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ABSTRACT

We consider semilinear hyperbolic systems in one space variable of the
type

du Ju

il .2 Aijkujuk =0, xeR teR {=1,...,p
ek

ui(x,O) = ‘pi(x)' X € R, i= 1,-'o'p .

We first introduce a special condition

Under condition (S) we prove: local existence and uniqueness if the data

are in L’(R); global existence, L stability and the existence of wave
operators and of a scattering operator when the data have small norm in L'(R).

Adding a sign condition

#
(s) Aijk 0 if i # 3j and i k

and the entropy condition

(E) § Aijk*j)‘k Log A, > 0 for all X e RP  such that A, >0 for each
i,3,k

i we obtain global existence if the data are nonnegative and in Lw(R).

We then replace condition (S) by a weaker one and obtain some of the

above results in that case.
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Key Words: Semilinear hyperbolic system, Kinetic theory, Global existence,
Asymptotic behaviour, Scattering

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

{ We study semilinear hyperbolic systems with quadratic nonlinearities
} which originate in the kinetic theory of gas as a simplification of

Boltzmann's equation.

._..i‘n'

Local existence is well known for these equations and the main problem is
to prove global existence for nonnegative bounded data.

; Except for the unrealistic case where a bhounded invariant region exists,

N
.‘W\A'“hu

no result of this type is known in three space dimensions. As in all
preceding results, based on the work of Mimura-Nishida and Crandall-Tartar, we

regtrict ourselves to one space dimension. We show global existence for a

alitesciideniic;

quite general class of systems and under some special condition (S) we obtain
information on the asymptotic behaviour and on scattering when the data have
1
small L' norm.
J
The new idea lies in the introduction of some functional spaces where

some products can be defined; this enables us to define an appropriate notion 4

1

of solution in L' and then use it to obtain local and global existence for

data in L1(R). )
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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SOME EXISTENCE THEOREMS FOR SEMILINEAR HYPERROLIC SYSTEMS IN ONE SPACE VARIABLE

Lu¢ C. Tartar

0. Introduction

The motivation for considering the systems studied here comes from kinetic theory of
gages where, by allowing only a discrete set of velocities in the Boltzmann equation, one
obtains a semilinear system where the quadratic nonlinearity corresponds to interaction
between particles through collisions.

Although the nonlinearities considered here correspond to realistic models we are not
able to solve the real three-dimensional problem and we restrict the analysis to one
dimensional situations (except for the unrealistic cases where there is a bounded invariant
set one is still waiting for a global existence theorem in L“ in more than one space
dimension).

Following an argument due to M. G. Crandall and the author the global existence in

L” follows (by using finite propagation speed, nonnegativeness of solutions and entropy)
from an estimate, similar to one obtained by Mimura-Nishida, in which one proves a global
Lm bound for data in L°° with small L1 norm.

To prove the desired estimates we introduce some functional space modeled on ' ana
the crucial remark is that one can still define some products and give a meaning to
solutions corresponding to ! initial data.

This analysis is first carried on for special quadratic terms and then to a more
general case. Apart from simplifying the analysis, the special case arise naturally as the
only one (excluding the linear case) for which the semi-group defining the solution is
(sequentially) continuous for the weak-star topology in L.

Some results concerning asymptotic behaviour and scattering are also proved.

Spongored by the United States Army under Contract No. DAAG29-80-C-0041.
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1. Statement of the problem

We will consider the following system

aui Bui

3 + Ci % + .Zk Aijkujuk =0, x € R, tel, i=1,...,p
(1.1) 3.

“i(x'O) = wi(x), X € R, i=1,.00,p,

where the C; are real constants (not necessarily distinct), the Aijk are real constants

A for every i, j, k) and the time interval 1 contains 0.

(satisfying Aijk = Aixy

The original problem from kinetic theory of gases is

du,

i
4 .« v
grad u

3
5E + 3 Ajjc%y% =0 X€ R, tel, i=1....p

i
3ok

(1.2)

3
ui(x,o) = wi(x), x€ R, i=1,.00,p,

where ui(x,t) is the density of particles having velocity vy {the v; are here
distinct vectors in R3) and the quadratic term corresponds to interaction through
collisions (some information given by physics on the coefficients Aijk is useful for the
mathematical treatment of the equation).

In the case where the initial data only depends upon x*n (where n is some unit
vector) the solution will be a function of xen and t and will satisfy (1.1) with

Ci = vi-n.

We now state briefly some classical results concerning {1.1) and (1.2):
a) If the data ¢, are in L°° then there is a local solution in time.
b) The system exhibits a finite propagation speed: u(x,t) only depends upon ¥(x - tw)
with w € [min C,,max Ci] for (1.1) and w € convex hull(v,,...,vp) for (1.2).

c¢) The solution ui(x,t) is nonnegative for all x, i and ¢t > 0 if each wi is

n'nnegative and if the coefficients Aijk satisfy

2=




. A # #
(1.3) 19k <0 if 14 4 and { k
(particles of velocity vy can only be created in collisions where they do not enter).
d) Conservation of mass holds if the coefficients Aijk satisfy
(1.4) E Aijk = 0 for every 3,k .

1

Then if the data ¥, are in Ln nL the solution satisfies

(1.5) Ll umtiam=o.
i

If (1.3) and (1.4) hold, the L' bound on the solution only depands on the L' hound

of the data (we gtill need wi 2 0 and wi e. N L‘) as long as the solution stays in

o
L.
@) The entropy condition is related to the following conditi-n

. A > .
(1.6) . } . 1jkxjxk(nog A, +1) >0 for all A such that ) >0 for all i
[ ’

Then if (1.3) and (1.6) hold and if the data ¥4 are nonnegative L. with compact

support the solution satisfies
4
(1.7 — 7 [ u (x,tiLog u (x,t)8x €0 for t >0 .
at i i i
From these results one sees that L1 is a natural space to use; unfortunately as the
quadratic terms are not defined on this space, we have to impose a restriction on solutions

and we are led to the following definition.

Definition 1: 1If vi € L'(l) for each i, a solution of (1.1) is an element
us= (u,,..-,up) such that

a) u; is continuous on I  with values in L1(m) for each i,

aui 3ui

B) 3 *Cix
Y) ujuk € L’(n x I) for each 3j, k such that %dk # 0 for some 1,

€ L‘(R x I) for each 1%,

8) u satisfies (1.1) (each term having a meaning using a, B, Y).




FUEERYS T T SRR

Remark 1: In B) derivatives are taken in the sense of distributions; an equivalent

statement is

B*) Let wi(x,t) = ui(x - Cit,t). v is absolutely continuous on I with values in

L’(l) for each 1.

-4~




2. Statement of the results under special condition (S)

We will make an extensive use of the following special condition:

(s) Aijk =0 if Cj = Cy

The relation of condition (S) with respect to continuity in the Lu weak-gtar topology is

considered in the appendix.

1 data). Assume (S) holds. Then there exists

Theorem 1: (Global existence for small L

Eo >0, k1 >0, k2 ? 1 such that:

a) If v, € LY(R) for each 1 and satisfy

: (2.1) PLTAL <E
ATV

then there is a unique solution of (1,1) on interval I = (=»,+®); this solution

satisfies
du 3u

i i

(2.2) E Iac *+ ¢ 3 I 1 < X, § lviln'(n) .
L (RxI)
i {
b) 1If Gi € L1(l) with 2 l; ] < Eo, corresponding to solution ; then '
i L (R)

. - g (e - »

(2.3) sup } Iu, {+,t) u (e, 00 < k, ) o, = w0, .
teR i L (R) i L (R)

, Theorem 2: (Local existence for ot data). Assume (S) holds. Let vy € L'(R) for

1 each 1 then there exists tg > 0 such that (1.1) has a (unique) solution on interval

I = (~t,, tg). . )
Theorem 3: (LQ regularity for small L' data). Assume (S) holds. Then there exists

‘ Eq > 0, k, > 1 such that: if ¢, ¢ L™ N r'(m) and satisfy

!

i (2.4) Iten, <E.

. i L (R)

Then the solution is essentially bounded in R x R and satisfies

(2.5) sup Iui(o,t)l © < k3 maxlwil - * .
/ t,1i L (R) i L

-5-
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Theorem 4: (Global La existence). Assume (S), (1.3), and (1.6) hold. Then there exists

a growth function F(t,M)} such that: if the data satisfy 0 < wi(x) <M a.e, for each
i, then the solution exists for t € {0, and satisfies 0 < ui(x,t) < P(t,M) a.e. for
each 1i. L]

Theorem 5: (Asymptotic behavicur for small L! data). Agsume (S) holds. Let

e LY(R) for each i with § 191, SEg. Let vi(x,t) = uj(x + Cjt,t). Then as
i L (R)

t goes to +® oOr w, vy has strong limits in L‘(l). If moreover the solution is

%

bounded in LE(R) for t » 0 then vy has a strong limit in L“(l) as t goes to +»

(similarly a bound for t € 0 gives a strong limit as t goes to -=). .

If we denote by So(t)v the solution corresponding to the linear case (all

Aijk = 0) and S(t)y the solution of our problem (defined for ¢ with a small L1 norm),
then Theorem 5 says that the wave operators Wt = lim SO(-t)S(t) exist for ¥ in a

t+to
suitable domain. Similarly one can look at limits of S(t)SO(-t).

Theorem 6: Assume (S) holds. Let ¢, € L1(n) for each i with 2 1¢.1 < E . Let
i i i L1(R) 0

vi(x,t) be the solution of (1.1) with initial data wI(X) = wi(x - Tci); then as T
goes to 4w, Ji(x,T) has strong limits in L1(R). a

E

1
Let (2.6) D = {v:ve (L @IP g < —}.
3 L (R) (1 + k1)
Theorem 7: (Scattering). Assume (S) holds. The wave operators W, = lim S (-t)S(t) map
trio
D, into Dg_, for each m » 0; Mt = lim s(f)so(-t) map Dp into Dp_, for each
trto

m 2> 0. If A is any of the four operators wi' Mt then

e - RYI < Kk le -y, ¢b € Dy
(2.7) 1 .
IAY = Ayl > — lg - Yi, w.p €D, ,
k 1
2
(2.8) MW, WM., M W_, WM_ = identity on Dy .

One can define the wave operator § = WM_ mapping Dy into Dy for m 3> 1 satisfying

(2.9) W, = SW_ on 02 ,

-6-
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Isv - syi < k:w - i, ¢, eD,

(2.10)
| |s¢-sw|>1-2-w-wl. s e, .
k2

! -
‘ S 1is one to one on D, and its inverse § 1 WM, maps D, into D, ., for m > 1

satisfies (2.10) and S8~ ' = s”'s = identity on D,. .




!
3

l
1
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|

3. Functional spaces for (1.1)

Let I be a time interval containing 0 and J be an interval of R. We consider

functions defined on domain

(3.1) D= {(x,t) € Rx I such that x - C t € J for k = 1,...,p} .

k
If f € L1(D) and g € 1(3) one can then solve the problem

v v _
3t + Cj x - £, (x,t) € D
(3.2)
v(x,0) = g, x € J
whogse solution is given by
t
(3.3) vix,t) = glx - Cjt) + [ f(x = st,t - 8)ds a.e. (x,t) €D .
0

Let us define the following space

V, = {v defined on D satisfying (3.2) with £ ¢ t'(0) and g e '}
(3.4)

1 1

with norm |||v|||v = Ifl + lgl .
3 L (D) L (J)

Vj is a Banach space isometric to L‘(D) x L1(J) (functions in vy are in L;OC(D) and
are only defined almost everywhere); all properties can be checked on smooth functions

(f and g can be approached by smooth functions with compact support, but the support of
the corresponding v will not be compact).

Lemma 1: If v € vj then there exists w € L1(J) with

lvix,t)] € w(x - Cjt) a.e. in D

(3.5)
Twh = |llvill, -
IR Yy
t
Proof: By (3.3) |vi(x,t)| < Ilg(x -~ Cc t)| + f [f(x - C,s,t - s)]lds . Let

3 . 3

KY = {tre I : (y+C,t,1)€ D} for y € J and define

3




e s e e TR -

Ay e L i
wiy) = lgty)l + [ ety + AL
K
b4
then we have |vi(x,t)] € w(x = C_¢) and lwl = |1lvill, «
3 L@ v
. 1
Lemma 2: If vy € vj and v, € V. with Cj # Ck then V4V € L' (D) and
1
(3.6) v v 1 < v {1, v 11, .
S M P rcj ckl 3 vy X
Proof: By (3.5) it is enough to bound f wj(x - Cjt)wk(x - ckt)dxdt. By the change of
D
variable y = x - C.t, z= x = C,t this integral is ! f W,(y)w (z)dydz which is
j k |cj - ckl pr 3 k
1
less than Tw i fw . .
Syl e K@
Remark 2: Cj # Ck is necessary in Lemma 2 as it is impossible to bound v in L’(D)
for v € Vj (take Vv = w(x - Cjt) with w € L1(J))-
The map Vv * v(*,t;) is continuous from vy onto L'(Dl{t = to}) and so one cannot
define the product vj(°,t0)vk(-,t0) for every tge n
Notation: V = {v = (vl""'vp) such that vy € vj for each j} the norm on V being
L vttty .
v
3 7Y
-9~
> WlFe .



4. Proofs of Theorems 1 to 7

We first remark that u is a solution of (1.1) in the sense of Definition 1 if and

only if each uy belongs to Vj (defined with J = R) and u satisfies equation (1.1).

Indeed if u is a solution then by 8) each uj is in Vj. Conversely if uy € Vj

for each j, then by Lemma 2 the products uguy belong to L’(D) if Cj # Ck’ but, from

condition (S) the only products Uy appearing in Equation (1.1) satisfy cj # ck and so

each term is in L'(D).
4.a: Let D be defined like in (3.1) and let ¥y € L1(J) for each i; we want to find a

solution of (1.1) on D as a consequence of the fixed point theorem for strict
contractions.
Construct a mapping from L1(J)p x V into V as follows:

For ¢, € L1(J) for each i and u €V, v = A(y,u) is the solution of

Bvi Bv1
(4. 1) K— + Ci sx—‘f' Jzk Aijkuj‘ﬁ( =0, i=1,iee,p, (x,£) €D
v
vi(x'O) = vi(x), 1= 1,400,P) X €J o

By condition (S) and Lemma 2 the sums I Aijk“j“k are in L1(D) for each i and so
Jk
v € Vo u is a solution of (1.1) if and only if it is a fixed point of the map

u + A(¥,u). We will show that, if z Iwil is small enough, this map is a strict
i L (J)
contraction on some closed set of V.
Let € = ty.H , and E =) €_.
b} I 5 ]
du . 3u v, v,
= f—ad 1 =+ —d . i .
Let aj Ty + Cj Tx I and Bj Iat Cj Ix l Using equation (4.1)
L1(D) L’(D)
and Lemma 2 we have
14, |
' ijk
(4.2) B, < | (e, +a,)(e, +a)
k
i 3k lCj Ckl j 3 k

corresponding to C.

j = Ck). Define

(where L' design sums without the undefined terms

oo




|
1
|
!
|

By summing (4.2) in i one gets ] B < y(E+ ] a
i

3 3
of V:
Bw,r = {vev: vt(x,O) - ¢i(x), L= 1.c0,p, x¢J,
(4.4 3
) 2 l—:i + C iril < !}
at i ax Y
L (D)
the preceding inequality implies that A maps B¢ r into Bw,s if 8> y(E + r)z. Now
’
we bound_the Lipschitz constant of A on B, : Let u€ B and v = A(¢,u) and
3“1 3“1 v, r ¢, r
R S 11 R
L (D)
14 |
3 - 3 - ' iik -
B (v, =v,) +C, = (v, - v. ) < ] (e, +a ) llu -~ wlll
ac Vi TV tax T T T e Teg - T TR T Y % T % v,

(4.5)
+ Hluj - uj”'Vj(ck *a)]

and so X H|vi - villlv < 2y(E + r) Z Illuj - ujlllv . Thus
i i 3 3
A maps B¢ r into B with &8 = y(E + r)2 with
(4.6) ’ e
Lipachitz constant 2Y{(E + r) .
Define E,; by
(4.7) 4750 < 1.
So we have shown, by taking r = E, that
(4.8) f ] ej =E < Ey then A is a strict contraction on BLE *

3

So we have proved the existence part in Theorem 1 (taking J = R) and inequality (2.2)

with k, = 1,

v,E

Let vy, F; e .'(3) for each 3 with J ol | <E. ] n$j| . S E. Let
z _ 1 7t 3 L (J)
ue Bw.zo' ueB;  ,v=Av,u) and v = A(y,u). Inequality (4.5) is still true if we
’

0

-11-
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e

replace €y + oy by €y + oy and it gives, after summing in i:
Mlv =V, < T 10, o 4 + ayE 11w - ulll, .
v i i i L1(J) 0 v

If u and u are the solutions corresponding to ¥ and ; we obtain

- 4vYE, ; -
(4.9) Hla =ufll, € == ) lo. =y 1
v 1 4YE° i i 1 L’(J}
4YE

which proves inequality (2.3) with k= « Uniqueness is so far only proved for

2 1 - &g
solutions lying in BW,EO'
4.,b: Let u, 4 be two solutions on R x I corresponding to the same data ¢ € L1(J)p.

We want to show that u and u coincide on [-ty.tg] for some ty > 0 (this will prove

uniqueness because the set of t such that u(e,t) = E(-,t) will then be opened and

closed). - _
3ui 3ui aui 3ui 1
A e 3, i . . .
As Ty Ci P and It Ci ™ are in L (R x I) for each i, one can find

§ >0 such that, if D CTR x I has a measure less than &, then

Bui Bui Bui 3;i
E I T Ci = l 1 < Ey and g Iat *Ci3x I < By
L (D) L (D)

similarly there exists 6' such that, if JC R has a measure less than §6', then
LA <E.

i 1
t Yita 0

Then for r > 0 small enough take J = [xo,xo + r], D as in (3.1); then u, u € Bw E
’
[1]

and thus they coincide on D by step 1. By moving Xg on R u and u coincide in a
strip R x [-to,tol.
So the uniqueness part is proved for Theorems 1 and 2.
4;c: If ¢j € L’(l) for each j, then one can find a finite number of intervals Ja'
0
o= 1,.0.,q9 such that lul Ja = R and

) 10,8 <E.
j L3

-12=
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Let Da be as in (3.1) with J replaced by Ja' let v, be the corresponding solution

8 ¢ g then on Dq n DB we have two solutions ua and ua which

correspond to the same small data and thus they coincide. As L_J Da contains a strip
a

R X [-to,tol we can glue the u, together to obtain a solution in the strip and thus

in D. If J Ng
Qa [+

Theorem 2 is proved.

44: Let J CR and D as in (3.1). Let vi € L1(J) N Ln(J) for each 1 and define

M(t) = ess sup{lu,(x,8)|; 3 = 1,...,p, (x,8) € D, |s| € t} so M(0) = maxh¢ ¥ ;1 we
3 i P

want to bound M(t) in terms of M(0). We know that ui(x,t) = wi(x - Cit)

t
- Z f Aijkujuk(x - Cis,t - g)ds. For Cj # Ck we want to bound the integral

j.k 0

t
(4.10) ma=|f loju (x - C 8t - s) las| .
0

We can assume that cj # ci (as Cj and Cy cannot be both equal to Cy): we bound
t

1
Iy (x - Cys,& - 8)| by M(t) and l£ Iuj(x - Cst - 8)lds| by TEI_:_E;T |||uj|||vj
80
M(t)
(4.11) m < /= [flu ([]
(o] -
ley cjl 3y
and thus
lu, (x,e)1 € e 1 + kM(e) T 1Hu 11
: SNt 3y 3
and so M(t) < M(0) + «M(t)[|lulll . But we know that if [ 1¢.1 <E < E_ we have
v 5. Ity V0
Illul[lv < 2E1 and so if 2:51 < , ve obtain M(t) < ;—:—EZE: M(0). This estimate is

valid as long as the solution is bounded, but the bound obtained being independent of ¢t

we have global existence in L‘ and Theorem 3 is proved.

d4.e: To prove global existence in Theorem 4 we will use the entropy and this requires

nonnegativeness of the solution.

Let 4 satisfy the sign condition (1.3). Let ¢ € L”(R) for each i: If

19k

vi > 0 for each i, then the solution satisfies “l(x't) >0 for t >0, x€ R and

i=1,...,p. ([One can show this by using a different fixed point argument and consider

-13-




v = B(¥,u) defined by

3v1 avi 2 z

— 4+ C, 7— + 2 4 v + A u = 0

3t i3x &y Mk 1% jii 13 3%
(4.12) k#i

vi(x,o) = vi(x), i=1,...,p X € R, t>0

then B(v¥,u) >0 {if ¢ > 0, u> 0 and the solution is nonnegative). Under condition

(1.6) the entropy ) [ u,(x,t)Log u (x,t)dx is a nonincreasing function of t if the data
i
have compact support.

let T > 0; we want a bound of u;(x;,T) depending only upon T and maxlvil - .
i L (R)
X, -t m%n Ci] and define wi by

1

Let J = [x0 - t max Ci' o
i
J‘ai(") if x€eJ

(4.13) vy (x) =
0 if x ¢ 3

The solution v with initial data  will coincide with u at (x5,T); on the other
hand the solution has compact support for each time t with
meas{x : v(x,t) # 0} < kT for 0 < t < T

(4.14)
v being the solution corresponding to .

Using the entropy we have 2 f vi(x,t)Log vi(x,t)dx < z f wi(x)Log wi(x)dx. Using
i i
A Loq+k - % € Alog X < Avlogh for X >0 we obtain

(4.15) 1/ v, (x,t)Log v, (x,t)dt < k(M Log M + T)
iR
(k designs various constants and Mo = maxlwil °n). From (4.15) one deduces that there
i L

exists r depending only upon M, and T such that

X+r
(4.16) 1] lv,ty.t)|dy € E,, uniformly x € R, t € [0,T].
i x




]
'
|
b

La na

—

——

X+Y
Indeed if w » 0 and | w(y)Log, w(y)dy < A we can decompose | wiy)dy into I, + I,
X
where I, is the integral over the set of y such that w(y) > R> 1 and I, over the

set of y such that w(y) € R; we bound I, by Z;gza and I, by R.s then one

E
choogses R large enough so that A < 1 and then r small enough so that rR € —1.
Log+R 2p xtr 2p
This shows that there exists r depending only upon A such that f w(y)dy € El
x

uniformly in x € R« Apply this to ui(',t) with A = k(Mglog,M; + T).
We use (4.16) and step 4 on domains D' constructed on interval basis
J* = {y € [x',x* + r]} at time t' € [0,T], then on D' we have

max jlu,(x,t)| € k, max Ju,(x,t')|. By moving x' € R we obtain

i

i,(x,t)eD’ i,xeJ' i

. < ' ‘et € ] __._t .
(4.17) M(t) k3M(t‘) for 't t <t + oy ci ~ min Ci

i

By applying (4.17) finitely many times one obtains a bound for M(T) (which could be given
more explicitly as a function of M, and T) and this proves Theorem 4.

4f: The first part of Theorem 5 follows from the fact that u; € V;. Indeed

avi Bui 3ui 1 1 1
3t " 5% + Ci Fren € L (==,4+=,I, (R)) and vi(x'O) € L' (R) and so limits exists in

LY (R) as t goes to +® or ==, If Iuj(x,t)l <M for each j, x€ R and t » 0 we
will bound v;(x,T + t) - vy(x,T) by a quantity which tends to 0 as T goes to +=

uniformly for t > 0. For this we start from the fact that

t
ui(Y:T +t) - ui(y - citlT) = - .zk { Aijk“j“k(y - Cig,T + t - 8)ds
Je

and we choose y = x + C,(T + t), so the left hand side is v;(x,T + t) = vi(x,T). As in
t t
step 4 we bound f u uk(y - C,s, T+ ¢t~ s)ds by le lu,(y - C
0 3 i 0 j
assume C1 # cj' We know that Iuj(z,T)l < wj(z - ch) with "j € L‘(R) and thus the
t
integral is less than M f wj(y - Cys - CjT - Cjt + cjs)ds which with the choice of y
T+t 0 «©
is M [ w. (x + (C, = C,)T)dT which is less than M [ w
T 3 i b T b1

to 0 as T goes to +%,

(8T + t - s)|ds| and we

(x + (C1 - cj)r))dr which goes
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4.9: First we remark that, if the data ¢ have disjoint support, then so(s)¢ = S8}y

for small s. More precisely let 61 be the distance between support (v;) and

3
support (wj), then at time t the distance between support (ui(',t)) and support

(uj(°,t)) is more than max(0, - ltllci - cjl)' So if there exists T > 0 such that

5y,

- j < . - #
Gij > |ci leT for all i,j then for |t| T we have u;uy 0 if c, Cj and, by

using condition (S), u coincides with the gsolution of the linear equation.

Assume now that ¢ has compact support and let ¢ = so(-T)v (we choose T > 0);
then distance (support ¥,, support wj) > Ici - le(T - 1) for each i,j where 1

depends upon the length of the support and the ck's. For T > T we have

P

- S(T - 1)y = SO(T - T)¥ and so S(T)SH{~T)v = S(T)S(T - 1)y = s(t)so(T - T = s(r)so(-r)¢
which is the desired limit as T goes to +o. Similarly when T goes to -=,

In the general case choose ¢ with compact support such that z ij - ;j' 1 €€
3 L

< Eo), then by using Theorem 1 (So(t) being an

o

(with Z ijl 1 < EO and Z lvjl

3 L 3 L _

isometry in L') we have IS(1)8,(-T)9 = S(T)S,(-T)¥l | € k& and so S(T)S(-T)¢ has
L

strong limits as T goes to +® or =», This proves Theorem 6.

1

4h: S(T) maps Dy into D for m > 0 by inequality (2.2) and has Lipschitz

m—-1
constant k, on Dy; as Sgp(s) is an isometry one obtains immediately the fact that N

W, M

s My map Dp into Dy 4 for m ?» 0 and satisfy (2.7). Property (2.8) follows then

easily: for example let v € D, and show that MW,y = v, For € > 0 one can find
so(s) going to +» as € goes to 0 such that lM+(w*¢) - s(-s)so(s)w*wl < e for
s ? so(e) and to(e) going to +* as € goes to 0 such that
lw+v - So(-t)S(t)wl <e for t2? to(s); this implies that
|M+W+'F - S(-)so(s)so(-t)s(twl < (1 + kz)e for s ? so(e), t > to(E)
one then chooses g = t 2 max(so(s),to(e)) and let £ go to 0. The properties of S
are then obvious: SW_ = (WM )W_ = W, (M_W.) = W, on adequate domain, i.e. D,, to have

all operators defined.
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5. Resgults without condition(s)

When condition (S) is not true we will use the sign condition

1. A # 3 4
(1.3) 1,9,k <0 if 4§ j and i # X

and replace condition (S) by one or two of the following conditions

there exists nonnegative numbers ) i=1,...,p such that

(5.1) 1!

bjk = z xiAijk satisfies bjk > g |Aijk| when Cy = Cy .
(5.2) If Ci - cj = Ck then Aijk 0.

Remark that condition (§) implies (5.1) (with Ai = 0 for each i) and (5.2). Some of

the results of Theorems 1 to 7 then hold with some modifications.

Theorem 1': Assume (5.1) and (1.3) hold. Then there exists E6 >0, k; > 0 such that:

1if ¢, em N1 R with

i
vi > 0 for each i
(5.3) .
) o < E!
i L (R)

Then on each interval {0,T] where the solution exists one has

(5.4) ui >0 for each i, a.e. x € R, t € [0,T] ,
du Ju
1 ___5:| ' .
(5.5) L Iat MR TN I <X E wilz.'m) .
L (Rx[0,1])

Theorem 3': Assume (5.1), (5.2) and (1.3) hold. Then there exists Ei > 0, ké » 1 such

that: if ¢ e L(m) N rlm) with

i
¢1 > 0 for each 1
(5.6) 2
| L2 | < E!
FEREEANTY

then the solution exists for t € [0, and satisfies

(5.7) sup lu, (-,t)l - < k! maxlwil - ° L]
t»0,1 L (R) i L

-17-
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Theorem 4': Assume (5.1), (5.2), (1.3) and (1.6) hold. Then there exists a growth

function F(t,M) such that: if the data satisfy 0 < wi(x) ¢ M a.e. for each i, then

the solution exists for ¢t € [0,»[ and satisfies

0 < ui(x,t) < F(t,M) a.e. for each 1 . L
Theorem 5': Assume (5.1) and (1.3) hold. Let wi € L1(l) a} Lm(l) for each 1 satisfying
wi > 0 for each 1
(5.8) Iwil , < EB
i L (R)

Assume that the solution exists on [0,+=f. Let vi(x,t) = ui(x + Cit,t); then as t

goes to = v, has a strong limit in L'(l). If the solution stays bounded in Lu(l)

and if
(5.9) C; = Cj = Cyp implies Aijk =0
then vy has a strong limit in L“(l). L

Remark: Condition (1.3) is not enough for some of the results to hold. 1If one considers

the Carleman equation

ET + I +u -v =0, u(x,0) = “O(X)
(5.10)
v dv 2 2
t "~ W *V o= o, vix,0) = v,(x)

then (1.3) holds and Theorem 3' holds with E; = 4o and ks = 1 but (5.5) is not true:
if it was then u(x + t,t) and v(x - t,t) would have strong limits in L'(n) as t
goes to +» and, because f (u{x,t) + v(x,t))dx is constant these limits could not be
zero if f (uo(x) + vo(x))dx > 0; on the other hand Illner-Reed have shown a decay in
L“(l) in % with C depending only upon f (uo(x) + vg(x))dx (we give an alternate
proof of this result in Appendix 2). L

It would be interesting to know if some of the results fail for a good model in
kinetic theory: i.e. one having conservation of mass, momentum and energy and satisfying

the entropy condition (Carleman's model fails to conserve the momentum).
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6. Prqoofs of Theorems 1' to 5'

6.a: We will suppose that the 21 have compact support; the inequalities obtained will

I ) then easily be proved by approximation if ¢, € L1(R) 8} Ln(n) for each 1.

i
As proved in 4.e the solution satisfies ui(x,t) >0 a.e. x€ R, t € [0, T[] for
! each i where T is the maximal time of existence in Lw.

Let S < T, multiply the i-th equation in (1.1) by Ai, sum in 1 and integrate

in x € R and t € [0,S8]3y we obtain

S
A, Juxsiax+ § a4 [ uwaux,t)daxde =7 A, [ ¢ (x)ax .
1 tr v 1,j,k1*3kno 3R 1 tr it

Using u, » 0 and (5.1) we deduce

i
(6.1) T 14, Mot <M T oren +M, 1 taul .
ey, S B R I I P ¢ %, 3% LY (ax 10,81
Jdu Ju
Let € _(g) = Is-i + C ——1| and remember that, by Lemma 1
' 3 t j Ix 1
i L (Rx[0,S))
1
tu,u i € ————— (€.(8) + 1¥_1 Y, (8) + Mg 1 )
I L (wei0,s1) 1S3 - Okl 3 LAY TR LAY

for cj # ck .
We then deduce from (6.1)

2
(6.2) I tuud <M, ] et + M (] 11 + 3 €.(8))
jok I ¥ iVmxpo,spy 21 fiutm Y tilm 1 d

and then by using (1.1)

2
(6.3) Tets)<m J up + M (Y Ve, +J e (sn® .
e 4y tim %1 tim 1t

1 When s goes to 0 €,(s) goes to 0 and then, if we note E = ) w1, (6:3)

i L (R)
: implies that E ei(s) is less than the smallest positive root of X = M4E + MS(E + x)2
i M
] and one checks easily that if E < Ea - 4 2 then the smallest root is less than
1 M (1 + M,)

2M4E. This proves Theorem 1°.
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6.b: As in 4.d we have to bound from above (we have 0 as lower bound)

t
wi(x - Cit) -1 J Aijkuj“k(x - Cis,t - g)ds .
ek 0
By (5.2) we can delete the terms for which C1 - Cj = Cy because Aijk » 0 and
ujuk 2 0; then there remainsg only terms which can be handled like in 4.4 and this will
prove Theorem 3°,

6.c: The proof of Theorem 4' is exactly similar to 4.e.

6.d: The proof of Theorem 5' is exactly similar to 4.f; by (5.9) the only integrals to

bound can be handled like in 4.f.




Comments

The first results of global existence (without a bounded invariant region) was

obtained by Mimura-Nishida [(1]: using supplementary conservation laws they proved the

analog of Theorem 3' for the Broadwell model. It was then recognized by Crandall-Tartar

[2] how to use finite propagation speed and entropy to deduce Theorem 4' from Theorem 3'.

The method was then applied to different classical models where Mimura-Nishida's argqument

could be carried on Cabannes [3], Leguillon [4].

(1]

(2]

3]

(4}
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MR 58 #19720.
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; Appendix 1

| Semilinear systems and continuity for the L” weak-star topology.

Consider the following system in N dimensional space

' du
( i N
o+ . coe
Ty gradxui vi + Fi(u1, ,up), X € R, t eI
(1)
(%,0) = ¢ (x) e BY, 1=t

: u, (%, = v (x), x ' = 1,¢00,p
‘ where F; are locally Lipschitz functions on RP and vy are vectors in R'. If the

© N
data v, €L (R7) with #o .1 _ <M for each i then there exists tp > 0 and a unique
L
solution on I = (-to,to) satisfying Iui(-,t)l w $ 24 for t € [-to,tol and each 1.
L
The solution u depends continuously upon ¢ in the L°° strong topology.

We are interested here in the following question: for what functions Fy,
i=1...,p does the solution u depend continuously upon ¢ in the L°° weak-star

topology restricted to the ball maxlwil - S M? (the weak~star topology restricted to a
i L

ball is metrizable). The answer to this question is given by the following:
Theorem: The solution depends continuously upon ¢ in the Lm weak-star topology (on
bounded sets) if and only if

either a) N > 1 and each Fy is an affine function

or b) N =1 and each Fy has the following form
(2) Fi(u) = .z Aijkujuk + z bjuj + c
Jek b
!
!
with
(s) Aijk =0 if vy = V.

| Proof: 1) It is enough to prove b) for N = 1.
,‘ Indeed {f N > 1 taking $y of the form wi(x-n) for some unit vector we are led

& to N =1 with vy replaced by v, * m. Then continuity will hold if Fy has form (2}

! with Aijk = 0 when vj e n = vk « n; as for each couple 3,k one can choose n such

that this is true one sees that all coefficients Aijk are 0 and so each Fi is

affine. In that case sufficiency is obvious.
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€ goes to 0 wi converges in jou weak-star to 51 = average of vy Then for

2) Take a sequence ¥ = vi(g] where each vy is periodic with period T; 8o that as

It} € £ we have uniformly in e : ui(x,t) = 0(1) so Fi(ue) = 0(1) and, integrating

1}
(1) along a characteristic we obtain {replacing vy by c1 like in (1.1))

: . x-cC,t
(3} :-.} “i.(xrt) = ‘f’i(*—-e—i—J +o(lt])

which gives, as each P1 i3 locally Lipschitz

x ~C ¢t

. x~-Ct¢t
(4) F S x,t)) = F (o Joseero (—2)) + otieh .

If th2 weak-star continuity holds ui(x,t) will converge to the solution starting from

€

data ;i: let ug Be this solution. If a subsequence of Fi(us) converges to wi then,

du
by the equation, 3t + gradxug sVt wz =0 and as ug is the solution we obtain

wg = Fi(uo) and as us = Ei + 0({t{) we should have

(5) If Fi(us) converges in 1 weak-gtar to wg then wg = Fi(;) + oltl) .

3) We will obtain the form for F; by using different choices of ¢j- We now drop the

index i of Fi.

Take Wz,...,¢p to be constants, then

(x ~ C,t)

F(“E €

. wz,...,wp) converges to average of F(¢1(y),W2:---.¢p)
and by (5) this should be F(average w1,w2,...,¢p). So necessarily F is affine in L
and similarly in wj for each j. So F is a combination of multilinear functions.

4) 1I1f Cj = Ck there are no products “juk in F. Take j =1, k=2 and ¢3,...,¢P
x - C.t X -C,.t
), ¢2( . ), wa,...,wp) converges to the average

to be constants, then F(v (—
of F(¢1(y),w2(y),w3.---,¢p) which ghould be F(average v,, average w2,¢3,...,¢p). If

there was in F a term ¢1¢2G(¢3,-..,¢p) we would obtain a contradiction by taking

$q= wz nonconstant except if G(w3,...,¢p) = 0.
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s) 1f C1 # cj # ck # c1 there are no products “i“juk in F. Take the indices to be 1,

2, 3. It will be enough to find periodic functions of period T1¢T2 T3, of average 0

X - C,t X - Czt X - Cst
such that w1( Py ]vz( P ]w3( P ) converges weakly to a nonzero constant.
(C, = Cy .
Take v,(y) = sin ——‘Y-——l ¥,(y) = cos —X—, v (y) = sin ! 2 then
c,-¢C 2 c,-¢C 3 (c, -colc, -c,)
3 1 3 2 3 1 3 2
x~Ct x-Ct (C, = C ) (x - C.t)
1 2 1 2 3
as = - = - — — , the product is
C3 C1 C3 C2 (C3 C1)(C3 C1)
x~-C.t x - C,t x-C.t x - C,t
2 1 2 2 1 2
¢1( c }02( e ) Y 8in2 E(Cg = c1) sin2 E(C3 = cz) whose limit is ol

6) By 3), 4), and 5) each F; must have form (2).
This condition is sufficient by a compensated~compactness argument:

1f ve(x,t), we(x,t) converge in L“(w) weak-gtar to Vgr Wg with

6
© zv—e»fciv—e- and ‘a—w—g+c'3-w—ebodedin L7(@), 8 C B then
3t ax ' 3t % un '

if c# ¢ v W, converges in L”(ﬂ) weak-star to vowy .
For the proof and the motivation in constructing the test functions in 3), 4), and 5) see

Tartar [1].

Tartar [1]. Compensated compactness and applications to partial differential equations, p.
136-212 in Nonlinear analysis and mechanics: Heriot Watt symposium vol. IV, Re. J. Kreps

ed. Regearch notes in Mathematics 39, Pitman.




! Appendix 2

! Decay for solution of Carleman'’s equation.

Theorem (Illner-Reed). Let u,v be solutions of Carleman's equation

@
[+
-5}
[
~
N

1 3t + Etw v 0, u(x,0) = uo(xi
(7)
v dv 2 2 _ -
3¢ i v+ v =0, vix,0) Vo(x) .

<M a.e., and f (ug{x) + vg(x))dx = m < +=. Then there exists a
R
constant C, depending upon m such that

t
I Assume 0 < uo, v0

(8) 0 <u, v<min(M, EE) for t € (0,o] .
Proof: It is a classical result that 0 € u, v< M for t € ([0, (without assuming
m< +°)., Let m be given and define G{(t,M) as the supremum of u(x,t) and v(x,t)

when Uy, vy satisfy 0 < Uy Vg <M and f (ug + vo;dx = m., Then G(t,M) < M and

G(t,M) is nonincreasing in t. Trivially G(s + t,M) < G(s,G(t,M)) for every s,t > 0.
If one now remarks that Au(ix,At),Av(Ax,At) satisfy Carleman's equation we see that

! G(t,M} = AG(At, %) for every X > 0, so G(t,M) = H(%,M; with H positively homogeneous

of order 1.
(8) is now a consequence of

m

Lemma 1: If t > T > 3 then G{t,1) € k with k < 1. a

Indeed G(E,M) = MG(t,1) < kMe Then if p 2 1 is an integer

T 1 1 T (1 1 1
ol (1 oee v M) <ol Gy g e ene o))
T 1 1
= kG(i(1 + ; + soe 4 kp_1,M)

&
| T 1 1 p+1
be so by induction G(§(1 + 5 + oo 4 ——],M) <k M is p 2 0 is an integer. If t » »
4 T 1 1 T 1 1
! then for some p 2 0 I (v + P ;;) Cecg (1 + ettt kp+1] so
pt1 Iz P, ¢ ____!___. <X < < T¢I
G(t) € k¥ 'M < T (1 + k + oe0 4+ k°) T If < then G(t) Mo TERERT,

and C only depends upon m. To prove Lemma 1 we will need

so (8) holds with C = 1 f "

2 more lemmas:
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The solution of

3
;

|

v' + v2 = 1
v(0) = X

is given by v(t,A\) = F(t,A) which satisfies

(9) 0 F(EA) S 1+e2¥(a-1) for A 20, £>0.
. . A Cht + Sht . R
Proof: The exact solution is F(t,A) X—EEE_:—EHZ which is concave in X; F(t,1) 1
3F -2t
and w (t, 1) = e . L]
Lemma 3: If
e udc et - 1)
(10)
0 < u(o) €1
with
L]
(11 0<At) €1 and [ Mtijat < my .
0
Then u(t) € u(t) where u(t) satisfies:
a4+ ;2 =1 on [O,mol
(12) =1 - e-zt on [mb + ®f

uo) = 1.

Proof: ult) < w(t) where w satisfies

W't wl= 1+ e-2t(X(t) - 1)

w(0) = 1.
Let T < +o and maximize wi(T) under the constraints 0 € A(t)y € 1 a.e. on (0,T] and
IT A(t)dt € m. The set of constraints defines a compact set in L (U,T) for the weak-
szar topology and the map A *+ w(T) is continuous, 80 an optimal solution % exists. We
now identify % from the necessary condition of optimality:

Let A = X + 6\ satisfy the constraints; then to * + e8) corresponds

W + €éw + 0(e) where &w is given by
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(8w)' + 2wbw = e 2%6)
f |: Sw(0) = 0
| r r
; so 6w(T) = | a(t)éA(t)dt where a(t) = e 2texp(-2 | W(s)ds). As W(T) is maximum
| Sw <0 foroall admissible choices of A and this s:ys that gT a(t)A(t)dt is maximum

? for X. This characterizes A because a is nonincreasing:

T
a'(t) = e'Ztexp(-Z f w(s)ds) (2w(t) - 2] € 0 as 0 € w < 1. The optimal solution is

t
1 A=1 on [0my), 0 on ([my,T] (with modification X =1 4if T < my. So the optimal

value is u(T) (note that u=1 on {0,mg]) L]

Proof of Lemma 1: Let 0<u0,v € 1. S0 0€u, v< 1 for t ?» 0. As

0
v v 2
ac'ax*" < 1 one uses Lemma 2 to get

vix,£) € Flvg(x + t)) €1+ e ypix+ ) -1

Now look at u on the characteristic x = X, + t:

du, 2.3, 88, 202 P vyixg + 0) SPCT+ et vyixy + ) = 1)

which corresponds to A(t) = vg(x + 2t) and so f A(t)dt = -;- f vo(y;dy < %l. By Lemma 2
0

we conclude that u{xg + t,t) < u(t) where U is constructed by (12) with m, = %.

Exchanging the roles of u and v we get G(t,1) < u(t) and clearly u< 1 for

m
t > Il'l0 = 2° ]
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