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ABSTRACT

We consider semilinear hyperbolic systems in one space variable of the
typetp aui  aui

+  = , x e R, t E R, i= 1... p

U i(x,0) = (x) X e R, i = 1,...,p

We first introduce a special condition

(S) Aijk = 0 if Cj = Ck

Under condition (S) we prove: local existence and uniqueness if the data
are in Li(R); global existence, L stability and the existence of wave
operators and of a scattering operator when the data have small norm in L (R).

Adding a sign condition

(s) A 0 if i * j and i * k

ijk

and the entropy condition

(E) I AijkX jXk Log Xi ) 0 for all X e Rp  such that Ai > 0 for each
i,j,kW
i we obtain global existence if the data are nonnegative and in L (R).

We then replace condition (S) by a weaker one and obtain some of the
above results in that case.
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*SIGNIFICANCE AND EXPLANATION

We study semilinear hyperbolic systems with quadratic nonlinearities

which originate in the kinetic theory of gas as a simplification of

Boltzmann' s equation.

Local existence is well known for these equations and the main problem is

to prove global existence for nonnegative bounded data.

Except for the unrealistic case where a bounded invariant region exists,

no result of this type is known in three space dimensions. As in all

preceding results, based on the work of Mimura-Nishida and Crandall-Tartar, we

restrict ourselves to one space dimension. We show global existence for a

quite general class of systems and under some special condition (S) we obtain

information on the asymptotic behaviour and on scattering when the data have

small LI norm.

The new idea lies in the introduction of some functional spaces where

some products can be defined; this enables us to define an appropriate notion

of solution in L1  and then use it to obtain local and global existence for

data in L (R).

i .n For

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



SOME EXISTENCE THEOREMS FOR SEMILINEAR HYPERBOLIC SYSTEMS IN ONE SPACE VARIABLE

Luc C. Tartar

0. Introduction

The motivation for considering the systems studied here comes from kinetic theory of

gases where, by allowing only a discrete set of velocities in the Boltzmann equation, one

obtains a semilinear system where the quadratic nonlinearity corresponds to interaction

between particles through collisions.

Although the nonlinearities considered here correspond to realistic models we are not

able to solve the real three-dimensional problem and we restrict the analysis to one

dimensional situations (except for the unrealistic cases where there is a bounded invariant

set one is still waiting for a global existence theorem in L in more than one space

dimension).

Following an argument due to M. G. Crandall and the author the global existence in

L follows (by using finite propagation speed, nonnegativeness of solutions and entropy)

from an estimate, similar to one obtained by Mimura-Nishida, in which one proves a global

L bound for data in L with small L norm.

To prove the desired estimates we introduce some functional space modeled on Li and

the crucial remark is that one can still define some products and give a meaning to

solutions corresponding to Ll initial data.

This analysis is first carried on for special quadratic terms and then to a more

general case. Apart from simplifying the analysis, the special case arise naturally as the

only one (excluding the linear case) for which the semi-group defining the solution is

(sequentially) continuous for the weak-star topology in L

Some results concerning asymptotic behaviour and scattering are also proved.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



1. Statement of the problem

We will consider the following system

au. aui
- + C .+ A kuju = 0, x e R, t e I, £

ui(x,O) = i(x), x e R, i =1...,p

where the Ci are real constants (not necessarily distinct), the Aijk are real constants

(satisfying Aijk = ikj for every i, j, k) and the time interval I contains 0.

The original problem from kinetic theory of gases is

au.
1+ grad u v + A , = 0, x 6 R, t f , 1 i ,

(1.2)

ui(x,0) = Pi(x), x e R3
, i 1

where ui(x,t) is the density of particles having velocity vi (the vi are here

distinct vectors in R
3
) and the quadratic term corresponds to interaction through

collisions (some information given by physics on the coefficients Aijk is useful for the

mathematical treatment of the equation).

In the case where the initial data only depends upon x-n (where n is some unit

vector) the solution will be a function of x.n and t and will satisfy (1.1) with

C. = v. ,n.1 1

We now state briefly some classical results concerning (1.1) and (1.2):

a) If the data ;i are in L then there is a local solution in time.

b) The system exhibits a finite propagation speed: u(x,t) only depends upon P(x - tw)

with w e (min Cimax Ci] for (1.1) and w e convex hull(vl,...,v p) for (1.2).

c) The solution ui(x,t) is nonnegative for all x, i and t > 0 if each 0i is

n, nnegative and if the coefficients Aij k satisfy

-2-



(1.3) A (0 if i * i and i * k
Aijk <

(particles of velocity vi can only be created in collisions where they do not enter).

d) Conservation of mass holds if the coefficients Aijk satisfy

(1.4) A - 0 for every J,k
ijk

Then if the data 01 are in L C LI the solution satisfies

d i

If (1.3) and (1.4) hold, the L1 bound on the solution only depends on the Ll hound

of the data (we still need 0 A 0 and Vi e 0 L ) as long as the solution stays in

L'.

e) The entropy condition is related to the following conditien

(1.6) A ik (Log Xi + 1) A 0 for all X such that Xi > 0 for all i
ij,k

Then if (1.3) and (1.6) hold and if the data Vi are nonnegative L with compact

support the solution satisfies

(1.7) d f u (x,t)Loq (x,t)dx ( 0 for t ) 0
d1.7)i ui

From these results one sees that L is a natural space to use; unfortunately as the

quadratic terms are not defined on this space, we have to impose a restriction on solutions

and we are led to the followina definition.

Definition 1: If 01 e Li(R) for each i, a solution of (1.1) is an element

u - (ul,...,U pu) such that

a) ui  is continuous on T with values in LI(R) for each i,
Dui _ ui 1

B) - +i 3 e L (R x I) for each i,

y) uju e LI(IR x I) for each J, k such that k 0 for some i,

6) u satisfies (1.1) (each term having a meaning using a, , ). a

-3-



Remark 1: In B)derivatives are taken in the sense of distributions; an equivalent

statemient is

~) Let wi(x,t) u U(x - it,t). wi is absolutely continuous on I with values in

L (R) for each i.

-4-



2. Statement of the results under special condition (S)

We will make an extensive use of the following special condition:

(S) Aij k - 0 if C k

The relation of condition (S) with respect to continuity in the L weak-star topology in

considered in the appendix.

Theorem 1: (Global existence for small L1 data). Assume (S) holds. Then there exists

E0 > 0, kI1 ) 0, k 2 ) 1 such that:

a) If oi e LI(R) for each i and satisfy

(2.1) 1 [ i1 1 E 0
i L(R)

then there is a unique solution of (1,1) on interval I = (-a,+); this solution

satisfies

(2.2) I't + C, (,ui k, II *i 1 1

L RXI) i L CR

b) If Si C L (R) with I li1 1 E0 , corresponding to solution u then
i (R)

(2.3) sup I lui(.,t) - ui(.,t)iL1 4 k2  i - 1
teR i L (R) i L CE

Theorem 2: (Local existence for L
I 

data). Assume (S) holds. Let Vi e LI(R) for

each i then there exists t0 > 0 such that (1.1) has a (unique) solution on interval

I = (-t0 ,t0 ). a

Theorem 3: (L regularity for small LI data). Assume (S) holds. Then there exists

E1 > 0, k3 ) 1 such that: if Vi e LC(R) n L1 (R) and satisfy

(2.4) IV 1 E1

i LC()

Then the solution is essentially bounded in R x R and satisfies

(2.5) sup Uu (.,t)I 4 k maxU I,
1 3 mx~

t,i L CR) i L

-5-
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Theorem 4: (Global L existence). Assume (S), (1.3), and (1.6) hold. Then there exists

a growth function F(t,M) such that: if the data satisfy 0 <( ± Wx 4 M a.e. for each

i. then the solution exists for t E (0,-[ and satisfies 0 < u (x,t) < F(t,141 a.e. for

each i. U

Theorem 5: (Asymptotic behaviour for small Li data). Assume (S) holds. Let

1P f CR) for each i with I 1 4 CE 0 . Let vj~x~t) - uiCx + Cit~t). Then as
i L (R)

t goes to +- or -, v has strong limits in L (R). If moreover the solution is

bounded in L (R) for t > 0 then v i has a strong limit in L CR) as t goes to +-

(similarly a bound for t r% 0 gives a strong limit as t goes to -)

If we denote by S Ct) P the solution corresponding to the linear case (all

A ik= 0) and S~t)VP the solution of our problem (defined for V with a small L1 norm),

then Theorem 5 says that the wave operators Wt lim S C-t)S~t) exist for V in a
t~.0

suitable domain. Similarly one can look at limits of SMtS 0C-t).

Theorem 6: Assume CS) holds. Let Pie L CR) for each i with up Ni 1 1 4 Let

v.(x,t) be the solution of (1.1) with initial data = *T ~)

goes to J-, v.T(x,T) has strong limits in L' CR). 0

Let (2.6) D 0-J : P C CL I CW)) P:IH'jI1 4-0 m
j LC(R) (I +k

Theorem 7: (Scattering). Assume (S) holds. The wave operators W * lim S 0(-t)S~t) map
t+-ta

Dm into Dm..1 for each m > 0; M± = lim S(*)S C -t) map Dm into 0m~j for each
t+ta

m ;P 0. If A is any of the four operators W~t, M, then

I AP - Ai 11 C k 2f -' i*,fl P, D

(2.7) HAP -A O 1 IP * ,D
k2

(2.8) M++ W4?+, 14W_, WHM = identity on D

one can define the wave operator S =W+M_ mapping Dm into Dm-2 for m 1 satisfying

(2.9) W+ =SW- on 2

-6-



(2.10 - S I g k 2  IV - PI , v . e D

IO- 8* I ;P Ip 2 I I. V,* e D
k 2

S is one to one on D2and its inverse S I s_, aps D. into D,-~2 for m1

satisfies (2.10) and S6' m S1 -I identity on D3 '

-7-



3. Functional spaces for (1.1)

Let I be a time interval containing 0 and J be an interval of R. We consider

functions defined on domain

(3.1) D - {(X,t) E R x I such that x - C kt e J for k 1..p

If f e L1 (D) and g e L1CJ) one can then solve the problem

I V , C 2= f, (X,t) e6
(3.2)at 

x

v~x,0) =g, x C J

whose solution is given by

t
(3.3) v(x,t) -g(x - C t) + f f(x - C s~t - s)ds a.e. (x,t) C D

Le usdeie vh defined on D satisfying (3.2) with f e L 1 (D) and g E L1 (3)1

with norm lilvillV Ifl g
L LC(D) L 1 J)

V.i is a Banach space isometric to L (D' x L (J) (functions in V. are in Ll (D) and

are only defined almost everywhere); all properties can be checked on smooth functions

Cf and g can be approached by smooth functions with compact support, but the support of

the corresponding v will not be compact).1

Lemmsa 1: If v E V.i then there exists w C L (J) withI lv~x,t)I 4 w~x - C t) s.e. in D

(3.5)

LC J) j
t

Proof: By (3.3) Iv(x~t)I 4 Ig~x - C t)I + f If~x - C s,t - Wds .Let

j 0
K [T fE I ( Y + C T,T) e D) for y L J and define



t
w(y) - Ig(y) + f If(y + C T,t)Idr

K
y

then we have lv(x,t)l 4 w(x - C.j) and IwE - lilvilI 

Lemma 2: If vj E Vj and vk e Vk with C* # Ck then vjvk e L1 (D) and

(3.6) IV V k (I D IC1 lIv Ill lv k III

L L(D) i k kc

Proof: By (3.5) it is enough to bound f wj(x - C t)wk(x - Ckt)dxdt. By the change of
D I

variable y - x - Cjt, z - x - Ckt this integral isi - CkI f Wj(y)wk(z)dydz which is

less than *:j - l 1 1 w I
C k L (J) k L (J)

Remark 2: C * Ck  is necessary in Lemma 2 as it is impossible to bound v2  in LI(D)

for v e V1  (take v - w(x - C t) with w C LI(j)).

The map v + v(.,t0 ) is continuous from Vj onto L I(D t t }) and so one cannot

define the product v (.,t0 )vk(,t 0 ) for every t0  a

Notation: V - {v - (v1,...,v ) such that vj e V, for each J} the norm on V being

li H

-9-



4. Proofs of Theorems 1 to 7

We first remark that u is a solution of (1.1) in the sense of Definition I if and

only if each uj belongs to V (defined with J - R) and u satisfies equation (1.1).

Indeed if u is a solution then by 8) each uj is in V J* Conversely if uj e Vj

for each j, then by Lemma 2 the products ujuk belong to L(D) if C Ck; but, from

condition (S) the only products ujuk appearing in Equation (1.1) satisfy C. Ck  and so

each term is in L (D).

4.a: Let D be defined like in (3.1) and let i C L (J) for each ii we want to find a

solution of (1.1) on D as a consequence of the fixed point theorem for strict

contractions.

Construct a mapping from L
1 
(J)P x V into V as follows:

For , 6 L J) for each i and u E V, v = A(O,u) is the solution of

S jk Aijk UjUk = 0, i = l,...,p, Cx,t) e D

vi(x,0) = WiCx), i = 1,...,p, x e •

By condition (S) and Lemma 2 the sums I Aijkujuk are in LI(D) for each i and so

v 6 V. u is a solution of (1.1) if and only if it is a fixed point of the map

u + A(-,u). We will show that, if I IPioI 1 is small enough, this map is a strict
i LC(J)

contraction on some closed set of V.

Let E, = s I and E = C..
e L1(J) j*

au au av. av
Let a. = + J ;x and B = + C i . Using equation (4.1)~ nat ~ xat jax

and Lemma 2 we have

(4.2) A ijk I (C + a )e + a
j L C - CIk k

jk ij k

0(where V design sums without the undefined terms - corresponding to Cj =CO Define

(4.3) Y max I ' l I
j,k i j

-10-
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By summing (4.2) in i one gets 4 Bi ( y(Z + [ ) Consider the following closed set
± ii

of V:

B ,r "v e V vil(x,O) = s(x), i 1,...,p, x e ,

(4.4) av
Iv jj+ C .!-Il r)

i 1lD

the preceding inequality implies that A maps B ,r  into BO s  if s > y(E + r)2 . Now
we bound-the Lipschitz constant of A on B ,r: Let u B, r and v- A(',u) and

au a

'- -- + C, i-x . Then

a - 'J' It

t (v - vi) + Ci  a (vi - vi L (D) J, C i lk I uk - , k

(4.5)

+ Iilu -U III (Ck+ ak

and so Ili -1viii v 4 (E + r) Ilu - III Thus

A maps Bo,r  into B ,s with s- y( + r)2 with
(4.6)

Lipschitz constant 2y(E + r)

Define 0 by

(4.7) 4yE0 < 1
0i

So we have shown, by taking r - E, that

(4.8) If - IC E then A is a strict contraction on •

So we have proved the existence part in Theorem I (taking J - R) and inequality (2.2)

with ki . 1.

Let Oi, i e L (J) for each J with ( I 1 1 E l . Let1 (J) (u e B ,E0, u e B,0, v v A(O,u) and v - A(O,u). Inequality (4.5) is still true if we

I0



replace ck+ -akby k + ak and it gives, after summing in i:

111 -Vil V4 Ni ± i 11 + 4yE 0iIlu - uI± L (J)V

If u and u are the solutions corresponding to P and P we obtain

(4.9) IIlu - Iill Iy0
L (J)

which proves inequality (2.3) with kc y 0  Uiuns ss a nypoe o
2 1 - 4YE Unqeesi ofa nypoe o

solutions lying in OE0

41b: Let u, u be two solutions on R x I corresponding to the same data P f L (J)P.

We want to show that u and u coincide on C-t0,t0] for some to > 0 (this will prove

uniqueness because the set of t such that u(*,t) u (*,t) will then be opened and

closed).

As au, C au. and ',+ C u, are in L I(R x I) for each i, one can findat i ax at i ax
6> 0 such that, if D C R x I has a measure less than 6, then

4 E( and au , ul -(E.
L (D) L I(D)

Similarly there exists 6' such that, if J C R has a measure less than 6, then

~ '~i 1 ~ E0
i L (J)

Then for r > 0 small enough take J - [x 0 1 x0 + r), D as in (3.1); then u, u f BP,

and thus they coincide on D by step 1. By moving xo on R u and ucoincide in a

strip R x -t ,t ].

So the uniqueness pert is proved for Theorems 1 and 2.

4,c: if 0 e L 1(R) for each J, then one can find a finite number of intervals J,,

a 1,...,q such that U JO~R and

L ( J Ea

-12-



Let D be as in (3.1) with J replaced by J a let u be the corresponding solution

in D If J nlJ then on D r D we have two solutions u and u which

correspond to the same small data and thus they coincide. As U D contains a stLip
a

a X [-t 0 ,t 03 we can glue the u together to obtain a solution in the strip and thus

Theorem 2 is proved.

4d: Let J C R and D as in (3.1). Let i E L (M) f L (j) for each i and define

M(t) - ess sup{luj(x,s)Ij j - 1,...,p, (Xs) e D, IsI t) so M(0) - maxi I we
i L (J)

want to bound M(t) in terms of M(0). We know that u,(xt) - Oi(x - Cit)
t
f Au (x - Cis,t - s)ds. For C $ C we want to bound the integral

jk 0

t
(4.10) m - If lujuk(x - Cis,t - s)dsI

0

We can assume that C * Ci  (as Ci and Ck  cannot be both equal to Ci )  we bound

IUk(x - Cis.t - s)I by M(t) and Ifo lu (x - ci.,t - s)ldsl by T- c Illu III
a ii l j vi

so

(4.11) m 4 14(t) Ilu M
Ici-c i I i V1i

and thus

lui (x,t)f < iLI + cM(t) IIllu IIl

and so M(t) ( M(0) + KM(t)IlIuIII v . But we know that if I1 1 E1 4 E0 we have
L (J)

II luIlII 2E1 and so if 2,KE < 1 we obtain M(t) < - 1(0). This estimate is

valid as long as the solution is bounded, but the bound obtained being independent of t

we have global existence in L and Theorem 3 is proved.

4.e: To prove global existence in Theorem 4 wv will use the entropy and this requires

nonnegativeness of the solution.

Let Aijk satisfy the sign condition (1.3). Let i c L (R) for each i: If

0 ) 0 for each i, then the solution satisfies ui(xt) ) 0 for t > 0, x f R and

i - 1,...,p. (One can show this by using a different fixed point argument and consider

-13-



V B(P,u) defined by

av a vi

+I iT k*i ki +J*i jjk
(4.12) 1k*i

v (xO) - 1 Wx, i . 1,... ,P, X e R, t )0

then B(,P,u) )- 0 if 0 )- 0, u > 0 and the solution is nonnegative]. under condition

(1.6) the entropy fu.(x,t)Log u±(x,t)dx is a nonincreasing function of t if the data

have compact support.

Let T > 0; we want a bound if ui(x 0 ,T) depending only upon T and maxip I
i ~L (R)

Let J =E 0 -t max C ix 0 -t msin Ci] and define b
i i

r~() if xe
(4.13) .(X) - Yx

0 if x fJ

The solution v with initial data *, will coincide with u at (xO1 T)j on the other

hand the solution has compact support for each time t with

meas{x :v(x,t) * 0} 4 kT for 0 4 t 4 T

(4.1 ) v beii~g the solut on corresponding to *,.

Using the entropy we have I f v i(x~t)Log v (x,t) dx 4 ( P xLgPi(~x Using

~LogX - X Log X XLogX for X ,0 we obtain

(4.15) vXtLgv (x,t)dt 4. k(MOLog +MO + T)
i R+i0 0

(k designs various constants and MO= maxlIp I .). From (4.15) one deduces that there
Si L

exists r depending only upon Mo and T such that

x+ r
(4.16) IV f (y,t)Idy 4 E uniformly x C R, t ( 0,T].

-14-



x+r
Indeed if w ) 0 and f w(y)Log w(y)dy 4 A we can decompose f w(y)dy into I, +

x
where I is the integral over the set of y such that w(y) > R > 1 and 12 over the

A
set of y such that w(y) 4 R; we bound I by - and by Rri then one

S LogR 12b

A E+
chooses R large enough so that - - and then r small enough so that rR T -.

+ogR x+r E 2

This shows that there exists r depending only upon A such that f w(y)dy 4 -

x
uniformly in x f R. Apply this to ui (*,t) with A - k(MoLog+M0 + T).

We use (4.16) and step 4 on domains D' constructed on interval basis

J' - {y e [xlx' + r]1 at time t' 6 [0,T], then on D' we have

max Iui(x,t)I 4 k3 max Iui(x,t')I• By moving x' e R we obtain

i,(x,t)kD' i,xeJ'

(4.17) M(t) 4 k3M(t) for t' -C t f t' + r
3 max C i - min C i

i

By applying (4.17) finitely many times one obtains a bound for M(T) (which could be given

more explicitly as a function of M and T) and this proves Theorem 4.

4f: The first part of Theorem 5 follows from the fact that ui C Vi . Indeed3 vi = au ui EL
1 1

3 t- a + Ci  f e -,+-,L (R)) and vi(x,0) e L CR) and so limits exists inatit exist inx

LI(R) as t goes to +- or -. If jui(xt)l 4 M for each J, x e R and t ) 0 we

will bound vi(x,T + t) - vi(x,T) by a quantity which tends to 0 as T goes to +

uniformly for t > 0. For this we start from the fact that

t
uily,T + t) - ui(y - CitT) = - f I Aijkjuk(y - Cis,T + t - slds

j,k 0

and we choose y = x + Ci(T + t), so the left hand side is vi(x,T + t) - vi(xT). As in

t t

step 4 we bound f ujuk(Y - Cis,T + t - s)ds by M1j Iuj(y - Cis,T + t - s)ldsl and we

0 0
assume C * C J* We know that Iu.lz,T)I 4 w (z - C T) with wj C L I(R) and thus the

t

integral is less than M f w (y - Cis - C T - Cjt + Cjs)ds which with the choice of y

T+t 0

is f wj (x + (C - C )T)dT which is less than M f w (x + (C - C )T))dT which goes
T i T

to 0 as T goes to +".

-15-
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4.g: First we remark that, if the data 0 have disjoint support, then S0 (s)' S(s)V

for small s. More precisely let 6 be the distance between support (0i) and
ij

support (Vj); then at time t the distance between support (ui(.,t)) and support

(u.(*,t)) is more than max(O, 6 - ItllC i - Cl). So if there exists T > 0 such that

6ij ) ICi - CjIT for all i,j then for ItI 4 T we have uiu j - 0 if Ci * C and, by

using condition (S), u coincides with the solution of the linear equation.

Assume now that 0 has compact support and let * - S0 (-T)V (we choose T > 0);

then distance (support *i, support ) ICi - C I(T - T) for each i,j where T

depends upon the length of the support and the CkoS. For T > T we have

S(T - 1)* - S0 (T - T)* and so S(T)S 0 (-T)O = S(T)S(T - T)l - S(T)S (T - T)* = S(T)S (-T)V00 0

which is the desired limit as T goes to +-. Similarly when T goes to _.

In the general case choose v with compact support such that IV l - Vjp I I
JL

(with I I.I 1 E0 and 17 I L ( E0), then by using Theorem 1 (S0 (t) being an
1j j 1L 4 hnb sngTerm1(

isometry in L ) we have IS(T)S (-T),O SI k e and so S(T)S(-T)P has

strong limits as T goes to + or --. This proves Theorem 6.

4h: S(T) maps Dm into Dm_1 for m > 0 by inequality (2.2) and has Lipschitz

constant k 2  on D1; as S0 (s) is an isometry one obtains immediately the fact that

W e ±t map Dm into Dm_.1 for m > 0 and satisfy (2.7). Property (2.8) follows then

easily: for example let V e D1 and show that M+W+V - V. For 6 > 0 one can find

s 0(c) going to +- as C goes to 0 such that IM+(WP+) - S(-s)S0 (s)W+,I 1 C for

s s 0() and t0 (c) going to +- as c goes to 0 such that

IW+ - S 0(-t)S(t)ol 1 e for t > t0 (e); this implies that
IM+W + - S(-s)S 0(s0(-t)S(t),l 4 (1 + k 2 )c for a > s0 (C), t > t 0 ()

one then chooses s - t ) max(s0(c),t 0( )) and let £ go to 0. The properties of S

are then obvious; SW_ - (W+M.)W_ - W+(M_W_) - W+ on adequate domain, i.e. D2, to have

all operators defined.
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5. Results without condition(s)

When condition (S) is not true we will use the sign condition

(1.3) A (0 if i * j and i * k
ii~

and replace condition (S) by one or two of the following conditions{ there exists nonnegative numbers Xi, i - 1,...,p such that

bik = i iAijk satisfies bjk IAijkl when Cj - Ck

(5.2) If Ci  C Ck then Aij k ' 0

Remark that condition (S) implies (5.1) (with X, = 0 for each i) and (5.2). Some of

the results of Theorems 1 to 7 then hold with some modifications.

0
Theorem V': Assume (5.1) and (1.3) hold. Then there exists E; > 0, k; > 0 such that:

if 0 e L'(2) L I(R) with

0i ) 0 for each i

P (5.3)

i i L (R)

Then on each interval 10,T] where the solution exists one has

(5.4) ui ) 0 for each i, a.e. x 6 R, t e [0,T]

-u i + C u-, k; i
i I 1]) i L1(N)

Theorem 3': Assume (5.1), (5.2) and (1.3) hold. Then there exists E" > 0, k' 0 1 such
1 3

t h a t : i f 0 i e L ( ) ( L I ( ) w i t h

(5.6) { Wi 0 for i

i i Ll1 (a)

then the solution exists for t e 10,-[ and satisfies

(5.7) sup lu- I k o max oI

t)0,i L( 3) i L

-17-
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Theorem 4': Assume (5.1), (5.2), (1.3) and (1.6) hold. Then there exists a growth

function F(t,M) such that: if the data satisfy 0 4 0 (x) 4 M a.e. for each i, then

the solution exists for t e [0,-[ and satisfies

0 ( u (x,t) 4 F(t,M) a.e. for each i • •
i

Theorem 5': Assume (5.1) and (1.3) hold. Let i E L1 () r L (3) for each i satisfying
i

f 0 for each i

(5.8) 1 E'
1 1 0 E
L(R)

Assume that the solution exists on [0,+-I. Let vi(x,t) = ui(x + Cit,t); then as t

goes to +- vi has a strong limit in L I(). If the solution stays bounded in L(3)

and if

(5.9) Ci = Cj = Ck  implies Aijk - 0

then vi has a strong limit in L (R).

Remark: Condition (1.3) is not enough for some of the results to hold. If one considers

the Carleman equation

au au 2 2
t T + u - v = 0, u(x,O) u0 (x)

(5.10)
at - - u + v = 0, v(x,0) = vx)

then (1.3) holds and Theorem 3' holds with E; = + and k; = 1 but (5.5) is not true:

if it was then u(x + t,t) and v(x - t,t) would have strong limits in L (R) as t

goes to +- and, because f (u(x,t) + v(x,t))dx is constant these limits could not be

zero if f (u0(x) + v 0(x))dx > 0; on the other hand Illner-Reed have shown a decay in

L(1) in 2 with C depending only upon f (u0 (x) + v0 (x))dx (we give an alternate
t

proof of this result in Appendix 2). s

It would be interesting to know if some of the results fail for a good model in

kinetic theory: i.e. one having conservation of mass, momentum and energy and satisfying

the entropy condition (Carleman's model fails to conserve the momentum).
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6. PrQofs of Theorems 1' to 51

6.a: We will suppose that the i have compact support; the inequalities obtained will

then easily be proved by approximation if 0 e L I ( R) r) L7(R) for each i.

As proved in 4.e the solution satisfies u i(x,t) ) 0 a.e. x e R, t e [0,T[ for

each i where T is the maximal time of existence in L°

Let S < T, multiply the i-th equation in (1.1) by if, sum in i and integrate

in x e R and t E [0,S]; we obtain

S
.I xSd + I X Aif f uju k (x~t)dxdt X, f P,(x d

i R i,k i R

Using ui 0 and (5.1) we deduce

(6.1) IAljkI'uk.i 1 < M1 1 lL1 *M2 RU'uki I
C -C k  L ([O,S]) i L (R) C j*Ck  3 L (Rx [O,Sl)

au a
Let C (as) = + C La and remember that, by Lemma 1LI (R[O,S])

L

uu 1Ic - I (C () + t11 M k(al) + I Ok' 1
L (RX[OS]l) k L R) L (R)

for C *C k

We then deduce from (6.1)

(6.2) lU u M 3 i' I + M4( 1 i 1L1 + 2

j,k L (RX(0,S]) i L CR) i L CR) i

and then by using (1.1)

V 2(6.3) C i(s) 4 N4 1 loil I + M5( IP I 1 + i
Si L(R) i (R) i

When s goes to 0 E (s) goes to 0 and then, if we note E =i 1 (6.3)
Si i LC(R)f

implies that I (s) is less than the smallest positive root of X - M4E + M5 (E + X)
2

i i14

and one checks easily that if E 4 E0I - + 4 then the smallest root is less than

2M4E. This proves Theorem 
1'..
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6.b: AS in 4.d we have to bound from above (we have 0 as lower bound)
t

( x -Cit) - f AijkUjux - Cs,t - s)dsJk 0

By (5.2) we can delete the terms for which Ci . Cj - Ck  because Aij k > 0 and

u > 0; then there remains only terms which can be handled like in 4.d and this will

prove Theorem 3'.

6.c: The proof of Theorem 4' is exactly similar to 4.e.

6.d: The proof of Theorem 5' is exactly similar to 4.fi by (5.9) the only integrals to

bound can be handled like in 4.f.
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Coments

The first results of global existence (without a bounded invariant region) was

obtained by Mimura-Nishida (1]: using supplementary conservation laws they proved the

analog of Theorem 3' for the Broadwell model. It was then recognized by Crandall-Tartar

[2] how to use finite propagation speed and entropy to deduce Theorem 4' from Theorem 3'.

The method was then applied to different classical models where Mimura-Nishida's argument

could be carried on Cabannes [3], Leguillon [4].
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Appendix I

Semilinear systems and continuity for the LT weak-star topology.

Consider the following system in N dimensional space

S au.
21 + 

gradxui * 
v i 

+ Fi(u1 '°°'U ), x e R , t e I(1)

ui(x,O) = .(x), xE R , i = 1,....p

where Fi are locally Lipschitz functions on RP and vi are vectors in RN . If the

data . e L (RN ) with N .0 M for each i then there exists to > 0 and a unique

solution on I = (-t0 ,t0 ) satisfying u i(.,t)I . < 2M for t e E-t0 ,t0 ] and each i.
L

The solution u depends continuously upon P in the L strong topology.

We are interested here in the following question: for what functions Fi,

i = 1,...,p does the solution u depend continuously upon P in the L weak-star

topology restricted to the ball maxN N I M? (the weak-star topology restricted to a
i L

ball is metrizable). The answer to this question is given by the following:

Theorem: The solution depends continuously upon in the L weak-star topology (on

bounded sets) if and only if

either a) N > 1 and each Fi is an affine function

or b) N = 1 and each Fi has the following form

(2) F.(u) = AijkUjuk + 'bjuj + c

with

(S) Aijk = 0 if vj = vk

Proof: 1) It is enough to prove b) for N - i.

Indeed if N > 1 taking i of the form @i(x.n) for some unit vector we are led

to N = 1 with vi replaced by v, * n. Then continuity will hold if Fi has form (2)

with A = 0 when v. * n = v. - n; as for each couple j,k one can choose n suchijk

that this is true one sees that all coefficients A are 0 and so each F is

affine. In that case sufficiency is obvious.

-22-
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2) Take a sequence j where each 01 is periodic with period Ti so that as
iE goes to 0 Pi  converges in L weak-star to i . average of 01. Then for

Itl C to  we have uniformly in e uC(x,t) = 0(1) so F (u E 0(1) and, integratingu,
(1) along a characteristic we obtain (replacing vi by Ci  like in (1.1))

x C Cit
(3) , Jjx~t) - iP I (i

which gives, as each Fi ia locally Lipschitz

x -Ct x-Ct
(4) F (u (x,t)) - FiC,,,(.,p )  ...... p - --- )) + o(It .

If th2- weak-star continuity holds u (x,t) will converge to the solution starting from
i

data 4.: let uiaue this solution. If a subsequence of F (u ) converges to w0  then,
1 ai0 0 0 1

by the equation, tJ grad u vi+ w1 =0 and as u is the solution we obtain
0 iu

0
)

w i F '(u ) and as u
0 

= ki + O(Itf) we should have

C 0(5) If Fi(u£) converges in L weak-star to w then w0 = Fi(,)+ O1tf)

3) We will obtain the form for Fi by using different choices of V We now drop the

index i of Fi.

Take O2,...,Pp to be constants, then

(x - CIt)
Fi ' ' 2.... ) converges to average of F( 1 (y), 2 ,...,4 p

and by (5) this should be F(average 1,2,... ,p). So necessarily F is affine in p1

and similarly in 0. for each J. So F is a combination of multilinear functions.

4) If C = Ck there are no products ujuk in F. Take J = 1, k = 2 and 3,..., p

to be constants, then F(PI(. x , 2 (x L, 3 C .... p) converges to the average

of F(01 (y),p 2 (y), 3,. ., p) which should be F(average 01' average P2'0 3,...,p). If

there was in F a term WP 2G(03 ,. ., p) we would obtain a contradiction by taking

' , 2 nonconstant except if G(03 ,..., = 0.

-23-
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5) If C * $ C k * C there are no products u iujuk in F. Take the indices to be 1,

2, 3. It will be enough to find periodic functions of period T1 ,T2 0T3 ,  of average 0
x - C t x - Ct3t

such that 0 1 C" )o 2( - 2 X3( -_  converges weakly to a nonzero constant.

Take 1(y) -sin-- - (Y) - cos y 3(y) - sin 1 2 then
C3 _ C1 C3 _ C2 (C3 1 Il)1C3 _ 2

x - C1t x- C2t (C1 - C2)(x -C3t)
as ~-c - - - - the product iss C3 _ C1 C 3 C2  (C3  C 1)(C3  C1 ),

2x - Cit 2 x - C2 t 1 x - Ct x -Ct1

40(x )2( ) .2 I sin2 x(3 C 1 sin2 x C 2 whose limit is 1"
1 E£ 2 E 4 C( C3 -CO C(C -C)2

6) By 3), 4), and 5) each F, must have form (2).

This condition is sufficient by a compensated-compactness argument:

If v e(x,t), w (x,t) converge in L (w) weak-star to vo, w0  with

(6) av E v eaw w2
yt C ad() C 2 heS+ C -x and - + C' ax bounded in L (I), )CR then

if C * C' Vw converges in L (Q) weak-star to vOWO

For the proof and the motivation in constructing the test functions in 3), 4), and 5) see

Tartar [1].

Tartar (1]. Compensated compactness and applications to partial differential equations, p.

136-212 in Nonlinear analysis and mechanics: Heriot Watt symposium vol. IV, R. J. Kreps

ed. Research notes in Mathematics 39, Pitman.
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ApPtnoix 2

Decay for solution of Carleman's equation.

Theorem (Illner-Reed). Let u,v be solutions of Carleman's equation

au au u2 2
-+-+u -av , u(x,O - Uo(X)

(7) I _av _ av_ 2 v2
t - u + v = 0, v(x,0j " v (x•at ax 0

Assume 0 4 u 0 , v 0 4 M a.e. and f (u 0 (x + v0 (xn)dx = m < +-. Then there exists a

R

constant Cm depending upon m such that
C

(8) 0 4 u, v - min(1, -) for t E 0

Proof: It is a classical result that 0 4 u, v 4 M for t e [0,-[ (without assuming

m < +-). Let m be given and define G(t,M) as the supremum of u(x,t) and v(x,t)

when u0 ,v0  satisfy 0 4 u0 , v0 r M and f (u0 + v0jdx = m. Then G(t,M) ( M and

G(t,M) is nonincreasing in t. Trivially G(s + t,M) 4 G(s,G(t,M)) for every s,t > 0.

If one now remarks that Xu(Xx,Xt),Xv(Xx,Xt) satisfy Carleman's equation we see that

G(t,M) 
- 

XG(Xt, M- for every A > 0, so G(t,M = H(-,M with H positively homogeneous
X t

of order 1.

(8) is now a consequence of
m

Lemma 1: If t > T > M then G(t,1) 4 k with k < 1.
2

Indeed G(T,M) MG(t,1) 4 kM. Then if p > 1 is an integer

G (I + I + + M),G) (Z (1 + - + ... +1 k kp M (M k 2  kP

kGk

( kG 1 + M-

so~~~~~ by inuto +±L-1 ~ 1

so by induction G(1 + k + ..- + (,M) is p > 0 is an integer. If t > T

then for some p 0 (1 + + . + t + + +1
T k kP T Tf k T the1k -T

G(t) 4 kP+'M 4 -( + k + -) + k
P ) 

-C - . I then G(t) 4 M 4 T T

so (8) with C = and C only depends upon m. To prove Lemma 1 we will need

2 more lemmas:
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Lemma 2: The solution of

I v,+V
2 .

v(O) = A

is given by v(t,X) - F(t,A) which satisfies

(9) 0 4 F(t,A) 4 1 + e - 1) for A ; a, t > 0

proof: The exact solution is F(tXj = A Cht + Sht which is concave in A; F(t,1) IPr~: Te eactsoltio isF~tA; A Sht + Cht

and -2tand LF (t,1 I = e •

Lemma 3: If

0U + u2  
1 + e-

2 (A(t) - 1)

0 4 u(O) 4 1

with

(11} 0 4 X(t) 4 1 and f X(t)dt < m 00

Then u(t) 4 u(t) where u(t) satisfies:
U, +U =1I on [O,m]

-2 -2t

(12) 1- e on [m0 +

U(O) = I

Proof: u(t) 4 w(t) where w satisfies

I w. + w
2 

= I + e-2t ((t) - 1)

w(O) = 1

Let T < +- and maximize w(T) under the constraints 0 4 X(t, < I a.e. on (0,T] and

T
f A(t)dt 4 m. The set of constraints defines a compact set in L (0,T) for the weak-

star topology and the map A + w(T) is continuous, so an optimal solution ) exists. We

now identify A from the necessary condition of optimality:

Let A = X + 6X satisfy the constraintsl then to A + e6A corresponds

w + e6w + 0(c; where 6w is given by
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{(6w)' + 2;;6w e2 6A

Sw(O) 0

So 6WCT) =f a(t)6A)tWdt where a~t) - a 2exp(-2 f ;;(s) do) As -W(T) is maximum

0 t T
6w 4 0 for all admissible choices of X and this says that f a(t)x(t)dt is maximum

0

for A. This characterizes X because a is nonincreasing:
T

al(t) - e-2texp(-2 f Z(s)ds)[2w(t) -2] e. 0 as 0 C w 4 1. The optimal solution is
t

A=1 on [0Oint), 0 on [m01T] (with modification S 1 if T < m 0 . So the optimal

value is uCT) (note that u - 1 on (0,mAOI).

Proof of Lemma 1: Let 0 <u0 , v 0 (1 So 0 4u, v 4 1 for t )0. As

at 3v 2( one uses Lemma 2 to get

v(x,t) 4 F(%v0 (x + t)) 4. 1 + e 2tv 0 ~ + t)

Now look at u on the characteristic x - xo + t:

du +2= au a u 2 2 F2 '' t)( 1 -2t +t 1

dt + a t +ax + u-_v 4 .v 0 (x 0 + )<F41+e (v 0(x 0 + ) 1

which corresponds to X(t) = vo(x + 2t) and so f X(t)dt - f vo(yjdy -C5 By Lemm 2
2_ 2

we conclde thatu(xo + t,t) IC u., whee u as consructed by (12 wit mo

Exchanging the roles of u and v we get G(t,1) e- uct) and clearly u < 1 for

t > m 2. a
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