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ABSTRACT

This paper is concerned with eigenvalue problems for boundary value

problems of ordinary differential equations posed on an infinite interval.

Problems of that kind occur for example in fluid mechanics when the stability

of laminar flows is investigated. Characterizations of eigenvalues and

spectral subspaces are given and the convergence of approximating problems

which are derived by reducing the infinite interval to a finite but large one

and by imposing additional boundary conditions at the far end is proved.

Exponential convergence is shown for a large class of problems.
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SIGNIFICANCE AND EXPLANATION

This paper deals with eigenvalue problems for ordinary differential

equations posed on an infinite interval. These problems have the following

form: We have a system of linear ordinary differential equations depending

linearly on an (eigen) parameter and boundary conditions at a finite point

to" and we look for nontrivial solutions which fulfill the differential

equation on the interval [t0,W) and the boundary condition at to, and

which have a finite limit at infinity. Such problems occur frequently in

fluid mechanics when the stability of flows over infinite media is

investigated. In this paper eigenvalues and spectral subspaces are

investigated and characterized. A suitable way to solve such problems

numerically seems to be to cut the infinite interval at a finite, large enough

point T and to impose suitable 'artifical' boundary conditions at t = T in

order to get an eigenvalue problem for a two-point boundary value problem on

[t0 ,T]. The questions that arise immediately are: What boundary condition

at T achieves convergence of the 'finite' solution to the 'infinite'

solution as T converges to infinity, and what order of convergence can we

expect. In this paper exponential convergence is shown for well constructed

approximating problems.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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EIGENVALUE PROBLEMS ON INFINITE INTERVALS

Peter A. Markowich

1. Introduction

This paper deals with eigenvalue problems of the form

(11)y' - tUA(t)y - XtUG(t)y, I t < a > -1

(1.2) By(l) - 0

(1.3) yE C{UI,-]) : <-> y c C([1,=)) and lim y(t) exists

where the nxn matrices A,G e C([1,-]) and A(,) * 0 . A sound theory for inhomogenous

boundary value problems on infinite intervals has been developed (see Lentini and Keller

(1980), de Hoog and Weiss (1980ab), Markowich (1980a,b,c)) but not much attention has been

paid to eigenvalue problems with a singularity of the second kind. de Hoog and Weiss

(1976) established a theory for eigenvalue problems in the case that the differential

equation has a singularity of the first kind (a - -1) and that G(w) = 0. They could show

that the spectrum has no finite limit point and that the spectral subspaces associated with

a particular eigenvalue are finite dimensional. They also considered difference schemes

for problems which have been transformed to a finite interval, and they derived convergence

results for eigenvalues and spectral subspaces u3ing the collective compactness of the

difference schemes. They also derived certain properties of the spectrum and the spectral

subspaces of (1.1), (1.2), (1.3) under the assumption that the matrix A(-) + AG(-) has no

eigenvalue on the imaginary axis (see de Hoog and Weiss (1980a)). They showed that all

eigenvalues A for which this assumption on A(-) + AG(-) holds are isolated and their

spectral subspaces are finite dimensional. Their proofs hinge on the Fredholm property of

the differential operator.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under

Grant No. MCS-7927062.



The goal of this paper is twofold. First to derive properties of the spectrum and the

generalized eigenvectors of (.1), (1.2), (1.3) and second to consider the approximating

eigenvalue problems

(1.4) 4 - tA(t)N1 - XTt 0
G(t)xT , I 4 t < T, T 1

(1.5) DxT(l) - 0oI

(1.6) S(T)xT(T) 0

These problems, with a suitably chosen matrix S(T) are 'regular' two point boundary

eigenvalue problems which can be solved by any appropriate code, for example by collocation

(see de Boor and Swartz (1980)). A class of matrices S(T) for which the eigenvalues and

spectral subspaces of (1.4), (1.5), (1.6) converge to those of (1.1), (1.2), (1.3) will be

defined and the order of convergence, which turns out to be exponential in the most

important cases, will be estimated.

This paper is organized as follows. In Chapter two the case where A(-) has no

eigenvalue on the imaginary axis and where G(-) - 0 is treated, in Chapter three the

assumption G(1) - 0 is neglected. In Chapter four no assumption on the eigenvalues of

A(w) are made, but a certain order of convergence of G(t) to 0 is required. In

Chapter 5 the Orr-Sommerfeld equation, a fluid dynamical problem posed as an eigenvalue

problem on an infinite interval, is dealt with and appropriate approximating problems are

devised.

It is of particular interest that the approximation theory in the case G(1) * 0 is

treated by using Griegorieff's (1975) 'discrete' approximation theory for eigenvalue

problems, which allows the approximating operators to be defined on different spaces which

- in some sense - converge to the space on which the eigenvalue problem is posed. This way

of pursuing simplfies the analysis essentially.

-



2. G(") - 0 : The 'Compact' Case

We assume that A(-) :- liM A(t) has no eigenvalue with real part zero and that
t+",

G(") :- lim G(t) - 0 . We transform A(-) to its Jordan canonical form J(-)
t~ft

(2.1) A(") - FJ(O)F-

and assume that J(") has the blocks structure
(2.2) J(-) - 4.g(J: , J-)

where J contains all Jordan blocks which have eigenvalues with real part larger than

zero and J. contain all Jordan blocks with eigenvalues with negative real part. Let

Jo, be a r+ x r+ matrix and J a r x r matrix and let D+ resp D. be the

projection onto the sum of invariant subspaces associated with the aigenvalues of

J+ resp J: . We define a solution operator H of the problem

(2.3) z, - t J(-)z + t g(t)

for all real a > -1 as follows

(2.4) (Hg)(t) - 4(t) D ( s gls)ds + 4(t) ftD.-(s)sag(slds

where 6 ) 1 and

(2.5) 4(t) - exp(--- ta+ 1)

This operator has been used by de Hoog and Weiss (1980a,b) and they showed that

Hg E C([1,1]) if g E C([1,0]) and that

(2.6) (Hg)(-) - -J(-)- g(-)

holds. Moreover H : C((6,-]) + C((6,"]) is bounded and its norm is independent of

and

(2.7) I(Hg)(t)I , const.(Ig + 'xp(- T ,21ti--l)**g ,
t a+1 in+12

holds for t ) 2. As norm in C([6,-]) we take 1.1K6,- ] which denotes the max-norm on

the interval [6,]

Now we investigate the problem

(2.8) y' - t A(t)y - t'G(t)f(t) 1 ( t <

(2.9) By(i) - 0

-3-
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(2.10) y C C([l,.])

where f E C([l,-]). Substituting u F-ly the general solution of the transformed

problem (2.8),(2.10) is

(2.11)(a) u(t) - *(t)G_ + (H(J - J(O))u)(t) + (HF IGf)(t), C C r

where J(t) = F- A(t)F and the n x r -matrix G_ is obtained from D_ by cancelling

all columns which have only zero entries.

obviously the operator

(2.11)(b) H(J - J(-)) . C([6,-]) + C([6,-])

fulfills IH(J - J( )) [6,-] < 1 for 6 sufficiently large. Therefore u in (2.11) is

defined uniquely on [6,-] and can be extended uniquely to [1,-]

Setting

(2.12) 4(t) = ((I - H(J - J(-))- G_)(t)

(2.13) f(Gf)(t) = ((I - H(J - 3())) -HF -Gf)(t)

we get the general solution of (2.8), (2.9), (2.10):
r I

(2.14) y(t) = F4 (t)& + F(Gf)(t), t C [1,-], E E C

So (2.8), (2.9), (2.10) is uniquely soluble for every f c C(C1,]J) if and only if the

r x r matrix

(2.15) BF*_(1) is regular.

B is assumed to be a r x n matrix. (2.6) and (2.11)(a) imply that y(-) = 0

Now we define the operator V as follows:

(2.16) V f ]
f +Vf y

where y is the solution of (2.8), (2.9), (2.10). V is defined properly if and only if

(2.15) holds. This is no restriction because if X = 0 is an eigenvalue of (1.1), (1.2),

(1.3) we substitute A - A + y so that the problem with A(t) replaced by A(t) + XG(t)

has not I - 0 as eigenvalue.

(2.7) and (2.14) imply that V is bounded.

-4-
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Obviously the eigenvalue problem (1.1), (1.2), (1.3) is equivalent to

(2.17) Vf - Pf

with

(2.18e) - -

Our goal is to show that V is compact. We need the following

Lemma 2.1: Assume 0 E C([6,-]). 0(t) * 0 as t + -, a > 0 and 6 > 1. then the set

A defined by0

A0 :- {f C C([1,-])Ifl [1, ] ( CI, Ef(t)l C2 o(t) for t l 6, If(t)l 4 C3 to,

for a E R is conditionally compact in C([1,1) .I

Proof. Given £ > 0 we choose T - T(C) > 6 so large that 0(t) < I for t ) T •
C2

obviously there is a finite collection of intervals I i for i - I(1)(N(C) - 1) whose

conjunction is (1,T], and there are points ti  in I so that

sup sup Ef(t.) - f(t)l < E , i - 1(1)(N(C) - 1)

feA tEI 1
0 i

This is fulfilled if iJ < C/(C3 T 
a
) with ti arbitrary in Ii

Setting t N( - Theorem 5 in Dunford and Schwartz (1957) is fulfilled and the

Lemma follows.

From (2.11) and (2.7) we conclude that

(2.19) *CVf)(t)I < const(l0(t)G-l + 1J(t) - J(a)l + EG(t)l +t t(.g ,-] [ -
22

+ lexp( J (2a+ - 1)t'+lPJIfI t 6 > 2
a1 2 (1,]

holds because E in (2.11)(a) equals -(BE (1))- E*(f)(1) . Setting

(2.20) a(t) 10(t)G I + IJ(t) - J(-)l t + IGt)I + Jexp(- 
l 

Ija+t

we notice that o(t) + 0 as t + - and therefore

(2.21) {Vflf C C([1,]), Ifl[1,- ]  < 1) E A

for some constants CI, C2, C3 - So V is a compact operator on C([1,]).

-5-
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Because C([1,-]) is infinite dimensional and V is bounded the spectrum 0(V)

consists of an infinite sequence of eigenvalues P ± 0 of finite algebraic multiplicities

and P - 0 £ o(V) is the only accumulation point of the pi s . This implies that the
1i

eigenvalues A. - of (1.1), (1.2), (1.3) have no finite accumulation point, they

fulfill

(2.22) i+ as i * .

The spectrum of compact operators is described in Dunford and Schwartz (1957), Clapter VII,

Theorem 5.

Let V * 0 be a fixed eigenvalue of V . We want to investigate the spectral

subspace associated with V . The spectral projection is given by

1 - -1
(2.23) E - E(P) f (z - V) dz:C1,0 + CE(1,])

2±r

where r is a circle centered at p which contains no other eiqenvalue of V * Moreover

(2.24) rank(E(U)) - m

where m is the algebraic multiplicity of P * Let

(2.25) Range(E) - span{ ,o,]mj = N(( - V)

hold, where the Pi are generalized eigenfunctions of V . N denotes the null space and

8 the ascent of P - V

As the range of E is invariant under V we get
m

(2.26) - A(t)P -i a ijt G(t)I., Bi (1) = 0 , Pi C C111,])

The m x m matrix (a±j) can be assumed to be in Jordan canonical form with the only

eigenvalue X = 1 • This can always be achieved by a basis transformation. So every
i

element Pk is contained in a finite chain 17 -P
°
* r which fulfills

r r
(2.27) ' - t(A(t) + G(t)) r = 0 , BP I(1) - 0 , C(

r 2r r

(2.28) P'- t(A(t) + XG(t)) r2 tcG(t)p , Br (1) - 0 , S CW1,1).

(2.29) '£- t (A(t) + )iG(t))pr = t G(t) r. I ,Bpr(1) - 0, r s C([I,=])"
r 2. r 2 r

-6-
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Obviously every Pi fulfills

(2.30) 1 i(t)E ( C i(t)

but a stronger estimate will be advantageous for the order of convergence of the

approximating eigenvalue problems (1.4), (1.5), (1.6). Therefore we assume that

(a+l)k +1

(2.31) A( ! ), G( ) £ C - 0, ']) 6 1 , C £ N0

holds, where k is the largest algebraic multiplicity of an eigenvalue of A(a) with

negative real part. Under this assumption it follows from Markowich (1980b) that

which is the solution of the homogenous problem (2.27) as well as the -rl for i > 1

which are solutions of inhomogenous problems decay exponentially and they fulfill the

estimate

(2.32) IP (t)U ( C exp( + t ), t 6
r i M+

where v_ is the largest negative real part of eigenvalues of A(-) and

E - E(6) > 0 fulfills v + £ < 0 and (6) + 0 as 6 + - . Therefore all elements in

Range(E(.)) fulfill the estimate (2.32).

Now we want to investigate the convergence of the eigenvalue and generalized

eigenvectors of the approximating problems (1.4), (1.5), (1.6). As a notion of the

distance of closed subspaces we use the 'gap' (see Osborn (1975)) which is defined as

follows

(2.33) gap(M,N) - max( sup dist(x,N), sup dist(M,y))
x CM yCN
1xI-1 lyA-1

where M,N are closed subspaces of a Banach space (X,I.1) and dist is defined as

(2.34) dist(x,N) - inf Ix-yI
yEN

We define the operators VT for T sufficiently large by

(2 .35 ) VT f Y(f * Vf "x T

where xT fulfills

-7-



(2.36) - taA(t)}T - taG(t)f(t), I < t < T

(2.37) BxT(I) - 0

(2.38) S(T)XT(T) - 0

and

(2.39) XT(t) XT(T) for t ; k .

This definition makes sense if and only if (2.36), (2.37), (2.38) is soluble for every

f c C([I,-]) and T sufficiently large. de Hoog and Weiss (1980b) have shown that this

is the case if (2.15) holds and the r x n -matrix S(T) fulfills

(2.40) IS(T)I 4 const. as T +

(2.41) I(S(T)FG +)_I ( const as T +

where the n x r+ matrix G+ is obtained by cancelling all columns of D, which have

only zero entries. Moreover the stability estimate

(2.42) 
1
cI, [1 T] < const'(if# [1,T + Iy(T)I)

holds for problems of the form (2.36), (2.37) and

(2.43) S(T)(T) = y(T)

instead of the homogenous boundary condition (2.38). de Hoog and Weiss (1980b) have also

shown that (2.41) is necessary if (2.40) holds and they constructed matrices S(T)

fulfilling (2.40), (2.41) more explicitly. Obviously the estimate (2.42) with y(T) E 0

and the definition of VT imply

(2.44) IVTI,- ] 4 const.

Every operator VT is compact because

(2.45) I(VTf)'I [ 4,T) const. TaIfI[,T]

holds and VTf is constant on [T,-
] 

. By adding the identity S(T)y(T) = S(T)y(T) to

(2.8), (2.9), (2.10) and by subtracting from (2.36), (2.37), (2.38) we get the problem

(2.46) 'IT  y) - A(t)(xT - y) - 0 1 4 t 4 T

(2.47) B(xT - y)(1) = 0

(2.48) ST) xT - y)IT) -SIT)y T)

-8-



Applying estimate (2.42) implies

(2.49) IVf - Vf" 1,T] ( const.ly(T) ( const o(T)If[

where a is defined in (2.20). Also we get

(2.50) IVTf - Vf|[1,- ] ' 2EV f - VfI[(,T ] + 2Uyl IT,. ]

because of (2.39). Therefore VT converges to V in the norm and

(2.51) KVT - V[I ,., < const.O(T)

holds.

It should be noticed that G(t) + 0 as t + - is absolutely crucial for the norm

convergence.

The eigenvalue problem (1.4), (1.5), (1.6) is equivalent to

(2.52) Vf f

with

(2.53) 1
T

The generalized eigenfunction of (1.4), (1.5), (1.6) are obtained by restricting the

generalized eigenfunction of (2.52) to [1,T].

Because of the compactness of VT  there is an infinite sequence of eigenvalues

(i * 0 accumulating at 0 . The compactness and norm convergence (2.51) allows us to
T

apply osborn's (1975) result. We derive the following convergence statements.

For T sufficiently large there are exactly m eigenvalues of VT , counted

according to algebraic multiplicities, which lie in the circle r defined in (2.23).

These m eigenvalues w ,1 .. ,T converge to u as T + The spectral projections
T T

(2.54) E = - (z - dz
T 21vi r VT)

fulfill

(2.55) (a) rank(ET) = rank(E) = m , (b) gap(ETE) + 0 as T +

Setting

(2.56) T T

we get

(2.57) max(l; T - il, gap(E ,E)) const. I(VT - V)IRange(E)"[1, ]

where (VT - V)IRange(E) denotes the restriction of VT - V to Range(E).

-9-
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Resubstituting X * - and assuming that (2.31) holds we get the following

estimate which implies exponential convergence:

(2.58) max(I- I gap (E 1E)) < const. exp T )

The estimate for the order of convergence of each AT to X is worse:

(V + E)
(2.59) Ix - A T 1 const. exp( -,T+

+) , i = 1(1)mTo

Here 8 is again the ascent of u - V . The constants in (2.58), (2.59) are

independent of T but may very well depend on A . If the assumption (2.31) is dropped

it is easily derived from Markowich (1980b), Chapter 2 that the generalized eiqenfunction

decay faster than every (negative) power of t and so the same is true for the order of

convergence (2.58), (2.59).

A possible choice for S(T) is

(2.60) S(T) x S E (G+) TF
- I

where the superscript T denotes transposition. The condition (2.41) is fulfilled because

(2.61) SFG+ . ir

holds for the choice (2.60), which has been used by de Hoog and Weiss (1980b) for the

solution of inhomigenous boundary value problems on infinite intervals.

-10-
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3. The Case G() * 0

Again we consider the problem (1.1), (1.2), (1.3) but we drop the restriction

G(I) - 0 . We again assume that B is a r x n-matri.

The following assumption will be needed:

(I) The problem

(31)Y - t QAMtY h - 0 1 4 t <(3.1) Yh~a~~y0 1 t

(3.2) Byh(l) - 0

(3.3) Yh £ C([I,-])

has the unique solution Yh " 0 * This guarantees that the r x r_- matrix

(3.4) BF*(1) is regular

and therefore the inhomogenous problem

(3.5) y' - t A(t)y - t G(t)f(t), 1 4 t < -

with the boundary conditions (3.2) and (3.3) has a unique solution for every f e C(11,-]).

Moreover we restrict the eigenparameter X to an open and connected set 9 c C with

0 e a so that the matrix A(-) + AG(-) for A E 0 has no eigenvalue v() on the

imaginary axis and therefore the matrices G+ and G_ are constant for X £ 0

de Hoog and Weiss (1980a) proved that all eigenvalues X of (1.1), (1.2), (1.3) which

fulfill A E 0 are isolated and that the associated spectral subspaces a1u finite

dimensional. Each (generalized) eigenfunction y associated with an eigenvalue X c a

fulfills y( ) - 0 . The spectrum of (1.1), (1.2), (1.3) has no finite limit point in

Of course this settles the case G(-) - 0 completely because then 0 - C holds but

the compactness arguments in Chapter 2 were included because they will be used in Chapter

4 where imaginary eigenvalues of A(-) will be admitted.



We define the operator V slightly different to Chaptor 2:

(3.6) V:{ C(E ]) []

where C 0((1,-]) is the Banach space of all function f c CU(1,fl which fulfill

f(- 0 and y is the solution of the problem (2.8), (2.9), (2.10). Assumption (1)

makes V well-defined on C0 ([l,-]) and (2.6), (2.11) guarantee that y(-) =0 if

f(-) -0

The eigenvalue problem (1.1), (1.2), (1.3) is equivalent to

(3.7) Vf - Pf I C ((1,]))

with

(3.8) P ~ ef

because all generalized eigenfunction associated with X~ £0 are in C 0(11,-]) and

because X - 0 is no eigenvalue.

Now let us consider a fixed eigenvalue u~ E Q with algebraic multiplicity

mn and acent .The spectral projection is again given by

(3.9) E =E(li) = -L f(z - V) 1
'z:C [1-

27r 00

where the circle r centered at Ua contains no other eigenvalue of (3.7) and the image of

r under the mapping X~= denoted by -1(r) is in Q . E fulfills (2.24), (2.25).

We want to approximate the generalized eigenpair (A,Range ME(OMl by a sequence of

nearby eigenpairs of (1.4), (1.5), (1.6).

Therefore we define the operators VT for T sufficiently large

(3.10 VT f C([1,T]) +* C(fl.T])

T3.T0)

where x T solves (2.36), (2.37), (2.38), S(T) is independent of X~ and fulfills (2.40),

(2.41). So the VT's are defined properly and fulfill

-12-



(3.11) [V1f ,T) const.fI Y 1,T)

(3.12) IIVTfTl)I,1,T ] f const.TaIf7 i[1,T]T~ T([,T)

So each V. is compact and has an infinite sequence of eigenvalues u T hich have the

only accumulation point 0 * The associated spectral suhspaces are finite dimensional.

it is therefore clear that the finite interval problems (1.4), (1.5), (1.6) can not be

used to approximate continuous parts of the spectrum of (1.1), (1.2), (1.3) which may very

well exist outside of 0.•

We define the restriction operator

3 ( T [1]) + C( [1,T)

( f + r f - fl! 1 ,T]

Then for every sequence T * the sequence of spaces C([I,Tn] ) form a discrete
nn

approximation AlCl[1,]), n C([1,T 1), r ) for the space c0 ([1,-]) in the sense of
0 n T7n n

Btummel (1970).

A sequence fT £ C([,T]) is said to converge to an element f C C0([1,m]) 1
n

denoted by fT f , if
n

(3.14) IfT -r fl 1,T 1 0 as n 4 .
n n n

A sequence of bounded operators in C([I,Tn]) ' is said to converge to a bounded operator

on C0 ([1,-]) , again denoted by AT + A , if for every f C C0 ([1,-]) and for every
n

sequence fT
n

(3.15) fT + f implies A fT + Af
n n n

We will drop the subscript n mostly.

Taking a fixed z * 0 in the resolvent set of V and in ( $I) we investigate

(z - VT)
- 
I Setting uT - (z - VT)'IfT for an arbitrary fT C C(UI,T]) we easily find

that

-13-
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(3.16) U, " z

'I "' z

where YT solves
,1 1

(3.17) - a(A(t) + - G(t)lyT G- G(t)f

(3.18) BYT(1)- 0

(3.19) S(T)YT(T) - 0

Defining F(-) as the matrix which transforms A(-) + -1 G(-) to its Jordan canonical form
z z

we derive from de Hoog and Weiss (1980b) that (3.17), (3.18), (3.19) is uniquely soluble

for T sufficiently large if

(3.20) I(S(T)F(-)G+) I 4 const as T *

and the estimate

(3.21) (z ) const(z)
T T 1,T]

follows if (3.20) holds. This bound is uniform in z c K1 , where F, is compact,

0 4 1 and -1 (K ) c S (see Kreiss (1972))Po

This analysis also shows that

(3.22) (z - V ) (z - V)
"

T

uniformly for z e Yi. Therefore (3.20) guarantees that

(3.23) inflP - U 0 for t -
V T

where P c -!(R) are the eigenvalue of V and UT are the eigenvalues of

VT . Moreover the spectral projections fulfill

(3.24) E (0) = - f (z - V dz E(P)
T 21t i r Tr

(3.25) lim rank(E ()) > rank(E()).
T -

The sets Range(ET(p)) form a discrete approximation A(Range(E(p)), R Range(ET(i)),rT
T

for Range(E(U)). (see Grigorieff (1975)).

In order to make sure that rank(E ( )) - rank(E(O)) for T sufficiently large it is

sufficient to show that the sequence ET () is discretely compact (See Stummel (1971))

because E(P) has finite rank.
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We recall that the sequence of bounded operators AT in C(1[1,T]) is discretely
n

compact if for every bounded sequence fT e C([1,T J) there is a subsequence fT so
: n nk

that Ar fT is convergent to an element in C0(1,]) 
k

~n k k

We write

(3.26) ETrT - rTE + (ETrT - rTEI)Co((I,-J) - C([I,TJ)

Obviously

(3.27) E r - rTE 1 (z - VT (V r rV)(. - V) Id-
T T T 21ri fr( T V TV r -rV( )d

holds.

For an arbitrary f C C0 (11,w]) the function T - (VTrT - rTV)f C C(1[I,T]) in the

solution of the problem

(3.28) e; - tA(t)eT - 0 , I (t(T

(3.29) OT (1) - 0

(3.30) S(T)eT(T) - -S(T)(Vf)(T)

Proceeding similarly to de Hoog and Weiss (1980b) we can express eT explicitely.

We substitute FeT - eT where F is as in (2.1) and get the problem

(3.31) ;; - t'J(m ) + t lJ(t) - J(-lle T

J(t), J(-) are as in (2.11), (2.2). Now we write

;T _ T + T T r+ T r
(3.32) T eT1 + 2 1 £C ' 2 EC

where eT ,T fulfill

. (to+1 -T
(3.33) eT(t) + (H (J - J("))eT)(t)T [j T T

0

(3.34) ;;(t) " + (HT(J -J(-)e-l(t)

exp( J t+)T

where HT is a suitable solution operator of the problem

-15-



(3.35) Z' t~J(t)z + tclg(t) , 1(t 4 T 9 C CU(1,T])

We choose

(3.36) (H Tg)(t) -(Hg)(t), 1 4 t -1 T

with H defined in (2.4) where g has been set to

- fg(t) 1 1 t fT
(3.37) g(t) gT

Because H is bounded on [6,-] independently of 6 we get

(3.38) IHT~(J - J(-))t CST const. NJ - J() 1/2

f or 6,T sufficiently large. The operator

(3.39) 1 - HT(J - J(-)) : CU6S,T]) + CU[6,TI)

is invertible and e-~T C(16,T]) are uniquely defined and can be continued to [1,T]

Inserting (3.32) into the boundary conditions (3.29), (3.30) gives:

-4 T[ Fe T(1) BFe T(1) 0
(3.40)J

S(T)Fe.T (T) S(T)Fe- (T) 2 -S(T)(Vf)(T)
ZT2

de Hoog and Weiss (1980a) have shown that

(3.41) (a) limi '.(T) - G , (b) e-r I *0 as T -
TwT + ZT rT*-[,T]

hold, where *J, is defined in (2.12).

A block system of the form

(3.42) :~ 2} =~b

where BC are quadratic matrices is uniquely soluble if and only if B,(c N KB

are invertible and the solution is

-16-



(3.43)

2 -C - A); B - -C- l 

The off diagonal matrices in (3.40) are invertible, their inverses are bounded as T

the matrix in the (2,2) position converges to 0 as T + - and the matrix in the (1,1)

position is bounded, and therefore the system is invertible for T sufficiently large.

Moreover
-+

(3.44) lim eT(1) - 0
T+=

holds because we get from the series expansion of (3.33):

+0 +
JJ

exp(-i(w-T 
1

)) -T )
,'s [ + ]' ],JJ"[ a1
T 0 1 [6,T] 0 [6,T)

where w(t) - t + j has been set. The right hand side of this inequality can be estimated

by

K .+1 a+l (+_ a+1 i
(3.44)(b) G(K,T) - C max max (IJ(t)-J("),exp((Ct -T ))(T -t

i-1(1)k tc(6,T]

where K is the smallest (positive) real part of the eigenvalues of J+ and k is the

dimension of the largest Jordan block with eigenvalue with real part K . Obviously

o(K,T) - 0 as T + m and (3.44) follows by continuation to [1,TI

We get from (3.40), (3.41), (3.43), (3.44)
T (STF+-1

(3.45)(a) T "(((T)FG ) + o(T))S(T)(Vf)(T)

(3.45)(b) & o(T)S(T)(Vf)(T)

holds. For g e C0 ([1,-]) we therefore get:

(3.45)(cXV r -r V)(z-V)- Ig - (-Fe+(q(T)FG 1 + Fe-o T) + o(TI)S(T)IVlZ-V)-'g)(T)

Obviously h - V(z - V)-Ig is the solution to the problem

(3.46) h' - ta(A(t) + - G(t))h = t a G(t)g(t)
z z

(3.47) Bh(l) - 0

(3.48) h c C0((1,-])

-17-
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We define

(3.49) A(t,A) = Aft) + AG(t) for t ell,-)

and the family of operators H(M) C([6,]) + C(1,] )

t a
(3.50) (li(Ag)(t) = *(t,A) ft P4( O~ (s,X)sO'g(s)ds + *^(t,A) f p(A) (s'Ale g(s)da,

for 6 > 1 where

(3.51) O(t,A) = exp(A( ,A) . )
nt+1

(3.52) (a) P+(X) = F(XID+F- 1 ), (b) P_(A) = F(D)D F-IX)

hold. Obviously H(0) - FHF -  for H as in (2.4). The projections P (A), P (A) are

holomorphic in compact sets K c Q (See Kato (1966)).

Using the techniques of de Hoog and Weiss (1980a) and Markowich (1980b) we conclude

that

(3.53) SHIA)$ [ CIA)

where C(X) is independent of 6 and bounded on compact set K (z Q . Moreover it is an

easy exercise to show that (H(X)g(*,X))(t) is holomorphic in K for all t e [6,"] if

g(t,A) is continuous for t E (1,"] and holomorphic for all t in A C K

Proceeding as in Chapter 2 we rewrite (3.46)

h ' 
= t 

a A(-,-)h + t(1(A(t,-) - A(-,))h + *-taG(t)g(t)
z z z z

(3.54)
B(t,1-)

z

and get
I 1 I ) ( ,

(3.55) h(t) - $(t,-lW(1){ + I)hilt) + -(H(-)Gg)(tl
z z z Z z Z

where the columns of the holosorphic n x r matrix W_(-!) span the range of
-zr

P-(.) and E C Because of (3.53) there is a fixed 6 so that
-z

(3.56) <H )B1 |[, ] /2 for all z c S

where 1 is the closed disk contoured by r

-i8
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Setting

•!(3.57)(a) i (.,X) - (I - H(X)B(.,X))'I*(., )W_(A)

(3.58) (a) ~ 1
(3.57)(b) *(Gf,A) " (I - H()D(°A))-i(A)Gg

The general solution of (3.46), (3.48) on [6,-] is

(3.58) h(t) - ;_(t,-!)C + --z (Gg,z!)(t)

'J-.,(Gg,X) can be uniquely extended to [I, - ]

Proceeding as in (2.19) using (3.53) we get

(3.59)(a) I*(Tq)I - o(T) uniformly for z c r

and

(3.59)(b) I;I - O(Ig[,) uniformly for z c r

can be concluded as in Chapter 2 using (3.56).

(3.56) and the uniform convergence of the series expansion of (3.57) assures the

analyticity of *(Gg,-)(T) for z C S Therefore
z I

ET zV-1g -+ -1 ~- oT +
(VTr - rTV)(z-V) g (-FeT(S(T)FG+) + Fe o(T) +
TTT T + T

(3.60)

+ o(T))( S(T)I(Gg,-)(T) + o(T))
z z

uT = (z - T) FeT  is the solution to the problems

Tz T(3.61)(a) uT () u - 0

T z T(1 -4

(3.61)(c) S(T)u (T) = S(T)Fe +(T)
T z T

We set similarly to (3.32)

+ 1.T e- 1 T
(3.62)(a) u (t) - e( t,-)41 + e-(t,-);T

T T z 1 T z 2

where

(3.62)(b) e lt,X) - (t, l - (T,XIW+(A)+( I , ) ., e ( , ) (t

T + T

(3.62)(c) e(t,) t,X)W() + (H(X,T)BT,)e T ,))lt)

hold. The columns of the holomorphic matrix W +() span the range of P +() and

-19-
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HC(,T): C(C6,T]) * C([6,T]) so that

g(t) , 6 4 t 4 T

(3.62)(d) H(A,T)q :-C A)g ; (t)

g(T), t ; T

holds. Because of (3.53) the equations (3.62)(b), (c) are uniquely soluble for all

z C S if 6 is sufficiently large and the analyticity of e (t,-) for all t c [1,T]
1T z

follows by the above argument and by continuation from [6,T] to [1,T].

moreover we derive as in (3.41) from de Hoog and Weiss (1980a) (3.63)

(a) lim e(T,-!) - W () (b) I - r ,11, 0
T---T z +z T z T z 1,T]+

and as in (3.44)

+ 1
(3.63)(a) lim eT(1,-) - 0

uniformly for z e r

Inserting into the boundary condition (3.61)(b),(c) results in a block system of the

form (3.42) and using (3.43) gives

(3.64)1a) UT = eT( )(- 1(S(T-W (21)- S(T)FG + o(T)) + eT(*,-)o(T)
T T z z +z+T z

uniformly for z c F The solvability of the problem (3.61) follows from the

invertibility of the (analytic) matrix S(T)W (.) which is a direct consequence of

Assumption (3.20). Putting all together gives

((z - VT)-1 VT r-rT V)z - V) -g)(t) =

1 + 11-1
= 2 eT(t,1)(S(T)W+()) S(T) (Gg,!)(T) +(3.64)(b) 2T z  z z

z

+ eT(t,!)A (T,z) + (Z-VT) Fe(t)A (T,z) + A (T,z)
T z 1 T T 2 3

where

IA. (t,z)l 4 o(T)IgI[1 ] for i = 1,2,3

uniformly for z e ..

The first summand on the right hand side of (3.64)(b) is holomorphic in S and

therefore its contour integral along F vanishes.
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Now we define the imbedding operators

fT (t) 1 <t < T

(3.66) (a) i T:C([I,T]) + C ( ,]), (b) (iT f T )(t =

T

Obviously rTiTfT - fT and |iTf T [1,=]  IfT I,T) holds.

Because of (3.64), (3.65) the operator

(3.67) (z - VT)-
1
(VTrT - rTV}(z - V)-T C([1,T]) + C([1,T])

is discretely compact ;or every z c r and the countour- integral-operator (3.27) is also

discretely compact (see Grigorieff (1975). Because Range(E) is finite dimensional

rTEiT is discretely compact and so is ETrTiT ET and

(3.68) rank(ET()) rank(E())

for T sufficiently large.

I
Therefore it is guaranteed that the eigenvalue v - is stable with regard to the

VT's (see Grigorieff (1975)) so that there are exactly m - rank(E(p)) eigenvalues

1 m
UT, ...' T of VT which converge to U and the estimates

(3.69) gap(Range(ET),rT(Range(E))) 4 const.(VTrT - rTV)i Range(E)I[1,T

and

(3.70) max(l.- - Al , max IkX - A10) 4 const.I(VTrT - rTV)Iange(E)N[1,T 1

UT 
i

hold (see Grigorieff (1975)).

Under the assumption
(a+l)k (X)+1 1

(3.71) A( ) , G( C ) C ([0, ])

where k.( ) is largest algebraic multiplicity of an eigenvalue v(X) of the matrix

A(
-
) + XG(-) with a negative real part, the estimates (2.58), (2.59), where v - v.(X)

is now the largest negative real part of the eigenvalues of AM-) + AG(-) , follow.

However, a stronger estimate can be derived by proceeding as Osborn (1975) did but

without carrying out the last estimates which lead to his Theorems 1,2,3. In the same way

the estimates given by Grigorieff (1975) can be changed. We get
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(3.72)(a) gap(Range(ET ), rT(Range(E))) 4 const.I(ET rT - rTE) Range(E)I

(3.72)(b) max(I-1- - X1, max IA - X16) 4 const.I( (V r - rTV)) e
Ui=1(1)m T TVTrT - TV Range(E)I

T

An estimate for the right hand side of (3.72)(a) can be obtained by using (3.64)(b) with

g C Range(E) and (3.65):
(V ()+) T+

(3.73)(a) gap(Range(E T) r T(Range(E))) ( const.o(T)exp( Tl"

In a similar way we get
1 i 8(v_(A)+c) Ti+l)

(3.73)(b) max(l1 - X1, maxiAT - X+1 cont. o(T)exp( ( +1 T

UT  i

Therefore the standard error estimates are not sharp for the whole class of problems.

Retracing the history of the o(T) in (3.73) we get

(3.74) o(T) 4 max(IA(T) - A(I)f,IG(T)- G(-)I, ;(K - C,T))

where ; is defined in (3.44)(b) and £ is small when the radius of r is sufficiently small.

S(T) can be chosen independently of X for a large class of problems, for example if

G(O) is regular. In this case we can set G(w) - I because this always can be achieved

by a linear transformation. Then FA) F and (3.20) is equal to (2.41). 9 is then the

strip v_ < A < V+ where v is the largest negative and v+ is the smallest positive

real part of eigenvalues of A(-). In this case the asymptotic boundary condition (2.60)

can be used.

In the case that G(1) * 0 is not regular S(T) can be chosen independently of A

if we know a sufficiently close approximation A e a to an eigenvalue X of (1.1), (1.2),

(1.3). Then we rewrite (1.1) as

(3.75) y' - t(A(t) + kG(t))y = ItOG(t)y , I= - A

A(t) - A(t) + G(t)

The isolatedness of the eigenvalues A E 9 guarantees that the problem

(3.76)(a) Yh' -

(3.76)(b) Byh(1) = 0

(3.76)(c) Yh C C([1,])
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has only the trivial solution yh 5 0 if A is sufficiently close to A . Therefore the

above theory can be used for the eigenvalue problem (3.75), (1.2), (1.3) (with y as

eigenparameter). The change consists of taking instead of 0 as reference point.

We set

T -1
(3.77) S S ST- (G+) F-c

where the superscript T denotes transposition and F(A) transforms A(-) + AG(w) - A(-)

to its Jordan canonical form.

Defining F - F(X) (2.40), (2.41) follows immediately.

From the analysis for the approximating problems (1.4), (1.5), (1.6) it follows that

it is sufficient to require that (3.20) holds locally if the particular eigenvalue A is

to be calculated. "Locally" means in this context is the closed set aounded by the contour

-(r) defined in (3.9).

Since the family of projection F(A)D+F ( is holomorphic in K c f , K compact

there is a nonsingular r+ x r+ matrix T(A) so that

(3.78) W+(A) - F(A)G+T(A) is holomorphic in .

Therefore

SFCA)G T() (G +)TF-(1 V)(F()G+T() + OCIA - AI)) - T() + O(IA -Z)

holds and

(3.79) (SF()G+)
-  

T(A)T()
- 

+ OCA -+

for A sufficiently close to A - So (3.20) holds locally for A close to A and the

asymptotic boundary condition (3.77) can be used for the calculation of A if the initial

guess X is sufficiently close to A .

This analysis leads to the idea to use asymptotic boundary condition which depend on

the eigenparameter A . This leads even in the case that the 'infinite' problem is a

linear eigenvalue problem, to nonlinear approximating 'finite' eigenvalue problems which,

suggested by Keller (1976) have been successfully used in computation (see Ng and Reid

(1980)), and their analysis will be presented in a subsequent paper.

However for many important fluid-dynamical problems it is possible to choose simpler

asymptotic boundary conditions. An example is presented in Chapter 5.
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4. Imaginary Eigenvalues of A(-).

We are now going to neglect the crucial restriction that all eigenvalues of A(-)

have a non-zero real part but we will require a sufficiently fast convergence of G(t)

to 0 which puts us back into the compactness argument of Chapter 2.

We assume that

(a+1)max(k0 ,k )+1 ((4.1) A( C ) C" (Co, 1 ), > 1

-(s+1)k -C

(4.2) IG(t)l ( const. t , £ > 0

where k0  is the largest algebraic multiplicity of an eigenvalue of A(-) with real part

zero and k- is defined as in Chapter 2

Markowich (1980a,b) has shown that there is a solution operator H of the

inhomogenous problem (2.8) which fulfills

(4.3) *(Hf)(t)l 4 const. t- (Lnt)Jfl[ , 1 ( j 4 n

if (4.2) holds.

Therefore, if the homogenous problems (2.8), (2.9), (2.10) has only the trivial

solution y E 0 then the operator V (see (2.16)) is well defined and as the sum of a

degenerate and a compact opeprator it is compact and the same consideration as in Chapter 2

hold for the eigenvalues and the generalized eigenvectors except the decay statements

because the eigenvalues with real part zero may produce solutions which are asymptotically

constant or which decay algebraically. An algorithm which determines the nature of the

basic solutions under the assumption (4.1) is given in Markowich (1980b), Chapters 3 and 4.

The construction of the supplementary boundary condition S(T)xT(T) - 0 for the

approximating problems (1.4), (1.5), (1.6) now relies heavily on the asymptotic nature of

the basic solutions and is explained in Markowich (1980c), Chapters 3 and 4. The matrix

S(T) constructed in the mentioned paper takes care that the basic solutions which are in

C([l,"]) but which do not decay sufficiently fast, are dampened by the multiplication

with S(T) so that norm convergence of the operators VT defined as in (2.35) to V

results (see Markowich (1980c), Chapter 4).
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Exponential convergence of eigenvalues and spectral subspaces holds if all (basic)

solutions of the problem:

(4.3) y' - tA(t)y - 0

(4.4) y £ C([1,-])

decay exponentially.

t
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5. The Orr-Sommerfeld Equation.

The Orr-Sommerfeld equation (see Ng and Reid (1980)) governs the stability of laminar

boundary layers in the parallel flow approximation

(5.1) 1 d 2 2 X (d 2 2

iR .uz, - - a) - u"(z) 

a 6 R , a > 0 . O(z)eia(x At) is the disturbance stream function, R > 0 is the

Reynolds number and U(z) is the velocity distribution fulfilling

(5.2) U C C([0,]) , U(-) - 1, U"(') - 0 

The boundary conditions for the Orr-Soamerfeld problem at z = 0 and z are

(5.3) *0) - *'(0) - 0

(5.4) *() = *'( ) - 0

This problem is of singular perturbation type for R large, but we disregard that and just

derive appropriate asymptotic boundary conditions.

We substitute

(5.5) y. (*,*' , )T

and get the problem
I (I

G

l aZ0) 1 02z 0 0b

- f1 0 0 0 b 0O

(5.7) 0

(5.8) y C C((O,])

where

(a) f1(z) - -(a4 + inR(a2Uz) + U"(z)))

(5.9)

(b) f () - 2a
2 + iaRU(z)
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and

(5.10) (a) a = ia 3R (b) b - -JaR

The eigenvalues of A(-) are

(5.11) V1 - a , v2 - (2 + iaR) 1/2' v- -a v4 - (a2 + )1/2

so that Re v,, Re v2 > 0; Re v3, Re V4 < 0 and the eigenvalues of A(-) + AG are

(5.12) v 1 ) a, v 2 (X) = ( 2 + iaR(l - X 1/2, -3M - -a, v4 (A) - -(a
2 

+iaR(l - X)) / 2

so that Re v (A), Re v 2(A) > 0 1 Re V 3(A), Re V 4(A) < 0 for all A £ C holds.

Therefore the set 0 defined in Chapter 3 is the whole complex plane. we get

(5.13)(a) J(-) - diag(V1,.v2 ,v3,v4 ) for A * 1

and

(5.13)(b) J(-) for A I
0 v 2  1

v2

so thatL

0vi 02 1 0 -"0 0 0 1

(5.14) G_ = , G1 0 0 0

L 0 1 0 0

holds. We calculate r 1

FM 2 1for A X 1 , F(O) = F
(5.15)(a) 12= 1(1)4

1l 0 1 0
"ta, 1 -a I j

(5.15) F(1) = 2

a2  2a a2  0

L a 3 32 -Q3 a2
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All eigenvalues X are isolated and have finite algebraic multiplicities.

We choose the matrix S(Z) which sets up the asymptotic boundary condition S(Z)yz(Z)

- 0, Z • 0 , independent of Z so that

(5.16) s(Z) E = (Sij)iiii 1,2

J - 1,2,3,4

holds. Then the regularity condition (3.20) reduces to:

F 4
= s  j - 1  

j J-1

(5.17) det L 0 for X EC- 114 J 14 1
I=1 S 2 ja -  I~ S 2JV2(X)J-

and

4 4j=l
S l = - 

a I1 Sl (j-1)a3-

(5.18) det I 0 for ) .1 •
4 J-1 4 JS- s j 2 jj l jl s=J-ll=J-

For example the 'natural' asymptotic boundary condition

(5.19)1 0 0(511s- 0 1 0 0

fulfills (5.17) and (5.18).

The order of convergence for eigenvalues and spectral subspaces of the approximating

problems (1.4), (1.5), (1.6), where S fulfills (5.17), (5.18), at a particular eigenvalue

A of (5.6), (5.7), (5.8), can be estimated by

(5.20) o(Z)exp((max(-a,Re V4()Z + )Z/6)

wherew5e21) Re A -(X) a + AI + ( 
2 

+ RImA)2  
+ a

2
R

2 
(1 - ReX) 2 )1/2  1/2

2 4 4

-28-

4



holds and 0 is the ascent of X.

Computation of the Orr-Sommerfeld problem using the boundary conditions set up by

(5.19) can be found in Grosch and Orsag (1977). They used the Blasius velocity profile
2

u(z) = 1 + O e w z ), w > 0 .

-2 Z
Their numerical experiments indicate that the order of convergence is e in the

case that a < IRe V4 (MI < I and A has (most likely) ascent 1 . Checking our order

formula (3.73), (3.79) gives

(5.22) o(Z) ( max(e~wZ2  a -w22+( £)(z -Z) - const.e
zE([8,Z] I

and the order of convergence the theory predicts is •2(ac¢ Z for eigenvalues and

spectral subspaces.
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