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ABSTRACT

Numerical bifurcation techniques were developed for studying

the multiplicity, stability, and oscillatory dynamics of the non-

adiabatic tubular reactor with a single A - B reaction. The

techniques illustrate the existence of one, three, five, or seven

steady states and bifurcating periodic solutions. We present

numerical procedures for computing the Hopf bifurcation formulas

which can determine the stability and location of the oscillation

without integrating the parabolic partial differential equations.

The combination of our Hopf techniques with steady state bifurca-

tion methods enables us to determine all possible steady and stable

oscillatory solutions exhibited by distributed parameter models

such as the tubular reactor.
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SIGNIFICANCE AND EXPLANATION

Numerical methods are developed for the investigation of Hopf bifurcation

(bifurcation to yeriodic solutions) in mathematical models which consist of

parabolic partial differential equations whose time independent solutions

are defined by systems of t ,'oirnt boundary value problems. The combination

of our Hopf techniques wit'. estead: state bifurcation methods of Keller

enables us to determine all :csshle steady state and periodic solutions

exhilDited by these distributed [arameter models. The utility of our numerical

procedure lies in their generality and potential applicability. They can be

used to study the multiplicity, stability, and oscillatory phenomena exhibited

by reaction-diffusion systems in combustion, chemical reactor theory, and mathe-

matical biology.

We apply these techniques to a model of the tubular reactor with an

exothermic reaction. The reactor is found to exhibit broad regions of multiple

stead': states and periodic solutions which can be conveniently presented on

response curves to illustrate the dynamic capabilities of this reactor. We

discuss the effects of the solutions on reactor operation, and the effects of

shar: transitions or jumps between the steady states and oscillatory states on

r' actor dynamics. Many of the above results have not been reported ii the

earlier studies of the tubular reactor or in the more exhaustive studies of

th:, continuously- stirred tank reactor.

Tile r,:1},on:;l I ity for tie wording and views expressed in this descriptive
'u , I ar i, ,; with IRC, and not with the authors of this report.
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NUMERICAL HOPF BIFURCATfON TECHNIQUES
AND THE DYNAMICS OF THE TUBULAR REACTOR MODEL

Robert F. Heinemann and Aubrey B. Poore

INTRODUCTION

The number of theoretical and experimental investigations of multiplicityj,

stability, and sensitivity of reaction-diffusion systems over the past two

decades has been enormous. Much of this research has centered around heat

and mass transfer coupled with chemical reaction and has generally been

motivated by the design and operation of industrial chemical reactors. The

most widely studied reactor type has been the continuously stirred tank reactor

(CSTR) since the relevant mathematics are comparatively tractable, and studies

of the CSTR provide a foundation for the understanding of more complex reactors.

Poore [1] and Uppal et al. [2,31 have presented an important and thorough con-

sideration of the single, first-order exothermic reaction in the CSTR. They

concisely classified all possible patterns of multiple steady and periodic

states and pieced together a myriad of results presented in earlier papers.

The Hopf bifurcation techniques presented by Poore and Uppal et al. were com-

pletely general for time-dependent ordinary differential equations and have been

applied to other systems exhibiting oscillatory phenomena [4]. Such systems

included those whose mathematical models consist of parabolic partial differ-

ential equations which can be judiciously simplified to ordinary differential

equations [5]. These simplifications have been advantageous since Hopf bifur-

cation techniques were not available for distributed parameter models. The

major objective of the present work is to fill this void by presenting the

Hopf formulas for these complex systems.

Our numerical techniques are based entirely on the time-independent

problem and yield the relevent bifurcation information such as the direction

and stability of the oscillatory solution. Furthermore, the periodic orbit

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



can be computed without time integration from an asymptotic formula for the

orbit. These methods are quite general and can be applied to systems of

parabolic partial differential equations whose time-independent solutions are

defined b-' a two-Qoint boundary value problem.

We illustrate the utility of our numerical techniques by applying them to

the model of the nonadiabatic tubular reactor. Because of its fundamental

importance, this reactor has been studied with only slightly less fervor than

the CsrR. The formidable body of literature concerned with the problem includes

the extensive work of Amundson et al. [5 - 15], Hlavecek et al. [16 - 19], and

McGowin and Perlmutter [20]. Many of the results presented in these works are

s,,unmarized and explained in two excellent reviews by Schmitz [21] and Varma and

Aris [22]. These earlier papers have firmly established the existence of one,

three, or five steady states and also have illustrated sustained oscillations.

However, i complete understanding of the oscillatory dynamics is still largely

,.n uJtodced problem.

2cn recent papers concerning the multiplicity of the nonadiabatic tubular

r(actor should be mentioned at this point. Kapilla and Poore [23] have completely

cl(sisifico toe structure of the multiple steady states for all possible para-

mcree.- using large activation energy asymptotics and have established the exist-

tce of two additional solutions not seen in previous works. We [24] have con-

firmed anK extended this classification by applying the steady state bifurcation

techniqoe; of Keller to the problem t25]. The effect of a wide range of finite

act:vatiot, energies has been examined and has shown the existence of one, three,

five and seven solutions. Following presentation of th mathematical model of the

r'dctor a]d our nmrrical procedures, we illustrate Hopf bifurcation results; for

multi icity patterns exhibiting from ore to seven steady states.
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MATHEMATICAL MODEL

The equations describing the conservation of reactant A and energy for

the nonadiabatic tubular reactor with axial mixing appear below in dimension-

less form:
23y~ L =- Dy e - / U i

3  P e 2 -s
m ')s

_ Pe ( 00) + B Dy e (2)3T Pe h  s2 3s0

The boundary and initial conditions are:
2
y =Pe (y-l) at s = 0, T > 0

3s m

(3)

Peh (0-1) at s = 0 , T > 0

=0 at s =1, T > 0 (4)

y=y in 0 =. at c 0• (5)in in

In writing these equations, we have defined the following dimensionless

quantities,

y = c/c 0  0 = T/T0

s = x/L i = tv/L

Pe = vL/D Pe = C vL/k
m e h p e

B = AHc0/,CpT 0 = UPL/avpC

D = Ae- )L/v = E/RT0  *

The above model describes an exothermic A * B reaction occurring in a homoge-

neou. tube under the assumptions that the velocity profile is flat with constant

velocity v ; the variables y and 11 depend only on one space dimension and

time; the diffusion of reactant A is qoverned by Fick's Law with an effective

diffu ;ivity, De ; heat conduction is described by Fourier's Law with an effective

-3-



thermal conductivity, k ; the heat loss at any point is proportional toe

(8 - ) ; and the reaction rate is describable by an Arrhenius expr(-ssion.

The dimensional predecessors of the above equations and the alplica-

bility of this formulation are discussed in detail in the two review arti:o

and in the earlier reactor papers.

-4-



NUMERICAL METHODS

We now present the numerical techniques for generating the steady state

response curves and the Hopf bifurcation information for systems whose mathe-

matical description is given by a distributed parameter model. The coupling

of these methods enables us to systematically locate all the possible steady

and periodic states exhibited by these systems. We begin with a discussion

of the general forms of the equations that we are capable of treating.

Many of the distributed parameter models in chemical reactor theory can

be written as a system of parabolic partial differential equations of the form
)u 2u .1

3- =Au)- + f(u, x2 Ux

Ge(u(a), u (a),t) 0 (6)' x

G (u(b), u (b), j) = 0
r x

where u may represent, for example, the concentration and temperature in the

reactor. G, and G denote the left and right boundary conditions (possibly
r

nonlinear) and ji is the bifurcation parameter. The function f ma, depend

nonlinearly on u, ux, and j, and may contain the space variable x explic-

itly but not the time variable t . For brevity we write this system as

du
= F(u, p) , G(u, 1) = 0 (7)

The corresponding two-point boundary value problem is denoted by

I(v, 1) = 0 , G(v, ,) = 0 . (6)

Steady State Numerical Techniques

The steady state problem (8) was solved by combining Keller's modification

of the Euler-Newton continuation method [25] with de Boor and Wiess' splint,

collocation code [26] and a fourth-order finite difference scheme due to Stclerma.

[27]. Both the collocation and finite difference methods performed quite well

with the collocation technique capable of higher accuracy.

The objective of the steady state methods is to compute the solution v

of equation (8) as the parameter 11 assumes all its possible values. The
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Euler-Newton continuation method can be used to solve this problem with Euler's

method (9) serving as a predictor for Newton's method (10)
0 v() + u(.)

v ( 6) (9)d :

i+1- i1- i i
i -i(+v) ( +4u) - F (v (i +4), F + F(v (,+ ). (10)v

However, the technique fails near transition between steady states since the

Jacobian matrix, Fv, cannot be inverted near singularities such as limit or bi-

furcation points.

Keller has modified the above method by imposing an additional normalization

on the solution which enables entire solution branches to be traced, skipping

over any singular points. The imposition of this constraint allows the specifi-

cation of a new parameter, s , which replaces *; as the continuation parameter

in the Euler-Newton technique. The reparameterized problem becomes

P(x,s) = 0 (11)

where

x(s) = (v(s),v (s)) (12)

and

j F(v(s), ,(s))
P(x(s),s) = 1

N N(v (s) , -,(s),

It is convenient to choose the normalization N(v, .,s) so that s approximates

tihc arc-length of the solution branch for some parameter (0,1)

NH(V, s) v (S) - v(s0 H1 + (1-) j (s) - 0  - (s - s0 ) . (13)

When the Euler-Newton technique is applied to (11), computational diffi-

c-lties near singularities are eliminated since the Jacobian matrix remains non-

singular near such points.

These techniques and an algorith for their implementation are presented

in detail by Keller 125] and have previously been applied to laminar flame problems
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[28-30] and catalysts problems [31] which exhibit multiple steady states. There-

fore, we forego a discussion of the exact computational procedure.

Hopf Bifurcation Formalism

We use the term formalism here since the presentation will be stripped of

the technical mathematical assumptions. A proper mathematical framework can be

found in the works of Crandall and Rabinowitz [32] and Ioos and Joseph [33].

Our work follows closely the presentation in the latter paper, though modified

somewhat to account for the nonzero steady state problem and the form of the

model equations (7). Since this bifurcation theory is most effectively used

in a study of the dynamics associated with an exchange of stability, we begin

with a brief discussion of steady state stability.

The stability of time-independent solutions can in principle be resolved by

examining the eigenvalues of the linearized boundary value problem. If the

eigenvalues all have negative real parts, the steady state is stable; whereas, if

an eigenvalue has a positive real part, the solution is unstable. Exceptions to

this principle occur when the linearized problem has a zero eigenvalue or a pair

of complex conjugate, purely imaginary eigenvalues. In the current reactor

problem, a zero eigenvalue gives rise to a limit point bifurcation (a point of

vertical tangency) on the response curves. The bifurcation of a periodic

solution (Hopf bifurcation) occurs when a pair of complex conjugate eigenvalues

:(.) and o( .) become purely imaginary. We assume that this crossing of the

imaginary axis occurs at i0 so that o(lJ0 ) = +iu 0 with ()0 positive. It is

also assumed that Re o (b0) f 0 where i = dc/dlj. This ensures a strict

crossing of the axis and is nearly always satisfied in these problems.

i -7-



When the Hopf point is accompanied by an exchange of stability, different

types of periodic phenomena may be encountered. If the periodic orbit is

stable, a small amplitude oscillation is observed near the Hopf point, but if

the orbit is unstable, the solution will jump to either a large amplitude,

stable oscillation or to another stable steady state. Examination of the orbit

stability near the Hopf points suggests a systematic procedure for locating the

stable oscillations in the reactor.

To present the Hopf bifurcation formulas, we linearize the boundary value

problem and write it as

L w = 0 , G (vU 'Iw) = 0 (14)

where

L w = F (v ,DJW) = F(v + 6wi.)1=0

and

G (v ,~w) -G(v A + Sw, w)v 6=0"

The essential requirements for Hopf bifurcation without their technical assump-

tions may be summarized as follows. Assume ±i 0 are simple eigenvalues of L
0L

that niw0  is not an eigenvalue for n = 0,2,3,..., and that the real part of

C ('0 ) is nonzero. Then one can construct a bifurcating periodic solution of (7)

with frequency j(c) via a perturbational expansion which can be shown to take

the form [34]

0 eiS

u(x,t) = v + 2 c Re{ 0 e

2 2 0
+ - {Wl + .2 C) + 2 Re(w 2  } + 02))

0 2 1 2d
22

+ 0( 2  (16)
0 2 2

t = (1S (18)
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is an auxiliary parameter representing the amplitude of the orbit close t'

the Hopf point. The vector function 0 is the eigenvector corresponding to

the eigenvalue +i-0 ; wI and w are solutions of certain linear nonhomo-

geneous boundary value problems discussed in the next section. We note that

the sign of K2 yields the sign of . - for E sufficiently small and

therefore determines the direction of bifurcation. Similarly, "2 determines

the change in the frequency of the bifurcating solution. The perturbational

expansion (15) provides a good approximation to the periodic solution for

computational purposes.

The stability of the bifurcating oscillation can be based on a study of the

Floquet exponents as discussed by Iooss and Joseph [34]. The essential result

is that the periodic solution will be locally stable near the bifurcation point

if the eigenvalues of L , other than i 0 , have negative real parts and if

-2 Re , ( 0 ) is positive.

The relevant bifurcation information can be extracted if , 2 and

( ) are computed. The algorithm for computing each of these is presentedC

next.

An Algorithm for the Hopf Bifurcation Formulas.

The nonlinear two-point boundary value problem

F(vv)= 0, G(vu) 0 (19)

must first be solved at a point W where the linearized problem (14) has a pair

of purely imaginary eigenvalues ±-ij . Thus, the Hopf point is located b' findinq

a root L0 of Re o(O). This is accomplished by using the QZ algorithm to com-

pute the eigenvalues at each point along the steady state response curves and then

employing the bisection or secant method to locate W0
* * K

Let L denote the adjoint differential equation, and Gv V ,.), the
0  

v

adjoint boundary conditions. The eigenvectors r0 and 0 are then computed

from the eigenvalue problemsL-9

..... .. ii ........ ... .. 111 . .. -IT H -- -' . r" .......



0

* * * * 0
L(v 0 0 0 (21)L00 z00 , Gv , 0 0

These eigenvectors are then normalized by requiring

0' 0 ) = 1 and ( 0 0 ) = 1 (22)

Here we have introduced the complex L2  inner product

f ,b " dx (23)

a

where .7 ; denotes the dot product of the vector functions ' and €

A sequence of three linear nonhomogeneous boundary value problems must next

be solved. These are

dv 0
L -F (v

d-, 

(24)

0 dv 0
G (v 0 dv ( 0
L '- 0 '- -- F =  (v 0 0 0 ( 2 5)

L w =--2F Cv

v 1 vv 0
(25)

0 0
G (v W lw) = 2 ' ( 0

L - 0 2 vv 0 0
(26)

( v ,U.0  w ) = -G CV ' 0' 0

The derivatives F and G appearing in the above problems are computed byvvw

the rule

,2
F (v c) F -' (vu  + + 6 21,) 161=620 (27)
vv Ij1 S ,2 1 12=

With these computations complete, we now compute a (i)' (0 2' and w2 from

0 dv 0 0 , *

0 ( = (Fvv(V '0 o ) + Fvp(V 'V0O ) 0 ' 0 (28)

and
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0*
+ 20 0 = - (F (v 10 02 2 0vvv 0' 0'0' 0 0%

- (F vv(v 0  I 0 1 wi), ) (29)

U0  *

- (F vv( ,(0 kI0 ,w2 ),40 '

The first author evaluated the above expressions by using the Stepleman finite

difference scheme to solve equations (24-26) and using Simpson's rule to numerically

integrate the inner products. The second author solved the boundary value problems

with the de Boor and Weiss' collocation code and integrated the inner products via

Gauss-Lobatto quadrature. Both methods worked well and yielded quite comparable

results for G (u0 ), w2 and w2 (A program for the Hopf computations for the

general problem (6) will be available from the second author.)

We note that for computations where numerical sensitivity was observed, the

sensitivity-could be eliminated by more accurate computations of the steady state
U0 ,

solution v , the eigenvectors 0 and o ' and the parameter value i0 at

which Re a(i 0 ) = 0 . This sensitivity is not removed by increasing the accuracy

of the 0 calculation for a specific discretization as in the case for ordinary

differential equations. Some obvious tests for accuracy are an orthogonality

relation for O and cO , (o, = 0 ; the size of Re a(w0 ); and perhaps

more importantly, comparisons of the eigenvalues of the linearized problem (14)

and its adjoint.
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RESPONSE CURVES

In this section, we present some of the more interesting results obtained

by using the above numerical techniques to study the dynamics of the tubular

reactor which arise from varying the DamkZ5hler number. It is to be emphasized

that this is not a complete cataloging of the dynamic capabilities of the reactor

but rather a presentation of the more illustrative cases found in our investiga-

tions. Many of the response curves are not found in the CSTR studies and are

thus somewhat unexpected. The cases that are presented can be viewed, in our

opinion, as giving a much more complete picture of the interplay between the

instabilities in the steady states and the oscillatory dynamics that can arise

during operation of the reactor.

For a particular combination of the system parameters, we summarize the

multiplicity and stability of the steady states and oscillatory states on a

response curve with the Damkbhler number as the abscissa and the maximum temper-

ature of the steady state or periodic solution as the ordinate. The steady

state solution branches are computed by using Keller's modification of the Euler-

Newton procedure; the stability of these branches and the location of the bi-

furcation points are determined by an eigenvalue analysis. The Hopf bifurcation

formulas (16-18) are then computed to give the direction of bifurcation and the

stability of the bifurcating periodic solutions. By using the asymptotic

formula (15) for the solution near the bifurcation point, we are able

to start tracing the stable oscillations as the Damk5hler number is varied by

solving the full parabolic partial differential equations with PDECOL, a

general code based on the method of lines and collocation using B-splines [34].

The first example is illustrated in Figure 1 which corresponds to the

parameter values Peh P 5, B = 0.5, y = 25, 8 3.5, and e 1
e h em 0

"or all values of the Damk6hler number, D , the steady state is unique with

-12-
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exchanqes in stabi lit' at D =0. 262 and D = 0.295. At the value D = 0.295,

stable periodic solutions bifurcate to the left, while at D = 0.262, the solu-

tions also bifurcate to the left but are not stable. PDECOL was used to trace

the stable oscillation from D = 0.295 down to D =0.260 where the stable

oscillations cease to exist and the time-dependent solutions converge to the

stable steadv state directly below. (We conjecture that the stable branch of

periodic solutions connect with the unstable branch emanating from D = 0.262.)

The response curve dynamics associated with varying the Damkbhler number

can now be explained for the case depicted in Figure 1 . For D close to zero,

the reactor operates in stable state of low temperature and low conversion of

reactant A . As D is increased, the steady state remains stable and the

steady state temperature rises slowly until D passes through D =0.262. A

jump occurs at this point in the temperature and concentration profiles into

the stable oscillation directly above. These oscillatory solutions remain until

D reaches D0 0.295 after which the reactor operates in a stable steady state.

To lower the conversion and temperature in the reactor, the Damk~hler number is

now decreased. At D = 0.295 a small stable oscillation in the temperature and

concentration profiles begins to appear. These oscillations continue until

D = 0.260 at which point the oscillations disappear through a jump back down

to the lower, stable steady state. Both of these jumps may be thought of as

ignition or extinction processes, respectively.

In Figure 2, .is decreased to 2.5 and a region of three steady states

appears. Exchanges of stability again occur at the Hopf points, and at the upper

point (D = 0.1818), the behavior of the oscillation is similar to that of Figure 1.

The stable periodic solution bifurcates to the left and its amplitude quickly in-

creases. The orbit at the lower Hopf point (0 = 0.165) bifurcates sharply upward

to the right and is stable. The continuation of these stable branches is quite

interesting. Attempts to continue the larger amplitude periodic branch below

D = 0.172 failed with the tine-dependent calculations converging to the lower

-14-
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amplitude periodic solutions regardless of the initial conditions. Wheen t'e r-

steady-state calculations were started on the lower portion of the Lranc a:.d

was increased above 0.172, the periodic orbit jumped to the upper solutions. 7,.(

temperature profiles from the upper and lower periodic branches are presenter! i:.

Figures 3 and 4. The explanation of this seemingly new jump phenomena alog t:..

periodic branch is the subject of current investigation. Since the respornu

curve in this case is similiar to the curve in Figure 5 , we forego a discv ;jr

of the possible reactor dynamics for this case.

The dimensionless heat transfer coefficient is lowered to 2.35 in Figure

where 1-3-1-3-1 multiplicity arises. If D starts near zero and is increased,

the reactor temperature increases and remains in a stable steady state until th.sr

lower limit point is encountered at which point the temperature jumps into the

much higher stable oscillation. This stable oscillation surrounds the unstable

steady states and grows steadily until a jump to an even higher stable oscilla-

tion occurs at about D = 0.159. The amplitude of the temperature oscillation

continues to grow, peaks out, and then rapidly decays to the steady state at

D = 0.166. The reactor can now be extinguished by decreasing the Damk6hler

number. The amplitude of the periodic orbits bifurcating at D = 0.166 grows

rapidly, peaks out, decays, jumps down, continues to decay, and then disappears

as the time-dependent solutions converge to the lower, stable steady states

beginning at the lower turning point. (It should be pointed for this case that

the frequency of the oscillation decreases along the lower periodic branch as

D is decreased. The period of the oscillatory solution above the lower limit

point is approximately five times greater than the period of the orbit of the

Hopf point, D = 0.166.)
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The existence of five steady states for the reactor is shown in Figure 6 where

is decreased to 2 .A Hopf point is located along the upper section of the

steady state branch, and an unstable, periodic orbit bifurcates to the right of

this point. While it is conceivable that a turning point could join this unstable

branch with a stable one, time-dependent calculations did not locate any stable

period solutions in this example. Furthermore, w 2 (which governs the asymptotic

change in frequency) is a large negative number and indicates the period of the

unstable solution becomes infinite near the Hopf point.

It is a straightforward procedure to trace the bifurcation diagrams for =1

and B=0 to complete this series of examples. However, Hopf bifurcation does

not appear for these cases. For 6 1, the reactor exhibits five steady states

with an exchange of stability at each limit point and the well-known adiabatic

result of three steady states is found when a 0

in the last two figures, we show periodic solutions bifurcating from new

patterns of multiple steady states [241. Five steady states are illustrated in

Figure 7 (Pe = 1, B = 0.50, y = 75, and S = 4), and we note the existence of

three Hopf points. The periodic solutions bifurcating to the right and to the

left from the intermediate steady states are unstable, because an exchange of

steady state stability does not accompany the bifurcation. The solutions at the

upper Hopf point bifurcate to the left, are stable, but become infinitely periodic

very near the bifurcation point.

The reactor model exhibits one, three, five, and seven steady states as

well as bifurcating periodic solutions in Figure 8 (Pel, B=0.50, y=12 5, and

=4). Both of the periodic orbits bifurcate to the left and both become infinitely

periodic near the Hopf point. only the periodic solutions bifurcating just to

the right of the upper quench point are stable. -

-20-
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In Figures 6-8, the response curves become quite complex exhibiting

several steady states and oscillatory solutions. However, the dynamic capa-

bilities of the reactor in these examples are somewhat limited since many of

the states are unstable over a large range of the Damkbhler number. Ingition

is characterized by increasing D past a lower limit point so that the reactor

jumps from a stable, low temperature steady state to a stable, high temperature

steady state. The reactor is extinguished by decreasing D until a jump

occurs from an upper stable state (either a steady state or a periodic state

with small amplitude) down to a lower, stable steady state. In these last three

examples, jumps from lower steady states to large amplitude periodic solutions,

jumps between oscillatory states, and possible periodic reactor operation over

large regions of the Damk6hler number are not possible.
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CONCLUSIONS

We have presented numerical bifurcation techniques which can deter-mine

all possible steady an~d stable oscillatory solutions exhibited by distributed

parameter models. These techniques were applied to the nonadiabatic tubular

reactor and illustrated several types of steady state and oscillatory

phenomena. Many of the results were anticipated from studies of the CSTR,

but it is clear that all the possible phenomena exhibited by the tubular

reactor has not been uncovered. The effects of parameters such as the feed

temperature and flow velocity which could be used to control the reactor are 4

largely unknown. With the proper motivation and support, our techniques can

be used to solve these problems. Furthermore, because of their generality,

these numerical methods can also be applied to a broad array of models found

in combustion theory and mathematical biology as well as in chemical reactor

theory.
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NOTATION

2
a cross-sectional area of the reactor, 

m

-1
A frequency factor, s

B dimensionless heat of reaction, A H c0 /pCpT 0

c concentration, mol/m
3

C0  inlet concentration, mol/m
3

C specific heat, J/mol0 KP

D Damkbhler number, A e-YL/v

D effective diffusivity, m2 /se

E activation energy, J/mol

H heat of reaction, J/mol

k effective thermal conductivity J/s m0Ke

L reactor length, m

P reactor perimeter, m

Pe Peclet number for mass transfer vL/Dem

Peh Peclet number for heat transfer pCpvL/ke

R universal gas constant

t time, s

T temperature, OK

T inlet temperature, OK

s dimensionless axial distance, x/L

2
U heat transfer coefficient, J/m s°K

v velocity, m/s

x axial distance, m

y dimensionless concentration, c/c0
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Greek symbols

B dimensionless heat transfer coefficient, UPL/avcC

Y dimensionless activation energy, E/RT0

6 dimensionless temperature, T/T 0

P density kg/m 3

T dimensionless time, tv/L
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