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I. INTRODUCTION

Measured dipole element patterns in a number of phased arrays

indicate the appearance of blindspots [1,2]. Analyses which disre-

-y -

gard the presence of dipole supports [3,4]) do not predict such re-

sonances. In order to understand the cause of these blindspots and
how to avoid them it is necessary to determine the dipole element
performance with inclusion of the feed. To circumvent the ensuing

complication of simultaneously satisfying boundary conditions on the

dipole arms and on their supports, it is desirable to first determine
the modes of the feed region.+ These modes individually satisfy the
boundary conditions on the supports, as well as the Floquet require-
ments on the unit cell walls. The analysis of a dipole array scan
performance will then be reduced to an evaluation of the discontinuity
presented by dipole arms between two different unit cell waveguides
(one representing the feed region and the other the air region above

the array).

Section II is devoted to the derivation of the dispersion relation
and the fields for the ™, modes of the feed region of a dipole
phased array, in strip-line geometry and with a rectangular lattice.
Section III discusses the TEM modes supported in this feed region.
Section IV addresses the feed region modes for the case of a triangu- '
lar array grid. Section V discusses details of the numerical analysis.

Section VI considers the numerical results and presents a number of

+ A similar approach was taken in R. Lewis, A. Hessel, G. Knittel, 1
"Performance of a protruding-dielectric waveguide element in a phased -
array," IEEE Trans. Antennas Propagat., Vol. AP-20, pp. 712-722, i
Nov. 1972. i




conclusions. The appendix is devoted to the orthogonality of the

degenerate, feed region TEM modes.




I1. TMz MODES OF THE FEED REGION FOR A RECTANGULAR
LATTICE

A typical dipole array element is shown in Fig. 1, and a simpli-
fied ribbon model of the element is seen in Figure 2.

The feed region part of the unit cell may be regarded as a finite
section of the infinitely extended, uniform guiding structure pictured
schematicaliy in Figure 3.

The strip width is assumed small compared to the free space
wavelength. Therefore, the usual approximation of only longitudinal
current is made. This in turn implies that only the TM, unit cell
modes are affected by the strip loading. Hence, only the TM,, propa-
gation characteristics and the associated modal field distributions need
be determined. The strips are invisible to the TEZ fields which are,
therefore, represented in terms of the usual Floquet unit cell modes.

To determine the TMz modes two coupled, linear, homogeneous
integral equations are set up. These equations express the Floquet
boundary conditions on the unit-cell walls as well as the vanishing of
the tangential E field on the conducting strips. They are solved by
Galerkin's procedure, resulting in modal fields that exactly satisfy the
Floquet condition but ‘only approximately fulfil the requirements on
the strips.

To set up the integral equations, the axial component of the
electric field is expressed in terms of the Green's Function for an
infinite, electric-current, line source located in the unit cell-wave-

j(wt-x2)

guide, with e variation and the allowed values of x being as

yet undetermined. Accordingly,




E(r: x, k. )=el 2 [f  Glppi ki k) J(p) do' +
z= —w strip 1 ee “to’ 718

- ¢y
G(p.p'; ., ki) Jp (p') de' 1.
itripz(ee K, Kyg) Jp (@) de' ]

In (1) the strip current densities are ]1 2(Q'), and the unit cell

Green's function is

- A - -jik, . (Y-¥")

where kyn = I%IO + %m_ 3)

- 2,22
ke = MG, Imgg <0 (4)

-jlsm(x-x') e TR (x-x -jk oy, 1X-X |

NGl ¢ e 3T M T M » )
e -1 e -1

n = kyo = k sin @  sin ¢, (6) 1
£ =ksin 6, cos ¢, ¢!

1
ko =% "N Y (8) '4
B =XX tYY, . REX X Y'Y, (9)
r =ptzy (10)

% and £ is the free space permitivity.




The angles (eo, ¢o) denote the usual beam pointing angles of a

phased array whose broadside direction is z It should be stressed

0"

that kxodx is not the steering phase shift along x, which is given by

;dx; rather, k__ and the other kxn are propagation constants for

X0
E-type modes of a phase-shift-wall parallel-plate waveguide of height

dy' These modes travel in the x-direction and have
-i(k, y+x2)
¢

By enforcing the boundary conditions of the strips, i.e.

transverse variation.

E,F%.0 =0 for vl <5, an

the following coupled integral equations for J; , are obtained from

1):
GG-%. v, -, v kT () + GCE, v B, v k) T, = 0

for |yl s%‘ (12)
and :

G&¥ .y, - Ly x, ko) T1(¥) +G(E v 2 ¥k, kyg) Tp(y") = 0

h
A 2 -
where GJ = 1{ G J dy' (see Fig. 3). (13)
"z

In general, to solve (12) and (13), the current densities would
be expanded in a set of linearly independent basis functions. How-
ever, in view of the narrow strip width only one term of the expan-

sion is used here, i.e.,




Il'z(Y') = allzw(Y')- (14)

Application of Galerkin's method now yields the equations
2,.(x, k. ) 2.,(x, k,) o
11 _to 12*" "to 1 =0 (15)
221(K kto) ZZZ(K k ) oy

, - A D w a w ' '
where jZpq(x, Kyp) = (), GICDCr )0y, GD ()0 v K k) w(y'),

(16)
h
2
and <f,g> E}{ fg dy an
' -2
(the form jZpq is introduced sc that le and 222 are real).
In view of the following symmetries in (5):
¥ XD = 3, (-x',-x") (18)
and
¥ (xxH ]Y (x*,x)
) —v ' 19)
equations (15) can be written
Z1(x, k, ) 2,,(x, k, ) a
1 12'% *to 1 o . (20)
12(K kto) 211('< kto) 2
For the choice ¢(y') = 1, i.e., a constant current distribution on ] '
each strip,
2
‘ . h
1 sink__d Sin EYZIL
Xn X

21
=—» Kyn COSISm x-cos&d, E;nh (@)




-

(22)

w 1 sinkxn(dx-w)+e] xsmk n¥ m—%—)

Z12(K *io) = Ik T cosk, d,-cosEd,

Alternatively, if ¢(y') is chosen to be the static distribution

WY = —— (23) ‘;
(%)2 -y

which satisfies the edge condition on the strip, then the zeroth order

&nh sin : Znh
Bessel function of first kind Io( > ) replaces —g—— in (21)
n

and (22).

el

Scan dependent solutions for ¥y 5 exist only for values of
K satisfying
2
2§1(x, k) = 123500, kD12 =0, (24) !

which is the desired dispersion relation. Its solutions vyield, to
within our approximations, the propagation constants of the TMZ
modes, guided by the two-conductor strip-line in a unit cell. The «'s 4
depend on frequency, on geometry and, unlike in closed waveguides,
on scan variables. It can be shown in the usual manner that the
values of k are either real or purely imaginary. 1

For a particular «, the associated °'1,2 are evaluated from (20) :

to within a normalization constant, and the relative current distribu-

tion on the strips is thus determined. Subsequently, E, is calculated
from (1) and other field components are obtained from Maxwell's

equations. The modes so derived are mutually orthogonal, although

they only approximately satisfy the boundary conditions on the strips ;




e e R

[5]. It can also be shown that these TMz modes are orthogonal to

the TE, Floquet modes as well as to the TEM modes derived in the

next section.

e ————
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III. TEM MODES OF THE FEED REGION FOR A RECTANGULAR
LATTICE
The TEM modal fields cannot be determined in the same manner
as the TM fields because now Ez is identically zero. Instead, the
electrostatic potentials on the metallic strips are assigned constant

values ) and % respectively. Two coupled, inhomogeneous, linear,

integral equations of the first kind are set up which express this
requirement. Application of Galerkin's procedure vyields a set of
inhomogenous, linear, algebraic equations which are solved for the

charge density n, or the TEM current density J, where J = '1‘2’ n. To

formulate the integral equations, the static Green's function for an

infinite z-directed line charge in a unit cell is employed. The Green's
function is given by
-1 T -jk, (y-y")
Glp. p'; kyo) = 3 2 v (x,xe Kyn(ry, (25)
S CIGT WG
with
- -y! -ye! - -y!
. kyn (x-x) ekYn(x x') kyp [x-x'l

R (L M .

(26)

The wavenumbers l%m, ¢ and kto are defined in (6-8). If the strip
charge densities are designated nl(y') and nz(y'), respectively, the
resulting potential in the unit cell is

o(x,y) = J G(p, p'; kO, (yHdy!'
strip 1 2. o1

+J G(p, p'; k. In,(y")dy'
srip 2 0 0’2

@7




The boundary conditions on the conductors yield the integral equa-

tions,

¢1 = g(- g‘: Y, - %r y'; ﬁg)nl(Y') + ci('zw—' Y. V'Z!' Y'; FE)HZ(Y')

for 1yl <} (28)

0, = G(3. ¥, =5 v k() + G(FL v, 5 ¥ ke dny(v),
where Gn is defined as in (13).

Again, assuming a single mode approximation

ECORT R (29)
and using the symmetries of (26),

Y (X', x") =y, (-x'x") (30)
and
Y (x.x') = v;(X',X) . (31)
the Galerkin procedure yields
(Pil(it_o) Plz(}‘_g)> <Q1> ) <¢1) . .
Prakey)  Pritke)/ \Qp ¢
where <y(y), 1>2 P1q(Kyg) = (¥, Q-7 . V. DI, v Ky d¥(y')>
@33)
and
Q2= 01'2<¢(Y).1> (349)
are the electric charges per unit length z on the strips.
For w(y') = 1, T 2
o sinh d i 52-—
Ppy(keg) = - i—‘; e zayl - codex-c.tJys%K]’;Hg smﬁgﬁ > (35)

and




2
‘gd h
l o 1 €)” Xginhk nw+sinhk n(dx°w) sin—YR
f Ppakyy) = - I o2 FdScosRE - R
i 12*"to €5 p=-o ykyn cosgd, -cos }S'n X n
z ' -‘
' (36) ;

In general, matrix P in (32) is non-singular and, therefore, one has

from (32)

Q 1
Q, %

where the capacitance matrix, C, is P .

Choosing a particular combination (:;) defines a mode since the
modal fields are then determined via (37), (34), (29), and the
gradient of (27).
In general, there are two linearly independent choices for the
i vector (:;), and these yield two linearly independent, charge distri-
butions for the same TEM propagation constant, x = k, i.e. there
are two degenerate TEM modes. (This result also holds when

more than one term is used in the strip-current expansion).

¢
A convenient basis for the vector space {(¢1 )}, is one whose
2
associated fields are orthogonal over the unit cell cross-section. It is

shown in Appendix I that the eigenvectors of the capacitance matrix

exhibit this property. The eigenvectors are
P -P
12 12
= ' = . (38)
% (”’12l % <'P12'

-11-




They satisfy g'g "4y T Ga,b where 6a,b is the Kronecker delta func-

tion. The associated (real) eigenvalues are

Aa,b = (PH + IPlzl)/A ) (39)
where
_ pl 2
8 =Py, - IP,l° (40)

As seen from (38), for each eigenvector the component ratio, which
represents the relative strip charge distribution for a given TEM
mode, is of unit magnitude. Furthermore, the two modes have rela-

tive charge distributions which differ in phase by 180°.

e m————




Iv. TMz MODES OF THE FEED REGION FOR A TRIANGULAR

LATTICE

The analysis of Section II is now extended to the case of a
triangular grid by choosing the unit cell shown in Figure 4. The
Green's function (2) is also valid in this case. By imposing boundary
conditions on all the strips a set of four integral equations is ob-
tained, which are reduced to a set of linear, homogeneous algebraic
equations via the Galerkin procedure. Imposing the steering phase
shift between the two strip transmission lines, shown in Figure 4,
reduces the problem to the solution of two equations in two un-
knowns, which in turn yields the dispersion relation and the modal
current distribution.

In detail, the modal axial electric field generated by the strip
current distribution, ]i(y') 2, (i=1,2,3,4), and with é given in
), is o

E,(rix. k) = e’j"z_g f . Glp.p'ix, Ky )T;(y)dy') (41)
-—_ i=1 strip i e
The integral equations are obtained by requiring Ez to vanish on
each of the four conductors. In reducing these to algebraic equa-
tions one term is used in the current expansion, as previously in
(14).

For the choice ¥(y') = 1, the set of equations is

Zy 212 243 294 a

2y Zii 2o 2 a

}3 1 %5 %13 2 -0 a2)
213 293 211 212 a3

3 x 3 E 3

214 %3 213 21y oy

- — ||u.'

i 3
1
I
t
'
}




where the independent coefficients of the Hermitian matrix are:

. hy 2
m inCk. d.) sm&xr
213 (K Keg) = 2 1 o xn x (43)

k.. " cosk xndx-CosEd Enﬁ—

j&d,,
o 1 sink_,_(d_-w)+e sinkxnw

h, 2
sin&r_l._
2
(44)

) k Xn'"x
K ) = 2 .
212 n=-o Xxn cosk,d,-coséd, l_c nh
2
]gd §d kxnd nft

( k ) o —2_ e TCOST sin 3 sin > jkyndy

2, 4(k, = 2 . e
13 n=-o Xxn cosk,.d, -coséd ]_f ol
(45)

2.« kto) % 1 sink (d /2-w)+e’§dxsmk (d /2+w)/sm5'—2—\ ]kyn v
14'%- i k. ) coslsmcf ~CosEd, \E,
—— n=-e

(46)

2
. h
td, g cwy oin ™
% kl ’ sinkm,l(dx/2+w)+el xsink, . (d /2 w)ﬁl 7~ \eJK ndy

to) -n" <n cosﬂsmcfx-cosgdx \I: nh
47)

Imposition of the steering phase requirements between the two
d

5(Ed,, + b

feed lines, i.e., a,,, = a;e , where £ and n are defined in ]

i+2
(6-7), vields

223(1( k




with

nd
> g <§dx +_21>
zl(K'l_{l_O) = zll(K'Etg) + 213(K'l_{_t2) e (49)
nd
g de *’ZX>
ZZ(K k ) = le(x, to) + ZM(K k ) e (50)
nd
5 i édx +-2'X>
Z3(K, to) 2(K kto) + 223(x k ) e (51)
Using (43-47) and (49-51) one finds that :
Zl(x k ) Z (x, kto) (52)
Zz(x k Z3(|< kto) (53)

and (48) reduces to

2, 2 a

GH @
Z2 Z1 2 :

yielding the dispersion relation for the triangular grid case

*

Z:l (x, kto) IZZ(K k )[ = 0. (55)

The TEM mode charge distributions for the triangular grid can
be determined by a corresponding extension of the analysis presented
in Section III.

Four inhomogeneous equations are obtained via Galerkin's proce-~
dure and, by imposing the steering phase requirements, are reduced

to the form of (32), where

2
&d d : h
sinhkyndx+2cos(nn)c057§sinh kyré X /sin kyg
l(kto) - E;; coshlgjndx-cosgdx kb

(56)

_ e e o
e .




| . jedy
smhl%m(dx—w) +e smthnw

1 1
Pk, ) = h3 -
12* "to ?ayso n=-o kyn COShkyndx coskd,

b e as s

&dy £d, 2
J7= dy iy dy nh
cos(nn) e sinhkyn(-—2¢w)+e sinhkY n(—Z -w) sin >

* cosh Klndx-cosgdx E nh

(57)

g mm————

~The charge distributions and fields may then be calculated as

indicated in Section II.




V. NUMERICAL ANALYSIS

The TM propagation constants, which are the roots of (24), were
evaluated by using a combination of the step searching method and
the secant method. For small values of h/A (Fig. 3), convergence
of the series (21) was accelerated using the closed form expression
[6] for Elﬂriz—%! . Series (22) converges well because its terms
decay exponentially with n. The curves of Figs. 5-8, were obtained
with n ranging from -20 to 20. Extending the range of n from -200
to 200 did not change the third significant digit of either (21), (22)

or i.

In computing the curves shown in Figs. 5-8 a single constant
term was used for the current expansion on each strip. Curves were
also computed using the single static term (23) and a comparison of
results for these two current choices is shown in Fig. 9.

For the scan plane ¢ = 90°, the unit cell of Fig. 3 can be bi-
sected (Fig. 10). A magnetic wall is used because for the range of
parameters over which E was calculated, the currents on the two
strips are in phase. This relationship is obtained by evaluating (21)

and (22) (both are real for ¢ = 90°) and solving for «a in (20).

1,2
The bisected cell is identical to the unit cell of a one-dimensional
strip grating bordered by magnetic walls. A circuit representation of
the grating is used to construct an equivalent network (6], whose
transverse resonance solution yields a dispersion relation for our
bisected unit cell. The propagation constants obtained from this re-

lation are in close agreement with those calculated from (24), except

near cutoff.

=17~




The phase angle of the relative current distribution vs. scan is
shown in Fig. 11 for the dominant, plus-minus, TEM mode. The
phase angle for the plus-plus TEM mode is obtained from Fig. 11 by
adding 180° to each phase value shown. The angles are measured
using the left strip (Fig. 3) as the reference. The relative charge
distributions were calculated using eigenvectors (38). Series (36)
was evaluated with n ranging from -20 to 20.

Exactly at broadside the TEM plus-plus mode does not exist,
since all the conductors are at the same potential.

For the triangular grid, the TM propagation constants (Fig. 12)
and the TEM current distribution (Fig. 13) were calculated in similar
fashion except that (21) was replaced by (49) and (22) by (50). The
series of (43), contained in (49), is identical to that in (21) and its
convergence can be accelerated as discussed above. The other series
in (49) and (50) all converge rapidly.

The calculations for the rectangular and triangular grids were
performed by computer programs which were checked against each
other for the special case of the strip separation, w, equal to one-
half the unit cell x-dimension, since in that case the two grids are

identical.




VI. NUMERICAL RESULTS AND CONCLUSIONS

Figures (5-8 and 12) indicate that under appropriate conditions a
propagating TM mode exists in the feed region of a dipole array.
The normalized propagation constant of this mode for a rectangular
grid geometry is shown in Fig. 5-8 for different Vvalues of dx/)\,
dy/i\, w/A and h/A, respectively. It is seen that IKE increases when N
the unit cell dimensions increase, or when the strip separation w/A,
or the strip width h/A, decrease. Figures 5-8 show that IKZ decreases
monotonically with azimuthal angle ¢ and elevation angle 6. However,

in Fig. 6, 1'5( decreases monotonically with elevation angle, only. ;

In Fig. 12, ﬁ is shown vs. scan for two equilateral triangular
grids. Here too, 1'5{ increases as the unit cell dimensions increase.

The TM strip currents are not shown in the figures. However,
knowledge of the modal propagation constants makes it possible to
evaluate the currents from (20). For each mode, (24) must be satis-
fied and Z11 = Ilel. By substituting this result into (20) it is
seen that the modal strip currents have the same magnitude and only

differ in phase. This result holds for both the rectangular and the

triangular array grids.

The relative TEM current distribution of the dominant, plus-
minus, mode is shown in Figs. 11 and 13. It is seen that the maxi-
mum deviation of the current phase angle is about 120. As stated
previously, the distribution of the plus-plus mode, which is orthogo-

nal to the plus-minus mode, is determined by adding 180° to the

values shown in Figs. 11 and 13.




.
I
3

The most interesting feature observed in Figs. (5-8 and 12) is
that the propagating TM mode may cut off with scan angle before the
endfire grating lobe appears in real space. The possibility that this

cutoff causes the dipole array blindness is being investigated.




APPENDIX: TEM MODE ORTHOGONALITY

It will be shown for the general case of multimode strip current
expansions that the capacitance matrix in (37) is Hermitian, and that
its eigenvectors represent strip potentials which generate two orthog-
onal TEM fields.

The potential in the unit cell of Fig. 3 is described by

o(x,y) = G(X,¥, LY ik I (¥) + Gy, 5 ¥k Iny(v) (AL

where G is defined as in (25), Gn as in (13), and n, , are the strip
charge densities.
Imposing the boundary conditions on the conductors yields the

integral equations for N 2

¢; = ¢(-3.Y)

, for |yl 52}1 (A2)
¢, = o v),
2

where ¢, o are the constant potential values on the strips.

In solving (A2), the charge densities ny , are approximated by

the finite series,

P
n(y" = p;;1 %) p¥p (YD

' P '
np(y") —p=21 ap¥p (YD)

(A3)

date, kbl i




[ where mp(y') are real, linearly independent, basis functions.

Substituting (A3) into (A2) and projecting both sides of (A2) on

to the basis functions q:p(y') results in a set of 2Px2P, linear, inhomo-

geneous algebraic equations,

<¢1:¢q> = <¢(‘ 2! IY)' q’q)
. (@=12,...,P) (A4)

by <¢(;—",y) g

’ where <f,g> is defined in (17).

Equations (A4) can be written in the partitioned matrix form,

s AR A v e oS re wmoed

¢=My, (A5) |
where 1.
M= AJ g) (26)
B | A
i is Hermitian due to sym:1etries ]
G(x'y, x,y) = G (x"y', -x',y) (A7)
and !
G(x,y, X',¥") = G (X"¥', X,¥). (A8)

The elements of the submatrices A and B, in (A6), are

ap = g GCZ LY. -G L YD (R9) |

byp = g, GC-F . Vg L YD) '), (R10)

and the vectors a and ¢ are defined by 3

= T '
g - (all, ece, UIP, a21, o, azp) (All)
and j




0= (0<1¥>, ..., 0<L¥p>, 0L, ., oLy T (a12)
Assuming that M is non-singular,
a=Mte (A13)
where
4. [A1B
M*= - (Al14)
B | A
is also Hermitian. By using the partitions of Ig_l'l, (Al13) can be split
into
=¢ A +¢ B 1
1517 "% . (A15)
‘_’2 = 4’1 B. Xt ¢2 A XY
where
- T .
@ = (ai~,. , ulp) (=12 (Al6)
and
Y= (KL¥p>,..., <1,lvp>)T . (A17)

The charge on the strips per unit length in 2z is

P
- S .
Qi = 'Z=1 aip <1,‘l’p> =y ﬂ (=1,2). (A18)

Then premultiplying (A13) with xT yields
= ¢2<x A D+ 00" B RY
Q = ¢1(x B Y+ ¢2<x A 1)

which can be written in the matrix form,

() .

where the capacitance matrix, C, is Hermitian because y is real.

(A19)

Therefore, the eigenvalues of the matrix are real and the correspond-
ing eigenvectors are mutually orthogonal. In general, (A20) has two

linearly independent solutions, which implies that two linearly inde-

pendent TEM modes exist in the unit cell of Fig. 3.
-23-
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It will now be shown that when the strip potentials are chosen
equal to the eigenvectors of C their associated TEM field distributions

are orthogonal over the unit cell.

. q’a q’bl
Let A be the two eigenvalues of C, let ( 1) and (. 7°) be the

a,b = 932 Op2
associated eigenvectors, let ¢a b(x,y) be the corresponding electro-

static potentials in the unit cell, and let
x
1=(f V¢a(x,y) . v¢b(x,y) dxdy. (A21)
unit cell

It is desired to show that I = Q. The surface integral of (A21)

can be converted, via Green's Theorem, into the line integral

X
x,y)
I= % ¢ (x,y) M—%n—-dx, (A22)

where the integration path C runs counterclockwise over the unit cell
boundary and clockwise over a closed contour hugging the strips.
By Floquet's Theorem, the contributions to the integral from opposite
sides of the unit cell boundary cancel. Therefore, (A22) equals the

contribution from the strips, that is

h * x
2 26, (-9 v) 8, (-Xy)
I={l ¢a('¥'Y)[¢bax - baxf J dy
-h .
2 e (1Y) e (% y)
+ { o. (3., V) [ baz,:' - a,? ' ]dy (A23)
-3
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(the normal points toward the strips). The terms in the brackets
represent a discontinuity in the normal electric field across the
strips. This discontinuity is proportional to the strip charge den-

sity. Therefore,

—
]
mlr-a

w * 1 w *
o <¢a(-2' :Y): nb1> + E; <¢a(2' IY)' nb2>: (A24)

where Nh1 and Ny, are the respective, strip charge densities asso-

ciated with eigenvector ‘PPI ). By expanding Ny according to (A3},

¢

one finds that b2

1 P 1 P

= -V - w >
I 50 p2=1 ablp <¢a( 2_ 'Y)ldb> +€o pzl abzp <¢a("? IY):‘L'p ’ (AZS)
and, therefore, from (A4)
%1 P« ¢a2 P
= == < > + — < .
I s p":'- . ablp 1,¢p + g, p-fl °’b2p l,wp> (A26)

Substituting from (A18),

* *
¢alle + <I’aZQbZ

’
eO 80

(A27)

which, from our previous definition of the eigenvalues and eigen-

vectors of C, can be written

x *
[ = far’pth1 |, %a2tbthe

%o €o

(A28)

However,

x *
®21%1 * %a2%p2 T 0

since the eigenvectors of C are orthogonal and consequently I = Q.
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Fig. 5 Phase constant of the propagating TM,; mode vs, scan angle
for the loaded unit-cell waveguide of Fig. 3, showing its {
dependence on dx (E-plane spacing).
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Fig. 6
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Phase constant of the propagating TM; mode vs, scan angle
for the loaded unit-cell waveguide of Fig. 3, showing its
dependence on dy (H-plane spacing).
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Phase constant of the propagating TM, mode vs, scan angle
for the loaded unit-cell waveguide of Fig. 3, showing its
dependence on w (strip separation).

-33-



Fig. 8
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Phase constant of the propagating TM; mode vs, scan angle
for the loaded unit-cell waveguide of Fig, 3, showing its
dependence on h (strip width).
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Fig. 9 Phase constant of the propagating TM, mode vs, scan angle

for the loaded unit-cell waveguide of Fig. 3, showing its
dependence on the strip current distribution.
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Fig. 11 Phase difference of the plus-minus TEM strip |
currents vs, scan angle for the loaded unit-cell waveguide ¥
of Fig. 3. g
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Fig., 12 Phase constant of the propagating TM, mode vs. scan angle
for the loaded unit-cell waveguide of Fig., 4. (triangular grid)
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Fig. 13 Phase difference of the plus-minus TEM strip
currents vs, scan angle for the loaded unit-cell waveguide
of Fig. 4.
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