R

. ub‘.’."'ﬁd'f";f‘ :

Y/

THIS PAS on Dafe Entereq) «
REPORT DOCUMENTATION PAGE 1 R TR I ORM
Y RUMBYR 2. GOVT ACCESSION NOJ IFRRE CRTALRE Ny [

v

Hp§.'§o-

Qé

1 TLE (gnd Subtitle) —

94\ Tt;chnicaIJ Vs /J {V

J_aemwmnmvvyﬁanhﬁgggf*
- /

lquDJ"?¢>€z‘; . 8 S R I b >

Ps. YYFE OF REPCRT & PERICS COV

RLL-1:

A Representation Language
Language

8. CONTRACT OR GRANT NUMBER(s)

/K

Russell

reiner

——
[Npbo14- 80’-—g 0609 |

NAME AND ADDRESS

10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WOR
Computer Science Department EA & WORK UNIT NUMBERS

Stanford University

Stanford, California 94305 —7cz7v

11. CONTROLLING OFFICE NAME AND ADDRESS t2.
Mathematical & Information Sciences Div. ctoder ¥9P8Q
Office of Naval Research, 800 No. Quincy [™
Street, Arlington, Va, 22217 43

. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Oflice)

15, SECURITY CLASS. (of this report)

15a. DECLASSIFICATION/OOWNGRADING
SCHEDULE

7’ \" o ’
1Ly

. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

Approved for public release;
sttrum on Unhmxted

. DISTRIBUTION STATEMENT (of the ebatract entered In Block 20, if different from Report)

. SUPPLEMENTARY NOTES

19.

KEY WORDS (Continue on reverse eide If necesnary and identify by block number)

Representation, Knowledge,

Language,
Self Modification,

Self~Description,
Expert Systems

20.

ABSTRACT (Continue on reverse side {{ necessary and identify by block number)

DTIC

NELECTE
MAR 18 1981

FORM
DD (i anm

1473

EDITION OF 1 NOV 65 iS OBSOLETE,
S/N 0102-LF-014-6601

WVJ;% .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

o 18 003

| DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
f TO DTIC CONTAINED A SIGNIFICANT
X NUMBER OF PAGES WHICH DO NOT
| REPRODUCE LEGIBLY.

Computer Science Deptartment
Stanford University

N
l Stanford Heuristic Programming Project October 1930
{ HPP-80-9 (Working Paper)
| RLL-1:
‘ A Representation Language Language
: by
l .
. ' Russell Greiner
i

d
|
!

Expanded version of the paper published in the ;-
Proceedings of the First National Conference ;
of the
American Association of Artificial Intelligence
(Stanford University, August 1580)

Accession For ‘
| NTIS GcRA&I)¢ . j
DTIC TAB) :
Unannounced R}

Justification]

py.Yer . on Cile

| Distribution/

Availability Codes | Heuristic Programming Project D I ‘C "
Avail and/or Computer Science Department -1 ECTEE
Dist Special

F\ Stanford University R 18 1981 ::':‘
y

Stanford, California 94305

i DISTRIBUTION STATEMENT A |

Approved for public release;
Distributicn Unlimited

|
§ 1
o Table of Contents
: LMOTIVATION ... P 3
; 2. INTRODUCTION. ettt et e e 3
| .
’ 3. OVERVIEW of RLLs. e e e e e e e e, 5
4. EXAMPLE -- Creating and Usinga Typeof Slot e 9
L 4.1 Definition of "Type of Slot”ot e 9
. 4.2 Retrieving a Slot’s Value (Husband)oovuuureninneennnnnn.. 10
| 4.3 Creating a New Type of SIOt (Father). . . . v oot eein e 10
4.4, Other Facts Stored on the Type of Slot Unit 13
4.5 Modifying an Existing Typeof Slot. 14
5. DESCRIPTION of RLL-L e e 16
Main Ideas/Philosophyo v e 16
Sl Unitsand Slots e 16
‘ 5.2 Cognitive ECONOMY oottt ittt e e i 17
5.3 Syntactic vs. Semantc SlotS . . .o v ittt 17
5.4 Onion field of sub-Languages, 18
5.5 Economy via Appropriate Placement 18
5.6 Clarity of Conceptual Units. 19
6. SPECIFICATIONS FOR ANY Representation Language Language. 19
6.1 Self-Description e 19
6.2 All Parts are Modifiableo i i N . 20
6.3 Epistemological Adequacy.t e 20
' 6.4 Linguistic Adaptability. i e 21
X 6.5 Representational Adaptability oo i i 21
1 ! 6.6 Unbiased initial SYSIEIML . . . vttt et et e e 22
| 6.7 Codification of Representational Knowledge 22
7. COMPARISON WITH OTHER SYSTEMSo i Ll 23
8. CONCLUSION Lt e s e e e e e e 25
AcKnowledgementS . .. oottt e e e e e e, 26
(Appendices are listed on the next page)
1

APPENDICES

A. Use of the Father Slot. R 27
A.l How (GetValue US)really works 27
A.2 How (and why) caching really works v .. 28
A.3 Other Accessing Functionsc.ovuvunnn.. e 28

B. Additional Examples
B.1 Creating a Whole New Family of Typesof Slots 30
B.2 Overview of EURISKO system. e v v v v v v i et e 32
B.3 Creating a new inhertancemode 34
B.4 Epistemological Statusot ii ettt e e i 34

C. Syntactic vs. Semantic SIots, Revisited.o vttt 36

D. Implementation Principles
D.1 Make Standard Case Fast, 38
D.2 Least COMMITMENt v vt v it et e e e et e e e 33
D.3 Compile Time Macros o vt it i e 38
D4 Special Slot Values e 38

BiblCgrap iy . . i e e e 41

Included in the Supplement:

E.Special Units e 27pp
Naming Conventions, Legend, Actual Urits, Index of Units

F. Environmment o e e e 12pp
Top Level Functicns. Functions needed to Bootstrap RLL-1,

Convenience Functions, Advised Functions, Global Variables
G. Sample SeSSIOMm . Lot e 26pp

~

RLL-1:
A Representation Language Language

~/

The field of Al is swewn with knowledge representation languages. The language designer typically
designs that language with one particular application domain in mind; as subsequent types of
applications are tricd, what had originally been useful features are found to be undesirable
limitations, and the language is overhauled or scrapped. One remedy to this bleak cycle might be
to construct a representation language whose domain is the field of represcntational languages itself.
Toward this end, we designed and implemented RLL-1%% frame-based Representation Languang?
Language. The components of representation languages in general (such as slots and inheritance
mechanisms) and of RLL-1 itself, in particular, are encoded declaratively as frames. By modifying
these frames, the user can change the semantics of RLL-1's components, and significantly alter the
overall character of the RLL-1 environment 7

~

1. MOTIVATION

L

" Often a large Artificial Intelligence project begins by de: :-ing and implementing a high-level

language in which to easily and precisely specify the nuances of the task. The language designer
typically builds his Representation Language around the one particular highlighted application (such
as molecular oiology for Units [Stefik], or natural language understandire for KRL [Bobrow &
Winograd] and OWL ([Szolovits, et al]). For this reason, his language is ofcsn inadequate for any
subsequent applications, except those which can be cast in a form similar in structure to the initial
task. What had originally been useful features are subsequendy found to be undesirable /imitations.
Consider Units’ explicit copying of inherited facts or KRL's sophisticated but slow matcher. .

Building a new language seems cleaner than modifying the antiquated one, so the designer scraps
his *extensible, general® language after its one use. The size of the February 1980 SIGART shows
how many simifar yet incompatible representation schemes have followed this evolutionary path. -

One remedy to this bleak cycle might be to construct a representation language whose domain is the
field of representation languages itself, a system which couid then be tailored to suit many specific
applications. Toward this end, we (Professor Douglas Lenat and 1) have designed and impiemented

RLL-1, an object-centered’ Representation Languange Language.’

2. INTRODUCTION

A representation language language (ril) must explicitly represent the components of representation
languages in general and of itsclf in particular. This technique of self-encoding gives the rll its
flexibility and adaptability: consider the versatility inherent in the programming language LISP,
which also encodes all of its constructs (i.e. programs) within its own formalisms (i.e. as S-
expressions). Like all representation languages, the rll should provide an easy, natural interface to
users, As such, its primitive building blocks are necessarily larger, more abstract, and more complex

than the primitives of programming languages.*

1 This should be pronounced “RLL negative one" .. as we feel this implementation does not Gualily as a reaf
representaticn language language, yet. Seclion 6 provides the definitions necessary to realize RLL-1's
shortcomings.

This "object-centering” does not represent a loss in generality. We will soon see that each part of the fuil
system, including procedural information, is reitied as a unit.

3 As a representation language language should itself be a completely self-descriptive representation language,
there is no need for an RLLL.

4 Technically, an rll is a Representation Language, that is. a "Language abcut Representation”. It attempts to
describe representation, in the same way a VLSI Language is designed to deal with VLS! components. To avoid
confusion with earlier languages, notably KRL and FRL, which have already coined "RL" to mean "Language for
Representation”, we gave RLL-.1 its second "L",

2

Building blccks of a reprcsentation language include such things as control regimes
(ExhaustiveBackwardChaining, Agendae), mcthods of associating procedures with relevant
knowledge (Footnotes, Demons), fundamental access functions (Put/Get, Assert/Match), automatc
inference mechanisms (InheritFromEvery2ndGeneraticn, InheritButPermitExceptions), and cven
specificaons of the intended semantics . and epistemology of the components
{ConsistencyCenstraint, EmpiricalHeuristic).

The purpose of an rli is to help manage these complexities, by providing (1) an organized library of
such representacon language componenss, and (2) tools for mampulauag. modxfymg. and combining
them. Rather thun produce a new representation language as the "output” of a session with the ril,
it is rather the the ril system itself, reflected in the environment the user sces, whxch changes
gradually in accord with his. commands.

Rather than design his representation language from scratch, the Al researcher should be able two
use an ril as the “starter” for almost any Al task -- including natural language understanding, ICAI
(Intelligent Computer Aided Instruction), designing expert system, or theorem proving. The
researcher's first step will be (o load in his ril, and set its "parameters” to values appropriate for his
domain and application. The ril will then take over, composing the desired new language from
these speciﬁcations If ever the researcher wishes to alter this language he nced only issue the
appropriate command to the rli system, (using the same format he used, for example, 10 enter new
data) and the language he sees will be modified.

This paper serves several functions. and is intended for several audiences. The first class of reacers
include those Al researchers who are looking for such a starter system, and are intrigued with this
notion of a versatile, self-descriptive system. They should regard this document as an RLL-1
Primer, which describes the advantages and power of an ril, followed by a how-to manual
describing this RLL-1 system.

A second (not necessarily distincr) group of rsaders are researchers interested in the ef...emological
and representational issues asscciated with designing and using a self-embedded system. This
memo, thererfore, includes sections which define what we mean by the tcrm, Representation
Language Language, and which show the ways our implementaton, RLL-1, handles several
ootendally difficult problems.

We report herc on the current state of both our ideas regarding rlls in general. and our RLL-1
implementation, in particular. The beginning porton, sections 1 through 4. motivates the idea of a
til, illustrating this description with examples taken from the RLL-1 language. Section 3 suggests
the racilities an ril must provide, by showing what the RLL-1 user initially sees, and the ways this
environment can be mocdified. Section 4 steps through a long example, indicadve of the types of
things RLL-1 can do.

This leads up to Section §, in which a high level description of RLL-1 itself is presented. Section 6
then shows how RLL-1 fit into the class of rlls in general, by specifying a set of criteria which any
rll must satisfy. These rlls are then compared with other systems, of various natures, in Section 7.

The appendices provide many of the details intentionally omitted from earlier sections. Appendices
A. B and C ecach elaborate some earlier section of this document: A expands the exampie
presented in Scction 4, B skewches a few more examples which use RLI-1 including a coarse
outline of a full application. while C demonstraics a point made in Section 5.3, :\ppe'\dxx D states
a few of the implementaton level principles we followed in designing RLL-L

Appendices E. F and G comprise a companion paper, [Greiner]. These supply the details necessary
to actually use this RLL-1 system. Appendix E lists many of the "core” units resident in the initial
system. Appendix F describes the RLL-1 environment -- including the top level functions along
with other information 2 novice can use when working with RLL-1. A sample dialogue is presented
in Appendix G, to show in dctail how to communicate with this current system.

3. OYERVIEW of RLLs
or HOW [S A REPRESENTATION LANGUAGE LIKE AN ORGAN?

When the user starts RLL-1, he finds himself in a LISP environment which contains functions

which closely rescmble those resident in the Units package [Stefik]. There is one major
difference: whereas the facilities Units offercd were essentially unalterable, RLL-1's features are
designed for easy modification. If this user desires a new type of inheritance mechanism, he need
only create a new Inheritance-type of unit, and initialize it with the desired set of properties. At
this point, that new mode of inheritance will automatically be enabled, and usable. This can be
done using the same editor and accessing functions used for entering and codifving his domain
knowledge (say, VLSI design); only here the information pertains to the actual Knowledge Base
system itself, as opposed to chips and diffusion layers.

The Units package has Get and Put as its fundamental storage and retrieval functions; RLL-1 also
begins in that state. But there is nothing sacred about even these two "primitives”. "Get" and
"Put” are themselves encoded as (modifiable) units; if they are altered, the nature of accessing a
slot’s value will change correspondingly. In short, by issuing a small number of commands the user
can radically alter the character of the RLL-1 envircnment, and thereby mold it to his personal
preferences and to the specific neceds of his application. RLL-1 is responsible for performing the
necessary “truth maintenance” opcrations, (e.g. retroactive updates) to preserve the overall
correctness of the system as a whole. As an example, RLL-1 recently "learned” how to deal with a
more “representationally neutral” ({Brachman79)) representation, one which lacked slots altogether.
It was then able to deal with Assert and Match commands in lieu of its native Gets and Puts; and
consider propositions, rather than slots, as its most primitive "container” for information.

An il is more like a stop organ than a piano. Each stop corresponds to a “pre-fabricated”
representational part {(e.g. a slot, inheritance, format, control regime, etc.), which all reside in the
overall rll system. The initial ril system is simply one configuration of this organ, with certain stops
"pulled out” -- in RLL-1's case, to mimic useful aspects of the Units package. These particular
stops reflect our intuitions of what constitutes a general, powerful system. For example, some of
the units initially "pulled out” (activated) definc various standard inheritance regimes. such as
Inherit-Along-/S-A-Links, which stores on Fido default information gathered from TypicalDog.

We chose to include a large assorument of common slots. There are fifteen types of slots in the
initial RLL-1 system. including ToGetValue, ToPutValue, MyToKillUnit, and ToAddValue, which
collectively define the accessing/updating functions. Another group of over onc hundred types of
slots, including [S-A, SuperClass. BroaderHeuristics, and Typicallxamples, are uscd to hierarchically
organize the units. Over two hundred other additional types of slots are used to interrelate units in
other useful, if non-hicrarchical ways - e.g. NeighboringCountries. RangeOfTunction,
SimilarHeuristics, ctc. (Each of these slots presuppose therc are units representing countries,
functions, range-;paces, and heuristics. We will expand on this "to every idea, a unit" motif in
Section 5.5.)

The number of these slots grow daily. As new domains arz explored. new concepts become realized
as units. It is only natural to relate these to one another; and slots provide an obvious mechanism
for descriting and storing such connections. Many such domain-specific slots are uscd to induce (or
record) an organization among these units. Examples include FunctionallExtension which points
from a (unit representing a) function to those (units which represent) functions over a strictiy larger
domain: LocatedInRegion, which connccts each geological region with the larger space in which it is
located (e.g. mapping cach country into a continent); or the familiar PeckingOrder, defined for
poultry. Others serve to connect a new concept with other existing concepts -- such as BelongsTo or
NumberOfElements. New slots also emerge as we refine the organizing relationships which were
originally "smeared” together into just one or two kinds of siots. Consider, for example, the way
I1S-A, TypicalExampleOf and SuperClass were undiffercntiated in A-Kind-Of, or the relationship

SALL-1is a frame-based system [Minsky], whose building blocks are called Units [Stefik], [Bobrow & Winograd].
in the initial RLL-1 system, each unit consists of a set of Siots, each with its respective value.

-1 e 52 o Nt et ot

! between LocatedInRegion and each of LocatedInContinent, LocatedInCountry, and LocatedInCity.

‘ This bootstrapping system (the inital configurazion of "organ stops,”) does not span the scope of
| RLL-1’s capabilities: many of its stops are initially in the dormant position. Just as a competent
musician can produce a radically different sound by manipulating an organ's stops, so a
sophisticated RLL-1l user can define his own rcprescntation by turning off some features and
activating others. For instance, an FRL [Roberts&Goldstein] devotee may choose to use exclusively
the kind of slot called A-Kind-Of, mentioned above. He may then deactivate those more specialized
units (viz. IS-A. Abstraction, TypicalExampleOf, PartOf, etc.) from his system permanently.
Another user whu-did not want to see his system as a hierarchy at all could simply deactvate all of
these A-Kind-Of kinds of slots. He need not worry about the various immediate, and indirect,
conscquences of this alteration {e.3., dcleting the Inherit-Along-1S-/-Links unit); RLL-1 will take
! care of them.

The alterations could be constructive as well as destructive. We saw above how Located/nRegion
; can be cxpanded into more precise slots, and the more dramatic example in which the user
i abandoned slots altogether, replacing "Get” and "Put” units with others that acted as Assert (store

: proposition) and Match (retrieve proposition). As another example, a user who wanted to
distinquish between proper and improper subsets could define the corresponding ProperSubSet and
ImproperSubSet slots.

Any representational piece can be altered. In the examples which appear later in the paper we
show how inherntance mechanisms, formats. datatypes, and the like can been changed. All such
“iabs” can be manipulated; and it is by selectively pushing and pulling them the user is abie to
fabricate his personalized system. The versatility of this approach will be demonstrated by the case
, with which the 1l can be raconfigured to resemble any currently-used representation language, such
as KRL, OWL and KLONE:® after all, an organ can be made to sound like a piano!

To understand RLL-1's self~encoding capability, within this organ metaphor, imagine our organ is
without tacs. Instead of changing the organ’s tonality by puiling out some step, we change iis
tonality by olaying a cerwin prescribed melody. This sequence of Xayswrokes will have two effects:
in acdidon 0 outputting the expected sequence of sounds, it will aiso cause the organ 0 undergo a
state change, emerging, say, a glockenspiel-simulating instrument. For example. playing the first
three chords of Hindemith's "Trauermnusik” would instruct this organ to 2o into its “viola-mode”.
In this state, the sounds it produces all have a viola-like quality. [f the organist then played the
(meta-)scquence corresponding t0 "Greensieeves”, this organ will graduaily ease into its flute-mode;
and so forth.

The cawch is that the melody required for die Viola-to-Flute metamorphosis is differeat rom the
sequence 0 go from Sackbutt-to-Flute -- i.e. the (meta-)effect of a given sequence depends on the
current state (i.e. "instrumentality”) of the organ. Playing the “Trauernusik” when the organ is not]
in its initial state may have no meta-effect at ail; or it may, for no pamicular reason, switch the
organ into its Oboe staie. That is, the sequence which triggers a change 10 the organ is a functicn 1
' oi the organ’s state; so as the organ changes, so dces its range of permissible alterations. 1

To be more precise, the organ's statz fcllows a Markov process. Each special kevstroke, by itself, :

may induces a minor incremental change; and it is the sum of these small effects that precuces the
new gestalt.

With this metaphor in mind. consider the complications of converting from slots to propositions.
Inidally all the facts in the knowledge base are stored as the values of slots, on various units. The
first change may be to create and store the procedure for asserting some fact. Note this collection

6 This particylar task. of actually simulating various existing representation languages, has act vet been done. It is high
on our agenda of things to <o We anucipate it will require the addition of many new componcnis {and types of
components) to RLL-1. many represeating decomposiuons of the space of krowledge repeesentation orthogonal to the
ones ¥¢ NOw use.

PSP

of facts will still be stored as slots, as RLL-1 is still in its "Slot-Mode"”. As such, these proposition-
rclated facts cannat yet be utilized. They can only be "activated” after a host of other units, (such
as Match and AnyProposition, which are also not yet usable) have been crcated. At this point,
RLL-1 is able 1o become truly proposition-based. The first operation involves fixing up the existing
knowledge base, i.e. recoding cvery fact now stored as a slot as a proposition, taking pains to
perform these alterations in the correct order. Only then are these proposition-units -- e.g.
TypicalProposition -- actually usuable, and capable of describing themselves. RILL-1 has, at this
point, eased its way into a new and different format for encoding information. The ril must have
the smarts to guide the transformation, changing itself as it changes the data. It must know not
only what to change, but when to perform this alteratio.,, and be able to determine and use the

ramifications of such changes as well.”

The initial RLL-1 system has been designed to be extremely flexible, and able to adopt readily to a
new specified sct of conventions. Note that this itself is just a particular convention, and is not
sacred. Ncthing prevents a cautious (or masochistic) user from eventually deactivating the
modification facilities themselves. This would effectively lock him into the particular set of
conventions then currently active.

Unlike musical organs, RLL-1 also provides each user with mechanisms for building his own stops
(or even type of stops, or even mechanisms for building stops). An experienced RLL-1 user can
use this system to build his own new components. Rather than building them from scratch, (e.g.,
from CAR, CDR, and CONS,) he can modify some existing units of RLL-1, empioying other units

which are themselves tools designed for just such manipulations.

The following examples may help solidify these abstract ideas:

7 As an intriguing research effort, RLL-1 might eventually have the "smarts” necessary to make these changes
automatically. That would be iike a smart organ, which knew enough to convert ilselt into its Lute mode
whenever it started playing a Renaissance sounding piece of the appropriate harmonic range and tonality. A
next step would be the ability to synthesize new sounds when appropriate, as opposed to simply retrieving some
pre-existing instrumentalities. This would be like deciding a cannon boom would be appropriate for the "1812
Overture”, based on its openning movements, and generating this new type of sound.

oo T TR TR T WA T T R e e

N AR

-

SR TR TR TR SRR TR T T AR Y

|

Elisabeth ---— Johann Ambrosina

Johann Christoph Johann Christian

Maria Saroara Bach --—* Johann Sebastian Bach <«.-- Anna Magdelena (Wilcken)
A

I
— —
| i
n i

Jenann CGoitfried Sernhard

sohann Chnrsian

l
i
i
il
i
!

| N-- Ceciia Grassi
|
[

coharn Chrisioph Friggrich

!
1
i
!
|

N+ Lucia Elisaceth ‘“lunchaussen

| Kart Philicy Emmaruei
| R\ -- Jchanna Maria Darnemann
|

A | A
Wiiheim Fra:dmann] Elisateth Jusiane Friederke al
N Corethea Slisaseth il A .- Johann Ciiristegn Altrikol i
P il | il
i Hl Johann Sehastian Altmikal i
il i | | |
l il Anna Philiogina Friederica | |
il i | | ‘Wilhelm Friedrich Ernst |
i .chann August | Anna Carclina Phiippina Derothea Crarlciia Magcelana
i Jehann Sebastian
M
] | |

wilhelm ade!f | Friederica Scphia
Got:mt ‘Mihelm

Figure # 1 - 3elected memoers ¢t the Bach family. “.ith only Mctner and Hucband sicts.
2L rsters lo Matner Slots: the cthers, =, =7\ il rafer to Husband sots.

4. EXAMPLE - Creating & Using a Type of Slot

RLL-1 derives a considerable amount of power from one basic idca: that each component of a
representation system must itself be explicitly represented. In RLL-1's case, these picces are
encoded as units, and can be examined or modificd as easily as any other bit of data in the
Knowledge Basc. The following example illustrates this point, showing how thc user can gain
increasingly more control over RILL-1’s actions, by cxploiting his ability first to sce, and then to
alter the definition of a slot.

4.1. Definition of "Type of Slot”

An associative network consists of units, which are linked to one ancther, and to arbitrary valucs, by
labellcd arcs, called slots, [Figure 1 shows an associate network whose units each represents a
member of the Bach family, and whose slots are labelled either Mother or Husband. Each of these
labels is, in RLL-1s vernacular, a type of slot. There are many things one can say about each type
of slot. For example, the inverse of Husband is Wife: and each type of slot belongs to the class of
types-of-slots. RLL-1 devotes a unit to store this information. Figure 2 shows a foew such units,
each of which describes a type of slot. Many of the slot-defining slcts shown below are described
later in this scction: they are all defined in Appendix E.

[Name: Husband |
| Descrigtion: The male spouse of some woman. |
| IS-A: {AnySiot) |
| ToGetValue: DefaultGetvalue |
| Format: Single-Entry |
| Datatype: ManType |
| {l.e. the entry is a unit, representing a man.} {
a) | Inverse: ‘Mite 1
| SubSlotOf: Spouse |
| MaicesSenseFor: Any ‘~oman i
| tyTim20fCreation: 4 July 1980, T:23 PM |
| AyCreator: DaveSmith 1
| Name: IS-A]
| Descriotion: The list of classes to which | AM-A member.]
| 1S-A: (AnySiot) {
| Format: List-of-Entries |
| Datatype: ClassType !
| {That is, each entry is a unit representing a class of objects.} |
b) | Inverse: Exampies |
| UsedB8yinneritance: Inhert-Along-/S-A-Links |
| MakesSensefor: Any thing. |
| MyTimeOQfCreation: 1 April 1979, 12:01 AM |
| MyC:eator: Dcuglenat |
[Name: Cost]
| Description: The cost of this object. |
| 15-A: (AnySlat) |
| Format: Single-Entry |
c) | Datatype: NonNegativeRealNumberType]
| {l.e. the entry is a non-regative real number.} |
| DefinedAs: Sum of CostA. Cost8, and CostC. |
| MakesSensaFor: Any sellable item. |
| MyTimeOtCreation: 24 April 1979, 527 AM |
|

| MyCreator:

RussGreiner

Figure # 2 - Units devoted to the "Husband”, “IS-A”, and "Cost" type of slots. Many other slols are appropriate for
these units; each of their values will be deduced automaticaily, if requested.

4.2 Rortricving a Slot's Value (Husband)

Many represcntational systems have the view that all slots should be treated in exactly the same
way. Others partition their slots (or more generally, relations) into a fixed c¢ollection of a few basic,
disjoint types; and process all members of a given partidon identically. As [Brachman79) poinis oug,
these approaches pos: a major limitation, and lead to problems galure. RLL-! is built on the kasic
premise that each type of slot should know how it should be handled. For convenience, RLL-L
. includes a host of general algorithms, which a slot will inherit by default. These functions are all
most of the slots will ever need. On the other hand, the user is not constrained to only these, as he
is free to define his own procedures which dictate how to handle a particular slot. Later in this
example we will see thac RLL-1 provides a variety of tools to simplify this task. Given this
overwriting ability, these default procedures are not at the expense of those slots which require a
more complex process, cr those which can utilize a less general but more efficient set of algorithms.

From this point of view, RLL-1’s Knowledge Base functions (in partcular, Getvalwe and Putvaive)
can be very simple: To retrieve the value of U: S8, Gatvaiue simply goes to the S unit -~ that is, the
unit devoted to storing information about the § type of slot -- and extracts the function stored on

! S:ToGetValue? Gewvase then applies this function to U and §; and returns the value that function
. recurned. The real "smarts”, notice, is distributed to the slots, not the Getvalve function.

-

For example, we mav ask wiho was te Husband of Johanna Maria Dannemaan (represented by the
unit, JMD). The function call (Getvame 'iMD 'Huspana) would first retrieve the functen stored on
Husband: ToGetValue, and then apply that function te JMD and Husband. [n the default case,
Husband: ToGerVaiue would be DefauitGetvawe. Calling DetaultGetvaive cn JMD looks for a vaiue
ohysically stored on the JMD unit, tabeiled Husband. Examining Figurc 1, we see there is such a
value, XPE (the unit which represents Karl Philipp Emmanuet Bach). Popping up, DefaultGetvaiue

reeurns KPE 10 Getvaiwe, which in wurn simply returns this value.

We miglit imagine another form for this Knowledge Base, in which only mariage certificates are
siored. insicad of direct links from wife to nusband. In this case. Flusband:ToGerVaiue should be
flied with the algurithim, FindHusbandUsingMarriageticenses, which would scan the set of marriage
cartificates, lcoking for one whose "Wife” entry matches its first argumnent (here !MD). Fincing
such 2 frm. FindHusbandUsingMarriageLicenses would return the value which fiiled the "Husband™
narametcr, which Getvatue would then return. Note that we never wasted our time lceking on the
IMD unit for a slot we knew would not be there. Constructing such a definition for Husband is
fairly easy, using the tools RLL-1 provides. The following cxample shows a more complicated way
of finding a slot’s value, using the siot’s high icvel definition.

! +43 Creating a New Type of Slot (fFather)
For obvious reascas, most slots are quite similar to one another. We exgloited this regularity in

developing a high level "slot-defining” language, by which a new siot can pe defined preciscly and
succinctly in a single declarative statement.

Suppose we want (o define a Father type of slot, in the sexist gencological xnowledge base shown in
Figure 1. which contains onily the primitive slots MWorker and Hustcnd., Creating this new [Father
type of slot is casy using this language: we crcate a new unit called Father, and 1ill its
Highl.evelDefu stot with the value (Compusition Husband Mother). "Composition™ is the name of a
unil in our inital system, representing a "slot-combiner” which knows how o compese two siet,

§ The expression, U:S. is 2 short hand for (GetValue 'U °S). which is. by definition. the value of the § slot of the unit
U. The itaiuzed S follows our convention of iulicizing the name of a slot when it is acung qua slot. Tais s

distinguished (rom the unitalicized S. which refers to the unit which represenis the S type of slot

9 This recursive call to GetVaiue could easily lead to an infinite loop. Appeadix A.l shows how RLL-1 sidesieps this
problem.

11

regarding cach slot as a function from one unit to another.”? We also fill the new unit's /5- 1 slot,
to derive the unit shown in Figure 3.

| Name: Father
| 1S-A: (AnySlot)
| HighLeveiDeln: (Composition Husband Mother)

Figure # 3 - Slots filled in by hand when creating the unit devoted ta the “Father” slot. Several other slots {e.g., the
syntactic slots MyCreator, MyTimeQiCreation) are filled in automatically at this time.

Suppose the uscer now wishes to determine Karl Philipp Emanuel's Father, ie., the value of
KPE:Father. The initial knowledge base, shown in Figure 4, (a magnified portion of Figure 1) has
units to represent various members of Bach’s family.

Name: KPE | Namae: MBB
IS-A: (AnyMan, ...} 1S-A: (AnyWoman, ...}
Daescription: This unit represents K. P. E. Bach. Description: This unit represents Maria Barbara.
Mother: MBRB Husband: JSB Y
: : | : /J
4

[Name: Js8

| IS-A: (AnyMan, ...)

| Description: This unit reoresents Johann Sebastian Bach.

| wite: MB8

| :

Figure # 4 - Units representing Karl Phillipp Emanuel. Maria Barbara and Johann Sebastian Bach.

In this case, Getvalue asks the Father unit for a function to use to extract the value of KPE:Futher.
Bascd on what it was given, shown in Figure 3, the Father unit inherits the dcfault mechanism,
CefauhGetVaiue, for determining a unit’s Father.!! A simplified version of this algoritam is shown in
Algorithm 1 below.

| 1. See f hare is a value physically stored on the Father siot of KPE.
If so, return that value.

| Qtherwise, continue:

| 2. Get the function stored on Father:ToCompute.

| 3. Apply the function to the unit KPE.

{ {This shouid return the value JSB.}

| 4. Store this compuied value on the Father slot of the unit KPE.

5. Return this comouted value.

———— e

Algorithm # 1,
Deducing the vaiue of KPE's Father.

As there is no value to be found on KPE's Father slot, the test on Step 1 will fail. DefaultGetvalue
now must get the value of Father:ToCompute, which should be a piece of code, capable of
calculating the value of a unit’s Father. Getting this value uscs essentially the same algorithm as the

onc shown above, mutatis mutandis. That is, Getvalue recurs. (See Algorithm 2,12

10 pg is, we regird Morther: {Unit}=>{Unit}, and flusband: {Unit}=>{Unit}. Thus “Mother{ GolthitWilhelm) =
Doretheallisabeth” and “/fusband Dorethealllisabeth) = WiihelmFreidmann™ are both well defined phrases. [ucher, as
the composition of thesc two functions, will therefore also map units into units.

Iy s important to realize that this procedure is only one of a host of rctrieval mechanisms the initial RLL-1 systems
offers; and that it is NOT hardwired into RLL-1. Appendix Al explains how RLL-1 can support this versatility and
generality, without sacrificing efficiency; and Appendix B.1 shows an example in which a non-default accessing function
was used.

12 This also relies on the fact that, once again, the valuc of the slot's ToGerValue, (here ToCompute:ToGetlalue) is
DefauitGet Vaiue.

Tt mme

e — .

1. See it there is a value physically stcred on the ToCompute slot of Father,
It s0, return that value. '
Otherwise, continue:

2 Get the function stored on TeCompute:ToCompute.

3. Apply that function o the unit Father.

4. Stcre this computed value on the ToCompute slot of the unit Father.

S. Return this computed value.

Algorithm #2.
Deducing the value of Father's FoComputs.

Once again the test in Step 1 will fail, as this is the first dme the [Father of anything has becn
requested. So onto Step 2 of Algorithm 2. For this. we need the value of ToCompute: ToCompute.
Algorithm 3 shows the now-familiar procedure followed, in a more general form.

| 1. See d thera is a value physicaily stored on the S siat of the umit U.
| It so, return that value.

| Qtherwise, continue:

| 2. Get the function stored on S:ToCompute.

| 3. Apply that function to the unit U.

| 4. Store this computed vaiue on the S slot of the unit U.

| 5. Return this cemcuted value.

Algorithm #3.
Deducing the value of U's S.

Binding u to the unit "ToCompute”, and $ to the slot "TcCompute” in Algorithm 3. we see RLI.-1
then asks for the value physically stored on ToCompute: ToCompute. Fortunately there is a value
there (else an infinitely recurring loop would ensue, as the value of ToCompute:ToCompute is
required to deduce the value of X:ToCompute for any X, and in partcular for X =ToCompute.)
The ToCompute ‘unit is shown in Figure 4.

| Mame: “TeCampule |
| 1S-A: (AnySiot)]
| Cescription: S:ToComoute is the LISP functicn used to compute the value of U:S. |
| Farmat: SingleEntry i
| Datatype: Each entry is a LISP function. |
| MakesSansefor: AnyFunction |
|_ToComaute: {\ x) (HightavelExpand (GetValue x ‘HienLsveilefn)) |

Figure #4 - The infamous “"ToComoute” unil.

We are now at Step 3, in Algorithm 2. This ToCompute: ToCompute function is applied to KPE.
Omitting the irreicvant details. this uses the value of Father:HighlLevelDefn, which, recall, we
specified as "(Composition Husband Mother)" at the start of this example. The function
HighLevelExpand then parses this high level specification into a LISP functon -- one which takes a
unit, X. and returns the Husband of the Mother of X. That is, this derived function will follow X's
Mother slot to another unit, and then return the value of that unit's Husband siot. This function is
then cached (that is, “physically stored" /%) on Father's ToCompute slot. as per Step 4 of Algorithm
2, and then returned as the result of Father:ToCompute, as Step 5 instructs. At this point, the
Father unit looxs like:

[Name: Father |
| 1S-A: (AnySiot) |
| HighLeveiDeln: (Comgosition Husband Aother) |
| Dascription: Value is Musband siot of Mcther siot of this unit. |
| ToCompute: (A (x) (Getvalue (Getvalue x ‘Mother) Musband))) |

Figure 25 - Later form of the Father unit, after the value of the ToCampute slot has been calcylated and stared.

13 s caching facility is an essental feawure of RLL-1. [t s discussed at length in Appendix A2

| ' ' 13

We now pop back to Step 3 of Algorithm 1. Applying this Father:TuCompute function to KPE,
i RLL-1 follows KPE's Mother link to MBB, and there finds the value of MBB's Husband, JSB. This
value, JSB, is then cached on KPE:Father, and finally returned as the result of this call.

44 Other Facts Stored on the Type of Slot Unit

RLL-1 was able to automatically dctermine the value of every additional slot shown in Figure 6
from the HighLevelDefn of Father; calculating cach (like ToCompute) only as it was necded. Much
of the information RLL-1 needs is stored on the Composition unit, which "knows” about the
composition of two functions. For example, as the domain of fiofy is simply the domain of the
function fz, the domain of Father must be domain of Mother; i.e. any person. A similar analysis of

2 the range of Father indicates that it is simply the range of Husband: i.e. any male person.

il S i it

? Such facts, which describe relevant attributes of this Father slot, are stored on the Father unit itself.
‘ Hence the datatype expected of each valuc stored in a Father slot is indicated by the value of
t

PR T TOR T

Father: Datatype, which Figurc 6 shows to be ManType. As Section 5.5 will reiterate, this is, in fact,
a pointer to the "ManType” unit, which in turn holds the declarative and procedural information
, associated with (RLL-1's view of) men in general. Similarly the fact that cach [Father catry must be
E a single entry (as opposed to a matrix of entrics or an unordered set of entries) is encoded by the
"Single-Entry” value stored on Father:formar. The various accessing functions use such y
information when dealing with Father's values.

i

| Name: Father
| IS-A: (AnySlot)
| HighLeveiDefn: {Composition Husband Mother)
| Description: Value is Husband slot of Mcther slot of this unit. |
| Format: Single-Entry 1
i | Datatype: ManType i
| MakesSenseFor: AnyPerson
‘ | OefinedinTermsOl: (Husband Mother) !
| DetinedUsing: Composition :
| VerifyValue: F i
{_ToCompute: {\ (0 (Get/alue (GetValue x "Mother) Husband) | ;
1

Figure #6 - Later form of the Father unit, showing several slots filled in automatically. :

For example, before storing a value of a unit's Father slot, the standard putting function will first

check 0 be sure the vaiue is of the correct type. That verifying function is stored on :
Father: VerifyType, and had been determined using the Format and Datatype of Father. That is, t
VerifyType:ToCompute is a function which takes a unit (here Father) and returns a value, FVV,

which is then stored on Father: VerifyValue. (This FVV function takes a value, X, and returns T if

X is an acceptable value to fill some unit's Father slot -- that is, it X is a single value, which is a

unit which refers to a man.) FVV was constructed using the values of Father: Datatype=ManType

and Father: Format= Single-Entry.

l Since Father is defined in terms of both Mother and Husband, using the slot-combiner Composition,
the Father unit states that a value stored on KPE: Father must be invalidated if we ever change the
value for KPE's Vother or MBB's Husband, or the definition (that is. the value of the ToCompute
slot) of Father. Recurring one level, as this Father:ToCompute function was defined using the
definition of Composition, if this Composition: ToCompute’® valuc is ever altered, i
Father:ToCompute must be updated correspondingly. :

i X s de e

Appendix A.2 show that onc casy invalidation technique is simply to erasc the cached value, i
Section 5.2 elaborates this process, which is part of an idea called "Cognitive Economy".

e 4

“ Each unit which represents a function has a ToCompure siot, which holds the actual LISP function it e¢ncodes.
Associating such a ToCompute slot with cach slot reflects our view that cach slot is a function, whose argument happens :
to be a unit and whose computed value may be cached away. (Sce Footnote 10.) b

" - RSB W -
) et

| :

v

Notice how a uscr can
similar, though more cxtravagant example would be to define Favorite-funt as
(SingleMost (Unioning (Composition Sisters Parents)

"extend his representation” by enlarging his vocabulary of new slots. A

(Compuosition Wife Brothers Parents))
Wealth).
"Unioning” and "SingleMost" are two other slot combiners which come in the initial RLL-1
system; their definitions and ranges can be inferred from this example. As before, this information
given by the high level definition above is sufficient (1) to compute any unit’s FavoriteAunt, (2) to
determine whether a value proposed to fill this slot in fact qualifies or not, (3) to determine for
which units the slot FavoriteAunt is meaningful and (4) 10 perform the necessary work to prescrve
consistency throughout the network whenever some slots value is altered.

4.5: Modifying an Existing Type of Slot

Any frame-based system must allow the user to create a new type of slot. (This will require but a
trivial declaradon in those systems which treat all slots identically.) Few provide the user with a
language to facilitate this task, or the tools required to specify such slots flexibility and conciscly.
RLL-1’s capabilities in this capacity were demonstrated in the provious subsection. [n even fewer
systems is the uscr then able to modify such definitivas. The foilowing example shows how easy
such alterations are in RLL-1.

Imagine someone wished to apply our geneological knowledge base to some polyandrous culture, in

which a woman might have more than one husband. In this case, the obvious thiag to do would be

respecify the Husband type of slot, to allow cach woman a set of husbands. This change weuld be

as easy to make in RLL-1 as it was to describe here, and could be done as nawmrally. The user

g?uéd simply refiil the format slot of the Husband unic (shown in Figure 2a),) with the value "Set-
-Entries”.

RLL-1 then uses its knowledse of the format units "Single-Entry” and "Set-Of-Eatrics”, (in
pardcular their differences) to Jdo all the rest of the work, First, as a set consisting of one entry is
stored differently than a single entry, RLL-1 would first map along the affected uaits. changing the
value of each Hustund's slot appropriately -- so MBB:Husband would he changed from “JSB” to
"{JSB)*. (Note the domain information about Husband, stored here in Husband:lakesSensefor,
considerably shoriens this scan; it :ells RLL-1 the onlv units which might be affected are those
which represent a woman.) Next, RILL-1 would examine those other siot types which might be
affected by this change. Here it would note that based on Father's curtent definition,
Father: Format must be changed to correspend to Husband: Formar. This modification would have
similiar ramificatons, cause other units to be altered, and so forth. For exampgle, the value of
KPE:Father would have to be listfied w0 "(JSB)".

Notice these were the sort of dull, mundane updates a system programmer/maintainer would
usually be called upon to perform. As [Winograd] points out. these are also the most standard sorts
of modifications made; and it is a real loss to burden humans with so straightforward a task.

With this same ease the user could replace essentially any other siot of the Father unit, and RLL-1
would propagaie the changes this evokes. In fact, this facility provides the user with another way of
defining a new siot S (besides using only the Highl.evelDefin): copy an existing siot, (choasing one
which is functivnatly simitar to S) and respecify just those one or two slots of this new unit whose
values arc inappropriate to S. Hence we could have built a HusbandSet type of slot in this
incremental-change fashion: first create a new HusbandSet unit, filled with the slov/value pairs
found in the unit tlusband. Then change the value of HusbandSet:Format 1o be Set-of-Entries.
This new HusbandSet slot would then perform in the manncr we attributed to the changed Husband
slot above; and leave the original Husband slot to do the singular thing its name implies.

A third, closely-related method of creating a new type of slot is to build the slot up in a piece-meal
fashicn, by filling in subordinate slots (e.g. Format, Datatype. MakesSenseFor. ToCompute) ore by
onc. RLL-1 would then integrate these into the desircd, working version, which the user may thea
use.

1 ‘ 15
- The purpose of this extended cxample was to demonstrate the sorts of things one can do using an {
'
; ril. In particular, it should drive home the advantages of stating facts explicitly -- even thosc which
. pertain to processes, such as the inferencing required to retrieve a slot’s value. The next section will 1
i describe this particular RLL-1 in more detail. _ 1
|

-

|
3
{
|
o |
,
| 1
' 4
' a
! |
i
i i
1

B

16

5. DESCRIPTION OF RLL-1
Initial "Organ Stops”

This scction provides a general description of the RLL-1 system, to two levels of abstraction. The
first half describes our overali philosophy of what an rll should be. The second part is more
‘ dcuiled, enumerating the particular conventions embodies in the inicdal RLL-1 system. These
| : attributes may be viewed us the default positons selected for certain organ stops.

‘ The heart of RLL-1 is its philosophy: keep every component of the system visible and medifiable.
Towards this end, we encoded essendally every representational piece as a unit, so the user may use
the same formalisms to examine and manipulate these that hc uses when dealing with his other
data. The next objective is to comstruct each of these pieces to be as general as possible. This is
manifest in two ways: First we designed the Garden of Eden system (o be sufficiently versatile that
we imagine many users will be able to use it, unaltered, for their tasks.”® Second. the cssential - 1
functions are cxtremely simple. The unavoidable complexities has, instead, been distributed among i
the appropriate units, which can be pcrused and easily changed. For cxample, all of the]
accessing/writing functions (e.g. Cetvalye and Putvalue) are trivial -- each simply asks one of its
arguments for the value of a particular one of its slots, and applies the function stored there o the
arguments passed 0 the original function. (Appendix A.l shows this in detail)

Of course, functions themselves might warrant being stored as units -- certainly the accessing
functions qualify, as they each rcpresent a legitimate piece of the represcntion. The problem is how
to trick LISP to permit a user (0 “apply” a unit to some arguments. as if that unit was a function.
At a linguistic level, one might, for example, expect Father{ KPE) to rcturn JSB, the value of
KPE: Father. A hack to LISP's evaluator, described in the beginning of Appendix F, achicves this
esscntal effect. The user can sdll treat these functions as hie treats any other units -- only now he is
creating or modifying executabie processes; and doing so using the same cperators which worked on
arbitrary units.

The final "global™ consideration is how easy such modifying operations are. RLL-1 nrovides a host
of powertui touis, designed to perform the sort of manipulacdions most users will want 10 make. An
example is the siot delining language {llustrated in Section 4. Such high level specificaticns should
be found throughout a good rll, to enable the user to perform standard inanipulations on the
standard types of units. Like the other suggestions above, this facility is undefined UNLESS the
parts of the representation themnselves are represented, and changable - a slot defining language is
meaningless unless one has slots 10 describe; and impotent unless there are meaningful, usable facts !
o assert about what a type of slot means.

There is sull considerable flexibility within the philosophical guildelines outlined above. The
‘ollowing characteristics describe the initial state of the current RLL-1 system. when ail “organ
stops” are in their default positions. Euch user will doubtless settle upon his individual settings,
more suited to the representation cavironment he wishes to be in while consiructing his application
program.

5.1: Uniss and Slots: RLL-1's inidal language is basically a frame-structurnd system, in which
information is cncapsulated into units, where cach unit is composed of a list of slots, each with its
designated value. ‘This bias is largely for historical reasons. as RLL-1 grew out of the Units package
(Siefik),

————— et e

5 In fact, for pedagogic reasons we may describe this system to a user without mentioning its ability to metamorphosize.
Only if she fouand this svstem limiting - at the pont she starts (0 grumeie at RLL-1's inflexibiiity, or worse vet, tegins
o mold her dawa to conform to RLL-1's expectations rather than vice versa - would she be told she could have
constructed 3 new language of her awa specifications at any ume (.. all she had to do was click her heels together three
tmes .

e e xkdbioe a.deded PRGETIRGESTY WS SPSoR N |

I ek A

El LA A

JEEPUESESRNPY -

3.2: Cognitive_economy: There are many time/space tradeoffs involved with any complex process.
Caching a computed value -- for example, the Father of KPE -- is only worthwhile if this value will
be used again; otherwise it is a waste of (at least) two list cells. Similarly, it is ofien expediant to
generate and retain multiple represcatations of some fact, using each for a particular purpose -- for
example, using the source code for reasoning about a function, but actually cxecuting the
corresponding compiled version.

RLL-Us basic approach is to begin with a minimal collection of facts, sufficient to compute the
other facts -- note this bag must include not only (at lcast) one version of each nccessary fact, but
also the mechanisms required to deduce the other values. If a new form of the data is needcd, it
will be computed automatically. In fact, the user need never know whether that value was
laboriously calculated, or merely retrieved./é RLL-1 then explicitly considers whcther or not to
store this new information; and if so, where it should be stored. The retrieval algorithm must
cooperate, by examining the storage location before considering calculating this value; in this way
storing a value insures that it will not be recomputed. (Note that Algorithm 3 in Section 4.3
demonstrates this: it first checks if there is a value physically swred in U.S; and atempts to
(re)compute this value only if that location is empty.)

For this procedure to work correctly many other parts must first be in place. Evaluating this
space/time tradeoff requires a nontrivial process. RLL-1 delegates this computation to the function
which fills thz slot’s TeCache slot. There arc currently several pre-daofined functions from which the
user may chose, all shown in Appendix F. (Of course. the user always has the option of
constructing his own.) Another concern is how to maintain consistcncy among these redundant
pieces of information. Appendix A.2 shows one standard way of invalidating a no-longer-correct
value; and Appendix B.2 shows an additional use for this facility. The final major problem is
constructing the minimal sct of facts, refered to above. This Garden of Eden must have enough of
the essential funcions to calculate all the others; and include all the parts necessary o modify itself,
For cxample, Section 4.3 shows why it must include ToCompute: ToCompute (at least if the siandard
default accessing functions are used).

As with other RLL-1 processes, the user can sec just what will happen, and how. Storing the
caching information on the ToCaclie slot of type of slot is an example of this explicitness. There
are also hooks now in place for upgrading this into a more complex processes. such as the one
outlined in Appendix B.2, which have not vet been used. This whole approach is labelled Cognitive
[Econon;y in [Lerat, Hayes-Roth & Klahr], and is similar the memo functon idea discussed in
Michie].

5.3: Svnuactic versus Semantic slots: The usual definition of a representational scheme is a structure,
usually symbolic. which in some way reflects what actually happens in the real world. The nodes in
most semantic nets. therefore, are intended to represent some real world entity -~ i.c. something
which lies strictly outside this (in-the-computer) simulation model. For efficiency rcasons, a slightly
augmented interprefation of "model” is required to understand the units used in RLL-1: In
addition to facts about that entity outside this system, each unit is expected to house various bits of
information which pertain to this particular unit, as a unit within this system. Hence, the usual
definition of "the world out-there” has been extended to irnclude our within-the-computer structure.
This is a1 hack. and is, epistemologically, quite troublesome.

Essentially. RLL-1 simulates a meta-ievel KPEUnit -- onc which represenis the unit "KPE”, the way
"KPE" represents a unit in the real world. This logically distinct unit is physically mc.g~d into the
KPE unit. This leads to a number of complicated situations. which we have worked through. one
by one. Onc non-trivial issue revolves around inheritance. For example. KPE should inherit values
for many slots from TypicalMusician. such as [nstruments. Birthdare, and Size: but nor from siots
which refer to TvpicalMusician gua data structure -- e.g. slots such as NumerOfFiiledInSlets and

———— i 2

I Aa apprepriate mewpher 5 the .’C"’IQ:"EKOY light - which is always on, esenume :ou look. This laid-back “if-
'xe-:dd aunude 1§ not Ui oniy pessitle zpprozch -- ore could for example. compute such values at frst opponiumity, in
a “when-lied” maocer.

17

i DateCreated. RLL-1 treats these two classes of slots differently, e.g. when initializing a new unit.]
o Appendix C justifies why we merged these two logically distinct units into one physical one, and
- then steps through the creation and initalization of a unit, to demonstrate how these two Kinds of
: slots are handled scparately. .

$.4: Onion ficld of sub-languazes: RLL-1 contains a collection of featurcs (e.g.. automatically
adding inverse links, and unit initialization routines) which can be individually enabled or disabled,
. rather than a strict linear sequence of higher and higher level languages. The partially ordered set
! this forms is morc like an onion field than the standard “skins of an onion” layering. We have
' barely begun the chore of designing and implementing additional facilitics; and incorporating each

at the appropriate layer of the appropriate onion. This is, obviously, an on going task. RLL-1 does

provide the facility for physically storing a group of units into a clump, called a Knowledge Base or
l KB. The user can then load in just those KBs which are necessary for his task; these will
L collectively define his current system and language.

B 3.5: Economv via Appropciate Placement: Each fact is placed on the unit (or set of units) which
S are as general and abstract as possible. Frequently we create new units, or cven new classes of
o units, to housc this general information. [n the long run, this policy of storing information towards
o the trunk of the tree, rather than on the leaves, will reducc the need for duplication of information.

Standard property inheritance is one example of this ‘dea. Diagram #1 in Appendix E shows some

- of the classes which RLL-1 contains. There are classes which represent, among other things. classes,
protctypes. slots. datatypes, formats, inheritances, and functions. Each of these class units represents
the set of thcse members, c.g. AnySlot which represents the set of all slot. The typical example of
each class, ¢.g. TypicalSlot, can be used o store facts common to all members of this class. So, for
example, the fact that a slot is a function which maps from a unit onto a value is stored on

’ TypicalSlot. and can be inherited, as needed, by any unit which descends from AnySlot -- that is,
by any individual slo¢, such as Father.

Examining Figurc 6, shown in Section 4.4, we sce that many of the values stored on the Father unit |
are actually pointers to other units. For example, Father:Datatype points to the unit ManType,
which codifies RLL-1's view of men: and Father:formur leads to the unit Singic-Enuy, which
"kxnows" hcow to deal with those slots whose value is a singleton. -Basically the chunks of
infermation stored on this Single-Eatry (respectively ManType) unit collestiveiy help define what it
means to 0e a single atomic value (respectively a man).

These format and datatype units represent the "logical placement” for these morsels of information.

: It is correct to assert that RLL-1l views List-of-Entries as reprcsenting “Listiness”, in the way
l “ManType” cncapsulates facts about "manishness”. We saw in Scction 4.4 that VerifyType was able
to use this information 0 create a function for type checking: and Section 4.5 demonsuated that

RLL-1 could reason zbout such singlcton versus sct values. RLL-1 can also exploit information

L derived from th~ ~ganizadon of these units -- for cxample, the fact that ManType is a SudDT of 4
toth PersonType and MaleType helps o specify “mannishacss”,

Another slot, such as Cost. can also refer to this format Single-Entry: as might a LISP function such |
as CaR. "ManTuype” is also general enough to be widely used: as the datatvpe of Uncle or
MestContenptibieChauvinistlig, or as part of the domain specification for the slot Je or Sired !

{which maps a4 man 0 his oifspring). This idea of appropriate placement of facts allows Ri.L-1 to
store pertinent facts in this one well-defined location, rather than smearing such data throughoeut the
Knowledge. Base.

These format units arc designed to house everything we may wish to say about that format; and so
may be used for many other purposes, in addition to those mentioned above. A fact on the Sct-of-
Entries unit indicates that a sct docs not contain repeated elements. This fact is, of course, relevant
for type checking. It is also used to construct the function which adds on a new e¢lement to an
existing sct -- instructing that function to add on an clement only if it was not already there. Note
that List-of-Entries has no such caveats, as valucs may be repecated in a list. We will see in
Appendix D.4 that the empty set is stored as Ncéntries; and this fact is housed, declaritively, in this

» 4 ad el 4o gy aian itibaviecsibinihen siteae & o

same Sct-of-Entries unit.

As List-of-Entries is charged with storing all the facts which relate to (RLL-1's definition of) lists,
modifying this List-of-Entries unit is sufficient to correct or augment any of the format-related
characteristics (such as value verification) of any slot whose format is a list.

Another example of this idea is the use of appropriate conceptual units:

3.6: Clarity of Conceptual Units: RLL-1 can distinguish (i.e. it has devoted a separatc unit to cach
of) the folowing conccpts: TheSctOfAllElephants, (whose associated propertics describe this as a
set -- such as #Ofdembers or SubCategories), TypicalElephant, (on which we might store Expected-
TusklLength or DefauliColor slots), ElephantSpecics, (which EvolvedAsASpecies some 60 million
years ago and is CloselyRelatedTo the HippopatamusSpccies,) ElephantConcept, (which QualifiesAsA
BeastOfBurden and a TuskedPackyderm,) ArchetypicalElephant (which represents an clephant, in
the rcal world, which best exemplifics the notion of "Elephant-ness”). It is important for RLL-1 to
be able to represent them distinctly, yet still rccord the relations among them.

On the other hand, to facilitate interactions with a human user, RLL-1 can accept a vague term
(here, "Elephant”) from the user or from another unit, and use context to automatically refine it
into the appropriate more precise term. While this appears a purely linguistic feature, it is vital for
the representational system to allow this flexibility as well. For example, a term which is ~~garded
as precise today may be regarded as a vague catchall tomorrow; and RLL-1 should have the
facilities to perform such a modification easily.

RLL-1 readily accommodates distinct representations; but has not yet addressed the linguistic
problem of automatic disambiguation; nor built in tools for "expanding” a unit into its more precise
senses.

6. SPECIFICATIONS FOR ANY REPRESENTATION LANGUAGE LANGUAGE

The following are some of the core constraints around which this proto-rll, RLL-1 was designed.
One can issue commands to RLL-1 which effectively "turn off”" some of these features, but in that
case the user is lett with an inflexible system we would no longer call a representation language
language. The first five points are fairly rigid guidelines for the overall rll system, while the last
(wo are vague wants, pertaining only to the initial system. Further details may be found in

[Genesereth& Lenar]. The “current status™ part which concludes each sub-section should indicate .

whether RLL-1’s satisfics this constraint or not. (Recall the mecaning of the "-1" in RLL-1's name.)

6.1: Scif-description: Every part of an ril system must be visible; every one of its components, from
individual slots and datatypes, to modes of inheritance, and even the data-accessing functions (¢.g.
GetValue and PutValue) themselves, must be explicitly represented within the system.> To avoid an
infinite descent, (of having to describe the tools used to describe the tools which are used ..) it is
essential that these description usc the same formalisms that the representation uses for its other
data - in RLL-1's case, Units and Slots. To be self-descriptive, the rll must be described in terms
the system itseif can understand and reason about. A system may be described using LISP code,

for cxample, only if the system has alrcady axiomitized!” facts about LISP.

Although this LISP code might satisfy the self-descriptive critcria, higher level constructs are
required for the user to readily be able to reason about the behaviour or characteristics of some part
of the system. As the process which translates from LISP to more natural form is a part of the
overall self-described system, it will be well-described; and hence the higher level which resulted
from its execution will also be well defined. In this manner we can bootstrap to successively higher
level, more perspicuous, primitives.

- ———ea.

1 These “axioms™ need not be formal predicate caleutus statcments. We do insist, however, that this specification be
versatile and have an unambiguous interpretation.

19

This approach has several intrinsic virtues. First, it guarantces that even complex operations, (such
as the creation of a new Unit, or the detcrmination of some Slor's value by default) are transparent;
and does so without affecting the range or versatility of permissible techniques. This visibility also
provides the user with the oppertunity to modify the parts -- a task not possible if these picces can
oaly be viewed as black boxes. This requirement is discussed in the next subsection.

Current status; While we have encoded essentially all of RLL-1 in its own formalism -- i.c. as
units -- we do not fee!l this system is truly scif-descriptive. One problem is that we (and hence it)
do not have the vocabulary to describe what RLL-1 does or how it really represents a fact, in terms
of uscful well-defined primitives. While RLL-1 uses slots, for example, it does not understanus
what they are; certainly not to the level that it could reconfigure itself into a proposition-based
system unassisted. In addition to the many things which are simply not described, there are many
places where a description has been begun, but bottomed-out with primitives which were not
themselves adequately defined. An example of this is RLL-1's attempt to specify functions: this
stops at the level LISP code, which RLL-1 is not yet able 0 reason about. To be sclf-descriptive,
RLL-1 has either to develop a set of weil-defined primitves above this LISP levei’8, or gain
competency in reasoning about LISP itself. Either of thesc tsks qualifies as a major research effort.

6.2: All parts are modifiablc: These pars must not only be visible, they should be aiterable as well.
As these parts rcally represent the rll's operations, performing such changes wiil actually change the
rll system ‘oself.

The question of how the user actually cerforms these modifications, while secondary, is an
important concern. The guarantee given in the last subsection -- that these parts are crcoded in the
same formalism used for any other bit of data - means these alteration can be made using the same
tools which serve (o alter the user's domain knowledge. [t does not. however, mean such
adaptations will te easy to make. For example, much of RLL-1 is written in LISP code. While
this is visible, it is not at a level which facilitates easy modifications. RLL-1's approach has been to
provide the user with a collection of powerful :ools. designed to perform certain standard
maripulations. Scction 4 demonsirated one type of tool: high-level languages. The user can nake
a small change o this level of description, and RLL-1 will automaticaily propagate this change
down to the ievel of LISP code. One can thereby trivially change the behavior of that part of RLL-
1

Curreat sintus: The requirement of self-description is obviously a prerequisite for this attribute -
how can you change any part which hasn't been described? Similarly there must be a connecton
petween the unit and what it proports to represent -- otherwise a change o that description unit wiil
have no eotfect on the overall system. As RLL-1 contains many facilities which are not fully and
accurately described, for both of these reasons. it is not vet self-modifiable. There are many parts,
including slcts, processes. functions, formats, datatypes and inheritance modes, which have been
authentically encoded as units and can be readily changed. Much addidonal effort is required to
formalize many of the other componeats.

6.3: Epistemclogical Adeguacy: The requirement is simply that the ri! be Turing equalivalent -- i.e.
that its processing power not have any obvious limitations. This guarantees that the reprosentation
language itseff will not have any intrinsic restricions on what a user can represent. This
specification is automaucally sadsfied by any system which contains a language ke LISP as a
subsuucture.

Current status: Trivially achicved, as RLL-1 can always flls back on its LISP underpinnings.

Notice this cpistemological issue does not address the question of how the data is actually encoded
internaily, or how it will appear to the uscr. ‘The next two sub-sections discuss how the rll and the
uscr, respectively, view the information. .

18 we may usc rule-like chunks of procedure knowledge as the primitive level. Each of these would be cnceded as a
unit, and contain both declarative and procedural information, as well as a precise “axiomatic” deseription. Appendix B.2
begins to illustrate these entities

20

iy e e i e 2 A ini St L

6.4: Linguistic Adaptability: Not only must the rll system be capable of expressing any statement, it
should be able to do so in any manner the user wishes. That is, if the user wishes to encode his
knowledge as units, the rll should not force him to use prodi ‘on rules. The actual language in
which the user describes the task should be based on (t:. user's perception of) a natural
decomposition of the problem, unhampered by the rll. The rcasons for such user-interface
considerations will be readily apparent to anyone who has tried to write a LISP program in Fortran.
Although LISP and Fortran are cpistemologically equivalent, each handles the data in its own
manner. Things which are trivial to express in LLISP may bc next to impossible to cncode in
Fortran; and (conceivably) vice versa.

In an attempt to sidestep this limitation, many systems come cquipped with a single "universal”
dialect; while others are built conversant in a host of languages. In either casc, the resultant system
will, (by definition if not by construction) be adequate for cvery task the designer could envision.
There will, however, always be other types of tasks, which the designer had not considered, and
hence not designed for. There is also the danger this particular designer may have some strong
bias, not shared by the future user. Besides, such hard-and-fast built-in specifications are contrary
to ril's basic "opcn-ended and extensible” philosophy.

This requirement is simple: permit the user to define whatever language he wishes. The rll will, of
course, provide the tools and mechanisms for such creations, as well as a library of known interfaces
which the user may usc or modify as he sees fit. Tn effect, we insist that the ril's interfaces be as
transparent and modifiable as the rest of its operations. (Hcnce the rcquirements madc in
subscctions 6.1 and 6.2 essentially subsume this argument. Note further that the requirement stated
in 6.3 insures this will be possible, as any universal Turing machine can be programmed to simulate
any language.) In this way, the represcntation language can adapt to the user’s idiosyncrasies, rather
than vice versa. .

Of course, the user must be able to describe such a language to the rll, and this specification must
be in terms this rll can understand. The obvious medium for this communication is rll's initial
language. Here, indeed, the user must conform to some externally imposed set of conventions, but
cnly long enough to deliver his medium-changing command.

Current status: RLL-1 is currently mono-lingual -- it can only reccive and convey information in
terms of units and slots. Although the user is frec to code up his own vernacular, RLL-1 does not
vet have the tools and basic high-level constructs which would make this task e¢asy. This
requirement has been postponed until the problems and issues relating to representational
adaptability (next subsection) have been seriously addressed and answered -- we currently believe
this linguistic mallibility should come for almost nothing, as a side effect of making RLL-1
representationally universal. Arguments suggesting why this should follow appear below.

6.5: Representational Adaptability: The last section insisted that it be able to present the
information in whatever form the user desires. This need not correspond to how rll, internally, sces
the data. This is comparable to finding a person who speaks in English, but thinks in German. An
rll could similarly fool the user: while it "spoke” in his language, it might actually process the data
using some other representation.

Once again, this concern asks who should decide how the rll sheuld process. Clearly the rll should
be as tlexible as possible. For cxample, it should be able to "think” in terms of wifs, production
rules. or conceptual dependencics, as the situation warrants. As before, many cxisting systems
provide one "universal” representational schema. or a fixed collection of diverse structures. This
approach secems short-sighted, for reasons isomorphic to those presented in the last subscction.

To insure that an rll be able to represent the data internally in any form the user wishes, we once
again place the responsibility of its design in his hands. As before. the inital rll should include a
stock of very gencral processes which the user can then mold into one more to his liking. Imposing
any additional system-convention inhcrently violates this goal. and may force the user to encode his
data in awkward or unnatural forms. (Of course, anv uscr may still insist on using his own,
arbitrarily kludgey representation, if he wishes. The point here is that he alone is accountable for

21

AR

N I FT WYy

!

such messes, and not the ril system.)

Current status: RLL-1 isn't yet clever enough to deceive the user. Its single unit/slot organization is
all it is currently equipped to use. As other representational strategics are designed. RLL-1 will
have to be told how to translate from that representation into RLL-1's Lingua Franca. We feel this
translation process will eventually have other applications: First, it should provide the framework
needed (o simulate one language using another. [t may also provide RLL-1 with the information
necessary (o converse in this tongue; thereby achieving the goal posed in subscction 6.4.

6.6: Unbiased initial svstem: The bootstrap ril, i.e. the representation language initially handed the
user, is special in several repsects. First this is usually the Lingua Franca for subsequeat
languages -- that is, each will be defined using terms described and defined in this initial language,
Secondly, it is in this language that the ril system itself is cncoded.!? For this reason, it should be
as perspecutive and general a language as possible. Any bias here may adversely affect any
representation language created on top of this underlying representation language; the way a faulty
machine instruction can only be deuimental 0 any program which has o code around it

Current status: As evervonc has his own criteria for cleanliness and naturalness, this is more a
subjective request than a hard-and-fast requirement. This hedge notwithstanding, we do not feel
RLL-1’s initial system, based on units and slots, is not as unbiased as it should be. Many facss,
such as Giosc gresented in Appendix B4, arc clearly awkward o represent using these cons 'atioas.
Subsequent systems can avoid this deficiency by using more general n-ary propositions.

There are a host of secondary concerns, which can be used to judge among several "equally
unbiased” rils. Oree is efficiency -- an aspect none of these seven peints directly addresses. Ease of
understanding is another important point. A final related issue asks what equipment should come
with the iniual system. A system which includes only the minimal set of represcntation pieces,
including just those tcols which are absolutely necessary to alter the system would clearly satisfy the
first six points above. The next subsccton addresses our view om this Gueston.

6.7: Codification of Reoresentation Knowiedge: Many of these subsecdons might seem 0 imply that
aimost anything rmugat qualiry as an rll, as tne user is permitted. (indeaed cuccuraged!) to desizgn
both its external appearance and its internal operations. One may seriously questicn what, if
anything, distinguishes an ril from, say, LISP. [a terms cf power or flexibility, the answer is
nothing. A more meaningful response first ¢xamines the Question of what separates LISP from the
machine language in which it was written. The answer here is that LISP contains many useful,
well-designed tools -- such as chunking commonly uscd bus of code into single instructions, (e.g.
MAPC) or providing an cnviroment which docs nice things like speiling correction. Similarly an cll
is expected o offer the uscr nice, natural pieces, along with a good user intertface.

It should provide taxonomies of useful representational pieces, including a trce of usable
inheritances, muiscellaneous matchers, powerful data retrieval functions, ctc. While not really
required. an rll may also provide a structured array of other uscful entitics, such as generat world
knowledge. a tacility t0 exploit analogics. or a clear consistent modet of function invecation.
Subsections 6.1 and 6.2 insist these shouid be casy 1o create and modify: {or this, t0o. tie ril shouid
provide the necessary tcols. This entire collection of parts and facilitics corresgond to0 all of the
siops of the organ, using the analogy defined above.

urrent scatus: This is some of the most exciting (and cndless) research we foressce; as only a
smattering of representation knowledge has yet been capcuredﬁ

4 This is NOT to imply that the underlying representation, in which the represcatation language language itself is
described. must conform to that language, any moce than 1 PL/L interpreter must be wntien 1w PL/L 1t is enough that
it can simulatc that target language. (Of course, there are big wins derived from actually boctstrapping from a subset of
the twrget language, as LISP and RLL-1 acwally do.)

7. COMPARISON WITH OTHER SYSTEMS

The previous two sections described our particular ril, and defined what we mcant by the term
“representation language language”. Given these modcls, we will now try to compare our system
with various other systems; or rather, describe why analogous systems are difficult to find.

By its nature, RLL-1 is able to wear several hats, depending on who is viewing it, and what task this
user has in mind. It may therefore useful to first describe what RLL-1 is not. It would be a type
ercor to confuse RLL-1 with a reasoning system, (e.g. Mycin's inference c¢ngine) or with some
mechanism devoted to communicating with a user -- such as a Question/Answer-ing or Natural
Language Understanding facility. It is, instead, the language on which such applications can be
built As a general tool, it should not be restricted to competency in some single task. (That is
unlike PUFF [Kunz et al], whosc single task is quite well defined: it was designed exclusively for
diagnosis of pulminary lung disorders.) Nor is it only applicable to some particular process or
strategy, as compared to systems like EMYCIN [vanMelle], which can only utilize a backward-
chaining rule system. RLL-1 is, more or less, at the level of the underpinnings for such systems --
in the relation that a BlackBoard [Ermand Lesser] model is to Hearsay systems [Lesser& Lrman}, or
production rules are to Mycin [Shordiffe]. That is, RLL-1 is a formalism for representing the
knowledge which is to be uscd.?

Much of th's paper has pushed the idea of "RLL-1, The Ultimatc Reprosentation Language”.
While this RLL-1 qua rl (rl=Rcpresentation Language) viewpoint is certainly accurate, it appears of
a different genre from most rl's, in that it is designed to be changeable. This immediately
eliminates those languages which have a host of specific built-in features (perhaps to facilitate
performing some particular task efticiently,) from meaningful comparison. This camp includes Units
[Stefik], FRL [Roberts&Goldstein], OWL [Szolovitz}, KIONE [Brachman], DB [Genereseth]
[Vackinlay& Genesereth), NETL {Fahlman], Conceptual Dependency Graphs {Shank] and OPSS
[Forgy& McDernot).

These languages. however, arc comparable with the initial RLL-1 system. This, recall, is the
language each user sees when he first loads up RLL-L, (and 1s further specified in subsections 6.6
and 6.7). The user can then design his personal i by molding this mallible language. This
comparison must be made alcng several dimensions. The first concern is “power” -- what tasks can
be performed in cach of these systems. This question soon becomes uninteresting, as the
“cpistemological power” of all of these systems is clearly identicat -- but so is LISP's or, for that
matter, a Turing machine’s. Time and space afficiency is another issue. This is rather hard to
measure, as it is quite dependent on the actual task chosen on which to base the comparison. Any
individual rl will, of course, perform better on some tasks than on others. For cxample, much of
RI.LL-1 deals with functional specification, and so we would therefore expect this initial RLL-1
system to do well on any task which requires this type of expertise. On the other hand. any of
these other systems could undoubtedly outperform this bootstrap RLL-1 on any of the tasks it was
designed to perform. Altogether, RLL-1 would probably lose to any other system, counting the
aumber of types of tasks which one can do more efficiently than the other. This is by design:
RLIL.-1 was built for generality and flexibility, not for efficiency. This is no real loss to the overall
RLL-1 system (i.c. beyond its bootstrapping nconatal self), as this system has the ability to
reconfigure itself into a faster form, if nccessary. So this deficiency is really not that great.

Another attribute is versatility: How many tasks, and types of task, can any of these ris handle
“cleanly"? Using that "cleanly” hedge makes this characteristic quite hard to define, at lcast
quantatively. One mcasure of clegance is the absence of extrancous and artificial "things” (e.g.
units, rules, arrows) and naturalness of the remaining compoancents. (By artificial. we mean catities
not intrinsic to the problem, per se. but which were created solely to enable the system to do the
"right thing”.) For rather circular reasons. RLL-1 would probably force its uscrs to endure fewer
artifical units than any of these other systems. That is, RLL-1 permits the user to design his own

2 Notice RLL-l1 is also a mechanism for building such tools; as well as onc such tool

23

constructs; and what user would inteationally employ an entity ne personally considess unnatural or
extrancous??!

Like KLONE ([Braciman78), Lunar [Woeods], and DB [Genesereth], we have attempted to address
various cpistemolgical issues. This is a different cut at what a represcentation language saouid do
from the view taken by OWL [Szolovits et al.] rescarchers, who, following {Quillian]'s lead, were
concerned primarily with linguistic issues, or from the psychological motivation which inspired
much of KRL's early work. (An excellent article {Brachman79] addresses and helps delimits these
diverse perspectives.)

Many previous rls have attempted to utilize such a self-referencing ability, for example, DABA
[Sandewall], KRL [Bobrowd&Winograd], Omcga [Hewitt et al)] and [Levesque&dylopoulos]. These
approaches seemed to lack the two important ideas shown in subscctions 6.1 and 6.2; First, that the
elements of a representation can and should be viewed as simple data, and handled in the same
manner as domain facts. Second, that this representation itself should be modifiable.

These are iwo of [LISP’s biggest assets -- as the code it runs is in the same form as all of its other
data, (as S-expressions.) LISP is abie to modify its own code, and thereby bootstrap indcfinitely.
Efficiency might seem one reason to avoid this approach. RLL-1, however, has solved this problem
using a second major idea, Cognitive Economy, described in Section 5.2 This allows the sysiem 0
contain many cquivalent forms of iws primitives -- - sing more declarative versions for insgection,
while cxccuting arbitrarily-efficient ones.

Therc is another whoele class of systems which are closely related to dls, proper. These are programs
which autlempt o symbolicaily represent actions, and be able to rcason about (i.e. propagate) their
effects on the rest of that formalized chunk of the world. This categocry includes wuth maintanence
systems, (e.2. TMS [Doylel/AMORD [deKleer ot af]) their predecessors, (such as Strips
{Fikesd Niisson], Planner [Sussman] and Conniver [MWcDermott&Sussman]) program verifiers,
(ircluding [Bledsce} and [MannadValdingerl) and proof checkers (like FOL [Weyrauchi®). To
insure that every apprepriate update is performed in response 10 some action, the program must
contain a fairly complete model of that segment of the world. [t will, in addition, supply the user
with a deductive mechanism for determining what action caused, (or was responsible for) some
result; and rules wilich indicate what should happen as a premise is posited or rewacted. (This
deductive mechanism was not always built-in. Languages like Conniver instead provided an
assortment of tools, such as a slot’s [fVeeded facct. The user was expected to assembpice these into
the particular deductive strategy he wished.) This entire truth maintanence problem reduces to a
rather straightforward scarch when the space is well-defined; the complicated part is determining
that initial set-up. This operation is vasdy simplified if cach of the components. inciuding the
current and fAyoothesized states. ype of responsibility pointer. ctc., is made coxplicit and
approgriatcly encoded - i.e. if RLL-1's basic paradigm is followed. Indeed. much of the machinery
necessary (o [uilowing the appropriate links and perform the correct updates is inciuded in the
inidal RLL-1 system.

As programs become more complex. their designers began building increasingly mere powerful 100ls
to aide in the construction and recoding processes. These tools are designed to perform the
mundanc translaton instructions, given in a high level, nawrral languags into code the machine can
understand and exccute. Simple programming languages, which converted the user's commands
into machinc code. were the first steps in this dircction; these were tollowed by more sophisticated
languages. which did more for the user per unit keystroke. Two types of Al systems are designed

s s s tmiee.

2 The carcful reader may poiat out here that this comparison was (0 be with the initial RLL-1 svsiem as it is presented
10 the user (1). and not with RLL-1 ajter rthar user has modified it (2). The point where the sysiem (1) becomes a system
{2) is rather fuzzy, in that any ri must allow the user to add data: and in RLL-1's case, this data may cause the
representation itself o change.

MFETAFOL, an exteasion to the FOU system, was one of the first systems which mansged to encode its operations
within ils own formalisms. [, as such, played a major role in this RLL-1 development, by providing a proot-by-existence
that such a system was indecd possidie

24

TN T

S

to go one level further in providing the coder with a more abstract language for describing a task:
Automatic Programming (c.g. [Green et al]) and Expert System Building Systems or ESBSs (dla
AGE [Niikdiello), EMYCIN [vanMelle), and EXPERT [Weiss&Kulikowski]).

Although RLL-1 has been used to build an proto-expert system (sce [Hayes-Roth, Waterman &
Lenad]), it is still difficult to compare it with these other systems. The major difference is RLL-1’s
self-modifiability. While all of these systems can assuredly construct onc type of system, cleanly
and efficiently, none of the other systems were designed to modify itself.

Basically, these tools appear to overlook the fact that they themsclves are rather complex programs,
which may be exceedingly difficult to modify without assistance. Consider what would be required
to change the specification of the target language, even ever so slightly. For RLL-1, such an
altcration would require editing a few (hopefully one) units; as opposed to actually going into the
guts of the ESBS's code, and massaging the LISP code found there. It would be useful to build
systems which "knew” how o construct automatic programming systems, for example; or which
werce actually experts at constructing ESBSs. This seems to lead into an infinite descent. The
obvious solution is to insure that the program-generating system is capable of generating itsclf. As
the program can reason about its own operations, {in the same way it “understands” other
programming constructs) it can serve as a tool capable of modifying itself. The CHI automatic
programming system, described in [Phillips], is also based on this idea.

This brief survey of Al representational systems (i.e. systems designed to facilitate the construction
and manipulation of other large and complex bodies of knowledge) was intended to convey our
basic philosophy: That making the intcrnals of a system explicit., self-describing, and most
importantly, modifiable,” is a big win. Such systems will remain viable and in common use
considerably longer than their opague cousins, and will even be easicr to use throughout their
lifetimes. Many confusing issues are solved, or simply become non-issues, when the system itself no
longer has covers to hide under. For example, when the interpreter is visible, there is no longer
any question what the semantics of, say, a link really means -- it is simply what happens when one
explicit well-defined structure, called the inicrpreter, evaluates another well-defined construct, the
link.

8. CONCLUSION

The RLL-1 system is currently at a plateau -- stable and usable, but by no means complete. It is
only through continued use, by a wide cross section of researchers, that optimal directions for its
future effort will be revealed. Requests for additional documentation and access to RLI.-1 are
encouraged. We see a myriad of future dircctions for RLL-1 to take. We have attempted to
indicate throughout this memo what has been done, and what is still pie-in-the-sky; these are
especially noted in Sections 5 and 6. In addition, RLL-1 should onc day be able to do all the
examples suggested in Appendix B. Much future research, in a number of sub-disciplines, will be
required before it can successfully act in a "Eurisko-like” manner -- in particular, effective
utilization of rules and ability to derive and use apt analogics and supcr-concepts. Beyond all of
these, a complcte RLL-1 system should have a sophisticated front end, capable of handling the
linguistic nuances associated with data (dare I say "Knowledge") communication; and be truly able
to integrate diverse representational pieces, at a level beyond the primitive one it has now achicved.

The additional tasks fall into many differcnt catcgorics. Some merely requirc a large amount of

work (e.g., incorporating other researchers’ representational schemes and conventions); whilc others
will have to wait until important philosophical decisions have been reached (such as how to handle

-

N]

2 Evolution, as well, scems to agree with this last idea, preferring adaptable organisms over those which contain, built-in
optimized features. Compare the extincl dinosaur, unable to adapt to new situations, with two of nature’s most successful
species: Man, who can modify himsclf to his environment using technological devices (c.g. pulting on a coat), or the
insect, which uses it fast reproductive cycle to "reconfigure” its specics as ncw situations arise (such as the introduction of
DDT).

Dddotn on. . uidiien i . i acha

25

intensional objects and beliefs, and how to auain
systern),

"epistemological purity” of the initial RLL-1

To support our "universaily applicable” arguments, we intend to exhibit a large collection of distinct
representation languages which were built out of RLL-1; this we cannot yet do. Several specific
applications systems live in (or arc proposed to live in) RLL-1. Knowledge bases alrcady started
include RLL-1's original raison d'etre EURISKO (discovery of heurisic rules), E&E (combat
gaming), FUNNEL (taxonomy of LISP objects and functions) and PROVER (a non-resolutdon
theorem prover written by Larry Hines). WHEEZE (a diagnosis program for pulminary function
disorders, reported in [Smith&Clayton]) has been written in a sister system to this RLL-1. ROGLT
(Jim Bennett: guiding a medical expert to directly construct a knowledge based system) and VLSI
(Mark Stefik and Harold Brown: a foray of Al into the VLSI layout area) are two tasks in search of
a representational scheme: both are serjously considering using RLL-1.

It is the philosophy of an ril, more than cur particular implementation, that we hope this paper wiil
convey. There is a great need for a tlexible and exicnsible high level language in which to create
and maintain the sophisticated procedures an Al task requires. The user should have ready access
to a stockpile of commonly-used parts, together with the tools required to modify, and compose
these pieces. Expericace in Al rescarch has shown this goal has been all but neglected. A
representation language language addresses this challenge. In addition to providing these tools, an
il wiil leave the pieces of a representation in an explicit and modifiable state. By performing
simple moditications to these representational paris, {using these spcciaily-designed manipulation
tools) the user can build new representation languages. which can be created. dehugged, modified,
and combined with case. This should uitimately obviate the need for dozens of similar vet
incompatible representation languages, each usable for but a narrow specaum of tasks.

It is our hope that RLL-1 will spawn a new generation of such foundation systems, all designed to
be flexible and extensible. Evenrually, we envision, such languages will together synthesize a single
il system, sufficient to handle every need a user will ever have -~ much in the manner LISP has
served the Al community all these years; only at a higher level of abstraction and usefulness.

ACKNOWLEDGINENTS

The work reporicd here represents a snapshot of the current state of an on-going research ctffort
conducted at Stanford University. Researchers from SAIL and HPP are examining a varety of
issucs concerning representational schemes in gencral, and their construcdon in particular (viz.,
[Vii& Aiello} and [Vanlleile]). Professor Douglas Ienat initiated many of the ideas presented here,
and supplied cssentially all of the research directions. [especiaily thank Michael Genesersth {er his
frequent insights into many of the underlying issues, and for his near-continuous cncouragement
and assistance in preparing this document. He and David Smith have becn instrumental in
developing and honing many of the ideas presented here. Critiques by Tom Pressburger, Steve
Tappel. Sue Angebranndt, and Paul Cohen did much to help shape this paper, as well as many of
my views. Mark Stefik, Terrv Winograd, Danny Bobrow, and Rich Fikes conveved cnough of the
good and bad aspects of KRL and UNITs to motivate us towards an rll. Greg Harris implemented
an carly sysiem which performed the task described in Section 4 and Appendix A. Cthers who
have directly or indircctly influenced this work include Bob Balzer. John Brown, Cordell Green,
Joian deKleer. and Rick Haves-Roth. Finally, T am grateful to David Smith, for providing the
demand unit swapping package ([Smith]) we used to sidestep InterLisp’s space limitation. The
rescarch is supported by NSF Grant #MCS-79-01954 and ONR Contract # N00014-80-C-0609.

27
q
A. APPENDIX - Use of the Father Slot
: This appendix expands the example shown in Section 4. It is designed to illustrate how the initial
! version of RLL-1 actually goes about generating and caching appropriate slot valugs. As we have
‘ emphasized several times earlier, this only represents one particular method RLL-1 allows; any user
| may chose to follow this set of conventions, or design his own.
; A.l: How (GetValue U S) really works:
|
! Suppose immediately after creating the Father unit, as done in Section 4.3, the user asks for Kart
‘. Philipp Emanuel's father, by typing
{GetValue 'KPE ‘'Father).
‘ The Getvae function is very simple - it calls Father:ToGetValue on the arguments KPE and
Py Father. Technically, this would require determining
Lo (GetValue 'Father 'ToGetValue),
. which would, in turn, nccessitate looping endlessly on the call
= (GetValue 'ToGetValue 'ToGetValue).
! To avoid this trap. the GetValue function has “pre-compiled” the result of this (Getvalue 'ToGetValue :
' ToGetvalue) call in the appropriate place in Getvalve. Hence, Getvalue is dcfined as [
= (DEFINE GetValue (Unit Slot) (APPLY* (GetAccessfn Slot 'ToGetValue) Unit
: Slat),

where GetAcessFn is the function stored on ToGetValue:ToGetValue?! rather than the desired, but
unnunnable

(DEFINE GetValue (Unit Slot) (APPLY* (GetValue Slot 'ToGetValue) Unit Slot).
Note Getvalue is the only trouble-maker. All of the other accessing/modifying functions, such as
Putvalue Of RenameuUnit, avoid this added hassle.

This GetAcessFn function is also fairly simple. (GetAcessFn "Father 'ToGetvaive) first checks if a value is
physically stored on the the ToGerValue slot of the unit Father, and finds none. (Had GetAcessFn
found a value there, it would have returned that value.) Otherwise, GetacessFn falls back on
FindDefault’s method of inheritance, (shown in Appendix B.1) and so scans the prototypes of Father,
in order, searching for the first prototype it can find which has a ToGetValue slot. Here, this search
will walk all the up to TypicalSiot, find DetauitGetvaiue stored there, and return that value.

Like GetAcessFn, DefauitGetvalue first tries a simple associative lookup (essential a GETPROP), but finds
there is no Father property stored on KPE. DefauitGetvaiue then trics a more sophisticated approach:
rather than look up the prototypes of Father (as GetAcessFn would have done,) DefaultGetvalue asks
the Father unit how to compute the Father of any person. This information is stored on
Father:ToCompute. Thus the (Getvalue 'KPE ‘Father) call effectively becomes

[App1y* (GetValue 'father 'ToCompute) ‘'KPE].
Notice this calls GetValue recursively Once again there is no value stored here, on the ToCompute
slot of the unit called Father. The call therctore expanded into

[Apply* (Apply* (GetValue 'ToCompute 'ToCompute) 'Father) 'KPE].

Luckily, there is a value on the ToCompute slot of the unit ToCompute. The functional stored in
ToCompute: ToCompute, TCTC. takes an argument, X, (the name of a slot.) and returns a function
which. given a unit U, computes the value of the X slot of that unit. TCTC instructs RLL-1 apply
the function HighLevelExpand to the HighlLeve/Defn of X, HILLD. This function first finds the slot-
combiner S which X cmploys, (this is the car of HLLD) and applies S: ToCompute tunction on the

relevant arguments -- the other clemeats of HLD. Our call is now cxpanded out into
[Apply* (Apply* (GetValue 'Composition 'ToCompute) 'Husband 'Mother)
: "KPE].

———— e o =t s

A In fact an essential invariant of our system is that GetAccessFn be a fivzd point of Fr = (Fn ToGetValue
ToGetValue). By the definition of GetValue, this implies that Fr = ToGetVal- ToGerValue (where we have replaced
"GetAcesssFn™ with “Fn” in GetValue).

A A o i Al il ittt

T T T e e

The slot-combining unit called Composition does indeed have 2 ToCompute slot; after applying it,
we have (roughly)

[Apply* '(A (x) (GetValue (GetValue x 'Mother) 'Husband)) 'KPE].
This asks for the MWorner slot of KPE, which is always physically stored in our knowledge base, and
then asks for the valuc stored in the Husband slot of that unit. The final result, JSB, is returned. [t
is also cached (stored redundandy for future use) on the [Facher slot of the unit XPE. Section 5.2
elaborated the details of this process.

A.2: How (and why) caching realy works

Consider what will happen the next time the user requests KPE:Farther. As before,
Father: ToGetValue will be cailed, and returmn OefauitGetvaive. This will be invoked and, as before,
see if there is some value stashed in KPE's Father slot (this is Step 1 of Algorithm 1). This time
that test returns successfully, and the result, JSB, is rcrurned. Notice all the other running around
has becn avoided. Much of this work, such as dectermining the value of Father: ToGet Value can be
done at compile timc, through the use of clever macros, (see Appendix D.3) to speed up this
process ever more. Our goal is for such standard cases -- ie. retricving a stored valued -- to be
about as fast as a simple GETPROP (see Appencdix D.1).

We might later ask for, say, the [Father of Wilhelm Adolf Bach (WAB). As usual,
Father:ToC~Vaiue = DstautGetvaive is used. It, finding no value is stored on WAR's Farker slot,
now need Father:ToCompute, and so "enter” Algorithm 2. This time Father:7vCompute will be
found in the fisst step and simply returned. When this function is applied to WARB, it will return
the value of WARB's Father, Wilhelm Freidman Bach; after caching that value for future use.

Nate the efficiency in the mechanism -- only if a value, such as KPE: Father or Father: TcCompuie,
is requested will RLL-1 actuaily compute this value; at which point, it does only the work required.
If such a request is never issued. no affort wiil be wasted. as this thercfore-uscless value, (e.g.
Father: ToCompute,) will never be calculated. Subscguent calls to x:Father wiil not recompute this
function, but will merely use the value stored in Father:ToCompure. Scction 5.2 expands and
generalizes this point

There is an obvious space-time wadecT going on herc: rotrieving a cached value deoes take much
less time than would be spent racomputing that value: but it does cost that additional storage. To
simplify this example, we implied RILL-1 would always decide to cache, i.e. in favor of saving time
over space. [In general, RLL-1 tries to weigh time versus space considerations in determining
whether, and how. to preserve a value. For example, RLL-1 may then decide to “SELF-
COMPILE" the function now stored in Father: ToCompute. That is. the first time this function is
run. it wiil compile itself into machinc-level code, and store this more erficient form where it will be
sought before the interpretaed, source code. In this way {Tequendy used functions can become faster
and faster. -

A.3: Cther Accessing Functons

To demonstrate another accessing funcuon, suppose the user wished [0 enter a value info
KPE:Yother. This could be achieved by typing
(PutValue 'KPE "Mother 'AMB).

As before. Putvalue is 2 very simple function. It asks the Mother unit for its ToPurlafue slot, and
then applies this function to KPE. Mother and AMB. By the same process outlined above,
Mother: TuPutb viue requires ToPutValue: ToGer)-aiue. This function has becn stored. and is again
GetaccessFn. (This same GetaccessFn functon is used in all of the accessing and updating functions.)
As before. (GetaccessFn Mother ‘ToPutvalue) first asks Mother for its TolPutValue slot. Finding not
value therc. it examines Mother's prototypes. {P;}. stopping and returning the first nonNiL

Pj:TaPulI Qlue. Unless intercepied. (sec Appendix B.1.) this (GetaccessFn ‘Mother ToPutvalue) will

return the value living in TypicalSlot ToPutrlalue. CefauttPutvaive. This default function verifies that
AMDB is an acceptable value for a Mother slot then stores AMB on the Mortker slot of KPE, does
various knowledge base truth maintanence tasks. aad stops.

RSP P SN

29

|

; | | !
‘l AnyPhysicalObject '

: / Walphysicambiect y
‘ AnyLivingThing AnyAnimateObject

} } TypicalLivingThing \/‘ TypicalAnimateQbiject

AnyAnimal
) JypicalAnimal

! AnyMammal
- TypicalMammal AnyMale
1 TypicalMale
' ;
i AnyPerson !
! .)
: TypicalPerso i
AnyMuysigian AnyGemman
TygsicalMusician TypicaiGerman
i
! | KPE |
‘ | IS-4: (AnyMusician, AnyGerman, AnyMale) |
| dAlllsas: (AnyMusictan, AnyGerman, AnyPerson, AnvMammal, AnyMale, I
{ AnyAnimal, AnyLivingThing, AnyAnimateObject...) |
| Prototypes: (TypicalMusician, TypicalGerman, TypicaiPerson, TypicalMammal, |
I TyvpicaiMale, TypicalAnimal. TypicalLivingThing, AnvAnimareObicet...) |

Figure #7 - Portion of the frame hierarchy which dominates KPE.

e e i A b g oo S A

—~

[G

30

B. APPENDIX - Additional Examples

B.1: Creating a Whole New Family of Types of Slots

RLL-1 comes equipped with several inheritance and retrieval mechanisins. One powerful and
useful onc exploits the [/insky] frame-like hicrarchy which structures the RLL-1s initial knowledge
bascs. Many slots can derive an [f-Needed value by default, extracting this value from the nearest
relevant prototype. Thus, the facts that "Clyde is an Elephant” and “Elephants arc grey™ should be
sufficient to deduce that "Clyde is grey”. The con.iructs and -chanisms which allow such
deductions are shown below, :

As part of a frame-like system, every RLL-1 unit has an /S-A sic- -*.ich lists the classes to which
this unit belongs. For example, KPE:/S-/ is the list (AnyMusician, AnyMale, AnyGerman). [Each
of these units, in trn, points to a list of supecrclasses of that set - AnyPerson is included in
AnyMusician:SuperClasses. Note, as these SuperClasses links encodc the superset relation, KPE will
be a member of the class represcnted by AnyPerson, as well as AnyMusician, AnyMale, and
AnyGerman. The dillsas type of slot cncodes this more complete "€" relation. See Figure 7.

Associated with each class, "AnyX", is a unit which houses facts which are typically tue of each
member of that set, by convention named "TypicalX".% So TvpicalMusician: Has/nstrume=t will be
True, whereas TypicaiPerson: Hasfnstrument is False, as most people do not own an instcument.
The Prototypes of a unit, U, is a list of the typicai members of each member of the list U:A![sas,
(in order of incrcasing generality). So KPE:Prototypes is (TypicalMusician, TypicalGerman,
TypicalPerson, TypicalMammal, TypicalMale, TypicalAgimal, TypicalLivingThing,
TypicalPhysicalObject, TypicalThing).

As suggested above, facts true of 2ach<C instance of AnyX should bte stored on the unit TypicalX.
If the user then asks whether some member of AayX, U, has this property, P. this FindCefautt
retricval mcechanism will go up U's Prototypes unil it finds a prototype which says something about
P. Unless intercepted, this search will terminate when it encounters TypicalX, and return the value
P implied. So we would expect KPE:Has/nstrument to be True, as TypicalMusican: Haslnstrument
is True. The fact that TypicalPerson: Has/nsirument is False is, here, irrelevant, as the FindDefauit
search will never reaci TypicalPerson. (This inhcritance mechanism is esseatially the same as the
one [RL aand XRL use)

Thus the AnyMusician and TypicziMusician units were used to implicitly define a new class of
objcets. by indicating new default valucs for members of this class. (In this case. the value for the
Hasinstrument sio) We can exploit the way FindDefault works to define a new subclass, AnyS. of
an existing class. AnyC. In the same way all musicians (such as KPE) "preferred” to get their
values from TypicalMusician over TypicalPerson, values placed on TypicalC override those stored
on TypicalS. The semantics of TypicalExample corresponds to our intuitive ideas. Figure 8 below
shows how we, and RLL-1, can allow Duckbill Platypuses to lay eggs. even theugh cvery duckbill
platypus is a mammal, and “ail” mammais give live birth,

e totannnmese

¢ N . . . P " > " "
“* We kave attzmpted to ollow a few naming conventions: The unit "AnyX” represents the class ol all Xs. “Typ:caiX
is 2 unit which stores infonnation which is pical (that is, defaulted) for cach clement of the class "AnyX"™.

by
2 This "cach” eriterion is not really required. We saw carlier in the TypicalMusician and Tyvpicall’erson cxample that
assertions stored on TypicalX units reflect default. as opposed 1o universal, statements. In addition. the fight tting would
happen if we later add :o the Elephant example above that “Clyde is an Albino” and “Albinos are. by delinition, white™.
The value of Clyde:Color would then be White, not Grey. This roquices placing an cpistemological mark on
Typicalatbino:Color to indicate this definitional quality: Appendix B4 will show one way of doing this. RLL-l can
handle the sancard problems which arise when dealing with non-monotonicities (4 Journa} and “dofault reasoning”
{Reiter]. The above example intentionally avoids such complexities.

Name: AnyMammal
IS-A: (AnyClagsQtObiects)
SuperClasses: {AnyAnimal, AnylLivingThing, ...)
Description: Represents all Mammals.
TypicalExample: TypcalMammal ~———" T =3[Name: TypicalMammal |
AllExamples: (Polly, KPE, ...) TypicalExampleOf: AnyMammal |
: : ReproductiveMechanism: Live birth. |
E H : |
Name: AnyDuckbillPlatypus
IS-A: (AnyClassd(lhjgcé)
SuperClasses: (AnyMammali ...)
Description: " Represents all Duckbill Platypuses.
TypicalExample: TypicalDuckbitiPlatypus —~———TD Name: TypicalDuckbiilPlatypus |
Examples: .. (Poily, ..) TypicalExampleOf: AnyDuckbillPlatypus |
: N {\ ReproductiveMechanism: Lays eggs. |
: H |
Namae: Polly
1S-A: (AnySlot)
Prototypes: (TypicalDuckbillPlatypus, TypicalMammal...)
RepraductiveMechanism:

Figure #8 - Framework permitting egg-laying mammaiian platypuses.
{1 he value of ReproductiveMechanism:ToCompute has to be FindDefault for this to work.)
[The value "--- " indicates NO value has been stared in this slot, and is only shown here for emphasis.]

This same mechanism can be used for types of slots as well. As slots are themsclves encoded as
units, they too can have defaulted properties. By creating a new class of types of slots, we can
provide its members with a different sct of defaults; inherited only by these members.

Examples 4.2 and 4.3 above intentionally glossed over details of the actual retrieval mechanism
uscd. As shown in Appendix A.lL, computing KPE:Father actually requircs first asking Father for
its ToGerValue value, and then applying this function to KPE. The value of this Father: 7oGetValue
will be inherited from one of Father's Prototypes. Similarly, storing a valuc in the Father slot of
KPE, (or any other unit,) requires first determining the value of Father:ToPutValue. As with
ToGetValue, the value of (Getvalue 'Father 'ToPutvalue) will be inherited from the first onc of its
prototypes which has some stored ToPutValue value. Unless intercepted, this will reach the value
DefaultPutvalue, stored on TypicalSlot:ToPutValue. This information is portrayed in Figure 9. Note

(Getvalue ‘Father 'ToPutValue) = (GetValue 'TypicaiSlot 'ToPutValue) = DefaultPutVaiue.
[Wame: AnySiot |
| 1S-A: (AnyClassQtQbijects) |

| SuperClasses: (AnyFunction, ...)

|
| Description: Represents all siots.
| TypicalExample: TypicalSiot | >, [[Name: TypicalSlot

|
| Examples: (Father, ...) | TypicalExampleQf: AnySlot |
[A | ToGetValue: DefauitGetValue |
) ToPutValue: DefaultPutvalue |
\\ : :]
AY

Name: Father |

IS-A: (AnySiot) |

Description: Represents the Father slot. |

Prototypes: (TypicaiSiot, TypicalFunction...) |

ToGetValue: |

| ToPutvalue: .- |

: :]

Figure #9 - Current framework for Father slot.

Suppose we want to create a whole different category of types of slots -- one which, for example,
prints a message before performing cach of its knowledge basc consistency modifications. (In
Appendix A.2 we saw that a unit's Father slot is deleted whenever that unit’'s Mother slot is
updated -- this is such a modification.) A gencral way of doing this requires first creating a unit
rcpresenting a new class -- named, say AnyChattySlot -- and its associated typical example,

[V.

! TypicalChattySlot. Now TypicalChauwySlot: ToPutValue is filled with the furnction ChattyPutvaiue,
| which resembles OefauitPutvalye, (the function found on TypicalSiot: TolutValue) but which prints

that updating message where appropriate. In Figure 10, we show Mother as an Example of
, AnyChattySiot, by replacing the valuc AnySlot with AnyChattySlot in Mother's /5-4 slot In this
| state, the uscr will be told that KPE's Father slot was being delcted if KPE:Mother is ever
; reassigned. Here (Getvalue 'Mother 'ToPutvVaiue) s (GetValue ‘TymcalChatlySiot ‘ToPutVaiue) =
“ ChattyPutvalue. Note (GetValue "Mather 'ToGetValue) is still DetauitGetvaiue, inherited from TypicalSlot;
this is true only because TypicalChattySlot had nothing to say about ToGetValue.

Name: AaySlot
1S-A: {AnyClassCtQbjects)
SuperClasses: (AnyFunction, ...)
SubClasses: {AnyChattySiot)
! Description: Represents aW"L_}
o TypicalExample: TypicaiSlot Namae: TypicaiSiot
. AllExamplas: (Father, ...) : 7| TypicalExampleOt: AnySlot
o : : ToGetValue: DefauitCetvaiue
. T ToPutVaive: DefaultPutvValye
o <
L Namae: AnyChattySlot
o IS-A: (AnyClassQtObijec
‘ SuperClasses: (AnySiot
Dascription: Represents afl chatty slots.
TycicalExamolg: TypicaiChattySiot — > [Vame: TypicaiChattySiot i
Examgles: (Mother_...) | TypicalExampiaOf: AnyChattySlot |
: : \\ | ToGetvatue: |
\ | ToPutvaive: ChattyPutVaiue |
L : |
! [™ame: Mother
| 1S-A: (AnyChattySiot)
f | Description: Represents the Mcther stot.
| Prototypes: (TypicaiChattySiot, TypicaiSlat, TvpicaiFunction...)
| ToGetValue: .-
| ToPutVaive:

"Figure # 10 - Altered framework far Mother siot,

In terms of this inheriting mechanism, there is nothing special about slots. or classcs of slots. We
could, with equal case, have generated new categories of poultry by this same mechanism. All siots
whose “inheritance criteria” matched ToGetValue's (i.e. whose ToCormpute was set t0 FindDefauit,)
would inherit features from this new typical chicken. as the descendants of AnyChattySlot inherited
slot values from TypicalChattySlot, examples of AnyMusician could derive properties from
TypicatMusician, or examples of AnyDuckbillPlatypus found default values on
TypicalDuckbillPlatypus.”

B.2: Overview of EURISKO System 1
{ Use of Agendae, Tasks and "Generalized Preduction Rules”

This RLL-1 work developed from a desire to produce (the foundations) of ELRISKO -- a system
capable of discovering new heuristics. To facilitate this pursuit, a very flexible processing structure
had to be created. One mechanism sclected emploved multiple agendae, cach contining a host of
domain-specific tasks, pertinent to a single coherent topic. To "run” a task, EURISKO first finds
the set of relevant heuristic rules, and then invokes each rule as appropriate, until reaching some
termination criterion (such as exhaustion of all allotted resources). What complicates this process is
. the fact that determining such rule sets is itseif a task, which appears on an agenda. Similarly,

——

27 1 is worth repeating the comment stated in Footnote 11: This inheritance mechanism is NOT built into RLL-1, and is
never forced on the user. [t is simply one of a large collcction of parts he may use in whatever manner he chooses. n
fact, only some of RLI.-1's initial slots use only this inherit-by-deiauit method to deduce a nceded value: many others
wiil usc it as a last resort, after a prefered alternate method (such as parsing e [lighlevelDefn) has failed: and vet
others never even consider it

deducing how to execute such a collection of rules is a task, as is essentially every other non-trivial
process.

The standard flavor of production rules, containing just an "IF" predicate, followed by a set of
"THEN" actions, is unnecessarily restrictive. Furthermore, in most systems, these rules arc placed
in an unordered list, which must be scanncd, in foto, to find all relevant rules. Several other recent
projects have also found standard rule systems severely lacking. Attempting to address (and
hopefully solve) such inadequacies, [Fagan} put additional data into each rule; and [Lenai}, [Aikins],
and [Smith&Clayton] found natural (and useful) ways to organize collections of rules into a
hicrarchy. These, and other limitations of "Pure Procuction Rule Systems”, are discussed in
[Lenat&McDermot].

Rules still possess too many good qualities to pass them up. "One would still like to store the
procedural as well as the declarative knowledge in small chunks, each including not only this morsel
of information, but also some idea of when it should be used, and how. ‘The obvious drawback to
this is efficicncy: considering just the overhead each subunit will require, this segmented body has
to take more space to hold than a comparable single program. Furthermore, it will usually require
more tme to interpret a collection of rules than to run that equivalent picce of code. EURISKO
has finessed this dilemma by retaining both versions (i.e. distinct encodings) of an operation (and
possibly others) and utilizing each when that encoding is most appropriate. The most inefficient, but
easicst to modify, version will be this set of rules.

Maintaining consistency amoung these versions, of course, is a non-trivial problem. However, the
mechanism shown in Appendix A.2, with respect to slots, is adequate for the task. Basically, we
would need to associate with cach successively more complex version the procedure for building it
out of simpler forms -- a compiler of sorts. Then when, for example, the collection of rules is
modified, EURISKO would simply invalidate (e.g. erase) the source code version. (This might start
a cascade, which would cause the compiled version and possibly other things dependent on this
function to be crased as well.) If this function is later needed, EURISKO would try to retricve the
now-erased function. This would, in turn, trigger an If-Needed precedure, which would construct
(and cachc) this source code from the rules; and EURISKO goes on.

To accommodate a system as complex and sclf-referential as EURISKO, it is necessary to store a
vast assortment of information in each rule; and to organize them into a usable structure. For
obvious rcasons, we chose to represent cach rule as a full unit, whose slots indicate not only how
and when to fire it, but other usable, if not exccutable, facts as well (e.g. HowCreated,
AverageRunningTime or OverallWorth).

A task’s first step is to search the knowledge base for the set of relevant rules. (Recall this sclection
and gathering process is itself just another example of a task to be performed, which in turn, will be
based on a collection of rules, and so forth. By appropriately caching necessary values, RLL-1
avoids the problem of infinite regressions.) Running this task will, at first, require slowly
interpreting these rules, with a meta-level process observing. During such early runs this collection
will be modified to optimize the order of rule firing, and prune away extrancous and superfluous
rules. Once a stable rule set has been determined, this collection will be composed into another
encoding of this procedural information: a single picce of runnable code.?® At this point, the
generating body of rules can simply be swapped out, in much the same way source code nced not
be present when its compiled form is being executed.

In general, the result of this arduous process will be cached. The next time this task, or any
sufficiently similar one, is to be run, this “compiled information” will be used, (which avoids

2 We have not yet begun to write this rulc-composition procedure. Recert research by (wanMelld and ([Forgy] has
indicated this will be quite a complex undertaking. The first version planne: 1 be fairly straightforward -- using only
local and totaily syntacuc opcrations. Subsequent iterations may perfomn. ...0us optimizations to the output code.
Evenwally we would like to sec ELURISKO both propose and imp!. .. such improvements.

33

34

rerunning the entire task-generating process outlined above). If trouble is crcountered laier, or
when considering applying this operation 0 a ncw domain, the original rule set can easily be
retricved and rcanalyzed, to be corrected or augmented as required. In most cases, however, the
efficient code is simply executed. Hence, in the long run, all of this flexibility is at essendally no
! long-term cost, using only the mechanism we saw used for Example 4.3!

With this model, rules fit naturaily into RLL-1's Cognitive Economy framework (see Scction 5.2)
, and wc have attempted to incorporate them extensively in RLL-1s internal processing as much as
possible.

B.3: Creatirc 2 New Inheritance Mode

w Suppose 3¢.<ticist wishes to define a type of inheritance, one which skips every sccond generation
when dcerm.ing the properties of a new unit. He browses through the hierarchy of units
. descendin:.. foom the general one called Inheritance, undl he finds an existing unit,
: InheritSelc. i+ 2ly, which closcly resembles his goal inheritance facility. This he copies into a new
; unit, Inheriti'romEvery2ndGeneration. Editing this copy, he finds a high level description of the
path o be taken during the inheritance. To achicve the generation skip, he replaces cach single ,
occurrence of “Parent” by "GrandParent” (or by iwo occurrences of Parent, or by the phrase]
(Compusition Parent Parent)) in this part specification. After exiting from the cdit, the new type of
inheritance will be active; RLI.-1 will have translaced the slight change in the nnit's high-level
description into a multitude of low-level changes. If the gencticist now specirics that Organism ¥ 34
is an "InheritFromEvery2adGeneration offspring” of Organism# 20, this will mean the right thing: -
that Organism & 34 has about the same chance of glacouma as Organism 420 had, and that we : :
should expect their political slants - e.g. Radical/Conservative -- t0 be simiiar. [t is worth noting
| that the tools used (browser, editor, translator, etc.) are themsclves encoded as umits in RLL-1L

‘ It is no harder to create a new type of slot format (QrderedNoremptySer), slat combiner (TwoMuost,
Starring), or datatype (MustBcPersonOverl$), than it was to create a new slot type or inheritance
mechanism. Explicitly encoding such information helps the user (and us) understand the precise
function of each of the various componeats. We do not yet (and propbably never wiil) nave a
complete set of any of these components, but are ¢ncouraged by empirical resuits like the Silowing:
The first two hundred slots we defined required us to define thirteen siot combiners, yeot the iust
two hundred slots required oaly tive new slot combiners,

B.4: Epistemological Status

There are many ways of handling the wcaith of problems associated with representing the
cpisternological status of things likc facts, assertions and beliefs. We assumed, in designing the
initial RLL-1 system, that most statements are, in fact, facts. Bascd on this, it is efficient to lcave
these completely "unmarked”, and realize the additional cost of handling siatcments with other
“epistatuses” (shorthand for “epistemological statuses™). Hence, to represent the statemcnt that
John believes that Mary is 37 vears old, RLL-1 adds the ordered triple (*Do* SeeUnit
AgzeOfMaryC001) to the the ge slot of the Mary unit?? RLL-1 creates a unit called
, AgeOfMarv0001, fills its *value* slot with 37 and its LpiStatus slot with "John believes”. Sce
| Figure 11. Note this mecharismn sutfices 0 represenc belief about belie! {just a sccond chained
: Scelnic pointer), quoted belief ("John thinks he knows Mary's age”, by omitting altogether the
‘ *val.ue® siot in some AgcOMMary000: subunit), situational flucnts, cte. This mechanism can also be
used to represent arbitrary n-ary relations (such as "John gave the ball to Mary™), thereby escaping 1
the limitations associated with associative triples (i.e. Unitv/Slot/value). Other ways of handling
these are discussed in [GeneserethtLenat].

9 This “*Do*" prefix is special. Appendix D.4 shows this nottion sufficieat (0 handle effectively all special cases of slot
value, if awkwardly.

s i A 1=

[E— _ N

, 35

‘ {

: Name: Mary

! 1S-A: (AnyPerson AnyFemale AnyContraryActor) 1

! Description: The grower of silver belis etc. H

! Age: {{(*Do* SeeUnit«) ("Do* Seeunity) (*Do* SeeUnit;)) }
Mother: Jane

REE SN

/

Father: ((*Do* SeeUnit) ..)

Z :

: Name: AgeOMary0001 / Name: AgeOiMary0002 | !

‘ IS-A: (AnyUnitForASlotFiller) 1S-A: (AnyUnitForASlotFiiler) | :

] LivesinLocation: {Mary Age) Liv sinLocation: (Mary Age) | 1
; *vaLye*: 37 *value*’: 21]
Epistatus: John believes Epistatus: During Wedding8045]

1 Telgology: Epistemic Telgology: Historic | .

Name: AgeOfMary000 3

. IS-A: {AnyUnitForASlotFiller) {

. LivesinLocation: (Mary Age) ¥

: *vaLue*: 39 L

. Epistatus: TheWhaoleTruth
: Teleology: CreatedWith 3
: Figure # 11 - Representing "John betieves that Mary is 37, tut she's really 39. When she was married, she was 21", :

A
T

o e

2

C. APPENDIX - Syntactic vs Semantic Types or Slots,
Revisited

In Scction 5.3 we distinguished semantic slots from synwactic ones. Technically, syntactic slots of a

unit U belong in the meta-node above U, as they refer to the unit U qua unit. We could create

such a meta-unit, e.g. FactsAboutTheUnitkrs, 1o store all the facts about the KPE unit, and store

this within our system. This FactsAboutTheUnitkpe unit would have slots like TimeOfCreation, or \
Size. The values stored there, such as 3 October 1930, or 96 Lisp Cells, are facts about the K PE

unit, and NOT about KPE himself, who was born on 8 March (714, and is actually 5°/0” tall. "Lhe

obvious question is “When was the FactsdboutTheUnitkpe unit created?”. To find this answer, one

should logically go to the FacisAdboutTheUnitFacisaboutThetnitkPE unit. And when was that unit

created? and so on..

So we have chosen 0 compress these two, logically distinct units into a single physical entity. In
addidon to the argument above, empirical evidence has shown that these two units consistently are
used together; and so should be, for example, swapped into core together. Epistemological marks
are used to distinquish those slots which refer to that external entity, from those which, in fact,
pertin to this unit isclf.?? Slots in the first category, the semantic slots, work cleanly for all of our
functions. There were several difficulties which arose when dezling with Syntactic slots - those
which perwin (0 this unit qua unit

Diagram# 1, in Appendix E, shows that essendally all of the units of the sysiem descend from the
"AnyConcreteThing& Unit” class. Our intend was that each such "concrete-thing-&-unit” represent
both some entity in the "external” world, and itself. The cleanest way of achieving this was as
follows:

Consider first the class of all centaurs. To indicate that each centaur is both a man and a horse, we
would place on the TypicalCentaur unit a ComposedOf slot. whose value is the list (TypicatMan
TypicaiHorse). The meaning of this is straightforward: each centaur should iaherit characieristics
from both iis manliness and it horsiness.

Now examine rthe TvpicalConcreteThing&Unit unit. This unit 4ua unit, is in fact composed cf two
parts -- its pieces cocme from the fact it represents a unit. and the fact that it reprosents a concrete
thing. So its meta-unit, the FactsAboutTheUnitrypicaiConcreraraingaunt, shculd have the
ComposedQOf value of (TypicalUnit TypicalConcreteThing). As this me-unit is NOT disjoint from the
object-level TypicalConcreteThing&Unit unit, we give it a M yComposedOf slot. whose value is that
(TypicatUnit TypicalCancreteThing) list. (Note TypicalAbstractThing&Unit is handled ti: same way.)

The next difficulty arose when dealing with inheritance. Consider the task of creating a new unit,
say KPE. which is dcfined to be an Examipie of AnyMusician. A simple scheme, which would work
ideally for semantc units, would be to map through the set of inheritabie slots of TypicalMusician
(note this is value stored on TvpicalMusician: My /nieritabieSiors.) and. for each slot, S, store on
KPE:S the value held in TypicalMusician:S. So XPE:Size would receive the Size of
TypicalMusician, which is what you would want.

Now we know that every unit represeating a mwsician will ke created by Precedure #2114, the d
musician creating routine. It would be nice to store this syntactic slot, MyCreztor, on
TypicalMusician. and let each new musician inherit this information. Unfortunately, this
TypicalMusician unit was itself created by the routine which specialized in creating typical examples,
Procedure #21.

B Y

0 We indicate this differonce by a simole naming convention: The name of each syatctic slot will begin with “M)y" --
te. TimecO/Creation versus MyTimeOjCreation. ot Size versus MySize

The solution we used is for ecach type of slot to know to which category it belongs - Syntactic vs
Semantic. Scemantic slots work unthampered. However, the unit for each syntactic type of slot has a
special slot, StoredinTypds, which points to the name of another slot, on which the valuc to be
inherited is stored. Here, MyCreator:StoredInTypAs had the value Creator-Instances. The value
stored on TypicalMusician:MyCreator is Procedure#21, and refers only to this particular
TypicalMusician unit. The inheritance scheme, on sceing MyCreator on
TypicalMusician: InheritableSlots, knows enough to use the value stored on TypicalMusician:Creator-
Instances, which, happily, is Procedure#114. This is the value to which KPE:MyCreator is
initialized. '

(NOTES: The Inhcritance mechanism demonstrated above is a vastly oversimplified version of one
of the several inheritance schemes resident to RLL-1. Like the rest, it is encoded as a unit, and can
be modified by any user to serve his particular needs.)

38

D. APPENDIX - IMPLEMENTATION PRINCIPLES

D.1: Make Standard Case Fast: This system should perform not only correctly, but expediently as
well. Towards this cnd, a self-imposed design criterion is to optimize what we expect to be the
standard, most common case: cven at the andicipated increased cost for iess common situations.
Note this philosophy is reflected in CORLL's retrieval strategy as well -- we have minimized the
speed of accessing a slot’s value when that unit is in core, and accept the longer times required
when that unit must be read in. The underlying assumption is that after a unit has been accessed
once, it will probably be used several more times befor being read out. Furthermore, this rcading
process has to be fast, as it will undoubtedly be central to the inner-most lcop of RLL-l’s
operations.

For similar reasons, we have chosen to optimize retrieving a slot's value, at the expense of storing
such a value. RLL-l will, in general, aiso spend extra time storing a computed vaiue; as this is a
one time expenditure, and it is likely this value will be needed often.

D.2: Least Commitment: Throughout RLL-1’s ongoing design we have attempted to minimize the
constraints the RLL-L functons force upon the unit, as every eventual user will have to tolerate
these. (This point is closely related to the issue orf having an unbiased initial system, discussed in
Section 6.7.) To accomplish this, while still permitting the basic RLL-1 package to perform e
various detailed tasks expected of a usable knowledge base system, this system includes a versatile
KB manipulating subsystem. The functions this requires are stored as the values of various slots of
certain high-level units, where they belong (see Scction 5.5). As shown above, the user with a more
specialized task in mind can readily override thesc general functions, by simply rewriting these slots’
values with functions of his own.

(Thesc specific functions, while essential for the siarting system to work, are not sacred. Indeed a
self-serving designer may use them for the single task of storing a different set of functions in their
places. Thereafter ail GETs and PUTs would go through these just-enterved functions. The
bootstragping furcticns used to prime the pump are documented in Appendix F.2. These vere
designed to demonsirate one possible, easily extendable, way in which this system could work.)

D.3: Cuompilz Time Macros: Associated with each type of siot is a pointer to the routine which this
slot uses to pertform write and retrieve its value from a unit. (See Secton 4 and Appgendix AL)
Determining, say, the Wife of JSB requires first asking the unit Wife for its ToGetValue slot, and
then agplying that function to the uait JSB. (Similar RLL-1 functions are used for putting a value,
or initializing a unit, et¢.) In most cases, Wife:ToGerValue will remain fairly constant over long
periods of time -- in particular, from the time a function which asks for the iVife of some unit is
compiled, undl the tme that function is actually exccuted.

To shorten the run-time cost. we employ varicus sophisticated macros for these basic accessing
functions. Whenever possible, these run-around the Knowledge Base at compile time, determing
the specific getting or putting function associated with this slot. This function is cailed directly at
run time, avoiding the overhead mentioned above. Note that RLL-1 has stored on the Wife unit
the set of "macro-ed” functions, which enables it to invalidate the compiled form of these Awnctions
i Wife:TuoGetVaiue s later changed.

D.4: Special Slot Values: By definition, the value of the S slot of the unit, U, is what (Getvalue U §)
returns; and ths, in turn, depends on the function stored (or virtually stored) on S:ToGetValue.
Unless intercepted cr overwritien, the value of a S:ToGetValue will be DefauitGetvalue. With this in
mind, this section discusses what this standard retrieval fiinction, DefauitGetvalue, regards as values.

The standard vaiue of a slot (i.e. the value returncd by DefauitGetvaive) is exactly the value physically
stored there, except for the following few cases. To disambiguate the case when a unit does not
have a slot from when the value of that slot is actually NiL, the values NoEntries (indicating that this
value is known to be the empty list) and NeEntry (meaning an cmpty single value,) are used.
(Following the delegation of responsibility comment mentioned in Scction 5.5, it is the various

e e —— T S— - o

et a wmh Sa e

individual formats which "know"” and use this fact -- N.B. it is NOT built into any of the retrieval
functions.) When the valuc of this slot is not known, the value RecomputeMe will be stored as its
value. This is built into the basic defaulted accessing functions, in that none of them distinguish
this RecomputeMe value from the case of finding that this slot does not physically appear in the unit.

The only other special case allows the user to specify a more arbitrary format for the value of this
slo.. The value (*Do* <format-name> v, v, ... vy) indicates the values (v, v, ... vp) should only be
regarded with respect to the format (or cpistemological mark) <format-name>. For example, (*Do*

OneOt Red Yellow) indicates the value of this slot is either Red or Yellow. Note the semantics of th-*
statement are based on the unit OneOf, which is, of course, accessable and modifiable by the user.

As Appendix B.4 shows, there are times a full unit is devoted to store the information associated
with Unitsiot. Here, the entry stored associated with siot on the unit, Unit, is of the form (*Do*
FSeeUnit SlotOtunit). This uses the format unit FSeeUnit which knows that the real value of Srot is
stored in the *vaLue* slot of the unit, SiotCtunit. RLL-1 is cquipped with several other subspecies of
indirect pointers; and the user, of course, is free to concoct his own. .

Everything described above has been implemented. There is, however, considerable concern that
this mixes and confuses epistcmological and notational marks. This is now being hammered out;
and the way subsequent generations/releases of RLL-1 will handle this situation wiil depend on
these discussiuns.

39

Anything

AnyAbstrac

. /
/

L.~

AnyAbstactThingaUnit

AnyintensionalCbject
AnyVariatle \

AnyUnitFarSiat

AnyArchetype

/’#’_\.\

tChiect AnyConcreteChjest

—/’7
AnyUnit /

~
- \
AnyConcreteThing&Unit

~

/]

j i M
AnyPartiaiSpec B -\ AnyCharacteristic
Anylaheritance A
AnyUser AnyCiass AnyFsrmat AnyDatatyge
AnyCverhead AnyProcess
p—
AnySiotFermat AnyValyeFormat
AnyUnitListProcess AnyFuncticn
AnyUnitProcess AnyUniiListFn AnyFunctional

AnySteratleFn AnySistListFn

AnyUnitFn ArnySlctComtiner
AnySlot
. e i
AnyField Any$SELF3S!ot
AnyComputabieSiot AnyPrimitiveSlot

AnylnheritableSlot

* r.‘-.‘r.l .
Diagram #1 (& Ars

Classes of Units

41

BIBLIOGRAPHY

Artificial Intelligence: An International Journal, April 1980 (Special Non-Monotonic Logic Issue,)
Volume 13, Numbers 1 and 2.

Aikins, Jan, "Prototypes and Production Rules: An Approach to Knowledge Representation from
Hypothesis Formation”, HPP Working Paper HPP-79-10, Computer Science Dept Stanford
University, July 1979,

Bledsoe, W. W., "Non-resolution Theorem Proving”, Artificial Intelligence: An International
Journal, Volume 9, Number 1, August 1977, pp. 1-36.

Bobrow, D.G. and Winograd, T., "An Overview of KRL, a Knowledge Representation Language”,
S-1ICAL, MIT, August 1977.

Brachman, Ron., "What's in a Concept: Structural Foundations for Semantic Networks"”,
International Journal of Man-Machine Studies 9, 127-152 (BBN report 3433, October 1976).

Brachman, Ron, "On the Epistemological Status of Semantic Networks”, in Associative Networks,
Nicholas V. Findler (ed.), Academic Press, 1979, pp. 3-49.

deKleer, Johan, Doyle, Jon, Steecle, Guy L. Jr., and Sussman, Gerald Jay, "AMORD: Explicit
Control of Reasoning”, SIGART Newsletter, Volume 12, No. 8, August 1977, pp. 116-125.

Davis, Randy, "Applications of Meta Level Knowledge to the Construction, Maintainance and Use
of Large Knowledge Bases,” Stanford AI Laboratory, Memo AIM-283.

Doyle, Jon, "A Model for Deliberation, Action, and Introspection,” PhD Thesis, Massachusetts
Institute of Technology, June, 1980.

e — —————

e e e A -

o Erman, L. D., and Lesser, V. R., "A multi-level organization for problem solving using many,
diverse, coopcrating sources of knowledge”, 4-LJCAI, Thbilisi, USSR, 1975, pp. 483-490.

Fagan, Lawrence, "Representing Time Dependent Relations in a Medical Setting”, PhD Thesis,
Stanford Univerisity, 1980.

Fahlman, S. E., "VETL: A System for Representing and Using Real-World Knowledge”, MIT
Press, Cambridge, Massachusctts, 1979.

Fikes, R. F., and Nilsson. N.J., "STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving,” Artificial Intelligence 2, 1971, pp. 189-208.

Findler, Nicholas V. (ed.), Associative Networks, NY, Academic Press, 1979.

Forgy, C. L, "On the Efficient Implementation of Production System”, PhD Thesis, Carnegie-
Mellon University, Department of Computer Science, Feb 1979.

Forgy, C. L. and McDermott, John, "OPS, A Domain-Independent Production System”, 5-1IJCAI,
MIT, 1977, pp. 933-939.

f Genesereth, Michael, "Fast Inference Algorithm Based on a Constraint Propagation of Marks in a
b Semantic Network”, MathLab Memo 4, MIT, Cambridge, Massachusetts, 1976.

{ Genescreth, Michael, and Lenat, Douglas B., "Meta-Description and Meodifiability”, HPP Working
1 Paper HPP-80-18, Scptember, 1980.

Green, Cordell, Richard P. Gabricl, Elainec Kant, Beverly [. Kedzierski, Brian P, McCunc, Jorge V.
Phiilips, Steve T. Tappel and Stephen J. Westfall, “Results in Knowledge Based Program
Synthesis”, 6-1JCAI, Tokyo, 1977.

Greiner, Russell, "Details of RLL-1", Stanford HPP Report HPP-80-23, Computer Science Dept.,
Stanford University, October 1980,

Hayes-Roth, Frederick, Waterman, D. A. and Lenat, Douglas B., Designing Expert Systems, in
construction,

Hewitt, Carl F., "Description and Theoretical Analysis (using schemata) of PLANNER: a language
for Proving Theorems and Manipuiting Models in a Robot,” MIT Al Laboratory, TR-258,

\ . e p
iz - — - Rt ot A - . PRI sy . g
. D et ' ; TR e mpttrasterieheretre g i

e e — A

42

1972.

Hewitt, Carl F., Attardi, Guiseppe, and Simi, Maria, "Knowledge Embedding in the Description
System Omega,” 1-AAAl, Stanford, 1980, pp. 157-163.

Kuaz, J. C, R. J. Fallat, D. H. McClung, J. J. Osborn, B. A. Votteri, H. P. Nii, I. S. Aikins, L. M.
Fagan and E. A. Fcigenbaum, "A Physiological Rule-Based System for Iaterpreting
Pulmonary Function Test Resulis”, HPP Working Paper HPP-73-19, Computer Science
Dept,, Stanford University, November 1978. 4

Lenat, Douglas B. "AM: Automated Discovery in Mathematics”, S5-IJCAI, August 1977

Lenat, Douglas B. and Harris, Gregory, "Designing a Rule System That Searches for Scicntific
Discoveries”, Pautem-Dirccted Infercnce Svstems, D. A. Waterman and Frederick Hayes-
Roth, (ed.). Academic Press, Inc., 1978, pp. 25-32.

Lenat, Douglas B., Hayes-Roth, F. and Klahr, P, "Cognitive Economy”, Stanford HPP Report
HPP-79-15, Computer Science Dept, Stanford University, June 1979,

Lenat, Douglas B. and McDermotw John, "Less Than General Production System Architures”, S-
LUCAL MIT, 1977, pp. 928-932.

Lesser, V. R. and Erman, L. D., "A Retrospective view of the HearSay-1I Architecture”, 5-1IJCAI,
MIT, 1977, pp. 790-800.

Levesque, Hector. and Mylopoulos. John. "A Procecural Semantics for Semantic Networks”, in
Asscciative Networks, Nicholas V. Findler (cd.), Academic Press, 1979, pp. $3-120.

Mackinlay, Jock and Genescreth, Michael, "DB Reference Manual”, Internal HPP Memo, August,
1980.

Manna, Zohar and Waidingér. Richard, "A Deductive Approach to Program Synthesis”, 5-1JCAIL
MIT, 1977, pp. S42-351.

McBermott. Drew and Sussman, Gerald, "1i:e Conniver Referance Marual®, MIT Al Laboratery,
TR-2, 1974.

Michie, Donald. "Memo funcdons: a language facility with ‘rote learning’ properties”, Reasearch
Memorandum MIP-r-29, Edinburgh: Deparument of Machine [nteiligence and Perception,
1967.

Minsky, Marvin, "A Framework for Representing Knowledge”, in The Psvchology of Comnuier
Vision, P. Winston (ed.), McGraw-Hill, New York, 1975.

Nii, H. Penny, and Aiello. N.. "AGE (Auempt to Generalize): A Knowledge-Based Program for
Building Knowladge-Based Program”, &-1JCAIL, Tokvo, August 1979.

Phillips. Jorge. "Self-Descrited Programming Eavironment: .An Application of a Theory of Design
to Programming Systems”, forthcoming PhD Thesis, Stanford University, December 1580.

Quillian. M. R.. "Semantic Memory”. in Semantic Information Processing. Marvin Minsky (ed.),
MIT Press, Cambridge. Massachusetts, pp. 227-270.

Reiter. Ravmend. "On Reasoning by Default”, Theodtcal Issues in Natwural Language Processing-2,
Urozna. Litinots: Asseciation for Compuung Moachinery, 210-218.

Roterws. R. B and Goldstein. Ira P "FRI. Users” Manual”, A Memo +08. Artificial Intelligence
Laboratory, MIT. Camoridge. Massachusets, 1977,

Sandewall. Erik, "ldeas about Management of LISP Data Bases”. 4-1JCAL Thiiisi. Georgia. USSR,
3-8 September 1975, pp. 585-591.

Schubert Lenhart K. Goebel. Randolph G.. and Cercone. Nicholas J. "The Stucture and
Organization of 3 Semantic Net for Compreheasion and Iaference”. in Associative Netw erks,
Nicholas V. Findler (ed.). Academic Press. 1979, pp. 121-175.

Shank. Roger C. and Abelson. Robert P. Scrints, Plans Goals and Understanding: An Tncuinv into
Human Knowledze Stucrures. Hiilsdaie. NJo Lawrence Erlbaum Associates. 1977.

Ty

S U Y U

Shortliffe, E.H., Computcr-based Medical Consultations: MYCIN, New York: American Elsevier,
1976.

SIGART Newsletter, February 1980 (Special Representation Issue; Brachman & Smith, eds.).

Smith, Brian, "Levels, Layers, and Planes: The Framework of a System of Knowledge
Representation Semantics”, Master’s thesis, Artificial Intelligence Laboratory, MIT,
_Cambridge, Massachusetts, 1977.

Smith, David and Clayton, Jan, "A Frame-based Production System Architecture”, 1-AAAL
Stanford U'miversity, August 1980.

Smith, David, "CORLL: A Demand Paging System for Units”, HPP Working Paper HPP-80-8, July
1980.

Stefik, Mark J., "An Examination of a Frame-Structured Representation System”, 6-1IJCAI, Tokyo,
August 1979.

Szolovits, Peter, Hawkinson, Lowell B., and Martin, William A., "An Overview of OWL, A
Language for Knowledge Representation”, MIT/LCS/TM-86, Massachusetts Institute of
Technology, June 1977.

van Melle, William J, “"A Domain-Independent System for Constructing Consultation Systems",
PhD Thesis, Stanford University, June 1980.

Waterman, D. A. and Hayes-Roth, Frederick, editors, Pattern-Directed Inference Svstems, Academic
Press, Inc, 1978.

Weiss, Sholom M., and Kulikowski, Casimir A., "EXPERT: A System for Developping Consuitation
Models”, 6-1JCAI, August 1979, pp. 942-947.

Weyhrauch, Richard W., "Prolegomena to a Theory of Formal Reasoning,” Stanford Al Laboratory,
AIM-315, December 1978.

Winograd, Terry, "Beyond Programming Languages”, Communications of the ACM, pp. 361-ff,
July 1979.

Woods, W, A, "What's in a Link, Foundations for Semantic Networks”, in D. G. Bobrow & A. M.
Collins (eds.), Representation and Understanding, Academic Press, 1975.

. e o ———

s e
aponage—niyomepresi i SN

43

