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ABSTRACT

et A be an infinite sign regular (SR) matrix which can be viewed as a
bounded linear operator from lw to itself. It is proved here that if the

range of A contains the sequence (*°*¢, 1,-1,1,-1,¢%¢), then A is onto.

1f A~' exists, then pa~ D is also SR , where D is the diagonal matrix
with diagonal entries alternately 1 and -1. In case A is totally

positive (TP), then pA"'D is also TP under additional assumptions on A.
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SIGNIFICANCE AND EXPLANATION

Spline approximation is often most effective when the breakpoint (knot)
sequence can be chosen suitably non~uniform. At the same time, the standard
approximation schemes (such as least squares approximation, or interpolation
at suitable interpolation points by splines) are so far only known to be
usable and bounded as long as the breakpoint sequence is almost uniform. The
problem of showing existence and uniqueness of bounded spline approximants to
bounded data boils down to showing invertibility of a certain infinite
matrix A . The distinguished feature of this matrix is its total positivity,
i.e., all minors of A are nonnegative. In this paper we show that if the
range of an infinite totally positive (more generally sign regular) matrix
A contains the particular sequence (°¢°*°¢,-1,1,-1,1,-1,°°¢) , then every
bounded sequence is contained in the range of A. In spline terms, this
result says, for example, that any bounded data sequence can be interpolated
with a bounded spline (with a given knot sequence, at a given interpolation
point sequence) provided that the periodic data {+1,-1} can be interpolated
by a bounded spline from that class. Our arguments show that such an
interpolating spline can be 'constructed' as a limit point of splines which
satisfy finitely many of the given interpolation conditions provided that the

trivial data can be interpolated only by the zero spline.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




Inverses of infinite sign reqular matrices

by C. de Boor, S. Friedland and A. Pinkus

0. Introduction. If the problem of spline interpolation is expressed in terms of
B-splines, then the question of existence of a bounded spline interpolant to bounded data
is seen to be equivalent to the question of whether a certain bounded band matrix has all
bounded sequences in its range. In [4], C. A. Micchelli conjectured that there exists a
unique bounded spline interpolant (of a given order and a given knot sequence) to any data

in the plane, with (t.) strictly increasing and (y;) bounded,

sequence (Ti,yi) i

iez
provided only that it is possible to interpolate the particular data sequence
(11, (-1)i)iez by such a spline. There is apparently nothing special about the particular
spline problem other than that it leads to a banded totally positive matrix. Therefore one
of us quoted this conjecture in (2;p.319, Problem 4] as

"A biinfinite banded totally positive matrix A is boundedly invertible if and

only if the linear system Ax = ((-1)1) has a bounded solution.”
In hindsight, it is easy to see that this conjecture is faulty even in the original context
of spline interpolation. For example, interpolation by bounded broken lines with breakpoint
sequence Z at the sequence T = z\ {0} 1is possible to any bounded ordinate sequence y ,
but not uniquely so since the value of the interpolant at 0 is freely choosable. In ma-
trix terms, this corresponds to the matrix obtained from the biinfinite identity matrix by
dropping one row. But, with the condition changed to "... has a unigue bounded solution",
the conjecture was proved in [1].

The argument in [1] establishes that, under the given condition, A "has a main dia-
gonal”, i.e., some diagonal of A has the property that all finite sections of A having

a portion of this diagonal as their main diagonal are invertible, with their inverse bound-

*) Actually, one of the editors, enlightened by [1), changed it to "a unique
bounded solution" as the book went to press.
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ed uniformly. a~! is obtained as the pointwise limit of these inverses. Thus, the argument
establishes more than Micchelli's conjecture. In reaction to a presentation of these argu-
ments, one of us sugggested that there might be simpler ways to establish the conjecture
directly. In particular, it should be possible, because of the checkerboard nature of in-
verses of totally positive matrices, to establish that A is onto under the original
condition, using minimal solutions of finite sections of the given linear system Ay = v .

The present paper carries out this program in Section 1. As it turns out, it is pos-
sible (1) to drop any kind of structure assumption on A such as bandedness, and, less
surprising, (ii) the assumption of total positivity can be relaxed to sign regularity.

Having settled this matter, it then became of interest to see how much more informat-
ion about the inverse of a totally positive matrix could be obtained by this approach.

1

Specifically, assuming A~ to exist, and with D the diagonal matrix having alternately

1 and -1 on its diagonal, could (i) the sign reqularity of DA"D be established,

1

(ii) DAT'D or its negative be shown to be totally positive if A is, (iii) a~! be

approached by inverses of finite sections of A ?
As to the third question, we show, as a simple corollary to the development in Section

1, that a~!

can indeed be approached pointwise by inverses of certain submatrices of A
(involving consecutive columns of A but not necessarily consecutive rows), provided the
columns of A are already in c¢; and not just bounded. We believe this assumption to be
unnecessary in case A is totally positive, in the sense that we believe the columns of a
totally positive & -invertible matrix to be already in ¢; . But we have not been able to
prove this. In any case, while this result is far from establishing that such A has a

1

main diagonal, it does allow the conclusion that DA™ 'D or its negative is totally

positive in case A is.

As to the first two questions, we show in Section 2 by a completely different line of

1

reasoning that DA~ 'D must again be sign regular. From this, a surprisingly simple argu-

ment proves the total positivity of DA-1D in case A 1is totally positive and infinite
but not biinfinite.

We will use the following notations and conventions.




We use lower case letters to denote elements of RI ., i.e.,, real functions (or, se-

quences) on some integer interval I , with v(i) the i-th entry, or value at i , of the
sequence v . By S (v) we mean the number of strong sign changes in the sequence v ,
i.0.,
S (v} := sup { r : there exist Iy € eee €3, Bete V(ja)V(ja+1) <0},
while
stv) := sup { S (w) : w(i) = v(i) whenever v(i) # 0 }
denotes the weak sign changes of v If J is a subset of I , then vy denotes the
restriction of v to J while \J. is shcrthand for the restriction of v to IN\J ,
i.e., to the complement of J in I . If J cons'sts of just one point, J = {j} say,
then we write \j instead of \{j} . Also,
fvl(i) = |[v(i)|, all i,
while, if also u € RI » then

L]

uv = xieI uli)v(i) .

Correspondingly, when also J is an integer interval, then A"  denotes the transpose
of the matrix A € RIXJ and AK,L denotes the restriction of A to the subset KxL of
IXF . Such a matrix A is sign regular (=: SR) provided that for each k=1,2,3,... all
minors of A of order k have the same sign. If this sign is positive for all k , then

A is totally positive (=: TP). We denote the minor of A obtained from rows p < .. q

and columns r < «¢s< 8 by

LN

1. Existence of a bounded right inverse in some absolute norm.

Let J be a finite, infinite or biinfinite integer interval and let S g_RJ be a
normed linear space of real functions on J , i.e., a space of sequences. We assume that
the norm is absmolute, i.e., for every ¢ @ (-5,1}J , st (e(3)s(3)) is an isometry. we
further assume that the 'unit' sequences eI , Jj€J, given by

i) = 8 all i.,j,

13’

form a basis for S , i.e., the truncation projectr. P, given by

T U DA IR iy ¢ s 5ot A 2D G IR b RS < Bk sl




y(3) » jex
(PKY](j) 1=
0 otherwise
converges strongly to 1 as the finite interval K approaches J . Then the continuous
dual s' of S can be identified with the sequence space
J * L
(e eRrR :M1E0 sup_o f s/Isl < = )
and the norm on S  is again absolute. In particular,
* * *
I1€] Is| < NfK Nshl , all fes ,ses .

o for some finite, infinite or biinfinite integer intervals I and J

X,

Let A € RI

and assume that A(i,*) € S , all i . Then we can identify A with the linear map
S — R : f+—* Af .

We are interested in understanding the range of this map under the assumption that A is

SR.

Theorem 1. Let I, J be finite, infinite or biinfinite integer intervals, and let
S g'RJ be a normed linear space with absolute norm and with (ej)jeJ as a basisg. If
A€ R;XJ is SR, has its rows in S , and carries some x € S. to the strictly

alternating sequence u := Ax , then the range of A contains the Banach space

b . .
s, {ver : lvlu : supiellv(x)/u(l)l <o},

-
More explicitly, for every v e su there exists Y, e s so that Ayv = v and

* *
Iy 1 < vl Ixl .
v u

Proof. We first consider the case that I is finite. Since S (u) = |[I|-1 , we claim
that A has full rank |I| and is therefore onto. Indeed, by induction, we may assume

that A has rank at least |I|-1 . If now rank A = |I|-1 , then there would be, up to

scalar multiples, a unique z € R'\{0}) for which 2z'A = 0 . Then the sign regularity of
A would imply that 2z must alternate, i.e., 2(i)z(i+1) € 0 , all i . Therefore 0 = z'Ax E
= z.u , and strict alternation of u would then imply that 2z = 0 , a contradiction.

It follows that every v € RI gives rise to a linear functional F, defined on the

finite-dimensional linear space
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R = span(A(i:‘)]ieI

by the rule

*
I aiA(i,')l——' av .
iel -
In view of the Hahn-Banach Theorem, we can therefore conclude the existence of Yy e s

* »
with Ay, = v and lyvl < Ivlulxl once we prove that
*
IF | < Bvi Ixd
v u
It is sufficient to consider only finite J . For, an infinite J can always be
approached by finite intervals X , and
A(i,*) = 1imk*JPxA(i,-) , all i,
by assumption. Therefore, for all sufficiently large intervals K , the rule
*

b a,PAlL, ) — av

defines a linear functional FK on RK ;= P.[R] and lim HFKI IFt1 .
v K K*J v v

»*
Let Y, € S be a norm preserving extension of F, to all of S . Then

*®
F (r) y.r -
* v v Y
lyvl - an' = 8UP —yTy— T Sup Ty < SuP inf f;r
r€R rerR r€R Ay=v
*
i ly ! Ixl .
< sup inf lx%;%-l < sup P < lyvl .
ré€R Ay=v réR

with the third inequality holding since the norm on S is absolute and the second since

Ay, = v . Now there is no restriction in agsuming that, for each j € J , we can find

r @ R with r(j) ¥ 0 (since, in the contrary case, the entire column 3 of A would be

zero and we could simply omit the index from consideration). We therefore conclude from the

above string of inequalities that

»
IF I = sup inf byl
v wew Ay=y ¥

with
W = {reRrR: Il <1, r(j) ¥0 , all 3}

*
and l-lw the dual norm to l-lw , Lee.,




A e

Now

w *
sup lew < sup 1xl 18] = kxl
wew s€s

while

L ]
inf Iy} =: IF_ | .
w v
Ay=v
is the norm of Fy with respect to the l'lw-norm. It is therefore sufficient to prove

that, for any positive weight function w ,
* 1x1 1wt
inf Iylw < xlwlv v °
Ay=vV
For this, let Yu be an extreme point of the nonempty, closed, bounded, convex set
{ * iyt = 1r )
C = yes : Ay=u, ly v - F“ w .
We claim that K := supp y, contains exactly |1l points. Indeed, if supp y, were to
*
contain a set L with |L| = {I|+1 , then we could find z e 8 \{0} with Az = 0 and
* L4
=0 , - ) + w4
zZy, 0 But then Iyuﬂ:zlw L lyu(j) + ez(3) {w(3) lyulw e I signiy(3)]lz(jIw(3j)
for all sufficiently small positive or negative € , while A(yu+ez) = u , therefore, by
the minimality of lyul , T sign{y(3)1z(j)w(]j) = ¢ and y, would not be an extreme point
of C . With this, (yu)K is a solution of the system AI,KY = u , and our earlier

argument implies that A, , is invertible, and, in particular, Ik{ = {I| . We therefore
’

conclude that

inf vt < a(a, )Tt =z gz (Al )7 0w Jwio)

R 1,8 Vw ek “ier'?r,x 1V w

Ay=v

-1 .
< vt zkexziell(AI,K) (ko) 1 lu(d) ] [wik)|
while
-1 -1 ;
xkexziell(AI,K) (k. 1)) Jw(k)] = xkexlziex(ALK) (k,idu(i)] lwik)|
* L ]

by the sign regularity of A (which gives that (AI'K)'1 must be checkerboard), the

alternation of u , and the minimality of Yy ¢ ;

*
This establishes the existence of Y, € S with




t 4 »
= <
Ayv v and lyvl lvlulxl
for finite I . From this, we obtain the result for nonfinite I by considering all finite
*
integer intervals L contained in I ., For each such L , we can find yﬁ es with
L TR AR RS
Ayv vi and yv vL u X v u x| .
Therefore, for some increasing sequence (L) converging to I , the corresponding sequence
L * » L] *
(yv) converges weak to some Y, es . But then also val < Ivlulxl and
v(ii) , 1ieL

* L. *
(Ay_)(1) = y Ald,e) = lim___(y]) (1,°) = 14 = v(1) o}l
v v L'V Ag R undefined, ifL

As a special case, consider the SR matrix A € RIXJ

to carry £ _(J) to & _(I) . Its
rows must then be in 11(J) , a sequence space with absolute norm and (ej) as a basis.
At the same time, Su = 1“(1) provided u alternates uniformly, i.e., u(i)u(i+1) <0 ,

all i , and inf |u(i)| > 0 . We therefore have the following

Corollary 1. If I and J are finite, infinite or biinfinite integer intervals and

aerR™ carries £2,(3) to & (I} 4in such a way that, for some x € £_(J) , u := Ax

uniformly alternates, then A is onto.

Remark. This corollary establishes the full generalization of Micchelli's conjecture.
The theorem even shows that the solution y of Ay = v may be chosen bounded in terms
of v, i.e., Nyl < klvl_ = with k := supi'jlx(i)/u(j)l independent of v , and also
demonstrates all this without the assumption that A is 1-1.

As a second special case, consider the SR matrix A € RIxJ to have all its rows in S
= cO(J), another sequence space with absolute norm and (ej) as a basis. Then

l-l. = l-l1 = I-I: with e(j) = 1, all j , i.e., we are in the special situation to

which we reduced the proof of the theorem. We now know from that proof that we can choose,

for each finite interval L in I , a subset K of J with |K| = |L| so that

-1
I(AL,K) wl, = min (Iyl1 t Ay =u on L} .

e ——— it s A A SRR o . ot Tt 1
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R

Then we extend (Ap K)-1 to CL e qul by taking its values to be zero off XxL . For
’

each ie€1I, ei ig in su « The above argument therefore shows that

i
1Ie I“ = le1/|u(i)| .

it el < 1
We can therefore choose a sequence (L) and a corresponding sequence (K) so that, for

each i , clet converges weak” to some yi € 11(J) » This means that

. *Li _ *i
for all a e co(J) v 11mL¢I acCe = ay
and so in particular
i L e*(r) , ieL .
for alt r , {Ay J{r) = 1lim A(C'e )(r) = lim = e(r) .
1»1 L+1 0 , ifL

This shows that the matrix C given by C(j,i) := yi(j), all (j,i) e JxI , is the

pointwise limit of the sequence (CL) « It is a right inverse of A and it satisfies
llC(',i)lI1 < Ixﬂ1/|u(i)|, all i .

This proves

Corollary 2. Let I and J be finite, infinite or biinfinite integer intervals. If

e 3N

A€ RIXJ is SR, has its rows in co(J) , and_carries some x € 11(J) to the strictly

alternating sequence u := Ax , then there exists a sequence (L) of index intervals
1

converging to I and a corresponding sequence (K) of index sets so that (AL,K)_

; . : JxI X
exists and converges pointwise ¢o_a matrix C € R which carries S“

to 21(1) and

satisfies AC = 1 (as maps, hence as matrices).

2. The inverse of a SR matrix. In this section, we assume that the SR matrix
X
A€ RI J is also 1-1, as a map on lm , in addition to having a uniformly alternating
sequence in its range. We then know that A 1is 1-1 and onto, hence invertible, with A"

J
again (representable as) a matrix, from R x1 ¢ which carries £ _(I) onto £ _(J) .

Let now DI e RI"I be the diagonal matrix whose diagonal entries are alternately 1

and -1 . Specifically,
I

(o)) = (fy() ,allier, all yer

5 A B (0 A TP BN 3 i 72 g AL
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if I is an interval (as we assume). It is well known that, for finite I and J , the

-1.1

J DI is again SR. In addition, if A is TP, then DJA D or its negative is

matrix 0°a""
also TP. We prove the first statement for arbitrary 1 and J , and prove the second
statement under the additional assumption that the columns of A are in Cg or else

that I equals J and is not biinfinite, i.e., has a first or last entry.

IxJ ;
Proposition 1. If A € R maps £ _(J) to & (I) and is 1~-1 and onto, and maps
cg(J) to cg(I) , then A TP implies that 072" 0! or its negative is TP.

Proof. We know from Corollary 2 to Theorem 1 that, under the given assumptions,

a~' is the pointwise limit of certain matrices (CL)' as the index interval L converges

. cL -1 _ * -1 . .
to I . The matrix equals (A ) = (A ) on Kxi. and vanishes off KxL .

K, L K
Here L 1is an interval, but K is only an index set, K = {k1"°"kr} , say, with
k1 € eee £ kr « For such K , we define the diagonal matrix DK by
i K
(0y) k) = ()'yk) . 1=1,e.u,r, all yer®
Then DL(AK L)"DK is TP since AK,L is. Now every i in I must eventually be in all
r

*
K's since in the contrary case the i-th row of (CL) would be zero for infinitely many

L , hence A-1(i,-) = 0 , which is nonsense. Thus, for any finite intervals M and N ,
™) is the pointwise limit of (Ax )-1 as L+ I , with e DM(A )-1 N 1P
M,N L7 M,N M,N K,L’ M,N
for some €y N e {~1,1} . This implies that Sy N is independent of M and N , and so
’ ’
DM(A'1) DN or its negative is TP. But since M and N are arbitrary finite intervals,

M,N

1

this implies that pIa~"p! or its negative is TP. |||

We believe the assumption that A map cO(J) to co(I) to be unnecessary for the

1

conclusion that DJA' DI or its negative is TP. More precisely, we conjecture that a

£ -invertible TP matrix A € RIxJ must map ¢p(J) to Cp(I) « Without this assumption,

we have no way of approximating l\-1 by inverses of certain finite submatrices of A , and

"5l ig SR in case A is SR.

will have to prove by some other means that DJA




— e — et —

i
; Theorem 2. Let I , J be finite, infinite or biinfinite intervals. If A € RI“J is

1 SR and invertible as a map from £ _(J) to £ (I) , then p7a~'p! is also sR.

i
! Proof. In outline, the proof is as follows. By well known results, it is sufficient
to prove that pa~'pI is variation diminishing, i.e.,

s (0’2" lz) < sT(z), allz,
and this is equivalent to the assertion that :
. u = Ax implies s™(07x) < s”(0Tw) .

This, in turn, follows by a smoothing argument from the assertion that

u=ax and u, x nowhere zero implies S+(DJx)_5 s* ol ,
and, finally, this last statement follows, as we will show, from the assertion that

u=Ax and u nowhere zero implies x vanishes at most st(plu) times.

We begin the detailed argument with a proof of this last assertion and for this start

< TR -

with the following

Lemsa 1. 1f B € R is I-1, then B gy As-still 1-1 but not onto.
’

Proof. Since B is 1-1, the sequence B(+,j) cannot be in the range of BI,J\j ’
hence BI,J\j is not onto. On the other hand, if BI,J\jx = BI,J\jY , then, extending x

and y to all of J by setting them equal to 0 at j gives Bx = By , hence

x=y o}

! Corollary. 1f u := Ax uniformly alternates, then x vanishes nowhere.

Proof. If x were to vanish at j , then the SR matrix AI,J\j would carry the

bounded sequence x to the uniformly alternating sequence u and Corollary 1 to Theorem

\j
1 would give that AI,J\j is onto, while A is 1-1 by assumption, hence AI,J\j is not

onto by the Lemma.]|||

10

A

5

:
PoeaSAT




! Next, we strengthen this corollary as follows.

Proposition 2. Suppose u = Ax satisfies 1nfi|u(i)l >0 and s+(DIu) = k , while

% =0 for some L with |L| =k . Let K := {i €I : u(i)u(i+1) > 0} . Then, the

matrix C := A\K,\L is again SR, 1-1 and onto.

Proof. Since u never vanishes and S+(DIu) = k , therefore |K| = x and the

subsequence uy of u alternates uniformly. In addition, g = UK and C 4is SR.
Therefore C is onto by Corollary 1 to Theorem 1.

To prove that C is 1-1, let Cz = 0 for some 2z € 2_(\L) , and extend z to }

z el (J) by z, = 0 . Set y := Az . Then y\x = 0. f

Since C is onto, we can find, for each j e L , a bounded solution xj to the

problem

x:-O,AxJ-AeJ off X , j

with eJ(i) := 8,5 ¢ all 1,3, as before. Set

Iy .
1

PR = £ (D) : ab— I a(ed - x
jeL
Then Fa = a on L while AFa = tjeLaj(Aej - ij) vanishes off K . Therefore,
AFa = 0 on K implies AFa =0 and so, A being 1-1, we get Fa = 0 and, in
particular, a = (E‘a)L = 0 . This shows that
: B — 5 a — [AFu)K
is 1-1, hence onto since |L| = |K| .

it follows that we can choogse a 80 that AFa = y on K . But then z' := T - Fa

satisfies
y -y on K
Az' = y - AFa = = 0
0 -0 off K

¥ and so, A being 1-1, we have z' = 0 , therefore 0 = zi =0-~a, ice, a=0 and so,

finally, z = ;\L =z - Fa}\L =z =0 .|l

11




Remark. The argument just given shows

B is 1-1 and can be partitioned as

in such a way that B4

also 1-1.

at most k zero entries.

Proof. Let x =0 for some L with |L| = k . Setting again

Therefore, by the Corollary to Lemma 1, x does not vanish off L o1

the case, then we replace each zero entry of x by €& or -e

. +, J + ,
resulting sequence x° satisfies § (D x%) = s (DJx) « This changes u = Ax to
, ue := Ax® = u + v with vt < Iak|e] « But since infi|u(i)| > 0 , we can choose

+ +
' so small that again infilue(i)l > 0 , while S (DIue) =5 (Dlu) .

DJx has sign changes and with Cz =

! differs from the identity only in that it has an a in position (i+1,1)

{ TP for nonnegative a and carries the sequence z

3
J
is onto while Byo is square of finite order k , then Byyq

= u . For this, consider the matrix Ei(a) which

K := {i € I : u(i)u(i+1) > 0} , we know from Proposition 2 that C := Ay \p is 1-1,

while it obviously carries "y to the uniformly alternating sequence u\gx and is SR.

in such a way that the

€

Next we produce a SR 1-1 onto matrix C and a sequence z with as many zeros as

’ is changed to z(i+1) + az(i) « Consequently, Ei(a) ig invertible, with E;(-a) its

inverse.

the following general fact: 1f the linear map

is

Corollary. If u = Ax € £_(I) with infilu(i)l >0 and S+(D1u) =k , then x has

H Lemma 2. If u = Ax with inf;{u(i}] > 0 and s*(0Tu) = x , then s*(07x) < x .

Proof. We first show that we may assume that x vanishes nowhere. For, if this is

>

not

0

« This matrix is

to itself except that the (i+1)st entry




KX

T2

R

e i P Ao, "

Now let ry := x(i+1)/x(1) + If x(i)x(i+1) > 0 , then ry >0 and y := Ei(-ri)x
equals x except for a zero in entry i+1 . Hence, if iy € wee < 1, are all in
K := {i €I : x(i)x(i+1) > 0} , then the matrix
B := E; )

n lh

(=X; ) «es E; (=r,
1 i
carries x to a sequence which vanishes at i1+1, vos, in+1 , while i

) eee E, (xr. ) '

~1
B = E. (r N i !

1n 1n 1 1

is TP, 1-1 and onto, hence B~ is again SR, 1-1 and onto. Since AR~ V(Bx) = u , we now
conclude from the Corollary to Proposition 2 that n € k . This proves the lemma in view of

the fact that s’ (p9x) = |X] , since x vanishes nowhere. |||
Lemma 3. If Ax = u , then s~ (0"x) < s”(pTu).

Proof. There is nothing to prove unless S-(DIu) < = , In that case, we choose
sign[u(i)] e {-1,1} in such a way that S+(Dl(sign[u(')])) = s7(plu) and then set
€ signfu(i)} if |u(i)| < e
€
u (i) =
u{1) otherwise
+, 1€ -1 . -1
Then S (Du ) = S (D"u) and so, using the boundedness of A A
- + - + -
sTi’0 < umste'ah®)) < stol®) = sTolw ,

by Lemma 2. |||

with this, the proof of Theorem 2 is apparent. For we now conclude from Lemma 3 that
s7(07a""plz) < s7(2) , all z , and therefore every finite submatrix of DYA”pI is

variation~diminishing. Hence, by Karlin (3;p.222], o’a~"p! is sr. i

Corollary. If I =J is only infinite (and not biinfinite), then A TP implies

1

DA" D TP, l

Proof. Assume without loss that I = {1,2,3,...} and consider the matrix B € RFXK

13

_ .. gty




with K := {0}yI and

Since A is TP and invertible, so is B , with

1 0
5-1’{ 1 .
0 A

Further, both DXB~'DX and DIa~'D! are SR, by Theorem 2. For k = 0,1,2,..., let €,

denote the common sign of the kxk minors of X8~ 10X , hence of D¥a"'pY . Then, for
any k ,

x-"DK(O,-.-,k) - I ~1 I('l,ooo,k)

D
D 0,e000k A D4,k

and, since these minors are nonzero, we conlude that £k+1 - ek , all kx , therefore

ek-eo =1, all k. ||




"

11

(2]
(3)
f4]
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