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ABSTRACT

Scientific learning is an iterative process employing Criticism and

Estimation. Correspondingly the formulated model factors into two complemen-

tary parts -- a predictive part allowing model criticism, and a Bayes posterior

part allowing estimation. Implications for significance tests, the theory of

precise measurement, and for ridge estimates are considered. Predictive check-

ing functions for transformation, serial correlation, bad values, and their

relation with Bayesian options are considered. Robustness is seen from a

Bayesian viewpoint and examples are given. For the bad value problem a com-

parison with M estimators is made.
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SIGNIFICANCE AND EXPLANATION

Scientific method is a process of guided learning in which accelerated

acquisition of knowledge relevant to some question under investigation is achieved

by a hierarchy of iterations in which induction and deduction are used in

alternation.

This process employs a developing model (or series of models implicit or

explicit) against which data can be viewed. At any given stage of the investiga-

tion, the current model approximates relevant aspects of the studied system and

motivates the acquisition of further data as well as its analysis. By the use of

a prior distribution it is possible to represent some aspects of such a model as

if they were completely known and others as if they were more or less unknown.

Now parsimony requires that, at any given stage, the model is no more com-

plex than is necessary to achieve a desirable degree of approximation and since

each investigation is unique we cannot be sure in advance that any model we

postulate will meet this goal. Therefore, at the various points in our investi-

gation where data analysis is required, two types of inference are involved:

model criticism and parameter estimation. To effect the latter, conditional on

the plausibility of the model, and given the data, we can, using Bayes' Theorem,

deduce posterior distributions for unknown parameters and so make inferences about

them. But, before we can rely on such conditional deduction, we ought logically

to check whether the model postulated accords with the data at all and, if not,

consider how it should be modified. In practice, this question is usually

investigated by inspecting residuals, by other informal techniques, and some-

times by making formal tests of goodness of fit. In any case this inferential

procedure of model criticism whereby the need for model modification is induced,

is ultimately dependent on sampling theory argument. These principles may be

formalized by an appropriate analysis of Bayes' formula.
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SAMPLING AND BAYES' INFERENCE IN SCIENTIFIC MODELING AND ROBUSTNESS

George E. P. Box

No statistical model can safely be assumed adequate. Perspicacious criticism employing

diagnostic checks must therefore be applied. But while such checks are always neces-

sary, they may not be sufficient, because some discrepancies may on the one hand be

potentially disastrous and on the other be not easily detectable. In addition

therefore it is often pertinent to make the developing model robust against contin-

gencies to which it is currently judged sensitive.

The object of this paper is to review the complementary roles in the model

building process of the predictive distribution and of the posterior distribution;

the former in producing diagnostic checks of parametric as well as residual features

of the model, the latter in providing a general basis for robust estimation.

1. Scientific learnirg and statistical inference.

Much of statistics is concerned with extending knowledge by building empirico-

mechanistic models that involve probability, A theory about such scientific model

building ought to explain what good statisticians and scientists actually do. It

seems that scientific knowledge advances by a practice-theory iteration. Known

facts (data) suggest a tentative theory or model, implicit or explicit, which in

turn suggests a particular examination and analysis of data and/or the need to

acquire further data; analysis may then suggest a mdified model that may require

further practical illumination and so on. I shall 3uppose that data are acquired

from a designed experiment, but the same argument would apply if data acquisition

was from a sample survey or even from a visit to the library. New knowledge thus

evolves by an interplay between dual processes of induction and deduction in which

the model is not fixed but is continually developing. The statistician's role is

to assist this evolution (see for example Box and Youle (1955), Box (1976)). in

doing so he employs two inferential devices: Criticism* and Estimation.

*The apt naming of inferential criticism is due to Cuthbert Daniel. See also Popper
(1959).
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Sppose that at some stage i of an investigation, model Mi  is being

entertained.

Criticism can induce model modification. It involves a confrontation of Mi

with available data Y (old as well as newly acquired), and asks whether M, is

consonant with y and, if not, how not. It employs a process of diagnostic check-

ing (see for example Box and Jenkins (1970)), which is often done informally using

plots of various kinds of residual quantities, or more formally, with tests of good-

mess of fit or "tentative overfitting" procedures. When a modification to Mi+1 has

been made, this new model, in addition to confronting the same data, will in some

cases be checked against new data generated by a design D j+. This new design

will be chosen to explore those shadowy regions whose illumination is judged cur-

rently to be important in view of the nature of the modified model and the needs of

independent verification.

Estimation. When the iteration leads to a model worthy to be entertained it

may be used to estimate parameters conditional on its truth. In practice such esti-

Nation is used not only at the termination of the model building sequence but at

imany stages throughout it. This is because, to conduct criticism of a model, it is

often necessary to provisionally estimate parameters at intermediate stages.

in any such iteration many subjective choices are made, conscious or uncon-

scious, good or bad. They determine for instance which plots, displays and checks

of data and residuals are looked at; and what treatments and variables are included

at which levels, over what experimental region, in which transformation, in what

design, to illuminate which models. The wisdom of these choices over successive

stages of development is the major determinant of how fast the iteration will ccn-

verge or of whether it converges at all, and distinguishes good scientists and

statisticians from bed. It is in this context that theories of inference need be

considered. While it is comforting to remember that a good scientific iteration
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is likely to share the the property of a good numerical iteration - that mistakes

often are self-correcting, this also implies that the investigator must worry par-

ticularly about mistakes which are likely not to be self-correcting.

1.1 Rival theories of inference.

The distinction between model criticism and parameter estimation has not always

been made and proponents both of sampling inference and Bayesian inference have long

sought for a single comprehensive theory.

I believe that, subject to some overlap discussed later, sampling theory is

needed for exploration and ultimate criticism of an entertained model in the light

of current data, while Bayes theory is needed for estimation of parameters condi-

tional on the adequacy of the entertained model. On this vie-, (see also Box and

Tiao (1973)) both processes would have essential roles in the continuing scientific

iteration just as thE two sexes are required for human reproduction. Attempts to

choose between two entities which were not alternative but complementary could cer-

tainly be expected to lead to contention, paradox, and confusion of the kind we have

been experiencing. The view that more than one mode of statistical reasoning can be

useful is not, of course, new and was advanced (however with a different emphasis

and conclusions) by R. A. Fisher. See also in particular Dempster (1971).

1.2 The need for prior distributions.

In the past the need for probabilities expressing prior belief has often been

thought of, not as a necessity for all scientific inference, but rather as a feature

peculiar to Bayesian inference. This seems to come from the curious idea that an

outright assumption does not count as a prior belie f. The interconnection between

model assumptions and prior distributions becomes clear when it is remembered that

every model can be ini.gined as embedded in a more complex one. For example an out-

right assumption of normality can be modelled by a suitable parametric family of

distributions indexed by a parameter 8, which has a sharp prior at the normal
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value. I believe that it is impossible logicallyto distinguish between model

assumptions and the prior distribution of the parameters. The model is the prior

in the wide sense that it is a probability statement of all the assumptions cur-

rently to be tentatively entertained a priori. On this view, traditional sampling

theory was of course not free from assumptions of prior knowledge. Instead it was

as if only two states of mind had been allowed--complete certainty or complete

uncertainty.

One illustration of how implied prior knowledge which is implausibly imprecise

can lead to trouble in sampling theory is the famous discovery by Stein (1956) of

the inadmissibility of the multivariate sample mean. Consider for example the usual

one-way analysis of variance set-up. The prior assumption which justifies the

shrinkage estimator (see, for example, Box and Tiao (1968a), Lindley and Smith

(1972)) that the group means p are random samples from some normal super-

population having unkiown mean and variance might, in appropriate circumstances,

be eminently reasonable. It is easy, however, to miss the lesson which is to be

learned from such examples. Notice that there are many circumstances in which this

"Model II" assumption would not be sensible either. For example, if the ji's were

daily batch yields from some production process, it might be much more reasonable

to postulate a priori that they followed some time series model such as a stationary

autoregressive process. The estimators (Tiao and Ali (1971)) then derived from

Bayesian means are nct Stein's shrinkage estimators, but alternative estimators

allowing incorporation of relevant sample information about the autocorrelation of

the batch means. Thus while for this example, except as a numerical approximation,

we ought not to use the sample means as estimates, we ought not to use Stein's

shrinkage estimates either. There seems no logical way to avoid trouble except by

the explicit prior statement of the model we wish to entertain.

-4-



1.3 Two complementary factors from Bayes' formula.

If the prior probability distribution of parameters is accepted as essential,

then, a complete statement of the entertained model at any stage of an investigation

is provided by the joint density for potential data y and parameters e

calculated from

p(y,BIA) - p(ylO,A) p(OIA) . (1.1)

In these expressions A is understood to indicate conditionality on all or some of

the assumptions in the model specification. This model (1.1) means to me that cur-

rent belief about the outcome of contemplated data acquisition would be calibrated

with adequate approximation by a physical simulation involving random sampling from

the distributions p(yj6,A) and p(ejA).

The model can also be factored as

p(X,21A) - p(eIy,A)p(flA) . (1.2)

In particular the second factor on the right, which can be computed before any data

become available,

p(YIA) - f pqyje,A)p(6jA)de (1.3)

is the predictive distribution. It is the distribution of the totality of all

possible samples y that could occur if the assumptions were true.

When an actual data vector Yd becomes available

p(yd,21A) - pC e8YdA) ]p (y dA) (1.4)

and the first factor o n the right is Bayes' posterior distribution of 8 given Yd

p (9 I1Yd A) c p ( 1A)p (8 I A) .(.5

But of equal importan-e is the second factor

pCydIA) - f p(ydle,A)p(GeA)dO , (1.6)

the predictive density associated with the particular data yd actually obtained.

Figure 1 illustrates for a single parameter e and a sample Yd of n - 2

observations.

-5-
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-Pe( , posterior distribution

prior distribution
p,(e IA)

contours of

p~yleA)

contours of predictive distribution

Fig. 1. A representation of the prior distribution, posterior
distribution and predictive distribution, for a single
parameter 0 and sample Yd of two observations.
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If the model is to be believed, the posterior distribution p(elydA) allows

all relevant estimation inferences to be made about 8. However, if Yd were such

as would be very unlikely to be generated by the model, this could not be shown by

any abnormality in this factor, but could be assessed by reference of the density

p(ydIA) to the predictive reference distribution p(yIA) or of the density

p(gi (yd)IA} of some relevant checking function gi (Yd) to its predictive distri-

bution. The importance of the predictive distribution and the possibility of using

it in some way as a model checking device has been discussed by a number of authors.

See in particular Roberts (1965), Guttman (1967), Geisser (1971, 75), Geisser and

Eddy (1979), Dempster (1971, 75) and Kadane et al (1979). Also measures of surprise

other than that discussed here have been proposed, for example by Good (1956).

2. Estimation of the mean of a normal distribution.

As an example consider a sample of n observations drawn randomly from a

2
normal distribution with unknown mean e and known variance a with uncertair.ty

about the mean expressed by supposing that, a priori, e is distributed normally

about 0  with known variance a 2 . Then conditional on the adequacy of the model,

8 is estimated by combining data and prior information in the normal posterior

distribution

p(ely,A) (I i e xp - + 1 ) ( 8 - i)2) (2.1)

-2 -22 y

where I - no - 2 , I - 2 and 6 = wy + (1 - w)0 is an appropriately weighted
e 8 0

average of y and 80, with w = I-/(I- + I ) the proportion of information coming

from the data.

The predictive distribution allowing criticism of the model by contrasting data

and prior information is

2 2 '0 ~62
P(YJA) a-(-1 (!-+o)y exp- P0 I(r + I? (2.2)

+ 8y
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An overall predictive check is supplied by calculating

a Pr(P(yIA) < p(y A) Pr , 2  g(y 4 ) (2.3)

where

2 (n - 2)s2

g( 2 + 2 (2.4)

o 2 a

As an example suppose the sample consists of n = 4 analytical tests of yield

= (77,74,75,78) performed on a single batch from an industrial process for which-d

2it is believed that the testing variance 0= 1, the process mean e 70 and the0

batch to batch variance is a2 e= 2. We wish to estimate the mean 8 for this

particular batch.
2

In this example Yd= 7 6 ', 0 = 70, s d = 3.33, 1 4, le  0.5, w . .89; so that,

given the appropriateness of the model previously discussed, 8 is estimated by the

-2normal distribution N(9,a ) with e = (.89 x76) + (.11 x 70) = 75.3,

-2l
0 = (4 + 0.5) = 0.22.

However, from the predictive check

(76 - 70) 2  3 x 3. 3
g(y ) 6 -2.25 + f = 26 (2.5)

and

C- Pr X4 > 26} < .001 (2.6)

4

Thus for this example the model, and hence the estimate of 8 supplied by the

posterior distributicn N(75.3,0.22), is discredited by the predictive check.

Notice the follwing: (a) While the posterior distribution combines infor-

mation from data and prior in a manner which is entirely appropriate if the model

is to be believed, the predictive distribution contrasts these two sources of infor-

mation and checks their compatibility.
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(b) The predictive check formalizes questions that any competent statistician

would raise having been presented with the supposed form of the model and the data.
2,02 2

The components of g(y ), {(n - 1)s2}/o 2 and (Yd" ) 2/2- + -e are the standard

sampling theory checking functions for contrasting an estimate of variance with a

prior value and contrasting two estimates of the same mean.

(c) In making this predictive check it was not necessary to be specific about

an alternative model. This issue is of some importance for it seems a matter of

ordinary human experience that an appreciation that a situation is unusual does not

necessarily depend on the immediate availability of an alternative.

(d) Whereas in estimating 6 assuming the model to be true the posterior dis-

tribution makes use only of the single data vector yd that has actually occurred,

by contrast, an assessment of whether the sample yd is likely to have occurred

at all is necessarily achieved by relating yd to a relevant reference set of all

data vectors y which could have occurred with the model true.

Inspection of the global function g(y d) alone would rarely ensure adequati

checking of the model. In this example, for instance, it would be natural to con-

sider the individual contributions from Yd and s2 not only so that they could
'd d

be separately considered, but also because unusually small values of (n - 1)s 2/o2
d

as well as unusually large ones could point to model inadequacy. Also if n were

larger, we might wish to consider other functions gi (y d) of the data such as

moment coefficients and serial correlation coefficients which could reveal model

inadequacies believed important in the current exprrimental situation. This could

be done by referring p{gi(Yd )JAI to the predictive distribution p{g iY) IA}

derived by appropriate integration of p(yJA). As,:ociated with these more specific

checks are (possibly vague) model alternatives, the logical consequences of which

are discussed in Section 4.6.

In practice, criticism of the model is often conducted by visual inspection of

residual displays and other more sophisticated plots. But such a process, although

-9-



it is informal, seems to me to fall within the logical framework described above.

the plots are designed to make manifest certain "features" in the data that would

rarely be extreme, if the model were true. If such a feature can be described by a

function gi(y d), its unusualness, if formalized, would be measured appropriately

by reference to p{gi(y) IA}.

For the above example obvious functions for checking individual features of the

- 2
model are y, s and suitably chosen functions of standardized residuals

r = (r1l ... r n)' with ri = (Yi - y)/s, i = 1. n. These would usually include

the individual residuals themselves plus other functions which, depending on the

context, might include checks for needed transformation, heteroscedasticity, serial

correlation, "bad values", skewness and kurtosis. See for example Anscombe (1961),

Anscombe and Tukey (1963), Andrews (1971a and b).

The standardized residuals can be expressed more conveniently in terms of

n - 2 independently distributed functions obtained by making an orthogonal trans-

formation from y to Y = (Y,Y2...Yn)' with Yn = [ny and then transforming

- 2
to Y,s and u where u is a vector of n - 2 residual quantities

u = (UU 2 . U 2 )' such that

u 3 = Y j+ 1/. Ai / j) .(2.7)

The Jacobian of the transformation from y to y,s 2,u is proportional to

n-i
--- 1 n-2

(s
2
) al {l + u./j}

-  
. After transfonnation the predictive distribution

j=l 3

contains n elements distributed indeppndently

p(y,s ,ujA) = p(YIA)p(s2 iA)p(ulA) (2.8)

where

-10-



pjA) £(02 + a~ /n e lx e2,a + 02 fH(2.9)

n-1 2

2 (2(i 21 2
p(s 2 [A) (o2)(nal) e exp 2-_ (n -1)8/02 (2.10)

p(uIA) Cc (+ (2.11)

The unusualness of g I g 2  s 2  and of any residual functions of interest

9394P,... ,gq can then be assessed by computing

Pr{p(g [A) < p(g JW)1 j - 1,2,...,q (2.12)

which for unimodal distributions will be tail area probabilities. For this example

these would be obtained by referrinq

22 2

Mi (Y d" 0)/(°8 + a2/n) to the Normal table

(ii) (n - l)s2/a 2  to the X2  table

(ii)g3d .. .qd to reference distributions obtained by appropriate integration

of p(UIA).

These probabilities are of course affected by transformation. Thus the answer will

be a little different depending for example on whether we ask a question abL't j
2

or about s . I do not find this partictlarly disturbing. Slightly different ques-

tions can be expected to have slightly different answers. We now illustrate somo

implication s.

2.1 Significance tests

2 2
Suppose ao  is assumed small compared with a /n, so that w, the relative

amount of information supplied by the data, is close to zero. Then, if this model

can be relied upon, the posterior distribution will be essentially the same as the

prior, sharply centereCl at eO. A practical context is one where the statistician

is told that the process mean is known to be e0 and the batch to batch variance a'* is

2
negligible compared with testing variance a

. If he believed this model, then any

data y could do very little to change his belief that A e0" However, it could

-11-
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deny the relevance of this model. In particular g1(Y d now involves essentially

the reference of (yd - e0)/(o/n) to normal tables; the failure of this check means

that the model is discredited and therefore the Bayes calculation that leads to a

sharp posterior distribution at 80 may not logically be undertaken.

The above most satisfactorily explains to me the rationale of a significance

test.

(a) The tentative model (null hypothesis) implies that e is close to 8O .

(b) A check on the compatibility of this model and the data, so far as the

mean is concerned, is provided by reference of (Yd- 0)/(a /W) to

the Normal Table.

(c) If the tail area probability is not small we do not question the model.

The application of Bayes' theorem then produces a posterior distribu-

tion which is sharply centered at 80 . ie have "no reason to question

the null hypothesis".

(d) If the tail area probability is small we conclude that the model

which postulated that e - 90 is discredited by the data,

i.e., the "null hypothesis is discredited".

(e) Notice too that although the failure of this check would ir-st

imnediately proscribe the use of Bayes' theorem, the failure of other

2
checks (and of that based on s in particular) would also suggest

the need for model modification before proceeding further.

A difficulty that this removes for me is that, as usually formulated, signifi-

cance tests had seemed to provide no basis for belief. On this formulation however

the significance test provides a means of discrediting a model which if accepted

would inevitably imply acceptance of the belief that 8 lay close to 0 . It is

admitted that this forimulation does not cover all possible circumstances in which

significance tests have been used (see in particular Cox (1977)), but it is arguable

I that other applications are best dealt with in other ways.

*-12-
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2.2 Precise measurement and improper priors.

2 2Suppose now that 2 is assumed large compared with a /n, so that 1 -w,
8

which measures the proportion of the information about 6 coming from the

2
prior, is close to zero. Then 08 dominates the denominator in the predictive

checking function (02 + a2/n)-( - ) implying that the model would not be called

into question by sets of data having widely different sample averages. This is the

situation where we can invoke what L. J. Savage called the "theory of precise measure-

mene' to justify the very useful numerical approximation of the posterior distribution

-2by N (ya2/n). Now since the predictive distribution for y does not exist at the limit

I - v - 0 when this limiting posterior distribution is obtained, it might be argued

that, when precise measurement theory is appropriate, we have a license to apply Bayes'

theorem without any restraining checks on the model. Obviously however in any

imaginable experiment:il situation there would be values of y which would rightly

be regarded as iplaunible given the investigator's current beliefs. Thus what is

really being verified is that a non-informative prior must, to make practical sense,

always be proper, even though the appropriate posterior distribution can, in suit-

able circumstances, be numerically approximated by substituting an improper prior.

3. The normal linear model

Suppose

y -N(lu + Xe,nO2  (3.1)

with 1 a vector of -inities and X of full rank k such that X'I - 0 and

suppose that prior densities are locally approximated by

-N(O
c - l a2 ) , 6 - N(60, r102), 1o2/O -2  

- (V0 ) 3.2)

with U and 8 independent but conditional on a2, and X- 2 (v0 ) the inverted

chi square distribution.

-13-



Given a sample d* special interest attaches to 6 and 02 which given the

assumptions are estimated by p(8O, 2 1ydA) with marginal distributions

(e - 6 ) (X'x + e(e - i d) (n+v +k)

p(elyd,A) = + " - 2" (2.3)

p(a21ydA) . c-(n+vo+2 )exp{ n + v.2 0 2)
2-( O)d/ (3.4)with2d

S(x,x + r)-l(X'Xid+ re0) (x)- - - n - k - 1

Pd-----------d +--0 '-d X 'Yd'V n-k-1

(n + va2 _ 2 + voS 2 (28+ o -e )'{(xx)-l -l) -1 6( ) + (n-1 +C-l1 - 2
0n +vod Vd 0 -d0 -d -0 0~

Now let s2  be the pooled estimate
p

V-l (2 2
(v +v) (s +(vs ) . (3.5)

0~ 0

Then the predictive distributions for ( - 6o)/sp, s 2 , and the v - 1 elements

of the residual vector u, defined in an analogous manner to that previously eniloyed

in (2.7), are independent and are given by

P{& - ,O'A) + - )'{(X'X)-I + r-0l- -I(n+vo-1) (3.6)!( 0)/sp!A (v +0)s 2 36

- -0 P {l - }-(*o)- ~ )~( 1
2 v 2 2

p(s2/s IA) c FjV - 1 1 +L F , F =s /so  (3.7)

V-1 2 }-(j+l)

p(uIA) - R {1 + (u/J)(3.)

The predictive check derived from (3.6)

Pr{pC(( - 0)/sp A) < p (( - eO)/spdA))

(3.9)

(A d ylf-, + -1-1-

-Pr kV+V 2 k(6-

IF v 0  ks pd}

-14-



is the standard analysis of variance check for compatibility of two estimates d

and e0. It was earlier proposed as a check for compatibility of prior and sample

information by Theil (1963). The predictive check derived from (3.7)

Prp(s 2 A) < p(s2IA)} yields the F test having v and v0 degrees of freedom
2 2

appropriate to check whether the two estimates sd and O are compatible.

Residual checks derived from (3.8) are obtainable as before.

3.1 Ridge estimates

Now suppose the X matrix to be in correlation form and assume 0  0,
- o 0 o  -00 so that s s . Then the estimates 0d arth ride est-

mators of Hoerl and Kennard (1970) which, given the assumptions, appropriately

combine information from the prior with information from the data. The predictive

check (3.9) now yields

a r > k {( > ks 2 (3.10)

allowing any choice of Y0 to be criticized.

For example, in their original analysis of the data of Gorman and Toman (1966),

Hoerl and Kennard (1970) chose a value y0 - .25. However substitution of this value

in (3.10) yields a = Pr{F > 3.59} < 0.01 which discredits this choice. More
10,25

recently it has been rointed out (Lindley and Smith (1972), Hoerl, Kennard and Baldwin (1975.

that given the model, y can be estimated from the data. If we do this, much smaller

values of y are obtained which of course are not in conflict with the wider model.

The two kinds of analysis further illustrate the overlap between predictive checking

and Bayesian estimation later discussed in Section 4.6.

The Bayes approach to ridge estimators has the characteristic advantage that

the somewhat arbitrar, prior assumptions, which have to be made even for compatible

values of y, are uncovered for criticism (see also Draper and Van Nostrand (1977)).

If Y 0, (3.10) yields the standard AOVA significance test which has a detailed

interpretation parallel to that set out in Section 2.1.

-15-
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4. Diagnostic checks

It is useful to distinguish two kinds of checks which may be called respectively

Overall or Multidirectional checks and Specific or Unidirectional checks. An example of

the first would be a general inspection of residuals and the second a Durbin-Watson

test for first order serial correlation. This distinction is made for example by

Box and Jenkins (1970) in their discussion of the general philosophy of diagnostic

checking. Concerning these two kinds of checks these authors say "... although

roverall checks] can point out unsuspected peculiarities ... [they] may

not be particularly sensitive. Tests for specific departures ... are more sensitive,

but may fail to warn of trouble other than that specifically anticipated." The two

alternatives ought properly to be regarded as extremes on some scale of dependence of

checking procedures on specific alternatives. For example consider the fitting of a

parametric time series model. While residuals themselves should always be inspeted

there are a number of way-stations between this overall but insensitive check ani the

device called "overfitting" in which a model is tentatively elaborated in a specific

direction. Thus inspection of, and application of overall tests to, the auto-

correlation function and the Deriodogram of the residuals while still non-specific

is less general than the first device and much less specific than the second.
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The model checking problem is comparable to that faced by a nation which fears

aerial attack that might come from any direction but with certain

rather wide zones more likely than others and certain specific directions believed

especially likely. How should limited radio detection devices, which are less sensi-

tive the less they are focused, be deployed? The best solution obviously involves

some combination of wide and more specific searches, and theoretically could be

achieved knowing prior probabilities and expected losses. Correspondingly,

the competent statistician must, in a variety of contexts, be Able

to make intelligent guesses not only of what discrepancies are

particularly likely, but which are potentially disastrous, and to allocate his effort

accordingly. In practice this is done informally and is part of what an adequat3

training in statistics achieves.

4.1 Checking parametric features of the model.

in the examples considered above where sufficient statistics were available

parameter preferences evidenced by proper priors were directly challenged, leading

without a direct statement of alternatives to appropriate checks. When a specific

set of assumptions A1 alternative to A0  are in mind then an appropriate checking

function might also be obtained from the predictive ratio

p(YdlIA)/p (yd IAo). (4.1)
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We shall not explore this possibility further here, except to note that this ratio is

a component in the direct assessment of Bayesian odds to which we refer briefly in

Section 4.6.

4.2 Checking residual features of the model.

Residual checking functions are sometimes chosen on an ad hoc basis and some-

times using specific models. I think the best course is again to employ an iteration -

this time between theory and intuition. An empirical procedure that works well

invites the question: What kind of model would be needed for its justification?

Such a model can then be considered for use in a wider context. For instance

exponential smoothing and the "three term" controller were both empirically developed

techniques found to be practically effective. ARIMA time series models are general-

izations of the stochastic processes that could justify these methods (Box and

Jenkins (1970)). In a similar way the practical usefulness of such things as the

jackknife and cross validaticn implies the existence of corresponding models which

are worthy of further analysis.

The distinction between parametric features of the model and residual features

is of course arbitrary and a matter of convenience. In practice the needs of

parsimony Lrge us to settle for reasonably simple models and to consider possible

deviations from them. Consider now therefore an interesting but by no means unique

method for obtaining an appropriate function of the data for informal or formal

checking for a particular kind of deviation from a .;urrent model parametrized by a

discrepancy parameter B.

Suppose the predictive distribution conditional on some specific choice of B

is p(yjB). Then a scaleless function of the data alone, appropriate to measure

discrepancies from the value 0  taken in the current model is provided by Fisbeir's

score function

q (y) inp (YB) (4.2)
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W illustrate by considering some possible discrepancies from the standard

normal linear model. First consider the model when there is no discrepancy so that

- 0 , and using the structure of (3.1) write

8,. ( Cuj'), x. (Cx) (4.3)

For simplicity we here suppose that the distributions of 0 and InO are locally

flat a priori so that p(Oa) - consta -
. Then p(yS 0 ) is locally approximated

by the singular distribution

p(YIS O) 0 const S-v  (4.4)

h S2 . y R and Ra I- with M-X(XX) l if wei-i

transform to , S. and u then the standardized residuals u which are functions

of v - 1 angles are distributed as in (3.8) and,

pl.bs'uIS0 ) -"onst s'lplu ISO)  .)

To see the reasonableness of this set-up notice that by invocation of the

linear model the investigator in effect predicts that the sample point y will lie

somewhere close to a hyperplane hX spanned by the columns of X. The formulation

above interprets "somewhere close to" as follows. Consider a future sample y in

relation to (6,S) where 6 are the k + 1 coordinates of the projection i of

y on hx , and S is the perpendicular distance of X from hx. Equation (4.5)

says that locally any value of & is equally acceptable but that the density for

the distance S will fall off inversely with S.

To obtain g.(y) we need to determine how p(y B) depends on the discrepancy

parameter 0 in the neighborhood of B - B0

4.3 A check for needed power transformation.

Especially when ymaxymi n is large some transformation of the data, for

example y - (y- 1)/X, might permit closer representation. Following the

-19-
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approximate argument of Box and Cox (1964), with A the discrepancy parameter and

the geometric mean of the y's, and for A close to 1,

P(YIx) X ,P-)~ (4.6)

where the omitted constant does not depend on y or on A and where

y ) np(yIx) 2  1 n
gACY)= -- : zIRy/s = S ziri  (4.7)

where z i = yi{l-In(yi/)}, s =y'Ry/, and r i = i

The predictive check may thus be performed by regressing the residuals y - y on

the residuals z - z of the constructed variable z = y{1 - In (y/f) }, which accords

with a proposal of Atkinson (1973). The check can be made informally by plotting one set

of residuals versus the other. More formally the distribution of gX(Y) is not

precisely known although an approximate level can be obtained by computer simulation.

Relation to other prooosed checks

Related checks proposed by Tukey (1949) and by Andrews (1971a) correlate the

original residuals with those from the constructed variables (y - )2 and y2ny

respectively. Both possess the advantage of having exactly known samplinq distributions.

For illustration we consider

(a) the biological data of Box and Cox (1964), for which they recommend a

reciprocal transforma ,ion,

(b) the trapping data of Snedecor and Cochran (1967), for which they recommand

a log transformation.

Figures 2 (a) and (b) show plots of residuals y - y against residuals from

y(l - tn(y/i)} -(y )2. The correlation coefficient for the latter transforms
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(a) Box and Cox biological data
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(b) Snedecor and Cockran trapping data
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Fig. 2. Plots of residuals y - y against residuals from two

constructed variables z - y(l - In y/j) and -(y - y)=,

with correlation coefficient to indicate strength of

association.
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directly to give Tukey's one degree of freedom for non-additivity. Plots for the

constructed variable yLn are not shown since they are essentially identical to

the Tukey plot. The relationship between these various procedures can be seen by

noting that z = y(l - Ln(y/)) may be closely approximated by

z - B(y - ) 2  
(4.8)

Thus after writing

= + + r. 4 y + d (4.9)s a 8

2 3 2 2 2
g (y ) "- E(ri + Yi + d) r - -(Er i3  2iY. + riY2 + 2Zr d) (4.10)

and

gX(y) & - (T30 + 2T21 + TI2 + 2vd) (4.11)

where the Tij are checking functions proposed by Anscombe (1961) and Anscombe and

Tukey (1963). See also Box and Cox (1964). In particular T12 is the component

associated with Tukey's one degree of freedom for non-additivity. The approximation

shows how gX(y) jointly employs skewness (T30 ), dependence of variance on level

(T21), as well as transformable non-additivity (72) to indicate the need for

transformation.

The Box and Cox Cata were generated by a 3 x 4 factorial with four-fold repli-

cation supplying a good deal of information about the variance as a function of

location. It is not .,urprising therefore (see also Atkinson (1973)) that for this

example g A(Y) is considerably more sensitive than T1 2  (or almost equivalently,

than Andrew's criterion) as a measure of the need for transformation. By contrast

the Snedecor and Cochran data is from an unreplicat.d 3 x 5 arrangement where most

of the information cootes from T12 measuring non-additivity.
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4.4 A check for serial correlation

For data known or suspected to have been taken in a specific serial order in

time or space, a model that permitted the errors to follow a first-order autoregres-

sive process with parameter Ifl < 1 might provide an improved approximation. The

dispersion matrix for the n-dimensional vector of errors e would thon be 1 0

where 1 is a symmetric continuant with principal diagonal

S+ 21 + 12..., 21 and with all the elements of super- and sub-diagonals

equal to -f. Thus in particular 0 - I. Then

-y1)&( *2) 1 (4.12)
where Q , and R -w -M with Mo - X'X (Y, X)'IX'W . Ten

with a| - -C where r is n xn with unities in super and sub-diagonals and

zeros elsewhere, after some algebraic manipulation

g9(y) - hpcj)O . "' y)/s2  (4.13)

where R - R0 .

Thus n-1
) r iri+ (4.14)

which is a multiple of the sample first lag autocorrelation of the residuals from the

fitted model. This points to the sensitive graphicil diagnostic procedure of plotting

residuals ri+1 against ri and yields the standard checking function of Durbin

and Watson (1950).

4.5 A check for bad values

Cmpetent investigators have over the centuries treated data as possibly contain-

ing atypical values, see for example Stigler (1973). This implies that they would notreal2N

have believed standard textbook models of the kind yi . f('xi) i i -

which state that the same structure is appropriate for every one of a sample of n

observations.

-23-



When it is unknown which observations are dubious a more credible "contaminated"

model proposed by Jeffreys (1932), Dixon (1953) and by Tukey (1960) supposes that

there is a probability a that any given observation is "bad" (cannot be represented

by the ideal model). Given a, let p(yla) be the predictive distribution and let

p(bla) denote the probability of getting b bad values, then (Box and Tiao (1968b),

Bailey and Box (1980a))

n

pCyla) b=0 ()a b(l - b)pY. b) (4.15)
b=O

and

gC(y) = a np(ya) I = np(y'b = 1) (4.16)
a ct 1.-O tP(Y b 0) "

now let zI indicate that the ith observation is bad, then

n
P(y1b (yzi) (4.17)P~ylb~l) = l

so

nI p(Ylzi)
9 () i=1

a p(Ib = 0)

Depending on experimental circumstances, there are a variety of ways in which bad

values might be modeled. In particular, contamination could come from increased error

variance, unknown bias, and mistaken sign. The last possibility was suggested by

Barnard (1978) to account for two suspiciously large outliers in Darwin's data o*i

cross and self fertilized plants, quoted by Fisher (1935).

For illustration consider the first possibility. With one bad value, suppose

the error covariance matrix W1 la
2 has all elements equal to a 2, except for te

ith element which is equal to K202 (2K > 1). Then

22
1n n A

( -n (4.18)
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where , , VS -Y'R ay -Y'( :WI - XXWi X'Xw)y (4.19)

where W.z - q0 , q - 1 - and G is an n xn matrix with a single unity
IK

for the ith diagonal element and all other elements zero. Now

2 a 2 _ - 2
vsi - - 1 - qvi  i)

where vi.Var(i)/o 2 , x(Xxf)lxi and Y, is the ith residual from the ideal

model fit, y - y - Ry.

Thus finally g (y) - K-1 - n where

D.E 1l q r2Y2 (.0
D -vl - qv.) ij(.0

This is the simplest form for computation. The nature of this checking function D

can however be more clearly seen by writing it in terms of the weighted residuals

-i ' 
= 

-
l ) ' s  where y- = Thus

= + - qv i)

Thus D is proportional to the sum of the reciprocals of the n residual t ordi-

nates obtained by downweighting (omitting as q - 1) each observation in turn and

recomputing the fitted value and the standard deviation -

The situation of most interest is when K is large (say K > 5). Then q

approaches unity and the check may be carried out by calculating

2 2 2
4-T1 r2  1-v(l - vii - + 2) (4.21)

Equation (4.16) brings out a feature of the checking function (4.2) which can be a

disadvantage. Differentiation at el- 0 on the boundary of the parameter space

ensures that only the possibility of one bad value is taken account of. Thus as is
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clear from (4.21) D in its present form would not be expected to be sensitive to

the occurrence of two or more bad values. Thus with K " 5, we obtain the value

D - 59.05 for Darwin's data. A Monte Carlo study with SO00 samples of 15 observa-

tions shows that this value would be exceeded by chance about 14% of the time, which

hints only mildly at inadequacy in the standard model, confirming D's insensitivity

for this example.

4.6 Bayesian options for specific alternatives.

When concrete alternatives are in mind, Bayesian options are available. In

particular the predictive ratio p(fAl)/p(yAO), mentioned earlier, is a component

in the posterior odds ratio which with suitable priors might be used to assess

directly the relative evidence for one model versus another. Also g (y) of (4.2)

has a Bayesian interpretation for, if corresponding to some discrepancy parameter B,

the prior distribution p(B) was locally flat ther. the posterior distribution

p(Blyd) would be proportional to the predictive density p(yd B) regarded as a

function of 0. Furthermore if that posterior distribution was approximated by a

normal distribution, then

-(Bo 0 (4.22)

2

and & second differentiation would produce a standerizcd variate.

The relation shows how any specific predictive check g8 (y) is linked to a

posterior distribution. In particular, considerinq the illustrative examples of

the last section, the marginal posterior distribution for X was given by Box and

Cox (1964), for # by Zellner and Tiao (1964), for the ridge regression parameters

by Lindley and Smith (1972) and that for a may be obtained using the results of

Box and Tiao (1968b) and Bailey and Box (1980a).

Bef.re leaving the topic of diagnostic checks two final points need to be tade:

() The above discussion illustrates the "overlap" previously mentioned when

specific alternatives are in mind. It does not however establish the omnipotence
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of purely Bayesian inference. However far the process of model elaboration is taken

by Bayesian methods the final model involving say the mth set of assumptions

A can still be factored

Pc ,elA) - p(ely,A )p(ylA) (4.23)

thus there always remains an unexplored n-dimensional predictive distribution

p(yJAm) in relation to which a small relative value for p(ydIAm) could, on a

sampling theory argument, discredit the assumptions on which the Bayes analysis was

conditional. The same is true of the more plausible of two models chosen using a

posterior odds ratio.

(ii) In addition to possible discrepancies to which we have been alerted by

experience, other features may appear pointing to inadequacies of a kind not

previously suspected. This possibility has sometimes proved perplexing,

for while on the one hand the truly unexpected could point the way to

precious new knowledge, on the other, associated probabilities would be indeterm7.nate

because of the uncountable character of other features that might also have been

regarded as surprising. I think the calculation which ignores this difficulty of

indeterminate selection is still worth making, for at least it helps to correct a

misjudgement of something that appears unusual but really is not. For example,

Feller (1968) shows that for a random group of 30 people, the probability that at

least two have coincident birthdays is over 70%; this tells us we need look no fIr-

ther for an explanation when we are surprised to find two such people at a party.

Wile the proposed policy will lead to the too freqluent pursuit of nonexistent

assignable causes, the iterative process will quickly terminate this chase.

5. Robust estimation.

Efficient iterative model building requires both diagnostic checking and model robus-

tification, where by robustification Imean judicioua and grudging elaboration of the

model to ensure against particular hazards (see also Box (1979)). Robustification
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becomes necessary when it is known that likely, but not easily detectable, model

discrepancies can yield badly misleading analyses. It is well known, for example,

that least squares analysis can be dramatically affected by moderate serial

correlation of errors.

Recently the serious consequences of had values on standard least squares

analysis has been especially emphasized and numerous authors have proposed methods

which rely on abandonment or modification of classical estimation methods. In dis-

cussing the rationale for this approach Huber (1977) says "The traditional approach

to theoretical statistics was and is to optimize an idealized model and then to rely

on a continuity principle: what is optimal at the model should be optimal nearby.

Unfortunately, this reliance on continuity is unfounded: the classical optimal

procedures tend to be discontinuous in the statistically meaningful topologies."

He then quotes a motivating example given by Tukey (1960), who pointed out for

example that if a normal distribution were very mildly contaminated with anothef

which is centrally located but of larger variance, then the sample standard deviation

could be a very poor estimate of scale. Tukey's contribution was remarkable because it

had previously gone unnoticed that the assumption that the same structure must apply

to every onservation yi (i = 1,2,...,n) with absolute certainty (1 - a - 1), not

only was unrealistic (since no responsible investigator would make the claim that

inadvertent bad values were impossible), but also could have serious consequences.

While Huber goes on to say that typical 'good data' samples in the physical sciences

appear to be well modeled by this contaminated normal model, he does not develop

methods based on this more realistic set up. This is presumably because his objec-

tion would apply equally to the new as well as to the old model.
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I do not agree that the example would support a thesis of the need to abandon

model-based procedures. A model that omits the parameter a is, of course, the

same as one that includes it but sets its value exactly to zero. A value of a - 0,

which allows no possibility whatever for bad values, and a value of a - 0.001 are,

I think,not close in any statistically meaningful topology. Although 0.001 may look

close to zero, an odds ratio of 0.994/0.001 - 999 for a "good" to a "bad" value is

obviously very different from one of infinity. Such differences in probability dis-

tinguish, for example, a lifeless world in which no evolution could possibly occur

from the one we live in.

2he proper conclusion to draw from Tukey's example is, I think, that for many

practical situations in which occasional bad values are to be expected the standard

linear model provides an inadequate approximation %hat is potentially misleading

and therefore the model should be appropriately changed to approximate what is

believed rather than what is not. The situation is logically the same for a model

that implicitly insists there can be no serial correlation, when data have in

fact been collected serially, or that no transformation of y could be needed when

yma/yin is large. As in the classical Stein problem if we know something a priori

it may be disastrous to omit it. On this view for robust estimation of the para-

meters of interest we should modify the model which is at fault, rather than the

method of estimation which is not.

5.1 Bayesian robust estimation.

As was argued for example by Box and Tiao (1964), all relevant aspects of the

problem are brought out in an appropriate Bayes ana lysis. Supposing that 8 has

the same physical interpretation for all B then estimation of 8 which is robust

relative to the discrepancy parameter 5 is supplied by the posterior distribution
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p(oly) - I pO1,y)p(Sly)p()dS (5.1)

This expression contains three key elements that repay individual study:

(a) the sensitivity of inferences about e to changes in B is reflected by

p(016,y) considered as a function of 8;

(b) the information about 8 coming from the data itself is reflected in the

pseudo-likelihood pu(By) = p(Sy)/p(B) p(yls); (5.2)

(c) the probability of occurrence of different values of 8 in the real world

is represented by p(S) which can be chosen to approximate what is

believed or feared.

This route was used to explore deviations from the standard normal model for a

particular class of heavy-tailed distributions by Box and Tiao (1962, 64); for the contami-

nated model of Section 4.5 by Jeffreys (1932) and Box and Tiao (1968b); for a serial correlation

model by Zellner and Tiao (1964); for a transformation problem by Box and Cox (1964).

Notice that using this approach the parameters 8 of interest are completely esti-

mated in the sense that their distribution rather than merely a point estimate is

available. Also the various elements of p(O1y) which can be studied individually

can provide a deep understanding of each robustness problem. A particularly infor-

mative display shows contours of the joint distribution Pu(881y) for some para-

meter 8 of interest and the discrepancy parameter 8 together with the marginal dis-

tribution p u(Sly). when a less prodigal display is necessary the mean and standard

deviation of p(0j8,y) may be shown with pu(Sly). For illustration we considur

some serial data analyzed by Coen, Gomme and Kendall (1969). They regressed

quarterly values of the Financial Times Share Index y on detrended lagged values

of U.K. car production X1 , and of the Financial Times Commodity Index X2 u.;ing

a model* which could be written (Box and Newbold (1971)) as

*For the present purpose we retain the model structure of Coen, Gomme and Kendall.
However its relevance seems dubious, for examplea multivariate time series
analysis by Tiao and Box (1980) for these three series shows the stock prices
acting as a weak leacing indicator for the comodity index X2 .
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yt 0 + t + 8 X + X + e with t - e_ + at  (5.3)
0 1 1 l,t-6 2 2,t-7 t -

with at white noise, and * constrained to be equal to zero. Figure 3 illustrates an

analysis made by Pallesen (1977) in which 4 is unconstrained. It shows the joint

posterior distribution for 8 and * and the marginal distribution for # assum-

ing locally flat priors for e, Eno and *. Although for this example serial

correlation could have been easily detected by diagnostic checks, notice the enormous

shift (about five standard deviations) of the conditional distribution pCell6,y)

which occurs as f changes from zero to more plausible values. This illustrates the

point that smaller serial correlation, of a magnitude difficult to detect with

diagnostic checks, could disastrously invalidate estimates of 8.

A second example discussed more fully in Bailey and Box (1980b) further illus-

trates this approach for the "bad value" problem using the contaminated normal model

of Section 4.5. The data were used originally by Box and Behnken (1960) to illustrate

the analysis of a balinced incomplete four factor three-level design with n - 27

observations arranged in three blocks of nine. A residual plot suggests the possi-

bility of two bad values (y1 0 and y1 3 ). However the small number of residual

degrees of freedom and the nature of this particular design would induce large cor-

relations yielding potentially misleading residual patterns.

Table 1 gives Bayesian means and standard deviations for coefficients in the

fitted model

* 4 4 4 4
Y i x  i 1 x i + I I Oij xix + e (5.4)

in this analysis K was set equal to 5 and the values of a varied over the

range 0 to 0.091. It has been shown by Chen and Box (1979) that for K > 5 the

posterior distribution is mainly a function of C - a/l - a)K so the results are

also labelled in terms of this dominant discrepancy parameter c. It will be

noticed:
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Fig. 3. Joint posterior distribution of 81 and f and

marginal posterior distribution of f. Note shift
in approximate 95% interval as *is changed.
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(a) The large change in each estimated effect and standard deviation occurs

when no possibility whatever of bad values (c = 0) is replaced by a small possi-

bility (c - 0.001). For good data the typical behavior of a table of this kind

is that only very minor changes in mean and standard deviation occur as c

is changed over the plausible range.

(b) For all the estimates except 14 the standard deviations of effects are

about halved. Thus for these effects the use of the more appropriate model is

equivalent to a four-fold increase in the size/sensitivity of the experiment. This

may be compared for example with a parallel analysis by Box and Cox of their bio-

logical data where a three-fold increase in sensitivity resulted from the use of an

appropriate transformation.

(c) The analysis can be further illuminated by considering other available

quantities. In particular a plot of the probability that the ith value is bad,

given that one value is bad, (see for example Abraham and Box (1978)), results in

a plot with 94% of th3 probability associated with the tenth observation and the

remainder spread among the remaining 26 observations. It is likely therefore that

YI0 alone is a bad value. It is a deficiency of the design being used here that

least squares estimates of interactions employ only four of the 27 observations and

so lack robustness to bad observations (see for example Box and Draper (1975)). In

particular 14 - 0.23 (y 1 0 - y11 - y1 2 + y 1 3 ) so that the Bayesian down-weighting

of Y1 0 accounts for the large change in this estimate and the increase in the

standard deviation.

(d) We saw in the case of ridge regression how failure to take account of

observational information could lead to an unrealistic choice of the discrepancy

parameter y. To complete the picture therefore, a plot of the marginal distriL-,-

tion of the discrepancy parameter c should be made in conjunction with Table I

(compare also with the serial correlation example in Figure 3). For this data the

distribution pu(cly) has its mode close to c - 0.010.
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2 ( .70) ( .44) ( .41) (.41) ( .42) (.42)

012 -1.67 -1.67 -1.67 -1.67 -1.67 -1.67
C .81) C .39) ( .35) ( .35) ( .34) C .34)

013 -3.83 -3.82 -3.82 -3.82 -3.82 -3.82
C4.81) C.39) (.35) (.35) ( .34) ( .34)

0 e14 9 -. 45 -.51 -. 50 -. 49 _.4-8
.81) C.95) ( .92) C .93) C .95) .95)

B2 3  -1.67 -1.67 -1.67 -1.67 -1.67 -1.67
.81) C.39) ( .35) ( .35) ( .35) C .35)

02 -2.62 -2.62 -2.62 -2.62 -2.62 -2. 62
24 C.81) (.39) C .35) C .35) C .35) i s)

034 -4.25 -4.25 -4.25 -4.25 -4.25 -4.25

C.81) C.39) ( .35) ( .34) C .34) C 4

Table 1 Bayesian means and (standard deviations)
j fo~r polynomial coefficients using the contaminated

model of Section 4.5 with Kc 5 (C =j( ci CI -c)i).
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The Bayes approach to robust estimation has the advantage of generality; furthermore

it clearly reveals at any given stage, on precisely what assumptions the analysis is

conditional. With the increased speed of computers and availability of visual dis-

play equipment a general Bayesian conputer program, that can analyze any model we

wish to entertain, seems a much more attractive prospect than the fresh devising of

semi ad hoc procedures for each new possibility.

Some parallels in the two approaches are briefly considered below for the

"bad value" problem.

5.2 Robust estimation for the "bad value" problem.

For the "bad value" problem a wide variety of semi-empirical estimators have

been proposed. Among these are the M,L, and R, and various kinds of adaptive

estimators. In turn a mong the H estimators a number of different "q)" functions

have been suggested leading to different ways of downweighting extreme observations.

Now consider the model of Section 4.5 for the simple location structure

E(y i ) = p. Then (see for example Box and Tiao (1968b)) the Bayesian mean may be

written
m pcbly, |~b (5.5)

b-O

whexe" p(bly,a) is the posterior probability that there are b bad values and

y(b) is the corresponding conditional posterior mean. Consider in particular

-(l) w i wi" Then hen and Box (1979) show that for > 5

Wi & (n - 1)(1 - D/D) (5.6)

n-i

_ 2 2 I-. i

wheze r i and ri are unweighted and weighted residuals defined in Section 4.5.
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Figure 4(a) and (b) show plots of w-wl Against r I and r for three random normal

samples of ten observations from a normal distribution when a multiple 0,1,2,...,

of a is added to the first observation in each sample. Empirical approximations

for these weighting curves are provided by the functions

Wf .1 exp{-I.49 r 1 17 ) and w = .1 exp{-I.3 i113.S}

Also shown in Figure 4(b) for comparison is Tukpv's biweight function

w .l l - for c = 5.3 (chosen to roughly match the curve). Although the

Bayesian weights are sample dependent they remain remarkably stable as is indicated

(a) by the smooth manner in which the remaining weight is evenly spread throughout

the non-discrepant observations; (b) by the closeness with which points from differ-

ent samples follow the same curve.

The estimate j is sample adaptive in another more striking way however. -or

illustration consider the case where the p(bly,a) are negligible for b > 2. Then

writing p = p(lfy,) (5.5) becomes

Cl - p)y + py (z (5.8)

and the Bayesian mean is an interpolation between y and the "robustified" y

In this expression the value of p is determined by the posterior odds ratio for

one versus no bad values

/i - p) & c {n/(n - ) - Q/(1 - a) K (5.9)

and D is the checki.ig function encountered earlier.

Sample adaptivit? is evidenced as follows. For a sample with no outliers Y

and y are not verry different so that is close to y. But in the presenze

of an outlier of larger and larger size two things happen: the outlier is down-

weighted in . (l) which becomes more and more different from y and also p

becomes larger placing more and more emphasis on (

The purpose of this discussion is to show that sensible solutions which appro-

priately downweight suspected bad values may be obtained directly from an appropriate
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exp 1.49 r 17}

.08 4

.06

.04
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II §S
3 5

(a) Yz -
r

00 o., w , - e p 1.r 3 -5

00.10

0.0-Vx

0.06-

0.04

0.02- 
.3l )2}

0.00. 0
3 3

°1Fig. 4. Weight w applied to y for three samples from

a Normal Distribution. Numbers 0,1,2,... indicate
that 0,0,20,... has been added to yI"
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model. From the viewpoint of the traditional M estimator, the weight function
1

(W say) for p itself is an interpolation w = (l - p) - + pw between 1/n
n

and w. Thus W will descend to the value (1 - p)/n for large r. For a sample

containing a large outlier, 1 - p will be negligible and W will approach w

plotted in Figure 4(b) and will descend like Tukey's biweight. However for a more

normal-looking sample W will flatten out to some moderate non-zero value and will

more closely resemble the weighting originally proposed by Huber.

In choosing robust estimators there is room for empiricism but I think that some

of its inspiration should be applied to the choice, study, and consequences of

appropriate parsimonious models. The structure of the resulting Bayesian analysis

should in each case be carefully analyzed, for the great strength of such a model-based

approach is that the exact consequences of whatever goes into the model must come

out. These consequences will either agree with "common sense" or they will not. If

they do not then we know either that what went in was inappropriate in a way we had

failed to foresee, or else, as happens quite frequently, that our common sense was

too shortsighted. In either case we learn something.
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