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I. Introduction

The purpose of this volume will be to provide an
evaluation of the various algorithmic options inherent to
ADINA (1977). The main thrust of the work will be to esta-
blish the inherent characteristics of the static, dynamic
and eigenvalue extraction solution branches. This will

be considered in two steps:

i) Overview framework of algorithmic options,
and
ii) Establish computational capabilities and short-

comings. This is achieved through extensive

benchmarking.

The benchmarking utilized will itself serve two basic

purposes namely:

1) Establish the algorithmic sensitivities, con-
vergence characteristics and typical:solution
failures generic to ADINA and secondarily;

2) Perform code check out.

For the static and dynamic branches, benchmarks will

be used to quantify the convergence, stability and artificial
propagation characteristics. In this direction, the results
of several numerical experiments will be employed to check

out the handling of:

a) Kinematic nonlinearities;
b) Material nonlinearities and;
c) Combined geometric and material nonlinearities.

Special emphasis will be given to ascertaining the operating
characteristics in the presence of softening, hardening,
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elastic/plastic and load/unload situations. In this con-
text, the major purpose of the benchmarking will be to
establish the sensitivity/pathological behavior of the
various generic nonlinear algorithms to changes in:

a) Convergence criteria

b) Time step size

c) Load increment size and

d) Material models etc.
e) Order of integration of element stiffnesses

To enable the evaluation of the various inherent
anomalous behaviorial pathologies, the strain energy will
be monitored during the various stages of calculation. This
includes both local and global evaluations. Such an approach
will allow for the monitoring of the initiation characteristics
of pathological behavior which is either local or global in
nature.

In addition to testing the purely transient phase, the
eigenvalue/vector extraction routine will also be evaluated.
The benchmarks used in this phase of evaluation will establish
such factors as convergence properties, eigenvalue/vector
deterioration, multiplicity and separability etc.

As a natural outgrowth of the foregoing approach,
various aspects of the configuration control potential inhe-
rent to ADINA will be discussed. This will include such
features as:

i) Equation solver options (eigenvalue extraction

routines, integration schemes as well as various

nonlinear algorithms) and;

amichaabith
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.




ii) Equation solver parameters (time steps, load
increments, tolerance limits iteration counts

etc.)

Since many of these features are of significant importance
to nonlinear codes, each of the foregoing configquration
control options will be examined in detail.
Based on the foregoing, the overall report will be
organized in four main sections including:
i) An overview of the basic framework of the non-
linear algorithmic solution options;
ii) A detailed benchmarked discussion of algorithmic
capabilities and shortcomings;
iii) A discussion of suggested algorithmic improvements

and lastly;

iv) A summary of results.

Appendices which includc equations for calculating the global
and local strain energies, code checkout benchmarks and program
listings of code modifications employed in the study and lastlv

sample problem data input echoes.
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II. overview of Framework of Algorithmic Solution Options

As noted earlier, this section will consider the numerical
framework of the various algorithmic options available'to ADINA.
In particular, this will include discussions of the generic/
static nonlinear equation solver, the dynamic and
eigenvalue solution branches, the convergence schemes, user

I/0 options, adaptive strategies and programmed error stops.

II.1 Generic/Static Nonlinear Equation Solver

Based on the theoretical framework of the governing field

equations outlined in Part I it follows that the Modified
Newton Raphson (MNR) algorithm is the generic ADINA nonlinear
equation solver. In particular, it is employed both for the
static and dynamic branches of the code. The algorithm is

encoded with three main options namely:

i) Load incrementation with iteration and reformation

(only once);

ii) Load incrementation with iteration but no reformation
and lastly;

iii) Load incrementation and reformation.

The overall logic flow associated with such options is defined
in Fig. 1. 1In particular the reformation loop in ADINA has
been specialized so as to provide for nonlinear element stiff-
ness updating only at the beginning of a new load or time step.
From that point on, iteration proceeds without reformation.
Figures (2, 3, and 4) present a graphical representation of

the flow of calculation associated with such options. Note
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these options have been programmed for both the static and
dynamic branches of ADINA.

The convergence checks associated with the MNR algorithm
are two-fold, namely,

1) A norm test of successive nodal increment vectors

as represented by

Ly 71T 4 1

Nvi+l tolerance
2) A norm test of successive out of balance loads as

represented by

IR UL > (IR 1

The first test determines whether the solution has converged.
The second assures that the tendency of ccnvercence is
maintained.

Note while the iteration counter limit can be superceded
by a user 1I/0 option, the out of balance and negative pivot
stops do not allow for direct user intervention. This appears
appropriate since such events are usuélly a natural outgrowth
of some form of solution divergence. 1In ADINA, typically ‘such
pathologies occur under the following broad category of
situations namely:

1) In the neighborhood of buckling points (Fig. II.5) wherein
there is either a significant change or a complete reversal
of structural stiffness;

2) In the neighborhood of plastic unloading zones, Fig. II.6;




e - e e A

10

auoz burixong 40 AJLuULdLA UL S3AUN) u0L3D3|43Q peo] [edtdh] S-1] Hiy

. Al .
| ¢

auoz butryong

NARIFIl




11

-y p—y— "

S W

wa|qodd
peojunN-peoy 213Se(d-213Se[J 404 3AJN) UO0L333(4aQ peoq [edtdhl 9-]]
| Al ]

bty

<

VATRY




12

3) Use of excessive load step size and;

4) Use of excessive time step size.

Typically, in the vicinity of buckling points either

the out of balance load or negative pivot stop are encountered.

e ———— e e L
N .

As seen from the scenarios depicted in Figs. II.7 and 8, such
stops are a direct outgrowth of the use of the MNR onerator
which is driven by the "tangent hyper-nlane" of the solution |

surface. Note the tangent plane in the neighborhood of buck-

ling points can become quite shallow with possible "slope"
reversals. Because of this, as currently programmed, there is
no possibility to analyze the post buckling range through the
user I/0 intervention capabilities currently available in ADINA.
What is obviously necessary is the incorporation of heuristic
(adaptive) programming to circumvent the difficulties in such
problems. This will be discussed in more detail later in
Section 1IV.

The reason for solution blow ups in the neighborhood of
plastic unloading zones is essentially a direct outgrowth of
the modified NR algorithm employed by ADINA. As reformation
occurs only at the beginning of a load step, if some unloading
occurs during the iteration phase, then it is not properly ‘
accounted for. As will be seen later, this obviously leads to
solution drift and typically out of balance loads.

While the use of excessive load step sizes can lead to
solution stops generated by any of the checks, typically the

out of balance stop is most often encountered. Generally,

i
| 4
|
i
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excessively large steps tend to lead to solution divergence.
Usually this is due to the fact that large load steps may excite
significant changes in the stiffness of a given structure. If
these changes occur within a given load step, the modified INR
employed by ADINA will miss them. Hence since the hyper surface
representing the solution is extremely complex, the algorithm
will usually drift aimlessly over the surface until typically
out of balance loads are excited. In a similar manner, excess-
ive time step sizes may also lead to solution divergence caused
by the large changes occurring during a given interval of time.

As was noted earlier, the 1977 version of ADINA does not
possess any heuristic programming which can automatically cir-
cumvent convergence difficulties. The only recourse open to the
ADINA user is to employ:

1) The restart option and/or;

2) The time block option.
With these options, it is possible to either manually reset the
algorithmic option and restart or preset the algorithmic choice
at a predetermined point in time. Generally the scenario used
follows the sequence of events defined below:

1) Bestart option

i. Store all field quantitites generated on tape;
ii. When error stop is encountered, manually restart

with new algorithmic choice and;

iii. Continue process to successful completion.

g re——— -

S R
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2) The Block Option q

i. Having emplocyed the restart option to obtain a
successful sclution, points of unloading can ob-
viously be aetermined;

ii. With such information available, the appropriate
algorithm can be selected for an estimated time
block.

iii. Once all the time blocks are created, ADINA will
automatically use the preselected algorithm for a
given time interval.

While the foregoing options are certainly an improvement
over the straight primitive algorithmic choices, it presupposes ;
user knowledge of the various solution sensitivities which for »
nonlinear problems are both structure and loading dependent.
That is, the solution sensitivities of a given nonlinear struc-
ture may shift from load to load. Furthermore, for "one of
the kind" problems for which nonlinear codes are oftentimes
used, such knowledge can be obtained only after sufficient {
parametric studies have been completed. As noted earlier, such
an approach can oftentimes require significant manpower allo-

cations as well as extensive amounts of computer time. 1

1I.2 Dynamic Equation Solver '

As noted in Part I, for time dependent problems numerical

integration is required to obtain a solution. 1In ADINA, this

is achieved via the use of either implicit or explicit opera-

tors nanely:
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1) Implicit operators:

i) Wilson 8 methodll]

ii) Newmark method[2]

2) Explicit: Central Differences[3]

E To trace through the algorithmic flow of the transient branch,

the use of the Wilson operator will be considered. 1Its form

. . [2]

is given by:

t+At .. l't . 1 t+6At ..
AY = (1- =) AY + = AY (I1.1)
" 8 n 0 N

t+At . t+At ..
ay = g+ 8F (Pay + bY) (II.2)
4V N N Y

t+At . 2 t+At .. .
ay = Say + aetay + BT (7 Ay 4+ 2ty (I1.3)
N A A 6 N A

Employing the operators defined by (II.1 - 3), the

following sequence of operations is necessary to develop the

solution for one time step namely:

1. At beginning of new time step update structural stiffness;
2. Form effective load;
3. Solve for incremental displacements;
4. If required, iterate dynamic algorithm and; i
5. Upon convergence, establish final fields for beginning of
next time step (displacements, velocities, accelerations,

stresses, strains, etc.).

Since the generic nonlinear equation solver employs a modified

form of NR algorithm, the iteration process designated by Step 4

N o G Lh AW Y
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involves no reformation of the stiffness. As with the static
solution branch, the convergence check associated with the
iteration process involves the use of norm tests on the dis-
placements and out of balance loads. In short, apart from
the capabilitv of choosing either implicit or explicit opera-
tors, all the iteration options, convergence checks, error

stops, user intervention options (restart, time blocks) etc.

are the same as those of the static branch.

II. 3 Eigenvalue/vector Algorithm

Since the calculation of the frequencies and associated

mode shapes is important in modal analysis, many general pur-
pose codes have been provided with an extraction algorithm. 1In

nonlinear codes such as ADINA, the main importance of the eigen-

- GRS BB  es e e~ ouw OCat W U

value/vector algorithm lies in the fact that it can be used to

establish the requisite time increment for dynamic analysis

problems. ’
In ADINA the algorithm considers the generalized eigen-

value problem defined by

(K] ¥ = o® [M]Y (II.4)

where

[K] is the tangent stiffness matrix at time zero
[M] - is the mass matrix
X - the modal vector

w - the system frequency

Because of the generality of programming, the mass matrices

handled can be either of the lumped or consistent types.

|
l
l
!
1
1
:
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The algorithm programmed in ADINA is the determinant

search method as defined in[ 4 ]. The algorithm combines two

‘ basic steps namely J

u i) Triangular factorization and

<

ii) Vector inverse iteration.

The eigenvalues are obtained in a sequence starting from the i

least dominant eigenvalue where it should be noted that the

lowest may be zero. Because of this, the algorithm can be !
employed to calculate the rigid body modes.
Once one eigenvalue/vector is obtained, a fairly effici-

i ent accelerated secant iteration procedure is used to ohtain a

shift near to the next unknown eigenvalue. The eigenvalue 3

; separation theorem, Sturm's sequence property, is employed '
in this iteration. The determinant evalution involves a tri-
angular factorization of the eigenvalue problem defined by
Eq. (II.4). Once a shift to the neighborhood of unknown eigen-

; value is obt&ined, inverse iteration is used to calculate the j
eigenvector. The associated eigenvalue is then extracted ac-

: curately by employing the Rayleigh quotient correction to the

shift.

The output options available to the user are fairly exten- l

sive. The more important of these are defined by:

1. Any number of frequencies can be calculated up to

number of system freedoms and

2. Cut off frequency option.




20

III Computational Capabilities and Shortcomings

To determine the overall capabilities and shortcomings
of the static and dynamic algorithmic apparatus inherent to ADINA,
several major behavioral traits must first be ascertained,

namely:

1) The generic algorithmic sensitivities;
2) The overall convergence characteristics and lastly'

3) The generic types of solution blow ups encountered.

The evaluation of such algorithmic characteristics will involve
the determination of the effects of several factors. These

include such items as:

i) The load increment size;
ii) The time step size;
iii) The material properties;

iv) The kinematic nonlinearity, etc.

In the case of the eigenvalue/vector extraction algorithms,

the major characteristics to be considered include:

1. Convergence properties;
2, Eigenvalue/vector deterioration;

3. Multiplicity and separability.

Since the major thrust of ADINA (1977) is its capability
to handle nonlinear materials and large deformations kinematics,
the main emphasis of the algorithmic check out will involve both

the static and dynamic solution capabilities. The approach taken

to evaluate the properties of such solution branches will be

e —————— e e




essentially three fold in particular: 21

1) Establish and perform bench mark tests; 2) Perform
parametric studies to evaluate algorithmic sensitivities and;
3) Establish comprehensive convergence tests.

As will be seen later, the main purpose of the bench
marking will be to establish the algorithmic sensitivities,
convergence characteristics and typical solution blow ups
generic to ADINA. In this context, the benchmarks will be
chosen so as to establish the characteristic anomalous solu-
tion behavior. Such behavior will be accentuated by performing
parametric studies involving such factors as load step size,
time step size, material properties, kinematic nonlinearities,
etc.

The main purpose of the comprehensive convergence testing
will be to monitor solution degradation as the various above
mentioned factors are parametrically varied. The use of such
convergence tests in conjunction with the benchmark problems
will enable the characterization of the overall solution patho-
logies inherent to ADINA.

In addition to the foregoing static, dynamic and eigen-
value check outs, several benchmarks will be presented which
evaluate the pathological characteristics inherent to the Gaus-
sian quadrature of the isoparametric element stiffnesses. This
will include such considerations as determining how the degree
of accuracy is affected by the integration order.

In the context of the foregoing, the subsections to fol-
low will include discussions on the establishment of comprehen-
sive convergence tests, as well as on the results of parametric
studies involving a variety of benchmark problems including static,
dynamic, eigenvalue and element stiffness integration evaluations.

II1.1 Convergence Tests

To establish the pathologies of the algorithmic sensi-

tivities of ADINA, a comprehensive convergence test which can
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monitor both the quality and direction of a given iteration
process must be developed. 1In this context, the standard norm
f tests on the nodal increment vector and out of balance loads
cannot serve in such a capacity. This follows from the fact !
that the basic structure of such tests is geared primarily to
determining outright success or failure of solution rather
than the quality of convergence. In particular, what is neces- f
sary, is the ability to track both the local as well as global ‘

behavior of the iterated solution.

Before developing such a convergence monitor, it is
worthwhile to note that for statically loaded problems, the
manner of loading holds the key to the direction of proper con-
vergence. For instance, assuming that the loading is mono-
tonically applied, then one would expect essentially monotone ;T
behavior in the various field variables. Similar statements
can be made of the early stages of the transient response pro-
blem. Such behavioral traits should obviously be expected of
the iteration process. Namely, monotone loading should always
lead to monotone decreasing iterates and monotone field vari-
ables. As it is computationally inefficient to track the
monotonicity of the various field variables such as displace-
ment, stress or strain, an alternative measure should be em- !
ployed.

In the context of the foregoing, the local and global
strain energy functions are admirably suited for the current
purpose. This follows from the fact that in addition to the
all important global and load monotonicity properties, the
strain enerqy also has positive or negative definite attri-

butes. Namely, as the calculations proceed for a monotone

!
,
i
§
!
.
Ay
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loading situation, one would expect a sequence of monotone,
positive definite energy iterates. As will be seen in the
next section, behavior to the contrary will almost always lead
to solution divergence or at best poor convergence characte-
ristics.

Based on applications of the virtual work principle and
the incremental approach, the strain energy stored is given

by the expression (Derivations given in Appendix Al)

I k K T K
Et =% igl kgl ( oé (8 (X,'I ) '(\j, (XA ) v+
A e av)" ay
i Ao " (I11.1)

where Et is the total strain energy stored during an itera-

tion cycle involving I loadsteps, k* the number of iterations

th load increment and AXik

th

required for convergence during i

the kth

nodal displacement increment of the i load step.
By interpreting the nodal deflection vector X? as either of
an element or global form (III.1) can be used to describe
the local element or global strain energies stored. Lastly,
due to its generalized form (III.l) can be employed for all
the material models inherent to ADINA. For the sake of con-
venience, the derivation of the expression for Et is given in
Appendix 2.

In order to perform energy checks of the solution,
various modification had to be implemented in the ADINA

program. So as not to adversely effect core requirements and

!
[
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dynamic allocation, a new direct access file was defined.

To increase the generality of the energy option, the addi-

tion was programed so as to handle the following possibilities:

1)
2)
3)
4)

Multiple element groups;
Multiple solution blocks;
All material property groups and;

All algorithmic options.

IIT.2 Benchmarking/Parametric Studies

While the benchmarking discussed in this section serves

the purpose of a check on the accuracy of the programming and

adequacy of the theory inherent to ADINA (1977), its main

function is to determine the computational capabilities and

shortcomings of the algorithmic apparatus.,

For convenience,

those benchmarks which were run to strictly check out the

code are discussed in Appendix 2 and the input data are

included in Appendix A3.

earlier,

In this context, as noted

this section will overview the results of extensive

parametric studies involving the effects of such factors as:

ii)
iii)
iv)

The main thrust of the parametric studies will be to determine

Load step size;
Time step size;
Material properties;

Kinematic nonlinearities etc.

the pathology of anomalous behavior inherent to the ADINA

algorithmic apparatus.
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At this juncture, it should be noted that the field
theories and algorithmic approaches are up-to-date and ac-

curately programmed. Hence, the anomalous behavior depicted

herein rather than being inherent to ADINA are generic to
nonlinear structural analysis in general.

For convenience, the overall section will be divided
into several subsections concentrating on such items as the

}
[
static, dynamic and eigenvalue branches of solution. i
t

IIXI.2a Static Solution

This subsection will consider the algorithmic sensiti-
vities of the static solution branches. Because of this em-
phasis, the geometric configuration of the benchmarks con-
sidered will purposely be kept simple yet diverse enough to

account for geometric configuration effects.

Interestingly, while such factors as geometry, mate-
rial properties, boundary conditions, etc. all have some
effect on the choice of load increment size, once an exces-
sive value has been chosen, typically similar types of solu-
tion degradation are encountered. In this context, the first
benchmark chosen will be used to establish much of the generic
solution anomalies inherent to situations wherein excessive
load step increments are considered. Figure III.l1 illustrates
the geometry, loading and material properties of a rubber
sheet which serves as benchmark 1. This problem combines kine-
matic, kinetic and material nonlinearity since large defor-

[ 5]

mations and Mooney type materials ~ are admitted in the model.

To establish the generic solution anomalies of the static

o
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algorithm, three basic scenarios typical of ADINA will be

excited namely:

1. Outright solution failure in first load step;
2. Solution failure in successive load steps;

3. Poorly converged solutions.

The actual nature of solution degradation depends on
the relative magnitude of incrementation. Typically three
basic types of solution pathology occur. These can be

categorized by:

1. Immediate and strong nonmonotonicity;

2. Moderate but progressively increasing non-
monotonicity and nonpositive definiteness and;

3. Mild monotonicity with either very gradual in-

creases or decreases in solution oscillations.

Note such behavior can be excited either in the first or
successive load steps. For example, Fig. III.2 illustrates
immediate nonmonotonicity in the first load step caused by
excessive incrementation size. While solution failure for
the given load step was initiated by a Fortran overflow stop,
typically out-of-balance loads are encountered for such pro-
blems.

For the given problem, for load increments somewhat
lower than those of the proceeding example, typically mode-
rate but progressively increasing nonmonotonicity can be
excited either in the first or successive load steps. Fiqu-
res III.3-5 illustrates such solution degradation. As can be

seen, for the given load increment, excellent convergence is

. A r——r T e i e AP 2 K .

- it B P WA P T R T S T R = = A ‘
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Fig. III-3 Global Energy Increment of Rubber
Sheet (1st Load Step)
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obtained in the first load step. In the second, a mild
form of nonmonotonicity and nonpositive definiteness is en-
countered. Since this increment required a large number
iterations, to enable the solution to proceed further, the
iteration count limit was raised. 1In this context, strong
and progressively increasing nonmonotonicity and nonpositive
definiteness is encountered in the third load step as illu-~
strated in Fig. III.5. Here solution failure is due to out-of~-
balance loads.

A better perspective of the foregoing behavior can be
obtained by a juxtaposition of results. This is given in Fig.III
6. The scenario of solution degradation depicted is typical
of excessive load incrementation. Note as can be seen from
these results, the onset of such behavior is signalled by
the initiation of nonmonotonicity.

In the preceding discussion, emphasis was given to
global considerations. Additional insights can be obtained
by studying the behavior of the local element energies. Such
an approach will enable the tracking of the progressive solu-
tion degradation from a purely local point of view. 1In this
context, Figures III.7-13 illustrate selected local conver-
gence characteristics for the global results depicted in
Figures III.3~6. As can be seen, the solution degradation is
initially localized but gradually spreads to the entire struc-
ture as the iteration process continues. Because of this, it
appears quite plausible that the choice of increment size
should reflect local solution characteristics so as to con-

trol the growth of localized degradation.

c ey e o e
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Figure III.1l4 illustrates the geometry, loading and
material properties of a fixed arch which serves as bench-
mark 2., This problem involves geometric (kinematic) non-
linearity which is strongly influenced by the geometry of
the arch. As noted earlier, improper incrementation and
algorithmic choice can lead to solution failure. This is
particularly true for arch problems which are subject to
snap through if excessively loaded. While anomalous solu-
tion behavior will always occur in the vicinity of buckling
and bifurcation points, improper incrementation will make the
accurate estimation of such points impossible.

As with the previous benchmark, choosing excessively
large load steps can lead to various types of solution de-
gradation. For the current example problem, such behavior
can be exacted far in advance of bifurcation or buckling
zones. In particular, Figures III.15 and III.l6 illustrate typi-
cal types of solution breakdowns in various of the load steps.
Interestingly, while the nature of the nonlinearity of the
arch and rubber sheet problems are inherently different, the
pathology of solution failure appears qualitatively the same.
This is essentially an outgrowth of the fact that the MNR
algorithm is slope driven.

In addition to monitoring global energy, local ele-
ment characteristics were also tracked. Here again, solu-
tion degradation was found to be initially localized but
spreads to neighboring elements as the iteration process

continues. The rate of such spreading is associated with

the topology of the solution space. In this context, as was




E = .10 x 108 psi
v = .3
p = .245 x 10° 1bm/in>
R = 4.8 inch
h = .016 inch
Fig. III-14 Geometry and Material Properties of A
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noted earlier, to improve local solution characteristics, i !
the load incrementation process should involve the use of
localized information concerning element stiffness behavior

namely positive, negative definiteness, monotonicity, etc. .

Note, waiting until local solution anomalies spread to the
entire structure may lead to restart difficulties. Namely
since localized solution breakdowns can occur earlier in the
iteration process, all successive iterates tend to drift

from the true solution. Hence upon restart, difficulties
arise as to what portion of the solution is valid. Obviously,
the constant monitoring of local behavior can mitigate such
restart problems.

As can be seen from the foregoing benchmarks, for static
problems excessive incrementation leads most frequently to
error stops involving out-of-balance loads or out of iteration
counts. Such solution difficulties can under the proper circum-
stances be circumvented by the use of improved iteration pro-
cedures. For example, Figures III.17 and 18 illustrate re-
sults obtained for benchmarks 1 and 2 wherein an NR algorithm
employing constant updating was used. Note while the modified
NR approach yields divergent solutions for such problems,
the constantly updated version succeeded in either proceeding
further or outrightly obtaining the final solution. An al-
ternative to the straight update approach is yielded by al-
lowing the solution to proceed via the modified INR algorithm
until solution degradation is initiated either locally or
globally. Once this is encountered, the algorithm can then

be switched to the constant update approach to finish out the

solution.

i . e B, 1 - ]
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Further, static benchmarking involving different
geometries (beams, plates, spherical shells/caps and mate~
rial properties (plasticity) also initiated similar static
solution pathologies. The common denominator to all such

solution breakdowns was the initiation of localized non-

e ————

monotonicity. Once encountered, typically such behavior
spreads to the entire structure either in the given load

step or in successive load steps. Note such solution ano-

e —— e

malies are not generic to ADINA but rather are an outgrowth

of the use of MNR algorithms which are based on tangent stiff-

ness properties. Hence, all general purpose nonlinear codes 1

employing such algorithmic approaches should encounter such

anomalous behavior if improper load incrementation is attempted.
Section IV discusses several possible improvements which can ]
be implemented into the ADINA program to diminish such dif-

ficulties.

III.2b Dynamic Solution

Before considering the algorithmic sensitivities of
the dynamic solution branch, several important points must
first be clarified. The most important of these is the need

to define the manner in which the inertial, stiffness and

Pl

damping effects interact to contrecl the overall dynamic res-
ponse of a structure. As a starting point, we shall first
consider the purely linear case. Next, the effects of struc-
tural nonlinearity (kinematic, kinetic & material) will be
considered. Such insights will enable us to establish the

proper framework from which to evaluate the dynamic solution !

algorithm,
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! As noted earlier, the main thrust o. this work will

be to evaluate the algorithmic sensitivities of ADINA (1977).
As with the static branch, this will be accomplished by
exciting the various forms of pathological behavior inherent
to the algorithms.

Since the dynamic branch of ADINA employs direct nu-
merical integration to yield the transient solution, the
problem of central importance involves the matter of time
step size. This question itself consists of two major points
namely:

1. System dynamic characteristics and;

2. Characterization of exciting fields.

The problem of dynamic system characterization can generally
be answered by considering the properties of its natural
frequencies. This includes such questions as spectral spa-
cing, size of lowest frequencies, modal participation factors,
{ etc. In the case of linear systems, once such characteristics
1 are defined, they undergo no changes during the calculation
) phase.ﬂskhis is obviously a direct outgrowth of the linearity
of the governing differential operators characterizing such
problems.
The characterization of the exciting fields also in
essence requires the definition of its spectral properties.
In this context, several possible situations may arise namely:
l. A profusion of frequencies may be present;
2. Small numbers of frequencies are present or;
3. Selected frequencies dominate behavior.

Regardless of which situation exists, once the spectral

R R R e - . i e - v - i e ey - x
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characteristics of the structural system and exciting fields
are established, the proper time step increment can be sele-
cted so that the participation of the dominant system fre-
quencies can be accounted.

For situations in which a profusion of exciting fre-

quencies exist, the explicit procedure must be employed. In

———— e ————— e o

ADINA the central difference algorithm can be used to handle

such situations. In the case where small numbers of fre-

quencies or selected frequencies dominant the behavior, im-

plicit operators are employed to handle the response. For

[2]and Newmark[3]

such situations, the Wilson integration sche-
mes are available in ADINA.

Regardless of the approach employed, once the full ;
spectrum of excitation and system frequencies are accounted :
for, due to the stationarity of the spectral properties of P
linear systems, no changes need be implemented in the time
step to capture the response. Such is not the case for non-
linear systems. In particular for nonlinear systems, major
changes in the spectral properties can occur from moment to
moment during the excitation. Generally, three basic types
of changes can occur in the structural behavior. These can
be categorized by:

i) global/localized structural stiffening; ]

ii) global/localized structural softening or;

iii) combined structural stiffening/softening.

For problems which are characterized by material nonlinearity,

—

generally softening behavior is usually encountered.
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A good example of such behavior can be seen in stru-
cture undergoing small plastic type deformations. During
the development of plastic flow, such structure behave softer
than their purely elastic counterparts. Interestingly, while
the initial time step chosen for the elastic version of such
structure can capture the inertial effects of either the
linear or nonlinear situations, it is possible that the level
of nonlinearity excited by plasticity can be severe enough
to cause solution difficulties. Note the problems which are
typically encountered for such situations are a direct out-
growth of the inability to handle the nonlinearity via MNR
type algorithms. That is, if extensive softening is encoun-
tered during a given time step, the various solution patho-
logies depicted for the static case can be excited. This
follows from the fact that the level of nonlinear excited
during a given time step can be likened to that encountered
during an excessively large static load step. 1In either case,
the solution degradation follows the same pattern as the
static case namely, out of balance loads or iteration count
stops can be initiated. Since the time step size controls
the degree of nonlinearity excited, the only approach avail-
able to remedy this situation is to decrease the time step
size. 1In ADINA such modifications can be established for
selected times via the block option. If the adjustment of
time step size cannot stem the occurrence of out of balance
loads or out of iteration stops, the reformation but no itera-
tion option can be employed. Solution failure under this

option generally involves the initiation of negative pivots.

. g e

e b
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This follows from the fact that without the out of balance
load check inherent to the iteration option, there is no
bound on the growth of load imbalance.

For plastic problems, perhaps the most severe form of
material nonlinearity occurs in the neighborhood of load
unload zones. In such situations, as noted in Fig. II.S8,
transitions between softening to hardening to softening be-
havior can be encountered. The major solution difficulty
which arises from such behavior is the fact that the modified
NR algorithm can miss the need to unload during the iteration
phase of a given load step. This usually leads to solution
drift and typically out of balance loads. To bypass such
difficulties, the only avenue open to the ADINA user is to
stop equilibrium iteration in the neighborhood of unloading.
This obviously can be initiated through the use of the re-
start and block options. While such an approach can handle
the load/unload problem, the apriori knowledge of the exis-
tence of such behavior is usually not immediately available.
Hence such information must be ascertained by extensive and
oftentimes costly parametric studies involving the restart
and block options.

In the case of structure with severe hardening char-
acteristics, the modified NR algorithm inherent to ADINA is
destined to either converge poorly or initiate out of balance

loads as depicted in Fig. III.19. The only way to avoid such

difficulties is to employ the reformation option without ite-

ration. This obviously can lead to solution drift as the

solution proceeds.
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In the context of the foregoing discussion, the bench-
marking of the dynamic solution branch of ADINA discussed in
this section will attempt to establish the various forms of
pathological behavior intrinsic to the direct integration
algorithm. Note the main emphasis of such numerical experi-
ments will be to establish the important effects of non-
linearity on the generation of anomalous solution behavior.
This emphasis follows from the fact that the main thrust of
ADINA is its ability to handle both material and geometric
nonlinearity. As with the static branch, because of this
emphasis, the geometric confiquration of the benchmarks con-
sidered will purposely be kept simple yet diverse enough to
account for geometric configuration effects.

As will be seen from the following discussion, while
such factors as geometry, material properties and boundary
conditions all have varying effects on the choice of time
step size, once an excessive value has been chosen, typically
similar types of anomalous solution behavior are encountered.
For instance, once such a situation is excited, the iteration
loops tend to initiate either out of balance load or out of
iteration stops. For the noniterative loop, typically the
negative pivot check is encountered.

Figure III.20 illustrates the geometry and material
properties of a cantilevered beam which serves as the first
benchmark of the dynamic solution branch. Since large de-
formations and either elastic or plastic (strain hardening)

material properties are employed, this problem combines the

ol
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effects of kinematic, kinetic and material nonlinearity.

Since we are primarily concerned with the characterization
of algorithmic behavior, to establish the validity of model
employed, runs were performed involving 20, 40, 80 and 160

elements for selected problems. This enabled the deter-

mination of whether modelling difficulties initiated solution

degradation as opposed to algorithmically generated ano-
malous behavior.

To establish the anomalous behavior of the various
options of the transient algorithms, the problems run in-
volved increasing orders of severity. This enabled the
evaluation of the sources of degradation. In this context,
Figs. III. 21-26 illustrate the various characteristics of
the displacements, velocities and accelerations associated
with the large deformation responses of an elastic canti-
levered beam subject to a concentrated step load. These
were run with the Newmark option. Similar results were ob-
tained via the Wilson operator. As can be seen from the
velocity and acceleration fields depicted, because of the
lack of damping, numerous higher order spectral modes par-
ticipate in the overall response. This necessitates the
selection of an extremely small time increment namely
Atv. S5 x 10-4 sec. While such behavior eventually initiates
long term solution drift, for the first few cycles of time,
good accuracy is maintained.

To increase the degree of severity, plasticity is ad-

mitted in the model. As noted earlier, this initiates sof-

tening type behavior. Namely, the apparent period of the
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response tends to increase because of the softening structural
stiffness initiated by plastic transitions. Since such a
trend tends to improve the inertia following characteristics
of the numerical integration, this enables a good check on
the stiffness following capabilities of the algorithm. The
first attempt at this problem employed the use of the equi-
librium option and a distributed tvpe loading. The results
are depicted in Figs. II1.27-32. As noted earlier, the ite-
ration option of the NR algorithm inherent to ADINA does not
reform the stiffness during the iteration cycle. Hence upon
unloading which typically occurs at cycle limits, such an
algorithm misses the transition from plastic back to elastic
during the iteration phase. This can lead to solution de-
gradation. An example of such anomalous behavior is il-
lustrated in Figs. III.27-32. The actual cause of failure
is the initiation of the out of balance load stop. In ADINA,
such difficulties can be circumvented by employing the no
iteration option.

Figures III.33-38 illustrate the elastic-plastic (strain-
harding) distributed load response as obtained by the no
iteration option. As can be seen, the imbalance loads encoun-
tered earlier during the first cycle limit were not monitored
through the use of this option. Note while the solution ap-
pears successful when viewed strictly from the displacement
point of view, Figs. III.33 and 35, such a simplistic approach
can be dangerous. This is clearly seen by considering the
behavior of the velocity and acceleration fields depicted in

Figs. III.35-38. As can be seen from these figures, once
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the solution passes the first cycle limit, progressive de-
gradation is initiated. This follows from the fact that with-
out iterative corrections, the imbalance loads cause a drift
on the solution hyper surface. Because of this, the only way
the solution can be abnormally terminated in ADINA 1977 is
via the negative pivot stop. Otherwise the calculations will
be terminated via the usual time limit check.

Increasing the problem severity further, Figures III.
39-44 illustrate the elastic-plastic cantilevered beam res-
ponse to a concentrated load. Due to the severity of the
loading, outright failure occurred when the iterative solu-
tion option was employed. To circumvent such difficulties
the reformation but no iteration option was employed to gene-
rate the results depicted in these figures. Note while ade-
quate solution behavior is obtained during the early stages
of the response, as time increases, the latter phases are
marked by progressive degradation. This can be seen from the
growing oscillations which occur in the velocity and accele-
ration fields shown in Figs. II1I.41-44. These culminate in
the initiation of a negative pivot stop. As noted earlier,
this is a direct outgrowth of the fact that without iterative
corrections, the load imbalance tends to grow as the time

incrementation proceeds.

Figure III.45 illustrates the geometry and material proper-
ties of the spherical cap which serves as the second benchmark of
the dynamic solution branch. As with the beam, large displace-

ment elastic-plastic behavior is admitted in the model. Whereas

the previous benchmark established solution difficulties

. .u_o‘“‘Y ?_‘ - ‘—:___
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Fig I111.45 Spherical Cap Geometry, Material Properties
and Element Model
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= associated with long term behavior (several cycles), the
current problem will emphasize anomalous behavior during the
initial stages (first cycle) of solution.

In this context, the effects of severe nonlinearity on i
the choice of time step size will be considered. To achieve '
this end, the spherical cap will be excited by step pressure
loadings of increasing magnitude. The various effects of

kinematic/material nonlinearity on solution success is shown

in Fig. III.A6-49. Note as illustrated, three basic stages are ;

seen to exist. These can be categorized by:

1) "Mild" nonlinear effect; |
2) "Moderate" nonlinear effects and;
3) "Strong" nonlinear effects.
These stages of behavior will be considered in the context of
time step sizes which are successful in describing the linear
response. Before discussing such behavior, it should be noted
that for loads below the critical buckling value, the cap
exhibits both kinematic and material softening. B
i As noted earlier, time step sizes adequate to capture
the inertial effects of linear problems will remain so for
softening situations. For such nonlinearities, degradation
typically arises as an outgrowth of the inability to track !
the changes in structural stiffness. For mildly nonlinear
situations, since only minor changes occur in the structural

stiffness, typically the linear time step is adequate. This

can be seen from the results illustrated in Fig. III.46.

Employing the same time step size, Fig. III.47 illustrates

the transient cap response for moderate loadings. For such
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situations, the higher order spectral modes and the material/
geometric nonlinearity combine to cause an extensive amount
of iterating to capture the overall solution. Because of
this, as can be seen from Fig. 47, solution failure is ini-
tiated because of out of iteration stops. For such situations,
generally any attempt to increase the number of iterations
tends to fail since typically an extremely large number of
steps is required. This is partially an outgrowth of the local
wavyness of the solution space caused by the presence of higher
order spectral modes.

For the given time size, a further increase in loading
tends to excite significant amounts of plastic flow. Since
such behavior causes extensive amounts of structural soften-
ing and irreversible energy conversion, much of the higher
order spectral modes tend to be washed out before unloading
occurs at the first cycle limit. Because of this, interest-
ingly the solution tends to progress further before the out
of iteration stop is excited. This behavior is clearly il-
lustrated in Fig. 48.

The three stages of solution noted earlier are clearly
seen from the juxtaposed results depicted in Fig. 49. Such
behavior was obtained for both the Newmark and Wilson inte-
gration options.

Note, further dynamic benchmarking involving different
geometries and material properties tended to initiate similar
solution pathologies to those depicted by the foregoing pro-

blems. As with the static solution branch, such anomalous

behavior does not appear to be generic to ADINA. Rather it
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appears to be intrinsic to the tangent stiffness MNR algo- t
rithm itself, 1In particular, this algorithm appears to be
sensitized by the interactions between structural nonlinearity
and inertial effects. For moderately nonlinear problems, such
factors combine cause a "wavy" solution space which tends to
sensitize the tangent stiffness approach. For materials
which are highly dissipative, such behavior is somewhat smo-

othed out as the nonlinearity is further increased.

I1I.2¢c Eigenvalue/Vector Extraction Algorithms |

The main thrust of this subsection is to determine the |
computational characteristics of the eigenvalue/vector ex- |

traction algorithms inherent to ADINA (1977). 1In particular

ST PPN

this will include considering such factors as the convergence |

properties, eigenvalue/vector deterioration and multiplicity/

PR

separability characteristics.

To achieve these objectives, the benchmarking emploved

must be capable of testing the extraction algorithms for ‘j
situations involving arbitrary eigenvalue spacing. 1In this
context, the algorithmic check out considered the following
types of situations namely
l. Widely-spaced frequencies; !
2. Closely-spaced frequencies;
3. Widely space groups of closely spaced frequencies
and;

4. Multiple frequency branches

The foregoing scenario of frequency spacings are typical

of modern day support structure. The most complicated of

s it Ml i >
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these usually involve main structures which have soft or

stiff substructural components. Typically such components
tend to lead to the occurrence of widely spaced groups of
closely arranged frequency eigenvalues. For instance, sup-
ported symmetric structures are good examples of such a
situation. This follows from the fact that symmetric struc-
ture in themselves usually have multiple frequency branches.
Supporting such structure on soft foundation supports tends
to lead to an overall frequency spectrum involving essent-
ially two groups of eigenvalues, namely;

1. Pseudo rigid body modes involving the main
structure acting rather rigidly on soft supports
and;

2. Main structural modes which have been separated
by the presence of the supports.

Since such structure can be made to exhibit all of the
eigenspacings denoted by 1) -~ 4), the family of benchmarks
employed herein involved such a type structural arrangement.

Before describing the actual benchmarks employed, it
is appropriate to note that in order to quantify potential
eigenvalue/vector deterioration, a fairly extensive number
of dependable eigenvalues must be available. 1In this con-
text, the approach taken herein was to chose a structure
which could be solved analytically and hence have any number
of known eigenvalues and associated eigenvectors.

Figures III.50~52, show the overall family of con-

figurations used for the evaluation of the eigenvalue/vector

extraction algorithm. As can be seen, the main structure of
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the family consists of a ring or long cylinder, Fig. III.50.
By attaching it elastically to ground via a series of radial
or tangential springs, a variety of symmetric or asymmetric
structure can be generated, Figs. III.S51 and 52.

Note since the cylinder is itself axisymmetric, it
thus has multiple frequency eigenvalues of multiplicity two.
The spacings of the multiple pairs of eigenvalues of this
structure can be made to be either closely or widely spaced
depending on its radius to thickness ratio. Such spacings
can be enhanced by attaching the cylinder to ground via a
symmetric radial spring support, Fig. III.S51.

In terms of this structure, the problem of widely spaced
groups of closely/widely spaced frequency pairs can be gene-
rated by introducing asymmetrically placed tangential sprinc
supports as depicted in Fig. III.52. Through the introduc-
tion of the asymmetric support springs, the multiple frequency
pairings can be made to bifurcate into separate frequency
branches. The spacing between such branches can be made to
increase or decrease depending on the amount of asymmetric
stiffness introduced.

The choice of the foregoing benchmark family enabled a
logical and organized approach to be taken for the problem
of evaluating convergence properties, eigenvalue/vector de-
terioration and multiplicityv/separability characteristics.

In performing the aforementioned benchmarking activities,

the following factors were monitored during the calculation

flow, namely:
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1. The required number of iterations per eigenvalue;

2. The convergence characteristics of the eigenvalues

and eigenvectors and;

3. The overall solution pathologies as the iteration

process proceeded from low to high frequencies.

The first benchmark employed to study the capabilities
of the extraction algorithm consisted of the cylinder on
radial foundation depicted in Fig. II1I.51. 1In addition to
monitoring convergence and deterioration properties, this
benchmark enabled the evaluation of the multiplicity char-
acteristics. To determine the eigenvalue/vector deterio-
ration pathology, the cylinder was modelled by various number
of elements involving either 80, 160, 300, 600 or 1000 nodes.
Figqure III.53 illustrates a tvpical mesh employed in the
parametric study. Based on such models, the eigenvalues and
associated vectors were calculated. In all the cases studied,
the convergence characteristics were excellent. Additionallv,
once eigenvalue or vector deterioration was noted by com-
parisons to theoretical values, such pathologies could almost
always be directly attributed to mesh inadequacy for the given
mode.

For example, natural frequencies were obtained for a 160-element

model (Fig. II1.53) to illustrate the deteriorated multiple root eigen-
value family. The mode shapes associated with these multiple

eigenvalues are depicted in Figs. III1.54-67. As can be seen
from the results illustrated, the modal and eigenvalue dete-
rioration can be directly attributed to the lack of mesh ade-

quacy for higher order modes.
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The only difficulties encountered with this benchmark
involved problems with large numbers of elements. For such ;
cases, as noted by the ADINA manual itself, the out of core
solution proved somewhat costly. This can be directly at-
tributed to the necessity of using low speed storage (disks)

reads and writes to pack and unpack the various blocks of

g e o
s .

e

the global stiffness matrix.

{
} 1
Figure III.52 illustrates the asymmetrically supported ’

e

cylinder. By adjusting the various foundations of this

2

model, the eigenvalue spacing was varied over an extensive
range of separations. This enabled a further evaluation of
the multiplicity and separability characteristics. As in

the previous case, the cylinder was modelled by various num-

g

bers of elements involving either 80, 160, 300, 600 or 1000 j

nodes. In the parametric studies performed with these models,
the convergence characteristics were good for all the ranges

of separability tested. Whenever eigenvalue or vector dete-

Y

rioration was encountered, it could generally be attributed
to the lack of model accuracy. Namely, the lack of proper
numbers of elements required to adequately define a given i
mode shape.

As a consequence of the foregoing parametric benchmark !
studies, it follows that the ADINA eigenvalue/vector extrac-

tion algorithm has good convergence characteristics for most

typically occurring ranges of frequency spacing. The only

difficulties encountered were associated with out of core

by increasing the size of the dynamic allocation array, larger

. . .
solutions wherein slow secondary storage was involved. Note ‘
!
!
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in-core problems can be handled thus cnabling laster run y
times. This raises an interesting point concerning the

ADINA overlay structure and the MVS environment typical

of IBM systems. While such studies were not run, it would

ek

be interesting to determine the advantages of totally in

e w———— . _
L

core Vrs out of core solutions in an MVS storage environment.

In this regard, it was found that for the benchmarks run

e

for the study, the purely in core approach involving large
storage dynamic allocations ran faster than small dynamic

allocations involving the out of core option. While this

might seem obvious at first, it must be remembered that in
the MVS environment, portions of the program are paged in and
out of the central core during the course of running. Such
an operation can be likened to a machine generated overlay
structure. In this context, it would be worthwhile to de-
termine in future studies the pros and cons of in core vrs

out-of-core program architecture in an MVS environment.

I1I1.2d Numerical Integration of Element Stiffness

In the evaluation of element stiffness for isoparametric

elecments, the general practice is to use Gauss quadrature nu-

merical integration. Ordinarily, the degree of accuracy in

numerical integration is affected by the integration order cho-
sen consistent with the approximating shape functions used for

the element. For example, for an element of quadratic displace-
ment field, the exact numerical integration order is "3" [7].

However, the choice of integration order is also complicated by

other factors, i.e., variation of material properties over the
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element (elastic-plastic material), incompressibility constraints,
presence of shear stresses in thin-wall structure, etc. 1In this
section, some numerical difficulty of the 3/D continuum element
is revealed when it is used for bending analysis.

The problem considered is a square plate simply supported
along its four edges, and constrained from horizontal motion in
the directions perpendicular to the edges of the supports. The
plate is subjected to a uniformly distributed load. Material

properties were assumed to be linearly elastic and isotropic, i.e.

2.1 x 10° Kg/cm?

Young's Modulus E
Poisson ratio v =20.3

The 20 node 3/D continuum element was used to model the bending
action of the plate. From symmetry, only one quarter of the
plate was modeled by 9 elements with 96 nodes as shown in Fig.
68. The plate was loaded well into the large deflection range

so that membrane action of the plate became predominating. Seve-
ral computer runs were made by varying the thickness-ratio (or
aspect ratio, t/a) of the plate ranging from 0.1 to 10-5. For
each thickness ratio,, two numerical integration orders were
chosen for the evaluation of element stiffness; namely, 3x3x2
(exact) and 2x2x2 (reduced) orders, two integration points in

the thickness direction for both cases. The load - deflection
responses of the plate with two different aspect ratios are nlotted
in Figs. 69 and 70. In the ahalysis, the results obtained from
the exact integration order represent convergent solution under

equilibrium iterations are totally erroneous as seen in Figs.

69 and 70. On the other hand, the reduced integration scheme
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gave a more satisfactory result as compared to the analytical
(8] '

solution The non-dimensionalized maximum deflection of

the plate vs. various aspect ratios for the load factor g%;=4.6,50,
and 208 are plotted in Fig.,. 71 and 73, respectively. From these
plots, one can clearly see that the use of 3/D continuum elements
with exact integration order fails to give any reasonable solu-
tion for thin plates with an aspect ratio smaller than 10—3.

In order to overcoﬁe this numerical problem, reduced integration
order must be used for either smallideformation or large defor-
mation analysis. It is also noted that as the plate thickness

becomes very thin (t/a less than 10_“), no solution can be ob-

tained even the reduced integration was used.

IV. Potential Algorithmic Improvement

Finite element simulations of statically and dynamically
loaded structures composed of general materials undergoing
large displacements usually lead to nonlinear field equa-
tions. Since the types of nonlinearity exhibited by such
field equations are both diverse and complex, the question
of the best choice of an appropriate solution algorithm in-
evitably arises. While many alternatives are available, gene-

rally the various solution procedures may have special ad-

vantages for certain classes of problems but may exhibit poor
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convergence for other situations. For example, the ideal
general purpose nonlinear finite element code should have
several algorithmic options augmented with a degree of arti-
ficial intelligence. Namely, the problem solving capability
should involve a heuristically guided trial and error search
in the space of possible solution via an automatically struc-
tured algorithm. Unfortunately, currently available general

purpose finite element codes of which ADINA is an example, do

not have heuristic (self-adaptive) capabilities. In parti-
cular, because of its wide applicability, like ADINA most
such codes employ some primitive (non-self-adaptive) variant
of either the full or wmodified 1incremental Newton Raphson
(MNR) algorithmic procedure. This applies to both the static
and transient solution branches. In particular, the various

transient algorithms such as Wilson, Newmark, Houbolt and

central difference are usually developed around the primitive

MNR algorithm and hence do not in themselves possess heuristic

(self-adaptive) capabilities. f

While the ADINA code presents the user with far-reaching 1

and accurately programed capabilities, without apriori physical

insight, expensive parametric studies are oftentimes necessary to
assure adequate solution convergence. This is particularly true L
for unqualified users who do not have the proper training in non-

linear mechanics theory. As has been seen in the previous sect-

ion, unless the proper load or time incrementation is employed, | 4

either poor convergence or out-of-balance loads are generally en-

countered. Such anomalous solution behavior is not an out-

growth of improper programing practice or illchosen field
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representation, but rather is generic to all nonlinear F.E.

codes employing non-self-adaptive MNR algorithms. In view

of such shortcomings, this section will overview a series of

suggested changes to the ADINA algorithmic strategies aimed

at increasing the efficiency of the code as well as decreasing

the need for direct user intervention which is generally
quite time-consuming and costly. h

From an overview point of view, the main thrust of the

discussion is to establish a three level strategy in parti-

cular:

i) Level 1: Preliminary solution development via
primitive algorithms;

ii) Level 2: Solution monitoring via validity/con-
vergence tests and;

iii) Level 3: Self-adaptive strategies (Heuristic ‘i
programming) .

Like the current ADINA equation solver, the first level should ?
employ primitive ( MNR, NR etc.) operators to generate the {
solution in the usual manner. The second level should involve
the constant monitoring of the different stages of solution
via a variety of validity/convergence tests. The last level

should consist of various self-adaptive strategies which are

2

triggered by the tests initiated by the level two surveillance
process. Note these strategies should be arrayed so that the

correct validity/convergence tests initiate the strategy with !

the appropriate degree of sophistication.

To quantify the particula.s of the suggested algorithmic

improvements, the following subsection will briefly outline

— e
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the main intent of the various phases of solution strategy

noted above.

IV.1 Level 1l: Primitive Operators

As noted earlier, the first level should employ pri-
mitive operators to generate the solution. So as not to
cause major changes in the ADINA architecture, such operators
should involve various versions of the NR algorithm namely:

1. Full NR with constant reformation of tangent
stiffness matrix during iteration;

2. NR algorithm with intermittent updating during
iteration;

3. Modified NR algorithm with tangent stiffness re-
formation at beginning of load step but not during
iteration (currently available);

4. NR algorithm with iteration but no reformation
(currently available) ;

5. NR algorithm with reformation but no iteration
{currently available) and lastly;

6. NR algorithm with no reformation and iteration
(currently available).

In the context of Fig. II.l, Fig. IV.l defines the
overall logic needed to implement the calculation flow as-
sociated with the NR adaptions noted by items 1-6 listed
above.

Such an addition could be achieved through minor modi-

fication to the EQUIT subroutine wherein the iterative loop

is programmed. Additionally, new control parameters would be

-
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necessary in such subroutines as TDFE, QUADS etc. to allow
for constant and/or intermittent updating of the tangent
stiffness matrix. As most of all the necessary arrays of
data are available in EQUIT, no real changes in code archi-
tecture would be involved apart from the incorporation of:
1. New variables to control the choice of the appro-
priate NR algorithm;
2. New logic to allow for the proper packing of the

reformed stiffness in secondary storage.

IV.2 Level 2: validitv/Convergence Tests

The validity/convergence tests should be the core of
the modification to ADINA. For the present purposes, the
discussion will be organized in three main categories namely:

l. Classical convergence tests;

2. "Quality" of convergence tests;

3. Degree of "nonlinearity tests™.

The first group should be of the classical normed type
pass or fail variety as typified by the convergence test
currently programmed in ADINA, namely:

1) the out of balance norm test;

ii) nodal displacement' norm test.
The main intent of such tests is essentially to monitor the
success or failure of the iterative procedure. While such
tests are efficient and well adapted to this prupose, they
cannot reallv forecast potential difficulties until outright
failure occurs. Because of this, 1f the restart option is

employed, depending on the problem, much of the solution
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generated up to the failure point may have to be scratched
so as to proceed further. 1In this context, what is necessary
are so-called validity checks which enable a constant moni-
toring of the solution so as to determine whether the direc-
tion of convergence is proper.

In the context of the foregoing, the second group of
tests should be concerned with the quality of convergence
namely the rate, monotonicity, positive, negative and semi-
definiteness, etc. Such information should obviously be used
to trigger various modifications in the primitive iterative
strategy depicted in level 1. As can be seen from the re-
sults outlined in Section III, various aspects of the system
energy could be employed to serve as validity checks.

In addition to serving as a quality of convergence
test, monitoring various aspects of the energy should serve
as a good‘measure of the degree of nonlinearity excited by
successive load/time increments. The importance of such tests
follows from the fact that although finite element simula-
tions of structures composed of general media undergoing large
deflections are inherently nonlinear, the degree of non-
linearity excited varies from point to point as well as from
load/time increment to load/time increment. As it is pos-
sible that large portions of a structure may exhibit basically
linear behavior, the third phase of quality/convergence test-
ing will enable the automatic partitioning of the structure by
allowing for preferential updates of the tangent stiffness de-
pending on the amount of local nonlinearity excited. Such

preferential updating obviously represents a more significant
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phases of quality/convergence testing. 1In particular, to

accomodate the preferentially updating of particular stiff-
ness partitions, such a change would entail a modification

in the dynamic allocation scheme.

IV.3 Level 3: Heuristic/Self-adaptive Strategies

Since the core of the ADINA solution strategy is based

on the tangent modulus approach, any Heuristic programming

modifications should obviously be centered around the NR
family of algorithms. In the context of the inherent fea-

tures of the NR algorithm, the adaptive strategy should in-

corporate one or more of the following basic options namely:

1) Adaptive tangent stiffness updates;

2) Adaptive incremental load adjustments;

3) Adaptive incremental time adjustments.

As noted earlier, the various self adaptive strategies
should be programmed so as to be triggered by various of the
previously discussed validity/convergence tests. The hie-
rarchy of such modifications should be arrayed so that the .

quality of convergence test can be used to initiate the al-

gorithm with the requisite degree of sophistication and ef-
ficiency required by the solution difficulties encountered. L
The adaptive stiffness updates can themselves be or-

ganized in three main categories namely: '

a) Global updates, |

b) Local updates and

c) Partial updates.
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The global stiffness updates should be based on either the
degree of global geometric and material nonlinearity excited
or because of poor solution convergence as determined by the
validity/convergence test. The initiation of local updates
should depend on the degree of local element nonlinearity
excited. The incorporation of the local update option would
obviously enhance the overall efficiency of the calculations.
While the global and local preferential updates represent
higher order solution fixes, pseudo updates such as the BFGS
[9]* may represent a less costly self-adaption for certain
classes of problems wherein only minor changes in stiffness
may be encountered. Obviously for such problems as plastic
loading and unloading, pseudo updates such as the BFGS are
apt to yield erroneous results.

The adaptive incremental load and time adjustments can
also be organized in several main categories namely:

a) Increment expansion;

b) Increment contraction;

c) Corrective incrementation.
Increment expansion for either static or dynamic problems
can be initialized by various of the quality of convergence
checks. Since the solution quality can be constantly moni-
tored, any degradation initiated by increment expansion can
be followed by a subsequent contraction. The contraction pro-
cess should iteself be based on various checks such as:

1) Poor quality of convergence (non-monotonicity;

nonpositive definiteness, etc.);

*Currently available in ADINA 1978
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2) Level of nonlinearity excited;
3) Nearness to bifurcation points as monitored by
nonlinearity and energy checks.
Note, a high level of local nonlinearity may be used to
initiate local modification of incrementation. Obviously
in order to do this, special bookkeeping routines must be
initiated to keep track of the status of the loading.

Note for load increments for which significant solution
divergence is encountered, corrective load incrementation
should be initiated. 1In particular, negative load incre-
mentation should be employed to retrace a portion of load
history wherein a lower order algorithmic strategy yielded
poorly converged results. For time dependent problems, cor-
rective incrementation should be initiated to retrace a por-

tion of time history.
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V. Summary

As noted earlier, the primary emphasis of this part
of the ISEG evaluation study was to establish the compu-
tational capabilities/shortcomings of the numerical algori-
thms inherent to ADINA (1977). For this study, it was
achieved by utilizing specialized benchmark problems with
the two-fold purpose of;

i) Performing code check-out; and more importantly

ii) Establishing the algorithmic sensitivities, con-
vergence characteristics and typical solution

failure modes generic to the ADINA algorithmic

apparatus.
Since ADINA has the capability to handle both kinematic and

material nonlinearity, special emphasis was given to ascer-

taining the operating characteristics in the presence of
softening, hardening, elastic/plastic and load/unload situa-
tions.
In this context, the benchmarking served to establish
the sens tivity/pathological behavior of the various non-
linear algorithms to changes in:
i) Convargence criteria;
ii) Time step size; '
iii) Load increment size;
iv) Material models;

v) Order of integration of element stiffness, etc.

To enable the evaluation of the various behavioral patho-

logies, specialized coding was programmed into ADINA to allow
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the strain energy, potential energy and kinetic energy
histories to be evaluated during the various stages of
calculation. This allowed for the monitoring of the initia-
tion characteristics of anomalous pathological solution be-
havior.

The typical types of solution stops encountered during
the degradation process most often involved either:

i) oOut-of-balance loads;

ii) Negative pivots or;

iii) Iteration limit stops;
All other types of stops (zero Jacobian etc.) could be attri-
buted most often to input errors in the data preparation or to
the use of the code outside its range of capabilities. For
instance, application of the code to bifurcation problems in-
volving changes from positive to negative definite tangent
stiffness are outside the range of application of the solu-
tion algorithm. Hence, care must be taken in dealing with
problems involving statically or dynamically generated post-
buckling behavior.

Typically it was found that the nature of degradation
is dependent on the relative magnitude of load/time incre-
ment size. Usually three basic types of solution pathologies
were encountered. Specifically:

i) Immediate and strong nonmonotonicity;

ii) Moderate but progressively increasing non-
monotonicity and nonpositive definiteness; and
iii) Mild monotonicity with either very gradual increases

or decreases in solution oscillation.
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The first two types were found to give rise to out-of-balance
loads and negative pivots (bifurcation problems) while the
third type caused iteration limit stops.

As noted earlier, such anomalous behavior is not an
outgrowth of any shortcomings in the ADINA architecture and
coding practice. Rather, they are due to the intrinsic pro-
perties of the modified NR procedure used to solve the non-
linear field equations arisincg in both the static and
dynamic branches. Farthermore, as an outgrowth of fairly ex-~
tensive code check-out benchmarking, apart from minor bugs,
the algorithmic apparatus inherent to ADINA (1977) is both
honestly and accurat2ly programmed.

Due to the results of the sensitivity studies, it has
been observed that while ADINA can generally be forced to
generate a solution to highly nonlinear problems via the vari-
ous restart and time block options, such an approach is typi-
cally expensive and time consuming. Because of this and the
adaptability of the coding and architecture, some heuristic
type algorithmic capabilities should be incorporated in ADINA
to streamline the process of solution generation in highly

nonlinear problems.
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APPENDIX 1: Energy Calculations

As was first noted in Chapter III, the local and global
strain energy are used to monitor the computational capa-
bilities and shortcomings of the algorithms inherent to ADINA
(1977). For the present purposes, the TL version of the energy
functionals will be derived. The development will include both
the local element and global versions.

To start, we turn to the NR algorithm defined by

(Kp (Y)14Y = AR (A-1)

! where here Ax denotes the increment of displacement associated
with a given unbalanced load AE and [KT] is the current tangent
stiffness matrix. For a given load step, the iterative solu-

tion of (A-1l) obviously leads to the overall incremental res-

ponse. Graphically, the results of the iterative process is

defined in the scalar analogy given in Fig. Al-1. The incre-

mental energy stored during a given iteration step is es- _
sentially the shaded area illustrated in this figure. Reali- %

zing that the ordinate values of the true solution surface are

given by the relation[7]

F = f[s (v)1To (y)av (A-2)
" n, LAVINRAV]

y L
it follows that the incremental energy stored during the kth v

iteration step can be approximated by the inner product
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Er =5 (Ey v Ey )8y
Y f Ky, T K
=\ B Ry) dv e
¢ 'R
0
k+1 T k+1 T k
[18 0 0T, vy ) av) oy, (A-3)

where ( )T denotes matrix transposition, and B is the element
strain-nodal displacement transformation matrix.
In terms of Fig. (Al-2), assuming that a total of Kt

th

iteration steps are associated with the i load step, then

the following expression can be developed for the energy

P
i stored namely

1 K k k+1. Tk .
=2 kél (Fy + Fy ) 8Y; .
2
i

;K
-7 0 (Ji o1 sy av A

k=1 'R
° I
T T |
k+1 k+1 k B
[t8 vy 1 otyy™y av) sy, (A-4) 3
R

Summing (A-4) over the entire set of I load steps yields the L

requisite overall strain energy stored for a given problem

namely

e s
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)
E, = E,
t P
1 1 K.i K k+1 T k
= ? z Z (F' + F-i ) Y]
i=1 k=1 Vv v
1K k T
- 131 (Jeoapie) e
=1 k=1 "R °
e H T o Yy an) oy (A-5
[ gy gty an) s -5)
0

To obtain the element strain energies from (A-5), the
various nodal displacement and force vectors must be inter-
preted from a local p01nt of view namely

z (f[e (X g(x:e)dv -

H D10

. 1
ft * 2 is1

£[B(Y H oH )dOAY

(A-6)
e

0
where here Yk Y¥+1 and AYF denote local element partitions

nle mlek anle

k+1 k . . .

of z?, zi and AXi and oRe is the region occupied by the
eth element.

Because of the form of either (A-5) or (A-6), any form

of tangent stiffness type constitutive law can be accomodated.

This is particularly true for those inherent to ADINA (1977).
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The actual calculations programmed into the ADINA's

algorithmic flow are depicted in Appendix 3. As noted

earlier, such options include the capability of handling:
Multiple element groups;

In/out of core solution options;

All available material property options and;

All algorithmic options (static and dynamic).

[P
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APPENDIX 2 : Code Checkout

The various benchmarks that were run strictly for
preliminary code check out will be briefly discussed in
this Appendix. The problem types employed fell into three
main structural categories némely:

1) Beam/truss type structure;

2) 2-D continuum and;

3) 3-p continuum.

The analyses ran consisted of static, dynamic and eigenvalue/
vector problems.

For check out pruposes, NFAP, NONSAP, STRUDL and NASTRAN*
were employed to perform parallel runs. This enabled both
linear and nonlinear verifications to be performed on well tried
and readily available "general" purpose codes.

Note the linear benchmarks with STRUDL and NASTRAN en-
abled a thorough determination of any anomalies in much of the
ADINA bookkeeping associated with:

1. 1In/out of core solutions;

2. Handling of various boundary conditions;

3. Handling of different;

i) element groups
ii) material properties
iii) node sequencing etc.
Additionally, such tests permitted the benchmarking of the

initial structure stiffness.

*Cosmic version levels 16. and 17.5
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Once such factors were verified, the various geometric
and material nonlinearities were benchmarked within the capa-
bilities of NONSAP and its derivative NFAP.

The primary source of benchmarks was drawn from the
ADINA sample problems. Whenever possible, their results were
verified via either NONSAP, NFAP or the linear initial stiff-
ness results via STRUDL and NASTRAN. The benchmarks con-
sisted of the following list of problems namely:

l. Tower Cable;

i) static
ii) frequency
2. Rubber sheet; Mooney Rivlin material, small/
large deformation
i) static
ii) dynamic
iii) frequency (linear)
3. Spherical shell; elastic, plastic, concrete,
small/large deformation
i) static
ii) dynamic
iii) frequency (linear)
iv) onset of static/dynamic buckling
4. Thick walled cylinder; thermo-elastic-~plastic,
small/large deformation
i) static

ii) dynamic

ey
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5. Simply supported plate; elastic, plastic, concrete,

small/large deformation
i) static
ii) dynamic T
iii) frequency/linear
6. Arch;jelastic, plastic, concrete, small/large
deformation
i) static [

ii) dynamic

iii) frequency (linear)

s

iv) onset of static/dynamic buckling

Y ek

7. Cyclic creep analysis of a thick walled cylinder.
8. Underground opening, elastic, plastic, concrete,
static analysis. ;
9. Reinforced concrete beam
i) static K

ii) dynamic
iii) frequency

10. Pipewhip; dynamic response. |

During the initial attempts to run the foregoing pro-
blems, benchmarks 1-7 yielded successful solutions for all
the various analyses performed (static, dynamic, £frequency,

etc.). Such was not the case for problems 8-10. In par-

ticular, in our version of ADINA (1977), negative pivots

were initially encountered. After some debugging, dynamic

allocation problems were found in the MAXA array. Once
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corrected, all the above listed problems yielded successful
solutions for the various analyses performed.

To check the various bookkeeping features of ADINA
alluded to earlier, (in/out of core solutions, etc.), the
foregoing problems were modified in several different ways
namely;

1. Elementing increased/decreased

2. Element type changed

3. Node sequencing changed

4. Changes introduced in

i) Material types

ii) Boundary conditions

iii) Loadings etc.
In order to verify the in and out of core features, the
dynamic allocation and block size was increased and decreased.
Such an approach allowed the same problem to be run in and
out of core. For all the foregoing manipulations, apart from
the minor allocation difficulties associated with the MAXA
array, no difficulties or aberration were encountered in either
the beam, 2-D or 3-D elements.

In addition to the foregoing problems, several additional
code check out benchmarks were considered. The main thrust
of this group of problems was to establish the capability of
ADINA to predic: the onset of static and dynamic structural
instability. 1In this context, buckling problems involving

beams, arches, rings and spherical caps were considered. This
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included:

1. Offset loaded beam/columns with varying boundary
conditions;

2. Arches with varying depths and boundary conditions;

3. Radially loaded rings and;

4. Spherical caps with varying depths and boundary

conditions.

The results of the above noted "stability" problems
were compared with NONSAP and NFAP for independent veri-
fication. Note within the limits of the tangent modulus/MNR

approach, good resolution was obtained for such problems. '

Such was not the case though for the beam element. 1In par-
ticular, for offset column type buckling problem, immediate
solution failure was encountered. From the nature of the pro-
gram stop, (negative pivot), the difficulty appears to be
isolated to the beam element. This also follows from the fact
that good buckling predictions were obtained via the 2-D TL
and UL formulation of the same problem. Apart from the fore-

going difficulties, ADINA (1977) appears to be largely error

free.
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Appendix 3 Input Data Echoes for Selected Sample Problems

1) Static Analysis of a Rubber Sheet
2) Dynamic Analysis of a Spherical Cap

3) Dynamically Loaded Cantilever Beam
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