o - ly ] =  (y) for all y,

where I is the cdf of N(O,1). For arbitrary c , 0, let
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nn 12 n t21 2An. in: n 1 2 n ,V ni  f _ rI j " r). For nn E A n , - 1
i=I

< KlI with K1 = (6r - 4)I!xI! 2/( 2 . Hence for small c, j /f:n lies between

1 + , so that

(9) ('Y0 - (y)) < (y + K1  ) - (y - K, y,).

On the other hand, for nn E A with small , we use the bound on 'hi

to obtain the Berry-Esseen bound

n
(10) IP[n-/11 2  < GyIn n ] - (Gy/an)

< n' 1/ 2 C{K 2 /(1- KIf-) 3/2 2n' 11 2 CK
222

with K2 = rI .' _ and a universal constant C. Since ' 0 is arbitrary,

(8) now follows from (9), (10) and the fact that lim P[AnE] I by Condition
n-

A. To complete the proof of Theorem 4, we only need to verify that Yn

satisfies the conditions of Theorem 5 with = 2, = I, 'n(t)

n n ) and (t) = t. The conditional moment inequality (7) is

established by easy but tedious algebra which we omit and n" nG .(t

t n i(t,nn) uniformly converges to 0 in probability by Condition A." ni t n )
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