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ABSTRACT

We study finite difference approximations to weak solutions of the Cauchy
problem for hyperbolic systems of conservation laws in one space dimension.
We establish stakility in the total variation norm and convergence for a class
of hybridized schemes which employ the random choice scheme together with
perturbations of classical conservative schemes. We also establish partial
stability results for classical conservative schemes. Our approach is based
on an analysis of finite difference operators on local and global wave

configurations.
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SIGNIFICANCE AND EXPLANATION

We are concerned with the numerical computation of shock waves using
finite difference schemes. Specifically, we study problems concerning the
stability and convergence of finite difference approximations and problems of

describing the propagation of physical and numerical waves.

announced 3
l Juﬁtification,.__...__
e

Diﬂtrihution/
pyailokility Codes
6. 1 and/foT
:Y‘\',;t '.Q."'?i'll

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

e B Y Gy PYOOD PO 5 o

e

- ———

— =
PP Y




FINITE DIFFERENCE SCHEMES FOR CONSERVATION LAWS

Ronald J. DiPerna*

1. INTRODUCTION. E

We are concerned with finite difference approximations to weak solutions of
the Cauchy problem for hyperbolic systems of conservation laws of the form

(1.1) u, + f(u)x =0, =® X (@,

Here the solution u = u(x,t) takes on values in R" and f is a smooth
nonlinear mapping from R? to R". We assume that the system is strictly
hyperbolic in the sense that the Jacobian matrix Vf(u) has n real and

distinct eigenvalues P

)\1(u) < )\2(‘1) € eoe £ An(u) ’

and we require that each eigenvalue Aj is either genuinely nonlinear or

linearly degenerate in the sense of Lax (206], i.e. either

¢ (1.2) r.*V. # 0 or r. VA, =0
i Jj 3] ] J
 ; for each index j where rj = rj(u) denotes the corresponding right
|
] v eigenvector of Vf(u). Systems with this structure arise in several branches of

continuum mechanics: fluid dynamics, MHD, elasticity, etc.
Experience with (1.1) has indicated that the space BV of functions of

bounded variation provides a natural setting for the solution operator. It is

known for example that if the initial data uo(x) lie in a small neighborhood
of a fixed state u € R" and have small total variation, then a subsequence of
the family of difference approximations u(x,t,Ax) generated by the random

¥
choice method of Glimm converges pointwise a.e. to a solution u [12]. ﬂi
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Moreover, the entire family is stable in the total variation norm in the sense
that

(1.3) TVu(e*,t,Ax) € const TVuo(°) ’

where the constant depends only on f and u; corresponding estimates hold in
the limit for u. In the case of data with large total variation, analogous
stability and convergence results for the random choice method have been
obtained for certain special systems (1, 7, 8, 17, 24, 25, 28, 29). These
results motivate the problem of determining the mechanisms which induce or
preclude stability in the total variation norm for standard finite difference
schemes, i.e. schemes which are conservative in the Lax-Wendroff sense [22].

We note that the problem of establishing stability for conservative
difference schemes in any of the natural spaces for (1.1), e.g. BV, Lm, L2 and
convergence remains open except in'the case of first order accurate methods
applied to scalar conservation laws [5, 30, 34): in the case n =1 the
structure of the equation induces maximum principles for the corresponding exact
solution operator in BV and Lp, 1 < p € »; these maximum principles are
preserved by the difference operators of those schemes which are precisely first
order accurate. With regard to Lz-stability and its relationship to proper
entropy production, we refer the reader to the work of Majda and Osher (27]) on
second order accurate schemes applied to scalar equations. 1In connection with
the related role of Lm-stability and action of the exact solution operator in
the weak topology, we reference the work of Tartar [32] on the theory of
compensated compactness, which contains several convergence results for exact
solutions to general scalar conservation laws and their associated parabolic
regularizations. In the computational setting, we refer the reader to the work
of Chorin [2, 3, 4] on the implementation of the random choice method for

reacting (and non-reacting) gas flow, to the work of Glimm, Marchesin and
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McBryan [14, 15, 16) on hybridized approaches involving the random choice method
together with procedures of subgrid refinement and wave tracking, to Crandall
and Majda [35] on fractional step methods and to Engquist and Osher (36] on one~-
sided difference approximations.

In this paper we are primarily concerned with theoretical aspects of
stability in the total variation norm and convergence for general finite
difference schemes for systems of equations. We note that stability of the form
(1.3) for a family of approximate solutions guarantees the existence of a
subsequence converging pointwise a.e., ~.1ce equations of the form (1.1) link
the temporal and spatial variations of u; convergence of the entire family
follows from uniqueness, in those particular circumstances where uniqueness is
available [9]. One may, of course, entertain growth estimates on the total
variation norm which are uniform in the mesh length.

We begin in Section 2 by formulating a new class K of difference schemes
which are conservative in the Lax-Wendroff sense; the class K arises from a
discrete approximation to the contour integral form of system (1.1) taken with
respect to parallelograms having space-like sides in the x-t plane. The
standard conservative schemes with a three-point domain of dependence can be
subsumed by K after introducing a fractional step. 1In Section 8 we introduce
a new class of hybridized schemes which employ the random choice method to
approximate shock waves and perturbations of a certain class N of first order
accurate schemes in K to approximate the continuous regions of flow; these
hybridized schemes are based on the tracking of waves whose magnitudes lie
between two specified thresholds depending on the mesh length. In the case of
initial data with small total variation, we establish stability in the total
variation norm and pointwise a.e. convergence of the difference approximations

generated by the hybridized schemes applied to a class of systems of two
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equations, cf. Sections 10 and 1t. This class includes systems of the form
(1.4) ve + p(w)x = 0, we + q(v)x =0

where p'q’' > 0, e.g. the isentropic equations of gas dynamics and the
equations for thin elastic beams in Lagrangian coordinates. 1In Section 12, we
verify that the solutions constructed by these hybridized methods satisfy the
entropy condition of Lax {21]. For general systems of n eguations we obtain
certain partial results concerning stability in the total variation norm for the
aforementioned subclass N of first order accurate conservative schemes; the
subclass N includes the Lax-Friedrichs scheme, cf. Section 4. For both the
conservative and hybridized schemes, the total variation estimates are obtained
with the aid of non-monotone functionals which are equivalent to the total
variation norm, cf. Sections 4, 5 and 9.

The form of these functionals for schemes in class N is motivated by an
analysis of the corresponding difference operators on discrete wave
interactions. 1In Sections 3 and 4 we describe a general approach to the problem
of analyzing difference operators on local and global wave configurations and
apply it to the subclass N. For the purpose of analyzing the local action, we
formulate a working notion of local discrete wave interaction which is based on
a process of interpolating elementary waves between adjacent mesh points. We
then study the relations which govern the magnitudes of the incoming and
outgoing waves in a local interaction, cf. Sections 3, 5 and 7. 1In order to
describe the global action, we introduce a state space { of global wave
configurations X and associate, with a given scheme, a mapping

M:Q*Q
such that each of the difference approximations u generated by the scheme

corregponds to a discrete trajectory of the form

{kao : k=0,1,2,...}

~4-
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when X, represents the initial data, cf. Section 4. The generic state X

k which record the structure of

in & consists of a sequence of local states X
the local waves in u. Specific local states %X are associated with a given

finite difference approximation u by applying an interpolation map

to pairs of values of u at adjacent mesh points; the map I transforms a pair
(v,w) in R" x R" into a set

{51(v,w),...,en(v,w)}
of elementary wave magnitudes ej(v,w) associated with the classical solution
of the Riemann problem for (1.1) with Riemann data (v,w). For concreteness, we
restrict our attention in this paper to three-level schemes which employ a
stencil based on four mesh points; we note that the Lax~Friedrichs scheme and
the random choice scheme can be regarded as having this form, while the Lax~
Wendroff scheme can be viewed as a composition of two such schemes. For
stencils with that geometry, the associated space {1 consists of states

3n

X = xk where xk lies in R and assumes the form

x* = (6,v,s) .
Here s represents the value of the difference approximation u at a specified
mesh point (x,t) while § = (61,...,6n) and y = (Y1""’Yn) denote sets of
interpolated wave magnitudes associated with the mesh points immediately to the
left and right of (x,t).

In the framework of the space {1, we formulate working definitions of
approximate simple wave and weakly interacting state and we identify several
classes A of such states which are attracting from the marching map M of
schemes in class N in the sense that the restriction of the orbit MKx to

A runs down-hill with respect to associated "coercive" potential functionals

QA’ The reduction which these potentials OA experience in one time-step




acting on states X in A® exceeds the corresponding increment to the total
variation norm due to numerical and/or physical wave amplification. This
property yields a uniform estimate on the total variation norm for those
segments of the orbit which lie in AC and have an initial point with small
total variation. This partial stability result for schemes in class N serves
as the starting point of our analysis of the hybridized schemes.

Preliminary to the construction of the potential functionals, we compare in
Section 3 the behavior of the exact solution with that of the difference
operators in class N on local wave interactions. 1In the setting of £, a
discrete interaction consists of a collection of pairs of mesh points together
with the corresponding sets of interpolated wave magnitudes. In the case of
waves with small maonitude, a Taylor expansion of the equations relating the
incoming and outgoing magnitudes produces a set of dominant terms with a fairly
clear numerical interpretation; a comparison with the corresponding expansion
derived by Glimm {12] for random choice interactions or, what is the same up to
quadratic terms, exact wave interactions reveals several numerical mechanisms
which are absent in the exact solution operator. As a preliminary step in the
direction of classifying the numerical modes of wave propagation, we discuss in
the setting of class N several numerical processes whirh we refer to as self-
interaction, splitting and incomplete cancellation, cf. Section 3. These
processes are reflected in the structure of the potential functionals 0,.

The motivation for a general study of potential functionals in the context
of conservative difference schemes is the following. We recall that, for the
exact solution operator, wave interactions typically increase wave magnitudes:
an exact solution u(x,t) to a system of equations generally admits a countable

set of times t, such that

lim TVu(+,t) > TVu(',tn) .
t+tn




On the other hand, in the setting of the random choice method, Glimm
demonstrated that a potential for wave interaction can be attributed t~ _ach
wave configuration through a quadratic functional Qrc(u) in such a way that
all weak interactions reduce Qrc more than they augment the total variation
norm [12]. The potential Qrc is quadratic in the sense that
c (TVu)2 <Q (u) €¢ (TVu)2
1 re 2 ‘

while non-increasing and compensating in the sense that

9 {u(e,t,0x)} and F(u) = TVu(e,t,Ax) + Q {u(e,t,Ax)}

rc rc
are both nonincreasing functions of time, if the initial data of the random
choice approximations u(x,t,Ax) have small total variation. The structure
of Qrc is discussed in Section 7. The stability estimate (1.3) follows from
the equivalence of F and TV on small data.

These results motivate the problem of constructing potentials for standard

difference schemes which compensate for both the physical and numerical

amplification waves. Now, in the setting of conservative difference schemes two
new features arise. The first is associated with the existence of numerical |
modes of wave propagation; it is not difficult to show for example that, as a

consequence of augmented wave amplification, there exist no compensating 3

potentials which are monotone and depend, as does, only on the magnitudes

Qrc

of waves in a given configuration. The second is associated with the existence

~

of a substantial class of states X representing shock profiles which are

reproduced by the scheme after a finite number of time steps module a spatial

translation, i.e.
~ ~ ~k+
MPX =X ; X = X %) .
q a
Clearly any translation invariant monotone function must be constant along the

entire orbit corresponding to each shock profile X. We note that the existence

of shock profiles for a broad class of conservative schemes has been established

-7-




by Majda and Ralston [28) in the context of systems of equations and by Jennings
{181 in the context of scalar equations; numerical evidence has indicated that
such states are stable.

The existence of numerical wave amplification and shock profiles motivates
the study of functionals which appeal to the geometric strucuture of wave
configurations in addition to information on their individual wave magnitudes
and which are non-monotone when restricted to orbits ka « In particular it
leads one to ask if there exist special classes A of states containing the
shock profiles and corresponding potentials QA which are coercive on A€ in
the sense that
(1.5) 0. (MX) - 9 (X) € -2 (x)

A A A
if X ¢ Ac, where AA(X) denotes the distance from X to A in some metric
on  and compensating on A in the sense that
(1.6) TV(MX) + QA(MX) < TV(X) + QA(X)
if X ¢ A°. If such potentials exist and if the scheme under consideration is
in fact convergent, one might expect that the structure of states in A and/or
the coercive behavior of QA would permit only a mild growth independent of the
mesh length for the functional F = TV + QA along the entire orbit.

In Section 5 we construct potentials QA for the class N where the role
of A 1is played by certain classes of approximate simple waves and by certain
classes of weakly interacting states. The functionals Q, are not monotone

k

when restricted to the orbit M™X but do exhibit a rather strong coercive

behavior on AS, satisfying inegualities of the form (1.5) and (1.6) on AS;
here the quantity Ai(X) does not arise exactly as the square of a distance

from X to A in a fixed metric on & but rather involves the square of a

variable distance from X to a subclass of A. We conjecture that, along the

entire orbit, the corresponding functionals F =TV + QA for schemes in class

asdt




N experience only a mild growth independent of the mesh length. For the

hybridized schemes we show that this is in fact the case by appealing to the

improved resolution of local wave interactions which hybridization affords.

e A e

. 2. CONSERVATIVE DIFFERENCE SCHEMES. ‘,
i

In this section we formulate a new class of difference schemes which are '

conservative in the Lax~-Wendroff sense [22]; the motivation is the following. P

-]
Suppose u = u(x,t) is a distributional solution in BV N L to a system of

conservation laws (1.1}): the vector-field (f(u),u) is divergence~free in the

sense that the sum of the measures uy and fx vanishes on all Borel sets R,

(2.1) {u, + f(u) HB) =0 .
t X

Green's theorem for measures [10, 33] yields an equivalent formulation by '
requiring that the integral of the normal component of (f£f,u) vanish for all
piecewise smooth closed contours C:

2.2 vu+ v f ds =0

(2.2) [ v, )

- o]

where Vv = (Vt,vx) denotes, for concreteness, the outward unit normal to C

and ds the element of arc length. 1Indeed, (2.2) implies (2.1) provided only
that C 1lies within a substantial class of contours, for example,

parallelograms with sides parallel to two fixed directions.

Classical conservative schemes correspond to a discrete approximation of
(2.1) with C taken as the boundary of a rectangle with sides parallel to the ]

axes: for example, the standard conservative schemes with a three-point domain

of dependence employ a grid with mesh points of the form (idx,jAt), 1 and
j arbitrary integers, and generate the value of the difference approximation,
say u, at a typical mesh point (x,t) 1in terms of the three known values

immediately below




(2.3) ulx,t) = p{ulx - Ax,t - At), u(x,t - At), ul(x + Ax,t - At)} ;

the generating function ¢ depends on the choice of mesh lengths Ax and At
and is derived from a discrete approximation to (2.1) with C taken as the
boundary of the rectangle
{(x,t) : i8x < x < (i + 1)Ax, jAt < £ < (5 + 1)At} .
In this section we shall describe a class of conservative schemes based on

a grid having a diamond-shaped stencil, i.e. mesh points of the form (iAx,jAt)
where i and j are integers such that i + j is even. We begin by
describing a class of three-level schemes where generating function ¢ is
derived from a discrete approximation to (2.1l) with C taken as the boundary of
a rhombus D with vertices at three time-levels of the form

(2.4) n= (x,t), s = (x,t~24t), w = (x-Ax,t-At), e = (x+Ax,t-At) ,

where (x,t) is a typical mesh point: the value u, of the difference
approximation at the north vertex n 1is generated from known values at the
west, south and east vertices by a formula of the form

Yn T ¢(uw'us'ue) ’

where ¢ depends on the ratio of mesh lengths Ax/4t. To be precise, let

a = (at,ax) and B = (Bt,Bx) denote respectively the outward unit normals to
the ne side (northeast) and the wn side of the rhombus D with verticies

(2.3). The normals a and B depend only on the fixed ratio of mesh lengths

Ax/At. We introduce two smooth mappings

n
H: R"x R"+R" and ¢ : R" x R" » »"

which respectively reduce along the diagonal a = b to the normal component of
the vector (f(u),u) in the directions a and B8:

H(a,b) = a.a + axf(a) + p(a,b)(a - b)
(2.5)

G(a,b) = Bta + Bxf(a) + g(a,b)(a - b) .

. rem m—m -y




Here p and q simply denote arbitrary smooth n x n matrices; appropriate
restrictions will be placed on p and q below. Next, we introduce the
following formal approximations to the four line integrals whose sum represents

the contour integral around the rhombus D:

H(u ,u )As ~ [ o u+ a f(u)ds; G(u_,u )As ~ [ B u + B_f(u)ds
n e ne t X n w wn t X

-] ~ - + H ~ -
H(u ,u_)hs [ au+ o flulas ~Glu_,u_)As f B,u + B f(u)ds ,
wS se

where As denotes the length of the sides of D. Summing the formulas above
yields a formal approximation of the contour integral (2.2) with C replacing
by D; the sum becomes an equation of the form
(2.6) H(un,ue) + G(un,uw) - H(uw,us) - G(ue,us) =0,
after the common coefficient As is factored out. Finally we assume that (2.6)
can be solved for u, in terms of the remaining variables yielding a smooth

generating function ¢:

un = ¢(uw,us,ue) .
For local purposes, solvability is guaranteed by requiring that the matrix
Ha(a,a) + Ga(a,a)
be invertible. For the centered schemes described above we have
at = Bt' ax = -Bx and
Ha(a,a) + Ga(a,a) = ZatI + p(a,a) + g(a,a)

which is invertible if for example p + q 1is small on the diagonal.

In a similar fashion, one can construct non-centered conservative schemes
based on a discrete approximation to (2.2) with C taken as the boundary of a

parallelogram with vertices of the form

n=(x,t), s = (x + e€ldx,t - 24t), w= (x + Ax,t - At), e = (x ~ 8Ax,t - At)

More generally, one can construct a class K of multi-level conservative

e e ek e an
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schemes based on a discrete approximation to (2.2) with C taken as the
boundary of a parallelogram intersecting several time-levels. However, we shall
restrict our attention for concreteness to the subclass of centered three-level
schemes based a stencil with vertices of the form (2.4). We note that this
subclass contains several classical schemes. The leap-frog scheme is formed
from an arithmetic average,

H(a,b)

[}

a (a + b)/2 + ax{f(a) + £f(b)}/2

G(a,b)

Bt(a + b)/2 + Bx{f(a) + f(b)}/2 .
The Lax-Friedrichs scheme is obtained by eliminating the dependence on ug,
i.e. by taking p = q = 0. The general three-point conservative scheme (2.3)
can be regarded as a composition of two schemes in this subclass by introducing
a fractional step to produce a nine-point stencil having mesh points on five
levels of the form
1 1 1 1
(x,t),(x,t ¢ At)r(x t Axlt)l(x ES '5 Axlt + 5 At),(x & 5 Ax;t - E At) .

Indeed, the standard two-~step Lax-Wendroff scheme is already in this form since

it can be regarded as a composition of the Lax-Friedrich and leap-frog schemes.

3. DISCRETE WAVES.

In this section we shall describe a method for introducing local wave
magnitudes into a finite difference approximation. We shall present the method
in the setting of the class K; of three-level schemes with a centered diamond
shaped stencil; it has an obvious analogue for more general stencils. We shall
also discuss the equations which relate the incoming and outgoing magnitudes of
a local interaction and compare them with the corresponding equations for the
exact solution and the random choice method.

A pattern of local wave magnitudes can be associated with a difference

approximation defined on a grid by using the classical solution of the Riemann

PR
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problem [20), i.e. the initial value problem with data of the form

uy (%) = w 4f x <0, u(x) =y if x>0,
where u~ and u' denote elements of R". We recall that the exact solution
operator resolves Riemann data (u-,u+) into a similarity solution u = u(x/t)
consisting of n + 1 constant states uj, 3= 1,2,¢0e,n + 1, with adjacent
constant states separated by either a j-shock wave or a centered j-rarefaction

wave [20]. Here u, = u~ and u = ut. In the standard fashion, we take the

n+1

magnitude of a j~shock wave separating states uj and uj+1 to be the negative

of the distance from uj to uj+1 along the j-~shock wave curve through uj

and the magnitude of a centered j-rarefaction wave separating states uj and

u to the (positive) distance from u, to u

i 341 along the j-rarefaction

j+1

wave curve through uj. For example, the solution u to the Riemann problem

for a system of two equations might consist of a 1-shock x = ot separating

states u  and u, together with a centered 2-rarefaction wave separating u,

=u in -2 < x/t <0, u=n in o < x/t < kz(uz), in

and u+, i.e. 2

u
+ + . +
u=u in Xz(u ) < x/t < ® and the section Az(uz) < x/t < Az(u Yy forms a
centered 2-rarefaction wave. In general we shall denote by
- +
e, =¢,(u ,u)
3 i
the magnitude of the j-wave in the solution of the Riemann problem with data
- 4+
(u ,u.
We shall restrict our attention to the class K, of three-level schemes
in X based on a grid having a centered diamond-shaped stencil with vertices
of the form (2.4). Consider a corresponding difference approximation

u = u(x,t,Ax,At) with small oscillation and suppose that the Courant-

Friedrichs-Levy condition is satisfied, i.e.

Ax/At > max{'xj(V” H j 1,2,.0.,"} '

where the maximum is taken over a set in R"™ containing the range of the

s
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difference approximation u. We shall associate with u a pattern of wave
magnitudes by interpolating the solution of the Riemann problem between adjacent
mesh points in the following fashion: associate with each pair
(p,,p,) = {(x,t),(x £t 8x,t t At)}
of adjacent mesh points, the set of magnitudes of the n elementary waves in
the solution to the Riemann problem with data
- +
u = u(p1), u = u(pz) .
This association can be expressed formally by the map
I:R" xR +R"

- 4+ - + - +

I(u ,u) = {61(u ) seeese (u,u )} .

By a local wave interaction in u we shall mean a configuration consisting of a

mesh diamond having verticies n,s,e and w of the form (2.4) together with
the four sets of wave magnitudes which are obtained from the Riemann problems
associated with the four pairs of adjacent verticies (w,s),(s,e),(w,n) and

{n,e) and which are denoted as follows:

6 = (61,000,6‘1) = I(uw,us) Y = (Y1I"'lYn) I(us'ue)

]
]

a = (a1'-oo,an) I(uw,un) B = (811000,811) I(un,ue) .

We shall refer to Gj and Yj as the incoming j-waves and to aj and Bj as

the outgoing j-waves.

We note that one may also interpolate between adjacent mesh points even if
the C~F-L condition is not satisfied. 1In this case, however, it is not so
clear how to interpret the interpolation. On the other hand, if the C-F-L
corndition holds, it is meaningful to interpolate between mesh points on the same
space-like arc as well as between points on the same time-level, since the exact
solution operator applied to Riemann data is invariant under a space-like
rotation of the x-t plane. Indeed, the C-F-L condition guarantees that the

line segments ws,se,wn and ne forming the boundary of a typical mesh diamond

-14-
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are space-like for difference approximatins with small oscillation. We remark
that one is free to imagine a set of n elementary waves actually crossing the ;
line segment joining a pair of adjacent mesh points (p1,p2); waves having a

location specified only within a distance |p1-p2|. However, we emphasize that
by definition we only associate a set of n wave magnitudes with a given pair &£
(p1,p2). with this understanding, one can summarize a discrete wave

interaction, say for a system of two equations such as Figure 1 of Section 4

where the symbols Uy s Sy iUy 4y and Wy denote the values of the difference
approximation at the corresponding diamond indexed by k.
We shall begin the discussion of local interactions by considering the B

relationship between the incoming and outgoing waves. It is clear that the

_..-_...,.

outgoing magnitudes a and B are smooth functions of the incoming magnitudes

§ and Y and the local base state ug:
(a,B) = w(6,y,us)
We note that &,y and us uniquely determine u, and u, which together
with ug uniquely determine un,a and B through the smooth generating
function ¢. A Taylor expansion of W at &6 =y = 0 provides the dominant
terms in the laws governing the interaction of weak waves. To begin with we let
vj = (éj,yj) and aj = (aj,Bj)

denote the incoming and outgoing j-waves and write

(3.1) o = A(us)v+ O(Ivlz)

R

where A(us) is a smooth 2n x 2n matrix and v = (v1,...,vn),
o= (01,...,on).

For simplicity we shall restrict our attention to a broad subclass of i
schemes in K1 which preserves two basic properties of the exact solution
operator. In this connection, we first recall that if all incoming waves of an

interaction in an exact solution belong to the same characteristic field, say
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the jth field, then the magnitudes of the outgoing waves of the kth field,

k # j are quadratic with respect to the magnitudes of the incoming waves. We
shall, first of all, restrict attention to those schemes in K, which preserve
this property, i.e. schemes such that
%)

, if v, =0 for k # j .

(3.2) o, = 0(|vj| x

k
Clearly this property is equivalent to the statement that A(us) is a
tridiagonal matrix for all u;. We note that property (3.2) is satisfied by the
Lax-Friedrichs scheme and the leap-frog scheme; a simple criterion for (3.2) is
given in a lemma below in the setting of schemes in Ky and can easily be
checked for the Lax-Firedrichs and leap~frog schemes. It follows as a corollary
that the two-step Lax-Wendroff scheme satisfies the natural analogue of (3.2)
since it can be viewed as the composition of the Lax-Friedrichs scheme and the
leap-frog scheme; indeed, the same is true for all the standard variations on
the Lax-Wendroff scheme since they share the same linearization. Finally, we
remark that the random choice method can be regarded as a scheme which employs
the same stencil as schemes in K; and it satisfies (3.2); the laws for random
choice interactions are recalled in Section 7.

Secondly, we recall that wave interactions in an exact solutin do not
augment wave magnitudes by more than a quantity which is quadratic with respect
to the magnitudes of the incoming waves. We shall restrict our attention
further to those schemes in Ky which preserve this property, i.e. schemes such
that

n

n
(3.3) T oda,l + 18,0 < TV |86

| + |Yj| + o<|v|2) .
3=1 3

3

The condition (3.3) is equivalent to the condition that

2
= (1 =-u, )8, + 1, + o(|lv
(3.0 aJ ( uJ 3 JYj Ivi™)

2
B, = S, .+ (1 - 1)y, +0(|lvl™) ,
5 - ¥5°5 35 vl
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where the coefficients uj and Tj satisfy
(3.5) 0 < uj(us) <1, 0¢ Tj(us) <1,
for all values of their argument ug. Now, it is not difficult to show that,
within the subclass of schemes in K, which satisfy property (3.2), inequality
(3.3) holds for those methods which are precisely first order accurate. In this
connection we recall that any scheme which is consistent with the equations and
which has a smooth generating function is at least first order accurate. Thus,
condition (3.3) rules out second order accurate methods. In particular, the
Lax-Friedrich scheme satisfies (3.3) while the leap-frog and Lax-Wendroff
schemes do not. It is also simply to verify that the random choice method
satisfies (3.3), cf. Section 7. Finally, we remark that for certain technical
reasons we shall restrict our attention to the subclass N of schemes in K,
which satisfy (3.2), (3.3) and
(3.5) 0 < uj(rs) <1, 0« rj(us) < 1.
The lemma below contains a simple criterion for membership in N which shows in
particular, that the Lax-Friedrichs scheme belongs to N.
Lemma. Consider a scheme in class K. The corresponding matrix A is
tridiagonal if and only if the matrix

w(a) = pla,a) + gla,a) ,
obtained from (2.3), satisfies
(3.6) w(a)rj(a) = wj(a)rj(a), j=1,2,e0.0,n ,
where rj denotes the right eigenvector of ' associated with the eigenvalue

Xj. If (3.5) holds then

(3.7) u, = {a + a A (a) +w,(a)}/{o, + 0 X (a) + w_ (a)}
3 t x ] b t x 3 3
(3.8) T o= {Bt + Bxxj(a) + wj(a)}/{ot + cxkj(a) + wj(a)}
where o¢_=a_ + 8, 0 =a + 8 and the scheme lies in N if and only if
t t t X x x

-17-
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the eigenvalues wj(a) are such that the quantities specified by (3.7) and
(3.8) lie strictly between zero and one.

Proof: Consider an iteraction associated with a mesh diamond such that ug = ug

t and u, lies on the j-wave curve through uge. In this case the only incoming
wave is a j-wave crossing the ws side of the diamond. Regard u, as fixed

and u, as parametrized by arc length § along the j=-wave curve through ug:

u =u (8), u(0) =u . l
w w w s

Substituting u = u (§) and u = u into (2.5), solving for u = u (§) and
w w s e n n
differentiating with respect to § at § = 0 yields

(3.9) S (0) = (H +G ) (H -G.)d (0),
n a a a a w

where the coefficient matrix is evaluated at (us,us). A simple calculation
shows that the matrix in (3.9) is given by

{0.I +0 £'(a) + wla)} {a 1+ a £'(a) + wla)}
t x t x

where a = ug. By considering the analogous incoming configuration where

u, = ug and ug lies on the j-wave curve through ug we obtain a

corresponding equation

i -1 . 1
6 (0) = (H_+G_) (G, - H ) (0) , t

in which the coefficient matrix is given by

amibai o

{01 + 0_£'(a) +wla)} {81 + 8 £'(a) + wia)} ,
t b t X
with a = ug. The lemma follows from the fact that
@ (0) =4 (0) = r (u) .
W e j s

Remarks: It follows from the lemma that a scheme in class N necessarily

=

satisfies the C-F-L condition. Conversely, if a scheme in K has a

tridiagonal matrix A then the C-~F-L implies that uj and Tj lie between

zero and one provided wj(a) is sufficiently small. The latter fact applies to

the Lax-Friedrichs scheme for which p = g = 0.




Next we shall describe several numerical mechanisms of interaction present
in class N schemes. For this purpose, let us write the expansion (3.2) for a

class N scheme in the form

g, =A(u)v, + B (u)(v,Vv) + 0(|v|3)
j s 3 j s

3
) b 3 ]
B,(u )(v,v) = by (u (v, ,v ) + b” (u )(v,,v,)
L j s K#9 jk s 3"k K=1 kk s i3
b] 2 2
where v, = (§, ), 0, = (a.,B. and b are bilinear maps from R“ x R
to R2 depending on the local base state ug. The presence of numerical

mechanisms of wave interaction is revealed by the structure of Aj and Bj'

Self-interactions. The structure of the operator Bj shows that the nonlinear

interaction between characteristic fields in a difference approximation is
substantially larger than in an exact solution. By way of example, let us
consider an exact solution G to a system of two equations which consists of
two interacting weak shocks of different fields. To be precise, suppose that in
a strip of the form (O,to), ; consists of a 2-shock 62 and a 1-shock Y1
which have trajectories

X = x, = SG(t - to) and x - X, = sY(t - to), t < to

and which approach with speeds Ss > sY; while in a strip of the form

(to,”), G consists of a 1-shock a and a 2-shock 82 which have 1

1

trajectories
X - xo = sa(t - to) and x - xo = SB(t - to), t < t0 |
and which recede with speeds Sy < sB; u is constant in each of the four '

sectors defined by the four rays above. It is well-known the outgoing

. magnitudes satisfy

a, =7, + O(Y152)7 82 = 62 + O(Y152) .

For systems of n equations, two interacting weak shocks éj and Yk

generate ‘
i
t
1
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two shocks aj and Sk satisfying

oy = Yj + O(Yij); B, = Gk + O(Yij)

together with reflected waves

€ = o(yjdk)
in the lth field, 2% # j, 2 # k. Thus, in these two examples the wave
magnitudes are conserved in each characteristic field up to first order while
the amplification of individual waves and production of reflected waves is at
most on the order the product of the approaching waves. The same statement can
be made for multiple wave interactions. Perhaps the simplest formulation is
provided by the laws for multiple wave interactions in the randon choice cf.
Section 7, these laws coincide with those of the exact solution up to and
including quadratic terms. For the purposes of the present discussion we only
want to remark that for the exact solution operator and random choice operator

the diagonal terms of Bj vanish identically. 1In constrast, the diagonal terms

(3)

of Bj for schemes in class N, i.e. the matricies bkk

(us) do not vanish on
any open set. The term

3
(3.9) bkk(us)(vk,vk)

records a contribution to the jth field from the self-interaction of waves in

the kth fields If k # j then the term (3.9) represents a contribution to the

h

production of a reflected waves in the jt field due to self-interactions in the

kP field. If Kk = j then the term (3.9) represents a contribution to the

h th

amplification of waves in the jt field due to self-interactions in the j

field. For example, suppose that the incoming waves of a discrete interaction

belong to the kth field, i.e. vy = 0, 2 # k. First, we see that outgoing waves

oj are produced on the jth field 3 # k satisfying

o, = '3

3
Dtk
3 e (g (Vv )+ O(Ivkl Yo J#F K

=20~




f e rm—————

Thus, although there exist no incoming waves of the jth field, 3 # k, there do
exist outgoing "reflected" waves of the jth field arising from self-interactions

in the kth-field. Secondly, the waves of the kth field are themselves amplified

by a term of the form (3.9), i.e.

- (i) 2 3
a + 8 § +y +b (us)(\)k,\)k) +o(lvkl ) .

k k k k kk

Wave Splitting. Consider a discrete interaction with only one incoming wave,

say Gj. Up to linear terms, the action of a scheme in class N is to split

Gj into two waves in a proportion determined by the local base state ug:
o 2
3 3

For a general interaction, each of the incoming waves is split and then

= {1 - w38, + 063 By = uy(u )8, + o83 .

superimposed up to linear terms in a fashion determined by the structure of the
matrices Aj. The process of wave splitting is absent in the exact solution
operator to systems with eigenvalues of the form (1.2). We remark, in passing,
that if an eigenvalue Aj is not monotone in the direction rj then shocks in
the exact solution can be split spontaneously through interactions with smooth
flow. The process of wave splitting is also absent in the random choice method
except for the trivial situation where a rarefaction wave is split by a sample
point. In the random choice method the splitting of rarefaction waves is not
accompanied by any form of wave amplification.

One of the interesting consequences of wave splitting a conservative scheme
is that the recession of waves after interaction is not sharp. In the special
exact solution u described in the subsection on self-interactions, the two
receding shock waves a, and 82 from the boundary of an identically constant
wake region. For a conservative scheme two "“receding" shock waves are split

again and again at each time level, leaving a wake regions with waves on the

same order as the primary waves themselves.
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Incomplete Wave Cancellation. The well-known persistence of oscillations

observed in difference approximations generated by conservative difference
schemes corresponds to an incomplete cancellation experienced by interpolated
waves of the same characteristic field but of different sign, i.e. j-waves with
positive and negative magnitude. In the random choice method, the interaction
of a j-rarefaction wave (positive magnitude) and a j-shock wave (negative
magnitude) leads to the absorption of the smaller wave by the larger up to
linear terms. A similar statement can be made for exact solutions by
considering the effect of such an interaction after a small interval of time. In
contrast, in a conservative difference scheme the larger wave only absorbs a
fraction of the smaller in typical interactions. An analytical discussion of

this feature is postponed until Section 6.

4. GLOBAL WAVE CONFIGURATIONS.

In this section we shall describe a framework for studying local and global
interactions in a finite difference approximation generated by a member of the
class X, of three-level schemes with a centered diamond-shaped stencil. An
analogous treatment suggests itself for schemes with more general stencils. To
begin with, let us consider an arbitrary function u which is defined on a grid
having a centered diamond-shaped stencil with mesh lengths Ax and At. Fix
two consecutive levels t = mAt and t = (m + 1)At and let (sk) and  (u,)
denote the sequences of values of u at the lower and upper ievels; we put

s, = ul(2k-1)8x,mAt} if m is even and s, = u{2k4x,mAt} if m is odd,
v = u{2kAx,(m+1At} if m is even and u = {(2k+1)Ax,(m:1)At} if m is odd,
and we put

k k
§ = I(uk,sk) and Yy = I(s ) .

A

-22-
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Figqure 1 illustrates the case n = 2, We note that the values Sy together

. . . k :
with the interpolated magnitudes (6 ,Yk) uniquely determine the values u, on
the upper level. Thus, complete information for two consecutive levels is

carried by the sequence

X
x = {x°}, x* = (Gk,yk,sk) e R7

In certain circumstances it proves useful to regurd each local state Xk as

being decomposed into local states of the jth field X*:
J
k k _k
X, = (6, .
j ( JlelSk)
Now in the case where u arises as a finite difference approximation associated
with a scheme in Ky having a generating function ¢, the process of
advancing u from one time-level to the next can be conveniently represented by
the following map M defined on the set  of all such states X:
k _k k-1 k
M{(§",Y ,s.)} = (B ",a ,u)
X k
k
where the outgoing wave magnitudes a and Bk are obtained from ¢ and the
corresponding incoming waves by the rule

k

- - k —
a = I(uk,wk), B = I(w )

k" Vk+1
where

L AL L L
cf. Figure 1. Thus, the marching map M represents the process by which
incoming magnitudes Gk,Yk and base states Sy determine values U, on the
next level, which in turn produce values Wi and outgoing magnitude through the
generating function ¢. With the aid of such sequences, we shall identify a
given finite difference approximation u with the discrete trajectory of its
data X; under M in Qs

w [Py 1P=0
u (M xo}p=0 .

-23~
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t=(j+1)At

Sk-1 Sk Sk+1

The problem is to prove that if VX, is sufficiently small then for each

time T > O,
TVMPXO < const .

if p < T/At, where the constant is independent of the mesh length. Here we
define

wvx = ] 1851+ YY) .

i,k J J

As we remarked in the introduction, the strategy is to study potentials for wave
interaction. For the subclass N of schemes satisfying (3.2), (3.3) and (3.5),
we shall construct appropriate potentials in several steps. The first is to
introduce a notion of approximate simple wave as follows. Embed a diamond-
shaped stencil, centered or not, with mesh lengths Ax and At into a j-simple
wave u = u(x,t) and examine the relationship between the wave magnitudes

§ and Y obtained by applying the interpolation map I to the values of

3 3

u at the west-south vertices and the south-east vertices respectively:

6 = (61'...'6]’!) = I(uw,us)7 Y= (Y11000,Yn) = I(us,ue) .

-24-
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A simple calculation reveals a restriction on the ratio of the magnitudes of the

incoming j-waves:
_ 2 2
Gj = Bj(us)vj + O0(8x” + At") ,
= = # 4
Gk Y =0,k #3,

where © denotes the ratio of direction cosines between the normals

j
a and B associated with the stencil and the characteristic ray with speed
Xj(us):
0 = + + .
j(us) {at axxj(us)}/{st Bxkj(us)}
For the purpose of constructing potential functionals, local states

X, = (§

3 j,Yj,s) satisfying

Gj = Bj(s)Yj

play a central role. We shall refer to

r = X . 6 =e, s Y

as the set of local j-simple waves passing through the base state s & R and

we shall study the action of clasg N schemes on the corresponding global

configurations

k
3

One can regard an element of TI'(8) as consisting of a chain of local simple

k
I'(s) = {Xx : §, = ej(sk)Yj} .

waves (of varing index) passing through a sequence s = (sk) of local base

states sk € Rn.

For schemes in class N we shall first construct a functional P : Q + R
which decreases along those segments of the orbit mPx which lie in the
complement of a neighborhood of the simple waves in the sense that
(4.2) P(MX) - P(X) < -cd %X) + ce &x)

if TVX << 1. Here and below we shall use the letter ¢ to denote any of

various positive constants which depend only on the system (1.1), the scheme

o - -

2 .
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under consideration and the vector u € Rn in the neighborhood of which all
analysis takes place. The quantity d(X) denotes the lz-distance from
k _k
X = {(§",y ,sk)} to the corresponding set of simple waves TI(s), s = (Sk)'

i.e.
k,2
}

2 k
a“(x) ) {6j - 808,07, /{1 + ej(sk)} .

j.k

h powers of the wave magnitudes in X,

and ep(x) denotes the sum of the pt
i-e-
k
e (X) = ) Ivj(p.
Jek
One could, of course, normalize one of the constants ¢ in (4.2) to equal one.
In addition P is quadratic in the sense that
2 2

-c{TVX)~ < P(X) < c(TVX)™ .
These estimates motivate a study of a general class of neighborhoods of simple
waves of the form
I = {x : a%(x) < me_(X)} .

mp
which can be regarded as consisting of approximate simple waves. However, for

the purposes of this paper the sets Pmp are needed only in the case where m

is small and p = 2 and the case where m is large and p = 3. The case p = 3

is of particular interest since e3(x) represents the approximate rate of
entropy production associated with the state X.

The details of the construction of P are postponed until Section 5; we
shall presently restrict our remarks to certain qualitative properties of P.
We begin with a simple observation that for schemes in class N the inequality

(4.1) implies an estimate on the total variation along those segments of the

c
orbit in T _. Indeed, for a scheme in class N, the interaction of weak waves

m2

augments the total variation norm at most quadratically, i.e.

e
= s

-




TVMX < TVX + cez(X) '
if as osc X << 1, where the oscillation of X 1is defined as the supremum of

the absolute values of wave magnitudes Gk and Yk in X, and we obtain the

3 3
following lemma.
Lemma. Given a scheme in class N and a constant m > 0, there exists a
constant c¢(m) such that the functinal Fy =1V + c{m)P satisfies
F1(MX) < F1(x)

1f X eTI°  and if TVX << 1.

Since the functinals F1 and TV are equivalent on states with small
total variation, i.e.

cTVX < F1(X) < cTVX

if TVX << 1, it follows as a corollary that

P

k
TWM X < cTVM'X for p < k < q

if TVMPX << 1 and if MKX 1lie in P:z for p € k < q. Granting the lemma,
the problem of establishing stability in the total variation becomes one

estimating the total variation norm along those segments of the orbit which lie

c
m2

near simple waves, i.e. in T

The Structure of P. The potential P is sum of n functionals Pj’ each

measuring the potential for interaction in waves of a given characteristic
field. The functional Pj contains a constant coefficient quadratic potential
for interaction as in the random choice potential [12] plus a weighted sum
corresponding to numerical self-interactions:

(4.3) P (X) =) aB + ) ¢j(a,ua)a2 .

3
Py

Here Dj = Dj(x) denotes the set of all pairs (a,B) of distinct j-waves in

X. The weight ¢

(a,ua) depends on the local base state “a through which the

3

P —
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wave a passes, on orientation of the normal of the line segment which a
crosses and on the way in which the scheme under consideration approximates a
j~simple wave.

We note that, in contrast, the random choice potential contains terms of

the form

Y lagl
A,
J

where Aj denotes the set of all pairs (a,B8) of approaching j-waves in a
given wave configuration; in the terminology of [12] a pair of j-waves is called
approaching if at least member is a shock. The presence of terms of the form
(4.4) is motivated by the fact that, in the random choice method, approaching
j-waves a and B will collide in a finite time in the absence of interference
from other waves, just as in an exact solution: if a and B are both shocks
then the total variation typically increases at the point of interaction by a
quantity on the order |aBl; on the other hand if only one wave is a shock, the
total variation is reduced by

-C(a,B) + O(aB) ,
where the cancellation between a and B8 is defined by

2 min(lal,|B|) if sgn a # sgn B8

C(Qrs)

0, otherwise .

cf {12, 13]. In constrast, pairs of j~rarefaction waves in conservative
difference approximations can also interact through numerical errors and one may
expect their products to appear in potentials for wave interaction. Lastly, we
remark that for class N schemes, one has the option of working with potential
functionals Pj in which the leading term of (4.3) is replaced by

Y lagl ,

Py
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but in this case additional terms involving cancellation effects C(a,B) appear
on the ri ht hand side of (4.2). Such potentials are useful in the context of
hybridized scheme; for current purpose it suffices to discuss potentials of the
form (4.3)

We shall now turn to the problem of estimating the total variation norm
along those segments of the orbit which lie near simple waves. To this end one
is led to study the local recession of waves after interaction; the motivation
is the following. We recall that in the exact solution operator three main
mechanisms of stability are present in the form of the cancellation process
between shocks and rarefaction waves of the same field, in the spreading of
individual rarefaction waves and in the recession of waves of different fields
after interaction. Now, if a local state Xj = (Gj,Y1,s) lies close to a
j=simple wave, for example, in the sense that

& (x.) < me_(X,)
3 p 1

with p=2 and m small or with p > 2 and osc xj small then clearly

sgn Gj = s§gn Yj and cancellation is absent. Secondly, one expects that the
spreading of rarefaction waves will only be detected in the framework of a
n-parameter interpolation after several time steps. Therefore, in studying the
behavior of a class N scheme in two consecutive time steps acting on
configurations near simple waves, it is natural to investigate the wave
recession process. For this purpose we shall construct a functional T which
measures the potential for transverse wave interactions and satisgfies

(4.5) TIMX) = T(X) € —eT(X) + cd’(X) + ce (X) ,

if TVK << 1. Here 1 records the sum of products of all incoming transverse

waves in X:

%) = {|v§||v:| : 4<% and -» < k < ®} .

P

N
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In particular, if X 1lies in Pm3 (for appropriate m) then T is reduced in
one time step by a quantity on the order of T modulo the approximate rate of
entropy production, i.e.
T(MX) - T(X) € -cT(X) + ce,(X) ,

if TVX << 1 and X ¢ rm3' Thus if X € Fm3 the functional T experiences
virtually the same reduction, modulo ey, as the exact solution operator. 1In
this regard we note that 1T includes products of both approaching and receding
waves where, in the standard terminology, a pair (Gj'Yz) is called approaching
if Gj lies to the left of Yz and either j > £ or j = %2 and at least one
member is a shock and receding if 6j lies to the left of Yl and j < f. VNow
if a local state is "close" to the simple waves then T is in fact on the order
of the sum of just the products of those incoming waves which are approaching.
The latter quantity is precisely the amount by which the potential for the
random choice method is reduced in a local interaction cf. [12]. We conclude
that for schemes in class N, a potential of the form Q = cP + ¢T satisfies
(4.6) QIMX) = Q(X) € =eT(X) = cd’(X) + ce,(X)
if TVX << 1,

The form of the right hand side of (4.6) leads one to study the action of
class N schemes on the following sets of states wmp contained in Fmp'

W= {X : T(x) + &(X) < me (X))} .
mp P
If p>2 or if p=2 and m is small, one can regard a point X in wmp

as a weakly interacting state in the senge that the total amount of transverse

wave interaction in X plus its distance squared to the corresponding simple

waves is relatively small. In the case p = 2 we obtain a bound on the total

variation along those segments of the orbit ka which lie in w;p.
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Lemma. Given a scheme in class N and a constant m > 0 there exist

constants ¢, and C, depending on m such that the functional
F=1TV+ c1P + c2T satisfies
(4.7) F(MX) < F(X)
c
< .
if TVX << 1 and if X ¢ wm2
Again, it follows as an immediate corollary that
k P
(4.8) TM X € cTVMX for p< k € g
k

X 1lies in WS, for p < k < q.

1 £
if TvMPx << and if M i

In Section 6 we shall describe a procedure for perturbing the generating
function of class N schemes in such a way as to damp the numerical reflected
waves which are produced by the interactions of configurations near simple
waves. For the perturbed schemes estimates of the form (4.7) and (4.8) hold
provided the X and ka respectively lie in the complement of the much
smaller third order states W ,. As we remarked above the sets W,3 are of
particular interest since e3(X) represents the approximate rate of entropy
production.

Structure of T. The functional T consists of two terms. The first represents

the standard quadratic potential for approaching waves of different
characteristic fields and the second represents a numerical potential for self-
interactions within groups of waves associated with pairs of adjacent mesh
points:

T(X) = Z laBl + 2 Y(a,B,u_,u.)|aB| .

A a’"B

Here A = A(X) denotes the set of all pairs (a,B8) of approaching waves of
different fields and the weight ¢ has the following property: if a 1is a
jewave and B a k-wave, k # j, crossing the west-south side or the south-east

side of a mesh diamond with base state ug respectively then
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b = ij(us) or ¢ =

qjk(us)
for certain smooth functions pjk and qjk' which characterize the numerical
self-interactions among the waves of the associated Riemann problems, otherwise

Y = 0., The details of the construction of T are given in the next section.

5. POTENTIAL FUNCTIONALS.

In this section we shall construct the functionals Pj and T discussed

in Section 4. The construction of Pj is based on the following fact.
Consider the linear mapping of r2 defined by

(5.1) U=A\);A=[1-u T )
T

where v = (§,Y) and o = (a,B). Such mappings arise from the leading term of
(3.1) with a fixed value of the local base state ug.e A simple computation
shows that quadratic form

o(v) = ay? + bs2 + v°
satisfies
(5.2) Q(SAV) = Q(AV) = =(u + (1 = W) (b = 2)(8 - oy)°

if the constants a and b satisfy

(5.3) a=-1/2=68(b=-1/2); 6 =2 (1 =-1)/(1 - u) .

s=[3;].

Indeed, if the left hand side of (5.2) maintains one sign for all v then (5.2)

Here,

and (5.3) necessarily hold. In the context of schemes in class N this

observation yields the following result. Fix the local base sate ug and put

(u) and T =1.(u) .
s s

A=A(u), u=uyu
i s 3

3
It follows from (3.7) and (3.8) that
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e

(1 - Tj)/(1 - uj) = ej(us) = {at + axk (us)}/(Bt + Bxkj(us)} .

3

Thus, if we set

¢j(a'ua) = bj(us)

PSRV,

if a is a j-wave crossing the ws side of a mesh diamond with base state

ug and r

¢j(a,ua) = aj(us) i
if a 1is a j-wave crossing the se side of a mesh diamond with base state

n
ug then the functional P = z Pj with Pj defined by (4.3) satisfies the
j=1 4

inquality (4.2) if ay and bj satisfy

5.4 , = 1/2) = 6,(b, - 1/2); b, > 1/2 , i
( ) (aJ /2) J( 3 /2) 5 /

and if TVX << 1. We note that changes in the argquments of the weights oj
leads only to cubic contributions which can be absorbed into e3(X). We note
that the restriction (5.4) depends only on the eigenvalues Xj and the choice
of normals a and B and leads to a one-parameter family of potentials Pj.
This is in accordance with the fact that any finite difference scheme with
smooth generating function consistent with the equations is at least first order
accurate on smooth solutions: if a mesh diamond is embedded in an exact simple

wave and if the values of the exact solution at the west, south and east

vertices are substituted into the generating function ¢, then the value
produced by ¢ differs from the value of the exact solution at the north vertex
by a quantity on the order of Ax2.

The potential T(X) for transverse interactions is constructed as

follows. We begin by considering a slightly more general potential of the form

(5.3)  T(x) =s ] lag] +w ] laBl + § pla,B)laBl + ) r(a,B)laBl .
A R

Here A(X) and R(X) denote respectively the sets of all approaching and

receding pairs of waves in X such that each member wave is associated with a




different pair of adjacent mesh points; p(«,B) = pjk

(us) if a 1is a j-wave

and B a k-wave crossing the ws side of a mesh diamond with base state ug,

p = 0 otherwise; r(a,B) = rjk(us) if a 1is a j-wave and B a k-wave

crossing the se side of a mesh diamond with base state U, r= 0 otherwise.
We shall show that T(X) satisfies (4.5) for an appropriate choice of
coefficients, in particular, for choices such that s is constant, w vanishes
and pjk and rjk are smooth positive functions of ug. To this end we write

the linear map (5.1) in the form

a =y + a(§ - 8Y)

8 § -a(§ -06y), a=1-yu,

in order to display the deviation for the corresponding simple wave, & = 8y.
Consider a discrete wave interaction associated with a mesh diamond having a

local base state ug. Fixing the value ug, the incoming and outgoing waves

v= (§,y) and o0 = (a,8) are related as follows moduloc & term on the order

2
fvl™:

=]
]

.+. . .6.‘6..1
Yy wJ' wJ a]( 3 JYJ)

(5.4) )

o
1}

=6 - v,
3 3 7Y

where aj = aj(us) and 6,6 =6 (us). In order to establish (4.5) it is

3 j
sufficient to show that the following incoming and outgoing potentials

associated with a single discrete wave interaction,

(5.5) T, (V) = s ] Y6 + v y 8y * y P8y S * ) i3V ¢

(5.6) To(0) = s ¥ By *+ ¥ ) o B + ) PiByB * ) %%

with summations taken over indices j < k, satisfy




To(c) - Ti(v) € -const T(Vv) + const jzk ijwkl

(5.7) def z

J<k

T(V) Y l!vkl. lvgl = Iézl + |Y£|

3

provided that (5.4) holds and the coefficients are properly selected. We note
that the quadratic correction terms to (5.4) as well the changes in the local
base state introduce only admissible cubic terms into formulas (5.7). Lastly,
we remark that without loss of generality one can restrict attention to the case
where §, and Y are non-negative for j = 1,2,...,n since the general case

b
follows by replacing § and Yj with |6j| and lel respectively.

3
Next, we shall describe the calculations which lead to the restrictions
on s,w,pjk and rjk which guarantee (5.5). 1In the following all summations
are taken over indices j < k. Substituion of (5.4) into (5.6) yields
T () = T, (V) = (8 - w) ) sjyk - yjsk + 5 (Fy * Py = 8 = WV ¥
+ 7 (80, = Py 8, =Wy, + Ty Y0¥ + L (ws, - Pacdk T T T Yy
A brief calculation show that

(1 + 8,001 + ek)(Gij - Yjsk) = (ej - Gk)(Gj + YJ.)(Gk + Yk)

3
+ (1 + ek)(Yk + Gk)wj/aj - (1 + ej)(Yj + Gj)wk/ak '

and therefore

Ty(0) = T, (V) = (s-w) ) (6, - B )6, + yj)(ek )/ (148, ) (148, )

(5.8) + ] ({w~- Pyyt (s-w)/aj(1+6j)}6k + {rjk -8+ (s-w)/aj(1+ej)}vkle

+3 (s - Py * (s-w)/ak(1+6k)}6j + {rjk -w - (s-W)/ak(Hek)}Yj]wk

The condition that the coefficients of wj and wk in the second and third
summations of (5.8) vanish when 6j = ejyj and Gk = ekyk respectively leads
to the following pair of linear equations for rjk and pjk in terms of

(specified) values of s and w
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r, - ka =5 - Bkw - (1 + ek)r

ik jk ik
(5.9)
r., - 68.p.. =w=-0,5+ (1t +6)71,
ik 3P3k 3 s I |
where Tjk = (s - w)/aj(1 + Bj). The system (5.9) has a unique solution since

Gj # ek if 3j # k. 1In particular we note that if we take w =0 and s to
be a positive number then the solutions rjk and pjk are positive and we
obtain an identity of the form

Ty(o) = T (V) = s ] (8, = 8)(8, + Y (8 + ¥, )/(1 +8)(1 +8)

+1 (s{1/a,(1 + 6,) = 1/a, (1 + 8,) + 1} = 2p 1b 4

in which the first summation involves a negative coefficient and the second is
on the order of the square of the distance to the corresponding simple waves.
It follows that the functional T(X) of the form (5.3) satisfies the desired
estimate (4.5) if we take w = 0, s positive and rjk and Pk as the
solutions of {(5.9). Here the functions rjk and Pjx will depend smoothly on
the local base state ug since the equations (5.9) depend smoothly on ug. We
note that an analogous functions with w # 0 can be constructed but, as we
shall see, such a functional is less convenient for the purposes of
hybridization with the random choice method. 1Indeed, the act of attributing a
potential for interacting of the form wlaR| to a pair of receding waves

a and B in the random choice method leads to several unnecessary terms which

are awkward to handle. These terms are simp'y avoided by setting w = 0.

6. REFLECTION AND CANCELLATION OF WAVES.

We observed in Section 4 that a functional of the form TV + c1P + c2T is

decreasing along these segments of the orbit ka with small total varijiation

which lie in the complement of the weakly interacting states Woeoe In this

e e

S




section we shall construct, for a given generator ¢ in class N, a quadratic
perturbation
q = qlw,s,e) = of|w - SI2 + |s - elz} ,

with the property that the reflected waves produced by the generator ¢ + g on
local states near simple waves are third order with respect to the incoming
magnitudes and the property that the marching map M associated with ¢ + g
satisfies

TVMX - TVX < const.{T(X) + aZ(x) + e3(X)} '
if osc X is small, i.e. in one time-step the total variation norm can not
increase by more than a quantity on the order of the corresponding reduction in
the potential Q = c1P + c2T, modulo a quantity on the order e3(x) of the
approximate rate of entropy production. It follows that for appropriate m the
functional F =TV + Q0 is decreasing along those segments of the orbit with
small total variation which lie in the complement of Wm3 and that

F(MX) - F(X) < const.e3(x)

for arbitrary configurations X with small total variation.

In this section we shall also describe the effective cancellation between
shocks and rarefaction waves of the same field which exists for class N
schemes and their perturbations and compare it with the corresponding
cancellation occurring in the exact solution. To this end we shall begir. by
recalling that for schemes in N the outgoing and incoming magnitudes of a

local interaction and related by formulas of the form

o(lV|2) .

Q
]

(1 - u,)S8, + 1.y, + p.(v); (V)
u] J JYJ p] pJ

(6.1) O(|V|2) )

[

B, =u.8, + (1 - 1,)Y. + g.(v); (V)
u] b] TJ YJ 95 95

where Vv = (v1,...,vn) and the functions uj,Tj,pj and qj depend smoothly on

the base state of the associated mesh diamond. The process connecting the
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incoming and outgoing magnitudes vj = (Gj,Yj) and Oj = (aj

as a composition of binary interactions by writting (6.1) in the form

'Bj) can be viewed

n ~
aj = aj(v) = kZ1 aj(vk) + o{t(v)} |
(6.2) . '-:
n . !
By = 85V = ) By(vy) + oft(wm)} .

k=1

-~

Here vk e R represents the vector whose kth component equals vk and whose

j':h component j # k  vanishes; the local base state is regarded as fixed and

T(v) measures the total transverse wave interaction:

vy = 3 Qv llv 1.
<k Ik
Indeed, it is easy to show that a formula of the form (6.2) holds for an
arbitrary function a = a(v) vanishing at the origin and having a bounded
second derivative.

We shall construct the perturbation q in such a way that incoming
k-waves, produce outgoing j-waves, j # k, from the generator ¢ + g which are
on order of the distance squared to the corresponding k-simple waves modulo a
cubic error and in such a way that conservation of wave magnitudes holds in the
jth field modulo a cubic error, i.e.

~ ~ 2 3
la (Vk)l + |8j(vk)l < const.IvSj - Bk(us)Ykl + const.lvkl ,

3

a. (v,) + 8 (vj) = §

3
3V + 8y * oyt oty .

3

It follows that (6.2) can be written in the convenient form

a (1 )6, + T.Y, + pj(vj) + ofg(x)}

j B LAL TR L E
7Y

s, + (1 - . ) + Oig(X
] 3 ( T )YJ qj(vj) {g(x)}

3




-~ ~ ~ 3
v+ g (v)) =o(lv ™)
Py{vy) *+ ay0vy 3!
2 3
g(X) = T(X) + a(X) + |v]|
and X = (G,Y,us) € R3n specifies the incoming configuration. One can then
employ (6.3) to display the effective cancellation experienced by interacting
j-shocks and j-rarefaction waves by noting that

o+ 181 <18, + vyl - c.(v) + o{g(x)}
!ajl IBJI ] Jl lYJl J( ) g(x)

where
C.(v) = C(6 .} - Cla,,B.)
3¢ (95075 373
2min{1x|,|lyl) if sgn x # sgn y
cix,y) = Ix| + fyl = [x + y{ = .
0 otherwise

Furthermore, it is not difficult to show that the effective cancellation Cj(v)
in the jth field is bounded below by a fraction of the cancellation C(Gj,yj)
which occurs in the interaction of waves Gj and Yj in the random choice
method, modulo a quadratic term:

C.(v) » k,C(8,,Y,) - olg(x)}
j s R R |

k, =

min{y,,1 - T.,1 =-1.) o
3 My HyrTye 3

N

Thus, we obtain the following estimates on the outgoing waves of local and

global interactions:
a, ] + 1B < |8.) + ly,)] ~ x,C(8,,Y.) + const.qg{(5,Y,
la 51 S T80+ vyl = ko8, gl(8,v,u )}
TVMX - TVX € -const.C(X) + const.fdz(x) + T(X) + e3(X)}
where the cancellation in a global configuration X = {(6k,yk,sk)} is defined

by
) .

cx) = T csk,y
jox 3

R
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In contrast, the interaction of a j-shock and j-rarefaction wave in the random
choice method leads to the absorption of the smaller wave by the larger and a
concurrent decrease in the total variation norm equal to twice the magnitude of
the smaller wave modulo guadratic terms: +the outgoing j-wave ej is related to
the incoming j-waves Gj and Yj by a formula of the form

legl = 18,0+ Iyyl = c(8,,v,) + oClvi®)
cf. (13]. For conservative difference schemes the presence of fractional
cancellation leads to the persistance of small oscillations, corresponding to
alternating sequences of shocks and rarefactions, over several time steps.

We shall next construct an appropriate perturbating q for a given
generator ¢ in class N. Consider a discrete interaction associated with a
mesh diamond and regard the base state u; as fixed. Suppose that the incoming
waves consist of just a pair of j-rarefaction waves, i.e. suppose

6j >0, Yj » 0 and vk = 0, k # j. Here the values at the west and south
vertices u, and ug lie on the j-wave curve Pj(s) through ug, the
integral curve in R" of the right eigenvector rj(u), and satisfy

Aj(uw) <A (us) < Xj(ue) .

3

If the generator ¢ were to produce a point on Tj then reflected waves are

absent:

= * = # Y
+ By =8 v o LB =0, k?

o, .
j j h]
However, in general, the point nj = nj(Gj,Yj,s) produced by ¢ for

configurations with vk =0, k # 3 lies within a distance on the order of

lvjl2 from the nearest point of Fj(s) which we shall denote by

m, =m, (8§
]

3 3

wWe shall first construct a perturbation qj which reduces to mj - nj if v

onrs) .

3

forms a discrete j~rarefaction wave and vanishes if
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18, = 6.(u)y,| > const.(I16_| + Iy 1) .

377y 30T
Fix m > 0, 1let 2z(x) be a smooth even function equal to one of x < m and
equal to zero if x > 2m and put

= = z{(8, -6, . §, + s .
qj(V) qj(vj) {« 3 J(us)YJ)/( Yj)}{mJ nJ}

3
The desired perturbation g 1is obtained by taking m small and defining

2,

n
6.4 = a (vig.(v); a4, = 1 8
(6.4) q ) 5¢ dag(v)i ag z{(5,

vos82 + vy .
3=1 k#3 I

We note that while the formula (6.4) for g is motivated by the case where the
incoming confiquration consists of just a pair of incoming j-rarefaction waves
it has the desired effect for general configurations. In particular we note
that the support of q is contained within the set of all states

3n

(G,Y,us) € R with the property that there exists an index, say j, such

that
< # 5
Ivkl 4m|vj|, k 3

|5j - ej(uS)le < 2m(|5j| + le|); sgn 6j = sgn Y, .
Furthermore a straight forward calculation shows that q vanishes together with
its first derivative in v at v = 0 and has a bounded second derivative:
roughly sgpeaking gq makes a change on the order of 52 over a distance on the

order of €.

7. THE RANDOM CHOICE SCHEME.

We shall briefly describe the generating function of the random choice
method together and the potential functionals which are used to obtain a uniform

estimate on the total variation norm of the corresponding difference

approximations. We shall compare these functionals with the functionals

PN
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constructed in Section 5 for schemes in class N and describe certain
modifications of the random choice generating function which facilitate a
hybridization with schemes in class N.

The random choice method can be based on a centered diamond-shaped stencil
as follows. Let R(x/t;u_,u’) denote the classical solution of the Riemann
problem with data (u-,u+) [20], and let (yk) be a sequence equidistributed

in the interval (-1,1). Consider a grid whose stencil has vertices of the form

n = {x,(m + 1)At} w = {x - Ax,mAt}

s = {x,(m - 1)At]} e = {x + Ax,mAt}
where x is an integral multiple of Ax. The value of the random choice
approximation at the north vertex depends only on the values at the west and
east vertices and the corresponding element Ym? it is obtained by solving the
Riemann problem with data (“w'ue) and sampling the value of the solution at
time t = At and position x = ymAx, i.e.

un = un(uw,ue,ym) = R(ymAx/At;uw,ue) ’
the C-F~L condition is enforced in the standard fashion. For convenience one
can associate with each grid function produced by the random choice method a
piecewise constant function which assumes, on each small parallelogram centered
at a mesh point, the corresponding value of the grid function. We note that the
random choice method in its original formulation [12] involves approximate
solutions which are exact in strips of the form mAt < t ¢ (m + 1)At. However,
it is not difficult to show that if a sequence of such approximate solutions is
stable in the total variation norm and convergent pointwise a.e. then the
corresponding pilecewise constant functions described above converge pointwise

a.e., to the same limit.

In order to discuss the functionals introduced by Glimm for the random

choice method, we shall briefly recall the laws governing the local wave

-.—v...,,.
P, R ST
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interactions therein. We first note that the outgoing wave magnitudes of a
local interaction associated with a single mesh diamond have the following

structure. Let €,k = € (uw,ue) denote the magnitudes of the waves in the

3 3

Riemann problem with data (uw,ue). There exists an index m such that

B = 0 ; j' 1,ooo,m-1
(7.2)
a =0 ’ B = €., j=m+ 1,..0,“

3 3

Furthermore, if € < 0 then either a = ¢ and B =0 or a =0 and
m m m m m

Bm = em accordingly as the sample point ymAx/At lies to the right or left of
the m-shock of the Riemann problem. If em » 0 then either the aforementioned
relation holds or the sample point splits the m-rarefaction wave of the Riemann
problem and produces waves o 2 0, B » 0 which satisfy a + B8 =¢ ., 1In

m m m m m

contrast to conservative difference schemes, local interactions in the random
choice method can only increase the number of waves (by one) if a rarefaction

wave is split and such splitting is not accompanies by wave amplification in the

sense that

Iejl = IGjI + lel - C(Sj,Yj) + o{D(s,v)}

(7.3)
D(&,Y) = ) {Ikajl : 8 and Y

approach} ,

k 3

in particular, two rarefaction waves of the same field do not approach, cf.
Section 5. It then follows from (7.3), together with the local recession of
waves after interaction as expressed by (7.2), that the functional

o(x) =) {laB] : a,8 approaching in X}
compensates for wave amplification, i.e.

O(MX) - Q(X) < -const. ] D(8%,8%)

dgf TV + const. Q ,

F(MX) = F(X) € 0; F

-

~
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if X = {(Gk,Yk,sk)} has small total variation [12]. We note that F(x) is
independent of the base states of X, their influence is absorbed into the last
term on the right hand side of (7.3).

The local recession of waves also plays a central role in our hybridized
methods. In this connection we shall next remark on several ways in which the
structure of the equidistributed sequence (yk) influences the geometry of
interacting waves and we shall present two modifications of the random choice
generator which guarantees that the local recession of waves occurs in a minimal
number of time steps. For simplicity let us restrict our attention to systems
of two equations. Consider a corresponding exact solution which consists of two
interacting shocks of different fields, cf. the solution ;, discussed in the
subsection on self~interactions in Section 3. For a solution of the form G,
the random choice approximations consist of exactly two shocks in each strip

midt < t < (m + 1)At; for a typical equidistributed sequence the shocks
approach during a time interval of the form (0,pAt), interact at t = pAt,
remain adjacent in (pAt,qAt) and separate in (gAt,»). The shocks remain
adjacent in (pAt,qAt) if the sample point lies strictly to the right or left
of the waves in the associated Riemann problem; of course, since the sequence is
equidistributed this can not happen for an arbitrarily long string of its
elements, hence the waves eventually separate.

Certain technical problems associated with delayed wave recession in
hybridized schemes can be avoided by using an equidistributed sequence such that
at least one element in every string of m consecutive elements corresponds to
a point in the wake region between characteristic fields. 1In order to describe
the construction of such sequences let us restrict our attention, for
concreteness, to systems with symmetric eigenvalues, i.e. A1(u) = -X2(u); the

general case is handled analogously. We note that systems of the form (1.4)

-




AV~

A T P =

have symmetric eigenvalues. Let us suppose that all analysis takes place in the

neighborhood N(;) of a fixed vector u € R® and write the interval
I = (-1,1) in the form

= U U
I 11 12 I3

where I, = (-1,-1/21, I, = (-1/2,1/2) and Iy = {(1/2,1). Consider an
equidistributed sequence (y,) in I which satisfies

€ I_ for all k;

(7.4) v, 2 Yox+1 1

€ I, for k even; y 2k+1 €1 3 for k odd.

Such sequences can be constructed, for example, by starting with a sequence
Zy equidistributed in (0,1), scaling and translating in the obvious way tc

obtain three sequences (ak), (bk) and (ck) equidistributed in I,, I,

and I, and then arranging their elements in the alternating manner indicated

by (7.4), i.e.

= b

%’ Yax+1 T C

Yax i Yake2 = Pker Yapes T X ¢

Now, if the C~-F-~L number is chosen so that

(A (y)8t/8x : u e N(W} ¢ I, and {A,(w)At/Ax : ue N(u)} I

then every second member of the sequence (yk) corresponds to a sample point
ykAt/Ax which lies in the wake region in the sense that

max k1 < ykAt/Ax < min A_ .
N(u) N(u)

In working in the context of general gystems or in the absence of any
restrictions on the C-F-L number (except that it be less than one) one will
th

obtain an equidistributed sequence such that every m element m > 2 lies in

the wake region.

We note that the process above which construct Yx from z, does not

alter the error of approximation of Z) in the following sense. If the average

number of elements of 2y with index < n in a given subinterval J




approximates half the length of J within an error on the order of (n), i.e.
Is{n,j;(zk)}/n = 131721 € c(3)¥(n)
where, without loss of generality Y(n) vanishes monotonically, then the same
rate of approximate obtains for (yk), i.e.
Is{n,3: (y, )}/n = 13172} < &I b(n)
for an appropriate constant d(J) depending only interval J. For a typical
equidistributed sequence one has Y(n) = n-1/2, while quadratic irrationalities
lead to sequences for which ¥(n) = log n/n. For technical reasons, concerning
hybridized schemes, it will be necessary for us to employ equidistributed
sequences with a rate Y(n) satisfying

(7.5) 1im y(n)n"% = o

n+
in order to show that limit of the associated difference approximations is an
exact solution. As we shall see in Section 11 the restrictin (7.5) is not
necessary for the stability of the hybridized schemes.

Next, we shall describe a second modification of the random choice
generator which has the desirable effect of emphasizing the local recession of
waves after interaction. For this purpose, let us consider a random choice
interaction for a system of two eguations and suppose that the sample point

ykAx/At,At) does not lie between the waves ej in the solution of the Riemann
problem with data (uw,ue) obtained from the west and east vertices of the
associated mesh diamond. 1In this situation one of four configurations obtains
for the outgoing waves (a,B): both cross the wn side; both cross the ne
side; € is a rarefaction wave split by V! i.e.,

1

>0, a, + B, = €_ ;

a, >0, a. =0, B 1 1 1

1 2 1

€, is a rarefaction wave split by y,, i.e.,




a,. >0, B, >0, B, =0, o

+ 82 =€, .

2 2 1 2 2

If any of the above four configurations occur and if
(7.6) |€1€2| > eoz, Ie1| + lezl < Lo
with € and L given positive constants, we replace the original element Yi
by zero. Thus, in the case of outgoing waves whose magnitudes are, so to speak,
of order 0 we enforce the immediate recession of waves if it does not occur in
the original choice of equidistributed sequence.

The effect of such a modification on the error associated with the random
choice difference approximations can be analyzed as follows. Let 8(i,3j)
denote the mesh diamond centered at (iAx,jAt). The random choice

approximations u = u(x,t;Ax,At) satisfy the exact equations (1.1) within an

error of the form

I E(4L,3) = [f ¢ u+ ¢ fluaxat

(7.7) (1,9)
where
Ax
E(L,3) = [ o0, (3 + DAY {u - R(x/At;u ,u )}dx
(7.8) -Ax
u = R(yj+1Ax/At;uw,ue)

It has been shown by Liu (26] that for each equidistributed sequence the sum of
all the errors E(i,j) associated with mesh diamonds Q(i,j) vanishes for each
given test function ¢ as the mesh length approaches zero. The additional
deviation produced by the above relocation of certain elements Yi is on the
order Ax(le,| + le,|) and satisfies

Axtle, | + e, 1) < Oxtle e, l/e0
It follows that the sum of all such terms vanishes as Ax approaches zero

provided that o(4x) satisfies

lim Ax/o(Ax) = 0

(7.9) Ax»>0

Here we have appealed to the fact that the total amount of wave interaction as

=




measured by D in a given random choice approximation is bounded uniformly with I
respect to the mesh length [12, 13), which in this context implies
) |€1€2| < const. ,
where the summation is taken over all diamonds associated with a relocated
element Y+
In treating systems of two equations with eigenvalues of the form
Xz = -Az, we shall, in the remaining sections, refer to the random choice :

generator which employs an equidistributed sequence satisfying (7.4) and subject

to the above alteration based on (7.6) as the modified random choice generator.

8. HYBRIDIZED SCHEMES.

In this section we shall describe a class of hybridized methods based on
the tracking of waves whose magnitude lies between specified thresholds
depending on the mesh length. Let us begin by considering two generating
functions based on the same grid having a centered diamond-shaped stencil,
(8.1) un = ¢(uw,us,ue)

(8.2) u = r(u ,u )
n w e

where ¢ corresponds to a (possibly perturbed) scheme in class N and r to

the random choice method; the dependence of r on the equidistributed sequence
is suppressed. Suppose one is given a mesh function v which satisfies either H
(8.1) or (8.2) at each mesh diamond, i.e. the value at the north vertex of each

mesh diamond is obtained from the three lower vertices by either (8.1) or (8.2) X

according to some presently unspecified rule of selection. Let C and RC

denote the sets of diamonds at which (8,1) and (8.2) are employed and consider
the associated pattern of wave magnitudes in v as introduced in Section 3.

- +
For a given mesh diamond Q 1let Q and € denote respectively the diamonds

whose ne side coincides with the ws side of 1 and whose wn side
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coincides with the se side of §; thus an incoming wave of § crossing its
ws side sgserves as an outgoing wave of Q" while an incoming wave crossing ;;
its se side serves as an outgoing wave of 9+. Suppose one is given constants '
m> k > 1 and a positive function o = o(Ax) which vanishes in the limit as

Ax approaches zero. In terms of these parameters we define a major j-wave

in v to be an order tuple

1 2 P
(E.,E ses0,E
373 j)

whose elements e? denote the magnitude of an incoming j-wave of some diamond

L% M s

in RC, say Qk and satisfy the following conditions.

1
(8.3) 1f e; is the outgoing wave of a diamond in C then lejl ?» mo, 1If

1 1
ej is the outgoing wave of a diamond in RC then lejl ? ko and 91

N T R ey

contains no incoming j-wave Gj such that ]
]
1 ;

sgn 8, = sgn e, and [§.] » ko . wj

] ] J x']

(8.4) 1If p > 1 then e? and ek;1 serves as the incoming and outgoing [5

-

j-waves of Qk and satisfy 1

+
sgn s? = sgn E; ! and |e§| >0 . {

We shall say that a mesh diamond & contains an incoming major j-wave if any of

the following five conditions hold.

- +
1) IGjI >mo and @ €D 2) |Yj| >mo and@ Q €D
- +
3) |6j| > ko and R € RC 4) !le > ko and £ € RC
5) Either &, or Y, 1lies on a major j-wave. K

j 3
4
We note that if any of the first four conditions hold then it is possible for

-~

! to serve as the initial diamond of a major j-wave.

In this paper we shall establish the stability and convergence of certain

hybridized schemes whose switching operators are based on the tracking of major

waves. The starting values on the first two time-levels t =0 and t = At "

for such schemes can be obtained by either setting




u(jAx,0) = uo(ij); u( kAx,At) = uo(kAx)

for appropriate indices j and k or by using standard procedures to produce
more accurate values at the second level ¢t = At from the initial data

uo(x). Given a selection of parameters m > k > 1 and o0 = o0(Ax) > 0 together
with starting values on the first two levels, the difference approximation is
marched forward by using (8.1) if £ contains an incoming major j-wave for some
index j = 1,2,...,n while (8.2) is used otherwise. For a class of systems of
two equations and initial data with small total variation we shall establish in
Section 11 convergence of certain hybridized schemes of the above type which
employ perturbations of class N generators for the function ¢ in (8.1).

It would also be interesting to study hybridized methods based on a single-
level threshold where the random choice generator is used to compute the value
at the north vertex of a mesh diamond if there exists an incoming wave Sj or

Yj such that IGjI >0 or IYjI > 0, while a conservative generator ¢ is
used otherwise. Such schemes correspond to more standard generating functions
of the form

8¢ + (1 - 8)r
for an appropriate switching function 6. The reason for introducing a multi-
level threshold in this paper is to ensure the convergence of the corresponding
difference approximations to an exact solution. Each difference approximation
produced by hybridizations of the above type satisfies the exact equations (1.1)
within an error which consists of three parts: the first is associated with
diamonds in C and vanishes by the usual arguments employed for standard
schemes [22], the second is associated with the equidistributed sequence on
diamonds in RC and vanishes by the argument of Liu [26], and the third
involves the total magnitude of waves crossing the boundary between C and

RC. In Section 11, we shall show that the third contribution vanishes as Ax

T




approaches zero. To do this, it seems necessary to rule out rapid switching
between the two generators (8.1) and (8.2) during the propagation of an
individual wave. In hybridizations of the above type, the random choice
generator remains locked on a major wave until a measurable amount of
interaction on the order of 0(Ax) has reduced its magnitude below a. The
expectation that such methods will produce only a finite amount of "wave
interaction" similar to that of the exact solution operator leads one to suspect
that the boundary contribution will vanish in the limit. The estimates which
make these remarks precise are presented in Section 11. 1In this connection we
also recall from Section 7 that we must require ¢(Az) to vanish slower than

Ax in order that our modification of the equidistributed sequence on selected
random choice diamonds induces a deviation from the standard random choice error
which vanishes in the limit. This restriction also prevents a premature switch
from (8.1) to (8.2) in the computation of a focusing compression wave: if ¢
has the same order as A4Ax then the random choice generator is engage at a time
on the order of At prior to the time of focus.

Finally, we remark that it would be interesting to study the corresponding
hybridized methods which are based on incoming major j~waves which are of shock
type. For technical reasons we have enlarged the class of incoming major j-wave
to include both shocks and rarefaction waves. We conjecture however that as the
mesh is refined the random choice method is in fact only engaged for a

substantial length of time on the major shock waves.

9. HYBRIDIZED FUNCTIONALS.

In this section we shall construct potential functinals which will be used
to estimate the total norm for the hybridized schemes of Section 7. To this end

we first eliminate from Pj(X) the terms associated with pairs of j-rarefaction
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waves, since they are not compatible with the random choice potential which

involves only pairs of approaching waves. We redefine the weights ¢j(a,ua) of
(5.3) by setting
. = =b, -1
(9.1) ¢j(a,ua) bj(ua) or ¢j(a'uu) bJ(ua) /2
if a is a j-shock wave or a j-rarefaction wave respectively, crossing the
ws side of a mesh diamond with base state ua and by setting
. = = -1
(9.2) ¢j(a,ua) aj(ua) or ¢j(a,ua) aj(ua) /2
if a is a j~shock wave or a j-rarefaction wave respectively, crossing the
se side of a mesh diamond with base state ua. We then put

_ 2
(9.3) P (X) =7 laBl + ] b tau)a”

A,
J

where Aj = Aj(x) denotes the set of all pairs of approaching j-waves in X,

As before the functions aj and bj are chosen to satisfy (5.4) and we define

P(X) =

Pj(X) .
3

I~

1

The behavior of such functionals on local wave interactions can be
efficiently described in terms of the connected polygonal arcs which consist of
line segments joining adjacent mesh points. Following the standard convention
{12], we shall refer to such an arc as an I-curve if the x-component varies

monotonically and write » J if J lies toward larger time. Two I~-curves

I 7 2
J2 » J1 are called consecutive if they coincide except along the boundary of a

mesh diamond @ : J2 - J1 consists of the wn and ne sides of  while

J1 - J2 consists of the ws and se sides of . Here it is natural to
associate with an I-curve J of a given mesh function u, the global
configuration

X = X(J) = {(Gk'Ykluk)}
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which employs the values of a set of alternating vertices Py of J together
with the corresponding magnitudes of interpolated waves Gk and Yk. In the
case of consecutive curves J2 ’ J1 the alternating vertices qj of Jy
satisfy

9 = Py if <k -1 or if 3 2 k + 1

9 =n
where n denotes the north vertex of the separating diamond {. Figure 1 of
Section 4 can be used to illustrate two consecutive I-curves J2 > J1 as
follows: J, passes through the symbols Spe1r Upr Sy Uyiqe Spuq while J,
passes through the symbols Speqr Upr Wr Upigr Spoqe Here J, and J2 are
separated by the diamond & whose vertices are labelled by the symbols Upr Sy
Up4qs Wee The alternating vertices of J, are labelled by the symbols Sy
while the alternating vertices of J, contain the sequence Sywnr Spoqr Wy
Sk+1’ Sk-2°

It follows easily from the results of Section 7 that the new functional

P satisfies
(9.4) P(3,) = B(3,) € = cd’ (V) + ¢ osc(I,)C(V) + clv]’

if VI, < 1 and if J, and J, are two consecutive I-curves separated by a

mesh diamond with incoming waves v = (v1,...,vn), vj = (Gj,yj). Here we put

)
b j=1 173

2 n 2 n
a“(v)y = § (6, -0 (uY)® and c(v) = J c(s.,y
2y 37 3%

As before the letter c denotes a positive constant depending only on the
equations, the scheme and the state G in Rn in the neighborhood of which all

analysis takes place. The proof of (9.4) consists of the observation that the

term 1/2 introduced in (9.1) and (9.2) accounts for the previous pairs of

et o
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j~rarefaction waves, while pairs with opposite signs introduce only a quantity
on the order of the oscillation times the cancellation.

The weights employed in the transverse potential do not require
modification, so we have

T(J,) = T(J,) € = cT(n) + ca?(v) + clvl?,
for the perturbations of class N schemes introduced in Section 6, it follows
that, for approrpriate constants, the functional F = TV + cP + cT satisfies
F(Jz) - F(J,) < - clr(v) + &) + cw} + civ)?
if 'I.'VJ1 << 1,

Appropriate functionals for the hybridized schemes introduced in Section 8
can be constructed by switching the weights ¢j and y of T and P on and
off according to the following rule. Associate with an interpolated wave «
the unique mesh diamond @ for which a is outgoing. If Q € C, 1let

¢j(a,ua) keep its original value as defined by (9.1) and (9.2), otherwise put
¢j = 0. If a and B cross the same side of % and Q € C 1let Y(a,B)
keep its original value, cf. Sections 4 and 5, otherwise put ¢ = 0. Thus, the
weights ¢, and ¢ vanish if and only if the associated waves are outgoing for
a random choice diamond. Without confusion, we shall employ the notation Pj
and T for the hybridized functionals with aforementioned truncated weights.

The stability proof for the hybridized functionals given in Section 10 is
motivated in part by several facts concerning the relative sizes of the weights
associated with the physical and numerical potentials for schemes in class N.
These facts, which we shall present below, are of independent interest and
hopefully will be useful in future investigations. Let us now restrict
attention to systems of two equations with eigenvalues A1 and A2 satisfying

(1.2) and the symmetry condition A1(u) = -Az(u). The well-known system

— e e e e e

-
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w_+ p(v)x =0, v, -—w =0

t t b4

arising in fluid dynamics and elasticity provides an example of symmetric,
genuinely nonlinear eigenvalues under the conditions p' < 0, p" > 0. More,
generally we note that systems of the form (1.4) have symmetric eigenvalues
A1 = -Az. For such systems it is natural to use class N schemes which are
symmetric in the sense that they employ a centered stencil, a =8, a = =8

t t X x

and functions wj = wj(a) which satisfy w1 = w2, cf. Section 3. We recall

that the Lax-Friedrichs scheme is symmetric with w1 = "2 = 0. A brief
calculation show that for such symmetric systems the weights r = ry, and
P = Pqy associated with transverse group interactions coincide and exceed the
weight associated with approaching transverse wave, i.e.
r=p> 8.

We recall that if w =0, r and p are uniquely determined by s and the
local base state according to formulas (5.9). For such symmetric systems we
also obtain a simplified formula discribing the effect of a local interaction
onthe transverse potential T:

T(Jz) - T(J1) < - s|v1|l\)2|(91 - 92)/(1 + 61)(1 + 62)

+ (s = 20000, + e’ ,

where wj = 6j - ej(uS)Yj. The formula (9.5) is useful in connection with the
problem of forming a linear combination of P and T which is decreasing on
the complement of the second order weakly interacting states Woe To this end
one might proceed by tryiny to dominate the indefinite term of T,
(9.6) (s = 2p)V¥, ¥, .
with the corresponding negative definite terms by which the functional P is
reduced, i.e. the terms under the summation sign in the right hand side of the

following inequality.
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2

P(J,) - P(3,) ¢ -5 v T - W )b

2
R I 3By = /20y

(9.7) 3
+ c(osc J1)C(v) + clv]™ .

The formulas (9.5) and (9.7} suggest that one determine the restrictions on the
weights s,p and b, of symmetric schemes which imply that the following

i
quadratic form is positive definite:

2
(9.8) jz1 (g + T = w) by - 1/z)w§ + (s - 2p)0 0, -
Here, all of the coefficients are evaluated at the corresponding local base
state and the values of wj are regarded as arbitrary. Now for a fixed choice
of s, the form {(9.8) is clearly non-negative for appropriate choices of bj.
However, a brief calculation show that a positive definite form can not be
achieved with a weights satisfying

(9.9) p/2 » a, - 1/2, p/2 » (b2 -1/2) .

1

This fact is of particular interest in connection with hybridized schemes since
the quantities a, - 1/2 and b2 - 1/2 represent the maximal weights
associated with the numerical self-interactions of rarefaction waves as

registered by P we have

j?
a1 > b1 and b2 > a1

gince (5.4) holds and 91 <1« 62. As we shall see in Section 10 the numerical

group interactions characterized by coefficients p and r generally lead to

favorable contributions in bounding the hybridized functionals and it is natural

to inquire into the extent to which they might compensate for the less favorable

effects of switching on and off the coefficients associated with self-

interactions.
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Lastly, we remark that for the purpose of dominating the indefinite term
(9.6) of T, one might appeal to the favorable term with leading coefficient
-8 on the right hand side of (9.5) and ask what restrictions on the weights

s,p and b, of symmetric schemes are implied by the condition that the

3
following form be positive definite:

2

(b, + 1)1 = u ) (b, - 1/2)y

z J ] J J / w]

(9.10) + s(e2 -0, - e)|v1||v2l/(1 + 91)(1 + 62) + (s - 2p)¢1¢2 .

1
Here the quantity € > 0 is introduced simply to guarantee that a residual term
of order T(Vv) 1is available to compensate for the corresponding growth in the
total variation norm. A brief calculation shows that for that Lax-Friedrichs
scheme, and hence for symmetric schemes with Wy = W, sufficiently small, a
positive definite form (9.10) can be achieved with a choice of weights
satisfying (9.9). Thus, for class N schemes close to the Lax~Friedrichs
schemes one can work with functionals such that the maximal weights associated

with numerical self-interactions of shocks are less than half the weight

associated with transverse group interactions.

10, STABILITY OF HYBRIDIZED SCHEMES.

In this section we shall restrict our attention to systems of two equations
with eigenvalues satisfying (1.2) and A1(u) = -Az(u). Our results extend to
the more general class with eigenvalues satisfying (1.2) and A1 <0« Xz but
we shall treat just the symmetric case A1 = -X2 for concreteness. We shall
establish stability in the total variation norm for hybridized schemes which are

based on the tracking of major waves defined by parameters k,m and o(Ax),

cf. Section 8, and which employ the modified random choice generator, cf.

Section 7 together with a generator of the form ¢ + g where ¢ corresponds to

-—
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a symmetric scheme in class N, cf. Section 9, with Wy and vy sufficiently

small and where q is the associated perturbation constructed in Section 6.
Theorem 10.1. If o(Ax) satisfies (7.6) then for appropriate choices of m
and k, m > k, the hybridized schemes above produce difference approximations
ulx,t) = u(x,t;Ax,At) with the following property. If the initial data uq

lies in a small neighborhood of a state u e r" and if TVu0 << 1 then

(10.2) TVu( ,t) < const.TVu,
[ ]
(10.3) f fu( ,t1) - u( ,tz)ldx < const.((t1 - t2| + Ax) ,

i chelnch,

provided that t.t, and t2 are less than const.Ax/oz. Furthermore, the

constants depend only on ;, the equations and the parameters which define the

scheme.

Remarks. The approximate ! Lipschitz continuity (10.3) for the marching map
is an immediate consequence of (10.1); the difference approximation

u = u(x,t;Ax,At) is constant on each rhombus centered at a mesh point

(1Ax,jAt) with sides of length As = (Ax2 + Atz)v2

oriented by the normals
a and B and assumes therein the value of the corresponding grid function at

(1Ax,jAt). One may, of course, derive piecewise constant or piecewise smooth

difference approximations from a given grid function in any of several standard
ways and still maintain estimates of the form (10.2) and (10.3). We shall

comment further on this point in Section 11. Lastly, we note that the

7~

particular choice ¢ = Ax1-€ leads to uniform estimate (10.2) and (10.3) over

time intervals of length 1/Ax1_2€; the ratio of meshlength is held fixed and

satisfies the C-F~L condition.

Before proving Theorem (10.1) several preliminary remarks are in order

concerning the local action of the hybridized functionals. For notational
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convenience we shall work with a functional of the form

F(X) = cTVX + P + T
where ¢ is an appropriate small constant and P and T denote potentials
with weights hybridized according to the rules of Section 9. In order to
distinguish various local changes in F according to the structure of the

incoming waves we shall employ the notation

=68, if Q eRC; 6 =0 if o e c

3 3 3

if Q+ e RC ;

. . 1 H .

357y 3
3.=6,-8;7, = .- Y.

3 j 3P Y5 T Yy T Yy

o
[}

+
0 if 2 e€¢C

<2
]

if § and Yj are incoming j-waves of a mesh diamond §I whose neighbors with

3
- +
a common boundary along the ws and se sides are denote by and

respectively. Given two consecutive I-curves J2 ’ J1 separated by a mesh

diamond § with incoming waves Vv = (§,Y) and local base state u let

sl
P(v) denote the incoming potential for self-interactions and G(v) the

incoming group potential:

2 2 2
P A8, 87+ ¢.(y., .
(v) _2 $5(8,,m )8, + 0, (v u Y]

j=1

G(v) p(us)|5152| + r(us)|Y1Y2| .

We note that r = p since we are dealing with symmetric schemes. Now, if

TVJ, << 1, we have the following estimates with an appropriate small constant

€
(10.4) F(J,) = F(J,) € =(1 - €)D(V) - €C(V) - P(V) = G(V)
(10.5) F(J,) = F(J)) € - eT(V) - edz(v) + P(V) + G(V) + o(IVl3)

if N 1lies respectively in RC for (10.2) and in C for (10.3) where
D(v) = sg|§ + ) {I18,y,1 : §, and Y, approach} .
16, v,1 + ] 375 ; 5 app

The estimates (10.4) and (10.5) can be summarized by introducing a quantity
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IV,

agsociated with group and self-interactions. We shall show that for each

diamond

(10.7)

! where {Qj} denotes the set of all mesh diamonds separating the I-curves
[
]
|

associated with X and MX, we obtain

and TVX << 1.
establish a slightly stronger estimate which facilitates the proof that the
difference approximations converge to an exact solution. The stronger estimate

aggsumes the form

-

(10.5) if Q € C, and obtaining

by appealing to the fact that the waves in conservative diamonds have an order
at most Thus, the problem of proving that F has at most mild growth along
orbits requires an estimate on the changes in F due to the switches between
generating functions. 1If 9,9- and Q+ all beong toeither C or if Q € RC
then I (2) € 0. Hence the only unfavorable contribution arises if  1lies in i

-+
the set K of mesh diamonds in C with at least neighbor & ,§ in RC. If

R € XK then F is augmented by the effect of switching on the coefficients

which compensating interactions have occurred. Specifically, we shall show that

if TVMX is sufficiently small for k < p then

if k € p. Combining (10.5) with the property that

'“‘w"""“'""""""""llIllllIlIlllllFF'lll,lllll-ll-----........_._._,‘

which equals the negative of the right hand side of (10.4) if § € RC

and the negative of the sum of the first four terms on the right hand side of

P(3,) - F(3,) € T(R) + const.o2(Ax) V|

K one can associate a set of diamonds at lower time levels at

T {x(@) : @ (0,kAt]} <0,

F(MX) < F(X){1 + const.o2(Ax)} - § 1(8,) !
b

F(MkX) < 2F(X) if p € const./cz(Ax) i

Furthermore, in the course of the proof of (10.7) we shall
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(10.8) YI(R) € = ¢ ) 1%
where 0 < € << 1, both summations are taken over the mesh diamonds { which
lie in a given strip [0,pAt] and the interaction term I* is defined by
(10.9) I(Q) = T(v) + (V)
(10.10) I*(Q) = D(V) + C(V) + G(V) + P (V) + H(V)
if  lies respectively in C for (10.9) and RC for (10.10). Here P,
records the self-interactions associated with those incoming waves
v=(§,Y) of &£ which have maximal coefficients and enter from a diamond in
C, i.e.
P (V) = E? + ?3 '
and H(v) records the effect of switching off coefficients at the starting
points of major waves:
H(v) = ma2
if Q contains an initial segment of a major wave while H=0, otherwise. The
factor of m is introduced merely as a reminder of the definition of H. We
deduce from (10.8) that
F(MX) < 2F(X) - comst. ] I*(R) 4if k < const./o>(Ax)
and therefore that total amount of interaction as measured by I* in a strip of
the form [0,pAt] satisfies
(10.11) T {1*(2) : Q ¢ (0,pAt]} < const.TVu

if p < const./az.

Proof of Theorem. Consider a fixed strip [0,pdt] and denote by K the set of

.

- +
mesh diamonds {1 therein such that either Q or R lies in RC. We shall
indicate how to associate with each ©® in K a collection of diamonds

Fj = Fj(ﬂ), j =1,2,¢ee,4, and compensating quantities q(Fj,Q) such that
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Iq(F, )| < II(Fj)I

@ + ) oF,,Q) <o
(10.12) 3 )

J oy <]y q(Fj,Q) .

1(c K j

It then follows that

S + ] @ <y +)7 q(Fj,n) <o .
K

K K K 3j

Here diamonds of the form Fj(ﬂ) and Fk(ﬂ') may coincide for distinct

8 and Q'. The estimate (10.6) simply follows from the fact that compensating

quantities g can be located without appealing to a small fraction of I*(§).

Fix @ in K. In the case study below we shall locate diamonds Fj

having interactions which compensate for the contribution to I(Q) from waving

leaving P+. The set of all diamonds of the form I‘_i or F; provides the

desired collection {?j). Thus, let us suppose that § lies in RC and let
61 and 62 be the waves in the Riemann problem with data (uw,ue) where w

and e denote the values of the difference approximation at the west and east

vertices of 2 . We shall first treat the case of two shock waves. The
remaining cases are somewhat easier and will be discussed below.

Case 1. 61 <o, 62 >0

Subcase 1. Suppose both 61 and 62 cross the ne side of Q . If Q

contains an incoming major j-rarefaction wave then
c(Q7) + D(R) > co
since there exists no outgoing rarefaction wave for Q". As before we shall

denote by c¢ any of various constants depending only on the scheme, the

equations and the neighbor in which all analysis takes place. On the other hand

-
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22
(¢}

I(Q) < ck

Hence, in this situation we associate with & Jjust a single diamond P1 =Q

and put
a(T Q) = oc(Q7) + oD(R7) .
Now, if 8 contains an incoming major j=-shock then
) c(R) + D(R) > co

where {Qi} denotes the set of diamonds which it intersects. Here, we put

Fi(ﬂ) = Qi and

q(Fi,ﬂ) = OC(Qi) + oD(Qi) .

Subcase 2. Suppose § crosses the wn side of 9 while 62 crosses the

1

ne side of 2 . If 9 contains a major 2-wave the analysis of subcase 1 is
applicable. Let us therefore consider the situation where Q"  contains a major
1-wave. Here the only non-negative contribution to I(fl) associated with waves
leaving Q  is given by bzsz and appropriate compensation can be obtained as
follows. Let § be an outgoing j-shock of an arbitrary diamond in RC. We
introduce a backward shock tree T(§) through & by starting with & and
repeating the following process: given an outgoing j-shock of a diamond in

RC associate with it the corresponding set of incoming j-shocks, if any. Such
a tree T(8) is contained in a union of RC diamonds, say Qk' each having
one outgoing j-shock and at most two incoming j-shocks. With reference to the
particular shock 62 we shall refer to a corresponding diamond Qk as a

terminal diamond for T(GZ) if any of the following conditions hold:

+
(10.13) Qk lies in € and contains an outgoing 2-shock,
say az, crossing its wn side
+
(10.14) Qk lies in C and contains an outgoing 2=-shock,

say 82 crossing its ne sgide

(10.15) Qk contains no incoming 2-shock.

oy




We shall refer to such associated waves az and 82 as terminal shocks for
T(Gz). We can estimate 6; in terms of terminal shocks of T(62) as follows:

(10.16) 2<Jal+] 8 42 Z 5,() + ¢ osc T(6,) E DR, -

Here the first two summations are taken over all terminal shocks of T(62) as

indicated in(10.13) and (10.14); Sz(ﬂk) records the shock-shock interaction of

the second field in Qk, i.e.
S,(2) = len|

if Qk contains incoming 2-shocks € and n while 52 = 0 otherwise; and

osc T(Gz) denotes the largest wave magnitude in the union of Qk. Thus, in

the case of difference approximations with small oscillation, the sum of squares

of terminal shocks plus the total shock-shock interaction on T(Gz) bounds the

"output” 62 modulo a small fraction of the total random choice interaction

occurring on T(Gz). The estimate (10.16) can be established by proving by

induction that

2 2 2
6, Loy + L8+ 2] 5,09

2 2
+ 4c osc T(Gz) ) D(Qk) +c” ¥ (Qk)

where the constant c¢ is chosen so large that the incoming and outgoing j-waves
of a general random choice interaction satisfy

€, - (8, + v, < ¢D(§

| j 3 YJ)| 'Y)
cf. Section 7. At this point we remark that we can choose the weights b2
(and a1) to be constant since we only need (5.4) to hold. 1If b2 is
congtant, we obtain an estimate of the form

2 2 2
< + +
b,8; < I bya; + | byB; + cbyosc T(8,) | D(Q)

(10.17)
+ 2b, 7 S,(2) .

-64-

PP SR

e p— e o




for which there exist obvious compensating quantities q(Fj,Q) for the first
three term on the right hand side. It remai;s only to obtain compensation for
the last term of the right hand side of (10.17). Now, since b2 > 1/2, the
shock-shock interaction (with coefficient equal to one) in D(Qk) does not
cover this last term. However, we can obtain adequate compensation for it by
appealing to diamonds of the form 9;. Specifically, in subcase 2 we shall
associate with a collection of diamonds Fj such that

urycug U 9; .
We partition the analysis of subcase 2 as follows.

Subcase 2A. Suppose Qk satisfies (10.13). Let 81,82 denote the outgoing

waves of 9; crossing the ws side of Qk and a1,a2 the outgoing waves of

+
Qk crossing the se side of Qk. Now if Qk contains a major 2-wave then we

may proceed exactly as in subcase 1. Let us assume therefore that Qk contains

a major 1-wave. If u1 lies on a major wave then |a1| 2 mo and we can appeal

to (a small fraction of) the quantity -a which appears in I(Qk); we have

a2

1M

-a uz < -a m202
1 1 !

with m 1large. Hence, the only difficulty arises in the situation where we
know only that 81 lies on a major 1-wave and this can be handled as follows.

Since 81 and 82 cross the same line segment, the definition of the modified

random choice generator, cf. Section 7, implies that either

2
18,8, < €c® or 18,1 + I8, > Lo .

Suppose the former inequality holds. We write the term azuz appearing in

-I(Qk) in the form

2 2 2
(10.18) a,a, = b2a2 + (a2 - b2)a2 .

We recall that a, depends on the value of the difference approximation at the

south vertex of Qk and satisfies az > b2. The first term on the right hand

side of (10.18) appears in (10.17) and we have a residual of the form




(a2 - bz)a§ which we take advantage of as follows. We note that if

(10.19) (a

2
- bz)a2 > 2b_s_(Q )

2 22 'k

we have located adequate compensation for the shock-shock interaction in Qk.
Now (10.19) holds if

- i
I82I < (a, b2)|a2|/2b2

since Sz(Qk) = |82a2|. Equivalently, (10.19) holds if

{10.20) €0 < (a, - b2)|a2|/2b2

since 81 lies on a major wave and |B182| < 602. Therefore no further

analysis is required unless we are faced with the opposite inequality from

(10.20), i.e. unless

(10.21) Iazl < 2b250/(a2 - b2) .
However if (10.21) holds we can locate adequate compensation g in the diamond
Q; as follows. Inequality (10.21) implies that
sz(nk) < {2b26/(a2 - bz)}os2 .
In a lemma below we shall show that [B.8,| < cf(n;) where
I(Qk) = G(Qk) + D(Qk) + H(Qk) .
We therefore obtain 0|32| < cf(Q;) and
(10.22) 2b282(9k) < ecI(Qk) .
We conclude from (10.22) that if |B182| < 602 there exists an appropriate

compensating quantity q for the shock-shock interaction in Qk since we have

an estimate of the form

7~

2 ~ - 2
(10.23) byay + 2b,5,(R ) < ecT(R) + aja;

with small €. We note that (10.13) can be strengthened by the inclusion on the

left hand side of a term of the form cuz. This can easily be seen by writing

(10.18) in the form

2 2 2 2
aza2 = b2a2 + (a2 bz)a2/2 + (a2 bz)a2/2

and proceeding as above. This accounts for the presence of the term Py(v) in




(10.10). We complete the discussion of subcase 2A by considering the
alternative situation where |B1| + |82| » Lo, Here, if Ile > m0 we can
appeal to the cancellation process exactly as in subcase 1. On the other hand
if lel < m0 we obtain
19 > et - mo”
since
18,8,1 < cI(q ) and 8,1 > (L - mo

Thus if L 1is sufficiently large it follows that I(Q) is bounded by a small
fraction of ;(ﬂ;) and the desired compensation is realized.

Next we shall establish the lemma required in subcase 2A.
Lemma. If 61 and €2 denote a pair of outgoing waves crossing either the

wn or ne side of a diamond © in RC then

feye ! < cI() = c{G(R) + D(R) + H(Y)}

Proof: Let 61,62 denote the incoming waves crossing the ws side of & and

Y1'Y2 the incoming waves crossing the se side of . We have
le, = (8§, + v,)| < cD(R) .
b 3 YJ
If 9+ and 9 both lie in RC the structure of the modified random choice
generator implies that 61 =Y, = 0 and hence
|e1ezl < c|62Y1| = cD(Q) .
- +
If @ e C and @ € RC then YZ = 0 and we obtain
|e1e2| < |6162| + cD(R) € cG(Q) + cD(R) .
Similarly if 8" ec anda a ¢ RC then
le1ezl < cG(R) + cD(Q) .
+ -
Finally, if and both lie in C we obtain the simple estimate
|€1€2| < cmza2 < cH({R) .

The proof of the lemma is complete.




Subcase 2B. Suppose that Qk satisfied (10.14), as in subcase 2A the situation
if simple unless we know only that Qk contains a major 1-wave. Supposing this
to be the case, we proceed as follows. If B, lies on a major 1-wave then
|B1| > mo and we can appeal to (a small fraction of) the quantity -b183
which appears in I(Qk) and obtain
2 22
- § =
b1B1 b1m o
for appropriate compensation. Therefore, let us assume, on the other hand, that
o, lies on a major 1-wave and let us estimate S2(Qk). Now Sz(Qk) vanishes
if a2 = 0., If a2 # 0 then either
2
< + > L]
Ia1a2| €0 or |a1| Ia2| Lo
If the former inequality holds then
= < < < .
Sz(ﬂk) |a282| eolel ela182I eD(Qk)
since |a1| > 0. If the latter inequality holds then we remark that either
|a2| ?» m6 in which case we can appeal to the cancellation process exactly as
in subcase 1 or |a2| < mo in which case
Q > > - > -
D(R,) |82a1| |82|(L m)o » (L m)|82a2|/m
since |a1| > (L - m)o. Hence if L is sufficiently large
1
2b252(ﬂk) < - D(Qk)

and we conclude that a small fraction of the random choice interaction in Qk

provides adequate compensation for Sz(Qk) (if m is large).

+ -
Subcasge 2c. Suppose Qk is not a terminal diamond. Then Qk and Qk both
lie in RC and we proceed as follows. If 81 # 0 then a, = 0 and no further

analysis is necessary. If 81 = 0 then we may assume that |a1| > 0. Now,

if a2 < 0 then (10.24) holds. Under the first inequality of (10.24) we obtain

an adequate estimate of the form
2b_S_(R = 2b_|a_B < ecD(f
2 2( k) 2| 2 2' ¢ k) f

since
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D(Qk) > sIBza’| > su|82| .
Suppose the second inequality of (10.24) holds. 1If |a2| > mo then no further
analysis is required as our previous cases apply. If }azl < m0 then
|o1| > (L -~ m)o and we obtain
D(R) > sl a | > s(L - m)olB,| > s(L - m)|a282|/2
= s(L - m){2b232(9k)}/4b2 ’
since we may assume that lazl < 20, otherwise the situation if trivial.
Hence, if L 1is sufficiently large, a small fraction of D(Qk) dominates the
shock-shock interaction of the second field in Qk' This completes the proof of

case 1.

We note that the presence of the terms (10.9) and (10.10) in I*() is
simply due tothe fact that we were able to obtain appropriate compensation for
the positive terms in I(f?) by appealing to only a fraction (less than one) of
the available negative terms.

It remains to discuss the cases where the Riemann problem with data
(uw,ue) produces a shock and a rarefaction wave or a pair of rarefaction
waves. We note that if the strip under consideration involves no splitting of
rarefaction waves by the sample point then the analysis of case 1 applies
virtually without modification to the remaining cases. If a sample point splits
a rarefaction wave, only a small change in the above analysis is required since
the splitting of rarefaction waves is not by itself produce any wave
amplification. In this connection we note that it is primarily to handle one
technical point connected with wave splitting that we restrict attention to
symmetric schemes with wy and v, small.

We begin with a remark needed to construct the analogous rarefaction

trees. Let a and B denote the j-waves crossing the wn and ne side of

j 3
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a diamond @ in RC and § and Y the j-waves crossing the ws and se

3 3

>0, B, 0 and consider an ordered

sides respectively. Suppose that o j

]
partitioning of uj and Bj of the form

m n
% k£1 “p By Z 3

k=1
where ajk and Bjk are j-rarefaction waves contained in uj and Bj
respectively such that the left edge of ajk coincides with the right edge of

while the left edge of B8 coincides with the right edge of 8

3, k41 ik j,k+1"

It is easy to see that there exist partitions of the incoming j-rarefaction
waves (if any) which conserve wave magnitudes modulo a quantity on the order of

D(Q) as follows. Let

n =aq if 1<k €m if m+ 1<k <n

ik = %4k ik = 85, k-m

Case A. If Gj >0, Yj > 0 then there exists a j-rarefaction wave 65

contained in &, which can be partition into j-rarefaction waves Gak,

3
1<k €p, in such a way that

8§t = f §* and E Im, = &' ] + E jn. | € cD(R) .
I x=q JK k=1 ¥ Ik q+1 Ik

for appropriate g. It is understood that one may have q = p in which case

the third summation in (10.25) is taken to vanish.

Case B. If Gj <0, Yj < 0 then there exists a j-rarefaction y; in Yj

which can be partitioned into Ysk so that

y! = § Y' and 3 Jn, =v' | + § Jn. ] < cD(R) .
ko ey S L L L
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Case C. If §, >0, Yk » 0 then partitions

j
. §. = § § and Yy, = ? Y,
3 oy 3K 37 g2y ik
can be formed in such a way that either -
(10.26) E lﬂjk - ijl + % '"jk - Yj,k-p' < cD(R), or

k=1 p+1

| + In, =8, =y, | € cD(R) .

p-1
(10.27) Y oIm, =6, | + 3 I ip =830~ 41

L oy kTR T b T keprt

We note that virtually the same magnitude-preserving partitions are employed in

[13] for the purpose of constructing characteristic curves. Using such

partitions, an analogous backward rarefaction tree through a given outgoing h

rarefaction wave of a diamond { in RC can be constructed by repeating the
following process which associates with a given outgoing j-rarefaction wave
“jk the corresponding incoming wave or waves according to the following rules

In Case A: T - §

.
-
.
=

In Case B: w, = Y'
In Case C: If (10.26) holds then
n, ~ 8§, if x < and -y,
jk ik P 3% " Y5,%-p
If (10.27) holds then I

if kx>p+ 1., i

n - § if k<p-1 and =

5 3
ik ik if % p+1 |

5k " Y4,x-p+1

o [ ’
TS TL

Thus, only in Case C, (10.27) does not associate a pair of waves with a given

- outgoing wave. We now proceed to sketch the remaining cases.

. > < 0.
Cagse 2 61 0, 62 0

OB AP IRTIIIS WA Tk . Boa e S
-
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Subcase 1. Suppose that 61 crosses the wn side of 2 while 62 crosses

the ne side of 2 . This subcase can be handled exactly as in Case 1.

Subcase 2. Suppose that 61 is split by the sample point into a 1-wave 6;

crossing the wn side of Q" and a t-wave 6; crossing the ne side of Q
along with 62: 61 = 6; + 6;. Here we must locate compensation for terms of
the form

b16{"2 + pb1s,
which enter I(Q). Now if Q  contains either an incoming major 2~-wave or an
incoming major 1-shock the analysis of Case 1 suffices. Let us therefore assume
that @ contains an incoming major t-rarefaction wave. Let 81,82 denote the

incoming waves of Q crogssing its ws side and a,,a the incoming waves of

1772

8 crossing its se side. Let 91 and 92 denote the diamonds which
intersect the ws and se sides of @ respectively. For concreteness we
treat the situation where 91 and Qz both lie in RC; this case provides the
primary example of the switching-on of weights due to the splitting of a
rarefaction wave. Here we proceed by tracing back the major 2-rarefaction
wave. Here we proceed by tracing back the major 2-rarefaction wave through a,
to the diamond I which contains its initial segment €. Now, if € enters

I' from a diamond in C then € ?» mo and we can appeal to a quantity on the
order of €2 appearing in I(I'). On the other hand, if € enters I from a
diamond in RC then € > ko and we shall show that there again exists
compensating interactions on the order of 52 in certain diamonds near I to
be described below.

Before proceeding with the latter case we shall remark on the situation

where more than one major rarefaction wave is traced back to the same diamond

I'e Now, if {ej} denotes the collection of all waves of the above type which

-72-
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can be traced back to the same €, then, modulo a quantity equal to a small

fraction of the random choice interaction in the associated diamonds, we have

82 >m z 52 if € » mo and sz > X 2 ez if € » ko ,

3 3

since in both situations €, € 0. Indeed, without loss of generality we have

j
€ = € .
) j
modulo interactions, and therefore in the case, say, € ? mo,

e? = ) e§ +€) (1 - e /7€) > ) eg + (1 - 1/me . ]

3

Thus, the splitting of rarefaction waves produces a situation where the sum of

the squares of the terminal waves Ej associated with the sgwitching~on of A
weights is a small fraction, here 1/m or 1/k with m and k 1large, of the 4
square of the initial wave €, modulo a quantity on the order of the same small

fraction of the total random choice interaction as measured by D in the union

of diamonds through which the traced waves pass.

Our analysis of the case where € enters I from a diamond in C is
subdivided as follows.
- +
Subcase 2A. Suppose T and T both lie in RC 1let (61,62) and (Y1,Y2)

denote the incoming waves of I crossing its ws and se sides. We have

(10.28) €= 61 + y1 + op(l) .
Now if 61 =Y, = 0 then |e| € ¢cD(I') and we easily obtain appropriate
compensation of the form ez by appealing to a small fraction of D(I'). Indeed
we have
2 i i
e~ € c(osc u)D(T) ,

since D(T') 1s itself on the order of the oscillation of the difference "

approximation u. Let us therefore suppose that 61 and Y1 do not both

vanish. For concreteness assume 61 # 0. It then follows from the definition

of the modified random choice generator that Yz = 0, If Y1 = (0 then

e v e g W o e e B -~ - -~ r————




e1 = 61 contradicting the fact that € is the initial segment of a major

rarefaction wave. On the other hand if Y1 # 0 then a simple calculation shows
that

(10.29) 18,1 + Iy | < clé, |

since both 61 and Y1 are non-zero rarefaction waves. In this connection we

'Y must vanish since the

note if 62 = 0 then at least one of the waves § 1

1

associated eigenvalue A1 increases from left to right across 1-rarefaction

waves. It follows from (10.28) that
~ o= 2
D(r) + (T ) > c|52Y1| + c|5152| > clls,] + APRD

and we conclude that

e2 < elp(n) + T},

to which we appeal for appropriate compensation. The situation where Y1 0

is handled in a similar fashion.

Subcase 2B. Suppose I" and P+ both lie in C. 1If [61l < ly1f we appeal

to -a1yf appearing in I(I') and obtain

e < eyf + 2eD(T)

using (10.28). Hence a quantity on the order of

2 + (osc u)D(T)

"3,

bounds 52. If |61| > |Y1l we proceed as follows. Either Y or § lies

on a major 2-wave. If 72 does then
(10.30) € € 2ko + cp(l')

appearing

since §, < kg. In this situation we appeal to the quantity -ang

1

in I(l) and note that modulo a small fraction of D(I') we have an estimate of

the form

2 2 2 2 2. 2
azyz > azm s 7 (azm /4k e

using |72| > mo., Here we are led to take m much larger than k. Next,




RENIRNY Y

suppose that 62 lies on a major 2-wave. In this situation we simply repeat

the argument given in subcases 2A and 2B and in subcase 2C below with r-
replacing I and use the fact that, modulo the interaction term D(I') we have

§, > ko/2 since |6 | < |v,I.

- +

Subcagse 2C, Suppose T lies in C while T lies in RC. 1If 161l > |y1|

we appeal to -b16ﬁ appearing in I(l') and obtain an inequality of the form
b,62 > be?/a - eD’(I) .

Next, let us suppose that |61| < |Y1|- If 62 lies on a major wave then we

appeal to -b26§ appearing in I(I') as follows. We have (10.30) since

61 < ko and |61| < |Y1|- Therefore
2 2 2 2.2 2 2
) - .
b262 > bzm o bzm €“ /4 cD (T)

Oon the other hand if 72 lies on a major 2-wave we simply repeat the arguments
above replacing [ with I’ and using the fact that

Y, » ko/2 - eD(T)

1
This completes the sketch for the three subcases.

The remaining term pé"

162 can be handled as follows. From the definition

of the modified random choice generator we have a, = 82 = 0 since 91 and

92 lie in RC. Thus, a term of the form
sla.B, | + ck6"2
21 1

is available to compensate for p6;62. Writing 6; = 181 with 0 <1 <1, we
require an inequality of the form

2.2

. " = + .

(10.31) pl61621 prla231l < s|61a2I ckT 81
But since |81/a2| ? 1/k, (10.31) is equivalent to the condition

2
(10.32) pT € 8 + CT

Now an appropriate restriction on the C-F-L number quarantees that p is only

slightly larger than s which implies that (10.32) is valid. We lastly remark

RO

sl Az




that the case where 51 <0 and 62 2 0 and the case where 61 > 0 and

62 2 0 are treated in the same fashion as above.

11. CONVERGENCE OF HYBRIDIZED APPROXIMATIONS.

In this section we shall consider the class of systems and hybridized
schemes for which we established stability in Sec’“ion 10 and show, under the

additional hypothesis that the error function | associated with the

equidistributed sequence and the switching function o(Ax) satisfy

lim lJ;(u)n3/4 =0 and 1lim w(1/Ax)/(Axo)1

n»® Ax+0

!
2 |
/2 _ 0, |
that a subsequence of difference approximations converges to an exact r1d
solution. We note that standard arguments using the stability estimates (10.2) i
and (10.3) yield the existence of a subsequence of difference approximations
converging pointwise a.e. to a function u which is a function of bounded
variation in the sense of Tonelli-Cesari [10, 33]; indeed, the subsequence

converges to u in L1 of the space variable for each fixed time ¢t. We also

note in passing that our stability analysis shows that the total variation of
the difference approximations along (space-like) lines with speed of propagation
greater than or equal to Ax/At in absolute value is uniformly hounded and
consequently that there exists approximate L1 Lipschitz continuity in
directions normal to such lines. It remains to prove that u satisfies (1.1)

in the sense of distributions, equivalently that the contour inteqgral

[ viw)ds; v(uw) = v u + v_£(u)
c t X

vanishes for all piecewise smooth closed contours C. As we remarked earlier,
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one need only verify this property for a substantial class of contours, for
example, parallelograms with sides parallel to two fixed directions.

We shall begin with several ~omments which will facilitate the convergence
proof.

Conservative Schemes. Consider a conservative scheme based on a centered

diamond shaped stencil with a generating function ¢ derived from an equation
of the form

H(un,ue) - H(uw'“s) + G(un,uw) - G(ue,us) =0,
where H and G are defined by (2.5) using normals o and 8. Let {(i,3)
denote the mesh diamond centered at (iAx,jAt) and regard it as the union of

abd T obtained by

four congruent triangular regions The’ Tnw’ Tws es

intersection with the four standard quadrants centered at (iAx,jAt); here the
triangles share a common vertex and have hypothenuses indicated by the
subscripts. Suppose that the values of all difference approximatins under
consideration lie in a small neighborhood N of a fixed state u € Rn. A
simple application of the implicit function theorems shows that if the matrices
a I+ o Vf(u) and B I + 8 VE(u)
t X t X
are invertible, i.e. if the C~F-~L condition holds, then there exist smooth

maps 6 and ¢ defined in a neighborhood of (G,G) such that

|
o

H(a,b) ate(a,b) + axf{e(a,b)}, n(a,a) =

[}
»

G{a,b)

BtW(a,b) + Bxf{w(a,b)}, Vv(a,a)

Using O and ¢ one can associate with a grid approximation u(Ax) of the
scheme, an everywhere defined piecewise constant function u = u({x,t,Ax) such

that

[ v(uyas = 0
c

i

” i X L ISR

-




A

if C 1is any closed polygonal arc consisting of line segments joining adjacent

mesh points: if we put u = G(un,ue) in Tne' u= W(un,uw) in an,

3 u=26(u ,u) in T and u = Y(u ,u) in T we obtain
w''s ws e’ s es

[ vwas =0,
an(i,§)

for all mesh diamonds Q and consequently (11.2) by addition. Now, if u(Ax) 4

i
§
' satisfies uniform estimates of the form (10.2) and (10.3) then so does 1
|
1]
i

u{x,t,Ax) and it follows that a subsequence converges to function say ; such
'i that
i
| (11.3) [ v(u)das = 0

Cc

for all parallelograms C in t > 0 with normals a and £. Thus, G is an
exact solution.

Perturbations of Conservative Schemes. A similar argument applies to the

perturbed schemes introduced in Section 6 with generating functions of the form

¢ + q where

2

< . - + - .
lq(uw,us,ue)l const (Iuw usl |us u |9)

e

Using the function n and ¢ associated as above with the generator ¢ we

obtain

2 2
(11.4) f v(u)ds = O(Ax)(luw - usl + IuS - uel )

a(1,5)
for the corresponding piecewise constant approximation u = u(x,t,Ax) obtained

by setting u = e(un,ue) in T etc. Therefore, if u(Ax) satisfies

ne’
uniform estimates of the form (10.2) and (10.3) it follows that a subsequence of
the functions u(x,t,Ax) converges to a function G satisfying (11.3) for all

associated parallelograms C provided that the maximum magnitude of

interpolated waves vanishes as the mesh is refined, i.e.




lim sup{lu(x,t) = ul{x + &x,t + At)| + |u(x,t) - u(x + Ax,t - At)|} =0
Ax+0
where the supremum is taken over all mesh points (x,t), say in a given bounded
set. Thus, a stable and convergent sequence of difference approximations for a
perturbed scheme yields an exact solution provided that the maximum magnitude of
waves in any bounded set of t » 0 vanishes as the mesh is refined.

The Random Choice Scheme. With a grid function u(Ax) produced by the random

choice method we shall associate the standard piecewise, smooth approximtion
u{x,t,ix) as follows. Let
R(a,b) = {(x,t) : a - Ax < x < a+ Ax, b <t <Db+ At} .,
Let u, = u,(x,t) denote the restriction to
(11.5) R({1Ax, jAt) i,
of the solution to the Riemann problem at time ¢t = jAt z with data
(uw,un) having a jump at x = idx, where u, and u, denote the values of
u{Ax) at the west and north vertices of (1i,j). Similarly, let u, =
uz(x,t) denote the restriction to
(11.6) R{(i = 1)8x,(3 = 1)8t}  Q(i,5)
of the solution to the Riemann problem at time t = (j - 1)At with data
(uw,us) jumping at x = (i - 1)Ax; u, the restriction to
(11.7) R{(i + 1)Ax, (] - At} Qi,3)
of the‘solution of the Riemann problem with data (us,ue) at t = (3 - 1)At,

x = (1 + 1)Ax. Define u(x,t,Ax) in Q{i,j) to be uy, uy; or u; according
to the location of (x,t) in one of the three corresponding subregions (11.5),
(11.6) and (11.7) (we will shortly employ the definition above in the setting of
hybridized schemes, for those diamonds §(i,j) in RC).

Now the integral around the boundary of a typical diamond Q(i,j) can be

expregsed in terms of the location of the corresponding sample point as follows:
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(11.8) [ viwas=E(1-1,3-1+E(L+1,3-1
392(1,9)

where

Ax 0
+ -
E = { un - R(x/At;uw,ue)dx, E = -{x un - R(x/At;uw,ue)dx .

Here u and ug denote the values of the corresponding and function at the

west and east vertices of Q(i,j). Now if @ is parallelogram in the x - t
plane which can be represented as a union of mesh diamonds (i,j,Ax) for each
Ax, 1i.e.

(11.9) Q =u{Qi,j,8%) : (i,5) € MAx)}

for an appropriate index set A(Ax) then

) E(i-1,3-1)+E(i+1,9-1)
(i,3)EA(Ax)

approaches zero as the mesh is refined by results on Liu [26], if TVu0 << 1.
It follows that the limit of sequence of random choice approximations converges
to an exact solution G. We note that large parallelograms of the form (11.9)
exist if we choose for example a sequence of mesh lenghts of the form

(Ax)n = const./2n. For general mesh lengths a trivial modification of the
above argument is required to obtain the same conclusion.

Hybridized Schemes. Here we shall associate with a given grid function u(Ax)

a piecewise smooth approximation wu(x,t;Ax) by following the procedure above
for conservative (or what is the same perturbed conservative) schemes if

1,J) 1lies in C and the procedure for the random choice method if Q(i,3)
lies in RC. For such u(x,t,Ax) the contour integral around the boundary of a
fixed parallelogram £ of the form (11.9) can be expressed as the sum of three
terms I,, I, and I,. The first term I, records the contribution from

diamonds (i,3j) in C due to the perturbation q:

I1 = O[Ax 2 {62 : € crossing a diamond Q(i,3) in C})] .




The second term I, records the contribution along the boundary B between the

two regions formed with mesh diamonds in C and RC respectively and takes the

form
I = 0(Ax°TVu) .

2 B
The third term represents the random chcice error and takes the form
(11.10) 13 = z {E+(i-1,j-1) + E-(i+1,j-1) : R(4,3) € RC 2} + m(dx),
where m(Ax) represents the alterations to the standard random choice error due
to the use of the modified random choice generator; as we showed in Section 7,
m{Ax) vanishes as the mesh is refined.

It follows immediately from (10.2) that I, has the order o(Ax) and
thus vanishes in the limit. We shall show below that the total variation of the
difference approximations u(x,t,Ax) around the boundary B = B(Ax) has the
order o(1/Ax) and thus I, vanishes in the limit. Finally, the argument of
Liu for the random choice method applies with an only trivial modification to
show that I; vanighes in the limit.

The analysis of I, proceeds as follows. Fix a difference approximation

u = u(x,t,Ax) and a time strip (0,T]. Let Ky denote the set of all mesh
diamonds in C (0,T] such that either & or 9+ lies in RC and B, the

set of all waves € with the following three properties: € is incoming with

;7 if € Q then Q

1
lies in RC; if € crosses the se side of Q then Q+ lies in RC. Let

respect to a diamond Q in K crosses the ws side of

K2 denote the set of all mesh diamonds £ in RC N [0,T] such that either

+
Q or lies in € and let B, denote the set of all waves & with the
following three properties: € is an incoming wave with respect to a diamond
Q in K2; if € crosses the ws side of Q then ® 1lies in c, if ¢

+
crosses the se side of 2 then lies in C. We have B = B,yU Bz. For




simplicity we suppress the dependence of Bj on the mesh length. We shall show
that
(11.10) lim AxTV u(*,*,4x) =0 ,

Ax*0 81(Ax)
a similar analysis produces the same result for Bz. To this end, let us fix a
difference approximation u(x,t,Ax) and a diamond Q in B,. We shall analyze
the contribution due to waves crogsing the ws side of {; the se side is
treated in a similar fashion. Let us therefore assume that & 1lies in RC
and for concreteness that the Riemann problem with data (uw,ue), where u

W
and uy denote the values of u at the west and east vertices of Q-, gives

rise to two shock waves. Let (61,62) and (Y1,Y2) denote the incoming waves
of o crossing its ws and se sides; let (a1,a2) and (81,82) denote the

outgoing waves of Q crossing its wn and ne sides. We consider the

following cases.

Case 1. Suppose that a major wave terminates in Q. Then the total strength

S of waves leaving Q and entering Q 1is less than co. If we associate
with £ the diamond ' which contains the initial segment of the major wave
terminating in Q  we have H(T) > c02 and therefore
AxS < cAxo < cAxH(T)/¢
Since the sum of squares of all initial segments of major waves is finite, i.e.,
R < ¢

it follows that the total contribution from all waves of the above type (in a
fixed strip {0,T]) satisfies

bx J S < cAx ) H(T)/0 < cAx/o

and therefore vanishes by (7.9).
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Case 2. Suppose that no major wave terminates in Q. we may assume that Q"

contains a major 1-wave and that a 1-shock a1 crosses the wn side of Q
while a 2-shock crosses the ne side of 2 . Let 91 and 92 denote the
diamonds whose ne and wn sides coincide respectively with the ws and
se sides of 2 . We shall first treat the subcase where 91 and 92 both
lies in RC. Here we have

By =8, + v, + op(a”) .
Now if 71 lies on a major wave then |Y1| 2 0 and we obtain an estimate of
the form

loB, 1 < 1y, 8,1 + lv,v,l + o{on(87)}

< clp(@’) + T} .
If 61 lies on a major wave then |61| > 0 and we obtain

los,| < 18,8,1 < cT(a,)
But, if 61 # 0 then Y, = 0 and we obtain

lo8,| < lo6,| + ofop(27)} < cfp(@)) + T(a,)} .
Thus, the total strength of waves corresponding to the subcase where and
92 both lie in RC is bounded by const./o.
The subcase where 91 and 92 both lie in C is even simpler since we
have an estimate of the form
I8,l < co < cH(R ) /o

using the fact that H(2T) > co .

If 91 € C and §_ € RC we proceed as follows. If |Y1| ? 0 we remark

2
that

loB,| < ef{p(2) + 1(2,)
as in the first subcase, while if |G1| > 0 we have

loB,| < CH(R)

as in the second subcase. It remains only to treat the subcase where

ek

V7w e
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and ﬂz € Co Now if Y1 lies on a major wave then the analysis of the first
subcase applies., If 61 lies on a major wave then we proceed as follows. Let
u(4x) be a positive function such that
lim p(Ax) = 0 = 1lim Ax/uc

Ax+0
We distinguish two situatins accordingly as IBZI ? yo and |82| < yo. In the

first situation we have

2 2 2 -
AXI82| = (Ax/IBZI)B2 < ch{62 + v, + DR Y}/ uo .

We observe that |62| < c;(91)/0 using the fact that
16.6,1 < cT(a)) .
But we need only treat the case where |52| € co. Therefore
55 < ci(a,)
and
Ax)8,) < chx{T(R)) + I*(@))}/uo
since Y2 is associated with a maximal weight. 1In the situation where
|82| < uo we have
18,1 < ula,l
and consequently the sum of all such waves 82 in a given strip, say
ft,t + At] satisfies
L 18,1 < wrvx
where X is the associated configuration. Since the number of mesh strips in
{0,T] has order 1/8x we conclude that the taotal strength of all such waves
32 in [0,T] satisfies
L 18,1 < cusbx .
This completes the proof of (11.10).
/2

We note that optimal choice of u, i.e. p = (Ax/ty)1 , leads to a growth

estimate of the form
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™V u(e+,*,Ax) < const./(Axc)V2 .

B1U82

We conclude this section with a few brief remarks concerning the first term
on the right hand side of (11.10). In this connection we shall first comment on
the argument used in [26) to show that the error associated with the random
choice method vanishes for an arbitrary equidistributed sequence. Fix € > 0
and T > 0. In [26] the time strip (0,T) is divided into substrips of equal
length k(€) and the error associated with each substrip is estimated using a
partitioning of elementary waves, cf. Lemma 3.2, {26]. It is then shown that in
the limit as the mesh is refined the sum of the contributions of each strip has
the order of €. The partitioning divides the set of elementary waves of a
given random choice difference approximation into two classes. The total
magnitude of waves in the first class is small in the sense that their total
contribution to the error has order € independently of whether the sequence is
equidistributed or not. The waves of the second class in a given substrip can
be grouped into polygonal arcs Y in the x-t plane whose magnitude and speed
of propagation are "nearly constant". This leads to an individual treatment of
the arcs Y modelled on the argument used for a single-wave solution to a
Riemann problem. Now if the equidistributed sequence admits a rate of
approximation in the sense that the average number of its elements with index

less than n in a given interval J C (-1,1) satisfies

S(n,J)/n = |Jl + c(I)P(n) and 1lim Y(n) = 0

nee

where the constant ¢(J) is independent of n, then one may divide (0,T)

into substrips of equal length k(Ax) satisfying

lim k(Ax) = 0
Ax+0

P P PRSI A e S mo=ws




and again add the contributions to each stip obtaining in the limit a total
contribution on the order of & provided that the length of the substrips

approaches zero slower than the reciprocal of the error ¢, 1i.e. provided that

lim ¢(1/Ax)/k(Ax) =0 .
Ax+>0

We recall that the hybridized schemes under discussion employ an
equidistributed sequence and threshold function satisfying (11.1). Given such
Yy and o one can employ a similar two-class partitioning of elementary waves

of the hybridized shceme to strips with length 2(Ax) satisfying

lim $(1/8x)/8(Ax) = 0 and 1im £(Ax)/(ohx) /2 =

Ax+0 Ax»0

0

and show that the total contribution to the error from all waves of the first
class plus all waves of the second clags which form arc Y with length greater
than say 4£(4x)/2 has the order ¢ in the limit as the mesh is refined. Thus,
one need only show that those segments of arcs Y with length less than

£(8x)/2 passing through diamonds in RC produce a total contribution which
vanishes in the limit. To this end let us fix a substrip S{Ax) of (0,T)
with length &(Ax) and consider an arc Y of second class waves €. The error
associated with those segments of Y which lie in the set Q of all RC
diamonds in S(Ax) has the order Ax|e]l. Without loss of generality we may
assume that the magnitude of waves of Y remains a constant, denoted |Y]|,
since from the results of [26] the deviation from a constant leads to terms
whose total sum vanishes in the limit. Hence the problem is to estimate

Ax r(y) |y

where r(Y) denotes the number of segments on Y which correspond to diamonds
in Q. Now, it follows from our previous analysis that we have an estimate of

the form
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Ity < q{S(Ax)}/(c:Ax)V2 '

Yes

where 1T(Y) denotes the number of times that the arc Y passes from §l to
0° or from 9° to 9 and where the sum of the quantities g associated with
each strip 8S(Ax) 1is bounded independently of Ax for fixed T:
7 {af{s(ax)} : s(Ax) c (0,T)} < const .
Therefore, the contribution associated with one strip S(Ax) satisfies

I axe(n) Yl € § t(v)IL(Ax) Y] < 2(ax)qls(Ax)}/(obx) /2 .

Yes YesS
Summing over all strips S(Ax) in (0,T) yields

z Z Axr(Y) Y] < ct:mst:.ﬂ.(Ax)/(oAx)1/2

S Yes

which implies that the total contribution vanighes in the limit.

12. THE ENTROPY CONDITION.

In this section we shall show that the limiting solutions u of our
hybridized schemes satisfy Lax’'s entropy condition which requires that
. + <

(12.1) n(u)t q(u)x 0,
in the sense of distributions where n is a strictly convex entropy and q the
assocliated entropy-flux [21). Since the solutions u under consideration lie
in BVAN L«° it is sufficient to show that
(12.2) J/ v_n(u) + v _q(u)ds € 0

t X

Cc

for a substantial class of contours C, e.g. parallelograms whose sides have
slope tAt/Ax. BAs a corollary of the entropy condition it follows that the
entire sequence of associated difference approximations u(Ax) converges to

u as the mesh is refined in those circumstances where uniqueness is available

e e




{9]; for example, if the initial data uo(x) gives rise to a piecewise
Lipschitz solution u to a genuinely nonlinear system of two equations in the
sense of [9] and if u satisfies (12.1), then u is unique within the class of
BV N L°° solutions satisfying (12.1). The class of piecewise Lipschitz
solutions discussed in (9] contains in particular the classical solution of the
Riemann problem.
Let us first consider an arbitrary conservative scheme in class K. A
simple computation using the compatibility condition
n(u)VE(u) = Vq(u)
shows that
atn{e(n,e)} + a q{8(n,e)} - atn{e(w,s)} - a _g{6(w,s)}

+ B .nlv(n,w)} + B alv(n,w)} - 8 n{vle,s)} - 8 alvle,s)}

=o(lu, - usl2 + lu - uelz)
Thus, the everywhere defined piecewise constant approximations u = u(Ax)

associated with a conservative scheme satisfy

B 2 2
[/ v(uwas = otax)(lu - u_|I® + lu_ - u_ |

9N

for a typical mesh diamond  with values u,, ug, u

s e at its west, south and

east vertices. Thus a convergent sequence of difference approximations

u = u{Ax) which is stable in the total variation norm yields a solution u
which satisfies (12.2) for all parallelograms C with sides of slope tAt/Ax,
provided that the maximum magnitude of waves in any bounded set T of the

x-t plane approaches zero as the mesh is refined, i.e.

1im sup{|u(x & Ax,t t At) - u(x,t)| : (x,t) € T} =0
Ax+0

We note that exactly the same conclusion can be drawn for any scheme whose

generating function is formed by a quadratic perturbation of a conservative
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generator. Of course, in the absence of a condition on the limiting maximum
wave magnitude, the problem of determining whether or not the entropy condition
is satisfied is substantially more difficult.

For the original version of the random choice method, the entropy condition
was verified by Lax [21]. For the deterministic verion involving an
equidistributed sequence it follows immediately from the results of Liu {26]

that the entropy condition is satisfied. 1In the latter case one has

[ vwas < E(4-1,J-1+FE(+1,35-1
3901, 3)

where

Ax 0
£t = of n(u ) = n(R(x/Btsu ,u ))ax E- = {x n(u ) = n(R(x/btru u_))dx

where u, and u, denote the values of the corresponding grid function at the
west and south vertices of the mesh diamond §(i,3j). The inequality in (12.3)
arises from the fact that the discontinuities of u(4x) in Q(i,j) satisfy the
entropy condition and the sum of all terms of the form Et vanish in the limit.
Therefore in view of our previous analysis, it follows that the limits of
our hybridized scheme satisfy the entropy condition. We need only remark that

the results of Section 11 show that the interior boundary contribution

(associated with the set C and RC) to the contour integral

£ v n(u) + v q(uds ,

vanishes in the limit, since the quantity Ax times the total variation of

u(Ax) around said boundary vanishes in the limit.
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