
REPORT DOCUMENTATION PAGE STCTIPS

KUtMU7 R 2. GOVT ACCESSION NO. 3 RE C L% RU

S. TYPE OVbrei REP CRT 6 PRIOD CO ERED

RLL-1: A Representation Language ' ehia/<A~
4 Langu a g e e

NO As)6. CONTRACT OR GRANT NUMBER(s)

RuIssl reiner
9.'PTNFORMNT4 ORGANIZATIUN~ NAME AND ADDRESS 1.PORMEEET RJC.TS

Computer Science DepartmentAEA RKUINMES

Stanford University
Stanford, California 94305

It. CONTROLLING OFFICE NAME AND ADDRESS12

Mathematical & Information Sciences Div. ctaer -8
Office of Naval Research, 800 No. QuincyI
Street, Arlington, Va. 22217 43

14. MONITORING AGENCY NAME 6 ADDRESS(II different from Controlling Offie) IS. SECURITY CLASS. (of this report)

~,. ~* *~15Ia. DECL ASS[IFICATION/ODOWNGRADING
-- - SCHEDULE

W6 DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

AppToved for public release;
Distributfon Unlimited

I 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere* side if necessary and identify by block number)

Representation, Knowledge, Language, Self-Description,
Self Modification, Expert Systems

20. ABSTRACT (Continue on reverse aide if necessary and identify by block number) DI
r-A-ELECTE0

D
SDD j AR,7Mt 1473 EDITION OF I NOV 65 IS OBSOLETE,

S/N 0102.LF-014-6601 _____________________

SEUIYCLASSIFICATION OF THIS PAGE (W7Isn Data Nleted)

2 18 0 03

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

im-.

Stanford Heuristic Programmring, Project October 1980
HPP-80-9 (Working Paper)

RLL-1:
A Representation Language Language

by

Russell Greiner
Computer Science Dcptartment

Stanford University

Expanded version of the paper published in the
Proceedings of the First National Conference

of the
American Xssociationi of Artificial Intelligence

(Stanford University, August 1980)

Accession For

NTIS GRA&I
DTIC TAB0
Unannounced 0
Justificatio

By f rL*t. an Vie..
Distribution/ _____

Availability Codes H-euristic Programming Project DI
Avail and/or Computer Science Department F E T

Dist Special Stanford University

Stanford, California 94305 18 19 810
D

DISTRIBUTION STATEMENT A
App-roved for public release,

Distribution U~nlimited

Table of Contents

1. M OTIVATION ... 3

2. INTRODUCTION .. 3

3. OVERVIEW of RLLs...................................... 5

4. EXAMPLE -- Creating and Using a Type of Slot 9

4.1 Definition of "Type of Slot" 9

4.2 Retrieving a Slot's Value (Husband) 10

4.3 Creating a New Type of Slot (Father) 10

4.4. Other Facts Stored on the Type of Slot Unit 13

4.5 Modifying an Existing Type of Slot. 14

5. DESCRIPTION of RLL-1 ... 16
M ain Ideas/Philosophy .. 16

5.1 Units and Slots 16

5.2 Cognitive Econom y .. 17
5.3 Syntactic vs. Semantic Slots 17

5.4 Onion field of sub-Languages 18

5.5 Economy via Appropriate Placement 18
5.6 Clarity of Conceptual Units 19

6. SPECIFICATIONS FOR ANY Representation Language Language 19

6.1 Self-Description .. 19

6.2 All Parts are Modifiable 20

6.3 Epistemological Adequacy 20

6.4 Linguistic Adaptability 21
6.5 Representational Adaptability 21

6.6 Unbiased initial system.................................. 22

6.7 Codification of Representational Knowledge 22

7. COMPARISON WITH OTHER SYSTEMS 23

8. CO N CLU SIO N ... 25

Acknowledgem ents .. 26

(Appendices are listed on the next page)

4.

2

APPENDICES

A. Use of the Father Slot .. 27
A.1 Flow (GetValue U S) really works 27
A.2 How (and why) caching really works 28
A.3 Other Accessing Functions 28

B. Additional Excamples
B.1 Creating a Whole New Family of Types of Slots 30
B.2 Overview of EU'RISKO system. 32
B.3 Creating a new inheritance mode 34
B.4 Epistemological Status 34

C. Syntactic vs. Semantic Slots. Rcvisiced 3 6

D. Implementation Principles
D.1 Make Standard Case Fast 38
D.2 Least Commitment. 38
D.3 Compile Time Macros................................ 38
DA4 Special Slot Values. 3 8

Bibliography .. 41

Included in the Supplernent:

E. Special Units... 27pp
Naming Conventions, Legend, Actual Units, Index of Units

F. Environment .. l12pp
Top Level Functions. Functions needed to Bootstrap RLL-1,
Convenience Functions, Advised Functions, Global Variables

G. Samnple Session.. 6 pp

3

RLL-1:
A Representation Language Language-1

The field of Al is strewn with knowledge representation languages. The language designer typically
designs that language with one particular application domain in mind: as subsequent types of
applications are tried, what had originally been useful features are found to be undesirable
limitations, and the language is overhauled or scrapped. One remedy to this bleak cycle might be
to construct a representation language whose domain is the field of representational languages itself.
Toward this end, we designed and implemented RLL-1,% frame-based Representation Languang."
Language. The components of representation languages in general (sich as slots and inheritance
mechanisms) and of RLL-1 itself, in particular, are encoded declaratively as frames. By modifying
these frames, the user can change the semantics of RLL-1's components, and significantly alter the
overall character of the RLL-1 environmenL,.

* 1. MOTIVATION

Often a large Artificial Intelligence project begins by de,_ .ing and implementing a high-level
language in which to easily and precisely specify the nuances of the task. The language designer
typically builds his Representation Language around the one particular highlighted application (such
as molecular oiology for Units [Siefik], or natural language understandirq for KRL [Bobrow &
Winograd] and OWL [Szolovits, et alD. For this reason, his language is ofL.:n inadequate for any
subsequent applications, except those which can be cast in a form similar in structure to the initial
task. What had originally been useful features are subsequently found to be undesirable limitations.
Consider Units' explicit copying of inherited facts or KRL's sophisticated but slow matcher..

Building a new language seems cleaner than modifying the antiquated one, so the designer scraps
his "extensible, general language after its one use. The size of the February 1980 SIGART shows
how many similar yet incompatible representation schemes have followed this evolutionary path. -

One remedy to this bleak cycle might be to construct a representation language whose domain is the
field of representation languages itself, a system which could then be tailored to suit many specific
applications. Toward this end, we (Professor Douglas Lenat and I) have designed and implemented
RLL-1, an object-centered 2 Representation Languange Language. 3

2. INTRODUCTION

A representation language language (rll) must explicitly represent the components of representation
languages in general and of itself in particular. This technique of self-encoding gives the rl its
flexibility and adaptability: consider the versatility inherent in the programming language LISP,
which also encodes all of its constructs (i.e. programs) within its own formalisms (i.e. as S-
expressions). Like all representation languages, the rll should provide an easy, natural interface to
users. As such, its primitive building blocks are necessarily larger, more abstract, and more complex
than the primitives of programming languages.4

I This should be pronounced "RLL negative one" -- as we feel this implementation does not qualify as a real
representation language language, yet. Section 6 provides the definitions necessary to realize RLL-1'sshortcomings=.

2 This "object-centering" does not represent a loss in generality. We will soon see that each part of the fuil
system, including procedural information, is reified as a unit.
3 As a representation language language should itself be a completely self-descriptive representation language,
there is no need for an RLLL.
4 Technically, an ri is a Representation Language, that is. a "Language about Representation". It attempts to
describe representation, in the same way a VLSI Language is designed to deal with VLSI components. To avoid
confusion with earlier languages, notably KRL and FRL, which have already coined "RL" to mean "Language for
Representation", we gave RLL-1 its second "L".

4

Building blocks of a representation language include such things as control regimes
(ExhaustiveBackwardChaining, Agcndae), methods of associating procedures with relevant
knowledge (Footnotes, Demons), fundamental access functions (Put/Get. Assert/Match), automatic
inference mechanisms (InheritFromEvery2ndGeneracion, InheritButPermitExccptions), and even
specifications of the intended semantics and epistemology of the components
(ConsistencyCcnstrain, FmpiricalHeuristic).

The purpose of an ril is to help manage these complexities, by providing (1) an organized library of
such representation language components, and (2) tools for manipulating, modifying, and combining
them. Rather thn produce a new representation language as the "output" of a session with the al,
it is rather the the rll system itself, reflected in the environment the user sees, which changes
gradually in accord with his. commands.

Rather than design his representation language from scratch, the Al researcher should be able to
use an ril as the "starter" for almost any Al task -- including natural language understanding, ICAI
(Intelligent Computer Aided Instruction), designing expert system, or theorem proving. The
researcher's first step will be to load in his rll, and set its "parameters" to values appropriate for his
domain and application. The ril will then take over, composing the desired new language from
these specifications. If ever the researcher wishes to alter this language, he need only issue the
appropriate command to the rll system, (using the same format he used, for example, to enter new
data) and the language he sees will be modified.

This paper serves several functions. and is intended for several audiences. The first class of readers
include those Al researchers who are looking for such a starcer system, and are intrigued with this
notion of a versatile, self-descriptive system. They should regard this document as an RLL-.
Primer, which describes the advantages and power of an rl, followed by a how-to manual
describing this RLL-I system.

A second (not necessarily dstir.c:) group of readers are researchers interested in the e.,,emologica
and representational issues asscciated with designing and using a self-embedded system. This
memo, therefore, includes sections whica define what we mean by the term, Reoresentation
Language Language, and which show the ways our implementation, RLL-1, handles several
potentially difflcult problems.

We report here on the current state of both our ideas regarding rIls in general. and our RLL-i
implementation. in particular. The beginning portion. sections I through 4. motivates the idea of a
rl, illustrating this description with examples taken from the RLL-I language. Section 3 suggests
the Facilicies an ril must provide, by showing what the RLL-1 user initially sees, and the ways this
environment can be modified. Section 4 steps hrough a long example, indicative of the types of
things RLL-I can do.

This leads up to Section 5, in which a high level description of RLL-1 itself is presented. Section 6
then shows how RLL-l fit into the class of rIls in general, by specifying a set of criteria which any
rIl must satisfy. These rlls are then compared with other systems, of various natures, in Section 7.

The appendices provide many of the details intentionally omitted from earlier sections. Appendices
A. B and C each elaborate some earlier section of this document: A expands the example
prcesntcd in Section 4. B sketches a few morc examples Which use RLL-I. including a coarse
outline of a full application, while C demonstrates a point made in Section 5.3. Appendix D states
a few of the implementation level principles we followed in designing RLL-.

Appendices E, F and 0 comprise a companion paper, [Greinerl. These supply the details necessary

to actually use this RLL-1 system. Appendix E lists many of the "core" units resident in the initial
system. Appendix F describes the RLL-l environment -- including the top level functions along
with other information a novice can use when working with RLL-I. A sample dialogue is presented
in Appendix G, to show in detail how to communicate with ;his current system.

5

3. OVERVIEW of RLLs
or HOW IS A REPRESENTATION LANGUAGE LIKE AN ORGAN?

When the user starts RLL-1, he finds himself in a LISP environment which contains functions
which closely resemble those resident in the Units package [Siefik]5 . There is one major
difference: whereas the facilities Units offered were essentially unalterable, RLL-I's features are
designed for easy modification. If this user desires a new type of inheritance mechanism, he need
only create a new Inheritance-type of unit, and initialize it with the desired set of properties. At
this point, that new mode of inheritance will automatically be enabled, and usable. This can be
done using the same editor and accessing functions used for entering and codifying his domaitn
knowledge (say, VLSI design); only here the information pertains to the actual Knowledge Base
system itself, as opposed to chips and diffusion layers.

The Units package has Get and Put as its fundamental storage and retrieval functions; RLL-1 also
begins in that state. But there is nothing sacred about even these two "primitives". "Get" and
"Put" are themselves encoded as (modifiable) units; if they are altered, the nature of accessing a
slot's value will change correspondingly. In short, by issuing a small number of commands the user
can radically alter the character of the RLL-1 environment, and thereby mold it to his personal
preferences and to the specific needs of his application. RLL-1 is responsible for performing the
necessary "truth maintenance" operations, (e.g. retroactive updates) to preserve the overall
correctness of the system as a whole. As an example, RLL-1 recently "learned" how to deal with a
more "representationally neutral" ([Brachman79]) representation, one which lacked slots altogether.
It was then able to deal with Assert and Match commands in lieu of its native Gets and Puts; and
consider propositions, rather than slots, as its most primitive "container" for information.

An rll is more like a stop organ than a piano. Each stop corresponds to a "pre-fabricated"
representational part (e.g. a slot, inheritance, format, control regime, etc.), which all reside in the
overall ril system. The initial rll system is simply one configuration of this organ, with certain stops"pulled out" -- in RLL-I's case, to mimic useful aspects of the Units package. These particular
stops reflect our intuitions of what constitutes a general, powerful system. For example, some of
the units initially "pulled out" (activated) define various standard inheritance regimes, such as
Inherit-Along-IS-A-Links. which stores on Fido default information gathered from TypicalDog.

We chose to include a large assortment of common slots. There are fifteen types of slots in the
initial RLL-1 system, including ToGetValue, ToPutValue, MyToKillUnit, and ToAddlalue, which
collectively define the accessing/updating functions. Another group of over one hundred types of
slots, including IS-A, SuperClass, BroaderHeuristics, and TypicalExamples are used to hierarchically
organize the units. Over two hundred other additional types of slots are used to interrelate units in
other useful, if non-hierarchical ways -- e.g. NeighboringCountries, RangeOfFunction,
SimilarHeuristics, etc. (Each of these slots presuppose there are units representing countries,
functions, range--;paces, and heuristics. We will expand on this "to every idea, a unit" motif inSection 5.5.)

The number of these slots grow daily. As new domains ara explored, new concepts become realized
as units. It is only natural to relate these to one another; and slots provide an obvious mechanism
for describing and storing such connections. Many such domair-specific slots are used to induce (or
record) an organization among these units. Examples include FunctionalExtension which points
from a (unit representing a) function to those (units which represent) functions over a strictly larger
domain; LocatedlnRegion, which connects each geological region with the larger space in which it is
located (e.g. mapping each country into a continent); or the familiar PeckingOrder, defined for
poultry. Others serve to connect a new concept with other existing concepts -- such as BelongsTo or
NumberOfElements. New slots also emerge as we refine the organizing relationships which were
originally "smeared" together into just one or two kinds of slots. Consider, for example, the way
IS-A, TypicalExampleOf and SuperClass were undifferentiated in A-Kind-Off or the relationship

5 RLL.1 is a frame-based system [Minskyl, whose building blocks are called Units [Stetik], [Bobrow & Winograd].
In the initial RLL-I system, each unit consists of a set of Slots, each with its respective value.

6

between LocatedinRegion and each of LocatedlnContinent, LocazedlnCountry, and LocatedlnCity.

This bootstrapping system (the initial conflguration of "organ stops.") does not span the scope of
RLL-I's capabilities: many of its stops are initially in the dormant position. Just as a competent
musician can produce a radically different sound by manipulating an organ's stops, so a
sophisticated RLL-I user can define his own representation by turning off some features and
activating others. For instance, an FRL [Roberts& Goldstein] devotee may choose to use exclusively
the kind of slot called A-Kind-Of mentioned above. He may then deactivate those more specialized
units (viz. IS-A. Abstraction, TypicalExampleOf, ParrOf etc.) from his system permanently.
Another user whv. did not want to see his system as a hierarchy at all could simply deactivate all of
these A-Kind-Of kinds of slots. He need not worry about the various immediate, and indirect,
consequences of this alteration (e.g., deleting the Inherit-Along-IS-A-Links unit); RLL-1 will take
care of them.

The alterations could be cons-ractive as well as dest,"rctive. We saw above how LocatedlnRegion
can be expanded into more precise slots, and the more dramatic example in which the user
abandoned slots altoet."er, replacing "Get" and "Put" units with others that acted as Assert (store
proposition) and MatCh (retrieve proposition). As another example, a user who wanted to
distinquish between proper and improper subsets could define the corresponding ProperSubSet and
ImproperSubSet slots.

Any representational piece can be altered. In the examples which appear later in the paper we
show how inheritance mechanisms. Formats. datatypes, and the like can been changed. All such":abs" can be manip-l!aced; and it is by selectively pushing and pulling them the user is able to
fabrcate his personalized system. The versatility of this approach will be demonstrated by the ease
with which the rHl can be reconfigured to resemble any currenty-used representation language, such
as K.R, OWL and KLONE:3 after all, an organ can be made to sound like a piano!

To understand RLL-I's self-encoding capabiliv, within this organ metaphor, imagine our organ is
without tabs. Instead of ._hanging the organ's tonality by pulling out some stop, we change its
tonality by playing a cetain prescribed melody. This sequence of keystrokes will have two effects:
in addition to outputting "he expected sequence of sounds, it will aiso cause the organ to undergo a
state change, emcrging, say, a glockenspiel-simulaing instrument. For example, playing the irst
three c.hords of Hindemic's "Trauennuszk" would instruct this organ to go into its "viola-mode".
In this state, the sounds it produces all have a viola-like quality. If the organist then played the
(meta-)scquerce corresponding to "Greensieeves", this organ will gradually ease into its flute-mode;
and so fortn.

The catch is that the melody required for t.he Viola-to-Fktc metamorphosis is different from the
sequence to go from Sackbutt-co-Fiute -- i.e. the (meta-)effect of a given sequence depends on the
current state (i.e. "instrumentality") of the organ. Playing the "Trauennusik" when the organ is not
in its initial state may have no mea-effect at ail' or it may. for no particular reason, switch the
organ into its Oboe state. That is, the sequence which triggers a change to the organ is a Punction
of the organ's state; so as the organ changes, so does its range of permissible alterations.

To be more precise, the organ's state fcllows a Nlarkor process. Eac special keystroke, by itself,
may induces a minor incrcental .hanige: and it is tlhc sum of these small effects that prcduces the
new gestalt.

With this metaphor in mind. consider the complications of converting from slots to propositions.
Initially all the facts in the knowledge base are stored as the values of slots, on various units. The
first change may be to create and store the procedure for assering some fact. Note this collection

6 This panic.lar tasL of actually simulating various existi.g representation langua;es. ha nc, yet been done. It is high
an our ageutia o(things to do. We anucipate it will require the addition of many new componcnrts (and types of
components) to RLL-1. many mcpresenung decomposiUons of the space of knowledge rcpr"sentation orthogonal to the
ones we now use-

7

of facts will still be stored as slots, as RLL-1 is still in its "Slot-Mode". As such, these proposition-
related facts cannot yet be utilized. They can only be "activated" after a host of other units, (such
as Match and AnyProposition, which are also not yet usable) have been created. At this point,
RLL-1 is able to become truly proposition-based. The first operation involves fixing up the existing
knowledge base, i.e. recoding every fact now stored as a slot as a proposition, taking pains to
perform these alterations in the correct order. Only then are these proposition-units -- e.g.
TypicalProposition -- actually usuable, and capable of describing themselves. RLL-1 has, at this
point, eased its way into a new and different format for encoding information. The rIl must have
the smarts to guide the transformation, changing itself as it changes the data. It must know not
only what to change, but when to perform this alteratio.,, and be able to determine and use the
ramifications of such changes as well. 7

The initial RLL-1 system has been designed to be extremely flexible, and able to adopt readily to a
new specified set of conventions. Note that this itself is just a particular convention, and is not
sacred. Nothing prevents a cautious (or masochistic) user from eventually deactivating the
modification facilities themselves. This would effectively lock him into the particular set of
conventions then currently active.

Unlike musical organs, RLL-1 also provides each user with mechanisms for building his own stops
(or even type of stops, or even mechanisms for building stops). An experienced RLL-1 user can
use this system to build his own new components. Rather than building them from scratch, (e.g.,
from CAR, CoR. and CONS,) he can modify some existing units of RLL-1, employing other units
which are themselves tools designed for just such manipulations.

The following examples may help solidify these abstract ideas:

7 As an intriguing research effort. RLL-1 might eventually have the "smarts" necessary to make these changes
automatically. That would be like a smart organ, which knew enough to convert itself into its Lute mode
whenever it started playing a Renaissance sounding piece of the appropriate harmonic range and tonality. A
next step would be the ability to synthesize new sounds when appropriate, as opposed to simply retrieving some
pre.existing instrumentalities. This would be like deciding a cannon boom would be appropriate for the "1812
Overture", based on its openning movements, and generating this new type of sound.

L _L ---. ;

EOsabeth *-~Johann Amnbrosina

JoanChristopn I Johann Christian

Maria Raroara Bach -- aJohann Sebastian Bach Anna Moaelana ''Nilcken)

A A

________I Jcnannhe Gc:stried \emhor Johann___ 0:,it'ann ACtrnia

Karl Phtlti~ohan Sn'rnanue, AlniohanZrsclPia

's-- Jchanna Mna ~ar'neAnna Phlir-n Friedeia lscti'u.hus

N~~~:helni.'ffel -reidriicn Ernstet u~n ~eer
,- r t e chi a nn Au us Ann Car lin Johanni Crsc~on a'l-r~k lc 3% a el n

II ~~Johann Sebastian Atio ________

________I______ Ann Piliin Friederica Sohi

Gornif'N iihelm

Fgure Z S Selected .-iem-oers ct the Bach family. .ith only Mfctnr andl H_!oaf,d siats.
' efers to t:ier Slat the others. - ,j . ;i refer to Husbiand SVots.

9

4. EXAIMPLE -Creating & Using a Type of Slot

RLL-1 derives a considerable amount of power from one basic idea: that each comnponent of a
representation system must itself be explicitly represented. III RLL-1's case, thicse piccs arc
encoded as units, and can be examined or modified as easily as any othcr bit of data in the
Knowledge Base. Thc following example illu~stratcs this point, showing how thc User can pain
increasingly more control over RLL-i's actions, by exploiting his ability first to sce, and then to
alter the definition of a Slot.

4.1. Definition of "Type of Slot"

An associative network conIsists Of units, which are linked to one another, and to arbitrary values, by
labelled arcs, called slots. Figure 1 shows an associate network whose units each represents a
member of the B~ach family, and whose slots are labelled either .lother or Husband Each of these
labels is, in RLL- l's vernacular, a type of slot. There are many things one can say about each type
of slot. For example, the inverse of Husband is Wife- and each type of slot belongs to the class of
types-of-slots. RLL-1 devotes a unit to store this information. Figure 2 shows a few Suich units,
each of which describes at type of slot. Mlany of the slot-defining slotLs shown below are described
later in this scction: they are all defined in Appendix E.

SName: Husband
Description: The male spouse of some woman.
IS-A: (AnySlot)
IToGet Value: DefaultGatValue
IFormal: Single- Entry
D at atype: ManType

(i.e. the entry Is a unit. rep:resentinq a man.)
a) inverse: WPife

SubScit~f: Spouse
AahpsSenseFor: Any woman
Iy ryimaOIC.eation: 4 July 1980, 7:23 PM
%IMyCreator: DaveSmith

IName: lS-A
Descriotion: The list of classes to which 1 AM-A member.
IS-A: (AnySlot)
Format: List-of-Entries

I arat ype: ClassType
(That is, each entry is a unit representing a class of objects.1

b) I nverie: Examples
Osed&,Inneri/ance: Inherit-Along-/S-A -Links

IMakesSerseFor: Any thing.
myrimenfcreation: 1 April 1979, 12:01 AM
[9 yc.-qator: DcugLenat

Name: Cost
Description: The cost of this object.
iS-A: (AnySlot)

IFor mat: Single-Entry
c) Datatype: NoinNegativePealNumberType

(I.e. the entry is a non-regalive real number.)
IDefiredAs: Sum of CostA. CostB, and CostC.
W akesSensaFor: Any sellable item.

IMyTimeOf Creation: 24 April 1979, 5:27 AM
MyCreator: RussGreiner

Figure 02 - Unitscdevoted to the "Husband", '*IS-A,,, and "Cost" type of slots. Many other slots are appropriate for

these units; each of their values will be deduced automatically, if requested.

10

4.2 Retrieving a Slot's Value (HIusbanaO

Many rcprescntational systems have thc view that all slots should be created in exactly the same
way. Others partition thcir slots (or more generally, relations) into a ixed collection of a few basic,
disjoint types; and process all members of a givcn partition identCiclly. As [Brachn=79J points our,
these approaches pos.- a major limitation, and lead to problems galore. RLLI1 is built on the basic
premise that each type of slot should know how it should be handled. For convenience, RLL-1
includes a host of general algorithms, which a slot will inherit by default. These functions arc all
most of the slots will ever need. On the other hand, the user is not constrained' to only these, as he
is free to define his own procedures which dictate how to handle a particular sIlt Later in this
example we will see that RLL-1 provides a variety of tools to simplify this task. Given this
overwriting ability, these default procedures are not at the expense of those slots which require a
more complex process, or those which can utilize a less general but more efficient: set of algorithms.

From this point of view, RLL-i's Knowledge Base fuinctions (in particular, Get'/alue and Purvalue)
can be very simple: To rCtrieve the value of U:S8, GetValue simply goes to the S unit -- that is, the
unit devotcd to scoring information about the S typc of slot -- and extracts; the function stored on
S:TaGee Value.9 Get~alue -zhen applies this function to U and S; and rcturns the value that function
returned. The real -smarts", notice, is distributed to the slots, not the Getvalue Function.

For example, we ma:' ask-~ who was the Hlusband or ;olanna Mlyaria Dannerniaa (rCCepisLite by 4he
unit. JMID). The bunction call (Ge-value '.'ME) -ih~uoand) would First retrieve the function scored on
Husband:ToGetVaiue. and then apply that function to JMID and Husband In the default case.
Husband: To~ret Value Would be oetoultGeiVaiue. Calling oetaultGetvalue en JMD looks for a value
physically stored on the JMD unit. labeiled Husband Examining Figure 1. we see there is such a
value, KE(the unit which reuresc-its Karl Philipp Emmranuel Bach). Popping up. cefaultGecvalue
returns KPE to GetValue, which in turn simply rcaurns tis value.

We ni,-!,t imagine a'nother form for clis Knowledge Blase, in which only mr-,aL-1 c - rtiFlca:es are
szared. instead of liac inks :rom wife to husband. In this czse. '-lusbancd:ToGeiVaiue shiould '1e
filled with the aigor-imt, 7indHusbandUsmrgMarriageLicenses, which would scan Uhe se cf marriage
cerificates. look ng, for one whose "Wife" entry matches its fist irutinenc (here iNID). Findng
such a rartn. F-indHusbanaUsingMarnageLicenses Would return the value wh~ich t'Ild the Hsad
parametcr, which -ervjuwe would theni return. Note that we never "'astcd our time !ookingr on the
JMID unit for a slot we knew would not be there. Constructing such a defnition for Husband is
fairly easy, using the tools RLL'l provides. The following example shows a more complicated way
of finding a slot's YZalue, using thc slot's high 'Level definition.

-L.3 Creatinrg a New Type Of Slot (FatEher)

For obvious reasons, most slocs are quite similar to one another. We exploited this regularity in
developing a high level "slot-defining" language, by which a new slot can be defined precisely and
succinctly in a single C1eclarative statement.

Suppose we wantc to deFtne a rat her type of slot, in the sexist geneological kn~owledlge b.se shocwn ;M
Figure 1. which conta-ins only :he primitive slots MXoher and HitsL'wnd Creating t-his new Father
type Of Slot is easy using this language: we cecate a new Unit called Father, and ill its
Hlighl.evc!Dfz slot with the value (Composition Husband 3/other). "Composition' is the name of a
Unit mn our initial systemr, re.presenting a "slot-combiner" which knows how to compose two slots,

8The expr-ssian, LU:S. is a short hand for (GetValue 'U 'S). which is. by deiiition. the value or the S slot or the unit
U. The itaitzed S follows our convention of italicizing the name of a slot, when it is acting qua Slot. 7his is
distinguished Cfrm the unitalicized S. which refers to the unit which reprcsents the S type of slot.

9This recursive call to GetValue could easily lead to an infinite loop. AppcndL-(A.1 shows how RLL-l sidescps this
problem.

r11

regarding each Slot as a function from one unit to another. 10 We also fill the ncw unit's IS-A slot,
to derive the unit shown in Figure 3.

Name: Fte
IS-A: (AnySlot)

IHichLevelDeln: (Composition Husband Mother)

Figure 93 -Slotsfilled in by hand when creating the unitdlevoted to the"Father" slot. Several other slots (e.g., the
syntactic slots MyCreato,, MyTimeOlCreation) are filled in automatically at this time.

Suppose the user now wishes to determine Karl Philipp Emanuel's Father, i.e., the value Of
KPE:Faiher. The initial knowledge base, shown in Figure 4, (a magnified portion of Figure 1) has
units to represent various members of Bach's family.

I Name: KPE j IName: Mae
IS-A: (AnyMan, ..)I IIS-A: (AnyWoman, ..
Description: This unit represents K. P. E. Bach. IDescription: This unit represents Maria Barbara.

IMother: Mee Husband: JSB

Name: JSB
IS-A: (AnyMan, ..

IDescription: This unit represents Johann Sebastian Bach.
IWife. Mee

Figure 4 - Units representing Karl Phillipp Emanuel. Maria Barbara and Johann Sebastian Bach.

In this case, GetValue asks the Father unit for a ftinction to use to extract the value of KPE:Faiher.
Based on what it was given, shown in Figure 3, the Father unit inherits the default mechanism,
cefaultGetvasue, fur determining a unit's Faiher.'1 A simplified -version of this algorithim is shown In
Algorithm 1 below.

1 . See f :,,'ere is a value physically stored on the Fathier slot of KPE.
I it so. return that value.
I Otherwise, continue:

I2. Get the function stored on Father: To Compute.
3. Apply the function to the unit KPE.

(This should return the value JS8.)
I4. Store this compuzed value on the Father slot of the unit KPE.
1 5. Peturn this comnouted value.

Algorithm .
Deducing the value of KPEs Father.

As there is no value to be found on KPE's Father slot, the test on Step 1 will fail. OefaultGetValue
now must get the value of Father:ToCornpuze, which should be a piece of code, capable of
calculaibng the value Of 3 unit's Father. Getting this value uses essentially the same algorithm as the
one shown above, mulatis mutandis. That is, GetValue recurs, (See Algorithim 2.1-)

1That is, we regard Vthier (ni){ it.and llusbard: [Unit)-{Unit). Thus ".1todherl Goithtf'Nilhclm
DoreLhca L~lisabeth'" and "llusbandt DorethcaF~lisabeth) = %Viihclmlreidmann" are both well deined phrases. rather, as
the composilion of these two functions, will thercforc also map units into units.

11it is important to realize that this procedure is only one of a host of rcuieval mechanisms the initial RLL-1 systems
offers; and that it is NOT hardwircd into RLL-1. Appendix Al1 explains how RLL-1 can support this versatility and
generality, without sacrificing efficiency; and Appendix 11.1 shows an example in which a non-default accessing function
was used.
12 This also relies on the fact that, once again,. the value of the slot's ToGet Value. (here ToCompute:ToGetVnlue) is
Default~et Value

12

1 1. See it there is a value physically stored on the 1'oCompute slot of Father.
I It so. return that value.
I Otherwise, continue:

I2. Get the function stored on ToCompute:ToCompute.
3. Apply that function to the unit Father.
I4. Store this computed value on the 1'oCompute slot of tMe unit Father.
5. Return this computed value.

Algorithm # 2.
Deducing the value of Father's rocompute.

Once again the test in Step 1 will fail, as this is the first time the rather of anything has becn
requested. So onto Step 2 of Algorithm 2. For this. we need thc value of ToCompute: ToCompute.
Algorithm 3 shows the now-familiar procedure followed, in a more general form.

1 1. See it there is a value ph~ysically stored on the S slot of the unit U.
I If so, return that value.
I Otherwise, continue:

2. Get the function stored on S:ToCompowe.
I3. Apply that function to the unit U.
I4. Store this computed value on the S slot of the unit U.
S . Petumn this ccmcuted value.

Algorithm 03.
Deducing the value of U's S.

Binding u to the Unit "ToCornputc', and s to the slot "ToCompuie" in Algorithm 3. we see RLLI1
then asks for the value physically stored on ToCornpuce:ToCo~npute. Fortunately there is a value
there (else an infinitely recurring loop -would ensuc, as the value of ToCompuce:ToCompuie is
required to deduce tlhe value of X:ToCornpute for any X. and in particular for X =ToComnputc.)
The ToCompute 'ufit is shown in Figure 4.

1Name: ToCompute
I S-A: (AnySlot)

I Cezcriotion: S:ToComoule is the LISP functicn used to compute !he value of U:S.
IFormat: SinigleEntry
I atzitype: Each entry is a LISP function.I
I Mdakfessansepar: AnyFunction
I %oamcute: (N(x) (H igh Level Ex oand (GetValue x '4nfLte1eCefn) '

Fgure 4 -The infamous 'ToComou te "unit.

We are now at Step 3, in Algorithm 2. This ToComputc:TbConiptue fuinction is applied to KPE.
Omitting the irrcicvanc details. this uses the value of Fathcr:Hi,-hLeveDe/fh. which. recall, we
specified as "(Composition Husband V~other)" at the start of this example. The ftrction
HighLeve!Expand then parses this high lc%,cl specification into a LISP function -- one which takes a
unir. X, and returns the Husband of the Mother of X. That is, Lhis derived function will follow X's
. lother slot to arother unit, and then return the value of that unit's Husbund slot. This function is
then cached (that is. "physically stored" 13) on Father's ToCompute sIlt as per Step 4 of Algorithm
2, and then returned as the rasult of Father: ToCompte, as Step 5 instructs. At tis poin the
Father unit looks like:

1 NJame: FatherI
I IS-A: (AnySlot)
IHightevel~efn: (Composition Husband Mother)
Iofscription: value is Huatband slot of Mother slot of this unit.
I oComoute! (X (x)-(GetValue (GetValue x 'Mother) -usband))

Figure 0 5.- Later form of the Father unit, after the value of the ToCompute slot has been calculated and stored.

13This caching raciliLy is an essential feature of RLL-I. It is discussed at length in A\ppendix A.2.

13

We now pop back to Step 3 of Algorithm 1. Applying this Father:ToCotnpute function to KPE,
RLL-1 follows KPE's Mother link to MI, and there finds the value of MBl's Husband, JSB. This
value, JSB, is then cached on KPE:Father, and finally returned as the result of this call.

4.4 Other Facts Stored on the Type of Slot Unit

RLL-1 was able to automatically determine the value of every additional slot shown in Figure 6
from the HighLeve!Defn of Father; calculating each (like ToCompute) only as it was needed. Much
of the information RLL-1 needs is stored on the Composition unit, which "knows" about the
composition of twu functions. For example, as the domain of fjof2 is simply the domain of the
function f2, the domain of Father must be domain of Mother, i.e. any person. A similar analysis of
the range of Father indicates that it is simply the range of Husband, i.e. any male person.

Such facts, which describe relevant attributes of this Father slot, are stored on the Father unit itself.
Hence the datatype expected of each value stored in a Father slot is indicated by the value of
Father:Datatype, which Figure 6 shows to be ManType. As Section 5.5 will reiterate, this is, in fact,
a pointer to the "ManType" unit, which in turn holds the declarative and procedural information
associated with (RLL-l's view of) men in general. Similarly the fact that each Father entry must be
a single entry (as opposed to a matrix of entries or an unordered set of entries) is encoded by the
"Single-Entry" value stored on Father:Fornai. The various accessing functions use such
information when dealing with Father's values.

Name: Father
I IS-A: (AnyStot)
I HighLevelOefn: (Composition Husband Mother)

Description: Value is Husband slot of Mothter slot of this unil
Format: Single-Entry
Datatype: ManType
NMakesSenseFor: AnyPerson
Oeinedin TermsOt (Husband Mother)
DefinedUsing: Composition
VerityValue: FVV
ToComoute: ((x) (GelValue (GetV3!ue x 'Mother) 'Husband).

Figure #6 - Later form of the Father unit, showing s-everal slots filled in automatically.

For example, before storing a value of a unit's Father slot, the standard putting function will first
check to be sure the value is of the correct type. That verifying finction is stored on
Father: VerifyType, and had been determined using the Fonnat and Datatype of Father. That is,
VcrifyType:ToCompute is a function which takes a unit (here Father) and returns a value, FVV,
which is then stored on Father: Verify' Value. (This FVV function takes a value, X, and returns T if
X is an acceptable value to till some unit's Father slot -- that is, if X is a single value, which is a
unit which refers to a man.) FVV was constructed using the values of Father:Datatype=,lanType
and Father:Fonnat= Single-Entry.

Since Father is defined in terms of both Mother and Husband, using the slot-combiner Composition,
the Father unit states that a value stored on KPE:Father must be invalidated if we ever change the
value for KPF's .Mother or MIBB's Husband, or the definition (that is. the value of the ToCompute
slot) of Father. Recurring one level, as this Father:ToCompute function was defined using the
definition of Composition, if this Composition: ToConiptte14 value is ever altered,
Father:ToCompute must be updated correspondingly.

Appendix A.2 show that one easy invalidation technique is simply to erase the cached value.
Section 5.2 elaborates this process, which is part of an idea called "Cognitive Economy".

14Each unit which represenits a function has a ToCompure slot, which holds the actual L.ISP function it encodes.
Associating such a ToCompute slot with each slot reflects our view that each slot is a function, whose argument happens
to be a unit and whose computed value may be cached away. (See Footnote 10.)

1]

14

Notice how a user can "extend his representation" by enlarging his vocabulary of new slots. A
similar, though more extravagant example would be to define Favorite..lun as

(SingleMost (Unioning (Composition Sisters Parents)
(Composition Wik Brothers Parents))

Wealth).
"Unioning" and "SingleMost" are two other slot combiners which come in the initial RLL-1
system; their definitions and ranges can be inferred from this example. As before, this information
given by the high level definition above is sufficient (1) to compute any unit's FavoriteAunt, (2) to
determine whether a value proposed to fill this slot in fact qualifies or not, (3) to determine for
which units the slot FavoriteAunt is meaningful and (4) to perform the necessary work to preserve
cohsistency throughout the network whenever some slot's value is altered.

4.5: Modifying an Existing Type of Slot

Any frame-based system must allow the user to create a new type of slot. (This will require but a
trivial declaration in those systems which treat all slots identically.) Few provide the user with a
language to facilitate this task, or the tools required to specify such slots flexibility and concisely.
RLL-I's capabilities in this capacity were demonstrated in the previous subsection. In even fewer
systems is the user then able to modify such definitions. The following example shows how easy
such alterations are in RLL-!.

Imagine someone wishcd to apply our geneological knowledge base to some polyandrous culture, in
which a woman might have more than one husband. In this case, the obvious thing to do would be
respecify the Husband type of slot. to allow each woman a set of husbands. This change would be
as easy to make in RLL-1 as it was to describe here, and could be done as naturally. The user
would simply refill the Format slot of the Husband unit (shown in Figure 2a),) with the value "Set-
Of-Entries".

RLL-1 then uses its knowledge of the format units "Single-Entry" and "Set-Of-Entrics", (in
partcular their differcnces) to do all the rest of de ,work. First, as a set consiszing of one entry is
stored differently than a single cntr!, RLL-1 would first map along the affected units, changing :he
value of each Husburds slot appropriate.y -- so MBB:Husband would be chan2ed from "JSB" to
"MJSB)". (Note the domain information about Husband, stored here in HUsband:.!takesSenseFor,
considerably shortens this scan; it :ells RLL-1 the only units which might be alffcretd are those
which rcpresent a woman.) Next, RLL-1 would examine those other slot types which -night be
affected by this change. Here it would note that, based on Father's cuITnt definition,
Father:Format must be changed to correspond to Husband:Fortnat. This modification would have
similiar ramifications, cause other units to be altered, and so forth. For examiple, the value of
KPE:Father would have to be listified to "(JSB)".

Notice these were the sort of duql, mundane updates a system programmer/maintainer would
usually be called upon to perform. As [Winograa] points out, these are also the most standard sorts
of modificadons made; and it is a real loss to burden humans with so straightforward a task.

With this same ease the user could replace essentially any other slot of the Father unit, and RLL-I
would propagate the changes this evokes. In fact, this facility provides the user with another way of
defining a new slot S (besides usi:g only the Higlt/.evelDefrt): copy an existing siot. (choosing one
which is functionally similar to S) and respecify just those one or two slots of this new unit whose
values arc inappropriate to S. Hence we could have built a HusbandSet type of slot in this
incremental-change fashion: first create a new HusbandSet unit, filled with the slot/ralue pairs
found in the unit Husband. Then change the value of HusbandSeuFonnat to be Set-of-Entries.
This new HusbondSet slot would then perform in the manner we attributed to the changed Husband
slot above: and leave the original Husband slot to do the singular thing its name implies.

A third, closely-related method of creating a new type of slot is to build the slot up in a piece-meal
fashion, by filling in subordinate slots (e.g. Format, Datatype. AlakesSenseFor ToCompute) one by
one. RLL-1 would then integrate these into the desired, working version, which the user may then
use.

Ia

15

The purpose of this extended example was to demonstrate the sorts of things one can do using an
rni. In particular, it should drive home the advantages of stating facts explicitly -- even those which
pertain to processes, such as the inferencing required to rErieve a slot's value. The next section will
describe this particular RLL-1 in more detail.

16

5. DESCRIPI1ON OF RLL-1
Initial "Organ Stops"

This section provides a general description of the RLL-1 system, to two levels of abstraction. The
first half describes our overall philosophy of what an rU should be. The second part is more
detailed, enumerating the particular conventions embodies in the initial RLL-1 system. These
attributes may be viewed as the default positions selected for certain organ stops.

The heart of RLL-1 is its philosophy: keep every component of the system visible and modifiable.
Towards this end, we encoded essentially every representational piece as a unit, so the user may use
the same formalisms to examine and manipulate these that hc uses when dealing with his other
data. The next objective is to construct each of these pieces to be as genera as possible. This is
manifest in two ways: First we designed the Garden of Eden system to be sufficiently versatile that
we imagine many users will be able to use it, unaltered, for their tasks.13 Second. the essential
functions are cxtremely simple. The unavoidable complexities has, instead, been distributed among
the appropriate units, which can be perused and easily changed. For example, all of the
accessing/writing functions (e.g. Getvalue and PutVatue) are trivial -- each simply asks one of its
arguments for the value of a particular one of its slots, and applies the function stored there to thc
arguments passed to the original function. (Appendix A.1 shows this in detail.)

Of course, functions themselves might warrant being stored as units -- certainly the accessing
,unctions qualify, as they each reoresent a legitimate piece or the represcntion. The problem is how
to trick LISP to permit a user to "apply" a unit to some arguments, as if that unit was a function.
At a linguistic level, one might, for example, expect F1drer(tKPE) to return JSB. the value of
KPE:Father. A hack to LISP's evaluator, described in the beginning of Appendix F. achieves this
essential effect. The user can still treat these Functions as he treats any other units -- only now he is
creating or modirying executable processes; and doing so using the same operaors which wvorked on
a'bitrar-v units.

7tc F.al "g!obal" consicdaration is how easy such modifiing operations are. RLL-1 provides a host
of powermul toois. designed to perform the sort of ,manipulacions most users will want to make. An
eyample is the siot deining ;anguage illustrated in Section 4. Such high level specifications should
be round throuohuut a good rll, to enable the user to perform standard manipulations on the
scandard types or units. Like the odier suggestions above, this facility is undefined UNLESS the
parts of the representation the:nsel':es are represented, and changable -- a slot defining language is
meaningless unless one has slots to describe; and impotent unless there are meaningful. usable facts
to assert about what a type of slot means.

There is still considerable flexibility within the philosophical guildelines outlined above. The
fullowing characteristics describe the initial state of the current RLL-. system. when all "organ
stops" are in their default positions. Each user will doubtless settle upon his individual settings,
more suited to the representation envLronment he wishes to be in while consmr.:cting his application
program.

5.1: Unis ind Sos: RLL-I's initial language is basiclly a Frarne-stn-ctur.d system, in vhich
innormatlon is encapsulated into units, where each unit is composed of a ist of slots, each with its
designated '.aluc. This bias is largely for historical reasons, as RLL-1 grew out of the Units package

15 In fact, ror pedagotgi reasons we may describe this system to a user without mentioning its ability to metamorphosize.
Only if she found this system limitng - at the point sh, starts to grumble at RLL-'s inflexibiiity, or worse yet begins
to mold her dam to conform to RLL-I's expectations rather than vice versa -- would she be told she could have
constructed a new languagc of her own specificaions at any rme ',... art she h',ad to do was click her heels together threeLmcs ...)[Ia

17

5.2: Cognitive economy: There are many time/space tradeoffs involved with any complex process.
Caching a computed value -- for example, the Father of KPE -- is only worthwhile if this value will
be used again; otherwise it is a waste of (at least) two list cells. Similarly, it is often expediant to
generate and retain multiple representations of some fact, using each for a particular purpose -- for
example, using the source code for reasoning about a function, but actually executing the
corresponding compiled version.

RLL-I's basic approach is to begin with a minimal collection of facts, sufficient to compute the
other facts -- note this bag must include not only (at least) one version of each necessary fact, but
also the mechanisms required to deduce the other values. If a new form of the data is needed, it
will be computed automatically. In fact, the user need never know whether that value was
laboriously calculated, or merely retrieved.16 RLL-1 then explicitly considers whether or not to
store this new information; and if so, where it should be stored. The retrieval algorithm must
cooperate, by examining the storage location before considering calculating this value; in this way
storing a value insures that it will not be recomputed. (Note that Algorithm 3 in Section 4.3
demonstrates this: it first checks if there is a value physically stored in U:S; and attempts to

4(re)compute this value only if that location is empty.)

For this procedure to work correctly many other parts must first be in place. Evaluating this
space/time tradeoff requires a nontrivial process. RLL-I delegates this computation to the function
which fills &i slot's TcCache slot. Thcre arc cucntly several pre-defined functions from which the
user may chose, all shown in Appendix F. (Of course. the user always has the option of
constructing his own.) Another concern is how to maintain consistency among these redundant
pieces of information. Appendix A.2 shows one standard way of invalidating a no-longer-correct
value: and Appendix B.2 shows an additional use for this facility. The final major problem is
constructing the minimal set of facts, refered to above. This Garden of Eden must have enough of
the essential funcions to calculate all the others; and include all the parts necessary to modify itself.
For example, Section 4.3 shows why it must include ToCompute:ToCunipute (at least if the standard
default accessing functions are used).

As with other RLL-1 processes, de user can see just what will happen, and how. Storing the
caching information on the ToCache slot of type of slot is an example of this explicitness. There
are also hooks now in place for upgrading this into a more complex processes, such as the one
outlined in Appendix B.2. which have not yet been used. This whole approach is labelled Cognitive
Economy in [Lenat, Hayes-Roth & KlahrJ, and is similar the memo function idea discussed in
[Michie].

5.3: Sk-ntactic versus Semantic slots: The usual definition of a representational scheme is a structure,
usually symbolic, which in some way reflects what actually happens in the real world. The nodes in
most semantic nets. therefore, are intended to represent some real world entity -- i.e. something
which lies strictly outside this (in-the-computer) simulation model. For efficiency reasons, a slightlyaugamented interpretation of "model" is required to understand the units Used in RLL-I: In
addition to facts abut that entity outside this system, each unit is expected to house various bits of
information which pertain to this particular unit. as a unit within this system. Hence, the usual
definition of "the world out-there" has been extended to it.lude our 'A ithin-the-compu ter structure.
This is a hack, and is, epistemologically, quite troublesome.

Essentiall,. RLL-l simulates a meta-leel KPEUnit -- one which represents the unit "KPF", the way
"KPE" represents a unit in the real world. This logically distinct unit is physically merged into the
KPE unit. This leads to a number of complicated situmaons. which \e have worked through, one
b% one. One non-trivial issue revolNes around inheritance. For example. KPE should inherit values
for many slots from TypicalMusician. such as Instmrments. Birthdate, and Si:e: but nor from slots
%hich refer to TypicalMusician qua data structure -- e.g. slots such as .\umerOJFi!1edlnSAots and

16 'An ap .c priate -mezpr is the ref~gm'or light -- which is ala.%.% on. e'.,'Jme .ou look. T.is !aid-back "if-
n."cSe -::"d e is not ' I.:. peszit.e approzach - one could. or cxar, ple. cc;rp-t such alues at irst oppornunity, ina "',kn-;'Wci7 tnner.

I

DateCreated RLL-1 treats thcse two classes of slots differently, e.g. when initializing a new unit.
Appendix C justifies why we merged these two logically distinct units into one physical one, and
then stecps through the creation and initialization of a unit, to demonstrate how these two kinds of
slots are handled separately.

5.4: Onion field of sub-lanua-es: RLL-1 contains a collection of features (e.g., automatically
adding inverse links, and unit initialization routines) which can be individually enabled or disabled,
rather than a strict linear sequence of higher and higher level languages. The partially ordered set
this forms is more like an onion field than the standard "skins of an onion" layering. We have
barely begun the ;hore of designing and implementing additional facilities; and incorporating each
at the appropriate layer of the appropriate onion. This is, obviously, an on going task. RLL-l does
provide the facility for physically storing a group of units into a clump, called a Knowledge Base or
KB. The user can then load in just those KBs which are necessary for his task; these will
collectively define his current system and language.

5.5: Economy via Aoprooriate Placement: Each fact is placed on the unit (or set of units) which
are as general and abstract as possible. Frequently we create new units, or even new classes of
units, to house this general information. In the long run, this policy of storing information towards
the trunk of the tree, rather than on the leaves, will reduce the need for duplication of information.

Standard proprt'!r inheritance is one example of this idea. Diagram # I in Appendix E shows some
of the classes which RLL-1 contains. There are classes which represent, among other things, classes,
prototypes. slots. datatypes, formats, inheritances, and a.Inctions. Each of thcse class units represcnts
the set of tiese members, e.g. AnySlot which represents the set of all slot. The typical example of
each class, e.g. TypicalSlot, can be used to store facts common to all members of this class. So, for
example, the fact that a slot is a function which maps from a unit onto a value is stored on
TypicalSlot. and can be inherited, as needed, by any unit which descends from AnySlot -- that is,
by any individual slot, such as Father.

Examining Figure 6. shown in Section 4.4, we see that many of the values stored on the Father unit
arc actually pointers to other units. For example. Father:Datatype points to the unit ManType,
which codifies RLL-1's view of men: and Father:Fornut leads to the unit Singie-Entr,, which
"knows" how to deal with those slots whose value is a singleton, Basically the chunks of
information stored on this Singe-Entry (respectively ManType) unit collec.ively help define ,,hat it
means to be a single atomic value (respectively a man).

These format and datatype units represent the '"logical placement" for these morsels of information.
It is correct to assert that RLL-l views List-of-Entries as representing "Listiness". in the way
"ManType" encapsulates facts about "manishncss". We saw in Section 4.4 that VerifyType ,,,as able
to use this information to create a function for type checking- and Section 4.5 demonstratcd that
RLL-. could reason Ibout such single:on versus set values. RLL-1 can also exploit information
derived from th, ,: ganizadon of these units -- for example, the fact that ManType is a SubDT of
both PersonType and MaleType helps to specify "mannishaess".

Another slot, such as Cost. can also refer to this format Single-Entry: as might a LISP function such
as CAR. "%anT,.,pe" is also general enough to be widely used: as the datatype of Uncle or
.sCone.,ntibicCIau:misI~ig, or as part of the domain specification for the slot IVifie or Sired
(which maps a man to his offspring). This idea of appropriate placement of facts allows RI.-I to
store pertinent Facts in this one well-defined location, rader than smearing such data throughout the
Knowledge. Base.

These format units are designed to house everything we may wish to say about that Format: and so
may be used for many other purposes, in addition to those mentioned above. A fact on the Set-of-
Entries unit indicates that a set does not contain repeated elements. This fact is, of course, relevant
for type checking. It is also used to construct the function which adds on a new element to an
exisung set -- instructing that function to add on an element only if it was not already there. Note
that List-of-Entries has no such caveats, as values may be repeated in a list. We will see in
Appendix D.A that the empty set is stored as NcEntries; and this fact is housed, declaritively, in this

19

same Set-of-Entries unit.

As List-of-Entries is charged with storing all the facts which relate to (RLL-1's definition ot) lists,
modifying this List-of-Entries unit is sufficient to correct or augment any of the format-rclatcd
characteristics (such as value verification) of any slot whose format is a list.

Another example of this idea is the use of appropriate conceptual units:

5.6: Clarity of Conceptual Units: RLL-1 can distinguish (i.e. it has devoted a separate unit to each
o0 the toUowing concepts: TheSetOfAllElephants, (whose associated properties describe this as a
set -- such as #OQfilembers or SubCategories), TypicalElephant, (on which we might store Expected-
TuskLength or DefauhColor slots), ElephantSpecies, (which EvolvedAsASpecies some 60 million
years ago and is CloselyRelatedTo the HippopatamusSpecies,) ElephantConcept, (which QualiflesAsA
BeastOfBurden and a TuskedPackyderm,) ArchetypicalElephant (which represents an elephant, in
the real world, which best exemplifies the notion of "Elephant-ness"). It is important for RLL-1 to
be able to represent them distinctly, yet still record the relations among them.

On the other hand, to facilitate interactions with a human user, RLL-1 can accept a vague term
(here, "Elephant") from the user or from another unit, and use context to automatically refine it
into the appropriate more precise term. While this appears a purely linguistic feature, it is vital for
the representational system to allow this flexibility as well. For example, a term which is --gardedas precise today may be regarded as a vague catchall tomorrow; and RLL-1 should have the

facilities to perform such a modification easily.

RLL-1 readily accommodates distinct representations; but has not yet addressed the linguistic
problem of automatic disambiguation; nor built in tools for "expanding" a unit into its more precise
senses.

6. SPECIFICATIONS FOR ANY REPRESENTATION LANGUAGE LANGUAGE

The following are some of the core constraints around which this proto-rll, RLL-1 was designed.
One can issue commands to RLL-l which cffcctively "turn off' some of these features, but in that
case the user is left with an inflexible system we would no longer call a representation language
language. The first five points are fairly rigid guidelines for the overall rtl system, while the last
two are vague wants, pertaining only to the initial system. Further details may be found in
[Genesereth&Lenati. The "current status" part which concludes each sub-section should indicate
whether RLL-1's satisfies this constraint or not- (Recall the meaning of the "-1" in RLL-1's name.)

6.1: Scif-descrition: Every part of an rll system must be visible; every one of its components, from
individual slots and datatypes, to modes of inheritance, and even the data-accessing functions (e.g.
GetValue and PutValue) themselves, must be explicitly represented within the system.3 To avoid an
infinite descent, (of having to describe the tools used to describe the tools which are used ...) it is
essential that these description use the same formalisms that the representation uses for its other
data -- in RLL-I's case, Units and Slots. To be self-descriptive, the rll must be described in terms
the system itself can understand and reason about. A system may be described using LISP code,
for example, only if the system has already axiomitized t 7 facts about LISP.

Although this LISP code might satisfy the self-descriptive criteria, higher level constructs are
required for the user to readily be able to reason about the behaviour or characteristics of some part
of the system. As the process which translates from LISP to more natural form is a part of the
overall self-described system, it will be well-described; and hence the higher level which resulted
from its execution will also be well defined. In this manner we can bootstrap to successively higher
level, more perspicuous, primitives.

These "axioms" need not be rormal predicate calculus statements. We do insist, however, that this specification be
versatile and have an unarnbiguous interpretation.

20

This approach has several intrinsic virtues. First, it guarantees that even complex operations, (such
as the creation of a new Unit, or the detcrmination of some Slot's value by deffault) are transparcnt;
and does so without affecting the range or versatility of permissible techniques. This visibility also
provides the user with the opportunity to modify the parts -- a task not possible if these picces can
only be viewed as black boxes. This requirement is discussed in the next subsection.

Current status: While we have encoded essentially all of RLL-1 in its own formalism -- i.e. as
units -- we do not feet this system is truly silf-descriptive. One problem is that we (and hcnce it)
do not have the vocabulary to describe what RLL-1 does or how it really represents a fact, in terms
of useful well-defined primitives. While RLL-1 uses slots, for example, it does not undcrstanis
what they are: certainly not to the level that it could reconfigure itself into a proposition-based
system unassisted. In addition to the many things which are simply not described, there are many
places where a description has been bcgun, but bottomed-out with primitives which were not
themselves adequately defined. An example of this is RLL-I's attempt to specify functions: this
stops at the level LISP code. whdch RLL-. is not yet able to reason about. To be sclf-descriptive,
RLL-1 has either to develop a set of well-defined primitives above this LISP level 18 , or gain
competency in reasoning about LISP itself Either of these tasks qualifies as a major research effort.

6.2: All oarts are modifiable: These pars must not only be visible, they should be alterable as well.
As these parts really represent the rhl's operations, performing such changes will actually change the
rIl system :.:'e!f.

The question of how the user acually performs these modifications, while secondary, is an
important concern. The guarantee given in the last subsection -- that these parts are encoded in the
same formalism used f'or any other bit of data - means these alteration can be made using the same
tools which serve to alter the user's domain knowledge. It does not. however, mean such
adaptations will be easy to make. For example, much of RLL-1 is written in LISP code. While
this is visible, it is not at a level which facilitates easy modifications. RLL-I's approach has been to
provide the user with a collection of powerful :ools, designed to perform certain standard
manipulations. Section At demonstrated one type of tool: high-level languages. The user can make
a small change to this level of description, and RLL-1 will automaticaily propagate this change
down to the 'el of LISP code. One can thereby trivially clange :1c behavior of that part of RLL-
L

Current sttus: Te requirement of self-description is obviously a prerequisite for this attribute --
how can you change any part which hasn't been described? Similarly there must be a connection
between the unit and what it proports to represent -- otherwisc a change to that descnption unit will
have no effect on the overall system. As RLL-1 contains many facilities which are not fully and
accurately described, for both of these reasons, it is not yet self-modifiable. There are many parts,
including slets, processes, functions, formats, datatypes and inheritance modes, which have been
auLhentically encoded as units and can be readily changed. Much additional effort is required to
formalize many of the oc.her components.

6.3: Eoistcmoloeical .-\decu cv: The requirement is simply that the rli be Turing equalivalent -- i.e.
trat its processing power not have any obvious limitations. This guarantees that the reprcsen.tation
language itself ,vill not have any intrinsic restrictions on what a user can represent This
spccification is automatically satisfied by any system ', hich contains a language :ikc LISP as a
substructure.

Current status: Trivially achieved, as RLL-1 can always falls back on its LISP underpinnings.

Notice this epistemological issue does not address the question of how the data is actually encoded
internally, or how it will appear to the user. The next two sub-sections discuss how the rll and the
user, respectively, view the information.

18 We may use rule-{ike chunks of procedure knowledge as he primitive level. Each of these would be encoded as a
unit. and contain both declarative and procedural information, as well as a precise "aomatic" description. Appendix B.2belins to illustr'ate those entities.

Li A

21

6.4: Linguistic Adaptability: Not only must the rlt system be capable of expressing any statement, it
should be able to do so in any manner the user wishes. That U;, if the user wishes to encode his
knowledge as units, the rlI should not force him to use prod, :on rules. The actual language in
which the user describes the task should be based on (t,<. user's perception of) a natural
decomposition of the problem, unhampered by the rll. The reasons for such user-interface
considerations will be readily apparent to anyone who has tried to write a LISP program in Fortran.
Although LISP and Fortran are epistemologically equivalent, each handles the data in its own
manner. Things which are trivial to express in LISP may be next to impossible to encode in
Fortran; and (conceivably) vice versa.

In an attempt to sidestep this limitation, many systems come equipped with a single "universal"
dialect; while others are built conversant in a host of languages. In either case, the resultant system
will, (by definition if not by construction) be adequate for every task the designer could envision.
There will, however, always be other types of tasks, which the designer had not considered, and
hence not designed for. There is also the danger this particular designer may have some strong
bias, not shared by the future user. Besides, such hard-and-fast built-in specifications are contrary
to rl's basic "open-ended and extensible" philosophy.

This requirement is simple: permit the user to define whatever language he wishes. The rll will, of
course, provide the tools and mechanisms for such creations, as well as a library of known interfaces
which the user may use or modify as he sees fit. in effect, we insist that the ril's interfaces be as
transparent and modifiable as the rest of its operations. (Hence the requirements made in
subsections 6.1 and 6.2 essentially subsume this argument. Note further that the requirement stated
in 6.3 insures this will be possible, as any universal Turing machine can be programmed to simulate
any language.) In this way, the representation language can adapt to the user's idiosyncrasies, rather
than vice versa.

Of course, the user must be able to describe such a language to the rl, and this specification must
be in terms this rll can understand. The obvious medium for this communication is rll's initial
language. Here, indeed, the user must conform to some externally imposed set of conventions, but
only long enough to deliver his medium-changing command.

Current status: RLL-1 is currently mono-lingual -- it can only receive and convey information in
tcrms of units and slots. Although the user is free to code up his own vernacular, RLL-1 does not
yet have the tools and basic high-level constructs which would make this task easy. This
requirement has been postponed until the problems and issues relating to representational
adaptability (next subsection) have been seriously addressed and answered -- we currently believe
this linguistic mallibility should come for almost nothing. as a side effect of making RLL-1
represenrtationally universal. Arguments suggesting why this should follow appear below.

6.5: Representational Adaptability: The last section insisted that rl be able to present the
information in %hatever form the user desires. This need not correspond to how rl, internally, sees
the data. This is comparable to finding a person who speaks in English, but thinks in German. An
rl could similarly fool the user: while it "spoke" in his language, it might actually process the data
using some other representation.

Once again, this concern asks who should decide how the rll should process. Clearly the rll should
be as flexible as possible. For example, it should be able to "think" in terms of wffs, production
rules, or conceptual dependencies, as the situation warrants. As before, many existing systems
provide one "universal" representational schema. or a fixed collection of diverse structures. This
approach seems short-sighted, for reasons isomorphic to those presented in the last subsection.

To insure that an rll be able to represent the data internally in any form the user wishes, we once
again place the responsibility of its design in his hands. As before, the initial rl should include a
stock of very general processes which the user can then mold into one more to his liking. Imposing
any additional system-convention inherently violates this goal, and may force the user to encode his
data in awkward or unnatural forms. (Of course, any user may still insist on using his own,
arbitrarily kludgey representation, if he wishes. The point here is that he alone is accountable for

22

such messes, and not the ril system.)

Current status: RLL-1 isn't yet clever enough to deceive the user. Its single unit./slot organization is
all it is currently equipped to use. As other representational strategies are designed. RLL-1 will
have to be told how to translate from that representation into RLL-I's Lingua Franca. We feel this
translation process will eventually have other applications: First, it should provide the framework
needed to simulate one language using another. It may also provide RLL-1 with the information
necessary to converse in this tongue; thereby achieving the goal posed in subsection 6.4.

6.6: Unbiased initial system: The bootstrap rl, i.e. the r.presentation language initially handed the
user, is special in several repsects. First this is usually the Lingua Franca for subsequent
languages -- that is, each will be defined using terms described and defined in this initial language.
Secondly, it is in this language that the rIl system itself is encoded.1 9 For this reason, it should be
as perspecutive and general a language as possible. Any bias here may adversely affect any
representation language created on top of this underlying representation language; the way a faulty
machine instruction can only be detrimental to any program which has to code around it.

Current status: As everyonc has his own criteria for cleanliness and naturalness, this is more a
subjective request than a hard-and-fast requirement. This hedge notwithstanding, we do not feel
RLL-1's initial system, based on units and slots, is not as unbiased as it should be. Many facs,
such as those resented in Appcndix 13.4, arc clearly awkward to rcprcsent using these con- ntioas.
Subsequent systems can avoid this deficiency by using more general n-ary propositions.

There are a host of secondary concerns, which can be used to judge among several "equally
unbiased" rils. One is efficiency -- an aspect none of these seven points directly addresses. Ease of
understanding is another important point. A final related issue asks what equipment should come
with the initial system. A system which includes only the minimal set of representation pieces,
including just those cools which are absolutely necessary to alter the system would clearly sais:' the
first six points above. Th1e next subsecton addresses our view on this question.

6.7: CodiFication of Rereentation Kno,,iedee: Many of these subsections might seem -o imply tiat
aimost anything mrgn:t quali) as an 01, as tne user is pe:imitted. (indeed cn:couraged!) to design
both its ,xternal appearance and its internal operations. One may seriously question what, if
anything, distinguishes an rll from, say, LISP. In terms of power or ftexibility, the answer is
nothing. A more meaningful response tirst examines the question of what separates LISP from the
machine language in which it was written. The answer here is that LISP contains many useful,
well-dcsigned tools -- such as chunking commonly used bits of code into single instructions, (e.g.
MAPC) or providing an enviroinent which does nice things like spelling correction. Similary an rU
is expected to offer the user nice, natural pieces, along with a good user interface.

It should provide txonomies of useful representational pieces, including a tree of usable
inheritances, miscellaneous matchers, powerful data retrieval functions, etc. While not really
required. an rll may also provide a structured array of other usefl entities, such as general world
knowledge, a facility to exploit analogies, or a clear consistent model of function incc"tion.
Subsections 6.1 and 6.2 insist these should be easy to create and modify: for this, too, t.he ril should
provide the necessary tools. This entire collection of parts and facilities correspond to all of the
stops of the organ, using the analogy defincd above.

Current status: This is some of the most exciting (and endless) research we foresee; as only a
smattering of representation knowledge has yet been captured. 6

19 This is NOT to imply that the underlying rcpresentation. in which the representation language language itseff is
described, must conformn to that language, any -note than i PL/I interpreter must be ,nt:n in 1'L/I. It is enough that
it can simulate that target language. (Of course, there are big wins derived from actually boetstrapping from a subset of
the target language, as LISP and RLL-1 actually do.)

23

7. COMPARISON WITH OTHER SYSTEMS

The previous two sections described our particular rl, and defined what we meant by the term
"representation language language". Given these models, we will now try to compare our system
with various oher systems; or rather, describe why analogous systems are difficult to find.

By its nature, RLL-1 is able to wear several hats, depending on who is viewing it, and what task this
user has in mind. It may therefore useful to first describe what RLL-1 is not. It would be a type
error to confuse RLL-1 with a reasoning system, (e.g. Mycin's inference engine) or with some
mechanism devoted to communicating with a user -- such as a Question/Answer-ing or Natural
Language Understanding facility. It is, instead, the language on which such applications can be
built. As a general tool, it should not be restricted to competency in some single task. (That is
unlike PUFF [Kunz et al, whose single task is quite well defined: it was designed exclusively for
diagnosis of pulminary lung disorders.) Nor is it only applicable to some particular process or
strategy, as compared to systems like ENMYCIN [vanMele], which can only utilize a backward-
chaining rule system. RLL-1 is, more or less, at the level of the underpinnings for such systems --
in the relation that a BlackBoard [Ennan&Lesser] model is to Hearsay systems [Lesser&Eriman], or
production rules are to Mycin [Shordiffe. That is, RLL-1 is a formalism for representing the
knowledge which is to be used.20

Much of th; paper has pushed the idea of "RLL-1, The Ultimate Rcpr.Scntation Language".
While this RLL-. qua rl (rl=Rcpresentation Language) viewpoint is certainly accurate, it appears of
a different genre from most ri's, in that it is designed to be changeable. This immediately
eliminates those languages which have a host of specific built-in features (perhaps to facilitate
performing some particular task efficiently,) from meaningful comparison. This camp includes Units
[Stefik], FRL [Roberts&Goldsteinj, OWL [Szoloviizj, KLONE [Brachmna], DB [Genereseth]
[,I[ackinlay&Genesereth], NEIL [Fahlnanl], Conceptual Dependency Graphs [Shank] and OPS5
[Forg0'&1fcDermou].

These languages, however, are comparabie with the initial RLL-1 system. This, recall, is thelanguage each user sees when he first loads up RLL-I. (and is further specified in subsections 6.6
and 6.7). The user can then design his personal rl by molding this mallible language. This
comparison must be made alang several dimensions. The first concern is "power" -- what tasks can
be performed in each of these systems. This question soon becomes uninteresting, as the
"epistemological power" of all of these systems is clearly identical -- but so is LISP's or, for that
matter, a Turing machine's. Time and space .fficiency is another issue. This is rather hard to
measure, as it is quite dependent on the actual task chosen on which to bise the comparison. Any
individual rl will, of course, perform better on some tasks than on others. For example, much of
R.L-1 deals with functional specification, and so we would therefore expect this initial RLL-1
system to do well on any task which requires this type of expertise. On the other hand, any of
these other systems could undoubtedly outperform this bootstrap RLL-1 on aly of the tasks it was
designed to perform. Altogether, RLL-I would probably lose to any other system, counting the
number of types of tasks which one can do more efficiently than the other. This is by design:
RLL-1 was built for generality and flexibility, not for efficiency. This is no real loss to the overall
RLL-1 system (i.e. beyond its bootstrapping neonatal self, as this system has the ability to
reconfigure itself into a faster form, if necessary. So this deficiency is really not that great.

Another attribute is versatility: How many tasks, and types of task, can any of these rls handle
"cleanly"? Using that "cleanly" hedge makes this characteristic quite hard to define, at least
quantatively. One measure of elegance is the absence of extraneous and artificial "things" (e.g.
units, rules, arrows) and naturalness of the remaining compoacnts. (By artificial, we mean entities
not intrinsic to the problem, per se. but which were created solely to enable the system to do the
"right thing".) For rather circular reasons. RLL-1 would probably force its users to endure fewer
artifical units than any of these other systems. That is, RLL-1 permits the user to design his own

20 Notice RLL-t is also a mechanism tor building such tools: as well as one such tool.

24

construct~s, and what user would intentionally employ an entity r~c personally considers Unnatural or
extrancous?21

Like KLONE [Brachnian 78], Lunar [Woods], and DB [Geneseret:]. we have autrmpccd to address
various epistEmolgical issues. This is a different cut at what a representation language should do
from the view taken by OWL, [Szolovits et alj rescarchers, who, following (Quillian4's lead, were
concerned primarily with linguistic issues, or from the psychological motivation which inspired
much of KRL's early work. (An excellent article [Brachinatt791 addreses and helps delimits these
diverse perspectives.)

Many preVious ris have attempted to utilize such a self- referencing ability, for example, DABA
[Sandewall, KRL [Bobrow&Winograc4, Omega [Hesviit et aLl and [Levesque&Alylopoulos]. These
approaches seemed to lack the two mportant ideas shown in subsections 6.1 and 6.2: First, that the
elements of a representation can and should be viewed as simple data, and handled in the same
manner as domain facts. Second, that this representation itself should be modifiable.

T'hese are two of LISP's biggest assets -- as the code it runs is in the same form as all of its other
data. (as S-expressions.) LISP is abie to modify its own codc, and thereby bootstrap indefinitely.
Efficiency might seem one reason to avoid this approach. RLL-1, however, has solved this problem
using a second major idea, Cognitive Economy, described in Section 5.2 This allows the system wo
contain many aquivalenit forms of its primitIves -- ing more dclaraiivc versions for iispccton.
while executing arbitrarily-effficient ones.

There is another whole class of systems which are closely related to rls, proper. These are programs
which attempt to symbolically represent actions, and be able to reason about (i.e. propagate) their
effects on thc rest of that formalized chunk of the world. Thiis category includes tnith rnaintnenrce
systems. (e.g. T14S [DoyielIAMORD [de~leer et a4]) their predecessors. (such as Strips
[Fikes&VIISSOn], Planner [Sussman) and Conniver f[l~cDcnnoa&SussmranJ) program verifiers,
(1-rcluding [Bledsoe) and [Manna&WVa~dingei]) and proof checkers (like FOL [Weyraucj,2-) To
Insure that. every appropriate update is performed in response to some action, the program must
contain a fairly complete model of that segment o6 the world. It will, in addition, supply the user
with1 a deductive mechanism for determining what action Caused, (or was responsible for) some
result: and rules which indicate what should happen as a premise is posited or retr.-cted. (This
deductive inechanism was not always built-in. Languages like Conniver- instea~d provided an
assortment of tools, such as a slot's IlVe.-ded facet. The user was expected to assembice these into
the particular deductive strate~gy he wished.) This entire truth rnairntanence problem reduces to a
rather itraightfonvard search when the space is well-defined; the complicated part is determining
that initial Set-up. This operation is vastly simplified if each of the components, including the
cur-ent and hypothesized states, type of responsibility pointer. etc., is made explicit and
appropriately encoded -- i.e. if RLL-l's basic paradigm is followed. Indeed, much or the machinery
necessary to '~L11own the aporcelinks and pef mthe correct udtsis inciuded in the
initial RLL-1 system.

As programs become more complex. :htir designers began building increasingly mere powerful tools
to aide in the construction and recoding processes. These tools are designed to perform the
mundane rrnslation instructions, given in a high level, natural langulag,. into code the machine can
understand and excuteC. Simple programming languages, which cunvertcd the user's commands
into maichine code, were the First steps in this direction: these were t'ollo\%cd by more sophisticated
languiges. which did mrore for the user per unit keystroke. Two types of Al systems are designed

21 The carcful reider may point out here Niat this comparison was to be with thc inirWa RLL-1 sys~em as it is presented
to the user (1). and not with RLL-l after that user has modified it Q). The point where thc syszern (1) becomes .2 system
(2) is mrnhcr Luzzy, in that any rl must allow the user to add data: and in RLL-l's case, this data may cause the
representation itself to change.
22 MFrTAFOL. an extc-ision to the 17OL system,. was one of the rt. systems which. mnaog.cd to en.code its operations
within its own rormalisms. It. as such, playcd a major role in this RLL-t developmenit. by providing a proof-by-existcnice
that such' a system was indeed possibie.

25

to go one level further in providing the coder with a more abstract language for describing a task:
Automatic Programming (e.g. [Green et al.]) and Expert System Building Systems or ESBSs (dia
AGE [Nii&Aiello], EMYCIN [vanMelle], and EXPERT fWeiss&Kulikowski).

Although RLL-1 has been used to build an proto-expert system (see [Hayes-Roth, Waterman &
Lenat]), it is still difficult to compare it with these other systems. The major difference is RLL-I's
self-modifiability. While all of these systems can assuredly construct one type of system, cleanly
and efficiently, none of the other systems were designed to modify itself.

Basically, these tools appear to overlook the fact that they themselves are rather complex programs,
which may be exceedingly difficult to modify without assistance. Consider what would be required
to change the specification of the target language, even ever so slightly. For RLL-1, such an
alteration would require editing a few (hopefully one) units; as opposed to actually going into the
guts of the ESBS's code, and massaging the LISP code found there. It would be useful to build
systems which "knew" how to construct automatic programming systems, for example; or which
were actually experts at constructing ESBSs. This seems to lead into an infinite descent. The

6 obvious solution is to insure that the program-generating system is capable of generating itself. As
the program can reason about its own operations, (in the same way it "understands" other
programming constructs) it can serve as a tool capable of modifying itself. The CHI automatic
programming system, described in [Phillips], is also based on this idea.

-Tis brief survey of Al representational systems (i.e. systems designed to facilitate the constnction
and manipulation of other large and complex bodies of knowledge) was intended to convey our
basic philosophy: That making the internals of a system explicit, self-describing, and most
importantly, modifiable,23 is a big win. Such systems will remain viable and in common use
considerably longer than their opague cousins, and will even be easier to use throughout their
lifetimes. Many confusing issues are solved, or simply become non-issues, when the system itself no
longer has covers to hide under. For example, when the interpreter is visible, there is no longer
any question what the semantics of, say, a link really means -- it is simply what happens when one
explicit well-defined structure, called the interpreter, evaluates another well-defined construct, the
link.

8. CONCLUSION

The RLL-1 system is currently at a plateau -- stable and usable, but by no means complete. It is
only through continued use, by a wide cross section of researchers, that optimal directions for its

future effort will be revealed. Requests for additional documentation and access to RLIL-1 are
encouraged. We see a myriad of future directions for RLL-1 to take. We have attempted to
indicate throughout this memo what has been done, and what is still pie-in-the-sky; these are
especially noted in Sections 5 and 6. In addition, RLL-1 should one day be able to do all the
examples suggested in Appendix B. Much future research, in a number of sub-disciplines, will be
required before it can successfully act in a "Eu dsko-like" manner -- in particular, effective
utilization of rules and ability to derive and use apt analogies and super-concepts. Beyond all of
these, a complete RLL-1 system should have a sophisticated front end, capable of handling the
linguistic nuances associated with data (dare I say "Knowledge") communication: and be truly able
to integrate diverse representational pieces, at a level beyond the primitive one it has now achieved.

The additional tasks fall into many different categories. Some merely require a large amount of
work (e.g., incorporating other researchers' representational schemes and conventions)- while others
will have to wait until important philosophical decisions have been reached (such as how to handle

23 Evolution, as well, seems to agree with this last idea, preferring adaptable organisms over those which contain, built-in

optimized features. Compare the extinct dinosaur, unable to adapt to new situations, with two of nature's most successful
species: Man. who can modify himself to his environment using technological devices (e.g. putting on a coat), or the
insect, which uses it last reproductive cycle to "reconfigure" is species as new situations arise (such as the introduction of
DD').

26

intensional objects and beliefs, and how to attain "epistemological purity" of the initial RLL-1
system).

To support our "universally applicable" arguments. we intcnd to exhibit a large collection of distinct
representation languages which were built out of RLL-1; this we cannot yet do. Several specific
applications systems live in (or arc proposed to live in) RLL-1. Knowledge bases already started
include RLL-I's original raison d'etre EURISKO (discovery of heuristic rules), E&E (combat
gaming), FUNNEL (taxonomy of LISP objects and functions) and PROVER (a non-resolution
theorem prover written by Larry Hines). WHEEZE (a diagnosis program for pulminary function
disorders, reported in [Smith&Clayton]) has been written in a sister system to this RLL-1. ROGLf
(Jim Bennett: guiding a medical expert to directly construct a knowledge based system) and VLSI
(Mark Stefik and Harold Brown: a foray of Al into the VLSI layout area) are two tasks in search of
a representational scheme: both are seriously considering using RLL-1.

It is the philosophy of an el, more than cur part cular implementation, that we hope this paper will
convey. There is a great need for a flexible and extensible high level language in which to create
and maintain the sophisticated procedures an Al task requires. The user should have ready access
to a stockpile of commonly-used parts, together with the tools required to modify, and compose
these pieces. Experience in Al research has shown this goal has been all but neglected. A
representation language language addresses this challenge. In addition to providing these tools, an
ril will leave the pieces of a representation in an explicit and modifiable state. By performing
simple modifications to these representational parts, (using these specially-designed manipulation
tools) the user can build new represcntaion languages. which can be created, debugged, modified,
and combined wid case. This should ultimately obviate the need for dozens of similar yet
incompatible representation languages, each usable for but a narrow spectrum of tasks.

It is our hope that RLL-1 will spawn a rew generation of such foundation systems, all designed to
be flexibie and extensible. Eventually. we envision, such languages will together synthesize a single
nil system. sufficien to handle ever! need a user will ever have -- much in the manner LISP has
served the Al community all these years; only at a higher leve! of abstraction ard usefulness.

tCKNOWLEDGaI.:r.EN'TS

The work rcortcd here represents a snapshot of the current state of an on-going research effort
conducted at Stanford University. Researchers from SAIL and HPP are examining a variety of
issues concerning representational schemes in general, and their construction in particular (viz.,
[Nii&A4ielo] and [Van.lie~le]). Professor Douglas l-enat initiated many of the ide.is presented here,
and supplied essentially all of the research directions. I especially dank Michael Genescreth fcr his
frequent insights into many of the underlying issues, and for his near-continuous encouragement
and assistance in preparing this document. He and David Smith have been instrumental in
developing and honing many of the ideas presented here. Critiques by Tom Pressburger, Steve
Tappel. Sue Angebranndt, and Paul Cohen did much to help shape this paper, as well as many of
my views. Mark Stefik, Terry Winograd, Danny 13obrow, and Rich Fikes conveyed enough of the
good and bad aspects of KRL and UNITs to motivate us towards an nll. Greg Harris implemented
an early system which performed the task described in Section 4 and Appendix A. Others who
have directly or indirectly influenced this work include Bob Balzer. John Brown, Corde!l Green,
Johan deKIcer. and Rick Hayes-Roth. Finally, I am grateful to David Smith. for proiding the
demand unit swapping package ([Smith) we used to sidestcp lntcrLisp's space limitation. The
research is supported by NSF Grant #MCS-79-01954 and ONR Contract #N00014-SO-C-0609.

27

A. APPENDIX - Use of the Father Slot
This appendix expands the example shown in Section 4. It is designed to illustrate how the initial
version of RLL-1 actually goes about generating and caching appropriate slot values. As we have
emphasized several times earlier, this only represents one particular method RLL-1 allows; any user
may chose to follow this set of conventions, or design his own.

A.I: How (GetValue U S) really works:

Suppose immediately after creating the Father unit, as done in Section 4.3, the user asks for Karl
Philipp Emanuel's father, by typing

(GetValue 'KPE 'Father).
The GetValue function is very simple -- it calls Father: ToGet Value on the arguments KPE and
Father. Technically, this would require determining

(GetValue 'Father 'ToGetValue),
which would, in turn, necessitate looping endlessly on the call

(GetValue 'ToGetValue 'ToGetValue).
To avoid this trap, the GetValue function has "pre-compiled" the result of this (GetValue 'ToGetValue
-'oGetValue) call in the appropriate place in GetVaue. Hence, GetValue is defined as
(DEFINE GetValue (Unit Slot) (APPLY* (GetAccessFn Slot 'ToGetValue) Unit

Slot),
where GetAcessFn is the function stored on ToGetValue:ToGet Value,24 rather than the desired, but
unrunnable
(DEFINE GetValue (Unit Slot) (APPLY* (GetValue Slot 'ToGetValue) UnitSlot).
Note GetValue is the only trouble-maker. All of the other accessing/modifying functiuns, such as
PutVaiue or RenameUnit, avoid this added hassle.

This GetAcessFn function is also fairly simple. (GetAcessFn 'Father 'ToGetValue) first checks if a value is
physically stored on the the ToGetValue slot of the unit Father, and finds none. (Had GelAcessFn
found a value there, it would have reurned that value.) Otherwise, GetAcessFn falls back on
Findefault'S Method of inheritance, (shown in Appendix 8.1) and so scans the prototypes of Father,
in order, searching for the first prototype it can find which has a ToGetValue slot. Here, this search
will walk all the up to TypicalSlot, find DefaultGetValue stored there, and return that value.

Like GetAcessFn, OefaultGetValue first tries a simple associative lookup (essential a c-ETPROP), but finds
there is no Father property stored on KPE. DefauitGetValue then tries a more sophisticated approach:
rather than look up the prototypes of Father (as GetAcessFn would have done,) DefautGetValue asks
the Father unit how to compute the Father of any person. This information is stored on
Father: ToCompute. Thus the (GetValue 'KPE 'Father) call effectively becomes

[Apply* (GetValue 'Father 'ToCompute) 'KPE].
Notice this calls GetValue recursively Once again there is no value stored here. on the ToCompute
slot of the unit called Father. The call therefore expanded into

[Apply* (Apply* (GetValue 'ToCompute 'ToCompute) 'Father) 'KPE].
Luckily, there is a value on the ToCompute slot of the unit ToCompute. The functional stored in
ToCompute:ToCompuie, TCTC. takes an argument. X, (the name of a slot.) and returns a function
which. given a unit U. computes the value of the X slot of that unit. TCTC instructs RLL-1 apply
the function HighLevelExpand to the HighLevelDeji of X. HILD. This function first finds the slot-
combiner S which X employs, (this is the CAR of HLD) and applies S:ToCumpute function on the
relevant arguments -- the other elements of HLD. Our call is now expanded out into

[Apply* (Apply' (GetValue 'Composition 'ToCompute) 'Husband 'Mother)
'KPE].

24 In fact an essential invariant of our system is that Get.ccessFn be a fi-..- point of Ft = (Fn "ToGetValue

'oGeiValue). By the definition of GetValuc. this implies that Fn = ToGetVa!- ToGetValue (where we have replaced
"GctkccmssFn" with "'IT" in GetValue).

__ I).. .:A€

2r

The slot-combining unit called Composition does indeed have a ToCompute slot; after applying it,
we have (roughly)

[Apply* '(X (x) (GetValue (GetValue x 'Mother) 'Husband)) 'KPE].
This asks for the Mother slot of KPE. which is always physically stored in our knowledge base, and
then asks for the value stored in the Husband slot of that unit. The final result, JS13. is returned. It
is also cached (stored redundantly for future use) on tie Father slot of the unit KPE. Section 5.2
elaborated the details of this process.

A.2: How (and why) caching real.y works

Consider what will happen the next time the user requests KPE:Father. As before,
Father.ToGet Value will be called, and return oefaultGetVailue. This will be invoked and, as before,
see if there is some value stashed in KPE's Father slot (this is Step 1 of Algorithm 1). This time
that test returns successfully, and the result, JSB. is returned. Notice all the other running around
has been avoided. Much of this work, such as determining the value of Father: TaGet Value can be
done at compile time, through the use of clever macros, (see Appendix D.3) to speed up this
process ever more. Our goal is for such standard cases -- i.e. retrieving a stored valued -- to be
about as fast as a simple GETPROP (see Appendix D.1).

We might later ask for, say. the Father of Wilhelm Adolf Bach (WAB). As usual,
Father:ToC tVjiue = OetauttlGetvalue is used. It, finding no value is stored on WA13's Father slot,
now need Fathcr:ToCompute, and so "enter" Algorithm 2. This time Father:ToCompute will be
round in the first step and simply returned. When this function is applied to WAB, it will return
the value of WAB's Father, Wilhelm Frc'drnan Bach: after caching that value for future use.

Note the efficiency in the mechanism -- only if a value, such as KPE:Fraher or Father:ToCompute,
is requested will RLL-1 actually compute this value: a, which point, it does only the work required.
If such a request is never issued, no effort will be wasted as this therefore-useless value, (e.g.
Father.ToCompuie.) will never be calculated. Subsequent calls to x:Frther will not recompute this
function, but will merely use the value stored in Father:ToCompute. Seccon 5.2 expands and
generalizes this point.

There is an obvious space-cime tradccrT going on here: retrieving a cached value does take much
less time than would be spent recoMpuLing that value: but it does cost that additional storage. To
simplify this example. -we implied RLL-1 would always decide to cache. i.e. in favor of saving time
over space. In general, RLL-1 tries to weigh time versus space considerations in determining
whether, and how. to preserve a value. For example, RLL-1 may then decide to "SELF-
COMPILE" the unction now stored in Father: ToCompute. That is. the first time this finction is
run. it .. ill compile itself into machine-level code. and store this more efficient form where it will be
sough. before he interpreted, source code. In this way frequendy used functions can beceme faster
and faster.

A.3: Other Accessing Functions

To demonstrate another ac:essing Punction. suppose the user %wished to enter a value into
KPE:..a[t'1er. This could be achieved by typing

(PutValue 'KPE 'Flother 'AMB).
.%s before. PutValue is a \ery simple function. It asks the Mother unit for its ToPutl.zie slot, and
thcn applies this function to KPE. Mother and .\MB. By the sanie process outlined above,
.Mother: TuPutlaue requires ToPutVale:ToGet"JKiue. This function has been stored. and is again
GetAccessFn. (This same GetAcce=sFn function is used in all of the accessing and updating functions.)
As before. (GetAccessFn Moter 'ToPutValue) First asks Mother for its ToPutValue slot. Finding not
value there. it examines Mother's prototypes. {Pi}" stopping and returning the first nonNiL
Pj:ToPuit'a!ue. Unless interepted. (see Appendix 0.1.) this (GetAcces Fn '.other "ToPutValue) will
return the %alue living in TypicalSlot:ToPutl'alue. CefaultPutVatue. This default function verifies that
AMB is an acceptable %alue for a Yother slot. then stores AMB on the Mother slot of KPE, does
\arious kno\kledge base truth maintanence tasks. and stops.

4 29

AnyPh sicalObjecc
TyialPhysicalObject

AnyLivinglhing AnyA aebec

TypicaluivingThing TypicalAnimate~bject

An Animal

TpicalAnimal

AnyN'ammal

4Typicalam i 7 nyMale
TypicalMale

AnyPerson

Typicalpes

AnyN1 S' tan AnyGermnan
TypicalMusician TypicalGerman

KPE

IS-A: (AnyMusician, AnyGerman, Any,%,ale)
IAlilsas: (Any~lusician, AnyGerman. A\nyPerson. Any'vamimal. AnyMale.

AnyAnimal. AnyLiving11iing. AnyAnimateObjcct...
Prorot yp cs. (Typicallyusiciain. TypicalGerman. TypicalPersan. Typica~Liaminal.

T, picaIale. TypicalAnimAl. T pica] LivingT~iing, .AnvAnimnrcObjcct. I

Figure 07- Portion of the frame hierarchy which dominates KPE.

30

B.1 Cratig aWhole New Family of Types of Slots

RLL-1comesequipped wit~h several inheritance and retrieval mcchanisams. One powerfuil and
usfloeexploits the [il~Iinsky] frame-like hicrarchy which structures the RL.L-1's initial knowledge

bases Manyslots can derive an If-Needed value by default, extracting this value from. the nearest
relevant prototype. Thus, the facts thbit "Clyde is an Elephant" and "Elephants are grey" should be
surficient to deduce that "Clyde is grey". The con-zructs ;in(' -chanisms which allow such
deductions are shown below.

As part of a frame-like system, every RLL-1 unit has an IS-A sic -. ich lists the classes to which
this unit belongs. For example, KPE:ZS-,l is thc list (AnyMusician. Anyi'vale, AnyGermnan). Each
of thesc units, in turn, points to a list of superciasses of that set -- AnyPerson is included in
Any~t-usician:SuperClasses. Note, as these SuperClasses links encode the superset relation, KPE will
be a member of the class represented by Anylcrson, as well as AnyMusician, AnyMale, and

* AnyGe.-nan. The Al11sas type of slot encodes this more complete "E" relation. See Figure 7.

Associated with each class, "AnyX", is a unit which houses facts which are typically true of each
member of that set, by convention named "TypicalX". 25 So TypiCa!MuLsiCian:Halcslnstrutne-I will be
True, whereas TypicalPcrson:Hasitistnuite.nz is False, as most people do not own an instrument.
The Protoiypes of a unit, U, is a list of the typical members of each member of the list U:Al!Isas,
(in order of increasing generality). So KPE:1'rototypes is (TypicalMusician, TypicalGerman,
TypicalPerson, TypicalMammal. Typicali'vale, TypicalAnimal, TypiczlLivingThing,
TypicalPhysicalObject, TypicalThing).

As suggested above, facts true of each" 6 instance of AnyX should be stored on the unit TypicaLX.
If the user then asks whethier some member of AnyX, U, ha' this property, P. this Finacefault
retricval mcchanism will go up U's Prototypes until it Finds a prototype which says something about
P. Unless intercepted, this search will terminate when it encounte.rs TypicalX, and return the value
P implied. So we would expect KPE:Hasnszrumemi to be True, as Typical.%,usican:Haslnistrnieti
is True. The-i fact thiat rvypicaiPe-son:HLaslristrument is False is, here, irrelevant, as the Find~efault
search will never reach TypicalPerson. (This inheritance mechanism is essentially the same as the
one FRIL and KRL use.)

Thus the AnyMusician and Typicali~vusician units were used to implicitly deffine a new class of
objects. by indicating new default values For members of this class. (In this case, the valUe for the
Hasltstrwntent sIlt) We can exploit the way Find~efault works to define a new subclass, AnyS. of
an eyisting class. AnyC. In the same way all musicians (such ais KPE) "~preferred" to get their
values from Typicalusician over TypicalPerson, values placed on TypicalC override those stored
on TypicalS. The semantics of TypicalExrnple corresponds to our intuitive ideas. Figure S below
shows how we. and RLL-I, can allow. Duckbill Platypuses to lay eggs. even thcugh every duckbill
platypus is a mamimal, and "ail" mammals give live birth.

25 Wec have atumrptcd to 'ollow a raw narnin.; conventions: The unit "AnyX" represents ihe c!ass of all Xs. '"Typ:cnlX"
is a unit which stnores mfrnnation which is iyPiCal (that is, defaulted) for each c!erncnt of the class "..nyX".
26 This "each" criterion is not really required. We saw earlier in ,he 'ypicalilusician and Typicaillerson e'ainple that
assemtons stored on Typic-aIX units reflect dcfault. as opposed to universal, ntatemcnts. In addition. Lhe right thing would
happen if we later add to the Elephant ex~ample above that 'Clyde is an Albino" and ".'lbinios arc. by definition, white".
The value of' C:yde:Color would then be White. not Grey. This requires placing an epistemological mark on
Typical,,\ bino: Color to indicate this definitional quality: Appendix 8.4 will show one way or doing this. RLL-1 can
handle the standard problems which arise when dealing with non-monotonicittes [A1 Journall and "default rirasoning
EReitevl. The above ex~ample intentionally avoids such complex~ities.

31

IName. AnyMammal
I IS-A: (AnyClassOtObjects)
I SuperCtasses: (AnyAnimal. AnyLivingThing. ,
IDescription: Represents all Mammals. _______________________

TyrpicalExamp*: TypicalMammal -1 3IName: TypicalMammal
IAltExamples: (Polly, KPE, *.)I ITypicalExample~l: AnyMamnmal

___________________________________ IReproductiveMechanism: Live birth.

Name: AnyOuckbiliPlatypus
IS-A: (AnyClasfOj§0t)I

ISuperClasses: (AnyMammal, ..
IDescription: Represents all Duckbill Platypuss I ___________________

ITypicalExample: Typical~uckbillPlatypus IName: Typicai~uckbiliPlatypuis
IExamples: (Poll . .) TypicalExample~f: Any~uckbillPlatypus I

IReproductiveMechanism: Lays eggs.

IPrototypes: (Typicat~uckbiliPlatypus, TypicalMammal...)
IReproductiveMechanism: ---

Figure # 8 - Framework permitting egg-laying mammalian platypuses.
(he value of ReproductiveMechanism:T'oCompute has to be FindDefault for this to work.)

(The value "--- " indicates NO value has been stored in this slot. and is only shown here for emphasis.]

This same mechanism can be used for types of slots as well. As slots are themselves encoded as
units, they too can have def'aulted properties. By creating a new class of types of slots, we can
provide its members with a different set of defaults; inherited only by these members.

Examples 4.2 and 4.3 above intentionally glossed over details of the actual retrieval mechanism
used. As shown in Appendix A.1, compuiting KPE:Father actually requires first asking Fatther for
its ToGet alue value, and then applying this function to KPE. The value of this Father: Tc:Get Value
will be inherited from one of Father's Prototypes. Similarly, storing a value in the Fat/ir Slot of
KPE, (or any other unit. requires first determining the valute of Father: ToPut Value. As with
ToGet alue, the value of (GetValue 'Father 'ToPutValue) will be inherited from the first one of its
prototypes which has some stored 7'oPza Valute value. Unless intercepted, this will reach the value
DefaultPutValue, stored on TypicalSlot: ToPui Va/ue. This information is portrayed in Figure 9. Note
(GetValue 'Father 'ToPutValue) = (GetValue 'TypicalSiot 'ToPutValue) = DefaultPutValue.

I Name: AnySlot
I IS-A: (AnyClassOfObiects)
I SuperClasses: (AnyFunction, ...)
I Description: Represents all slots. _______________________

TypicalExample: TypicalSlot I Name: TypicalSlot
IExamples: (Father, ..)I ypicalExamrple~t: AnySlot

_______________________________ IToGat Value: OetaultGetValue
I oPut Value: DefaultPutValue

IName: Father
IS-A: (AnySlot)

IDescription: Represents the Father slot.
IPrototypes: (TypicalSlot, TypicalFunction...)
IToGet Value: ..
ToPut Value:

Figure #9 - Current framework for Father slot.

Suppose we want to create a whole different category of types of slots one which, for example,
prints a message before performing each of its knowledge base consistency modifications. (In
Appendix A.2 we saw that a unit's Father slot is deleted whenever that unit's Mother Slot is
updated -- this is such a modification.) A general way of doing this requires first creating a unit
representing a new class -- named, say AnyChattySlot -- and its associated typical example,

4-0r------

32

TypicaiChattySILoc Now TypicalChiattySlot: ToPut Value is filled with the furction ChattyPUIValue,
which resembles DetauitPutvaiue, (thc function found on TypicalSioc:ToPue Value) but which prints
chat updating message where appropriate. In Figure 10. we show NMother as an Examnple of
AnyChatuySlot, by replacing the valuc AnySlot with AnyChactySiot in Mother's IS-A slot. In this
state, the uscr will be cold that KPE's Father slot was being delcted if KPE:3loler is ever
reassigned. Here (GetValue 'Mother 'ToPutValue) * (GetValue 'Tipca1ChatyS:ot 'ToPutValue)
ChattyPutValue. Note (GetValue 'Mother 'oGe(Vaue) is still DelaultGetvaiu., inherited from TypicalSlot;
this is true only because TypicalChattySlot had nothing to say about To Get alue.

I Name. A. lyslotI
I IS-A: (AnyClasaC(Obiects)
I SuperClasses: (AnyFunction. ...) I
I SubClass (AnyChattySlot)

oescription: Represenits al s o - ___________________

ITypicalExample: TypicalSlot l1....a. ae lypicalS-t
AllExamples: (Father, .. 7 ypicalexampteot; AnySlot

I : JToGee Value: 0efaultC-etValue I
4" IToPut Value: DefaultPutValue

I Name: AnyChawtsiot
IS-A: (AnyClass~tObje
SuperClasses: (Any$lot I
Description: Ro-presents all ch-atty slots. ______________________

rypicalEvamai.: TypicalChartt'Slot ---- I .%lame: TYpaCaiCa-tt;3 iot j
IExamples: (Mother ... TypicalExam ple~s' AnyChattySlot

________________________________ IToGet Value:
ToPut Value:- ChattyPutVaiue I

Name:Mother
I IS-A: (AnyChattySiot)
ICescription: Represents the Mcther slot.
IPrototypes: (TypicalChatt',So, TypicalSlot. TypicalFunction...)
IToGerValue. ..
ToPut Value: .

igure - 10 - Altered framework for Mother slot.

In terms of this irlhcricing mechanism, there is nothing special about slots, or classes of SlOtS We
could, with equal case, have generated new categories of poultry by this same mechanism. All slots
whose "inheritance criteria" nmatched To GetValue's (i.e. whose ToCoenpute was Set to Find~efault,)
would inherit features from this new typical chickcn. as the dcscendants of AnyChactySloc inherited
slot values from TypicalChaEcySloc. examples of AnyMusician could derive properties from
TypicalMusician, or examples of AnyljuckbillPlatypus found default values on
TypicaiDuckbillPlatypuis. 27

B.2; Overview of EUJRISKO System
!Jse of Agendae, Tasks and "Gene~ralized Production Rules"

This RLL-1 work developed from a desire to produce (the foundations) of EURISKO -- a system
capable of discovering new heuristics. To facilitate this pursuit. a cery flexibie proccssing structure
had to be created. Onc mchlanismn selected crmplovcd multiple agendae, each containing a host of
domain-specific tasks, pcrtincutE to a single coherent topic. ro "run* a cask, EUISK 0 first finds
the set of relevant heuristic rules, and then invokcs each rule as appropriate, until reaching some
termination criterion (such as exhaustion of al allotted resources). What complicates this process is

* the fact that dccerrnining such rule sets is itself a task, which appears on an agenda. Similarly,

* 27 It is worth repeating the comment stated in rootnote 11: This inheritance mechanism is NOT built into RLL-I, and is
never rorecd on the tuscr. It is simply one or a large collection or parts he may use in whatever manner he chooses, In
tact, only socene of RILL-l's initial slots use only this inherit-by-default method to deduce a needed value: many others
will use it as a last rcsor't after a prefered alternate method (such as parsing the IliZ/aLeveLDefn) has railed, and yet
others never even consider it.

33

deducing how to execute such a collcction of rules is a task, as is essentially every othcr non-trivial
process.

The standard flavor of production rules, containing just an "IF" predicate, followed by a set of
"THEN" actions, is unnecessarily restrictive. Furthermore, in most systems, these rules arc placed
in an unordered list, which must be scanned, in 1oto, to find all relevant rules. Several other recent
projects have also found standard rule systems severely lacking. Attempting to address (and
hopefully solve) such inadequacies, [Fagan] put additional data into each rule; and [Lenat], [Aikins],
and [Smith&Claytonl found natural (and useful) ways to organize collections of rules into a
hierarchy. These, and other limitations of "Pure Pro., ction Rule Systems", are discussed in
[LenaI&McDemoul.

Rules still possess too many good qualities to pass them up. -One would still like to store the
procedural as well as the declarative knowledge in small chunks, each including not only this morsel
of information, but also some idea of when it should be used, and how. The obvious drawback to
this is efficiency: considering just the overhead each subunit will require, this segmented body has
to take more space to hold than a comparable single program. Furthermore, it will usually require
more time to interpret a collection of rules than to run that equivalent piece of code. EURISKO
has finessed this dilemma by retaining both versions (i.e. distinct encodings) of an operation (and
possibly others) and utilizing each when that encoding is most appropriate. The most inefficient, but
easiest to modify, version will be this set of rules.

Maintaining consistency amoung these versions, of course, is a non-trivial problem. However, the
mechanism shown in Appendix A.2, with respect to slots, is adequate for the task. Basically, we
would need to associate with each successively more complex version the procedure for building it
out of simpler forms -- a compiler of sorts. Then when, for example, the collection of rules is
modified, EURISKO would simply invalidate (e.g. erase) the source code version. (This might start
a cascade, which would cause the compiled version and possibly other things dependent on this
function to be erased as well.) If this function is later needed, EURISKO would try to retrieve the
now-erased function. This would, in turn, trigger an If-Needed procedure, which would construct
(and cache) this source code from the rules; and EURISKO goes on.

To accommodate a system as complex and self-referential as EURISKO, it is necessary to store a
vast assortment of information in each rule; and to organize them into a usable structure. For
obvious reasons, 'ye chose to represent each rule as a full unit, whose slots indicate not only how
and when to fire it, but other usable, if not executable, facts as well (e.g. HowvCreated,
AverageRunningTimne or OverallWorth).

A task's first step is to search the knowledge base for the set of relevant rules. (Recall this selection
and gathering process is itself just another example of a task to be performed, which in turn, will be
based on a collection of rules, and so forth. By appropriately caching necessary values, RLL-1
avoids the problem of infinite regressions.) Running this task will, at first, require slowly
interpreting these rules, with a mecta-level process observing. During such early runs this collection
will be modified to optimize the order of rule firing, and prune away extraneous and superfluous
rules. Once a stable rule set has been determined, this collection will be composed into another
encoding of this procedural information: a single piece of runnable code.28 At this point, the
generating body of rules can simply be swapped out, in much the same way source code need not
be present when its compiled form is being executed.

In general, the result of this arduous process will be cached. The next time this task, or any
sufficiently similar one, is to be run, this "compiled information" will be used, (which avoids

28 We have not yet beun to write this rule-composition procedure. Rece, t research by [vanMelle and [Forg,] has
indicated this will be quite a complex undertaking. The first version planne- ,, 1 be fairly straightforward -- using only
local and totally syntactuc operations. Subsequent iterations may perforn: .,.,ous optimizations to the output code.
Eventually we would like to see ECRISKO both propose and imp!: such improvements.

34

rerunning the entire task-generating process outlined above). If trouble is encountered later, or
when considering applying this operation to a new domain, the original rule set can easily be
retrieved and reanalyzed, to be corrected or augmented as required. In most cases, however, the
efficient code is simply executed. Hence. in the long run, all of this flexibility is at essenially no
long-term cost, using only the mechanism we saw used for Example 4.3!

With this model, rules fit naturally into RLL-1's Cognitive Economy framework (see Section 5.2)
and we have attempted. to incorporate them extensively in RLL-I's internal processing as much as
possible.

B.3: Creatirc . New Inheritance Mode

Suppose e,eticist wishes to define a type of inheritance, one which skips every second generation
when dc'rm,, -ing the properties of a new unit. He browses through the hierarchy of units
dcscendir. f.om the general one called Inheritance, until he finds an existing unit,
InheritSelc, e-ly, which closely resembles his goal inheritance facility. This he copies into a new
unit, Inhertt'romEvery2ndGeneration. Editing this copy, he finds a high level description of the
path to be taken during the inheritance. To achieve the generation skip, he replaces each single
occurrence of "Parem" by "GrandParent" (or by two occurrences of Parent. or by the phrase
(Composition Parent Parent)) in this part specification. After exiting from the edit, the new type of
inheritance will be active; RLI.-1 will have translated the slight change in the ,mit's high-level
description into a multitude of low-level changes. If the geneticist now specifies that Oraanism#34
is an "InheritFomEvery2ndGeneration offspring" of Organism# 20, this will mean the right thing:
that Organism#3,L has about the same chance of glacouma as Organism#20 had, and that we
should expect their political slants -- e.g. Radical/Conservative -- to be similar. It is worth noting
chat the tools used (browser, editor, translator, etc.) are themselves encoded as units in RLL-1.

It is no harder to create a new type of slot format (OrderedNoacmptySet), slot combiner (TwoMost.
Starring), or latatype Mustl3cPersonOvcrl.6), than it was to create a new slot type or inieritance
mechanism. Explicitly encoding such information helps the user (and us) understand the precise
mction of each of the various components. We do not yet (and probably aever will) i' ave a

complete set of any of these components, but are encouraged by empirical results like the F-tlowing:
The first two hundred slots we defined required uS to dcefne thirteen slot combiners, yet te .ast
two hundred slots required only five new slot combiners.

B.4: Epistemological Status

There are many ways of handling the wealth of problems associated with representing the
CpistCemological status of things like facts, assertions and beliefs. We assumed, in designing the
initial RLL-1 system, that most statements are. in fact, facts. Based on this, it is efficient to leave
these completely "Unmarked", and realize the additional cost of handling statements with other
"epistatuses" (shorthand for "episteMological statuses"). Hence, to represent the statcemcnt that
John believes that Mary is 37 years old, RLL-1 adds the ordered triple (*Do* SeeUnit
AgeOfarvC O001) to the the Age slot of the Mary unit.29 RLL-1 creates a unit called
AgeOt .ar001, fills its "vaLue* slot with 37 and its EpiStaius slot with "Joln believes". See
Figure 1i. Note this mechanism suffices :o represent belief about belief (just a second chained
S"cUnit pointer), quoted belief ("John thinks he knows Mary's age", by omitting altogether the
Aval.ue' slot in some .\gcOf'Nlar000t subunit), situational fluents. etc. This mechanism can also be
used to represent arbitrary n-ary rclations (such as "John gave the ball to Mary"), thereby escaping
the limitations associated with associative triples (i.e. Unit/Slut/value). Other ways of handling
these are discussed in [Geneserethd&LenatJ.

29 This '*Do" prefix is specia. Appendix D.4 shows this notation suMcicnt o handle eFectiheiy all special cases of slot
value. if awkwardly.

Ii:

4 35

Name: MaryI
IS-A: (AnyPerson AnyFemale AnyContraryActor)
IDescription: The grower of silver bells etc.

I g:((*Do, SeeUnit- ('Do' SeeUnit) (*Do* SeeUnit;)

IName: AgeOfMaryCOWl I Name: AgeOfMaryOO02I
IS-A: (AnyUnitForASlotFiller) IIIS-A: (AnyUnitForASlatFiller)I
i voslnLocation: (Mary Age) U,I snLocation: (Mary Age)

Iv~u* 7 *vaLuel: 21I
IEpi.status: John believes 'T iatatus: During Wedding8O45
ITeleology- Epistemic I Teleology., Historic

IName: AgeOlMaryOOO
IS-A: (AnyUnitForASlotFiller)
ILiveslnLocation: (Mary Age)

lvaLuel: 39
IEpistatu. TheWholeTruth
ITeleology: Created With

Figure #11 - Representing "John believes that Mary is 37, but she's really 39. When she was married, she was 21".

36

C. APPENDIX - Syntactic vs Semantic Types ofSlots,
Revisited

In Section 5.3 we distinguished semantic slots from syntactic ones. Technically, syntactic slots of a
unit U belong in the meta-node above U. as they refer to the unit U qua unit. We could create
such a mta-unit, e.g. FactsAboutThieUniweP, to store all the facts about the KPE unit, and store
this within our system. This Facis,-bouiTheUnitxPE unit would have slots like Time~fCreation, or
Size. The values stored there, such as 3 October 1980, or 96 Lisp Cells, are facts about the V13E
unit, and NOT about KPE himself, who was born on 8 March 1714, and is actually 570O" tall. T[he
obvious question is "When was the FacisAboui The UitmPs unit created?". To ind this answer, one
should logically go to the Facts~lbout TheUnitFaC:SAboutme@UnitKPE unit. And when was that unit
created? and so on...

So we have chosen to compress these two, logically distinct units into a single physical entity. In
addition to the argument, above, empirical evidence has shown that these two units consistently are
used together: and so should be, for example, swapped into core togcther. Episternological marks
are used to disfinquish those slots which refer to that external entity, f'OM those which, in fact,
pertain to this; unit itself."0 Slots in the first category, the semantic slots, work cleanly for all of our
?unctions. There were several difficulties which arose when dealing with Syntactic slots - rtese
which perwdin to this unit qua unit.

Diagrain#l. in Appendix E, shows that essentially all of the units of the system desccnd from the
"AniyConcreteTing&- Unit" class. Our intend was tat each sucxh "concrete-ching-&-unit" represent
both some entity in the "external' world, and itself. The cleanest way of achieving this was as
follows:

Consider Lsr the class of all centaurs. To indicate Lhat each cen'MUr is both a mran ard a horse. wye
would place on the TypicalCentaur unit a Comcnpsed~f'slOt. whioSe value IS (11C list (T'yptcalkan
TypicatHarse). The meaning of this is straightforwvard: each centaur11 Should inilerit characzeristics
from both its manliness and its horsiness.

Now examine the TypicalConcreteThing&Unit unit. This unit. qua unitt is in fact: composed ef two
Pam ts its pieces come from the fact it represents I Unit. and the fact that it represents a concrete
th'ing. So its mEa-unit, the FactsAboutTh',eUniETyica/~c.c tar ,in,.;t. sheuld have the
Composed~f value of (TypicaIUnit TypicalConcreterhing). As this meta-unit is NOTr disjoint from the
object-le'el TypicalConcrcteThing&Unit unit, we give it a .1lyConwpoSed~jf slt whose value is that
(TypicalUnit Typtca!ConcreteThing) list. (Note TypicalAbstractfhins&Uniit is handled t same way.)

The next difficulty arose when dealing with inheritance. Consider the task of creating a new unit.
say KPE. which is defined to be an Examnpie of AnyMusieian. A simple Schleme. %hich would work
ideally for semantc units, would be to ma~p through the set of inheritab!e slots of Typical.Musician
(note this is value stored on Typica1,iLusician:.llvlnhi~eritabieSlots.) and, For each slot, S, store on
KPE:S the value held in TypicailNIusician:S. So KPE:Si:e would re.cixe Uhe Si:e of
Typtcal.%usician. which is what you would want.

Now we know that every unit representing a mu1Lsician .k ill bc cre:ated by Prcccdlurc - 11 l,.Etie
musician creating routine. It would be nice to store this syntactic slot. J.Xvre-ior on
Tv pica[lusic ian. and let each new musician inheritII this information. U.nfortunately, this
T'ypical~lusician unit was itself created by the routine which specialized in creating, typical examples,
Procedure IV 21.

:0We indicate th~is difl':rcnce. by a siinole nainrg convenion: The name of each syntactic slot will begi;n .0t "Ay"
Lt. TirneOCreatio ersus .1(yTir'eOjCreahoa. or Sire versus .l~ySize.

t 31

The solution we used is for each type of slot to know to which category it belongs - Syntactic vs
Semantic. Semantic slots work unihampered. However, the unit for each syntactic type of slot has a
special slot, SloredInTypAs, which points to the name of another slot, on which the value to be
inherited is stored. Here, MyCreator:StoredlnTypAs had the value Crealor-Inslances. The value
stored on TypicalMusician:ifyCreator is Procedure#21, and refers only to this particular
TypicalMusician unit. The inheritance scheme, on seeing M.)Creator on
Typicalivlusician:InlheriableSlots, knows enough to use the value stored on TypicalMusician:Creator-
Instances, which, happily, is Procedure#114. This is the value to which KPE:MyCreator is
initialized.

(NOTES: The Inheritance mechanism demonstrated above is a vastly oversimplified version of one
of the several inheritance schemes resident to RLL-1. Like the rest, it is encoded as a unit, and can
be modified by any user to serve his particular needs.)

I

38

D. APPENDIX - IMPLEMENTATION PRINCIPLES.
D.1: Make Standard Case Fast: This system should perform not only correctly, but expediently as
well. Towards this end, a self-imposed design criterion is to optimize what we expect to be the
standard, most common case: even at the anticipated increased cost for iess common situations.
Note this philosophy is reflected in CORLL's retrieval strategy as well -- we have minimized the
speed of accessing a slot's value when that unit is in core, and accept the longer times required
when that unit must be read in. The underlying assumption is that after a unit has been accessed
once, it will probably be used several more times befor. being read out. Furthermore, this reading
prcss has to be fast, as it will undoubtedly be central to the inner-most loop of RLL-1's
operations.

For similar reasons, we have chosen to optimize retrieving a slot's value, at the expense of storing
such a value. RLL-. will, in general, also spend extra time storing a computed value; as this is a
one time expenditure, and it is likely this value will be needed often.

D.2: Least Commitment: Throughout RLL-1's ongoing design we have attempted to minimize the
constraints the RLL-. functions force upon the unit, as every eventual user will have to tolerate
these. (This point is closely related to the issue of having an unbiased initial system, discussed in
Section 6.7.) To accomplish this, while still permitting the basic RLL-1 package to perform the
various detailed tasks expected of a usable knowledge base system, this system includes a versatile
KB manipulating subsystem. The functions this requires are stored as the values of various slots of
certain high-level units, where they belong (see Section 5.5). As shown above, the user with a more
specialized task in mind can readily override these general functions, by simply rewriting these slots'
values widh functions of his own.
(These specific functions, while essential for the starting system to work, are not sacred. Indeed a
setf-se ring desigrer may use them for the single task of storing a different set of Eunctions In their
places. Thereafter ail GETs and PUTs would go through these just-enterred ftnctions. The
bootstrapping tourcticns used to prime the pump are documented in Appendix F.2. These were
designed to demonstrate one possible, e.siiy extcndable, way in which this system could work.)

D.3: Compila Time Macros: Associated with each type of slot is a pointer to the routine which this
slot uses to per'orm. write and retrieve its value from a unit. (See Section 4 and Appendix A.)
Determining, say, the Wife of JSB requires first asking the unit Wife "or its ToGetValue slot, and
then applying that function to the unit JSB. (Similar RLL-1. functions are used for putting a value,
or initializing a unit, etc.) In most cases, Wife:ToGetValue will remain fairly constant over long
periods of time -- in particular, from the time a function which asks for the Wiie of some unit is
compiled, until the time that fnction is actually executed.

To shorten the run-time cost. we employ various sophisticated macros for these basic accessing
functions. Whenever possible, these run-around the Knowledge Base at compile time, determing
the specific getting or putting function associated with this slot. This function is called directly at
run time, avoiding rhe overhead mentioned above. Note that RLL-1 has stored on the Wife unit
'_he set of "macro-ed" functions, which enables it to invalidate :,e compiled form. of these functions
it Wife:ToGe.'Vaiue :s later changed.

D.4: Soccial Slot Vilues: By definition, the value of the S slot of the unit, U. is what (GetValue U S)
returns: and this, in turn, depends on the function stored (or virtually stored) on S:ToGetValue.
Unless intercepted or overwritten, the value of a S:ToGetValuC will be OetaultGetvaiue. With this in
mind, this section discusses what this standard retrieval function. OefaultGetValue, regards as values.

The standard value of a slot (i.e. the value returned by OefaultGetvalue) is exactly the value physicallystored there, except for the following few cases. To disambiguate the case when a unit does not
have a slot from when the value of that slot is actually NIL, the values NoEntries (indicating that this
value is known to be the empty list) and Nenty (meaning an empty single value,) are used.
(Following the delegation of responsibility comment mentioned in Section 5.5, it is the various

39

individual formats which "know" and use this fact -- N.B. it is NOT built into any of the retrieval
functions.) When the value of this slot is not known, the value RecomputeMe will be stored as its
value. This is built into the basic defaulted accessing functions, in that none of them distinguish
this RecomputeMe value from the case of finding that this slot does not physically appear in the uniL

The only other special case allows the user to specify a more arbitrary format for the value of this
sloL The value (-Do* <format.name> v1 v2 ... vN) indicates the values (v1 v2 ... vN) should only be
regarded with respect to the format (or epistemological mark) (format-name>. For example, (-Do-
OneOf Red Yellow) indicates the value of this slot is either Red or Yellow. Note the semantics of thn,
statement are based on the unit OneOf, which is, of course, accessable and modifiable by the user.

As Appendix B.4 shows, there are times a full unit is devoted to store the information associated
with Unit:Slot. Here, the entry stored associated with slot on the unit, Unit, is of the form (-Do'
FSeeinit SlotOfUnit). This uses the format unit FSeeUnit which knows that the real value of slot is
stored in the "vaLue" slot of the unit, SiotGoUnit. RLL-1 is equipped with several other subspecies of
indirect pointers; and the user, of course, is free to concoct his own.

Everything described above has been implemented. There is, however, considerable concern that
this mixes and confuses epistemological and notational marks. This is now being hammered out;
and the way subsequent generations/releases of RLL-1 will handle this situation will depend on
these discussions.

. .

AnyAbstactThing&Unit AnyConcreceThing&Unit

/ AnyfrtialSpec
AnyCharaceristic

AnyfntensionalCbject / Anyi I- AnyCass Any~rrmat Any~atatype
Any ari~ieAnv~verhead AnyProcess

Any~ar\ rhetype
Anynitor~otAmySict~crrmat AnyVxfueFormat

AnyUnmtListPrccess AnyFuncticn

AnyUnttProcess AnyUnetLiStFm AnyFunctional

AnyStcratleFn AnyS~c*,L~st~n

AeiyUnitFn AnyS~ctCornbiner

AnySoR

AnyField AnySELSS~ot

AnyComputableSlat I AnyPrirnitiveSlot
AnylnheritableSlot

Diagram # 1 (~ ,.~

Classes of Units

I4
41

BIBLIOGRAPHY
Artificial Intelligence: An International Journal, April 1980 (Special Non-Monotonic Logic Issue,)

Volume 13, Numbers 1 and 2.

Aikins, Jan, "Prototypes and Production Rules: An Approach to Knowledge Representation from
Hypothesis Formation", HPP Working Paper HPP-79-10, Computer Science Dept., Stanford
University, July 1979.

Bledsoe, W. W., "Non-resolution Theorem Proving", Artificial Intelligence: An International

Journal, Volume 9, Number 1, August 1977, pp. 1-36.

Bobrow, D.G. and Winograd, T., "An Overview of KRL, a Knowledge Representation Language",
5-IJCAI, MIT, August 1977.

Brachman, Ron, "What's in a Concept: Structural Foundations for Semantic Networks",
International Journal of Man-Machine Studies 9, 127-152 (BBN report 3433, October 1976).

Brachman, Ron, "On the Epistemological Status of Semantic Networks", in Associative Networks,
Nicholas V. Findler (ed.), Academic Press, 1979, pp. 3-49.

deKleer, Johan, Doyle, Jon, Steele. Guy L. Jr., and Sussman, Gerald Jay, "AMORD: Explicit
Control of Reasoning", SIGART Newsletter, Volume 12, No. 8, August 1977, pp. 116-125.

Davis, Randy, "Applications of Meta Level Knowledge to the Construction, Maintainance and Use
of Large Knowledge Bases," Stanford Al Laboratory, Memo AIM-283.

Doyle, Jon, "A Model for Deliberation, Action, and Introspection," PhD Thesis, Massachusetts
Institute of Technology, June, 1980.

Erman, L. D., and Lesser, V. R., "A multi-level organization for problem solving using many,
diverse, cooperating sources of knowledge", 4-IJCAI, Tbilisi, USSR, 1975, pp. 483-490.

Fagan, Lawrence, "Representing Time Dependent Relations in a Medical Setting", PhD Thesis,
Stanford Univerisity, 1980.

Fahlman, S. E., "NETL: A System for Representing and Using Real-World Knowledge", MIT
Press, Cambridge, Massachusetts, 1979.

Fikes, R. F.. and Nilsson. N.J.. "STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving," Artificial Intelligence 2, 1971, pp. 189-208.

Findler, Nicholas V. (ed.), Associative Networks, NY, Academic Press, 1979.

Forgy, C. L., "On the Efficient Implementation of Production System", PhD Thesis, Carnegie-
Mellon University, Department of Computer Science, Feb 1979.

Forgy, C. L. and McDermott, John, "OPS, A Domain-Independent Production System", 5-IJCAI,
MIT, 1977, pp. 933-939.

Genescreth, Michael, "Fast Inference Algorithm Based on a Constraint Propagation of Marks in a
Semantic Network", MathLab Memo 4, MIT, Cambridge, Massachusetts, 1976.

Genescreth, Michael. and Lenat, Douglas B., "Meta-Description and Modifiability", HPP Working
Paper HPP-80-18, September, 1980.

Green, Cordell, Richard P. Gabriel, Elaine Kant, Beverly I. Kedzierski, Brian P. McCune. Jorge V.
Phillips, Steve T. Tappel and Stephen J. Westfall, "Results in Knowledge Based Program
Synthesis". 6-TJCAI, Tokyo, 1977.

Greiner, Russell, "Details of RLL-1", Stanford HPP Report HPP-80-23, Computer Science Dept.,
Stanford University, October 1980.

Hayes-Roth, Frederick, Waterman, D. A. and Lenat, Douglas B., Designing Expert Systems, in
construction.

Hewitt, Carl F., "Description and Theoretical Analysis (using schemata) of PLANNER: a language
for Proving Theorems and Manipulting Models in a Robot," MIT A[Laboratory, TR-258,!.

-ip

42

1972.
Hewitt, Carl F., Attardi. Guiseppe, and Simi, 'Maria. "Knowledge Emnbcdding in the Description

Sysccm. Omega," 1-AAAI, Stanford, 1980, pp. 157-163.
Kunz, J. C., R. J. Falliat, D. H. McClung, J. J. Osborn, B. A. Voteri, H. P. Nii, J. S. Aikins, L. M.

Fagan and E. A. Feigenbaum, "A Physiological Rule-Based System for Interpreting
Pulmonary Function Tes Results", HPP Working Paper HPP-78-19, Computer Science
Dept,. Stanford University, November 1978.

LenaE, Douglas B., "AM: Automated Discovery in Mlathcniaics", 5-IJCAI. August 1977
Lenat, Douglas B. and Harris, Gregory, "Designing a Rule System That Searches for Scientific

Discoveries". Pater-Directed Inference Systems, D. A. Waterman and Frederick Hayes-
Roth. (ed.), Acdmic Press, Inc., 1978. pp. 25-52.

* Lenat, Douglas B3.. Hayes-Roth, F. and Klahr, P.. "Cognitive Economy", Stanford HPP Report
HPP-79-1S, Computer Science Dept.. Stanford U'niversity, June 1979.

Lenat. Douglas B. and M1ycDermnott John. 'Less Than General Producuion System Architures", 5-
* IIJCA I, MIT, 1977, pp. 928-932.

Lesser, V. R. and Ermnan, L. D., "A Retrospective view of the HearSay-1l Architecture", 5-IJCAI,
MIT, 1977, pp. 790-800.

Leesque, Hector, and Mylopoulos. John. "A Procedural Semantics Cor Semantic Networks', in
Associative Networks. Nicholas V. Findler (cd.), Academic Press, 1979, pp. 93-120.

Mackinlay, jock and Genesereh, Milchael. "DB Reference Manual", Inceral HPP Mem.-o. August,

Mlanna. Zohar and Waldinger. Richard "A Deductive Approach to Program Synthesis", 5-[JCAI,
MIT, 1977, pp. 542-551.

%1CDe~C1=. Drew and Sussmnan, Gerald. "'l1,c Conniver Raference Manual", MIT Al Laborztcry,
TR-?, 1974.

.lchie. Donald. 'M1,emo r.inctions: a language "aci~icy with 'rote learning' proper-des", Reascarch
Memnorndun MIIP-r-_19, Edin~burgh: Department of Mlachine lntcilig'-nce and P-.rce-ption.
196 7.

MVinsky. M.ai-.'in. "A Framework for Representing Knowlcdge",9in 71e Ps~ch- oloin of Ccmuter
Vision. P. Winston (ad.), McGraw-Hill, New York. 175.

Nii, H. Penny. and Aiello, N.. "AGE (Attempt to Generalize): A Know ledge- Based P-uzramn 'or
Building Knowledge- Based Program". 6-IJCAI, Trokyo. August 1979.

Phillips. Jorge. "Self-Describe-d Programming Envirortmcnt: A\n Application of a Theory of Design
to Programming Systems", forthcoming PhD Thesis. Stanford Uni~ersity. December 19S0.

Quillian. M. R.. "Semnantic \Termorv". in Semantic Information Processin2. Marvin Minsky (ed.),
MIT Press. Cambridge. NIassachusens. pp. 227-270.

Reiter. Ra'. mend. "On Reasoning by Default". Theontical Issucs in Natural I-IC1112 P70Ccessing-2,
Urbana. lilinois: Ass-ci.,ticn f .or C, mpuunz Nichincrv. 210-213.

Riberri. R. B.. aind Goldstcin. Ira P.. 'FIZL Users' Mlanual", A.l. Meomo 40S, Artificial Intclligcncc
U~boratorv. %I IT. Camboridge. \Inassachusetts. 197-7.

Sande%%all. Erik. "Ideas about Management of LISP Data Bases". 4-U1C.\. Thilisi. Georgia. USSR.
.3-8 September 1975. pp. 585-591.

Sehu4erT- Lenhart K.. Goebel. Randolph G.. and Cercone. Nicholas I.. "The St.-ucc-ure and
Organization of a Semantic Net for Comprehension and Inference", in Associatihe Net\%crks
Nicholas V. Findler (ed.). Academic Press. 1979. pp. 121-175.

Shank. Roger C. and Ablczson. Robert P. Sc-:u:. Pln5 Goals rnd Undc.t.-rinz: An Tnctnry into
Human Knoled:c Sz-uc-ures. HiLdl.NJ: Larence Erlbaum Associates. i977.

43

Shortliffe, E.H., Computcr-based Medical Consultations: MYCIN, New York: American Elsevier,
1976.

SIGART Newsletter, February 1980 (Special Representation Issue; Brachman & Smith, eds.).

Smith, Brian, "Levels, Layers, and Planes: The Framework of a System of Knowledge
Representation Semantics", Master's thesis, Artificial Intelligence Laboratory, MIT,

- Cambridge, Massachusetts, 1977.

Smith, David and Clayton, Jan, "A Frame-based Production System Architecture", 1-AAAI,
Stanford U'iversity, August 1980.

Smith, David, "CORLL: A Demand Paging System for Units", HPP Working Paper HPP-80-8, July
1980.

Stefik, Mark J., "An Examination of a Frame-Structured Representation System", 6-IJCAI, Tokyo,
August 1979.

Szolovits, Peter, Hawkinson, Lovwell B., and Martin, William A., "An Overview of OWL, A
Language for Knowledge Representation", MIT/LCS/TM-86, Massachusetts Institute of
Technology, June 1977.

van Melle. William J., "A Domain-Independent System for Constructing Consultation Systems",
PhD Thesis, Stantbrd University, June 1980.

Waterman, D. A. and Hayes-Roth, Frederick, editors, Pattern-Directed Inference Systems, Academic
Press, Inc., 1978.

Weiss, Sholom M., and Kulikowski, Casimir A., "EXPERT: A System for Developping Consultation
Models", 6-IJCAI, August 1979, pp. 942-947.

Weyhrauch. Richard W., "Prolegomena to a Theory of Formal Reasoning," Stanford AI Laboratory,
AIM-315, December 1978.

Winograd, Terry, "Beyond Programming Languages", Communications of the ACM, pp. 361-ff.,
July 1979.

Woods. W. A., "What's in a Link, Foundations for Semantic Networks", in D. G. Bobrow & A. M.
Collins (eds.), Representation and Understanding, Academic Press, 1975.

