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ABSTRACT

Feed region modes are derived for a class of dipole phased arrays.

The dipole and its balun are a linearly polarized version of the PAR an-

tenna element, and are modelled in strip-line geometry. Knowledge of the

feed region modes is essential in determining the influence of supports on

the element scan performance, and should shed light on the formation of

blindspots in dipole arrays. It is shown that for practical spacings the

balanced, strip-line feed structure supports a propagating TM mode, in

addition to two TEM modes. The propagation constant of this mode is scan

dependent, and under inappropriate conditions its cut-off occurs before the

onset of the grating lobe. Pending further analysis, it is conjectured that

this mode cut-off may cause the blind spots which limit the array scan

coverage.
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I. INTRODUCTION

Measured dipole element patterns in a number of phased arrays

indicate the appearance of blindspots [1,2]. Analyses which disre-

gard the presence of dipole supports [3,4] do not predict such re-

sonances. In order to understand the cause of these blindspots and

how to avoid them it is necessary to determine the dipole element

performance with inclusion of the feed. To circumvent the ensuing

complication of simultaneous) satisfying boundary conditions on the

dipole arms and on their supports, it is desirable to first determine

the modes of the feed region.+ These modes individually satisfy the

boundary conditions on the supports, as well as the Floquet require-

ments on the unit cell walls. The analysis of a dipole array scan

performance will then be reduced to an evaluation of the discontinuity

presented by dipole arms between two different unit cell waveguides

(one representing the feed region and the other the air region above

the array).

Section II is devoted to the derivation of the dispersion relation

and the fields for the TMz modes of the feed region of a dipole

phased array, in strip-line geometry and with a rectangular lattice.

Section III discusses the TEM modes supported in this feed region.

Section IV addresses the feed region modes for the case of a triangu-

lar array grid. Section V discusses details of the numerical analysis.

Section VI considers the numerical results and presents a number of

+ A similar approach was taken in R. Lewis, A. Hessel, G. Knittel,
"Performance of a protruding-dielectric waveguide element in a phased
array," IEEE Trans. Antennas Propagat., Vol. AP-20, pp. 712-722,
Nov. 1972.



conclusions. The appendix is devoted to the orthogonality of the

degenerate, feed region TEM modes.

a
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II. TMz MODES OF THE FEED REGION FOR A RECTANGULAR

LATTICE

A typical dipole array element is shown in Fig. 1, and a simpli-

fied ribbon model of the element is seen in Figure 2.

The feed region part of the unit cell may be regarded as a finite

section of the infinitely extended, uniform guiding structure pictured

schematicaly in Figure 3.

The strip width is assumed small compared to the free space

wavelength. Therefore, the usual approximation of only longitudinal

current is made. This in turn implies that only the TMz unit cell

modes are affected by the strip loading. Hence, only the TM, propa-

gation characteristics and the associated modal field distributions need

be determined. The strips are invisible to the TE2 fields which are,

therefore, represented in terms of the usual Floquet unit cell modes.

To determine the TM, modes two coupled, linear, homogeneous

integral equations are set up. These equations express the Floquet

boundary conditions on the unit-cell walls as well as the vanishing of

the tangential E field on the conducting strips. They are solved by

Galerkin's procedure, resulting in modal fields that exactly satisfy the

Floquet condition but only approximately fulfil the requirements on

the strips.

To set up the integral equations, the axial component of the

electric field is expressed in terms of the Green's Function for an

infinite, electric-current, line source located in the unit cell-wave-

guide, with ej(wt-KZ) variation and the allowed values of K being as

yet undetermined. Accordingly,

-3-



EZ(K; K, kto) = e j Kz [f G(p P'; K, kto) Jl(p) dp' +
strip 1 (1)

f G(p,p'; K, kto) J2 (2') dp' ]
strip 2

In (1) the strip current densities are J1 ,2 (2'), and the unit cell

Green's function is

&( ,..kk 2d ._o_ _j
G~ppt*Kk )= ( -K ) 7-1 n (x,x')e ynYy) (2)

where kyn = kyo + 2m (3)

kxn =k 2 K2 kn Im kkn < 0 (4)

e-Jkxn(X-X') eJkxn(X-X') -JkxnlIX-x I

+ + e ,(5)

Yn(XlX') = e J(kxn't)dx-i eJ(kxn +)dx-i

ri = kyo = k sin eo sin o (6)

= k sin eo0 cos o0  (7)

kto = X + yO  (8)

p = x X0 + y YO P' = x'x 0 + y' Yo (9)

r p + z z0  
(10)

and e is the free space permitivity.

-4-



The angles (e0 , o) denote the usual beam pointing angles of a

phased array whose broadside direction is zo . It should be stressed

that kxodx is not the steering phase shift along x, which is given by

d x; rather, kxo and the other kxn are propagation constants for

E-type modes of a phase-shift-wall parallel-plate waveguide of height

dy. These modes travel in the x-direction and have

e j ( ky ng + KZ ) transverse variation.

By enforcing the boundary conditions of the strips, i.e.

Ez(; w,0) = 0 for liy < h (11)

the following coupled integral equations for J1,2 are obtained from

(1):

y, 2- Y; K,kt oj(y') + G(-2, y,2, Y'; Kk to) J2(y') = 0

for lYl (12)
and

!gj Y, W !Y'; K, kto) J 1 (y') + G( 2, y,-2 , Y'; K, kto) J2 (y t ) =

h

where GJ f G I dy' (see Fig. 3). (13)
h

In general, to solve (12) and (13), the current densities would

be expanded in a set of linearly independent basis functions. How-

ever, in view of the narrow strip width only one term of the expan-

sion is used here, i.e.,

-5-



Jl,2(y') = 1 2I(Y'). (14)

Application of Galerkin's method now yields the equations

(z11(K, kto) Z12 (K, kto)\ a (c1"=0(5

z 21 (K, kto) Z22 (K, kto) ,/ P p q

where jZpq(K, kt) <(y), G((-)( Y (-1) (W), y'; K, kto) q(y')>,

(16)

h
I

and <fg> -f fg dy (17)
h-7

(the form jZpq is introduced so that Z and Z22 are real).

In view of the following symmetries in (5):

in(X',) = in(-x',-x') (18)

and

Yn (x I ' )  j~nx)*
j kxn  -,(19)

equations (15) can be written

(z11(K, kto) Z12 (K, kto)\ (a (20

For the choice O(y') = 1, i.e., a constant current distribution on

each strip,

/i kh \2
1 sinkxndx 2sin)

-6-



k h2

1 sink (d xw)+ejtdxsink w sin LyLk
ZI2 (K, kt o ) I= kxn OSkxdx.COSdx . -(22)

Alternatively, if 0(y') is chosen to be the static distribution

OWy) 1, (23)

J( h)2 - 2"

which satisfies the edge condition on the strip, then the zeroth order

h kh
Bessel function of first kind Jo (kiy) , replaces -- in (21)

and (22).

Scan dependent solutions for a1, 2 exist only for values of

K satisfying
972 -221 1 (K, kto) jZ12(K, kto) I = 0 , (24)

which is the desired dispersion relation. Its solutions yield, to

within our approximations, the propagation constants of the TMz

modes, guided by the two-conductor strip-line in a unit cell. The K'S

depend on frequency, on geometry and, unlike in closed waveguides,

on scan variables. It can be shown in the usual manner that the

values of K are either real or purely imaginary.

For a particular K, the associated a1 ,2 are evaluated from (20)

to within a normalization constant, and the relative current distribu-

tion on the strips is thus determined. Subsequently, Ez is calculated

from (1) and other field components are obtained from Maxwell's

equations. The modes so derived are mutually orthogonal, although

they only approximately satisfy the boundary conditions on the strips

-7-



[5]. It can also be shown that these TM, modes are orthogonal to

the TEz Floquet modes as well as to the TEM modes derived in the

next section.

ago-,

-8- I



III. TEM MODES OF THE FEED REGION FOR A RECTANGULAR

LATTICE

The TEM modal fields cannot be determined in the same manner

as the TM fields because now Ez is identically zero. Instead, the

electrostatic potentials on the metallic strips are assigned constant

values and 2 respectively. Two coupled, inhomogeneous, linear,

integral equations of the first kind are set up which express this

requirement. Application of Galerkin's procedure yields a set of

inhomogenous, linear, algebraic equations which are solved for the

charge density n, or the TEM current density J, where J = q . To

formulate the integral equations, the static Green's function for an

infinite z-directed line charge in a unit cell is employed. The Green's

function is given by

G(p, p'; ktoo ) = n )e--n-- (25)

with

ee n(X-X')
n e + +e (26)

-1 e-n+i )d -1

The wavenumbers kyn, I and kto are defined in (6-8). If the strip

charge densities are designated t 1 (y') and r 2 (y'), respectively, the

resulting potential in the unit cell is
I

#(x, y) f J G(, p; k to )nl(Y)dy'
strip 1

+ f G(p, p'; kto)n 2 (y')dy'
strip 2 (27)

- -",



The boundary conditions on the conductors yield the integral equa-

tions,

h

for lY <-(28)
t

2 G( , y,-, y'; kt)nl(y') G~(+ , y, w, y'; kto)r2(y'),

where Gq is defined as in (13).

Again, assuming a single mode approximation

nl,2(y,) = a 1,2t (y') (29)

and using the symmetries of (26),

Yn(X'X') =n(-x (30)
and

Yn(x'x') = Yn(x',x) (31)

the Galerkin procedure yields

P 1(kto) P12(kto) ' Q1 (

where <*(y), i>2 Plq(kto) - <(y), -, y, (- 1)q(), y'; kto)*(y')>

(33)

and

Q1, 2 =  a , 2<*(y ) 'I  (34)

are the electric charges per unit length z on the strips.

For *(y') = 1, 2

p1(kto) 1 sinh kyn dx  sin 2 (311 0 n=- 2dy n cos dx'COshI1ndx / (35)

and

-10-
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2
ej tdx kyn h

1 1 ej d~inhkynw+sinhky (d -W) 2i
P12(kto

4(to - - = m 2 dykyn coStdx coshkyndX

(36)

In general, matrix P in (32) is non-singular and, therefore, one has

from (32)

_ (37)C:)Q2 2

where the capacitance matrix, Q, is - 1 .

Choosing a particular combination (€I) defines a mode since the

modal fields are then determined via (37), (34), (29), and the

gradient of (27).

In general, there are two linearly independent choices for the
41

vector (.2), and these yield two linearly independent, charge distri-

butions for the same TEM propagation constant, K = k, i.e. there

are two degenerate TEM modes. (This result also holds when

more than one term is used in the strip-current expansion).

A convenient basis for the vector space {(¢2 ) ] , is one whose

associated fields are orthogonal over the unit cell cross-section. It is

shown in Appendix I that the eigenvectors of the capacitance matrix

exhibit this property. The eigenvectors are

P12 1 ( P1 2 1

1-11-



They satisfy T 6 where 6 is the Kronecker delta func-
a a,b a,b

tion. The associated (real) eigenvalues are

"a,b = (PTl 'T IP12 1)/A (39)

where

=P 21 IP121 (40)

As seen from (38), for each eigenvector the component ratio, which

represents the relative strip charge distribution for a given TEM

mode, is of unit magnitude. Furthermore, the two modes have rela-

tive charge distributions which differ in phase by 1800.

-12-



IV. TM z MODES OF THE FEED REGION FOR A TRIANGULAR

LATTICE

The analysis of Section II is now extended to the case of a

triangular grid by choosing the unit cell shown in Figure 4. The

Green's function (2) is also valid in this case. By imposing boundary

conditions on all the strips a set of four integral equations is ob-

tained, which are reduced to a set of linear, homogeneous algebraic

equations via the Galerkin procedure. Imposing the steering phase

shift between the two strip transmission lines, shown in Figure 4,

reduces the problem to the solution of two equations in two un-

knowns, which in turn yields the dispersion relation and the modal

current distribution.

In detail, the modal axial electric field generated by the strip

current distribution, Ji(y') zo (i = 1,2,3,4), and with G given in

(2), is

.4
Ez(r;,kto) = eJz Y If G(p,p';K,kto)Ji(y')dy'} (41)

i1= strip i

The integral equations are obtained by requiring E to vanish on

each of the four conductors. In reducing these to algebraic equa-

tions one term is used in the current expansion, as previously in

(14).

For the choice IP(y') = 1, the set of equations is

zi z12 z13 zl a

,12 1 23 -1 0 (42)

223 Z1 12 3

.14 Z13 212 211 a4

-13-



where the independent coefficients of the Hermitian matrix are:

1s sin(knd) (sin ky 2

Zll(K,kto) =~o 1 clcs~~csd -K- (43)

= 1sink~ (dx -w)+e jtd sinkxnw 2i n >2

-~x n2 n n
Z12 (K, kto) 7- k cask d -costd kh /(44)

j=-dm xdn 2nx x

2 (K TosT S1 (2 e ikyn dy
Z13(Kk 0  k, cosk, d -costd h

n = -a x n n X V n(45 )

in k ~ d /2 w )+d l d x sin k , (d /2+ w )(i A~ **y )ei 2

Z(kt)Sin (d x/2-w+~xik, (d /2 w)(Sin!j eikyn dyz 2 (Kk0 )=0 ~coskcL -costix v

feed lines, iine., ai*2 = w1 e wher x nd ri/W are defined in

23 Zn (04(48

Imstio of th teigpas eurmns ewe hw

Z1 3 Z k 2 (48

z2 z1

-14-



with nd

Zi(K,kto) = ZII(K,kto) + Z13(K,kto) e (49)

2 ko = Z12(K,kto) + Zi4 (Kkto) e i ( + (50)

Z3(K,kto) = Z12(K,kto) + Z23(K,kto) e (51)

Using (43-47) and (49-51) one finds that

Zl(Kkto) = Z1 (Kkto) (52)

Z2(Kkto ) = Z3(K,kto) (53)

and (48) reduces tozi z 2)o
z 21  

(54

yielding the dispersion relation for the triangular grid case

1. (K,kto) - 1Z2 (K,kto)l
2  = 0. (55)

The TEM mode charge distributions for the triangular grid can

be determined by a corresponding extension of the analysis presented

in Section III.

Four inhomogeneous equations are obtained via Galerkin's proce-

dure and, by imposing the steering phase requirements, are reduced

to the form of (32), where

dx  kdx s2

Pii )= 1 1 sinh yn dx+2cos (nr)cos-m-sinh s- in L- "Pll(kt_.o) Z- nI-- yncoshkynd _C°Sldxk

y 0 n=-* y n

(56)

-15-



ltdx
s1 sinhkn (d(-w) + e snkn

T1 2 ( kare co -cost

yo=~y x x y

+ cs~n)e sinhky(X-2w)+e sinhkvi -w) Si
+cosh 1c.d-costd x

(57)

The charge distributions and fields may then be calculated as

indicated in Section II.

I

I.

-16-
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V. NUMERICAL ANALYSIS

The TM propagation constants, which are the roots of (24), were

evaluated by using a combination of the step searching method and

the secant method. For small values of h/X (Fig. 3), convergence

of the series (21) was accelerated using the closed form expression

[6] for I s . Series (22) converges well because its terms
n=1 n

decay exponentially with n. The curves of Figs. 5-8, were obtained

with n ranging from -20 to 20. Extending the range of n from -200

to 200 did not change the third significant digit of either (21), (22)

orr.

In computing the curves shown in Figs. 5-8 a single constant

term was used for the current expansion on each strip. Curves were

also computed using the single static term (23) and a comparison of

results for these two current choices is shown in Fig. 9.

For the scan plane 0 = 900, the unit cell of Fig. 3 can be bi-

sected (Fig. 10). A magnetic wall is used because for the range of

parameters over which Kwas calculated, the currents on the two

strips are in phase. This relationship is obtained by evaluating (21)

and (22) (both are real for *=900) and solving for a 2 in (20).

The bisected cell is identical to the unit cell of a one-dimensional

strip grating bordered by magnetic walls. A circuit representation of

the grating is used to construct an equivalent network [6], whose

transverse resonance solution yields a dispersion relation for our

bisected unit cell. The propagation constants obtained from this re-

lation are in close agreement with those calculated from (24), except

near cutoff.

-17-



The phase angle of the relative current distribution vs. scan is

shown in Fig. 11 for the dominant, plus-minus, TEM mode. The

phase angle for the plus-plus TEM mode is obtained from Fig. 11 by

adding 1800 to each phase value shown. The angles are measured

using the left strip (Fig. 3) as the reference. The relative charge

distributions were calculated using eigenvectors (38). Series (36)

was evaluated with n ranging from -20 to 20.

Exactly at broadside the TEM plus-plus mode does not exist,

since all the conductors are at the same potential.

For the triangular grid, the TM propagation constants (Fig. 12)

and the TEM current distribution (Fig. 13) were calculated in similar

fashion except that (21) was replaced by (49) and (22) by (50). The

series of (43), contained in (49), is identical to that in (21) and its

convergence can be accelerated as discussed above. The other series

in (49) and (50) all converge rapidly.

The calculations for the rectangular and triangular grids were

performed by computer programs which were checked against each

other for the special case of the strip separation, w, equal to one-

half the unit cell x-dimension, since in that case the two grids are

identical.



VI. NUMERICAL RESULTS AND CONCLUSIONS

Figures (5-8 and 12) indicate that under appropriate conditions a

propagating TM mode exists in the feed region of a dipole array.

The normalized propagation constant of this mode for a rectangular

grid geometry is shown in Fig. 5-8 for different values of dA

d I A, w/A, and h/A, respectively. It is seen that rcincreases when

the unit cell dimensions increase, or when the strip separation w/X,

or the strip width h/A, decrease. Figures 5-8 show that Kdecreases

monotonically with azimuthal angle 0 and elevation angle e. However,

in Fig. 6 , TC decreases mnonotonically with elevation angle, only.

K.

grids. Here too, Kincreases as the unit cell dimensions increase.

The TM strip currents are not shown in the figures. However,

knowledge of the modal propagation constan-rts makes it possible to

evaluate the currents from (20). For each mode, (24) must be satis-

fied and 2 1= ± 12121.- By substituting this result into (20) it is

seen that the modal strip currents have the same magnitude and only

differ in phase. This result holds for both the rectangular and the

triangular array grids.

The relative TEM current distribution of the dominant, plus-

minus, mode is shown in Figs.- 11 and 13. It is seen that the maxi-

mum deviation of the current phase angle is about 120. As stated

previously, the distribution of the plus-plus mode, which is orthogo-

nal to the plus-minus mode, is determined by adding 1800 to the

values shown in Figs. 11 and 13.



The most interesting feature observed in Figs. (5-8 and 12) is

that the propagating TM mode may cut off with scan angle before the

endfire grating lobe appears in real space. The possibility that this

cutoff causes the dipole array blindness is being investigated.

-20-



APPENDIX: TEM MODE ORTHOGONALITY

It will be shown for the general case of multimode strip current

expansions that the capacitance matrix in (37) is Hermitian, and that

its eigenvectors represent strip potentials which generate two orthog-

onal TEM fields.

The potential in the unit cell of Fig. 3 is described by

4 (x,y) = G(x,y,--,y;kto)rli(y') + G(x,y, ,y';kto)l 2(y') (Al)

where G is defined as in (25), Qn as in (13), and nl,2 are the strip

charge densities.

Imposing the boundary conditions on the conductors yields the

integral equations for nl,2

w

hfor IYI < h (A2)

2

where h1,2 are the constant potential values on the strips.

In solving (A2), the charge densities nl, 2 are approximated by

the finite series,

P
nl(Y') = -i alp* (y')

p=1 p
(A3)

P

n2 (y') = 1 a2p* -),

-21-



where p (y') are real, linearly independent, basis functions.
Substituting (A3) into (A2) and projecting both sides of (A2) on

to the basis functions tp (y') results in a set of 2Px2P, linear, inhomo-

geneous algebraic equations,

w
2 q

(q = 1,2,...,P) (A4)

<*2, q> = >

where <f,g> is defined in (17).

Equations (A4) can be written in the partitioned matrix form,

SM a, (A)

where

(AIAQM = (A6)

is Hermitian due to symmetries

G(x',y, x',y') = G *(-x',y', -x',y) (A7)

and

G(x,y, x',y') = G *(x',y', x,y). (A8)

The elements of the submatrices & and _, in (A6), are

a q

b(p <w~) G- Y", w y ') p(Y')>, (A10)

and the vectors a and are defined by

a (a 1 1 ,..., alp, a2 1 ,..., a2 p)T (All)

and

-22-



T= ( 1<1 1> ... , 1< 0 , 2< ,1 >,..., 02<1,Yp>)T  (AI2)

Assuming that NJ is non-singular,

_= M , (A13)

where
-1 (A14)

-+-1

is also Hermitian. By using the partitions of 14- , (A13) can be split

into

2(A15)

a2 = -  + +2

where

a= (ai .... aip)T (i = 1,2) (A16)

and

S= (<ii>,-.., <1 >)T (A17)

The charge on the strips per unit length in z is

PT
Q I a. <1,Yp> ai  (i 1,2). (A18)

TThen premultiplying (A13) with T yields

QTA TA
1 = 2(T - 1) + 2( 1 )
-Q2 = 01( y T ]a- 1) + 02(.XT  (A19)-

which can be written in the matrix form,

(Qi) (A20)

where the capacitance matrix, C, is Hermitian because ] is real.

Therefore, the eigenvalues of the matrix are real and the correspond-

ing eigenvectors are mutually orthogonal. In general, (A20) has two

linearly independent solutions, which implies that two linearly inde-

pendent TEM modes exist in the unit cell of Fig. 3.
-23-
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It will now be shown that when the strip potentials are chosen

equal to the eigenvectors of C their associated TEM field distributions

are orthogonal over the unit cell.

Let a,b be the two eigenvalues of Q, let (a and (b) be the
ba2 bW

associated eigenvectors, let 0a,b(xy) be the corresponding electro-

static potentials in the unit cell, and let

I = ut cell Va (x,y) • Vb(x,y) dxdy. (A21)

It is desired to show that I = 0. The surface integral of (A21)

can be converted, via Green's Theorem, into the line integral

(xy)
I = ' Pa(X,y) an dx, (A22)

C

where the integration path C runs counterclockwise over the unit cell

boundary and clockwise over a closed contour hugging the strips.

By Floquet's Theorem, the contributions to the integral from opposite

sides of the unit cell boundary cancel. Therefore, (A22) equals the

contribution from the strips, that is

h L w..o{.Y) a y  ]d

-7-
h %(w 21+

+ If ( Yx - ax dy (A23)

- 7
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(the normal points toward the strips). The terms in the brackets

represent a discontinuity in the normal electric field across the

strips. This discontinuity is proportional to the strip charge den-

sity. Therefore,

= L < Y)w b + ao , ,b2> ,  (A24)
0 0

where nbl and nb2 are the respective, strip charge densities asso-

ciated with eigenvector ). By expanding nb according to (A3),

one finds that b2

1 P * >
0= a bip <Oa& Y y o a b2po p4 l p4 al

and, therefore, from (A4)

!al Pa2 *

<1,* p > +z- 1 ab2p <", (A26)o0 p=l =

Substituting from (A18),

I + a2b2 (A27)CO £O
o 0

which, from our previous definition of the eigenvalues and eigen-

vectors of _, can be written

ab~1 + a2bb2 (A28)CO £O

However,

#al~bl + *a20b2 = 0

since the eigenvectors of Q are orthogonal and consequently I = 0.
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Fig. 5 Phase constant of the propagating TM z mode vs. scan angle
for the loaded unit-cell waveguide of Fig. 3. showing its
dependence on dx (E-plane spacing).
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Fig. 6 Phase constant of the propagating TM z mode vs. scan angle
for the loaded unit-cell waveguide of Fig. 3, showing its
dependence on dy (H-plane spacing).
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Fig. 8 Phase constant of the propagating TM z mode vs. scan angle
for the loaded unit-cell waveguide of Fig. 3, showing its
dependence on h (strip width).
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Fig. 9 Phase constant of the propagating TM z mode vs. scan angle
for the loaded unit-cell waveguide of Fig. 3, showing its
dependence on the strip current distribution.
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Fig. I I Phase difference of the plus-minus TEM strip
currents vs. scan angle for the loaded unit-cell waveguide
of Fig. 3.
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Fig. 13 Phase difference of the plus-minus TEM strip
currents vs. scan angle for the loaded unit-cell waveguide
of Fig. 4.
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