'AD—AO% 452 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2
T AN EXPERIMENTAL INVESTIGATION OF COMPUTER PROGRAM DEVELOPMENT A==ETC(U)
DEC 79 R W REITER FOSR-77-31!I.
UNCLASSIFIED TR=-853 AFOSR=TR=81-0214

lw2
2%
m.

* COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
FLEC TE
MAR 17 19813

UNIVERSITY OF MARYL
COLLEGE PARK, MARYLAND
20742

ved fo pablie release}
ro
:ﬁitmbm jon unl jmitede

81 3 16 035

Technical Report TR-853 d December 1979

An Experimental Investigation of
Computer Program Development Approaches
and Computer Programming Metrics*

by
Robert William Reiter, Jr.

P~

AIR FCRCE CITICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE Gy 1o DUUTTAYL TO LT

Trin toelh o b ot o L -.on yeviewed and is
approvil o pall o0 d sle LAW AFR 190-12 (7b).
Districeto>y s usidimated,

A. D. BLUGH
Techulecal Infcraation Officer

Dissertation submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1979

*Research supported in part by the Air Force Office of Scientific
Research Grant AFOSR=77-3181. Computer time supported in part
through the facilities of the Computer Science Center of the
University of Maryland.

w FE
i

- b AR MBS ATLTA TR N

— UNCIASSLIFIED
—— GECORITY WFICAHON OF THIS PAGE (Whan Data Frtered)
(J7 REPORT DOCUKENTATION PAGE
M. REPOR IEY GOVT-—ACCE'SKION NO.[3 HECIPIENT'S CATALGS NUMBLR
O AFOSR \TR S1-02 141 (WD HeYe ysh
I 4. TITLE (and Subtitle) S TYPE OF REPORY 8 P &R|~D ~i —';:;""—1
7 A e —- i T e ’ p—"\.?-"> e Ceae
. _}/ & WERImWAI JNVESTIGATION OF QOMPUILR i (/ T St 5
<ROGRAM DEVELOPMENT APPROACHLS AND _g)MPUﬂZR b o , "'7:» i
ROGRAMMING EE‘IPICS,))
7. AUTHOR(Ss) 8 C Y ; = T S
8 COMNTHACT OR GRANT N JMEES .
(ﬂ’ }Robert W1111am/Re1ter, J1} C
| - T ./ -nFOSR-77-3181
; 9. PERFORMING ORGANIZATION NAME AND ADCRESS 1C F:Q’:'-"L‘A\I.EL EvEnT FROE L TaLe
L University of Maryland TR AR e,
- : Department of Mathematics i - - ‘
- College Park, Md. 20742 61102F ¢\ 23p4(A2
11 CONTROLLING OFFICE NAME AND ADODRESS L4 PEF’QR“ Oape - }) i
Air Force Office of Scientiffc Research/NM 1 1 Docombaesz979 / ;
Bolling AFB, Washington, DC 20332 \ l)!'Nunaeno:‘A A ‘
' . 150 s |
3 T8 MOTITORING AGENTY NAME & ADDRESS(H differont from Contrallms Jifien) ’ 'S, SECURIT \«T——?‘—,"m
. UNCLASSIFIED
T i CEZLRT FIZaTion i smat 0

N SCHEDLLE

15. DISTRIBUTION STATEMENT rof this Report) T

Approved for public release; distribution unlimited.

17. DISTRIBUTIOMN STATEMENT (cf the abstract entered in Blnck 20, 1f diftesent from Ruopnrt®

1B. SUPPLEMENTARY NOTES

R

13. KEY WORTDS "“nntinge ~n reverse side if neressary and identify by block number

' A

i

\‘ 20 éﬂ(‘STRACT (Cantinus on teverse side If nececanry and idenf v ':\-“rl\ln(-ﬁ—n”"v“vnf‘ T T T o m T s s e e

Ihere is a need in the emerging field ¢f software cngincering for

empirical study of software development approaches and software metrics.

An experiment has been conducted to compare three programming enviroments
individual programming under an ad hoc approach, team progranming under an
ad hoc approach, and team programming under a disciplined methodology. This
disciplined methodology integrates the use of top-down design, process design
language, structured programming, codgireading, and chief programmer team
organization. Data was obtained for a%én._nunbor of automatable software

FORM
DD, ,iv7s 1473 ﬂ UNCLASSIFIED 17 /\
H 0 ?p ; g‘ SECURITY CLASSIFICATION COF THIS P AC T When ate Foterer
VT e
- R - - -

P R A s——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Fnterod)

\\f7metrics characterizing the software development process and the
developed software product. The results reveal scveral statistically
significant differences among the programming enviroments on the basis
of the metrics. These results are interpreted as demonstrating the
advantagcs of disciplined team programming in reducing software develop-
ment costs relative to ad hoc approaches and improving software product
quality relative to undisciplined team programming.r::k

€ e ek it s aemn et s

SECURITY CLASSIFICATION OF THIS PAGErWhen Dara Entered)

ABSTRACT

Title of Dissertation: An Experimental Investigation of
Computer Program Development Approaches

and Computer Programming Metrics
Robert William Reiter, Jr., Doctor of Philosophy, 1979

Dissertation directed by: Dr. Victor R. Basili
Associate Professor

Department of Computer Science

There is a need in the emerging field of software engineering
for empirical study of software development approaches and software
metrics. An experiment has been conducted to coumpare three
programming environments: individual programming under an ad hoc
approach, team programming under an ad hoc approach, and team
programming under a disciplined methodology. This disciplined
methodology integrates the use of top-down design, process design
ianguage, structured programming, code reading, and chief program-
mer team organization. Data was obtained for a large number of
automatable software metrics characterizing the software development
process and the developed software product. The results reveal
several statistically significant differences among the programming
environments on the basis of the metrics. These results are
interpreted as demonstrating the advantages of disciplined team
programming in reducing software development costs relative to ad
hoc approaches and improving software product quality relative to
undisciplined team programming. e

Acce-cion For
E—

KITS CRA&I
Diin 17

Unannoy oo 1
Justilio~t o

_— e

DURINSRpSISS

Pv_ . —

DEDICATION

In honor of my mother and father,
Mary Edith Reiter
. and

Ropert 4dilliam Reiter, Sr.

e e L AL ot

NS

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Office
of Scientific Research through grant AFOSR-77-3181A to the
University of Maryland. Computer time was provided in part
through the facilities of the Computer Science Center of the
University of Maryland.

This work could not have been accomplished without the
cooperation and assistance of others. To students who
participated in the experiment, colleagues who offered
helpful suggestions, and faculty who reviewed the work
critically, I am most grateful. Drs. Richard G. Hamlet and
Ben A. Shneiderman critiqued this manuscript thoroughly on
the basis of '"programming sense," experimental procedure/
terminology, and writing style. Drs. Marvin V. Zelkowitz
and John . Gannon imparted a healthy sense of reality and
provided an appropriate measure of stimulation/inspiration
throughout their lengthy service as members of my study

committee.

I am indebted beyond measure, however, to two people
whose professional contribution and personal sacrifice have
continually enriched my work as well as my life. I thank my
advisor, Dr. Victor R. Basili, for his expert guidance and

patient encouragement. I thank my wife, Lowrie Ebbert

Reiter, for her unselfish support and unfailing love.

Chauter

TABLF OF CONTENTS

Ie INTROCUCTION AND OVERVIEw o o o o
1le BACKGROQUND AND RELATED RESEARCH .

Software Cevelopment Aporoaches

Software
emoirical/Experimental Study .

I1is INVESTIGATION SPECIFICS ¢ o o o o

Metrics o o o .

SUrfOUnd‘ﬂQS a o e & @& o o o
Experimentat Desvan o o
Programming Nethoaoloaves ¢
Data Collection and Recduction

Programming Aspects and Metrics

Ive GLOSSARY OF PROGKAMMING ASPECTS .
ve DISCUSSION OF ELABORATIVE METRICS

°rogram Chanaes e o o o &
Cyetomatic Complexity o o
Data gindinas « & o & _9o_ o o
Software Science Guantitie

S

VIe INVESTIGATIVE TECHNIGUE , o o o o

LY
ST OoOTOD

ABE o)

£

PR v Lo SN e AUV RPT NN

(S v 90 0a 80 cane ve 0090

-l
.

i

Questions of Interest

Research Hypotheses .
Statistical Model . e
Statistical Hypotheses
Research Frameworhs .
cexperimental [esian .
g llected Data « o o

)

1 o O

atistical Results .

?

THULTS o 6 ¢ 8 0 o o @

S ldlioNn s ¢ e ¢ ¢ o ¢« o @
Imoact Evaluation .

S Toued Drffnrentiatwon V1eu
A Directionless View ¢ o ¢ o o
Tnaividual H‘&,hl‘ohts s e o o

T IMTERPRETIVE RESULTS s a o o o o

According tou vasic Surpositions

According

L] L] L L] L d * * L J

9 L] ” 2 * 4 -
MiscellaneousSe ¢« o ¢ ¢ o s o

IA. SUMMARY AND CONCLUSIONS e o e o @

Appencix

> e & O []

atistical Test Procedur

statistical Conclusions
#esesrch Interoretations

s ® Mo o o0 90 00 [}

ie Statistical pescriotion of Raw Scores

heferences , ,

iv

S

to Programming=Aspect Class

*® o o @

® o @ 0

(N 0 O -,

A NN S
NOM B0 N

(@]

DOV O O 00MWBVBVWOVVNNN N MAAan

)

O OW N Ny Namwnun & ANOWMAMPNIONNND WU NN -

1
1
1
1
1
1
1

N Na D

LIST GF TABLES

Tatble

1. Programming ASPDeCtS o« o o o o s ¢ o o o« o o« o o o o 30a
e Statistical Conclusions , . s« « o o o o & o o o o & 953
3. Statistical Impact Evaluation . « o o o o o o o o » 972

4e1 nNon=Null Conclusions, for Location Comparisons,
arranged by OUTCOME o o s o o o o » s o o o « o s o 982

Le2 NoONn=Null Conclusions, for Cispersion Comparisons, ;
arranaed by OULCOME &« o o o & » o o © o o » o o » o 98h

el Relaxed pifferentiation for Location Comparisons .« 1"0s i

SeZ Relaxed pDifferentiation for Dispersion Comparisons

L 4 L) L d L] L] L] L] e L 4 L L L L] L] ."' o L 4 L] L] L L [) L] . [] 1(-03

6.1 C(Conclusions for Class I,
gffort (Job sSteps) « o o 86 & 6 6 o » v o & o o s o 1142

6.2 Conclusions for Class 11,
€Errors (Program (hanges) e © o o o e o & a o s » o V162

6.3 C(Conclusions for Cltass 1] »
Gross Size o o o o o o o'o e o o o s o v o s o s o 1172 {

6e4 Conclusions for Class 1V,
Control=Construct StrucCcture o« o« ¢ s« ¢ o s ¢ o o o & 1208

6.5 Conclusions for Class V,
Data Variable 0rqan1zat)on e & o ¢ & o o o o &

6.6 Conclusions for (lass Vi,
Packaging Structure « o« « « ¢ o s ¢ o o o &« o @

6«7 C(onclusions for (ltass vi1l,
Invocation 0rFgan1zation o« « « o o e s o ¢ o o

6.& Conclusions for Class VvIil,
Communication via Parameters o ¢ o o o o » o &

6.9 Conclusions for Class 1Xx,
Communication via vlobal variables « o« o« o o &

LIST OF FIGURES

Fiqure
1. frequency Distribution of Cyclomatic Complexnity
2e Investicative Methodology Schematic « o o o« o

317 Lattice of Possible Directional QOutcomes
for Three=-way Comparisun e & o o © @ o ¢ s o o

Je2 %attice ot Possible Nondirectional Outcomes
or Three=uay (OMDArPISCN o ¢ ¢« ¢« ¢ ¢ ¢ o ¢ o »

beo Association Chart for kesults and Conclusions .

CHAPTER I

.
L]
-
-
1—
(3]
o
r©e
S
—
—
©
[
1»
[P4
©

CVERVIEN

In the evolution of a systematic body o0f knowledgye,
there are cgenerally three phases of validation, The ftirst
chase is the logical aevelopment of the theory based on a
set of sound grinciples. This is followed by the
apolication of the theory and the gathering of evidence that
the tneory is apoplicable in practice. This usually involves
some gualitative assessment in the form of case studies.

The finmal phase is the enpirical ang experimental analysis
of the applied theory in order to further understand its
effects and better gemonstrate its advantages in a
coatrollied manner., This usually requires quantitative

measurement of the relevant phenomena.

4uch has been written about methodologies for
develooping computer software [Wirth 71; Daht, Dijkstra &
Hoare 72; Jackson 75; Myers 75; Linger, Mills % wWitt 791,
“ost of these methodologies are based on sound logical
principlese Case studies have been conducted to demonstrate
their etfectiveness [3aker 75; 3asiti & Turner 75]. Their
agoption within production (Yreal-world”) environments has
generally teen successfuls. Having practiced adaptations of
these methodologies, software designers and programmers have
assertea that they got the job done faSter, made fewer
errorse, or produced a better product. uUnfortunately, solid
auantitative evidence that comparatively assesses any
particular methodology is scarce [Shneiderman et al. 77,
“yers 78], This is due dartially to the cost and
imoracticality of a valid experimental setup within a

orsduction environment.

Thus the guestion remains, are measurable benefits

derived from programming methodologies, with respect to

atee A g s

CHAPYER 1

e1ther the software development process or the developea

suftware product? tven if the benefits are real, it 15 not

clear that they can be quantified and effectively monitored,
Sottware development is still too artistic, in the aesthetic
or spontaneous Sense. In orver to understand it more fully,
manance it more effectively, and adapt it to particular

L,) apolications or situations, software development must become

more scientific, in the engineering and calculatea sense.
Yore empirical study, data collection, and experimental

analysis ére required to achieve this goal.

e e —— = e

This dissertation strives to contribute to software
enjineering research in this vital thirg phase of
validation. The dissertation reports on an original
research project dealing with three "dimensions® of software
enjineering:

Software development approaches, i.e., programming
nethodologies and environments for geveloping software;

i Software metrics, 3J.e., quantifiable aspects of
orndramming and measurements of software characteristics;
Ape

Empirical/experimental study, i.eer the collection and
statisrical anaiysis of empirical data about software
i ~henomena-. including controlled psychological

experimentation,

The immediate goals of the project were

(3) to investiqate the effect of certain programming
methodologies ang environments upon software
geve lopment phenomena,

(0) to investigate the behavior of certain quantifiable
programming aspects and software measurements under
gitferent approaches to software development, anao L

(c) to devise and apoly an investigative methodology,

tounded on established crinciples of experimental

CHAPTEP

research, but tailored for application to software

engineering.
The project employea the investigative methodology to
conauct and analyze a controllea experiment with software
development approaches as independent variables and software
metrics as dependent variables. 1In this way, both the
ettect of the software cevelopment approaches and the
behavior of the software metrics were investigateg

scientifically.

In regard to software development approaches, the
croject focused on three distinct approaches, or programming
environments: single programmers using an ad hoc approach,
crogyramming teams using an acd hoc approacthy and programming
teams using a disciplined methodology. These approaches may
be cnaracterized according to two human—-factors issues: the
size of the programming "team'" deployed and the degree of

met hogological discipline employed.

in terms of team size, individual programmers working
alane were compared to teams of three programmers warking
tojether, In terms of methocdological discipline, an ad hoc
aporoach allowing progranmers to develop software without
externatly imposed methodological constraints was comgareag
to & agisciolineag methodology oblLiging programmers to fotlow
certain modern programming practices ang proceduress This
discirlined methodology consisted of an intearateac set of
software development techniques and team organizations
incluging top~down design, process ocesign language,
structufed programming, code reading, and chief programmer

te3dinse

It shoulu be noted that the terms “methodology” anu
“netnodological” (in reference to software development) are

useg to connote an intejrated set of development technigues

td

ChAPTER 1

as ~ell as team organizations, rather than a particular
technique or orgyanization in isolations Part of the
philosophy behind the project is the belief that, while
narticular techniques or organizations may generate marginal
tenetits individually, only a comprehensive ensemble can
ensure significant jains in software development

nroguctivity and reliability.

in reasard to software metrics, the project focused on
the direct quzntification of software development phenomena
413 o host of nearly two hundred programming aspects aNna
measurements. Attenticn was consciously restricted to
metrics exhibiting certain dJdesirable characteristics; altl of
the software metrics examinea in the study are quantitative
{on at least an interval scale (Stevens 46]), objective
(free from inaccuracy due to human subjectivity),
unobtrusive (to those developing the software), and

automatable (not dependent on human agency for computation).

This large set of programming aspects may be
tignoatimized on tne pasis of other criteria. Some of the
Ay0ects pertain to the software development process,; others,
fu the developed sotftware producte. For examole, the number
¢t times that source code modules are compiled during the
development pertod is a process measure, while the number of
If statements in the gdelivered program source code is a
croduct measure. Some of the aspects are rudimentary, in
that they pertain to very simple surface features or lLack

theoretical models to motivate intuitive appeal; others are

in that they aim at more complicated underlying

features or possess provocative theoretical models, For
example, the measurements mentioned above are both
rujimentary, while the program changes metric [Dunsmore 2
cannon 771 and the cyclomatic complexity metric [McCave 76)

are elaborative.

CHAPTER

in regard to empirical/experimental study, the project
ccnbined both empirical dJata collection and controllea

psycnological experimentation in a laboratory~-like setting,

The project involved extensive observation of forty-
five programmers developing working software systems,
averazing twelve hundred lines of code each, from scratch
during a five week periode These programmers were divided

into three disjoint grouos of '"teams," each following one of
the tnhree software development approaches mentioned above.,
vultiple replications of a sgecific software cevelopment
task were cverformed indeoendently and concurrently within
eacnh group unuer conditions as otherwise identical as

possicle.

In agdition to some subjective qualitative observation
via guestionnaires, interviewsy, e€tcey Objective quantitative
coservation was achieved by automatically and unobtrusively
monitoring the computer activites of the programming
“teamse."™ Ffor each replication, successive versions of the
softJare oeing developed by that *"team'" were captured in an
historical data bank that recorded details of the
Jevelocment process and doroguct. Raw scores for the
scftware metrics menticoned abtove were extracted from the
Jata vank and summac~ized via simple descriptive statistics.
<cecifically, the mean values and standard deviations
ocserved within each group on the various quantifiable
6r3;rdmming aspects constitute the immediate results of the

project as an empirical Jata collection effort.

The project followed a creplannd experimental agesign in
which extraneous factors were held constant wherever
possibley to insure that differences in the software netrics
would be attributable to the gifferent software development

aporoaches., The metrics” raw scores were analyzed using

;
H
3
]

CRAPTEP |

noaparametric interential statistics to obtain an objective
ccnclusion tor each measured aspects AS precise statements
of the statistically significant differences observed among
the three proaramming environments on the basis of the
~easurey aspects, these objective conclusions constitute the
immediate results of the project as a controlled experiment.
“y testing for aifferences in either the location (expected
valye? or the digpersign (variability) of the software
"etricsy the experiment adoressed both the expectancy and

Aregictability of software development phenomena.

The experiment combined elements of both confirmatory
ind exploratory data analysise. Some so~-called gonfirpatory
~rfagramming aspects had deen earmarked as promising
indicators of important software characteristics in aavance
~f conducting the experiment. Hypotheses had been
‘srmulated, on the vasis of the proygyramming environments”
zr.spected effects, regarding the expected objective
‘paclusions for these confirmatory aspectses The project
‘retuvoed other so-called exploratory programming aspects in

orler to 1rvestigate the software development process and

“muet more thnrgughly.

The project «as concerned with investigating an entire
sott.are oevelorment project of nontrivial size in a quasi-
realistic settinge The experiment was conducted within an
at3uemic environment in 3 laboratory or proving=grounau
‘ashion so that an adegquate experimental design could be
achreved «hile simulating a production environment. 1In this
wdy., the project reached a reasonable compromise between
“toy" experiments, which facilitate elavorate experimental
desi<ns but often suffer from artificiality, anag
“production' experiments, which offer industrial realism but

incur orohibitively high costse.

CHAPTER 1]

The project s bpasic premise was that distinctions among
th2se projramming environments exist poth in the process and
in tne product. Wwith respect to the gevelopea software
orsguct, the aisciplined team should approximate the
individual programmer or at least lie somewhere between the
individual programmer and the ad hoc team, with regard to
proauct characteristics (such as number of decisions coded
and jlobal data accessipility)e This is because the
disciplined methodology should help the team act as a
meatally cohesive unit during the design, coding, and
testing phasese. with respect to the software cevelopment
processy, the agisciplined team should have advantages over
toth indiviauals and ad hoc teams, displaying superior
performance on cost-related factors such as computer usage
and numnber of errors made. This is because of the
discipline itself and because of the ability to use team

menpers as resources for validation.

The study”s findings reveéaled several programminy
ch2aracteristics for which statisticall, significant
differences do exist among the groupss. The discipglined
teams used fewer computer runs and apparently made fewer
errors auring software cevelopment than either the
individual programmers or the ad hoc teams. The individual
programmers and the disciplined teams both produced software
with essentially the same numper of decision statements, but
so‘tware produced Yy the ad hoc teams contained greater
nunoers of decision statementse FOr no characteristic was
it concludeg that the disciptined methodology impairea the
effectiveness of a programming team or diminished the

quality of the software orocuct.

The remainder of this aissertation is a comprehensive

redort on the software engineering research project

introcuced above. C(hapter (] reviews appropriate background

CHAPTER |

and related research trom published literature. Chapter 111
recounts specific details ot the exgeriment itself. C(hapter
'v nriefly describes all of the nroyramming aspects and
measurementsy while Chapter V discusses the elaborative ones
in depthe. Chapter VI depicts the investigative methodology
used to plan, execute, and analyze the experiment. Chapters
VII and VIII present the experiment”s results, segregated
into objective findings and interpretative discussion,
respectively. Chacter IX summarizes the completed project,
“raws 3eneral conclusions regarding its contribution to

software engineering, and mentions possible directions for

continued research in this area.

CHAPTER 11

Ile gACKGHQUND AND RELATEDR BL3EABCH

This chapter reviews the general background for this
research project and surveys relateo work published in the
open Literature. For each of the three "dimensions® of
softsare engineering outlined in Chapter I, specific
instances of research in that area will be mentioned and
toosely characterized, in order to show appropriate
sinilarities ana constrasts with this worke As a2 catalog of
related research, the chapter is intended to pe merely

representative, not exhaustive,

Scftesare Development Apgergaches

There has been considerable concern regarding
programming methodologies over the past decade since the
advent of structured programming and the dawning of software
cost cnonsciousness. Software "practitioners"™ (i.e.,
programmers, designers, Ssystems analys?s, and managers) have
scught pbetter ways to channel their energies toward
producing cost-etfectivey, reliable software. Althougn a
braay spectrum of concerns~-spanning all phases ot the
software life~cycle and covering the full range ot system
size anag performance constraint--ccould be consigdered here,
attention has been restricted to methodology for
prograeanming-in-the-small#+*: gesigning, implementing, and
testing computer programs to solve problems small enough to
be well-understood by a suitably trained individual., 1In
other words, the focus s on approaches for the kind of
software development that typical programmers/analysts in
tyoical software shops are accustomed to doing.

- -

* 85 ysed here (and below), the meanings of the terms
“wrogramming-in-the-small” and “proyramming-in-the-large”
are clear from the context, but they differ slightly trom
the meanings popularized by Dr. HeDe MillSe

CHAPTER 11

ST T AR AR e

; A numher of good ideas on how to develop software,
covering techniques for how to proceed as well as
orjanizations for managing people and communicating
information, have peen (or are being) devised, demonstrated,
cerfected, anc accepted into everday practice. Popular
examoles include the following:

structured orogramming [(Dahl, Dijkstra % Hoare 7.;

N “itls 72; Rasili & Baker ?77; Linger, Mills & witt

| 751,

stepuwise retinement [wirth 713,

chiet programmer teams {HBaker 72; Baker 75; Brooxks 751),

process design language (°pL) (Linger, Mills & Witt

791,

top~-down design,

functional expansion,

gesign/code reading and walk=throughs [Fagan 761,

gata apstraction/encapsulation and information hiding,
iterative enhancement (Basili & Turner 75; Turner 763,
the Michael Jackson method [Jackson 75; Mughes 7%], and
composite design {(vyers 75].

These approaches and their highly touted benefits have
neen the subject of much written promotion and verbal
discussion. Indeed, several can boast of mathematical
toundstions or formal explication to support their
underlying principles or mechanisms; for others, there are
extensive tutorials on how to apply them in practical
situations; and some have been embodied in programminy
tanguages or packaged into automated tools. All of tnis
attention, plus the favorable experiences of software
cractitioners, seems to indicate that these software
develooment agproacnes do succeed in improving the
efticiency ot the develooment process or the quality of the
develooed product to some degree.

10

CHAPTER 11

put there is Little empirical evidence to contirm the
advantages of these approaches or measure their benefits,
In several instances, case studies have been performeu,
often in a pioneering spirit, to demonstrate particular
aporoaches; these case studies have usually involved
qualitative assessment, with only Limited or uncontrolled
forms of gquantitative assessment. C(omparative assessment of
software development approaches is even rarer: only a few
controlled experiments [Shneiderman et al. 77; Myers 78]
have been ctonducteds, and they have generally focused on the
use 0t particular technigues in isolation. The difficulty
of investigating the effects of software development
aporocaches stems precisely from the fact that they pertain
to tne (east understood and most expensive elements in

sottware engineering: human beings.
Software Metrics

There has been considerable interest in software
metrics over the past half decade in response to a growing

realrzation of how "invisible,"” imponderable, and
uncontrollable software can bes Software "scientists® have
teen seeking ways to measure software phenomena. B8Sroadly
interpretec, tneir efforts may be characterized as
attempting to quantity process efficiency and product
qualityer The software measurement domain extends from the
cecacrete details of a program, including its fine structure
ani the resource expenditure required to produce it, to its

aostract characteristics: reliability, cost-effectiveness,

* This concept of product guality is meant to include
in;tantaneousy as well as evolutionary, consigerations. The
former considerations pertain to both static (at comgcile
*ine) and dynamic (at execution time) features of a program,
as it exists at a given point along its life-cycle. The
tsttaer LOnSiderati?ﬂS pertain to issues of software
mayntenance and software management throughout the life-
rceles The software measures in this dissertation adaress
proguct guality only in its instantaneous, static sense.

11

CHAPTER 11

conplexity, modularity, comprehensipity, modifiability, etc.

Because measurement is essential to most forms ot
enlineering, software metrics rightfully deserve a central
clace within the emerging discipline of software
enyineering. As in other technologies, the underlying
assumption is that approoriate measurement is the key to
effective control. It has been demonstrated [(Gilb 7?73 that
the jJeneral concept of software measurement can be applien
to a variety of programming issues: many interesting
sultestions were made re3arding how and why to measure
software. But the metrics discussed by Gilb are vaguely
detined and superficiale The problem is that meaningtul
measurement of software is extremely difficult, because of
software”s intricate structure of concrete detait and
hecause of the tenuous relationship between its concrete
details and abstract characteristicses An additional problem
is the lack of well-understood and commonly accepted
terminology to describe the software phenomena to be'

measured.

However, a numober of well~-defined and fairly crecible
software metrics have been proposed and evaluated, usually

in conjunction with a motivating model or some intuitional

underpinningse. The program changes metric {Dunsmore &
Fannon 77; Dunsmore 75] extracts an error count
aljorithmically from the textual revisions made to source
code during program development. The cyclomatic complexity
metric (“cCabe 76] counts the number of "basic'" control-flow
paths in a program. The data bindings metric [Stevens,
“yers % Constantine 74; 3asili § Turner 75; Turner 761
counts commmunication paths between code segments yia data
variavles, The various mnetrics from software Science theory

Twytlstead 77)==-program length, program volume, Language

level, effort, etce-=provide a unified syste~ ot

CHAPTER 11

~easurements for the size of a program, the amount of
intormation it contains, the level of abstraction it
exdresses, the amount of mental effort required to produce
or comprehend it, etc. The error—day metric [(Mills 76] is
an ingex of how early errors are detected and corrected
durin, software development. The span metric [(Elshoff 7601
is an index of the extent to «hich a program”s data
variaoles remain "live" (i.e.; continue to affect control

flow and data value determination),

tach metric mentionsag above has been examined

emoirically to one degree or another; but few software
metrics have peen investigated in controlled experiments,
and there is Little research comparing metrics or examining
their interrelationships empirically. FfFurther elaboration
and discussion of individual software metrics is deferred to
Chapters IV and Vv since many were examined in this reseach

praojecte.

N

nairical/Experimental Study

First-hand observation of software phenomena in the

“eild,y'" so to speaky has long been regarded as a unique

source of information and the ultimate form of validation.
ver since Knuth rummaged through wastebaskets at computer
centers for discarded listings of Fortran programs [(Xnuth
71], software "technicians®™ have been interested in watching
software be developed, to see how the latest intuitive
opinions or theoretical nodels fare against reality.
Ideallyy, it is useful to distinguish between data collection |
etforts (with descriptive statistical analyses) and

controlled experimentation efforts (with inferential

statistical analyses); but, in practice, elements of poth

are somnetimes combineg within the same empirical study.

L ot i o mibetian - silndihaciny

CHAPTER 11

venerally speaking, the purpose of data collection
etturts has been to examine the behavior of software metrics
an? models unager realistic conditions, A numpber of data
collection efforts have Deen aimed at progamming=-in-the-
large,* focusing on models of gross behavior (i.e., COSt,
proguctivity, resource estimation) during large- to medium-
scate software gevelopment. At 18M [walston 3 Felix 77
-.ata was coltlected via croject reporting forms {n order tg
Treasure proauctivity on oroduction software developments,
At NASA/Goidard [3asili et als 77) data is being collectea
via information forms in order to evaluate cost or resource

estimation mogels and to study software error phenomena.

Other data coliection efforts, focusing on small~- to
medium-scale software development, have been aimed at ;
quantitatively characterizing software”s tine structure. In
studies at G" [Elshoft 76b; Elshoff 76al, a large set of
conmercial PL/T1 programs was collected and measured
accoraing to a host of quantifiable programming aspects and
software metrics, including the span metric and the software

ccience metricsSe.

venerally speaking, the purpose of controlleg
exoerimentation efforts has been to evaluate the effects of
croagramming language features, human factors issues, and
crosranming methodologies upon software phenomena and
acstract characteristicse Usually, the language features
expoeriments are done from a computer scientist's viewpoint,
while the human factors experiments are done from a
csychologist®s viewpoints However, because of areas of
natural overlap between these two concerns, Some
exoreriments fall into both categories. Together they
conpgrise the bulk of controlied experimentation in sottware

- -——-—- -

* See earlier footnote.

14

CHAPTER 11

enjineering.

There are several well-known examples of controllea
excerimentation on programming lLanguage features. wJeissman
Tdeissman 74a; weissman 74b] conducted experiments on how
eroyramming features atfect the psychological complexity of
software; tne features included commenting, indentation,
mnemcnic variable ngm?s1 ana control structures. Gannon
{Gannon 75; Gannon & Horning%?S} conducted an experiment on
how pgrogramming language features affect softauare
reliapility and the presence/persistence of errors; the
features included statement vs. expression orientation, data
variaole scope conventtons, and expression evaluation order.
Later, 3Sannon [Gannon 77] ran experiments to examine now
data typing conventions affect software reliability. Using

the same empirical data, Dunsmore [Dunsmore & Gannon 77;

nunsmore 7%] examined how programming "complexity" is
atfectea by progyrammer-controllable variations in
progjramming features. 'Complexity”™ was measured
alzorithmically by the program changyes metric; the features
included statement nesting cepth, frequency of data

references, and data communication mechanism preference,

There are several well-known examoles of controllied
exderimentation on human factors issuese. GSseveral
experiments [(Sime, Green § Guest 72, Green 771 have been
congducted on the comprehensitility of different mechanisms
tor implementini conditional pranching. Several experiments
(Shecpard et ale 779] have been conducted on the effect of
modern coding practicesy sSuch as structured coding, mnemonic
variavle names, and style of commenting upon the ease of

performing comprehensiony modificationy and debugging taskse

Finally, there are 3 few well-known examples of

contrclled experimentation on programming methodologies.

CHAPTER 11

Several experiments were conducted [Shneiderman et al., 77]
to evaluate the utility of cetailed flowcharting (as a
desiygn tool and cocumentation aid) in program composition,
conprehension, depugging, anc modification tasks; novice
pragamming students were employed as subjects, with short
(ieeey less than 150 Lines) Ffortran programs as test
materials. Some exgeriments were also conducted [Myers 75]
to evalyate the utility of code reading and walkthrouzhs in
dedugging tasks, experienced professional programmers were
endloyed as subjects, with a short PL/1 program as test
material. To date, however, controlled experimentation on
programming methodologies has been Limited in scope.
“xperimental studies have not involved programming
activities gpanning multiple phases of the software life~-
cycle and reguiring the natural jintegration of multiple
crogramming tasks. Nor have experimental stugies useg
nontrivial test materials requiring sustained effort lasting

severai. weeks and involving several hunared lines of code,

CHAFTER 111

I11. INYESIIQAIIQN SPECIEILS

This chapter outlines the surroundings in which the
exderiment was conducted, the experimental design that was
emolcyea, the programming methodologies that were compared,
the data collection and reduction that was performed, and

the grogramming aspects that were measured.

-—— - - -

several Circumstances surrounding the experiment
¢oviTitute signifijcantly to the context in which its results
must Le appraised, These include the setting in which thef
exgseriment was conducted, the people who participated as :
sudjectsy, the software development project that s;;ved as
ths experimental task, the computer programming language in
which the software was written, and the computer system and

access mode that were used during development.

The experiment was conducted during the Spring 1976
senester, January through May, within regular academic
courses given by the Department of (omputer Science on the
Colleye Park campus of the university of Maryland. Two
conparable advanced elective courses were utilizegy edach
with the same academic prerecuisites. The experimental task
anl tregstments were built into the course material ana
assijnments, Everyone in the two classes participatea in
the experiment; they cooperated willingly and were aware of
tein; monitored, but had no knowledge of what was being

otserved or whys

The participants were advanced undergraduate and

araduate students in the Department of Computer Science. Cn

tne whole, they were reasonably competent computer

17

s » . . . o "

CRAPTER 111

rrosrammers, all having completed at least four semesters of
programming course work and some having as much &s three
years” professional programming experience in government or
injustry. OGenerally speaking, they were familiar with the
implementation Language and the host computer system, but
inexperienced in team programming and the disciplined

methodologye

The programming appiication was a simple compiler,
involving string processing and translation (via scanning,
narsing, code generation, ana symbol table management) from
an Algol-like language to zero-address code for a
hyoothetical stack machine, The total task was to design,
inolement, test, and debug the complete computer software
system from given specifications. The scope of the project
excluded both extensive erro: handling and user
documentation, The project was of modest but nonnegligible
difficulty, requiring between one and two man~months of
effort. The size of the resulting systems averaged over
130 lines of high-level language source code. All facets
of the project itself were fixed and uniform across all
development “teams,” Given the same specifications,
conputer resource allocation, calengar time allotment, host
machine, implementation language, debug3ing tools, etcCey
each "team”™ worked independently to build its own system,
The celivered systems each ran (is.eey they worked) anu

passec an independent acceptance test.,

The implementation tanguage was the high-tevel,
structured=programming language SIMPL-T {Basili & Turner
?8]., This language was designed and developed at the
University of Maryland where it is taught and used
extensively in regular Department of Computer Science
courses. SIMPL~T contains the following control constructs:

sejuence, ifthen, itthenelse, whiledo, case, exit from loop,

N

CHAFTER 11

and return from routine (but no gotod)e SIMPL=-T allows
essentially three levels of data declaration scope (i.e.,
lccal to an individual routine, global across the several
rostines of an individual module, or entry-global across the
routines of several modules), but routines may not be
nesteue. Adahering to a philosophy of "strong typing,” the
lanjuage supports integer, charactery, and string gata types
and cingle dimension array data structurese. It proviages the
crogrammer with automatic recursion and PL/1-like string~-
orocessing capabilitiess (Acditional details regarding the
S1YMPL-T programming language are intersperses among the

exdlanatory notes in Chapter IV.)

The host ccmputer system was the campus—-wide computing
facility, a Univac 1100 machine with the usual Exec 8
ocperating system. This system supports, in its fashion,
both patch access (via puncth cards) and interactive time=~
sharing* access (via TTY or CRT terminals)., The
participants were well acquainted with the system and
accustomed to either access modee. During the experiment,
the participants were allowed to choose whichever access
mole they preterred and could switch freely between modes.
Alnost everyone consistently preferred the interactive
access mode; only one person-—in the Al group (see below),

by the way=--used the batch access mode extensivelyeo

The major elements >f an experimental design are its
units, treatment factors, treatment factor levelsy observed
variables, local control, and management of extraneous
tactors. (Ct. [Ostle and Mensing 75, chap, 2] for a general
treatment of these elements.)

+« {aliLed "demana" in Univac terminology.

e PO SO

CHAPTER II1

An experimental unit .s that object to which a single
treatment is applied in one replication of the event xnown
as tre "basic experiment.” In this study, the "basic
exoeriment” was the accomplishment of a specific software
development project (see above), anag the experimental unit
was the software development team (i.eey a small group of
pesple working together to cevelop the software). A total
ot 19 replications of this "basic experiment,” each
performed concurrently and independently by a separate

exserimental unit, were involved in this experiment.

dost experiments are concerned with on one or more
indjecendent variables and the behavior of a2 one Or more
deoendent variables as the independent variables are
permitted to vary. These independent variables are known as
exderimental treatment factorse This experiment focused on
the approach used to develop software, as the single
experimental treatment factor.

txperiments usually involve some deliberate variation
in the experimental treatment factor(s). ©Oifferent values
or classifications of the factor(s) are known as the
exoerimental treatment factor tevels. In this experiment,
three levels were selected for the software development
aporoach factor. (Conceived as variations in two human-
factors=-in-programming issues, S$ize of development '"teanm"
and dejree of methodological discipline, the experimental
treatment factor levels are denoted by the following
mnemonics:
Al == individual programmers working alone, following
an ad hoc approach (see below);
AT <= teams of three programmers working together,
following an ad hoc approach (see below); and
07T == teams of three programmers working together,

following a disciplined methodology (see below).

20

—1-—---n-----n--------u----n-..lillilll-l-l‘

CHAPTER 111

buring an experiment, observations of the dependent
variavle(s) are made for each experimental unit. An
exoeriment”s immediate objective is to ascertain the
relationship between the experimental treatment factor
levels and the experimental observed variables, In tnis
exdoeriment, the observecd variables were quantifiable
programming aspects, or metrics (see below), 0of tne scftware
development process or the developed software proguct. A
targe set of such aspects were considered in the studye.
Technically speaking, this amounted to conducting a series
of simultaneous univariate experiments, one for each
cro3ramming aspecty all sharing 3 common experimental design

and altl based on the same empirical data sample.

txperimental local control addresses the configuration
by which (a) experimental units are obtained, (b) units are
placec into groups, and (c) groups are subjected to
different experimental treatments (i.e., specific
conbinations of experimental treatment factor levels).
Ltocal control is employed in the design of an experiment in
order to increase its statistical efficiency or to improve
the sensitivity/power of statistical test procedures.
fxoerimental local control usually incorporates some form of

randomization—-—-a basic principle of experimental design--

since it 1s necessary for the validity of statistical test

orocedures.,

For this experiment, subjects were obtained on the
basis 0of course enrollment: since the experiment was

emoedded within tw0o academic courses, every student enrolled

S ey e I B A e e

in thuse courses automatically participated in the
exderiment, Software development "teams" were formed among
these subjects. In the one course, the students were
allowed to choose between segregating themselves as

injividual programmers or combining with two other

21

CHAPTER 111

classmates as three-person programming teams, In the other
course, the students were assigned (by the researcher) into
three-person teams, The two academic courses themselves
provided the variation in methodological discipline, The
atmnosphere of the first course was conducive to an ad hoc
aparoach to programming, white the disciplined methodology
was stressed in the second courses, In this manner, three
experimental treatments (corresponding to the three
exderimental treatment factor levels Al, AT, and DT) were
created, and three groups of 6y 64y and 7 units

(respectively) were exposed to them,

There are usually several extraneous factors, other
than the ones identified as experimental treatment factors,
that could influence the behavior being observed in an
experiment, Many experiments (includings this one) follow a
reductionist paradigm, which seeks to control for all
variaples except a select few, SO that the effect of the
independent variables uoon'the dependent variables can be
isolated and measured. In this experiment, a variety of
programming factors which do affect software development
were given conscious consideration as extraneous variables:

- programming application and/or project

- project specifications

- implementation language

- calendar schedule

~ availaole computer resources

- available automated tools :
wherever possible, these variables were held constant by
exdlicitly treating all experimental units in the same

mannere.

unfortunately, the ideal reductionist paradigm can only
be approximated, because of factors which are suspected of

stronyg influence on the behavior of interest, but which

CHAPTER 111

cannct ve explicitly controlled within the experimental
desiyn, In this experiment, there were two such factors:
the personal ability/experience of the participants and the
amd>unt of actual time/effort they (as students with other
classes and responsibilities) chose to devote to the
projects HoOwever, information from 3 pretest questionnaire
was useyg to balance the oerscnal ability/experience of the
participants in the Jdisciplined teams (only), by first
cartitioning :he group DT students into three equal-sized
catej;uries (h gn, mediumy low) Dasea on their grades in
orevious computer courses and their extracurricular
prograomming experience, and then randomly selecting one

stuoent from each category to form each team.

fFor tne statistical mocel employed to analyze this
exseriment, it Wwas necessary to assume homogeneity among the
sarticipants with respect to personal factors such as
acility anc/or experience, motivation, time and/or effort
devoted to the project, etces As a reasonable measure of
indjividual programmer skill Llevels under the circumstances
of this study, the participants” grades from a particulariy
pertinent prerequisite course provioced & post-experimental
contirmation of at Least one facet of this assumec
honoceneity: the distripution of these grades among the
three experimental groups would have gisplayed the same
degree of homogeneity as was actually observed in over 9 out
of 17 purely random assignments of the participants to the
Groucs. 1f anything, in the researcher”s opinion, the
participants in group Al seemed to have a slight edge over
those in groups AT and 0T with respect to native programming
adilityy while grougs Al and AT seemed slijghtly favored over
eroup CT with respect to formal training in the apolication

23

CHAPTER 111

Pragremming “Yethodolggies

~

The disciplined methodology imposed on teams in group
5T consisted of an integrated set of state-of-the-art
techniques, including too-down design, process design
tanguage (PDL), functional expansion, design and code
reading, walk-throughs, and chief programmer team
orjanization. These techniques and organizations were
taught as an integral part of the course that the subjects
were taking, using [Linger, ™ills % Witt 791, [(Rasili &
Taker 75], and [Brooks 75] as textbookSe Since the Subjects
were novices in the methodology, they executed it to varying
Jejrees of thoroughness and were not always as successful as
seasoned users of the methodology would be.

The disciplinea methodology prescribed the use of a PDL
tor expressing the design ot the problem solutions The
design was elaborated in a top-down manner, each level
reoresenting a solution to the problem at a particular level
ot abstraction and specifying the functions to be expanced
at the next level. The PDL consisted of a fixed set of
structured control and data structures, plus an open-enced
desicner-defined set of operators and operands corresponding
to the level of the solution and the particular application.
tesign and code reading involved the critical review of each
team member”s PDL or coce by at least one other member of
the teames walk=-throughs representea a more formalizeo
presentation of an individual®s work to the other members of
the team in which the POL or code was explained step oy
step. Under the chiet programmer team organization, the
chief programmer defined the top-level solution to the
proolem in POL, designed and implemented key portions of
code himself, ahd assigned subtasks to the other two team
menpers. Each of these nrogrammers, in turn, code-read for

the chief grogrammer, designeg or coded their assignea

e

CHAPTER I11

sudgcieces, ana performed Librarian activities (i.e.,
entering or revising code stored on=-line, making test runs,

etCe)o

Two variants of chief programmer team organization,
denoted CP and M, were employed. In both cases, one member
ot the team (the chiet programmer or the manager) was
responsible for designiny and refining the top~ievel
solution to the proolem in PDL, identifying system
conponents to be implemented, and defining their interfaces,
"ne twO other team members (the programmers) were each
responsible for designing or coding varipus system
conponents, as assigned by the chief programmer or managers.
In the CP case, the chief programmer maximized his coaing
duties by implementing the key code himself, and the
orogrammers performed Lidbrarian activities (i.e., entering
or revising code staored on-Lline, making test runs, etce.).
In the M case, the managyer minimized his coding duties by
acting as Llibrarian and yielding greater responsibility for
imolementation to the programmers. Although there were
(suprosedly) four CP teams and three % teams in group DT,
this cistinction between the (P and M variants of chief
ars>grammer team orjanization is not utilized in the present
study, since it is believed that the impact of their common
features transcends any impact due to their differences.
“oreover, in actual practice, it was observed that the (P
ani ¥ variants are only identifiable extrema along a
continuum and that the group DT teams all gravitated toward

a romfortable compromise in this respecte.

tach individual or team in groups Al or AT was allowed
to develop the software entirely in a manner of his or their
own chaosing, which is herein referred to as an ad hoc
apo>roach. No methogology was taught in the course these

sudjects were taking. Informal observation by the

CHAPTER 111

researcher confirmed that approaches used by the individuals
and ad hoc teams were indeeu lacking in discipline anc gig
not utilize the key elements of the disciglined methouology
(eeyey an individual working alone cannot practice cogse
reading,y, and it was evident that the ad hoc teams did not
emsloy a PDL or a formal top-down design).

Datag Collegtjon angd Reductign

Due to the partially exploratory nature of the
exseriment in terms of differences to be discovered in the
project and process, as nuch information was collecteo as
could be JdJone in an efficient and unootrusive manner, A
variety of information sources was used. Individual
guestionnaires revealed the personal background and
programming experience of each participant. Private team
interviews and in-class team reports provided information
rejarding individual performance on the project. ™"Run Llogs"
and computer account billing reports gave a record of the
comnputer activity during the projecte. Special module
conpilation and program execution processors (invoked on-
line via very slight changes to the regular command
tanguane) created an historical data bank of source‘code and

test cata accumulated throughout the project development.

The data bank provided the principal source of
information analyzea in the current investigation and other
information sources have been utilized only in an auxiliary
manner (if at all). Thus, data collection for the
exoeriments themselves was automated on-line, with
essentially no interference to the programmer”s normal
cattern of actions during computer (terminal) sessions. The
fiaal products were isolated from the data bank and measured
tor various syntactic and organizational aspects of the

tinishea product source code. Effort and cost data were

CHAPTER 111

also extracted from the data banks The inputs to the
analysis, in the form of scores for the various programming
asoectsy reflect the quantitatively measured character of
the prouuct ancd tnhe process. Much of the data reduction was
done automatically within a specially instrumented compilere.
Sone was done manually (e.ge.y examining characteristics
across modules). Due to the underlying collection ang
reduction mechanism, which was uniformally applied to all
exoerimental units, the data used in the analysis has the
characteristics of objectivity, uniformity, and
quantitativeness and is measured on an interval scale of
measurement [Stevens &4¢1]. The raw scores for the measured

programming aspects are summarized in Apppendix 1.

Pragramming Aspegts and letrjcs

The dependent variadles studieos in this experiment are
callead programming aspects. They represent specific
isotlatable and observable features of programming phenomena.
Furthermore, they are measured in an objective and
automatable manner (i.e., they could be extracted or
conputeg directly on-Line from information readily
ootainable from operating systems and compilers). For each
programming aspect there exists an associated metric, a
specitic algorithm which ultimately defines that aspect and

by which it is measurede.

The programming aspects may be categorized as either
process= or product-related, on the basis of what they
measure. Process aspects represent characteristics ot the
development process, in particulary, the cost and required
effort as retlected in the number of computer job steps (or
runs) and the amount of textual revision of source coue
durin; development. Product aspects represent

cnaracteristics of the final product that was developed, in

.7 bl e A sk« e e

CHAPTER 111

particular, the syntactic content and organization of the
synpolic source codee. Examples of product aspects are
nunper of lines, frequency of particular statement types,

average size of data variables” scope, etc.

The programming aspects may also be categorized as
either rudimentary or elaborative, on the basis of their
conceptual nature, The rudimentary aspects are conceptually
Guite simple, reflecting ordinary surface features of the
crocess or product. for example, the numbers of data
variaples and routines in a program are rudimentary aspects;
they pertain to the sheer size of the software ana are
sonewhat uninteresting in themselves. The elaborative
asoects are conceptually more suptle, reflecting deeper
characteristics of the process or product. For example, the
nunper of times pairs of routines communicate via data
variables (see the data bindings metric below) is an
elaporative aspect; it pertains to the software”s modularity

and is dintuitively appealinge.

Finallyy, the prograwnming aspects may be categorized as
either confirmatory or exploratory, on the basis of the
motivation for their inclusion in the study. The
tonfirmatory aspects had peen consciously planned in advance
nt collecting and extracting the data, because intuition
sujdested that they would serve well as gquantitative
injicators ot important Jualitative characteristics of
sofware development phenomena. It was predicted a priori
that these confirmatory aspects would verify the study“’s
basic oremises regardinyg the programming environments being
investigated in the experiment. The exploratory aspects
were considered mainly because they could be collectea and
extracted cheaply (even as a natural by-product sometimes)
alony with the confirmatory aspects. There was little

serious expectation that these exploratory aspects would be

lllFl!lI.llllIllllIlllllIlll-lllllIlll!!ll!I'llI-lE'l-l-l'--"“ﬂ"'"""'f

CHAPTER IIl '

useful indicators of differences among the groups,; but they
were included in the study with the intent of observing as
many aspects as possible on the off chance of discovering
any unexgected tendency or differences Thus, this study
conbines elements of both confirmatory and exploratory aata
analysis within one common experimental setting (Tukey 691,
The confirmatory programming aspects are identified in the
accompanying tables by being flagged with asterisks; the

exoloratory programming aspects are unflagged.

it should oe noted that a large percentage of the
nproduct aspects fall into the rudimentary-exoloratory
catesorye On the whole, these product aspects represent a
fairly extensive taxonomy of the surface features of
software. The idea that important software qgualities (eeges
“complexity”) could be measured by counting such surface
features has generally been disregarded by some researchers
as too simplistic (esagey [Mills 7?3, pe 2321). A resclive to
study these surface features empirically, to see if

sometning might turn up, before rejecting the underlying

idea, was partially responsible for their inclusion in the

Study.

The particular programming aspects examined in tnis
investigation are presented in Chapters IV and V. A
conplete List of aspects, together with explanatory notes,
is given in Chapter 1V, 4ith definitions for the nontrivial
or untfamiliar metrijcs. Chapter V contains a in=-depth

discussion of the elaborative aspectse

CHAPTER 1V

Ive QLQ3SARY QF PSQGRAMUING AJPECIS

This chapter presents af{l of the programming aspects
examineo in the study. The goal of this chapter, in
conjunction with the next, is to describe each programming
asosact and, where appropriatey, to motivate its intuitive
apoeal as a software metrice. Because the brief explanatory
notes within this chapter do not adequately cescribe a
certain subset of the aspects (namely, the elaborative
ascects)y, they are further discussed within the next

cnapters.

Tablte 1 Lists the programming aspects examined in this
investigation, They appear 3rouped according to
definitionally related categories, with indented qualifying
phrases to specify vartants of general aspects. when
referring to an individual aspect, a concatenation of the
major phrase with any qualifying phrases (separated by \

symbols) is usede* For example, the aspect label

COMPUTER JOB STEPS\MODULE COMPILATIONMUNIQUE
refers to a metric involving computer b steps that are
mgiule compilations in which the sourc code is unique from

all other compiled versions.

in orager to avoid any misunderstanding, a reaundancy
issue must be stateag and properly appreciated. Several
instances of duplicate programming aspects exist; that is,
sone logically unigue aspects reappear with another label,
in oraer to provide alternative views of a given metric or
to round out a group of related aspects. For example, the
FUNCTION CALLS aspect and the STATEMENT TYPE COUNTS\

* Ascect Labels are always written completely in uppercase
letters, while references to general concepts appear in
lowercgse letters, with initial or defining occurrences
underlined,

Table '. Programming Aspects

‘'eze Parenthesized numbers refer to the explanatory notes
in Chapter IV, Asterisks mark the confirmatory aspects,; thre
exdploratory aspects are unmarkede.

rudimentary process ascects

[EAEEREEERIEEEEREEEEE SRR AR R R EA RN R EEENEEESRNEX.] .
(1) * | COMPUTER JOB STEPS)
(2) * | MODULE COMPILATION]
(7) * UmIQuce
(2) IDENTICAL
1 (%) - PRUOGRAM EXEZCUTION
1 (s) MISCELLANEQUS
(4) * ESSENTIAL |
(7> AVERAGE UNIQLZ CO%PILAT‘ONS PER MODULSZ ‘
(<) MAXe UNIJUE COMPILATIONS F.A.Qe MODULE !
IR EEEE SR RIS R R R AL R RIS RN ERE RS ER SR ERRREREREE R R}

“Ax, is an abbreviation for MAXIMUM
FeAeaDs is an apbreviation for FOR ANY ONE

elaborative process aspects
[EZ 2R AR ERIEREERIESEYEEER AR A ERINEEE RSN IR N X
() = |PROGRAM CHANGES
[EEEEENE AL EEEEEIEEEEEEREEE R ERE NEREEEEREEREX]
rudimentary product aspects

LB ARSI RS LSRR RES SRR REXERE Rl R RN XS XEXN.]

(1) » IvOpyLes)
(11 « |segMenTs T TTTTOTTTTTTTT
(12) SEGMENT TYPE COUNTS @
(11) FUNCTION
211) PROCEDURE
(1) SEGHMENT TYPE PERC:NTAG‘S :
(11) FUNCTION
(1) PROCEZDURE
(13) AVERAGE SEGMENTS PER MODULE
(14) » |LINES -
(15) » srarcme~rs
; (106) STATEWEVT TYPE COUNTS =
: (17) :
] (10) » xr
(1¢) * CASE
() * WHILE
(21 L] EXIT
(2499) (PROC) CALL
(23,99) NONINTRINSIC
(23,97 INTRINSIC
(34) » KETURN '
2;23 STATEMENT TYPE PERCENTAGES :
(1) . IF
(1) . | CASE 1
('2) * | wHILE }

TAbLE 1

]]]]]
]]]]]
] (g |] [}
] [[[}]
[fw "2]]
! ¥ fw] [}
t 19 | X ! (]
] tw 1o]]
) twnvn w [} [}
]] v 1 tn
b =nw 1] 1] " |~] n 1 fus
tZa>n w» "] 19 1~ L]] 1o
PwhHwn [1} |12 lo Moo I«
[SRy [1] 1} Zh § W "] |
t ol "] L] wh | - [] 1 [%] | -
ftwhnon " 1] EN [[] i [| w
fvanzn N own [4 1 < L [4 o
] Weetd N "N [K] o # 1D lx
faxit=-n # ([] f~ [" to fw
b wihwkn 0 [] []] n [XS] la
tantwi 1] n wvn [e 4 | x "]]
] wzu W (1} 1} tw tw L] $w [+ o P w =3 o
[[T N T I | R] (LI a1} (8] [&] Iha (8] t o " i1a w w w Ia w w
- f=ur-n n noowan ~— [] - -] " 1O Ore Or v 1o Ot OF
Wy tzxnz2n n noan w 7} I n 7] [7] [} [] e we o Z 1o W ww o
Zw lwirwi u v " Zw LU0 12 2L Zwu | 2 " [e e o o a w ln e e W
L I B T Il [Hnm 1 N et et O e et | O nHwnt LA>»LOOw wuwx | WD UOO =~
S b witwh naJdav n 2z XV XV |- XN v [nowlw ~M~Oax~OWww =»=Dw | w IO X O W
A2 == NIZ2OHN wh —ZUW-22U01FF FZ2UFZ2Z01F wWwh) 2 OErOF red il - [v] QOEPFOFE 14
L Ze U LN Hedrmrd! Y HANZIT et Zrrir | K ZZ21x Zrr4 1 28 OV >O0220Zvwo4fFAdwdl O >»0O02202e0
O =l HOXNE ONZOEDIDHNIEIV| VOHED=EXN | VOO 1l @ XZDWED-ODILI>xSia EFDWEDINO
~AZEHZ1Iniluniluni EZN - HOZ OZF 21 OMNIZFEAOZ-EFZ2 1 OO N) e J- z =3 X o] S A N ™ [4 oOF
LoOZo " NWZ2N22Z et N O 2WOZ 2 DO WO 2| Dwtacl e g2 o C 2Z2Jda Olxa? o Nz
FOZraD)l WHWHONOENT WHFUT rOZ =X | ZOIOZHr | ZO0UH 7)) < Ow P F Duoa P - s 1¥1) -4 s D
— BN ON N Z = NO I Z o Z =2 o Zr | ~ZoUN >l >0 Z 120
> Wl <IN NHFROZHNZgLOD o oz pw } <3 ozt SDael } d o] -d
W~ X)X QZHWa i Ou Qa Zrl o a Zra) g i) 0 P IO
itz "Waew it > [G twv W4 |
I >E>0we D HoO>ngz P> 1> Nal « ! <
s O W [SN |« | « nHot o o
. « « o« - LK « « « -
lalaXael e Yalele X ”~ ~
[6 X Ne [¢ 7o R0 o Yo Ne] o Qo
oo RO OO o o
[alalalale) ”~~ ”~ ~ L I Y a1 P~ e e mNN [atalalaY oW oV W V) SN~ ~ lalalalalalatalaY W N oV W o ¥Vl latalalaYaY oW ataY W oN
LIR30 T30 TN SRV (o A SR SV A TR A RV IR ¢ Gl M LAl a I LA T a Lag BN L ol a1 in l ol AT A LA Lo TR Ll od L NENEAV NN SN ES S'AA R dVAATTARVAL AT s R e R o Lo TN o S RN JVATVARN YV 1Vo iV, YTal
[T QRN JNY N7 SURNE AU o TN AN AVEQVT oA oV [oS BN AN) i A1 R 2 Ll aVIANT N TA VIR QR f aVIaVE o QVT ST NT NI oL of N e B AN et Al gl oY a1 AL oL AT Sl L AL AU ST ANNN A3 BN al oV ¥ oA g0 2% o
- et ol A4 s S et ot ot - et o N N it o N N ot Nl et Nl Nt) NP NSNS N’ e N A Nt A St W N N Nl Nt N st Nt sl P N Nt Nl sl N N Nl N P i

30b

(VR

«
] }] []
] -] [N «
[} (4 [} 1 Z]
[] ftw I tw]
[} 1 [N 4 o [
; | w [XC) " (X7} (] 1ex .
; [} w Nwn [[3e"4 | < tw -
| (=1 I nuw ([fa 1 a %
! [=1] no "<] []
10 | x e it a f w t *
1 fw 1) - 1] [U] 1w -
] 1a "o s | < (X% -
[3] " w v Y [,] «
L w tn [[X'%Y " [=1 | x ”
[-8 w N 0w])= -
] [] w "o I w | < L]
(7, [X:°) "a " 1 J 'a]
I w | < [nu [] L
[- (Rl Hws ([4 [Iw -
| o) o na (1= [7] [U] L]
: | < I < it > " [,)<]
m) o— 1> " "o to) .
- w)@] " "< I a (=] -
] O |« [y nw 1} [] [] *«
1 3Y] 2 1> 1< no e o o t -~ o o t~ o n «
- o w | o H e "o w w [w w [~ w w -
fos] wwee | 2 to "nwv N D4 Or4 € Or e QO e QOrd O)
014 2D | < ol Jd ttwn N W W Al wih We A1 D wWe wu O«
- Sdw e 1 m WiV e WHO et rdd WD g et WO st 4 W
g WAt O >a~l2W Ho VUMY wWo>uool J had>uoam=) d war>uwoars
Oa >XIC) I wWw) O It ZNY =HOXHOWW | VU ~OxX~OWW | U HOXHOWw R
o (SN TII“NE e Wil o aFk-afFrit] & OF -QF <] & OFFOF rr4a
4 of b4 = 2 dHWWE N > OZ2020WD) 22202 I F>0Z2 0 udk
wa S WEW~O | WA —DWHZEEDWEDINO | ZETIWEDI~O) Zax FDwE. DO X
z V- ZOF OO W= z O | we 2 OX § W 2 o¥. x
(&4 | aOo0C21laqaCiiFauwit x> o QZ |2 (o] o2l 2 o OZ %
V4 lxuZz2EDl2a dila>axlOow 4 I OW P4 ED|I vw Ve T
I w | w hx nw fw 1w]
1> "> [4 [R7,} (7, 1 «
ta la ha i~ [[«
L]
- ® -

lalaXaYaY el lalatala el lataYal PN~ laYalalalaYalealaY el NN NN PN PN PN P Pl Y alalalalala)

PN O OM QLN MMM 200 O WHNAIUVNWUWY O3 SUWVANY (OS2 DI LY i

RO MMM RN N MR SEMYMIMIMNM MMM IR MY A VIR I MY

N N N ot N N e N ot L A A ot et il N) N N it b Nt ¥ st Nt ot Nt St Nt N Nt N gt W NP N N Nt

is an abbreviation for RKELATIVE PERCENTAGE

s an_acbreviation for AVERAGE

RCENT .

ARV]

elaborative product aspects

LA R R R R RN R X SR AR SRR AR AR ERRESEE R R

CYCLOMATIC COMPLEXITY

U
A
U
A
J

- g - - g - |
el b= 0t D P 0q bd Peh
OqCO0COqC0«
Ol 0k

O W W wul s us
e dAddd Al
R e T L T]
A
VOILZZ2Z2L222
VLI LLTL A
e DDDDDDDD
dNAOOCOCOCOO
<9
o= Wt AL atono o
QAOWVI &8 ¢ 86 8 ¢ ¢ 0 o
Q200000 C00

ED-NCASE VARIATION

X
-~
(7]

(44)

Pl Yatleralalalalalaye)
CAL o1) ko b oRe SIVD MR LN ROV
S LS X EX AN X ZX A ZX RN 4

N N Nt N N N N " it S

30¢

- -
t J t it oo "] [] -
[]]]] []]]] -
]]] W 1]]] -
] []] "o 1]]] L4
]] [W2 n]] «
]] 1 0 1] [} [] -
] [} [} o [[]] [} -
1]] nz]] [) L
] [] [] "]] *«
4 oo w oW ow w Ul W Uy W e w W w whe "] (] *
] WiOWIWO WY W WIWOWI) WO WIOWD Wit 1]] [] «
1 & DDA DA |} e DL D Dt D1 | Z DDA DIl ([)] L]
1O S dxdax d) S dae e Jxk) O o Jax_jor _jac il - []]]] *
I — quigguwtwawl Z L. QIR JTYE- SR gVON B AU W W Wl g Hw [§ oo L
- >>>>>>>>10 P23 - D3> >>>Ho0 nw]] -
| a a qO L L) a4 o« O aQ|a o o« « <« " [~ I o -
] _ ke = = - [U R I] [l N R T I [N 1o [o] «
| @ 24242 02 IV < ZA2 424741 @ P Z A2 I I 1 e | d 1 x | > 4 ~ *
) < g 0t e Pt e 0= et b | g P b gt m 4>t | o Pt 0 Dt D g e g 0t) wh il - 4) - w [o (V] *
1> OO0 Oal @ OO0 aOqOA | > [+ g+ JoF Jo2 gINTT] Nz wfw ¥ I w E - -
] arar-araoar| < ar-araraky ar-ot-ar-arix <l < ~ - I E D4 wix D& 4 W
| w > 1w e - ¢ Z | a au = - AW =
- 1| v Owwwwuilwww i OUWWWwwwWwwwi v NDWwwwwwuwwil W« Zho _—_Z O 1 Zu O> I 2Z2W OW> —a
e ol dddddtw - JJ0Udddd I g -0 AJdDS DN nm 2 Wi e LLIL> >Dw 10> >wWw -«
w [N [e e e T N 7] Horartrdrertrd md 4 | (D [bdrq edrdiirtomtrdlf & OZ W W 22 A1 > > ol L] o
- O AR~ ArEEEEEEE IO ARl =~ e we~ WOl Al Sl - Jdr-Jd2 ax o
‘0 1O WVWZZEZ22Z210 LERZZ22Z222)10 LVZZZ22Z22Z2201 =0 W2 dJw Unla Jdaw wil < LW W «
<) J VL LT ATL L) Z2 VAL ALLIALARX) d UL AL AL ILIN T L2 QO HWd W Oz L AEDHY) S Da 3
ot [] ¢ 3DDDDDDDIN N} DD DIDDDDD) 2D DDIDDIIDNO 2w N+ o2 wWal DAVkFAL -l DLV WL-Ax
1 OJIVNOODTVOT T UNCTCCAOC U AJNOCC ICOTAC J DAWWIUVES ww VWIva—HZOaxE | Y —-ZuDaxE *
1wt lwao Il wLY NY LWUASDHVY =E =] JOLWOOMI JOLWLWIWLOOHE
] PTF.55773539“ O FWNULANIOTOO | O FUNINANN0NOONNT e IMOM=~I DIqWadd | TOLr-Zubk | O tZur &
1 ADLY #8688 008 2 0NN G e 0 060 e 8 10D S8 ¢ 06 6 8 sl AT reteUWNMN-TFLYE U I UVUX-O0aC@ut VO ~~OOQTUuNE y
1 ArFrCOO0OLIOON A rFFTOO0OOOOC DI A-raOO0000OOON 22UV I X CAD e DWe | aaa gwwl QA OQ 3 Suwiui e
[= | = W NI L2t S | [~} L]
[1o j} o o QuwitZTO WMo Zniunv 1 2 «
[7] o 1o IR 4 AR > JWeDew | - I~ x
]) [} [T} "o]] .
t [}] Hwv "o]] =
[} [} 1 H o~ nwm]] L]
* B
1
® * « L
~ ”~
38 o
(¢ 3 o~
lalatalalalalalataYalal lalalalalelalealele lalal oY atalatalalaYataVaVal [alaYaYa¥ oWl e lalalale Yol tol e talaliaaYaYe) lalaY alal o W WVl
AORS) t)TI N E LYONG)) S 1) N O DU OGS 1) D) e MM RO DI IR e NI DD {
[CRX BN R RN, JX BX 2N FX N SN SRR % X RX ZU 3N BN 2N 2% XX AN SEEPN JEN RN EN ZX X S RN ZX BN SN RN ES X ES EX BN RN J VRV YVl PaXV o Y VA Y] [V Y VT PRt VA VER VRN Vo W VAN VAN VAT TA YVRR TV Y VATVAN
Nt kN Nl i N o N il b Tl Nl Sl N il Nt N ot Nt Nt N N o Nt Nud N N b St Nt N S ot S (RS A A AV A A N i Nl o) it N Nt N Nl N Nt P

CHAPTER 1V

(PROC)CALL aspect are each labeled and categorized from the
viewpoint of implementation language construct frequencies,
Ayt the same metrics can alsc be considered from the
viewpoint of segment invocation frequencies, warranting the
inclusion of the two duplicate aspects INVOCATIONS\FUNCTIONS
an3d INVOCATIONS\PROCEDURES as variants of the general
INVOCATICNS aspects Among the 197 programming aspects
listec in Yablte 1, there are 8 pairs of duplicate aspects
(identified in note 99 below)y Leaving 189 nonredundant
asoects examined in the study. By definition, the data
scores obtained for any oair of duplicate aspects will be
identical, and thus the same statistical conclusions will be
reached for both aspects. This redundancy must be kept in

mind when evaluating the results of the experiments.,

Lrief explanatory notes about the programming aspects
are civen below, in the form of numbered paragraphs keyed to
the List in Table 1, with definitions for the nontrivial or
unfamiliar metricss These notes usually supply Lloose
exdlanations for the general concepts behind these
programming aspects, before mentioning any restrictions or
variations in how they were applied and measured in this
stuyvy. Technical meanings for system- or lLanguage-dependent
terms (ee.gey module, segment, intrinsicy, entry) also appear
here. Since computer programming terminology is not
standarcized, the reader is cautioned against drawing

inferences not pased on this dissertation®s definitions.

f£x2lanatory Notes for the Programpipg Aspgssts

(1) A computer job step is a conceptually indivisible
oragrammer~oriented activity that is performed on a computer
at tne operating system command level, is inherent to the
softeare development effort, and involves a nontrivial

exdenuiture of computer Or human resources., Ideally

CHAPTER TV

speaking, examples of job steps would include editing
sympolic texts, compiling source modules, lLink-editing (or
cotlectinyg) object moculesy, and executing entire programs;
howeyers ocerations such as aquerying the operating system
for status intormation or requesting access to on-line files
would not qualify as jop stepse In this study,
consiceration for the COWPUTER JOB STEPS aspect was limited
exclusively to the activities of compiling source modules or
executing entire programs, but not all of the activities so
counted dealt with the final product (or logical

cregecessors thereof).

(2) A module g¢ompilation is an invocation of the
imolementation lLanguage orocessor on the source code of an

individual modules. In this study, only compilations of
modules comprising the final software proguct (or logical

predecessors thereof) are counted in the COMPUTER JOB STEPS\
“CDULE COMPILATICN aspect.

(%) ALl module compilations are (sub)categorizeo as
either identical or unigue depending on whether or not the
source code compiled is textually identical to that of a
oreviocus compilation. During the development process, each
unique compilation was necessary in some sense, while an
identical compilation could conceivably have been avoided by
saving the (relocatable) object mocule from a previous
conpilation for later reuse (except in the situation of
undoing source code revisions after they have been tested

and found to be erroneous or superfluous).

(4) A program execytign is an invocation of a complete
programmer-developed program (after the necessary
conpilation{(s) and Link-editing) upon some test data. In
this studys only executions of programs composed of modules

conprising the final product (or logical predecessors

CHAPTER 1V

thererof) are counted in the COMPUTER JOW STEPS\PROGRAM

EXECUTION aspecte.

(5) A miscellangous 1Qp step is an auxiliary
conpilation or execution of something other than the final
software producte. 1In this study, the COMPUTER JOB STEPS\
“ISCELLANEOQOUS aspect counts exactly those activities
inclugeg in the COMPUTER JOB STEPS aspect but not included
in the COMPUTER JOB STEPS\MODULE COMPILATION or COMPUTER JOB
STEPS\PRNGRA" EXECUTION aspects.

() An essential job step is a computer job step that
involves the tinal software product (or logical predecessors
thereof) and could not have been avoided (by off=line
computation or by on-line storage of previous compilations
or results). In this study, the COMPUTER JOE STEPS\

ESSENTIAL aspect is the sum of the COMPUTER JOB STEPS\MODULE

COMPILATIONNUNIQUE aspect plus the COMPUTER J0B STEPS\PROGRAM

EXECUTION aspect.

(7) The AVERAGE UNIQUE COMPILATIONS PER MODULE aspect
is a way of normalizing the COMPUTER JOg STEPS\MODULE
COMPILATIONVUNIQUE aspect.

(3) The MAXIMUM UNIQUE COMPILATIONS FOR ANY ONE “ODULE
aspect is another way of normalizing (by isolating the worst
case) the COYPUTER JOB STEPS\MODULE COMPILATION\NUNIQUE

asoect,

(?) The program changes metric L[bunsmore §& Gannon 77)
is a measure of the total amount of textual revision made to
prazram source code during the (postdesign) software
development periods The rules for counting program changes
are designed to identify individual conceptual changes

aljorithmicallye. Ffach occurrence of the following revisions

CHAPTER [V

is counted as a single program change: modification of a
single statement, insertion of contigquous Statements, or
modification of a single statement followed immediately by
insertion of contiguous statements. However, the following
revisions are not counted as program changes: deletion of
contiguous statements, insertion of standard output
statements or special compiler-provided debugging
directivesy and instances of lexical reformatting witnout
syntactic/semantic alteration.

see Chapter y for further discussion of the program

changes metrice

(10) A modyle is a separately compiled portion of the
conplete software system, In the implementation language
SIvPL-T, a typical module is a collection of the
declarations of several 3lobal variables and the definitions
of several segments. In this study, only those modules
which comprise the final product are counted in the MODULES

aspect.,

(11) A segment is a2 collection of source code
statements, together with declarations for the formal
c+rameters and Local variables manipulated by those
statements, that may be invoked as an operational unit. In
the implementation Language SIMPL-T, a segment is either a
value-returning fyngtign (invoked via reference in an
exdression) or else a non-value-returning progedyre (invoked
via the CALL statement). The segment, function, and
procedure ot SIMPL-T correspond to the (sub)program,

function, and subroutine of fortran, respectively.

(12) The group of aspects named SEGMENT TYPE COUNTS
gives the absolute number of programmer-defined segments of
each type, The group of aspects named SEGYENT TYPE
PLICENTAGES gives the relative percentage of each type of‘

~

CHAPTER 1V

seament, compared with the total number of progqrammer-
defined segmentss. The latter group of aspects is a way of

normalizing the former groups of aspectse.

(13) Since in the implementation language SIMPL-T
segment definitions occur within the context of a module, a
natural way to normalize (or average) the raw counts of
sejments is provided. The AVERAGE SEGMVMENTS PER MODULC
aspect represents the average size, in segments, of modules

in the program.

(14) The LINES aspect counts every textual Lline of
delivered source code in the final product, incluoing
conments, compiler directives, variable declarations,

executable statements, etc.,

{(15) The STATEMENTS aspect counts only the executable
constructs in the source code of the final product. These
are high-level, structured=programming statements, including
sinple statements—--such as assignment and procedure call--as
well as compound statements—--such as if-then-else and while-
do-~which have other statements nested within them. The
tmolementation language SIMPL-T allows exactly seven
different statement types (referred to by their
distinguishing keyworg or symbol) covering assignment (:=),
alternation-selection (1F, CASE), iteration (wHILE, EXIT),
and crocedure invocation (CALL, RETURN). Inout=output
operations are accomplished via calls to intrinsic

procedurese.

(10) The group of aspects named STATEMENT TYPE COUNTS
gives the absolute number of 'executable statements of each
tyse. The group of aspects named STATEMENT TYPE PERCENTAGES
jives the relative percentage of each type of statement,

conpared with the total numober of executable statementse.

CHAPTER 1V

The latter group of aspects is a way of normalizing the

former groups of aspectse

(17) As mentioned above, the := symbol genotes the
3ssignment statement. It agsigns the value of the
exoression on the right hand side to the variable on the

left hand side.

(12) 3oth if-then and if~then~else constructs are
counted as IF statementse Each IF statement allows the
execution of either the then- or else-part statements,
denenaging upon its boolean expression,

(19) The CASE statement provides for selection from
several alternatives, depending upon the value of an
exdression. In the implementation Language SIMPL-T, exactly
one ot the alternatives {or an optional else-part) is
selected per execution of a CASE, a list of constants is
exolicitly given for each alternative, and selection is
vpased upon the equality of the expression value with one of
the constants. (These constants are referred to as “case
lasels”; these alternatives, as “case branches.”) A case
tgnstruct with n alternatives is logically and
semnantically equivalent to a series of n nested if-then-

els2 constructse

(20) The WHILE statement is the only iteration or
looping construct provided by the implementation language
SIYPL-T, 1t atlows the statements in the loop body to be
executed repeatedly (ze}o or more times) depending upon a
Poolean expression which is reevaluated at every iteration;
the Loop may also be termninated via an EXIT statement. Each
WHILE statement may be ootionally Labeled with a desijznator
(referenced by EXIT statements) which uniquely identifies it
trom other nested WHILE statements.

CHAPTER 1V

(21) The EXIT statement allows the abnormal
termination of iteration Loopds by unconditional transfer of
control to the statement immediately following the WHILE
statements Thus it is a.very restricted form of GOTO, This J
exiting may take place from any depth of nested loops, since
the €EXIT statement may optionally name a designator which
igentifies the Loop to be exited; without such a designator
only the immegiately enclosing loop is exited.

(22) Since there are two types of segments in the
inolementation language SIMPL-T, there are two types of
“"calls"™ or segment invocationse. Procedures are invoked via
the CALL statement, and functions are invocked via reference
in an expression. The counts for tnese separate constructs
are reported separately as the (PROC)ICALL and FUNCTION CALL
aspectsy and jointly as the INVOCATIONS aspect. ?

(23) Intrinsic means provided and defined by the

imoplementation language; nen gg;lggig means proviced and
defined by the programmer. The terms are used to
distinguish built-in procedures or functions (which are
supported by the compiler and utilized as primitives) from
seaments (which are written by the programmer). Neariy all
ot the intrinsic procedures in the implementation language

SIvPL-T perform input-output operations and external gata

file manipulations. All of the intrinsic functions in
SI*PL~T perform data type coercions and character string

ogcerationse.

(24) The RETURN statement allows the abnormal
termination of the current segment by unconditional
resumption of the previously executing segmente Thus it is
andther very restricted form of GOTO. Wwithin a function, a
RETURN statement must specify an expression, the value of

which becomes the value returned for the function

CHAPTER 1V

invocetion. within a procedure, 3 RETURN statement must not
sgecify such an expression. Additionally, a simple RETURN
statement is optional at the textual end of crocedures; it
will ve implicitly assumed if not explicitly coded, In this
study, the total number of explicitly coded and implicitly
assumed RETURN statements, both from functions and

pracedures combined, is counted.

(25 The AVERAGE STATEMENTS PER SEGMENT aspect
croviages a way of normalizing the number of sStatements
relative to their natural enclosure in a program, the
segment. The measure also represents the average length, in

rxecutable statements, of segments in the program,

(26) In the implementation language SIMPL-T, both
single (e.gey assignment) and compound (eegey if-then-else)
statements may be nested inside other compound statementse.
8 particular pnesting level is associated with each
statement, starting at 1 for a statement at the outermost
‘evel 0of each segment and increasing by 1 for successively
nested statementse Nesting level can be displayea visually
+i3 proper and consistent indentation of the souce coae

‘1stinge.

(27) The DECISIONS aspect is the sum of the numpers of
"Fy CASEy and WHILE statements within the program”s source
cole. Each of these statements represents a unique
(zossibly repeated) run-time cecision coded by the
nrogrammer. Because the implementation language SIMPL-T has
only structured control structures, this aspect is closely
related to the cyclomatic complexity metrics discusseaq

“elows

(28) lokens are the basic syntactic entities-=-such as

keywords, operators, parentheses, identifiers, etc.~--that

CHAPTER 1V

occur in a program statement. The average number of tokens
cer statement may be viewed ds an indication ot how much
“intarmation” a typical statement contains, how "powerful" a
tydical statement is, or how concisely the statements are

coded.

(23) An jnyggatign is the syntactic occurrence of a
cotstruct oy which either a proygyrammer~defined segment or a
built=in routine is invoked from within another segment;
both procecure calls and function references are counted as
INVOCATIONSe They are‘(SUb)categorized by the type (i.e€.,
function or procedure, nonintrinsic or intrinsic) of segment

er routine being invoked.

(30) The group of aspects named AVERAGE INVOCATIONS
PER (CALLING) SEGMENT reoresents one way to normalize the
absolute number of invocations. These aspects reflect the
average number of calls to programmer~-defined segments and
built-in routines from a programmer-defined segmente. They
are (sublcateyorized py the type of segment or routine being

invoked,

(G) The group ot aspects named AVERAGE INVOCATIONS
PER (CALLED) SEGMENT represents another way to normalize the
ansolute number‘of invocations. These aspects reflect the
averaze number of calls to a programmer~defined Segment from
other sejgments. They are (sub)categorized by the type

(iee., function or procedure) of segment being invokeau,

(32) A daga yariable is an individually named scalar
or structure. The implenentation language SIMPL-T provides:
(a) rthree data types for scalars~-integer, character, and

(varying-lengtn) string;

(o) ~ne kind of data structure (besides scalar)=--single

Jgimensional array, with zero-origin subscript ranoge;

CHAPTER 1V

ana

(c) several levels of sgope (as explained in note 33 ovelow)
for data variables.

In adgcition, all data variables in a SIMPL~-TY program must be

exdlicitly declared, with attributes fully specified. The

DaTA VARIABLES aspect counts each data variable declared in

the final software procduct once, regardless of its type,

structure, Or scope. Nofe that each array is counted as a

single data variable,

(T3) In the implementation language SIMPL-T, data
variauvles can have any one of essentially four levels of
scaope-=entry global, nonentry global, parameter, and local--
deocenaing on where and how they are declared in the program,
Note that the notion of scope deals only with static
accessibility by name; the effective accessibility of any
variaole can always be extended by passing it as a parameter
between segments. The scope levels are explained here (and
nresented in the aspect (sub)categorizations) via a
nierarchy of distinctions,

The primary distinction is between 3lobal anc
nonglobale Glopal variables are accessible by name to each
tne segmencs in the mddule in which they are declarea,
wgnylobal variaoles are accessible by name only to the

csingle segment in which they are declared.

Global varaibles are secondarily distinguished into
entry and nonentry catelories. Entry jlobals may be
accessiole by name to each of the segments in several
modules (as explained in note 34 below). Ngnentry glgbals
are accessiole by name only within the module in which they
are Jeclared,

wonglobal variables «re secondarily distinguisheag into
*ormal parameters and locals. Formal parameters are
accessible by name only within the enclosing (called)

sezment, put their values are related to the calling segment

CHAPTER 1V

(2as explained in note 36 below)e [QCals are accessible by
nane only w«ithin the enclosing segment, and their values are

concletrtely i1solated from any other segment.,

(34) Entry means that the data variable (explicitly
declarea as ENTRY in one module) is accessible from within
other <eparately compiled modules (in which it must be
exdlicitly declared as EXTernal). Nonentry means that the
data variable is accessiole only within the module in which
it is declared. In this study, these terms are used only in
reference to global variables, although the implementation
tanjuage SIMPL-T handles the accessibility ot segments
across modules in the same waye

Although the implementation Language SI¥PL-T does altlow
the ExTernal attribute to be declared locally so that just
the enclosing segment has access to an identitier declareag
as EMTRY in another module, this feature is seldom used; it
never occurred in any of the final software products

examined in this studye.

(25) ™vodified means referred to, at least once in the
przgram source code, in such a manner that the value of the
data variable might be (re)set when (ang if) the appropriate
statements were to be executede Data variables can be
(re)set only by (a) being the "target”™ of an assiynment
statement, (b) being passed by reference to a programmer—
detired seqment or built=in routine, or (c) being named in
an "input statement.” (This third case is really covered by
the seconu case since all the "input statements"™ in SIMPL-T
are actually calls to certain intrinsic procedures with
vassed-Dy-reference parameters.) yUnmoditieg means referred
toy throughout the program source codey, in such a manner
that the value ot the data variable could never be (re)set
dur in, execution. These terms refer only to global data

variaples.

&1

CHAPTER 1V

Any global variaple is allowed to have an initial value
(constants only) specified in its declarations Globalis
which are initialized but unmodified are especially useful

in SsIMPL-T programs, serving as "“named constants."

(36) The inplementation language SIMPL-T allows two
tyoes of parameter passage. Pass=by-valupg means that the
value ot the actual argument is copied (upon invocation)
jnto the corresponding formal parameter (which thereatter
behaves like a lncal variable for a(l intents and purposes);
the effect is that the called routine cannot mogity tne
value of the calling segmrent”s actual argument, Pass-by-
reference means that the address of the actual argument
{shich must be a variable rather than an expression) is
passeg {(upon invocation) to the called routine; the effect
is that any changes made by the called routine to the
corresponding formal parameter will be reflected in the
value of the calling segment”s actual argument (upon
return). In SIMeL-7, formal parameters that are scalars are
normatly (defauylt) passed by value, but they may bpe
240licitly declared to be passed by reference; formal

varameters that avce arrays are always passed Dy reference.

(27) The yroup of aspects named DATA VARIABLE SCOPE
COUNTS gives the absolute number of declared data variables
iccorging to each tevel of scopes The group of aspects
1aned OATA VARIABLE SCOPE PERCENTAGES gives the relative
nercentage of variaples at each scope level, compared with
the total number of declared variables. The Latter group of
asoects is a way of normalizing the former groups of

350€CtSe

(e} A naturat way to normalize (or average) the raw
counts of data yariaoles is provided, since data variable

dJeclarations in the implementation Language SIMPL-T may only

O

CHAFTER 1V

apdear in certain contexts within the program: gltobals in
the context of a module and nonglotals in the context of a
sezment. The group ot aspects named AVERAGE GLOBAL
VARILABLES PER MODULE represents the average number of
jJlotals cdeclared for a modules The group of aspects named
AVERAGE NOMNGLOBAL VARIABLES PER SEGMENT represents the

average number of nonglobals declared for a segment.

(¥%) Since there are two types of parameter passing
mecnanisms in the implementation langquage SIYPL-T (as
exolained in note 36 above), it is desirable to normalize
their raw frequencies into relative percentages, indicating
the programmer”s degree of “preference" for one type or the
others The group of aspects named PARAMETER PASSAGE TYPE
PERCENTAGES 3ives the percentages of each type of parameter
relative to the total number of parameters declared in the

program,

(4J) A segrment-global usage pair (p,r) is an
instance ot 2 global variable r being used by a segment
c (1.9 the global is either modified (set) or accessed
(tetched) at least once within the statements of the
segment). Each usage pair represents a unigue " use
connection®” between a global and a segment. In this study,
segment-5lobal usage pairs were (supdcategorized by the type
(i.e.y entry or nonentry, modified or unmodified) of global
Jata variable involved and were counted in three different
waySe 1

First, the (SEGMENT,GLORAL) ACTUAL USAGE PAIRS aspects
count the abcolute numbers of realized usage pairs (p,r) :
the jlobatl variable r 1is actually usea by seament p .,
They represent the fregquencies of use connections realized
within the program. Second, the (SEGMENT ,GLOBAL) POSSIBLE
USAGE PARIRS aspects count the absolute numbers of potential

usaye pairs (pyr) , given the program”s global variables

43 i
e eee T]

CHAPTER 1V

and tneir dJdeclared scope: the scope of global veriable r
~erely contains segment p , sO that op coula potentially
modify or access r o These counts of possible usage pairs
are computed as the sum of the number of segments in each
glooal”s scope. They represent a sort of "worst case’
frequencies of use connections, Third, the (SEGMENT,GLOUBAL)
USAGE PAIR RELATIVE PERCENTAGE aspects are a way of
normalizing the numnper of usage pairs since these measures
are ratios (expressed as percentages) of actual usage pairs
te possible usa3ze pairs. They represent the frequencies of
realicec use connectiuns relative toc potential use
connections. These usage pair relative percentage metrics
ire emoirical estimates of the (ikelihood that an arbitrary
seament uses (i.eey Sets or fetches the value of) an
araditrary global variable.

In some sense, all three types of aspects dealiny with
segment-global usage pairs (actual, possible, and relative
percentage) reflect quantifiable characteristics of "data
mgjdularization” within a program, i.,e., the static
organization of data definitions and references within
segments and moduless In particular, the possible usage
pairs aspects reflect the general degree of encapsulation
=atorcec by the implementatiaon Language for global
variaoles. “Yoreover, the usage pair relative percentage
asdects retlect the general degree of "globality™ for global
variavles, i1.ee9y the extent to which globals are actually

useg oy those segments that could possibly do so.

(61) A segment-gtobal-segment data bjnding [Stevens,
“yers 3 Constantine 74, Dpe 118=-1191 (pyry,q) is defined as
an occurrence of the following arrangement in a program: a
seyment p modifies (sets) 3 global variable ¢ that is
aLso accessed (fetched) by a segment g o, with p ditferent
from aq . The (SECMENT,GLOBAL,SEGMENT) DATA BINDINGS

asocects count these unigue communication paths between pairs

4l

CHAPTER 1V

of se;ments via glopal variables. These aspects thus
refiect the degree of one form of connectivity within a
program.

See Chapter Vv for further discussion of the data

bingings metricse.

(42) In this study, secment—global—~segment oata
bindings were counted in three different ways: ACTUAL,
POSSIvLE, and RELATIVE PERCENTAGE, First, the DATA
PINDINGSVACTUAL aspect counts the total number of data
bindings actually coded in the program, reflecting the
dJeyree of realized connectivity. Second, the DATA BINDINGS\
PISSIBLE aspect counts the total number of data bindings
that could possitly be allowedy given the program”s
orjanizational structures It reflects the degree of
potential connectivitye Thirdy the DATA BINDINGS\RELATIVE

PERCENTAGE aspect is the ratio (expressed as a percentage)
of actual data bindings to possible data bindings,
reflecting the normalized degree of realized connectivity
relative to potential connectivity.

See Chapter v for further discussion of the data

bingings metrics.

(43) Actual data bindings are (sub)categorized
deoencing on the invocation relationship between the two
sejments, A data bindiny (p,r,q) s subfungtiopal if
either of the two segments p or g can invoke the other,
whether directly or indirectly, as a "subroutine.” A data
bincing (pyryq) s independent if neither of the two
segments P or g can invoke the other, whether directly
or inugirectly.

See Chapter V for further discussion of the data

bindings metrics.

(44) Cyclomatic complexity (McCabe 76] is a graph-

45

:‘4 . "TJ " N ") N »))) - '» "‘j

CHAPTER 1V

theoretic measure ot control-flow complexity. For an
imolementation lLanguage with only structured control
structures (such as SIMPL-T), this measure is dependent ontly
on the numter of predicates (i.e., Boolean expressions
governing flow of control) Jin the source code. The
cyclomatic complexity wvi(p) of a program P with)i
predicates strewn among S segments is computed as

vip) =1 + s ;
the cyctomatic complexity v(s) of a segment S with T
predicates is computed as

v(sS) =1 + 1 .

See Chapter V for further discussion of the cyclomatic

conplexity metricse.

(45) Four definitional variations of the basic
cyclomatic complexity measure were examined in this study in
order to explore alternatives for ijdentifying predicates and
for handling case statement constructs. Under the SIMPPRED
alternative, simple 2oolean subexpressions joined by and or
or connectives are each counted as predicatess Under the
CO"PPRED alternativey, only each complete Boolean expression
is ccunted as a predicate. Under the NCASE alternative,
each case statement construct s counted as contributing n
pregicates,y, where n 1is the number of "cases" involved,
Under the LOGCASE alternative, each case statement construct
¥s countea as contributing Llogz(n)J* predicates, thus
giving a discount for case statement constructs relative to
series of nested ifthenelse constructs.

See (hapter V tfor further giscussion of the cyclomatic

tomplexity metricse.

(66) For each of the definitional veriations, tne
CYCLOMATIC COMPLEXITY\.ee\TOTAL aspect measures the

* The notation | x] signifies the greatest integer less
than or equal to x %

it

. CHAPTFR 1V

cyclomatic complexity of the entire program, It is simply
the sum of cyclomatic conplexity values for the individual
segments comprising the program.

see Chaoter vV for further discussion of the cyclomatic

conplexity metricse.

(47) Ffor each of the definitional variations, the
CYCLOMATIC COMPLEXITY\.oe \HSEGS:CC>=10 aspect counts the
nunper of segments in the program whose cyclomatic
conplexity values equal or exceed the threshold value 13,

See Chaoter V for further agiscussion of the cyclomatic

conplexity metricse.

(43) For each of the agefinitional variations, a common
descriptive statistic of the empirical distribution of
cyclomatic complexity values from the individual segments
conprising an entire an entire program was used as a vehicle
for measuring the general level of cyclomatic complexity
within the relatively nontrivial seygments of the program,
This descriptive statisticy known as a gugngtile (Conover 71,
ppe 21-32, poe 72-73], can be loosely described (in the
discrete case) as the value (of the rangom variable in
question) corresponging to a particular fixed probability
tevel on the cumulative relative frequency curve
(representing the distripution of that random variable).

The CYCLOMATIC COMPLEXITY\eoee\ f QUANTILE POINT VALUE
asocects are defined to measure the Largest integer x Ssuch
that the fraction of cyclomatic complexity values which are
less than x s less than or equal to the fixed traction

f « The CyCLOMATIC TOMPLEXITY\eeo\ f QUANTILE TAIL AVERAGE
asoects are defined to measure the average of cyclomatic
conplexity values greater than or equal to the f guantile
point value., Several particular quantiles were examined in
this study: the 2.5 gquantile is closely related to the

distribution“s median, and the J.7, 0.8, and U.9 quantiles

&7

CHAPTER 1V

provige a series of increasingly smaller tails of the
distributione.
See Chapter vV for further discussion of the cyclomatic

conplexity metricse

(4¥) According to software science theory (Halstead
771y, several interesting gquantities can be computed from the
source code of a program anod used to measure characteristics
cf both the abstract algorithm and its expression as
imolementeds ALl of these software science guantities are
conputed in terms of the number of conceptually unigue
“oserators”™ and "operands'" and the total occurrences of such
“ocerators”™ and "operands" within a programe. In this study,
these "operators™ and "ooerands'" were jidentified
syatactically according to a set of rules established for
the implementation language SIMPL-T,

See Chapter v for further discussion of the softuare

science metricse.

(50) Given the basic parameters of software science:
total "operator"™ count N1
total “operand” count N>
unigque "operator" count "y
unique “operand®™ count n2
unigue potential "cperand”™ count nz*
the following formulas define the software science

auantities exdamined in this study:

VOCAEULARY n = nl + ﬂz
LENGTH N = Nl + N2
FSTIMATED LENGTH = (* n.J)) + (]
ED L nl log2 n1 nz logz(nz))

“OLFFERENCE(N,R) CIS = N1) 7 ()

VOoLuMt V.= N * logz(n)

PITENTIAL VOLUYE vk = (2 ¢+ nz*) * 1092(2 + nz*)
PRIGRAM LEVEL L= Vvk /¥

CIFFICULTY > =1 /71L

P o e, PO

e La

e amn Mhada ek

CHAPTER 1V

INTELLIGENCE CONTENT I = (2 /7 n) = (ﬂz / NZ) Vv

“CIFFERENCE(y*, 1) = (}1 = b*l) /I (V%)
LANGUAGE LEVEL A= *yx

EFFQWT E = Vv *

ESTIMATED TIvE T =€/ ¢

ESTIMATED BUGS 8

= L *E / Eo
where S and E° are psychologically cetermined constants.
See Chapter V for further discussion of the softuare

science metrics.

(51) Two different calculation methods were employed
in the study to compute the subset of software science
quantities whose exact values cannot be obtained directly
(via the defining formulas) from a program”s source code,
These calculation methods each rely upon a different
estinmation technique to obtain approximate values for these
quantities. The 1ST CALCULATION METHOL relies upon the
conmonly accepted thecretical estimate of the program level
quantity; the 2ND CALCULATION METHOD relies upon an
internally applied empirical estimate of the Language level
quantity.

See Chapter V for further discussion of the software

science metricse

(99) Several instances of duplicate programming
aspects exist in the Table 1 listing. That is, some
lojically unigue aspects reappear with another label, for
reascns explained apove. Listed below are the pairs of

4uslicate programming asdects that were considerea in this

study: .
e FUNCTION CALLS <= INVOCATIONS\FUNCTION
T NONINTRINSIC <=> NONINTRINSIC
2. INTRINSIC <=> INTRINSIC
Lo STATEMENT TYPE COUNTS\

(PROC) CALL <=> INVOCATIONS\PROCEDUKE
T NONINTRINSTC <=> NONINTRINSIC

L3

|
|
|
i
I

2y definition,

CHAPTER 1V

INTRINSIC <=> INTRINSIC
AVERAGE INVOCATIONS PER
(CALLING) SEGMENTN <=> AVERAGE INVOCATIONS PER
NONINTRINSIC (CALLED) SEGMENT
SUFTWJARE SCIENCE SOFTWARE SCIENCE
SUANTITIESVINTELLIGENCE <=> QUANTITIES\VIST CALCULATION
CONTENT METHODAVPOTENTIAL VOLUME

duslicate aspects will be

the data scores obtained for sny pair of

identical, ano thus the same

statistical conclusions #will be reached for both aspects,

CHAPTER V

Ve 213CUSSION OF ELAQORATIVE ZLTRICS

This chapter orovides an in—depth aiscussSion of the
elaoorative programming aspects examined in the study. The
material is presented, in a tutorial fashion, in order to
motivate their appeal as software metrics and to explsin how
they mijzht be interpreteds TYhe reacer who is acguainted
with one or more of these measures might consider skimming

the corresponding sectionse.

Praaram Changes

The program changes metric pertains to textual
revisions made to program Source code during development,
from the time a program is first presented to the computer
system, to the completion of the project, The metric”s
detinition is framed so that one program change approximates
one conceptual change to the programe. The tollowing rules
*or igentifying proygram changes are reproduced from
{Cunsmore 78, ppe 19-201:

“The following text changes to a program represent one
program change:

1« One or more cthanges to a single statement.
(Even multiple character changes to a
statement represent mental activity with only
a single abstract instruction,)

2. 0One or more statements inserted between existing
statements. . .
(The contiguous group of statements inserted
probably corresponds to the concrete
statements that represent a single abstract
instruction.)

3, A change to a single statement followed by the
1nser§1on of new StatementS.

This instance probably represents a
discovery that an existing statement is
insufficient and that it must be altered and
supplemented by additicnal statements to
implement the abstract instruction
involved.)

“mowever, the following text changes to a program are
not counted as prozram changes:

ey

CHAPTER V

one Or more statements.

atements must usually _be replaced
atements elsewhere, The inserted
are counted; counting deletions as
give double weight to such a
ccasionally statements are deleted
ot replaced; these were probably being

d for Jdebujging purposes and their

letion regquires Litte mental activity,)

~re

2. The insertion of standard output statements or
insertion of snecial compiler-provided dgebugging
statementse. . . .

(These are occasionally inserted in a
whotlesale fashion during debugging. When the
problem is found, these are then all removed,
and the necessary program change takes
places)

e The insertion of blank lines, insertion of
comments, revision of comments, and reformatting
without alteration of existing statements.

(These are all judged to be cosmetic in
nature.)"

frogram changes are counted algorithmically by comparing the

source code from each pair of consecutive compilations of a

modute (or logical predecessor thereof) and applying the

identification rules. Thus the total number of program
changes is a measure of the amount of textual revision to

source code during (postdesign) system development,

The program changes metric may be interpreted as a
prajramming complexity measurey, because textual revisions
rre uysually necessitated by errors encountereg while
tuitlding, testing, and debugging software. Independent
research (bunsmore & Gannon 77) has demonstrated a high
(rank order) correlation between total program changes (as
counted automatically according to a specific algoritnm) and
total error occurrences (as tabulated manualtly from
exhaustive scrutiny of source code and test results) during
scftware implementation in the SIMPL-T programming language.
Thus empirical evidence justifies consideration ot the
pragram changes metric as a ogirect measure of the relative
nunoer of programming errors encountered outside of design
work. It is reasonable to assume that each textual revision
entzils some expenditure of the programmer”s effort (e.G.,

nliInning the revision, editing source code on-line), 1In

CHAPTER V

that sense, this metric nay also be considereo an indirect
measure of the level of human effort devoted to

imylementation.

Cyglomatic Complexity

Control=-flow complexity may be measured in terms of
cyclomatic complexity (“cCabe 761, a graph-theoretic metric
that is independent of physical size (i.,e., insertion or
deletion of function statements leaves the measure ?
unchanged) and dependent only on the decision structure of a §

pragram, The cyclomatic number v(G) of a graph G having

n nodesy, e edges, and p connected components 1is
defined as
v(G) = e - n + 0 ,

In @ strongly connected 3jraph, the cyclomatic number is
equal to the minimum number of basis paths from which all
other oaths may be constructed as linear combinations in an
edjye-algebraic fashion (see [McCabe 761 for details). B8y ‘
mcdeling the control flow of a program as a graph in the %
traditicnal manner, the cyclomatic complexity measure is :
defined to be the cyclomatic number of the graph f
corresponding to the program”s flow of control.

For a structured language (ike SIMPL-T, it is not

necessary to construct a control-flow graph in order to

measure a program”s cyclomatic complexity, The measure can
be computed directiy trom the source code simply by counting
the number of predicates (i.e., Boolean expressions
qoverning control flow), since the predicates of the program
correspond exactly to the binary-branching decision points
of the control=flow graph. It is easily shown, using a
lenma proven in [4ills 72], that tor a segment S with T

credicates the segment”s cyclomatic complexity is

CHAPTER V

v(s) = m ¢+ 1
and four a3 program P with I predicates strewn amony s
segments the program”s cyclomatic complexity is

vip) =1 + s ,

This measure originated as an absolute count of the
maximum number of Linearly independent execution paths
throuyh a segment, in the graph-theoretic edge=-glgepraic
sense alluded to above. Since each of these paths merits
injividual testing, the measure was proposed to serve as a
quantitative indicator of the difficulty of testing a given
sejyment to a certain aegree of thoroughness. Testability is
clearly an issue closely related to software complexity in
ceneral, and a program”™s cyclomatic complexity may be viewed
3s one quantitative measure of its control-structure

conplexity.

befinitional Variations

Several variations of the basic cyclomatic complexity
measure were considered, because there are at least two
getinitional issues for which intuitively motivated

slternatives lLead to meaningful variations.

Gne of these issues is the weighting given to instances
of case statement constructse The original definition of
cyctomatic complexity views a case statement as the
semantically equivalent series of nesteag ifthenelse
statements: each case statement contributes n wunits of
cyclomatic complexity, where n is the number of individual
“cases” involved., It can be argued, however, that a case
statement deserves a smaller contribution to cyclomatic
conplexity since its inherent uniformity and readability
have a moderating effect on programmer-perceived complexity

(retative to an explicit series of nested ifthenelse

CHEPTER V

statements)., Cne reasonable alternative views each case
statement as contributing Llogz(nJ)j* wunits of cyclomatic
conplexityy where n is the number of ingiviaual "cases"
involveds This logarithnic weighting is appropriate since a
case staterment”s moderating effect seems to increase with

the number of "cases" involvege.

The other issue is the manner of counting predicatese.
The orizinal definition counts simple (subdpredicates
injividually, so that the compound predicate

(I < J) gng (CACI) = AC)) gr (ngt SORTED))
would contribute three units of cyclomatic complexity, for
example. An alternative detinition considers each complete
predicate as an indivisible part of a program, contributing
one unit of cyclomatic complexity. The motivation is that
the complete predicate represents a single abstract
condition governing the flow of control. Note that this
icsue is the basis for a proposed extension {Myers 77] to
the original cyclomatic complexity measure. This issue also
affects the way individual "cases"™ of a case statement
tonstruct are identified and counteds The original
detinition counts each case label separately, since multiple
tase lacels on the same case branch are semantically
equivelent to simple predicates joined by or”s to form the
83cotledn expression governing the case branche. The
alternative defintion counts only the case branches
themselves, regardless of case label multiplicity. In
parallel with the motivation given above, multiple case
laoels on a2 case branch represent 3 single abstract
condition governing that branch (e.3., the set of case

laoels Jy» 1y 2y eeey 9 may be abstracted to digit)e.
This study examined the four varijations of cyclomatic

“* Tne notation L x_J signifies the greatest integer less
*han or equal to X o

(X3

e e e - e T 3 o g b e 1 %5 P AT

T T AR T T s T

CHAPTER V

conplexity defined as follows for the SIMPL-T programming
tanyuane:

SIMPPRED~NCASE =-- Simple predicates contribute 1 unit;
case statements contribute 1 unit for each case
Ltabel,

SIMPPRED-LOGCASE -~ Simple predicates contripute 1
unit; case statements contribute Llogz(n)J
units,y, where n is the number of case labels.

COMPPRED-NCASE -- Compound predicates contribute 1
unit; case statements contribute 1 unit for each
case branch; multiple case LabelS on the same case
branch are gisregarded.

COMPPRED-LOGCASE ~- Compound predicates contribute 1
unit; case statements contribute Llogz(n Jj
units, where n is the number of case branches;
multiple case labels on the same case branch are
disregarded,

Note that the SIMPPRED=-NCASE vartiation of cyclomatic

conplexity is McCabe”s original measure.

[
178
[D

Technigues for Application

There are several ways to apply the cyclomatic
conplexity measure (or variations thereof) to an entire
orogram in order to obtain a metric for its overall control-
flow complexitye. First of atly, the metric is defined
directly for a program composed of individual segments: a
program”s total cyclomatic complexity is simply the sum of
its segments” cyclomatic complexities. MHowever, this total
cyclomatic complexity measure is not particularly useful as
a nsasis for comparing entire programs because it is, in a
certain sense, insensitive to the program”s modularization.
As a metric, the total cyclomatic complexity of a program is
(oy definition) a linear function in two variables, tne

nunber of predicates ana the number of segmentse A subtle

56

CHAPTER Vv

trade-off relationship exists between these two variandles,
such that substantial fluctuation in the metric”s value can
arise from simpleminded changes to a program”s

modularization alone.

A better comparison of entire programs is afforded by
focusing attention upon the cyclomatic complexity values of
individual segments and upon instances of segments «with high
values of the metric. McCabe originally proposed the numper
13 as a reasonaole thresholg value for a segment”s
cyclomatic complexitys Segments exceeding this threshold
need to be recoded or decomposed into smaller segments in
order to attain an acceptable level of testability ang
control-flow complexity. Hence, a second way to apply the
cyclomatic complexity measure to an entire program is to
count the number of segments whose cyclomatic complexity
value exceeds this threshold. In this case, the basis for
conparing entire programs is the frequency of segments with

unacceptably high cycltomatic complexity.

Finally, it would be desirable to compare the full
spectfum of cyclomatic complexity values for the .individual
seyments of one program against that of another program,
since considerapte diversity often exists., Programs
tyoically contain several small segments with very low
cyclomatic complexity values (e«Gge, 3 function to compute
the average of a vector) and a few large segments with high
tyclomatic complexity values. Being easily understooo and
testeg, the small segments are relatively inconseguentijial,
while the large segments contain the substance of the
program and contribute most of the consequential control-
flow complexitye Ideally, one wishes to disregarg the
“snaller” cyclomatic comolexity values and summarize the
majnitude and frequency of the "larger” cyclomatic

conplexity values via a single quantitative indicator, but

CHAPTER V

A0 so in a flexible, normalized fashion, where "smaller* and
“Larger'" are determined relative to one another within each

program,.

This ideal can be aoproximated by means of the
quantiles of the empirical distribution of cyclomatic
ccnplexity values across the segments comprising the progranm
(see Figure 1). Quantiles are a standard tool from
descriptive statistics [Conover 71, pp. 31-32, pp. 72-731,
conmonly used to summarize the *“shape*™ and “position” of a
Jistribution function, especially its upper tail regione
Both the quantile point value (iceey the largest integer x
such that the fraction of cyclomatic complexity values whic¢h
are less than x 1is less than or equal to some fixed
fraction) and the guantile tail average (i.e., the average
ot cyclomatic complexity values greater than or equal to the
guantile point value) are normalized ways to quantify just
how high the cyclomatic complexity is for the relatively
nontrivial segments ot a program. Several different
auantiles were examined: the 0e5 quantile is closely related
to the median of the distributiony, and the 0.7, 0.8, and 0.9
ouantiles provide a series of increasingly smaller tails of
the gistribution, Thus, the basis for this third comparison
of entire programs is a series of quantitative descriptors
of the empirical distribution of cyclomatic complexity
values within a program,

Pata pindings

The data bindings metrics [Stevens, Myers & Constantine
76; Zasili & Turner 75; Turner 76) originated as a way to
quantify a certain kind of connectivity (i.e., girected
tonmunication between segments via global variables) sithin

2 orograme Their motivation is based on the intuitive

M e

tigure 1.

FIGURE 1

Fregquency Disgribution of Cyclomatigc Complexity

th the absolute and the relative-cumulative frequency
stribution of cyclomatic complexity values from 4

gion associated with the 0.8 quantile is shaded on each

Ote

15
a t
b r
s e 10
c Q
Lt u
u e
t n
e ¢ 5
4
0]
1.0
Je9
J.8
c f Je7
ruf
e m e Jeb
L uag
a L u 0e5S
t a e
1 tn Qeb
v ¥ ¢
e vy 0.3
e
Ce2
0.1
Ge0

4

bc
di
segments comprising an entire program are plotted. The tail
re
pt

o o e e reescec————— 0«5 quantile
* 2
"\ s s m e e ———— ===== 0.7 quantile
! H
, \ 6 smm=meecmew—e—==v= (0.8 quantile
;0 : em====<~- 0.9 guantile
; \ v :
p \ v
*
/ S a—a
/ \
, \\
J WK\Li(E((\V\\...LCLKT‘;f\VV‘t
o 2 4 s 8 10 1z 14
cyclomatic complexity per segment
0 2 4 6 8 10 12 14
it e S e O o Tt LTy SRR
........ -————)
--------- > —
—_—
—————>
A ————
—_—
t——:
o 2 & 6 &8 13 12 14

cyclomatic complexity per segment

58a

o e bt e o

CHAPTER V

principle that the logical complexity ot a composite system
is a tunction of the multiolicity of connections amony its

conponent parts (cf. [Simon &9)).

A segment-global-segment data binding (p,req) is an
occurrence of the following arrangement in a program: a i
segment p modifies a global variaple r that is also
accesseo by a segment g , with segment p different from
segment q « The existence of a data binding (p,r,q)
sujgests that the behavior of segment q s probably
deoendent on the performance of segment p through the data
variaole r , wnose value is set by g and fetched by q .
The binding (p,r,q) 1is different from the binding

(3sreyp) which may also exist; occurrences such as

(o,ryp) are not ctounted as data bindings. Thus each data |
binding represents a unigue communication path between a
pair of segments via 3 global variable. As 3 metricy the !
total number of seqment-glatal—-segment data bindings

retlects the aegree of that kind of connectivity within a

program,

Data bindings may be counted in three different ways:
actual, possible, and relative percentage. (8ear in mind
that, since these measures are determined statically from
the source code, the terms “actual” and “possible” refer to

3 sorogram”s syntactic form only.)

Firsty the agtual count is the absolute number of data

bindings (pyr,q) actually coded in the programf segment

p contains a statement modifying global variable r , and
segment g contains a statement accessing r o This count
of actual data pindings represents the degree of realized

connectivity in the program., Second, the possible count is
the absolute number of data bindings (pyreyq) that could
possibly be allowed under the program”s structure of segment

CHAPTER V

definitions and global variable declarations: the scope of
slopal variable r merely contains both segment p and
seyment q , SO that segment p could potentially moaify

r and segment q could potentially access r o This
count of possible data bindings represents the degree of
potential connectivity, in a "worst-case" sense., It is
conputed as the sum of terms s*(s-1) for each global
variable, where s iJs the number of segments in that
glopal”s scope; thusy it is heavily influenced (numerically
sceaking) by the sheer number of segments in a programe
taira, the relative percentage is a way of normalizing the
assolute numbers of data bindings, since it is simply the
qudtient (expressed as a percentage) of actual data bindings
divided by possible data bindings., It represents the degree

of realized connectivity relative to potential connectivitys

actual data bindings may also be subcharacterized on
the tasis of the invocation relationship between the two
segments., A data binding (p,r,q) is sybfunctignal if
either of the two segments p or g can invoke the other,
whether directly or indirectly (via a chain of intermediate
invocations involving other segments). In this situation,
the functioning of the one segment may be viewed as
contributing to the overall functioning of the other
segment., A data pbinding (p.rya) 1is indepengent if neither
ot the two segments p Or G c¢an invoke the other, whether
directly or indirectlys The transitive closure of the call
qraph among the seqments of a program is employed to make
this agistinction between subfunctional ana independent data

bindingse

In some sense, all three measures dealing with segment-
qlobal~segment data bindings--actual, possible, and relative
cercentage--reflect gquantifiable characteristics of a
pragram”s “data modutarization” (i,e., the static

60

CHAPTER V

nrjantzatian of date detinitions anu reterences within

seyments and modules).

In particutar, the possible data bindings metric
reflects the gyeneral degree of encapsulation enforced by the
imolementation Language for global variables. One can
imagine two extremes of encapsulation for the same
collection of global variables and segmentse On the one
hand, the program coutd be written (in the implementation
language SIMPL-T) as a single module containing all tne
segments, with each global potentially accessible from every
seament, This modularization would maximize (explosively
so, due to the squaring of the number of segments) the
nunrber of possible data bindings. On the other hand, the
program could be written (in the implementation tanguage
SIMPL~-T) as several modules, one for each segment, with
appropriate ENTRY and EXTernal declarations to provide each
segment with potential access to exactly those globals it
actually uses. This modularization would minimjze the
nunwber of possible data bindings (to precisely the number of

actual data bindings).

Moreover, the data bindings relative percentage metric
also reflects the general degree of (operational)
“3lobality™ for the global variables declared in a program,
i.t,y, the extent to which globals are actually modified
(set) and accessed (fetched) by those pairs of segments that
could possibly do so. One can imagine two different
situations in which the relative percentage of data bindings
for a small set of otherwise equivalent global variables
(say, an array and an integer) would be extremely high and
extremely lowy respectively. On the one hand, this global
array and global integer could be serving as a stack, and

nearly every segment that refers to these globals could be

botn popping the stack to examine its contents and pushing

CHAPTER V

nes items onto it. Here the two global variables are guite
central to the overall operation of that collection ot
segments; their data binding relative percentage woulu be
close to one. On the other hand, this global array and
global integer could be serving as a buffer for a varying-
tength vector that is initially produced (set) by one
segment and nondestructively consumed (fetched only) oy
several other segmentse. Here the tyo global variables are
rather incidental to the overall operation of that
collection ot segments, serving merely as a convenient
medium for disseminating information (which could also have
achieved via parameter passing);, their data binding relative

percentage would be close to zero.

coftware Science Quant

fts

t

'

€s

The software science quantities are a set of metrics
based upon the tenets of software science [Halstead 771, as
pioneered by Halstead and his cotleaguess Billed as

“eoe a branch of experimental and theoretical science

dealing with the human preparation of computer programs

and other types of sritten material seey”*
software science is concerned with measurable attributes of
aljorithms or programs and with mathematical relationships
among those attrioutes. Software science is
characteristically actuarial in nature: its measures and
relationships may be inaccurate when applied to individual
programs, btut they become surprisingly more accurate when
apulied to targe numbers of programs, such as are found in

large software development projects,

The software science quantities are all defined in

* The blocked q;oiations throughout this section are taken
‘rom [(wHalsteao 771,

CHAPTER V

terms ot certain frequencies of so-called "operators™ and
"ooerands® appearing within an algorithm”™s functional
specification or a grogram”s source code implementation.
Some ¢f the auantities (e.ge., vocabulary, length, volume)
are purely descriptive and provide the building-blocks of
the theory. A few (@eGey eStimated length) are predictive
of other descriptive quantities within the theory. Several
{eegey program lLevel, Language Llevel, effort) claim to be
quantifications of fundamentally qualitative ang intuitive
conceptse Stitl other gquantities (e.3.y estimated time,
estimated bugs) purport to measure-—under ideal conditions~-
externally observable and gquantifiable programming
phenomenae.

ation Criteria

identific

The criteria for identifying "operators™ and "operands"

(and their uniqueness) are important since they are the

foundation for measuring the software science gquantitiese.

However, this identification is an area not clearly

agdressed by the theory. Except for the Fortran programming

languane, in which most of the pioneering work was done,
exdplicit standards or guidelines for identification do not
exist., For another language, a researcher can only attempt
to adapt and extend the orinciples that he personally judges
to pe behind the Fortran workes. The following *"operator/
operand"™ identification criteria were designea for the

SIWPL-T programming language:

1. In jeneral, only the portion of source code pertaining
to executable statements (after expansion of all
DEFINE-macros) is considered.

e Constants and data variable identifiers are natural
"operands.” Data structures (ee«gey arrays, files) are
considered single odjects and not decomoosed into

componéntse.

63

3.

4e

6.

7e

Fe

CHAPTER V

The input stream file and the output stream file are
counted as '"operands," with implicit occurrences
recognized for each operation on these files.

The normal prefix unary and infix binary operator
symbols (i.e., for arithmetic, logical, and character-
string operations) are natural "operators.”

The intrinsic procedures (e.gey READ, WRITE, REWIND),
type-coercion functionse and input-output operation
keywords (e.ge.y EJECT, SKIP) are "operators.”

Segqment invocations (i.e_,, procedure calls anad function
references) are “operators."

nifterent types of statements or constructs are
considered individual “operators,'" as follows:

HE (assignment)
IFeee THENes e END
IFeoeeTHENGe o ELSE s o oEND
CASEeseOFeeoEND

CASEee e0FseeELSEs e oEND
WHILE . ¢oDOeoeEND

EXIT
RETURN
Cther delimiter patterns are considered "operators,™ as
follows:

Veoo (caselabel designation "operator®)

feoel (partword and substring "“operators")

(eee) (subexpression, array subscript,
actual argument List, and function
return value "operators®)

’ (List item separation "operator"™)

Finattly, implicit statement list brackets (associated
with pairs of keywords such as THEN..+ELSE and
ELSE..+.END) are considered "operators,™ as are implicit
statement separators between consecutive statements of
the same statement list.

(The gquotation marks ftlagging "operator"™ and "operand" as

64

&

a2 5

CHAPTER Vv

technical terms are suppressed throughout the remainder of

this section for readabilitys.)

gasig¢ Paramegers

The tive basic parameters of software science are
determined in accordance with the criteria establisheo for
ioentfying operators and operands.

The theory defines four basic parameters pertaining to
a srogram”s implementation: the total operator count Nl ’
the total operand count N2 » the unique operator count
nl » and the unigue operand count Ny o The total counts
inctude all occurrences of operators/operands, while the
unigque counts disregard aultiple occurrences of the same
operator/operand. Although the issue of synonymy for
operators has already been dealt with in the identification
criteria, issues of synonymy for operands still remaine 1In
particular, formal parameters are considered to be
synronymous with corresponding actual arguments; therefore
occurrences of formal parameter identifiers contribute to
the total operand count but not to the unique operand count,
with respect to the entire program. This rule is not,
however, applied in the case of formal parameters passed by
value and modified by the segment; because these are
actually treated as special initialized-upon=-entry local
variables in the implementation language SIMPL-T, they are
not considered to be synonymous oOperands with respect to the

antire program,

The theory defines four additional basic parameters,
analoyous to those described above, but pertaining to an
aljorithm”™s or program”s "shortest possible or most succinct
form™ (i.esy its "one-liner”™ functional specification,

conceived as an assignment statement or procedure call

€5

CHAPTER V

involving & single pbuilt-in routine), These are the total
potential operator count Nl* y the total potential operand
count N2* » the unique pootential operator count nl* y ang
the unigue potential operana count nz* e« (The modifier
“ootential’” and the superscripted asterisk distinguisn
quantities pertaining to the functional specification from
analogous quantities pertaining to the implementation,) The
theory assumes, however, that the total potential operatory/
operand counts must always equal the unique potential
nperator/operana counts, because the most succinct
specification would contain no redundant occurrences of
operators/operands. An assumption is also mage that the
unigue potential operator count is always equal to the
corstant 2, btecause
“"eee the minimum possible number of oOperators .o. must
consist of one distinct operator for the name of the
function or procedure and another to Sserve as an
assignment or 3jrouping symbol."

Thus, all software science quantities pertaining to a
ara3ram”s specification are completely determined
fnumerically speaking) by a single parameter, the unigue
potential operand count nz* « It is the fifth basic
carameter of software science theory and is conceptually
equivalent to the number of "logically distinct input/output
narameters'™ for an algorithm or program. This count nolds
consiaerable significance in both the theory and its
agslication, but unfortunately it is rather intractable for
most nontrivial programs (i.e., those whose specifications
are not easily stated as "one~liners”" without gross
oversimplification). Ffor example, some logically distinct
inoyt parameters may appear as special constants embeaded
within the code, anag the number of logically distinct output

rarameters represented within a printed report is often

unclear,

CHAPTER V

An alternative and more tractable conceptualization
defines this uniaue potential operand count simply as the
nunver of distinct operands busy-on—entry (i.es, initially
containing a value that is utilized or accessed by the
algorithm or program) plus the number of distinct operands
busy-on-exit (i.e., finally containing a value that was
turnished by the algorithm or orogram to be utilized or
accessea subsequently). For an individual segment, nz*
may He estimated from the implementation by counting all of
the global variables that are referenced, each of the formal
parameters, one for both the input stream file and the
output stream file (if they are read or written), and one
for the function return value (if the segment is a
function). It should be noted that this estimate is a lower
bound since it disregards the possibility that a formal
carameter which is passed by reference should be counted
twuice because it is both busy-on-entry and busy-on-exit.,
For an entire program, nz* may be estimated from the
imolementation by counting ore for both the imput stream
file anu the ocutput stream file if the program reads or
writes them, plus one tor the set of control bits or option
letters that might oe used to regulate the program”s

exgcution,.

Thus, for the programs examined in this study, the
esti~ated number of unique potential operands is always
either 2 or 3, depending on whether

output_Llisting := compile_and_execute(input_deck)
or

output_Llisting :=

compile_and_execute(input_decky option_tLetters)
states their functional specification, It is clear that
this kind of estimation of nz* from the implementation is
considerably more accurate for individual segments than for

entire programs; this fact is partial motivation for the

67

CHAPTER V

particular estimation technique employec the secong

methoa of calculation discussed belowe.

derjved Properties

The derived properties of software science are defined

in terms of the five basic parameters.

The voctabulary n is defined as

noEn, ot
and reoresents the cardinality of the set of logically
distinct "“sympols' used to implement the programe. The
tength 4 is defined as

N-‘-Nl*\lz
and represents the abstract size of the program~”s
imolementation as measured in units of logically distinct
"symbols."™ This property is closely associated with the
nunoer of syntactic tokens in the source code of a program;
it can be considered a refinement of the rudimentary TOKENS
1soects The estimated length K& is definec as

8=y 2
~eflecting one of the fundamental conjectures of the theory;

Y) +

* logzﬁnl (n2 * log (nz)) ’

nanely, that the observed length of a program”s
inslementation is a function solely of the number of unique

operators/operands involved.

Considerable empirical evidence has supported the
validity of this "length prediction equation™ gn the average
fiseey major software studies have reported correlation
coefficients of between J.95 and 0.99 for the relationship
hetween N and R [Fitzsimmons & Love 78)). HOwever, its
accuracy for any given program may be Low; the theory
attrioutes this to the presence of so-called "impurities®
tnicating a lack of polish in a program. These impurities

incluage instances of unnecessary redundancy and needless

B

T e g

u--nnu-Hu-I-l-!'l!!lﬂllluunlnnuuuu-uur*,

CHAPTER Vv

constructions, such as inverse operations that cancel each
other, common subexpressions, or unreachable statements.
This has led some researchers to view the discrepancy
between N and R as a possibie software quality measure.
For these reasons, it was desirable to examine the
YDIFFERENCE(N,M) aspect, calculated as

(IR = NIDY /7 (N)

which normalizes the degree of discrepancy.

The yoluyme V is defined as

V = N = logz(n)
and represents the abstract size of the program”s
imolementation as measured in units of information-theoretic
bitse Specifically, it is the minimum number of Dits
required to encode the implementation as a sequence of
fixed-width binary strings (since it is the product of the
total number of "symbals” and the minimum bandwidth required
to distinguish each of the unique “symbols"). The potential

volume V* is defined analogously as

<

* = Nk # logz(n*)

= (Nl* + Nz*) * togz(n * 4+ nz*)

= (”1* + n2*) » [ogz(ni* + nz*)
= (2 + nz*) * logz(z + nz*) .
The potential volume of any algorithm or program is
theoretically independent of any language in which it might
be implemented; thus,
“Orovided that nz* is evaluated as the number of
conceptually unigue operands involved, V* appears to

be a most useful measure of an algorithm”s content."

The program Level L is defined as

L = vx /v
an1, as a ratio of volumes, can only take on values between
rero ang one; it quantitfies the intuitive concept of "level

~* avstraction” for an inplementations Since the potential

63

CHAPTER V

volume of any aiven algorithm is constant, the formula
indicates an inverse relationship (as desired intuitively)
hetween level of abstraction (measured by L) and size
(neasured by V). Thé theory also attaches meaning to the
reciprocal of program (evely defining difficylty o0 as

D =117 L
which may alternatively be viewed 2~ the amount of

redungancy within an implementat ion.

unfortunately, this definition of program Level is not
perticularly useful since it is diffticult (as discussed
anoyve) to determine exactly a program”s unique potential

operand count nz* or its potential volume v* ., pesiring

to be able to measure program level even if these Quantities
were unavailable, Halstead conjectured that an gstimateg
pragram level C , defined as

o

(y* 7 np o+ (ny /Ny

27) «» (/7 N)

could be measured directly from an implementation atone,
without a specification or the unique potential operand
count nz* e With only limited evidence supporting the
validity of this estimate, the theory makes the qualijfied
claim that

".ss for many purposes L and L[may be used

interchangeably to specify the level at which a program

has peen implemented, at least for smaller orograms."
Although most software science studies (ee.ge, [Elshott 76;
Love & towman 76; Curtis et al. 79]) have had no choice but
tc rely upon this "program Level prediction equation® to
calculate the derived properties, the program level
estimator C has been criticized publically (Oldehoeft 771
for unsatisfactory behavior under certain conditionse. The
auestionable validity of this prediction equation is the
principal motivation for considering the two alternative

methous of calculation discussed below.

73

emiie sk

i b Brmitaid e i

Laiin

CHAPTER V

In any event, the theory empltoys L internally,
detining jntelligence conigol 1 as

1 =0 v
ani oroposing it as 8 measure of "how much is saig" in an
aljorithm or pgrogram (i.eey i1ts information content). This
jntelligence content guantity represents the amount of
detail expressed in an implementation but weightea by its
level of expression, By definition, I is determinaple
from an implementaion alone. If there is a strong
relationship between L and [, intelligence content I
would be approximately equal to potential volume Vv* . In’
fact, Halstead originally demonstrated that the removal of
program "impurities®™ (as described above) consistently
imoroved the numerical agreement between V* and I ,
Normalizing the degree of discrepancy between these two
quantities, the ZDIFFERENCE(V*,]1) aspect, calculated as

Ch1 = vxl) 7 (v%) ,
may be interpreted as andother possible software quality

measurey according to the theorye.

The langyage Level A is defined as
A =L o yx
= L o* L o*V
s Vk &« Yk /4
and claims to quantify the popular intuitive concept known
by the same name. The theory suggests that) shoulg
r2main relatively constant for any particular implementation
language while the implemented algorithm itself is allowed
to vary. Empirical evidence from a carefully constructed
set ot programs, each imdolemented in several common
perogramming languages, indicated that the ordering of mean
values for X (which ranged from about 0.2 for assemoly
lanjuage to about 1.6 for PL/1) concurred exactly with the
generally accepted intuitive ordering ot the languages

themselves.,

71

e e e G] e bbb im ba o as b e bee D bl

CHAPTER V

The effort & is definea as
t =V * D

= Vv /L

= v ey /syl

tut this quantity does not purport to measure development
etfort in the usual sense. Rather, the theory originally
restricted
“.s, the concept of programming effort to be the mental
activity required to reduce a preconceived algorithm to
an actual implementation in a lLlanguage in which the
implementor (writer) is fluent ses™
according to further elaboration of the theory [Gordon 791,
this property represents the effort required (under igeal
conditions) to comprehend an implementation rather than to
produce it; E may thus be interpreted as a measure of
program clarity. The effort property is considered to have
the dimension ejther of bits or of "elementary mentat
discriminations."” Borrowing from research in psychology,
the theory converts this amount of mental effort into an
externally observable duration of time, detining the
estimated time T as
T =€/ S
where S is the so-called Stroud rate, i.€s.,y the numoer of
“"elementary mental discriminations' made by a programmer
(comprehender) per second. Psychologists had shown that
S €S5S € 20 and Halstead Jetermined empirically that S = 158

was a reasonable value.

finally, the theory purports to quantify one other
externally observable property, namely, the total number of
“gelivered™ bugs in an inplementationes The gstimated bugs

2 oprogerty is defined as
=3

L e/ Eo
vV /E
o

is defined as "the mean number of elementary

i s i o

CHAPTER V

mental discriminations between potential errors in
praogramming.” The theory argues that Eo = 3200 is a
reasonable values This number of bugs may be interpreted as
either the expected number of errors remaining in a
detivered program or the number of errors observeo during
program testing; both interpretations have received some

emdy>irical support.
Calcgylagion Methods

3ecause the validity of the "program level prediction
equation”™ s suspect (as discussed above), this study
ensloyed two cifferent methods for calculating software
science quantities: one relies directly upon this estimate,

the other goes not.

voth methods calculate exact values for some derived
properties via their defining formulas directly from the
imolementation”s basic parameterse The methods are
therefore identical with regard to the following measured
asoects: VUCABULARY, LENGTH, ESTIMATED LENGTH,
“DIFFERENCE(NIN)» VOLUMEy INTELLIGENCE CONTENT, and
ESTI“ATED BUGSe B3ut, because reasonable values for unique
potential operand counts are generally unavailable (from
either the specification or the implementation) for programs
of the size considered in this study, both methods of¢
catculation can only approximate the remaining deriveag
properties by relying upon various estimates. ODue to the
intrinsically high degree of interrelationship among the
softeare science quantities, it generally suffices to
approximate just one additional derived property via some
estémation technique; the remaining derived properties can
then all be approximated in turn via their defining formulas

from the known exact values plus the estimated value. The

methods therefore differ in their choice of quantity to be

CHAPTER V

estiTated, in their estination technigque, and with regard to
the following measured aspects: PROGRAM LEVEL, DIFFICULTY,
POTEMTIAL VOLUME, YDIFFERENCE(V*,1), LANGUAGE LEVEL, EFFORT,
and ESTIMATED TI™E,

The first method relies upon a "“theoretical” estimation
of the program level quantity. The estimated program level
C s calculated directly from the program”s implementation
via its detining formula and then substituted as an
aporoximation for the (true) program level L . Under this
methoc the exact value for intelligence content 1 s, by
definitions always equal to the approximate value for
potential volume V* ; hence it is pointless to examine the
YDIFFERENCE(V*,]) aspect under this method of calculation.

The second method relies upon an "empirical” estimation
of the language level guantity. A program”s language level
is approximated as the mean value of estimates for the
tanguaje levels of the segments comprising the program, An

estimate of each segment”s language level can be calculated
directly from the implementation (via the defining formulas
for A , V* , and V), using an estimate of the segment”s
unigue potential operand count nz* in addition to the
exact values of the segment”s other basic parameters N{
Npy o nl v and nz « The unigue potential operand estimate
is obtained by counting operands that are busy-on-entry or
tusy-on-exit (as discussed above); this technique seems
aquite reasonaple when apolied to segments, most of which are
snall enoughe Use of the mean estimate for A across the
individual segments of an entire program was inspired by the
exdserimental treatment of language Level given in Halstead” s
book., Under this method of calculation, all of the derived
properties defined above are distinct and nonredundantly
calculated.

74

CHAPTER VI

Vie INVESTIGATIVE METIHODOLOGY

1 This chapter describes the steps taten to guide the
planning, execution, and analysis of the experimental

investijation reported in this dissertation. The

¥

k) investizative methodology outlined here was devised as a

k"‘ vehicle for research 3n software engineering. It relies
ucon established principles and techniques for scientific

research: empirical study, controlled experimentation, and

statistical analysis.

The central feature of the investigative methodology is

a "differentiation-among-groups-by-aspects"”™ paradigm. The

research goal is to answer the question, what differences
exist among the treatment groups (which represent different
programming environments) as indicated by differences on
measurea aspects (which reflect quantitative characteristics
of software phenomena)? This use of "difference

discrimination” as the analytical technique dictates a

statistical model of homogeneity hypothesis testing that
influences nearly every element of the investigative

methodologye.

Cther analytical techniques could have been employed:

estimation of the magnitude of differences betwean
experimental treatments,

correlations between measured aspects across all
exderimental treatments,

multivariate analysis (rather than multiple univariate
analyses in parallely, as is the case here), or

tactor analysis (breakaown of variance in one aspect
amonj the other measured aspects),
to name a3 few examples. These are useful techniques and may

be used at a later time to answer other research questions. 5

CHAPTER VI

For the present investigation, difference discrimination was
chasen as a reasonable “first-cut" probe of the empirical
data collecteo for the research project,; ty taking this
conservative approachy information may be obtained to help

jJuide more refined probes in the future.

Although the methodology is built around running an
exderiment, collecting data, and making statistical tests,
these activities (i.e,, the execution phase) play a small
role Wwithin the overall investigative methodology, in
conparison to the planning and analysis phases, This is
readily apparent from the schematic in Figure 2, which
charts some of the relationships among the various elements
(or steps) of the investigative methodologye. Another
feature of the investigative methodology is the careful
distinction made during the analysis phase between objective
results (the empirical scores for the metrics and the
statistical conclusions they infer) and subjective results
(interpretations of the objective results in Light of

intuition, research goals, etcs)e

The remainder of this chapter outlines the overatl
methoa by defining each step and discussing how it was
apodlieds Further details of certain steps are given within

other chapters of the dissertation, as follows:

step S Research Frameworks Chapter VIII
Step 5 Experimental Design Chapter 111
Step 7 (ollectea Data Chapter 111
Step 10 Statistical Conclusions Chapter VII
Stepc 11 Research Interpretations Chapter VIII

Step 1: Gyestions ot Ingeresst

Several questions of interest were initiated and

refined so that answers might be given in the form of

76

g e e ar—mbr ey

“FIGURE 2

« e 4 s 2 s ° v o

SISATYNY ° NOILND3X3
\J o 2339 . op3?
&uUJG B2 Pes 29
suotiezadasiuy 227 suogsniouod . 3+ 83(N831 aul . eyep
yoleasal < (#o71573P18 < 1e213I8TIvIE : po12a1 102
K P AN ¥~ . A
\ ~ 0&*0
/ ™~ - aéoauaoo
\ . . S09!
: ‘ \ N :
! 38 RN : ND110D3X3
wiod NP A
23
/ an1o® Nt ONINNVId
/ N ubysap
f s9anpadoid 3993 N\ 1ejusat 3adas
1eo1383131038 * \ A
A\ 1 Fd ® _ . N
SISKIWY N e T e Ty o
ONINNVIA Voot P ~_
\ 8190 ~ N
J 519° /, ~
syjomawely i posaylodAy o _ _ . - = 13pon
yo123892 '~ feo1aIsiaeas T teoyastavas
A3 — -
LI A -~ A
~ ~ e %a-eauu aaaso
2 ~ ~ ° oV
.‘Oﬂa’ ~ =~ -~ -
~ gasaylodiy
~ < yaeasal
~ 0}
~ uu:a.\v
~
~
~
1g2197U7 JO o013?’
suojasanb
04‘453
333vuayds ABoroponiay aap3eSiasaauny ‘2 2andig

76a

- aikaied

CHAPTEKR VI

statistical conclusions ang research interpretations,
Guestions were formulated on the basis of several concerns:
(1) sotftware cevelopment rather than software maintenance,
(2) a desire to assess the effectiveness of disciplined teanm
programming, in comparison to undisciplined team programming
and individual programming, (3) quantitatively measurable
asoects of the process and procduct, and (4) the analytical
tecnnique of difference JdJiscrimination. The questions of
interest took the final form, “During software development,
what comparisons between the effects of the three
programming environments, ‘

(a) individual programming under an ad hoc approachy

(b) team programming under an ad hoc approach,

(¢c) team programming under a disciplined methodology,
apoear as differences in quantitatively measurable aspects
of the software development process and product?
Furthermore, what kind of differences are exhibited and what

is the agirection of these difterences?"
Step 2: Research Hypotheses

Since the investigative methodology involves hypothesis
testing, it is necessary to have fairly precise statements,
called research hypotheses, which are to be either sugported
or refuted by the evidence. The second step in the method
was to formulate these research hypotheses, disjoint pairs
desiznated null and alternative, from the gquestions of

interest.,

A precise meaning was given to the notion of
“gifference." The investigation considered both (a)
differences in central tengency or average value, and (b)
diftferences in variapility around the central tendency, of
observed values of the quantifiable programming aspects. 1t

should be noted that this decision to examine both location

??

CHAPTER VI

and sispersion compdarisons amony the experimental groups
broucht a pervasive duality to the entire investigation
(i.e., two sets of statistical tests, two sets of
statistical results, two sets of conclusions, etc.,~-always
in paratlel and independent of each other), since it
addresses both the gxpectangy and the predictability of

behavior under the experimental treatments. 5

Some vagueness was removed regarding the size of the
particular programming task py making explicit the implicit
restriction that completion of the task not be beyond the

canability of a single programmer working alone for a

reasonaole period of time. Additionally, a large set of

programming aspects were specified; they are discussec in
Chapters 1V and V. For each programming aspect there were
sinilar questions of interest, similar research hypotheses

an? similar experiments conducted in parallel.

The schema for the research hypotheses may be stated as
"*In the context of a one-person-do-able software development
project, there < is not | is > a difference in the ,
< location | dispersion > of the measurements on programming
asoect < X > between individuals (A1), ad hoc teams (AT),
and disciplined teams (D7).,"™ For each programming aspect
“X7 in the set under consideration, this schema generates
two pairs of nondirectional research hypotheses, gepending
upon the selection of “is not” or “is” corresponding to the
nutl ano alternative hypothesis, and the selection of
“location” or “dispersion” corresponding to the type of
difference.

Step -: 3gagistical Yodel

The choice of a statistical model makes explicit

variocus assumptions regarding the experimental design, the

CHAPTER VI

deoencent variables, the underlying population
distributions, etc. HSecause the study involves a
honojeneity-of-populations problem with shift and spread
alternatives, the multi-sample model used here reguires the
following: independent populations, independent and random
sanpling within each population, continuous underlying
distributions for each population, homoscedasticity (equal
variances) of underlying distributions, and interval scale
of measurement [Conover 71y, ppe 65-67] for each progromming
asoect. Although rancom sampling was not explicitly
achieved in this study by rigorous sampling proceaures, it
was nonetheless assumed on the basis of the apparent
reoresentativeness of the subject pool and the lLack of
oovious reasons to doubt otherwise. Due to the small sample
sizes, the unknown shape of the underlying distrioutions,
and the partially exploratory nature of the study, a

nonparametric statistical model was used.

whenever statistics is emoloyed to "prove'" that some
systematic effect-—in this case, a difference among tne
3roups—--exists, it is important to measure the risk ot
error. This is usually done by reporting a significance
tevel a (Conover 71, pe 79), which represents the
prooability of deciding that a systematic effect exists when
in fact it does not. In the model, the hypothesis testing
for each programming aspect was regarded as a separate
indegenaent experiment. Consequently, the significance
tevel is controlled and reported experimentwise (i.e., per
asoect). While the assunption of independence between such
exoeriments is not entirely supportable, this procedure is
valid as long as statistical inferences that couple two or
more of the programming aspects are avoided or properiy
qualifiede In this study, statements regarding
interrelaotionships among aspects are made only within the

interpretations in Chapter VIII.

79

CHAPTER VI
Step «: §tatistical Hypotheses

The research hypotheses must be translated into
statistically tractaple form, calied statistical hypotheses.
A correspondence, governed py the statistical model, exists
between application-oriented notions in the research
hyootheses (e.g., typical performance of a programming team
under the disciplined methodclogy) and mathematical notions
in the statistical hypotheses (e.g.y, expectea value of a
random variable defined over the population from which the
disciplined teams are a representative samole). Generally
speaking, only certain mathematical statements involving
pairs ot populations are statistically tractable, in the
sense that standard statistical procedures are applicable,
Statements that are not directly tractaole may be decomposed
into tractable (sub)components whose results are groperly

recomoined after having been decided individuallye.

In this study, the research hypotheses are concernec
with directional differences among three programming
environments. Since the corresponding mathematical
statements are not directly tractable, they were decomposed
into the set of seven statistical hypotheses pairs shown
belowe As a shorthand notation for longer English
sentences, symbolic "equations"™ are usea to express tnese
statistical hypotnesess The = symbol denotes negation.
The + symbol denotes poolinge The =, # , ana <
synbols indicate comparisons on the basis of either the

location or dispersion of the dependent variables.

he hypotheses pair
aull: alternagive:
AI = AT = DT -(r1 = AT

DT)

adjiresses the existence of an overall difference amon, the

graupse However, due to the weak nondirectional

CHAPTER VI

alternative, it cannot indicate which groups are agifferent
or in what girection a difference lies. Standard
statistical practice prescrives that a successful test for
overall difference among three or more groups be followed by

tests for pairwise differencese The hypotheses pairs

null: afternatiye:

Al = AT Al # AT or Al < AT or AT < Al
AT = DT AT # 07 or AT < D7 or DT < AT
Al = OFT Al # DT or AI < DT or DT < Al

asdress the existence and direction of pairwise differences
tetween Jroupss The results of these pairwise comparisions
were used tao refine the overatl comparison. Data collected
for a set of experiments may often pbe legitimately reused to
“simulate”™ other closely related experiments, by combining
certain samples together and ignoring the original
distinction(s) between them., 1t is meaningful, in the
context of this study”s experimental design, to compare any
twd> 2roups pooled against the third since (1) Al and AT are
beth undisciplinedy, while 0T is disciplined; (2) AT and 0T
are both teams, and Al is individuals; and (3) uncer the
assumrption that disciplined teams behave tike individuals=--
which is part of the study”s basic premise, DT and Al can be
nooled and compared with AT acting as a control groupe. The

hysootneses pairs

oull: alternative:

AI+AT = DT Al1+AT £ DT or AI+AT < DT or DT < Al+AT
AT+DT = Al AT+DT # Al or AT+DT < A1 or Al < AT+DT
AT+DT = AT Al+0T # AT or AI+DT < AT or AT < AI+DT

ajdjdress the existence and direction of such pocled
differenctes.s The results of these pooled comparisons were

useg to corropate the overall and pairwise comparisons,

Thusy for each programming aspect, the research
hyoutheses pair corresponds to seven different pairs (null

and alternative) of statistical hypothesese The results of

AD-AD96 %52 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2
AN EXPERIMENTAL INVESTIGATION OF COMPUTER PROGRAM DEVELOPMENT A=-ETC(U)
DEC 79 R W REITER FOSR-TI-M.Q].
UNCLASSIFIED TR-853 AFOSR=TR-81~0214%

202
LI
n

(*aAPTE~ V|

restiny each set of seven hypotheses must be abstracted ana
orjanized iIinto one stataistical conclusiuon using the farst

research framework adiscussea in the next step.
Step 5: Sesgargh Framguworks

The research frameworks provide the necessary
orjanizational basis for apstracting ana conceptualizing the
massive volume of statistical hypotheses (and statistical
results that follow) into a smaller and more intellectually
manazeaole set ot conclusions., Three separate research
frameworks have been chosen: (1) the framework of oossitle
overall comparison outcomes for a given programming aspect,
() the framework of dependencies and intuitive
relationships among the various programming aspects
consiuered, and (3) the framework of basic suppositions
rejaraing expected effects of the experimental treatments on
the comparison outcomes for the entire set of programming
asvects. The first framework is employed in the statistical
conclusions step because it can be applied in a
statistically tractaole manner, while the remaining tweo
*rameworks are reserved for employment in the researcnh
interpretations step sinte they are not statistically

tractaeble and involve subjective judgement.

Since a finite set of three different programming
environments (Al, AT, and DT) are being compared, there
exists the following finite set of thirteen possible overall

comparison outcomes for each aspect considerea:

e u - —— P -~ =

CHAPTER V1

Al = AT = D7

Al < AT = pT Al < AT < oT}
Al # AT = DT
AT = DT < Al AL < DT < AT
AT < DT = Al AT < 0T < &
AT # DT = Al LAl £ AT # DT
6T = AL < AT AT < Al < OT
DT < AL = AT DT < AI < AT
DT # Al = aT
Al = AT < DT DT < AT < AI]

There is a hierarchical lattice of increasing separation ang
directionality among these possible overall comparison
outcomes as shown in Figure 2., These thirteen possiblie
overall comparison outcones comprise the first research
framework and may be viewed as providing a complete "answer
space"™ for the questions of interest. It 3s clear that any
consistent set of two~way comparisons (such as represented
in the statistical hypotheses or statistical results) may be
associated with a unique one of these three-way comparisons.
Yhis framework is the basis for organizing and condensing
the seven statistical results into one statistical

conclusion fcr each programming aspect considered,

Since a targe set of interrelated programming aspects
are being examined, it would be desirable to summarize many
of the "per aspect'" hypotheses and results into statements
which refer to several aspects simultaneously. For example,
average number 0of statements per segment is ore aspect
directly dependent on two other aspects: number of sejments
and number of statements, Other interrelationships are more
intuitive, less tractable. or only suspected, for example,
the "trade-off" between global variables and formal
parameters. A simple classification of the programming
aspects into groups of intuitively related aspects at least
proviades a framework for jointly interpreting the
corresponding statistical conclusions in Llight of the
underlying issues by which the aspects themselves are

related. The programminid aspects considered in this study

FIGURE 3

Figure 3.7 Lattice of Ppasible Directional Outcomes for Ihres-way Comoarison

- - -

! AIsAteT | (null)

{partially
differentiated)

.- \
T AIGATOT AIDTCAT ATCDTCAL ATKAISDT DIKALAT DTCATGA ' (completely
* ¢ . H) differentiated)

N.B. The circles indicate which direotional outcomes correspond to the same nondirectional outcome.

Figure 3.2 lattice of Pqaaible Nondirectional Qutcomea for Inree-way Comparison

Al = AT = DT (null)
AL £ AT s OT AT £ DT = AL DT £ AL = AT (partially
differentiated)
Al 4 AT o DT (completely
differertiated)
83a

CHAPTER VI

were ctassified accoroing to a particular set of nine
higher-level programming issues (such as data variable
organization, for example); details are given in (hapter
VviIili. This second research framework is the pasis for
asstracting and interpreting what the study”s fingings
injicate about these higher~ievel programminj issues, as
well as explicitly mentioning several individual
relationships among the sroyramming aspects and their

conclusionse.

Since the design of the experiments, the choice of
treatmentsy €tCey were at least partially motivated by
certain general beliefs regarding software development
(e jey "disciplined methodology reduces software aevelopment
costs”™), it should be possible to explicitly state what
comparison outcomes amon3 the experimental treatments were
excected a priori for which programming aspects. A list of
preplanned expectations (so-called "basic suppositions”™) for
the outcomes of each aspect”s experiment would provide a
framework for evaluating how well the experimental findings
as a whole support the underlying general beliefs (oy
conparing the actual outcomes with the basic suppositions
across atl the programming aspects). Such a List of basic
sudpositions was conceived wprior to conducting the
exseriments, and it constitutes the third research
framework,; details are given in Chapter VII1. This
framework is the basis far interpreting the study” s fimoings
as evidence in favor of the tasic suppositions anad general

heliefs,

Step 6: Experimental Des

1)

g0

The experimental design is the plan according to which
the experiment is actually executedes It is based upon the

statistical model and deals with practical "issues such as

%4

CHAPTFR VI

exderimental units, treatments, local controt, etc, The
exderimental desiyn employed for this study has been

Jiscussed in considerable detail in Chapter]1l1l.

Step 7: Coltegted 2at2

The pertinent data to carry out the experimental design
was collected and orocessed to yield the information to
which the statistical test procedures were aoplied. 3ome

details of these activities have been given in Chapter II1.

A statistical test orocequre is a decision mechanism,
founded upon yeneral principles of mathematjcal probability
and combinatorics and upon a specific statistical model
(i.eey requiring certain assumptions), which is used to
convert the statistical hypotheses together with the
collected data into the statistical results. As dictated by
the statistical model, the statistical tests used in the
study were nonparametric tests of homogeneity of populations
3sainst shift alternatives for small samples. Nonparametric
tests are slightly more conservative (in rejecting the null
hysothesis) than their parametric counterparts;
nonparametric tests generally use the ordinal ranks
associated with a linear ordering of a set of scores, rather
than the scores themselves, in their computational formulas.
In particular, the standard Xruskal-Wallis H-test [Siegel
54y ppe 184-193] and Mann-Wwhitney u-test [Siegel 56, pp.
1146-127] were employed in the statistical results step.
Ryan”s Method of Adjusted Significance Levels [Kirk 638, p.
77, np, 675=-497]), a stanjdard procedure for controlling the
experimentwise significance level when several tests are
cerformed on the same scores as one experiment, was also

emotoyed in the statistical conclusions step,

nn

CHAPTER VI

The Xruskal-wallis test is used in three-sample
cituations to test an X = Y = Z nutl hypothesis; its test
statistic is comouted as

H o= 12*[(RxZ/nx)O(RyZ/ny)é(Rzzlnz)]l(n-(n+1)] -~ 3*(n+1)
where Rx 4, Ry , and Rz are the respective sums of the
ranks for scores from the X, Y, and Z samples; n equals

nx+ny+nz where nx ny 4, ana nz are the respective
sanple sizese The Mann-Whitney test is used in two-sample
situations to test an X = Y null hypothesis; its test

st3tistig is comoDuted a.

J = minl nx*ny + nx*(nx

+
ny*nx + ny*t(ny+ - Ry j

where Rx 3 Ry » nx o 3nd ny are defined as before.

For every statistical test, there exists a one—-tg—one
maoping, usually given in statistical tables, between the
test statistic—-—a value completely determined by the sample
data scores=-and the critical level. The critical Level &
{Conover 71, pe 811 is defined as the minimum significance
level at which the statistical test procedure would allow
the null hypothesis to be rejected (in favor of the
alternative) for the given sample data. Thus critical level
reoresents a concise standarized way to state the full
result of any statistical test procedure. Two-tailed
rejection regions are apolied for tests involving
nondirectional alternative hypotheses, and one-tailed
rejection regions are apolied for tests involving
directional alternative hypotheses, so that the statea
critical level always pertains airectly to the stated
alternative hypothesis. A decision to reject the null
hyoothesis and accept the alternative is mandated if the
critical Level is low enough to bte tolerated; otherwise a

decision to retain the null hypothesis is maade.

The Ryan”s procedure is used in situations involving

multiple pairwise comparisonsy in order to properly account

CHAPTER VI

for the fact that each pajirwise test is made in conjunction
with the others, using the same sample data. The individual
critical levels & obtainea for each pairwise test in
issolation are adjusted to proper experimentwise critical
levels & wvia the formula

87 = [(Cre1)2k /23 *» §
where k is the total number of samples; and r is the
nunover of (other) samples whose rank means fall between the
rank means of the particular pair of samples being compared.
A simple "minimax" step--taking the maximum of the several
adjusted pairwise critical levels, plus the overall
comparison critical Levely which are all minimum
significance levels-~-completes the procedure, yielding a
siagle critical level associated jointly with the overall

and pairwise comparisonse.

These tests and procedures apply straightforwardly when
Z2ifferences in Location are considereds A slight
modification makes them applicable for differences in
dispersion: prior to ranking, each score value is simply
reolacec by its absolute deviation from the corresponging
within-group sample median [lemenyi et al. 77, pp. 266=270).
1t should be noted that this modification results in only an
aporoximate method for solving a tough statistical problem,
namely, testing whether one population is more variable than
anather [Nemenyi et al. ?7, ppe 279-283]. The modification
is not statistically valig in the general case (it weakens
the cower of the test procedures ang can yield inaccurate
critical lLlevels when testiny for dispersion differences),
hut every other available method also has serious
linitations.s This method has been shown (empirically via
wonte (arlo techniques) to possess reasonable accuracy, as
tony as the underlying distributions are fairly symmetrical,
and is readily adapted to the study”s three~-way comparison

situation.

e e et AR b 1§28 < e e

e

CHAPTER VI

ttep %: Sgatistical RPesults

~n statistical result is essentially a decision reached
by applying a statistical test procedure to the set of
colliected and refined data, regarding which one of the
corresponding pair (null, atlternative) ot statistical
hysootheses is indeed supoorted DY that gcata. For each gair
of statistical hypotheses, there is one statistical result
consisting of four components: (1) the null hypothesis
itselt; (2) the alternative hypothesis itself; () the
critical lLevel, stated as a provability value between (0 and
1, ara (&) a decision either to retain the null hypothesis
or to reject it in favor of (i.e.y gccept) the alternative

hyoothesise

ty convention, the null hypothesis i1s that no
systematic difference appears to existy and the alternative
hysothesis puroorts that some SyStematic difference existse
The critical level is associated with erroneously acceoting
the alternative hypothesis (i.e., claiming a systematic
ditterence when none in fact exits). The decision to retain
or reject is reached on the basis of some tolerable Level of
significance, with which the critical level is compared to
see if it s low enough. In cases where a nuil hypotnesis
is rejected, the anpropriate directional alternative
hyaothesis (if any) is used to indicate the direction of the
systematic ditfterence, as determinea by direct observation
from the sample medians in conjunction «ith 3 one-tailed

teste

Conventional practice is to fix an arbitrary
styniticance level (esgey D405 or Co01) in acdvance, to be
used as the tolerable level; critical levels then serve only
3s stepping-stones toward reaching ocecisions and are not

redorteds. For this partially exploratory stuagy, it wdas

°¢

CHAPTER VI

dpeemed more appropriate to fix a toleraple Level only for
the rurpose of a screening decision (simply to purne those
results with intolerably hiyh critical levels) ano to
exdlicitly attach any surviving critical level to each
statistical result. This unconventional practice yields
statistical results in a more meaningful and flexible form,
since the significance or error risk of each result may be
assessea individually, and results at other more stringent
signiticance levels may De easily determined. Furthermore,
the necessary information is retained for properly
recombining multiple related results on an experimentwsise

basis in the statistical conclusions step.

The tolerable tevel of significance used throughout
this study to sceen critical levels was fixed at under 0.20.
Although fairly high for a confirmatory study, it is
reasonable for a partially exploratory study, such as this
one, seeking to discover even slight trends in the data. A
critical level of 2.20 means that the odds of obtaining test
scores exhibiting the same degree of difference, due to

random chance fluctuations alone, are one in five,

As an example, the seven statistical results for
tocation cumparisons on the programming aspect STATEMENT
TYPE COUNTS\IF are shown belowe (NeBe The asterisks will be

exolained in Steo 10.)

nutl alternative critical (screening)
hypothesis hypothesis leyel gegisign
Al = AT = DT =(Al = AT = DT) 067 reject
Al = AY Al < AT 046 reject
Al = D7 Al # D7 >.,999 retain
AT = 0T DT < AT «J11 reject
AJ+AT = DT DT < AL+AT .C88 reject *
Al+pT = AT AI*+DT < AT «0Q9 reject
AT+DT = Al AT+DT # Al 335 retain *
Nnoserve that the stated decisions simply reflect the

apslication of the J.20 tolerable level to the stated
critical levels. PResults under more stringent levels of

cignificance can be easily acetermined by simply aoplying a

—— e - e

CHAPTER VI

lower tolerable level to form the decisions; e.ger» at the

e e

TeJ> sijnificance level, only the AL < AT, DT < AT, and i
A1+pT < AT alternative hypotheses would be accepted; unly
the AI+D3T < AT hypothesis would be accepted 2t the (.21

level.

ctep 17: Jtatistical Conclusions

The volume of statistical results are organized and
conZensed into statistical conclusions according to tne
orearranged research franework(s), A statistical conclusion
is anr 4ostraction of several statistical results, but it
retains the same statistical character, having been derived
vi3d statistically tractable methods and possessing an

associated critical level.

The first research framework mentioned above was
employed to reduce the seven statistical results (with seven
individual critical levels) for each programming aspect to a
single statistical conclusion (with one overall critical
level) for that aspect. The statement portion of a
statistical conclusion is simply one of the thirteen
possitle overall comparison ocutcomes. tach overall
comparison outcome is associatec with a particular set of
statistical results whose outcomes support the overall
conparison outcome in a3 natural way. For example (reading
¢rom the fifth row of the chart in Figure 4), the
NT = Al < AT conclusion is associated with the following
results:

reject Al = AT = 0T in favor of =-(Al = AT = DT),

reject Al = A7 in favor of Al < AT,

retain Al = 0T,

reject AT = D7 in favor oft DT < AT, angd r
reject A14+07T = AT in *avor ot AI+DT < AT,

Ti7ce the other two compariscns (AI+AT versus AT, AT+p7T

CHAPTER VI

versus AlI) are in a sense orthogonal to the overall
comparison outcome (DT = Al < AT), their results are
considered irrelevant to this conclusion. The chart in
Fijure & shows exactly Jhich results are associated with
each conclusion: the relevant comparisons, the null
hyootneses to be retained, and the alternative hypotheses to
be accepted., The other portion of a statistical conclusion
is the critical level associated with erronecusly accepting
the statement portion. It is computed from the individual

critical levels of certain germagne resultse.

A simple algorithm based on the chart in Figure 4 was
used to yenerate the statistical conclusions (and compute
the overall critical level) automatically from the
statistical results. For each programming aspecty, the
aljorithm compared the set of actual results obtained for
the seven statistical hypotheses pairs to the set of results
associated (in the chart) with each conclusion, searcning
for a matches Ryan”s procedure was used to properly combine
the individual critical levels for the overall result and
the relevant pairwise resultsy by adjusting them via the
formulta and then taking their maximume The critical Levels
for the relevant pooled results were then factoreu, by a
sinple formula based on the multiplicative rule for tne

joint probability of independent events.

Continuing the examdole startea in Stepo 9, the
statistical results shown there for location comparisons on
the STATEMENT TYPE COUNTS\IF aspect are reduced to the
statistical conclusion DT = Al < AT with 372 critical level
overall. The five results not marked with an asterisx in
Steg 9 match the five results associated above with the
0T = Al < AT outcome. (Note that the other two markea
results represent comparisons that are irrelevant to this

covrcltusiones) The L0486 and 011 critical levels for tne two

P(
|
]

FIGURE 4

Tv>10«lVv

*

1]
IV>17+1yV
10+1Y>IV
10+1Y>1Iv

L]

»

L

¥
Iv>10ely
10+ 1Y>1V

- = - o em . > e T = Y e e s = > W T . e e ————— e -

Tv=10+1Vv

JuO0s ut

auy pue

¥
ly>10+1v
10+1vV>1LY
10+1VY>1Y
ly>1Q+1V

L

.

Lv>10+1v
13+1V¥>LY

»

Lv=10+1v

ly+1Iv¥>14d
LveIv>14
Ld>1v4 TV

»

.
L3>1v+lvV
10>1v¥+ IV
lvs+lv>1iaQ

¥

»

10=1v+1v

Paist) suostsedwod juendlay
JwOS YJtM PIJPLIOSSP eLIIILID Ayl ApsLies
3g I1snNw Si1s3aylodAy J1nu Ay} J3A3Iaym sJieadde paidadrode uz 01 S1S31l10Ad4y
foautel1as aq 3snuw 1L

lv>14a
1vy>1a
1d>1v
La>1v
lv>14
10>1v
10>1 v
1v>14
iv>14
10>1V¥
1d=1Vv
10=1Vv
f11neyap]

1d=1v
:s1INsay

*UOLSN]II2UO0D JINU ayl
11€ ud ydlew 310U SAoOp
10U S30p S1)INSAL O

Terea
[v>1 4
1a>1v
Tv>10
1d>1VY
1d>1v
1G>1Vv
Iv>14
1d=1v
10=1V
Iv>140
10>1v

14=1v

eyl 03 uCQ>0de jou COn-LQQEOu e s3jediput

y’ea yili™ paleLsosse

IGATIATS

s1Insay

03 pl# 33

1234

N3y 307

1S11°35 jo

13843

7 34N91Y

UOTTET

iv>1v
1v>1v
iv>1Y
Iv>1Ly
LY>1V
L¥>1v
Lv=1v
ly=1v
1v>1v
Iv>1ly
IV>1v
1v>1v

Lv=1¢

13A3Jaym saeadade s
NSL43S
13s 3ul

< *% 34701y

(10=fv=]v)- Iv >
(10=49=]v)- iy >
(10=1v=1v)- | 1aQ >
(LC=Llv=iVv)~ Iv >
(1N=1v=1v)~ 1y >
(10=1y=1v)~- 19 >
(10=1y=1V)- 1a >
(1Q=1lv=1v)- iy =
(Ld=(v=]¥)- I 2
(13=1v={v)- 1v =
(LO=1v=]IV)- Iv >
(1d=1v=1Vv)- 19 =
1q =

Isuot

10=1v~1v

031 S1)N7 43y L ud
$e3° 1) uUnNLSNY)3UC)
1S 31 *

Ay

saylodAu }1"u 3y3 ‘fuo

€ uy .co,mJ.uCOu Ve

SALJLI3ds Jreyd HuiLmo

v > 14q
Iv > 1a@
Iv > 1v
13 > tv
14 > 1Iv
v > 1v
e = 1v¥
Iv > 14
Iv = 1i¢
19 > v
10 = v
v > 1v

snyJuc)

1 ¢t (m0uq
jru-uou
12afay

91a

o

ChAPTER VI

cairaise differences are adjusted to 07C and .033,
respectively, and the maximum among those acjusteo values
and the .063 overall difference critical level is .37u. The
relevant pooled comparison critical tevel of 008 is
factored in by taking the complement of the products of the
conplements:

1 = [(1T - N69)Y+(1 - ,3338)] = .07¢

Thus, the statistical conclusions are in one-to-one
correspondence with the research hypotheses and provice
concise answers on a "“per aspect' basis to the guestions of
interest. Further getails and complete listing of the
statistical conclusions for this study are presented in
Chapter vIl.

Step 11: Regeargh Interpretagions

The final step in the method is to interpret the
statistical conclusions in view of any remaining resedarch
framework(s), the researcher”s intuitive understanding, and
the work of other researchers, These research
interpretations provide the opportunity to augment the
ocjective findings of the study with the researcher”s own
professional judgment and insight. The secona and thirc
research frameworks mentioned above--namely, the intuitive
relationships among the various programming aspects and the
basic suppositions governing their expected outcomes—-were
consicered important tor this purpose. HOwever these
oarticular research frameworks can only be utilized for the
research interpretations, since they are not amenable to
rijorous manipulation. Nonetheless, within these frameworks
based upon intuitions about the software metrics and
programming environments unaer consideration, the study
bears some of its most interesting results and implications,

Conplete details ana discussion of the research

92

ppeT——

e ——————

CHAPTER VI

interpretations of this study appear in Chapter V]I,

bt

CHAPTER VI

VIIT. QRJELTIYE RESULIS

This chapter reports the opjective results of the
study, namely, the statistical conclusions for each
pragramming aspect considered. In keeping with the
emdirical and statistical character of these conclusions,
the tone of discussion here is purposely somewhat
disinterested and analytical. All interpretive discussion
is ceferred to Chapter VIII, in accordance with the

investigative methodologye.

Each statistical conclusion is expressed in the concise
form of a three~way comparison outcome 'equation.™ It
states any observed differences, ana the directions thereof,
among the programming environments represented by the three
3roups examined in the study: ad hoc ingividuals (Al), ad
hoc teams (AT), and disciplined teams (DT). The equality
Al = AT = DT expresses the null outcome that there 1is no
systematic difference among the groupSe. AN inequality,
€sjdey Al < AT = DT or DT < Al < AT, expresses a non-null (or i
alternative) outcome that there are certain systematic i
difference(s) among the groups in stateao direction(s)., A !
critical tevel value is also associated with each non=null
(or alternative) outcome, indicating its individual
reliacilitys 7This value is the oropability of having
erroneously rejected the null conclusion in favor of the
alternative, it also provides a relative index of how

pronounced the differences were in the sample datae.

The remainder of this chapter consists of (a)
presenting the tull set of conclusions, (b) evaluatin, their

imoact as a wholey, (¢c) exposing a "relaxed differentiation"
view of the conclusions, (c¢) exposing a "directionless" view

of the conclusions, and (e) individually highlighting a few

G

e N N ;T‘"" - T Tnr—— ikl i m i v

CHAPTER VII

ot the more noteworthy conclusions,

19
L]
Ko
w
"o
12
e
o
I~
[
10
3

The complete set of statistical conclusions for poth
location and dispersion comparisons appears in Tapble ¢
3arranjed Dy programming aspecte Instances of non=null (or
alternative) conclusions--those indicating some distinction
among the groups on the basis of a measured programming
asdect-=-are listed by outcome in Taoles 4.1 (for Location

conparisons) and 4.2 (for dispersion comparisons).

Examination of Table 2 immediately demonstrates that a
large number of the programming aspects considereg in this
study, especially product aspects, failed to show any
distinction between the groups. This Llow "yield" is not
surprising, especially among product aspects, and may be
attributed to the partially exploratory nature of the study,
the small sample sizes, and the general coarseness of many
of the aspects considered. The issue of these null outcome
occurrences and their significance is treated more

thoroughly in the next subsection, Impact Evaluation,

It is worth noting, however, that several of the null
conclusions may indicate characteristics inherent to the
apolication itself. As one example, the basic symbol-table/
scanner/parser/code-3enerator nature of a compiler strongly
influences the way the system is modularized and thus
oractically determines the number of modules in the final
eroduct (give or take some occasional slight vartation due

to other design decisions).

[
[E
0
o
n
fre

Evaluation

The collective impact of these statistical conclusions

95

: b = 641°0 2 Av > 1g > 1V CINETY .
*3TITIsI=s2z=cxzezxrzzez|ssreszselizxzsssssszszzes| st csszscezzzcsssczssczszescszssszezszos
1200 m v » Iv = |Q n. = = JINA W b3d SINILDIS ITVHIAY 3
: EY E m = z TTTTTeT h AN : A
: x =z : z = &O%wwmln
m m P S19viNIYYId IdAL INIWDIS ;
: = 2 : = = 38N0330ud ;
: = =z : = = NOT1INNI
m m 2 SUNAOI 1dALk INIW9IS
m = = £90°0 m 19 = Ly > Iv¥ SIN3IW93S v
szzEr=szics=z=Ses=s:=sTefress=c2zizzszzzrss=ssacz|zzs=z sss=s==x==zzzxzzo=zzex
: = = : =z 3 SIMnaow)
R R R R R R R I R N R R R S R R Y Y PR N RN E NN R WY RN N A PRy svevasrveve

Si13adse 13nposd Asejuawipng

A A AR R R RN RN YR EE NS RN NN RN TN Y] SO PIIINISUICIVIIGIIIPINRIVSIINY SUVS PO PTNISUVIOIINSOITND

] H = = I 984°0 2 1¥ > Iv > 1Q | SIONVYHY WYNO0ad!) o

C'l""'.'.‘..'...CCCCCCCCICC..CCI.C.CC‘0.....'1..'.CCCCCCC‘CCCCCOC.IOICCCCCC‘CI"'OC.C.IC

$1230se $sad’o.d ampleioqe)d

~ INO ANV 404 40 UOIEIAIIQQP UF Sy “yTy°y
WNWIXYW 404 uojleiAIIqqQe Ue S§ °*XVu
&1 SEve Y A I AL A A I I Ny N T Y T T Y AT AN]
- 150°0 : (v > fv > 14 QLL°0 : ¥ = Iv » i@ 3IN00W *Q°¥*3 SNOILYIIdwD)
e : = = 880°0 : Lv = Iv > 1q 3IN00KW 434 SNOTLVIIAWOD 3N
[H = = £00°0 2 AV = v > (¢ v
440°0 ¢ 1Iv > 14 = 1v¥ nmm.n T 1Y = 1lv > 1@ S$No 3}
: = = 220°0C ¢ 1v = 1y > 1¢ NOTLINDIX .
H E] z . H v =z v =z " vl .
H = = H = > .
m = = Wwwtw H ~(= w(> 14 NOT i¥]1dR »
. = = £00°0 ¢ 1y = Iv > la Sd431S .
ICCCGCGCCCCCC-.C‘C.‘.CCC.l....C.C!."Q!Q‘tii"ﬁ“"‘i‘ll!.'!!.."‘c.'O(CC.ICC
siJadse $$3304a Lsljuawipni
L84 3504004040008400 0440 L R X R A R AN Y N R RN R R R R R A N R N N Y Y Y YN Y R R S A R Ry
13A3) H Jmoryno 13ad} : JW0Ino
19343443 uoSjsedwod 183538 3): uos§seduwod 123dse buyewrafiosd ,
uoysJadsyp uoy jer0y [}
SIPSVPIIIPBIVIIITINVITIVISIIINONPITIVSIE VIS PIIB IO IO YO SPsevyrre (A AR LR AN AR EE NS RN NS AN NNEEN NN
*PINIPWUN 3P $SIIIASE As0)eN0)0xd S3230se AJO0lPwa U0l Iyl nuew upfiew
Ije) IY) Je sysp L9180 oup *2)1qQe) Iy) GC—uvuab-u fpLOA® O) J43pI0 UL va = \¥ = I¥
JWOIINO0 J)INU Yy 0 Irejd uy Sseddde (= =) subys yenva jo syed Iydeys v 0N
SUOESNYIIUC) Ye2pastLieds +2 ajne)

¢ 3avy

i
|
|
4
;
i

TABLE 2

0.195

4000000 20 ac 00 as so 000

-t
L «

HWHRNAENDY

ot
<« o

N HrHVY VY

-
oa o

AT < DT = A}

)] noow u "
] | BN T R W »

[8] ot w H OND

mi & I " one

-1 ol wow W [T o N =]

L& . LI T) it *h e

[~F] ot u owon [T =N~
' [T " [
0 4000 05 55 LR AR AN 04 48 205543 RS0 ST S S0 B0 PR S VDS 20 40 S4BV RV IS 60 20 84 24 Be
)] L] 1] "
] [0 IR I TR T} 0=
] <t u o ow " an«
t I "
] HHAUHEAND UV I UHHARE R EA AV IEVIRN NV
1 [) [N LR) » "
t —~t n u M Hoot=
i L] t n [[T Y-~
[} [S) W W
T O U VI T I VO (O O T O T (O T T O TR I OO TR TR TRV I XV]
] [TR " "
t L L L) 0 e
1 ar nonn W <ha
' [T 1} " "

0.051

490 00 0 00 us sr 0asres

0.065

-
<

HMuHHHNREN

-

HHHHBUNVYHED

0.078

000 00 88 06 0a ss 00 00 us

-
<<

HVvHURN NVYY

ot
<<

R HH NN

I EZZZEXT ST (ZTXSTESESI|TICTASISRTEZIETIZT ;EXZINTTET

TABLE 2

8:842

0.106

-
L4

WV N

-
<

L U T LR L T)

-
-3

]

[]

]

]

t

]

i

]

.

)

-1

<

3

LT TR RIS T U T]
)

-

a -

]

WH NN
'

- '

< |

]

STATEMENT TYPE COUNIS

STATEMENTS

-
o

.

«n

w

-3

<

-

4

w

“

x w0

™ -

-9 "

Zw

("] =y

[S -~ v

> -d

- ¥ =
Sl

Lot [aX 1ad

z w WOZ

] YRS L~)

L 3 el ded-d

Wl T O

ety B

«<

-

w

LT 4ol T Lo T T
W Z2OmE Dmaex v

R stk Sl t 1 oleT 1

Tk P v B wame (B

-— o -
2 x &
- Q -

] wow o

L T)

1O won

N AT

1w [K ol]

t sy L]

1on BoOH

] " L] "

T R LRI RTINS

[} " " L]

)it "= " u

1€y N L]]

[[[

[B I T TR I T L T T T TN TR L R I TR R TRV

] " L] "] n

=0 Wy " [

o nan " "

[N n

LI U O T O LT O LI T I O T I T T T T TR O T}

] n n H " n

14 He " "

t<n nen " 1]

L T B I 1} " "

[] " " N " "

L] u " “ “ "

L T) W »

| I TR I} " "

] it n " " L)

LI T) n "

+ W " n 1 "

] W on H ["

' W " w "]

) [1IN} [o

b= i wi it W o h

12> W n n

[V R] [T

IE N 0 0 Hnozw

t&uw n " [V

1w u []

toru2n o "o

1 o n “ i -

reurmn " W o

Il wawni " nooe=

ta o wn “ noowh

1 nEZ " 1] "

[R} H “ [T 3]

=y " " ("R

tIuEnN " " oon

w0 W n u

[S 1) Wame 3w

(VRN " noxn

L e W dZ o w

(3 SR 31} 1 g vmnm) b3

F =t N nwxnn O
ZIVAHOANANAN Lo S
&x H O HNZHNEBEZ
DI Wi W OQUOmE W
= OHNOH =P i NVON P
WU ERNN=O2T NIV WD
P ZNEH ™ WP W H O

|l whwiwn g nakaa it

1DueDduwu D nC>n 2

(I UK U - NN Lol SLUN)
¢« & & « .

95b

ot mmm e a2

U I R U B TR)

A2 U N R T

e ma 0=t e
L1 £ &4

TABLE 2
=

VHURBDNNRVYVVVHENL EARVY AN R R
MUHHURBVHEHEBDNVHRIHERBNNHE] H NS

WHRIEHUAN RNV RO}

NH RN RN

(]
]
] [ad
] <
[}

1

<

nwnnu

zZzT==2T33

9241L°0

_——— e —-—-—-

60L°0

0st°o

2210

191°0

L B TRV) LTI LI T O O T [1)
N HBNRRN OV EHER NNV N RN N NN

HH BN R UBA DOV

UMD HBUBVIEEVYHRD)

Huwuwvi

-
<

-
«<

-
<

1v

1y

1v

-
«x

2 318vi

03111 Q0K
AYININON
Q3T JIA0WND
alliicoun
AMANS
SHTvd JIVSN 1¥NLIY (TIvADTID* AN3ITIS)
S 333 T 2T 2T ZSISI SIS ZEISESISSESSZISTSZES
JINIYI SN
INIVA
2 SI9VINIINIA 3JdAl IOVSSVY ¥ILIWVAYd
S I I SIS =ZZI L3I IREEIT I SIS EIT IS =SZITESZT SIS
Iviol
$ILINVHYI

FN3WD3S Y34 SIVBY IUVA TIVA0 TONON 39VHIAY

431 4100WNN

9iljraou
AYLNINON
AMIN]
IINAOK 434 SITAVINVA TvE0TID IOVEIAY
Wi
NIy ISy
INIVA
¥313wvivd
IVAOTINON
Q31 4190MWNN
Q3111aUw
LETERET T
0314100U
AMLININON
[ERERS LT
LERERL T
A¥INY
1vgo19
2 S39VINIINIA 3d0IS INAVIYVA Viva
Iviol
3ININIIIY
INTVA
Y313IWvivd
1YG0TINON
GITJIA0WNN
allitaou
a3tiraguin
q3T4100W
ANLNINON
931410064NN
G374100W
A¥LNI
a9

$ SLNNO) 3d0IS 3INAVIHVA Viva

S319vIdvA VivY

EEZ 2222z zzZZZZXI ETIEITITTISECTEXFTTREST
INNAII0NJ
NOTLINDY

ANIW93S (AI1TYD) 43d SNOTLVIOANT °*Oay

95¢

— ey

TABLE 2

27°0

910

L AR AN RN DN

yorPEREIOSRY

[aadad
LAl
[=1=1 4
. e
[~ =]~
4666 60 0008 68 €0 0000 10 su S0 0h £0 € 0N PS Sa 2L 00 TL so M0 g

2$0°0

90L°0

M 0N GG 8048 B0 5 50 se BE GF 44 $6 00 00 40 A P2 40 ap SO NS 00 88 Sa s

i1q

A\ A AN

sovs

Ly
19

1V

-—-

1v

LA LN B NN BN

Yesv e

L dnded
<o

N HHBEVYVHU L RN NH R
1
]
]
‘

v
-
(-3

= 10

HHHuNwnwan

WV HNHHE NN

[ZRRTE I L O TR LI L

HVMHIVHE IV HE VYR

iq

1v
149
Ty

-

18

0L°0 i Iv > id = 1v¥
gLbQ 1 AV = 1V > 40
R8L°0 I (VY = tv > 1@
$91°0 F AV = 1v > 40
A
H = =
TR TERTERY
$9L°0 3 1v > 10 = 1v

s vpvpven

s123dse }2npoJd

3J9VINIIYICA IATLIYIIN 4O uOlEBLAIIQQe ue S

[E NS R INNEENTERERELNS NN

¥61°0 : 1V = 10 > 4V
: - =
$20°0 1 IV > 14 > 1Y
~m~.w :Iv > 10 > 1y
: : =
: = =
22070 : 10 = 1v > IV
T
: =z =
: z =

2 318viy

e e —m . — e - s cm AT r—— . .- - ————

IQVHIAY TIVE JYILNY B £°0
INIVA 1v]0d IVELINY D &0
39vy3IAY TIvi 3VIiNVY D 8°0
INIVA 1104 IV NNY 0 8°Q
39vdIav 1ive INLINY D 4°0
INTYa ANI0d4 INTLIHY O 2°0
I9vdIAY VIvL JV1LHY B $°0
INIYA INIO4 IVIINY B §°0
opuauu"muuw-
viQl

DONOTLIYIo WA 3ISVIQ0I-AI¥dINIS
IJva3AY TIvL IVLAINY O &6°0
INTva 4104 3VIEINY B 6°0
19v43IAY VIvE 3IVIgINV B 8°0
INTIVA 1v10d IVILINY O 8°D
I9VyIAY 1IvL JILiNY 8 L°0
INIYA INTOd IVTEINV D 2°0
I9V4IAY YIve INIINVY D S°D
INTYA IVI0d ITILNY O $°0
01=¢32:593§»
1vL08

9
v
D ONOTLY THVA 3ISVIN-Q38dINKIS

COALIXINAWO0D JTLIVHONIAD

PV IO FIVIBUNINCNSEIFIITRSIINI SPINETTISIOTIIVISIETISOVICY

anyres0qe)

-
L
..

39vd3AY 42§ uoflIBiAIS
I EEREEANERENETARERLNIEAEBRA LR SRR EEE R R AN NN RN]
431 4100uNN
. A3141Q0K
aw~&—aw:z=
aitfiaou
ANLININON
a4314100MWNA
qIT4T00M
A¥IN]
*LN3IN3d*VIY HIVL 39VSN (T1vO0TID* INIWIIS)
nu_m-oOtz:
a3lirdou
G3I41AOWNN
aITI1q0M
>c—zmzoz
dI[4IA0WN
[(ERSRE 1]

AYIN]
SHIvd I9VYSN I ISS0d CIVAOTIDCAININDIS)

- . - T -

931 4190WNN
q3lsigoum

Q3T 41QONNN

95d

pr—

TABLE 2

0.129
0.066

28 00 08 S00s 05 e 0t 00 08 00

-
< «<

KRB HEAVYN

- [
-« -]
HHMEEHENN D
[-
(= <

oo

s00 20 0500 60 se s b0 00 0s B0

NV HEW RN

Q=
(- 1 2l
-

LN 3

[t
<a

——
-« <

LI I O U I)

——
(-1 4

ESZTSEISTTITTCXXLSTEXITEL

os 0e sesane e
-
o«
(R
"

L nd
< <

n
HHVIEY
"

-
<o

0.156

0.

o5 40 05 2090 08 40 00

- - -
-

AMd A A RRd RNt dAsdatannd

TagLt 2

VO 9O
Vi N
e e
e e s oo

oCco OO0

- gy Y e Sy
dasq A

NNV Y IVVY

e Ll
oo aas

DR UV BTN U

- -
<o w<La

0,149

0.089
0,140

IFE R ERRERENTNRENENEENE N R NI

~HWCASE VAR]IATLION

VI R]
ML s D Wl D WD
SO« O DOx
-l R I DS
A€ LKW K
222325
4 « « «
- =
Lt AL DL

(= Lt)
P d b ad e b b b
1) ovet omp o st € gp g bt
P P g e e . e
CUEIZZTZXZZX
[FI L X £ 3 L L4
.

AU e e s as s
A OO0V

o
nEw
LL-L
"
"
LA

.
H
L d Lol ol o g L] -
< < K< < <
]
VIENAHBNNY WN NNV H
- -y o [d " -—
< LE & 4 o] L3
]
[N URCERS HHHeN
- - - u -
(- aco <) a
"
"EY
it
ne
no
LR 4
[
"o
nz
"o
. wWow W WD
D W D wilD W LD 1
4 I DLODXD Ll &
(=3 -0 O ol B W
- i L L L AN 4
Lo - - 2 NN
-« «® &« ®« <«
— T T~ 3 W~
& Cod R d E o wd 1)
< e L L - 4 ")
> CEO OO K it [~
SN o 1- S «
- na -
N O i ad G A W W 4
€ ddd b ddd wd N 1D -t
[I o ot g g ot et 2y || & [
[} AP e e e | &
S WIZIZITTIZT < -
- WKL LKL < 0D a
] . o
QLANTITOIOTI O N DIAww
-] " o bk dd D
@ = WAANA PR DO O e DO

DD HIBO NN

Vil
Ow
aa

-
o o
HHuwruna
Ll

< «

[RRVA N
-

< «

.

w»
-
-
-

- -
- z
Z w
-« -~
> X z
<~ -2
D e N

w zZ =
g W WD
k-4 b WS
[T [4
- 2 Wwe
e W O

E DD =
Lk Al Laliad
BOWHAAT ZWn
Lt IV 2 Y

3
"o
"o

TED TIME

PROGRAM LEVEL

1ST CALCULATION WETHOD @

I EETERENEREFNENER TR NYX]

- Y-% P TVE)

.
-
-
-
-
-

95e

CHAPTER VII .

may He objectively evaluated according to the following]
statistical princiole [Tukey 69, pp. 34-8S51]. wWhenever a
series of statistical tests (or experiments) are made, alt

at a tixed level of significance (for example, 0.10), a

corressonging percentage (in ¢he example, 10%) of the tests
are expected a priori to reject the null hypothesisS in the
conplete absence of any true effect (i.e.y, due to chance
alone)d., This expected rejection percentage orovides a
conparative index of the true impact of the test results as
a #whole (in the example, a 25X actual rejection percentage
woulZ indicate that a truely significant effect, other than

chance alone, was operative)d,

The point here may be illustrated in terms of simple
coin-tossing experiments. The nature of statistics itselt
dictates that, out of a series of 100 separate statistical
tests of a nhypothetically fair coin at the 0,05 significance
tevel, roughly 5 of those tests would nonetheless indicate
that the coin was biased; if only 6 out of 130 tests of a

reai coin indicate bias at the 0.05 level, those six results

have very little impact since the coin is behaving rather
unciasealy over the full set of tests.

This same "“multiplicity"” principole applies to the

statistical conclusions of the study, Since they represent

the cutcomes of a series of separate tests and were assumed
in the statistical model to be separate experiments. It is
apgoropriate to evaluate the location ang dispersion results

sedarately, since they reflect two separate issues

(expectency and preaictability) ot software development i
behavior. It is also aporopriate to evaluate the process ;
and oroduct results sepdrately. Finally, it is only tair to

evaluate the con*irmatory ascects as a aistinct subset of

all aspects examined, since they alone had been honestly

consicered prior to collecting and analyzing the data.

6

CHAPTER VII

uetails of this impact evaluation for the study”s
odojective results, oroken down into the appropriate
catetories identitied above, are presented 1n the following
tad>le. (This table is an excerpt from Table 3, which
brovides an extensive impact evaluation, broken down
hierarchically according to all of the various dichotomies
izgentified for the programming aspectS.) The evaluation was
verformed at the o = (.20 significance level used for
screening purposes, hence the expected rejection percentage
for any category was 20%. For each category of aspects, the

tadte gives the numoer of (nonreduncant) grogramming

asoectsy the expected (rounded to whole numbers) and actual i
nunoers of rejections (of the null conclusion in favor of a
directional alternative), and the expected and actual
rejection percentages. An asterisk marks those categories
demonstrating noticable statistical impact (i.es.y actual
rejection percentage well above expected rejection

percentage)., '

preme oo = - - - crrr e eecn) e mnncadennend e crcecad e - ----

expel acte expPo acte.
category # 8 # reje reje
rej. reje % b4
e me —————— B L L R R R A bkt o
location 186¢ 3g 5 Ce cge
orocess 10 2 3 0.8 90.8 »
confirmatrry only 6 1 6 20.0 130.0 |[~»
product 179 36 44 20.0 wbob
contirmatory only %0 12 20.0 6144 |
confzrmatory only S 18 20.0 57Te4 | »
ettt R R et R et et d
Jispersion 189 38 43 20.90 €2.8
process 10 2 2 20.8 2C.0
contirmatory only 4 1 0 <0, 0.0
croduct 175 36 41 20.0 c2.9
! confirmnatory ontly ‘ 29 5 9 ¢Ce 31.0 {»
! contirmatory only s 7 9 0.0 25.7
b == P T e e L I T R PR R T L R R Dy i etttk 3
¢ numoer of aspects
exp. 7 reje. : expected numper of rejections
act. 1 rejs = actual number of rejections
exge reje ~ 2 expected rejection percentage
acte reje % : actual rejection percentage

The taole shows that the location results, dealing with
the expectency of software cevelopment behavior, do have

statistical impact in several subcategories. Process

asacects have more impact than product aspects on the whole,

r —— e

~»

TABLE

statistical jmpagt fvaluation

Table 3.

+
1}

1]
H
"
"
[}
+
"
n
"
]
[}
i
"
+
]
"
"
[}
"
]
[}
+
"
"
nh
"
"
[}
"

s e + s s s e e s e i, e fp cantermt + + *>
(XN}]]] n] \ [] "
= CHOtOOOOODOMNODMD | VM EIMNIM | NO=IONIN HO | ONOOOOOOQO | OOMONMMMNO M | NOAMOONMNM e~ I
MULUOLI e) o 0 s 060 0 00 0| 200 060606 0 06) % 06060060 00| o6 060 060600000 © o806 000 0| 600009090 0)
JGUHDIOOONDIODON | IONINIMT e | S -NNO TN DNOOODOOSD I NN2OINDMO e § SOVMIDNO NG I
e I NITOUOMNIO OM I NS e=MMM OGN NN eEMmnMIANI N | i N (YA BA KAV AT NTONT ¥ od Y AVIR I VT NT VY NI NT g VT V1]
uoen | - - -]] H])]]
mse.qan [} [}] H)] ! "
> —— = + ——e o c—— C———— > wr—— = —— L 3 + L3

DR R]] [}] (1] ']] "
e CHOI OO0DO00DDO0 | OOOOOODOO0O0 | OOOCODOOOINQ | DOQOOOCOQO I OCODOOODOO | OOO0QOOOON
QUUIl) s 06 000 8 200 20 e 0800 0 s & 060008 0 00ill o6 606 060006000 © 00646 00 0| 0660668000l
YUV INOI 0OOOOOOON | DOOOOOOO I ONOCOOOOLIO | OOOOOOOOND | DOOOOO0DO0O0 | COOOOOOO N
(o' L X SETIN VI W VAN N NT VIOV Y NT OV NT VI BN G VT, VT ANT (N VTV E N T ¥ “ NN N I 9 “ O A ONININI N | NN NN NS) NN NN N N)
LN TR]] 0]])]
oeail)]] n []]] "
b — + Eaadanal 4 2 Xk 4 +* + +

- ol] [} § 1] [}]] "
-t Ol [} [} [} 1] []]] "
M VMM EOOM | 0N ENEe N OO ITMNeEON T N AINONCKKOOOIN | —00NOMeENO N | OONIMeENIO g I
Jeviiwn] § SN =N NeM NN Nen) 2 | 120 Ne= = MM Nee = 0§
- E i] [}] ")] [} "
v3en [} I] i] [} [H
[X]]] t n [}]] "
& —b + + ¢ + + +*

o o il])] "]]] n
Ol ']] 1] [}] ! "
VU VIO INANEerODOO e | OMNAOMENOO I NVODMeENINeE 00 | NN e =000 e | OMNOMe=NOO | NO0Me- Il v«
Qe Hm™m) 1M e = MmN = = MM 1M e - MIN e = MM
QE ‘'~ [] | 1 1]] [[]]
xJwH]] [} " [}] \ it
wc i (] [}] " I] []]
& = o + —— el el X * <+ ———

U]]] 1 n]]] "

. =i [}]] " []] [) "
U LQHOIODO NI e 00T) ONOVOIMeO I 3N et O OO0 | O N0V IO | SeMNIeng it
Qe Vit e I Ne=NIMOO O MO0 OMNIII 00) v A= MN0O ONW | AIMOAO OMWNV
EocQill | | e Ll K il [o o - e -0n
3 vn]]] H] t ¢ "
c mN] [} ¢ L] 1 §] (1]
b o + ——— ¢ — —— + +* *

n] > b N] > > [} n ! > > [} > >] 1]

i [} [S 3] e XN =X [} 1] $ [O) ! L9 S S N]]

n [] ot [L SN t O & o> | > b 1]] O QW >™ | o Ot [] b > "

"] N OQ & Ok > SN OV O) LR S N "] N QW O XN Nt OQO VO N [NS N "

[T | [YV Rl - NS] LMW OO O Ot O&> i |} “Oed>neOL] LAwDRNewsOtl O OWL>™ o

> N] M EM~ E WO VEDV EVO|I MOV O X | DENrEOWON WENEV O] Nt O QWO Nt
- " [} b b be) wheowtLbool LOE>oe0LN [T3 Wy Gy W Wy VN | ClLLwbiBe| LRIV OL
o N] cCr~Oomm~OE®™I| Cr~r0NmrOEDt OEDV~ERMON [} Cro0nrO0E®TI CrO0O®BrOERN|I SEMr»EM~ON
™m i] [T SN ISy Sy W | W o e ar b L b L Ml C [TE SIS N SR Wy W Gt i b) M bt Dl
[T] Ilwecaocax0l weCc QAO0CQr- Ol C»O0Mr~0EMIH Ol VECQOCQA~OI wECQOCQ~O0I C~O0mmOETH
o N CIlNrORDOXrww | CrOXAO0XC-a | g brwbit =] PrOXOOXw) VFOXODOX-w | G- bbbl
M N olevouesonuwaetal Jovoeonuaetcal ECQOoOCQ=0ON i vNwenuwecal dJdveduecal ECAQQOCamoN
o U~} 0D - Ox) ©> - O x| '~ OXLCOX®-al &} OD - Ox{ VI -t OX | ~OXLOONX™ah
[[VY - N [T} Vel O .1} velguvesvaeCal ol o [yual O @ velvuelsuecan
"ol [[| - Oxil At & [IS "2 - o xn
"ot a I a [[V Y wi Q [S @ van

n ol [} [} [l |] [] "

H o= [' [=] []] "

bt . e — + — i o *—_— *—-— * .

“aE kR LR

« LR B - LI B B

« *

+* * .

97a

CHAPTER VII

tut wnen tempered by consideration of tne Jdistinction
“etween confirmatory and exploratory aspects, the stucy”s
location results bear strong statistical impact for buth
oracess and product, They are better explained as the
conseguence of some true effect related to the experimental

treatments, rather than as a random phenomenon.

It is also clear from the table that the dispersion
results, dealing with the predictapility of software
development behavior, have Little statistical impact in
neneral. This is due primarily to the giminished power of
statistical orocedures used to test for dispersion
differences, compounded by the small sample sizes involved
and tne coarseness of many of the programming aspects
themselves. The lack of strong statistical impact in this
area of the study does not mean that the dispersion issue 1is
unimportant or undeserving of research attention, but rather
that it is "a tougher nut tc crack™ than the location issue,
The study”s dispersion results are still worth pursuing,
however, as possible hints of where differences might exist,

provided this disclaimer regarding their impact is heeded.

A %glaxed Differentiation yiew
As described in Chanter V1, the research framework of
possioble three-way comparison outcomes provided the bdsis
for converting the statistical results into the statistical
conclusions, This framework has two innerent structural
characteristics that may be exploited to make additional
observations regarcding the statistical conclusionse. These
structural characteristics ana the supplemental views of the
conclusions that they afforg are described here and in the

next subsectione.

The first structural characteristic is tnat each

arranged by outcome

&

Tay
for Location C(omparisons,

1
)
]
]
[]
1
(]
]
]
t
)
+
]
1
]
4
i
]
i
()
]
1]
+
]
]
1
[}
]
]
)
]
]
)
]
1
1
]
]
)
)
)
]
]
L]
]
)
1
]
[
]
]
]
)
'
]
1

pregraaming
aspect

']

Al

Non-Null Conclusions,

Taeble 4.1
[:3)

< At

outcome

comcarison ¢r i

«

™

-

r=
-
W -

L B

- X
ol « z
w e -
- - [
- G z
—-g, « [
a o -l

o

X o= &xO
-3 Z
PEZ V) I

CLixo=<

WIS XNTE X
<na <
Wi >0
Cane agc
COOC 4
o Wl b o Gl
BANN T
" CxzZ
s tad b 0 b T o i
o t dad ek LD D e
NVODIDZ it
Qo O3B

SEGMENTS
DATA VA
DA T8 VA
DA IA VA
DA 1A VA
CA LA VA

]

G

1

1

AL = O it O
O D & O~ O
OO e -
.o

« e v e s e
COOoDoT onon

15

DT < Al

A

TABLE 4

-
o
-
-
-
o
o
T
E 3
>
-~
>
«
-~
x
-
x
<
z
-
bl
2
<
-
z
-
o
o
w
o
w
>
-
-
<
-t
[
[
“
x
-
-
-9
[y
o
<
v
>
~
-
<
©
<
-
[
-
-
2
™
o
2
-
"
~

E B L etdolnd ol ad
«TAYLR «<x

—— - -

ZZ dCod ot et T

et Ot ot Gl S8 ot g vt 9t

OO0« LD

G O 2 it b e O, P pa)

-

-l
A e L i W Mg b b v
ol el P) e ol b b P
oy ot Tt 2ot oy it T
o~ o P B B o
ZEZZTOXZRXZZD

OGGOOGOOOO

U\N '-OU\N I:OOQ
. .

ODO/OOQOO’

T
Ower v + T r wrr T
—~
EFOZXTmITZ 2R T~
VOO O”OO QOO
ERICTaTY (LY STy 4
D o e e o e 0 P e o ot
- KA EARCcaLR
by e ot O, ot . g gt ot
rEEXEDEE XXX

T N NONINTRINSEC

wn EZTTIATXEZZTZ S
-~ AN NN
w~~ anoaboosan
T O O U b s s i o i e
e I I T LT X X 11 ¥ 4
F AT NN L -
il A G AE GO0 &
t<<<#lt:tl:tttt
DI Lt v o = O
M-uummmmuvuuuu
" -
UEERS o & P P PP
[- T,
WA GO I P e e
a - e O o e
AU N 1o o ot s P g et g
NE T T AR M IR M M XK
OO O Ow Wl Wik W W st bl ad
Z ot o) e)) o nd b
b b e W AG O Do S 0. O QGO 3
fTwaxs TEXXEXXEIZY
WU R WO D D000 0000
OO Qi bk P Wi) DD
«>> >0
BT XD e e) b el
ot et oy et 0t o St Bt o 2 e et
1 v = e B e e e e
W WA A AL
VOCUDEXETEL LS T
a«gaxa OO0O00COQOOO
X X o ad b) ot d et
Sy 0) o) o Pt N d o o) Nt
- Lt b ettt otatatatat
P Y (M O O T pe T)

COO »OWAN OMWAE o 7 OO
OO O CHO A B0 DWW AP0
——————Q———————c
.o

QQCQQOOOOOQOOQO

Al < DY Al
0.154
Al < AT 10

[R

CALL \ INTRINSIC
S

¥
INTRINSIC

3

€

]

Q= I
o rr <
Gt 002
b o ok PO
———r— AV -~
P Twieid

WD -
EIXAE=-=x«<TY w
el MV P WO S X
ot O) ad h LD
LI R S B e
" EER e
NNNND = b =

20 MV QOO MR D O
P~ DO IO O
SO Ovme o~

R
[~ ~1=1-To] [l

98a

15

AT

DT < Al

TXRTrETTT
CoC ooo
v T e o
=y O -
" ot
a4 S gt = = 2y
DEXTAx&
AEg gt ma X<
O>2>E>I>>

ON \ UNIQUE

on

-

-3 l-2~1-271-1~ %]
ek D OZ dod d Z b d d
—muD K&ty

COoWrIwoOTER XEX X
LA L &YW - -9 - NN 9
-t aadcata

D2V WO OV UL W
S Q0NN
OO A n amss® o o o2 o & P
LfoZwaa
BTV e
T e o
O O =t ot st st o
NANABAN L L =
QGO AL O OWW W
o M) o bt e o st o 4 o o
- o [NSNS
VANNANWWELILITE T
D20000Q000
CODRDDO OV
QOO0 ~em
e e B e R R B
D D e ot et
a&xmax e
ok vl i bl i) I A o o K X
e SOEE NS TS
2233202« E£00000CO
2E0ALL A Tt St
L L Ad s vl ww o
[=1-T-YT-1-B 8 33 5 % % -3
o e Ak Wt W K P W e

AN = ARE N a2 O NIA
O NI D WV =O D+ 7O QO
ODO O Ormrmm e O -

s e e0 04 a0
COLOEOOOLOODO0C

0

[N

= AT < D1

Al < AT < oY
Al < pt < a1l
" < o1t

NIRY

\ LNIRY \ MOD1IFIED

\

-
[

KT,GCLODAL)Y USAGE

SEGMENT,GLO{-AL) USAGE
SiGne

{
{

~e

-
..

[=1=]

At

trequency of occurrence for each comparison cutcome

PREGRAM (HANGIES

0.1

cotumn recorcs the

0T < AT < &}

2 this

arranged by outcome

TAgLE &
for Dispersion (omparisons,

non-tnul t Conclusions,
pruograamin
259!(1 9

" feiset B et

Table 4.2
= pt

outcome

comparison cr

TABLE 4

LE POINT WVALUE

0
]

uz—<u

1
3
R
1]
]
¢
1c
COMPPRED-NCASE VARLIATION \ 1,9 QUANTILE POINT VALUE

1
€
€
§
<
STEPS \ MISCELLANEOUS

D10 A I - Qun
- BT T
e (X et - OO =

KA - ZCL LT =
POPWwwwWEI W Te«T

_——r X e LU
K KA OCTIT ™
QOL Ot W

~

CNZOXOmO D=0

NG OO N NAQ

00--— —r——— DOOC
IO 3

QCIO ocouo ODUO

pr < Al

AL < A

AT

Al

AT < o7

Calol~]
oD
-
.« o

[o]=T=)

AT

Al

[l |

VOV
O(w@f”-
Er o= =

O s A= ==
A S O e o D
O 0 & G om X M

WK

[l R Ll PRV g

- -t O Qe
ZwdxE T XX
wO K20 D0D
z DCO\JUUQ
O=QJ

“w Jauuuu

Ve D g e &

Z - ——
WWWT x LZ
CL O £ln
CWwxLOOOE
E e D et A
- o
S ey U
CNC— G~

OO NO DN
Fd <2 #= W g G OWN
D O— ~—e——

“ e s s 4 s e
CLOOoOOLOCo

98b

NIRINSIC
1F1¢0

£\
\ MO0

EDUR
IRY

4
AL \ NONEN

\ NONINTRINSIC

RINSIC
) SEGMENT \ PRO
\ GLOR

OY < AJ AT
= AT < D17

Al

s

&&AIIII
o rZZTZT2Z

AOIE T X S

< -
anaa,——np—
oWV vinn
domemnv———
O Tiadbed ad s
[CIV RIS P g
r—rrdd aa
z e A U AT
WNVNZZ T F i o s
X e =i i) A i et s mnemn
o A A e e
0 DA O (5 et v e
€O QW it s o P oo
Wl OAOZZTZET
v P
WeAW W DD 33D
@& oLl LI OCO
wo OO OO
&uwuuuwuuww
IV UL U oo
v TZTITZXI=
L i bt Va1 vl e A s A
Mk ot ik e o Ot 8 et
2030 DOV DI
Ow Ma & of IV VWA
P et bt 0t Sy
LA T Iy
WA AL LT IZX
0>>>> D aa - <

3X2323
u((-(€
— - ——

P AL KOO OLOC
<O RAAS OV VIVIAY

O ~f AN NG ON DO
OO AW v N
Ll adal=1=d>T of=T e o

4 s ve e s s s
OOOOC oo LCCS

\ NONENTRY \ UNMODIFILED

Al < AT < DI
Al < pT1 < al

(=1~

-
L ¥-14

v wvwv

-——
Qa«x

vvv

OR ANY ONE MODULE

URK

1ONS
rel

-

MA sl MUM UN
STavEMENT

tath comparison outcome

for

frequency of occurre

the

DT < AT < A}
this column records

CHAPTER VII

conpletely differentiated outcome is related to a specific
cair ot partially differentiated outcomes, as shown in the
tattice of Figure Z.1. Ffor example, Al < AT < DT, a
conpletely differentiated outcome, naturally weakens to
either Al < AT = DT or Al = AT < DT, two partially

differentiated outcomes.

gach completely differentiated outcome consists of
three ocatrwise differences (AI < AT, AT < DT, Al < DT in the
examplel), while each partially differentiated outcome
consists of only two pairwise differences plus one pairwise
egquality (Al < DT, Al < AT, AT = DT and Al < DT, AT < DT,
Al = AT in the example). The "outer”™ difference of the
conpletely ditferentiated outcome (Al < DT in the example)
is common to both partially cifferentiated outcomes, while
each gartially differentiated outcome focuses attention on
one of the two "inner"”™ differences (AI < AT and AT < DT in
the example) to the exclusion of the other “inner"
difference which is “relaxed" to an egquality. Within a
statistical environment or model which places a premium on
claiming differences instead of equalities, a partially
differentiated outcome is a safer statement, containing less
error-prone information than a completely differentiated
outcome, Since these outcomes represent statistical
conclusions, the same data scores which support a completely
differentiated outcome at a certain critical lLevel also
suoport each of the two related partially differentiated

outcomes at (ower critical levels.

Thus, every completely differentiated conclusion may
also pe considered as twdo (more significant) partially
ditferentiated conclusions, each ot these three conclusions
having equal ana complete statistical legitimacy. The
"outer'" difference of 3 completely differentiated conclusion

isy ot course, stronger than either of its two “inner"

993

CHAPTER VII

differences;, obut the strengths of the two "inner"
differences (relative to each other) will vary in accoroance
with the gata scores anae indeed are reflected in the
sijnificance levels of the two corresponding partially
differentiated conclusions (relative to each other). Tables
Sel and 5.2 give the agetails of this "relaxed
differentiation" analysis for each of the completely
differentiated conclusions found in the study, ana an
tnylish paraphrase appears in the two paragraphs immeaiately
belowe AlLL of the partially differentiated conclusions
listed in these tables shoulad be acdded to those presented in
Tadoles 2 and &; they deserve full consideration in any
analysis or interpretation of the study”s finagings.

Howevery in the case that one of a partially differentiated
pair is noticeably stronjer than the other, it is fair to
consider only the stronger one for the purpose of analysis
or interpretation dealing primarily with partially
differentiated outcomes, since the study is mainly concernz2g
with the most pronounced difference affordea by each

asdect”s data scores.

un location comparisons, four programming aspects
yielded completely differentiated conclusions. They are
“relaxed" to partially differentiated conclusions as
foliows:
e From DT < AI < AT on the PROGRAM CHANGES aspect, the
0T <€ AI = AT conclusion cwarfs the DT = Al < AT
conclusion with respect to level of significance.
2. The DT < AT difference is more pronounced than the
Al < OT difference from AI < DT < AT on the LINES
aspecte.
T AT < DT < Al on the (SEGM™ENT,GLOBAL) USAGE PAIR RELATIVE
PERCENTAGENENTRY aspect is more approoriately "relaxed®
to the AT < pT = Al conclusion than to the AT = 0T < Al

conclusion.

PUPSO VT IUCIIIIIIIGISIIIIVSIIBIIVIIIGSITISIEIEY PUYSPII TIPS IIUIVIIPINIIV I IV IVIITIISVEITIIFIINIINRIRIIIISY
. . I's

9¢1°0 : 1Yy > v = 14 : QITAIQOWNN \ AYLININON \ SHIVY
f otL°0 1¢ = 1v > 1Iv 221°0 3 1v > 10 > iy I9¥SN 118ISS04 (IvI0T19¢ 1NINIIS)
-mo.c S LY > v = 40 H
020°0 : 10 = 1v > 1V 250°0 3 AV > 10 > 1V SYIvd 39¥YSA 1181SS04 (1V¥H0T19* INIWD IS)
6£L°0 2 LV = LIv > 14 H -
$00°0 : 1v > Iv = 14 6€L°0 ¢ LV > 1Iv > 14 NYOLIY \ SINNOD IdAL ININILVLS
180°0 = av > Iv = 10 : 370004 IND ANV ¥OJ
€00°0 3 AV = Iv > 149 160°0 ¢ v > Iv > 10 SNOTAVIIdWOD ITOINN WAWI XYW
vCCCOCCCCCICCcC e CCCCNCCCC POPVIT VG UIGIOITTOIVIPIUSISIV IV ISP IPIIVIIRIRIIISISTS
1983y ¢ Jwo3jno 1dA3y @ JwoI3ino
12434432 uosiieduod 103434432 uOoSgIeduo)d
TTTTTTSuopsmysuos |7 T Tuojsaysues 173dse Bujuweisbosd
vouoﬁacuuo--u palegiudiaspp
Aj1e4 1400 Aydyrajdeod

PUSTVSITSVSU IV I RIPITIV IR SIIVIIVEIIISS

PSPPIV TSIV ISP IVIISSVIPUIIOISSVIIIIIIVESINY IEIEY ssp o e

SUOSJIRdNO) UOLSIIASEQ JO) UOLITHIVIIISSEQ PIXRYIY 2°¢ d1qey

TABLE 5

."......“‘.‘.....'C.'..‘-."'...W'I PR PPPIPVVIVSUITIN OIS SIPIUTI SISV STIEFIIY RO Y s epPOVY
°q : IV > = 1y : Q33140 ANLND ViNID¥3d
g Py s s £21°0 2 IV > 10 > 1V antav13s b1 %90 dsh? 14723237 1ANA34Y
§48e0 3 Ly > 19 = 4 2 AWINT)\ 19VINII W34
0°0 : IV = 10 > iV L01°0 ¢ IV > 10 > AV IALLVIIN ¥Ivd 39vSD (1v30197 INIWD3IS)
S0LL°0 % 10 = &V > IV :
190°0 : 1v > 1v = 10 6LL°0 : LV > 10 > IV SINIY
981°0 2 IV > IV = 44 :
£00°0 : 1v = Iv > 10 ¥91°0 ¢ 1v > Tv > 10 SIINYHI WYY 0¥d
. C.'Iﬂ [AR XX A2 -'."C"d“ (IR X AR AR AR YN (AR NN X) I XA ENI NI AR RS LR NN Y X)
19A9) 4 3903)Nn0 1373} H 3WOIINO
Y1e341443: uOSiIedWOD 1€3431449: vosjiedsod .
-u----mmmmmmummmm----uo Tt uoysny3wes T 1720se Bujwwes60)0
palejiualajap palegivaiagiyp
Ay)y19)3aed Aya331dw0)

I 2RI F AR RN I R R A Y R R R RS A A A A R R R R R R R R R R R A NSRS N R R X A XA R AR RS RS AR AR AN AR R A A A A N 2N

SUNS}JEPdE0) LUOL IR0 JO) UOIICFIVAIANSNQ PIxEBIAY ¢ d)Qe;

¢ 336vy

diten ” C o -

e AT

CHAPTER VII

4, Tne AT < DT and 0T < Al differences from AT < DT < Al on
the (SEGMENT,GLOSAL) USAGE PAIR RELATIVE PERCENTAGE\N
ENTRY\MODIFIED aspect are equally stronge.

On dispersion comparisons, four programming aspects
yielded completely ditferentiated conclusions. They are
“relaxed” to partially differentiated conclusions as
follows:

. The DT < Al difference is much more pronouncec than the
Rl < AT gifference from DT < Al < AT on the MAXIMUM
UNIQUE COMPILATIONS FOR ANY ONE MODULE aspecte.

2 From DT < Al < AT on the STATEMENT TYPE COUNTS\RETURN
aspecty the DT = Al < AT conclusion dwarfs the
DT € Al = AT conclusion with respect to level of
significance.

2. Al <€ DT € AT on the (SEGMENT ,GLOBAL) POSSIBLE USAGE
PAIRS aspect is more appropriately "relaxed® to the
Al € AT = DY conclusion than to the DT = Al < AT
conclusion,

4, The Al < DT difference is more pronounced than the
DT < AY difference from Al < DT < AT on the
(SEGMENT,GLOBAL) POSSIBLE USAGE PAIRS\NONENTRY\
UNMODIFIED aspecte

A directionless View

The second structural characteristic of the possible
outcome framework is that the outcomes may be classified
into another closely retlated set of directionless outcomes,
as shown in the lattice of Figure 3.2. For example,

Al <€ AT = 0T and AT = DT < Al, two directional partially
differentiateo outcomes, both correspond to Al # AT = DT, a
nonairectional partially differentiated outcome, ALl six of
the directional completely differentiated outcomes

correspond to the single nongirectional completely

- et an. Ant ittt St ikt " i

CHAPTER VII

1itferentioted outcome Al # AT £ DT.

sy emphasizing just the existence and not the direction
ot gistinctions between the treatment groups, these
directionless outcome categories focus attention on tne
orizginal research issue of discoveriny which observaonlie
praogramminag aspects differentiate among the three
prosramming environments, In particular, there are tnree
nonairectional partially differentiated ocutcomes (each of
the form "one group different from the other two which are
sinilar™), and it is noteworthy to observe just what set of
srogramming aspects supports each of these basic
distinctionse (Table & is arranged so that the directional
distinctions Listed there can be readily cocalesced by eye
into girectionless categoriess) It is revealing to note
that, with one exception, the directiontess distinctions on
location comparisons segregate cleanly along the process-
versus—product dichotomy line: all of the product
cdistinctions fall into the Al # AT = DT or AT £ DT = Al
categories, while the process distinctions consistently fall
into the DT # Al = AT categorye. Interestingly enough, the
one exception is that a number of the cyclomatic complexity
metric variations (which are product aspects) show the
DT # AI = AT directionless outcome (which otherwise

characterizes only process aspect distinctions).

Individyal Hightights

The purpose of this concluding section is to point out
what seem to be the "top ten" (well, eleven and nine) most
noteworthy conclusions from among the study” s opjective
results. These conclusions are interesting individually,
either because the programming aspect merits attention or
because the difference in its expectency or predictability

is pronounced (as indicated by a low critical significance

CHAPTER VII

level) in the experimental sample dJdata.

Noteworthy logatign distinctions are mentioned belowe.

1. According to the DT € Al = AT outcome cn the COMPUTER
JCB8 STEPS aspect, the dgisziplined teams used very
noticeably fewer computer job steps (i.e.y, mcdule
compilations, program executionsy and miscellanecus joo
steps) than either the ad hoc individuals or the ad hoc
teams.

2. This same difference was apparent in the total number of
module compilations, the number of unique (i.e., not
identical to a previous compilation) module
compilations, the number of program executions, and the
number of essential job steps (i.esy unique module
compilations plus program executions), accoraing to the
0T < Al = AT outcomes on the COMPUTER JOB STEPS\MODULE
COMPILATION, COMPUTER JOB STEPS\MODULE COMPILATION\
UNIQUE, COMPUTER JO3 STEPS\PROGRAM EXECUTION, and
COMPUTER JO9 STEPS\ESSENTIAL aspects, respectively.

. According to the DT ¢ Al = AT outcome on the PROGRAM
CHANGES aspect, the disciolined teams required fewer
textual revisions to build and debug the software than
the ad hoc individuals and the ad hoc teams.,

4s There was a definite trend for the ad hoc individuals to

comMgentsy Compiler directives, statements,

ha{ produced fewer total symbolic Lines (including
declaxgations, etc.) than the disciplined teams who
producéd fewer than the ad hoc teams, according to the
Al <€ DT < AT outcome on the LINES aspect.

Se According to the Al < AT = DT outcome on the SEGMENTS
aspect, the ad hoc individuals organized their software
into noticeably fewer routines (i.,e., functions or
procedures) than either the ad hoc teams or the
gisciplinea teams.

%« The ad hoc individuals oisplayed a trend toward having a

103

- i 1 e

CHAPTER VII

1 yreater number ot executable statements per routin?
thon 0id either the ad hoc teams or the disciplineo
teams, according to the AT = DT < Al outcome On the
AVERAGE STATEMENTS °PER SEGMENT aspect.

W
=~

. Accoraing to the CT = A] < AT outcomes on the STATEMENT
; TYPE COUNTS\IF and STATEMENT TYPE PERCENTAGENIF

r aspectsy both the ad hoc individuals and the
aisciplined teams codead noticegply fewer IF Statements
than the ad hoc teamns, in terms of both total number

ana percentage of total statements.

N3]

. According to the DT = Al < AT outcome on the DECISIONS
aspecty both the ad hoc ingiviaguals and the aisciplinea
teams tended to code fewer decisions (i.ee, IF, wHILE,
or CASE statements) than the ao hoc teams.

9 Zoth the ad hoc teams and the disciplined teams declarec
a noticeably larger number of data variables (i.e.,
scalars or arrays of scalars) than the ad hoc
individuals, according to the AI < AT = DT outcome on
the DATA VARIABLES aspecte.

13 According to the AT = DT < Al outcome on the DATA

VARIABLE SCOPE PERCENTAGES\NONGLOBAL\LOCAL aspecty the

ad hoc individuals had & larger percentage of local

variables compared to the total number of declared data
variables than either the ad hoc teams or the
gisciplined teams.

1. There was a slight trend for poth the agd hoc
ingividuals ang the disciplineg teams to have fewer
potential data bindings (i.es, possible communication
paths petween segments via global variables, as altlowed
by the software”s modularization) than the aa hoc
teamsy according to the DT = Al < AT outccme on the
(SEGMENT yGLOBAL,SEGYENT) DATA BINDINGS\PGSSIBLE dspecte

nNoteworthy dispersign distinctions are mentioned below.

1. There was a noticeaole difference in variability, with

.

.l

be

CHAPTER V11

the disciplinea teans less than the ad hoc individuals
less than the ad hoc teams, in the maximum number of
unique compilations for any one moauley according to
the DT < Al < AT outcome on the VMAXIMUM UNIGUE
CCVMPILATIONS FOR ANY ONE MODULE aspecte.

The ad hoc individuals exhipbitea noticeably greater

variation than either the ad hoc teams or the
aisciplined teams in the number of miscellaneous job
steps (1e€ey auxiliary compilations or executions of
something other than the final software project),
according to the AT = DT < Al outcome on the COMPUTER
JOB STEPS\MISCELLANEOQUS aspect.

According to the DT = Al < AT outcome on the AVERAGE

SEGMENTS PgR MODULE aspecty the a hoc individuals and
the discipolinead teamns both exhibited noticeably less
variation in the sverage number of routines per module

than the ad ho¢ teams.

According to the DT = A]l < AT outcomes on the STATEMENT

TYPE COUNTS\RETURN and STATEMENT TYPE PERCENTAGES\
RETURN aspects, the ad hoc teams showed rather
noticeably greater variability in the number (both raw
count and normalized percentage) of RETURN statements
coded than both the disciplined teams ang the ad hoc

individuals.

In the number of calls to programmer~defined routines,

the ad hoc individuals displayed noticeably greater
variation than both the ad hoc teams and the
disciplined teams, according to the AT = DT < Al
outcome on the INVOCATIONSANONINTRINSIC aspect.

According to the pT <€ A1 = AT outcome on the DATA

VARIABLES SCOPE PERCENTAGES\GLOSAL\NONENTRY\MODIFIED
aspect, the disciplined teams displayed noticeably
smaller variation than either the ad hoc individuals or

the ad hoc teams in the percentage of commonplace

(i.e., ordinary scooe and modified during execution)

'J’l..-l.!-lll-.-HlI-lll-lHHlWl!!!H-l-."E!ll!’ll-!-l-llﬂﬂlﬂﬂﬂﬂ-f* :. :

CHAPTER VIl

3lobal variables compared to tne total number of data
variabtles aecldared.
7 The ad ncc individuals displayey noticeanly less

variation in the nunber of formal parameters passecd by

reference than botnh the ad hoc teams and the

gisciplineg teams, accoroing to the Al < AT = T
outcome on the DATA VARIABLE SCOPE COUNTSANONGLOSALN
PARAMETER\REFERENCE aspect,
e, According to the Al € DT < AT outcome on the
(SEGMENT,GLOBAL) POSSIGLE USAGE PAIRS aspect, there was
a noticeabie Jifference in variability, with the ad hoc
indiyiduals less than the disciplinead teams Lless than
the ad hoc teams, for the total number of possible
segment-3global usage pairs (i.eey OCcurrences of the
situation where a global variable coula be modifieac or
accessed by a segment).
9. According to the DT = Al < AT outcome on the
(SEGMENT ,GLOBAL,SEGYMENT) DATA BINDINGS\POSS13LE aspect,
the ad hoc teams tended toward greater variaoility than

either the ad hoc individuals or the disciplined teams

in the numper of potential data bindings,

CHAPTER VIII

This chapter reports the interpretive results of the
stuady, namely the research interpretations based on the
conclusions oresented in Chapter VII., The tone of

discussion here is purposely somewhat subjective and

opinionated, since the study”s most important results are
derived from interpreting the experiment’s immediate
fingdin3s in view of the study”s overall goals. These
interpretations also express the researcher”s own estimation
of the study”s implications and general import according to

his professional intuitions about programming and software.

The interpretations presented here are neither
exhaustive nor unique. They onty touch upon certain overall
issues and generally avoid attaching meaning to or giving
exolanation for individual aspects or outcomes, It is

anticipated that the reader and other researchers mignt

tormulate additional or alternative interpretations of the
study” s factual findingsy using their own intuitive

judgments.,

Tao distinct sets of research interpretations are
discussed in the remainder of this chapter. The first set
states general trends in the conclusions according to the
hbasic suppositions of the study. The second set states
general trends in the conclusions according to a
classification of the programming aspects which reflects
certain abstract programming notions (es.ge, COSt,

modularity, data organizations, etc.).

Acgording to 8asic syppesitions

The study”s "basic suppositions” (or "hypotheses”™) are

CHAPTER VIII

a et of simpleminded a oriori expectations regaraging
differences among the experimental programming environments
for location ang dispersion comparisons on process anc
prasuct aspects. These basic suppositions are stated in the

following table:

b, Bl R R +
vasic Supoositions | for Location |for Dispersionl
| Comparisons | omparisons
E R R D R e e R R e m e - - - —- e e - - - +
|l on Frocess aspects | DT < Al = AT | DT < Al = AT |
DR e e st R D R et PR R Y it +
] oT = A1 < AT | DT = Al < AT
] on Product Aspects or or
AT <€ DT = Al AT < DT = Al
T R pmmm— e ————— e —m e, rr— e, ——————-—- +

The pasic suppositions are founded upon 'general
beliefts' regarding software phenomena, w«which had oteen
formulated by the researcher prior to conducting the
exd2eriment, These general peliefs state that
(a) methodological discioline is the key influence on the

yeneral efficiency of the process;

(o) the disciplined methodoltogy reduces the cost and
complexity of the process and enhances the
predictability ot the process as well;

(¢) the preterred direction for both Location and dispersion
Jitferences on process 23spects is clear and
undebatable, because of the familiarity of the process
aspects and the direct applicapility of expected values
and vartances in terms of average cost estimates and
tightness of cost estimates;

(a) "mental cohesiveness™ (or conceptual integrity [3rooks
75, ppe 41-50]) is the key influence on the general
quality of the product;

(e) a programming team s naturally burdened (relative to an
individual programmer) by the organizational overhead
and risk of error-prone misunderstanding inherent in
coordinatinag and interfacing the tnoughts and efforts
o' those on the teamn,

(t) the disciplined methodolosy induces an effective mental

CHAPTER VIII

conhesiveness, enabling a programming team to behave
more like an individual programmer with respect to
conceptual control over the program, its design, 1its
structure, etcey because of the discipline’s
antiregressivey comolexity-controlling [Belady and
tehman 76, D, 245] effect that compensates for tne
inherent organizational overhead of a team; and

(5) the nreferred direction for both location and dispersion
gifferences on oroduct aspects is not always clear,
recause of the unfamiliarity of many of the product

aspects arnra a3 general lack of understanding regarding
the implication of dispersion for product aspects.

In view of the general beliefs and basic suppositions
statec above, eath possible comparison outcome (cfe. Figure
3) may be regarded as "votin3" either for or against a given
hasic supposition (or as "abstaining™), depending on whether
that outcome would substantiate or contravene the
corresponding general beliefs, For process aspects,

(1) outcome DT < Al = AT obviously afftirms the

supposition;

(2) outcomes DT < Al < AT or DT < AT < Al, which are
completely gifferentiated variations of the
supposition”s main theme, indirectly affirm the
supbposition, especially when DT < Al = AT is the
stronzer of the corresponding partially
ditferentiated outcome pair;

(%) outcome Al = AT = DT may negative the supposition,
or it may be considered an abstention for any one
of several reasons

(it is possible that (a) the aspect’s
critical tevel is not low enough, so it
defaults to the null outcome; (b) the aspect
reflects something characteristic of tne

acplication/task or another factor common to

ChAPTER VIII

all the jroups in the experiment; or (c) the

aspect measures something fundamental to
software development phenomena in general ang
would alwsays result in the null outcome); and
(4) all other outcomes -- AI < AT < DT, Al < DT < AT,
47y < D7 < Al, AT < Al < DT, Al # AT = DT
(Al < AT = DT, AT = DT < AI), &7 # Al = 0T
(AT < pT = Al, DT = Al < AT), and AI = AT ¢ DT =--
negative the suppostion.
] For oroduct aspects,
(1) outcomes AT # DT = Al (AT < OT = Al, DT = Al < AT)
obviously affirm the suppostion;
(2) outcomes A] < 0T < AT or AT < DT < 4@, which may be
consioered approximations to the supposition (DT
A is distinct from AT but falls short of Al, Jue to
lack of experience or maturity in the disciplines
4 methodology), indirectly affirm the suppcsition,
‘ especially when DT = AI < AT or AT < DT = A]

(respectively) is the stronger of the

4 corresponding nartially differentiated outcome
‘ pair; !
i
(3) outcome Al = AT = DT may negative the supposition, i

or it may be considered an abstention for any one

of several reasorns
(it is possible that (a) the aspect”s
critical tevel is not low enough, so it
defaults to the null outcome; (b)) the aspect
reflects something characteristic of the
application/task or anotner factor common to
all the groups in the experiment; (c) the
aspect measures something fundamental to
software development phenomena in general and
would always result in the null outcome; or

(0) several of the study”s hit-and-miss

collection of exploratory proauct aspects are

CHAPTER VIII

aguds and may be ignored as useless software
measures);

(4) outcomes Al < AT < CT, AT < Al < DT, DT < Al < AT,
and DT < AT < al negative the supposition;

(S) outcomes DT # Al = AT (DT < AI = AT, Al = AT < oT)
negative the suppostions, especially discregiting
the belief that "mental cohesiveness™ is the key
influence on the product;, and

(4 outcomes Al # AT = DT (AI < AT = 57, AT = DT < A])
negative the supposition, especially discregiting
the betief that discipline methodology effectively

molds a team into an individual.

Thus, interpreting the study”s findings accordiny to
the pasic suppositions consists of assessing how well the
research conclusions have borne out the basic suppositions
and how well the experimental evidence substantiates the
ceneral beliefs. On the whole, the study”s findings soundly
suoport the general beliefs Lresented aovove, although a few
conclusions exist that are inconsistent with the pasic

suppositions or difficult to allay individuatlye.

Support for the general beliefs was relatively stronger
on process aspects than on product aspectsy and in (o0cation
conparisons rather than in dispersion comparisons,
Overwhelming support came in the category of location
conparisons on process aspects in which the research
conclusions are distinguished by extremely low critical
tevels and by near unanimity with the basic supposition, 1In
the category of dispersion comparisons on process aspects,
only two outcomes indicated any distinction among the
graups: one aspect supported the study”s general beliefs and
one aspect showed an explainable exception to theme. Fairly
strony support also came in the category of location

conmparisons on product aspects for which the only negative

CHAPTER VIII

evidence (hesides the neutral Al = AT = DT conclusions)
acodeared in the form of several Al # AT = DT conclusions.,
They ingicate some areas in which the disciplined
methodology was apparently ineffective in modifying a team”s
behavior toward that of an individual, probably due to a
tack of fully geveloped training/experience yith the
methodologye. Comparatively weaker support for the study”s
beliefs was recordead in the category of dispersion
comparisons on product aspects. Although the basic
sudpositions were borne out in a number of the conclusions,
tnere were also several distinctions of various forms whicn

contravene the basic suppositionse.

Thusy according to this interpretation, the study”s
¢indings strongly substantiate the claims that
(C1) methodological discipline is the key influence on
the general efficiency of the software geveiopment
processy, andg that
(C2) the disciplined methodoloyy significantly reduces
the material costs of software development.
The claims that
(c3) mental cohesiveness is the key influence on the
general quality of the software development
proguct, that
(C4) relative to an individual, an ad hoc team is
mentally burdened by organizational overheaac, and
that
(25) the disciplined methodology offsets the mental
turden of organizational overhead and enables a
team to behave more like an individual relative to
the software product,
are moderately substantiated by the study’s findings, with
particularly mixed evidence for dispersion comparisons on
product aspects.

*1>

CHAPTER VIII

It shoula ve noted that there is a simpler, better-
suoported interpretive model for the location results alone,
Wwith the beliefs that a disciplined methodology proviaes for
the minimum process cost and results in a proouct which in
some aspects approximates the product of an individual and
3t worst approximates the product developed by an ad hoc
team, the suppositions are DT < AI,AT with respect to
process and Al < DT < AT or AT € DT < Al with respect to
oroduct. The study”s findings support these suppositions

without exceptiones

1%

fccorging to fBrogramming=Aspect Clagsification

It is desirable to examine the study’s findings in view
of the way that higher~level programming issues are
reflected among the individual programming aspects. For
this gpurposey, the aspects considered in this study were
grouped into (so-catled) programming aspect classes. Each
class consists of aspects which are related by some common
tfeature (for example, all aspects relating to the program”s
statements, statement tyoes, Statement nesting, etce.), and
the classes are not necessarily disjoint (i.e., a given
asoect may be incluged in two or more classes)s A unigue
higher-level programming issue (in the exampley, Control

structure organization) is associated with each class.

The programming aspects of this study were organized
into a nierarchy of nine aspect classes (with about 13% i

overlap overall), outlined as follows:

CHAPTER VIII

nigher-level Programming lssye: Class:
Jevelopment Process Efficiency
Effort (JOb SteoS) s o ® . . I
Errors (Program Chances) « o« o « » o II
Final Product Guali ty)
Cross Size ., & e o o s o o s o s o III
Control - Construct Structure + « « o o 1V
Data Variable Orjanization e o o o o V
“odulartty
Packaaing Structure e o o o o s o VI
Invocation Organization e o o o o VII
Inter-Segment Communication
Via Parameters , e o o o o o s o VIII
via Global Vvariables o « o o o &+ + IX

The individual aspects comprising each class, together with
the corresponding conclusions, are Listed by classes in
Tasles 6.1 through 6.9+ For each aspect class, it is
interesting to jointly interpret the ingjvidual outcomes in
an overall manner in order to see something of how these
higher-level issues are affected by team size and

metnodological discipline,

Ctass I: g£ffort (Job Stepns)

within Ctass I (process aspects dealing with COMPUTER
JO3 STEPS), there is strong evidence of an important
difterence among the groups, in favor of the disciplined
methodology, with respect to average development costs. AsS
3 class, these aspects directly reflect the frequency of
computer system activities (i.e., module compilations and
test program executions) during development. They are one
possivle way of measuring machine costs, in units of pasic
activities rather than monetary charges. Assuming that each
conputer system activity involves a certain expenditure of
the programmer”s time and effort (e.g., effective terminal
conrtact, test result evaluation), these aspects indirectly
reflect human costs of development (at least that portion

exclusive of design work).

The strength ot the evidence supporting a difference

with respect to location comparisons within this class is

TABLE 6

PRIV IVBIIININIIVIIEISIEISIISY

Y > Iv > 410

¥ 1S0°0

crmccccmn-

18

v
-
[

iv

woaunww

$EIIVIIVSIISISIBINIE LY
w03 no

uosS jJedwo)

uoysI30syp

SEIIIIIEINIRIICIVIIIIOIIOTY

(s0e1s

BPCTIIBISTIIIIOIIINIIOINISGY

[Z 2 X A A A R A X R R AR X2 R A R X

L 4
joquis
P

PISPUVPISFIIIIPIVSIIIISY
814°0 % Lv = Iv > 10
§80°0 ¢ 1v = 1Iv > 14
£00°Q 1y = v > 14
?94°0 iv = Iy > {0
220°0 v = tv > 14

= =
t10°0 1v = Iv > 1q
220°0 iv = v > 14
£00°0 ¢ v = Iv > i@
PSPV NPISIUBOIPIEITIIIITEEY
13Ad3) ¢ as03}no
193434433 wuvos} sece0)d
uoj ieso)
JEZASAEEEANANREERE R AR NN Y]

GOf) 1403)3 *[sse}) Jo

9 3tavi

POV OETSAISGIPISVTBINIS I PIPIUIIITIIOINISITIIIGY

[Z RN ERREANEER SRS RS R RS NSRS X R AN YY)

9 4l ®4A PIVEILPU| IIUIPUOASIII0I)
PaInE®as Oupnoys (§ 2)1Qef WOJsj) SUOESNIIUOT aALIeUII e

INO ANV HO4 40) UOCHIRjAIIqQQGe UL S§ °*0°V°)
WNWIAVYW 20§ UCLIELAIIQQEe Ue S§ °*XVMN

I Yy R I R NSNS NNV TR
JINAON *0°V°J SNOTLVIIAWO) 3INDINN °*XVW
3INGON ¥3d SNOLLVIIJIWO) 3INRDINN I9VHIAY

N T T T
w:sz<Jqum“t

PRI ITIIIITIEIITISITESLS

V33adse Bujwwesboasa

PGS VISBIGIIIITUVSIPTINUVIIIOIIOTITIRUDIIPIOEES

} SuO§sSNIIUG) |9 alqey

CHAPTER VIII

hasec on both (a) tne near unanimity [8 out of 9 aspects) of
the °T < Al = AT outcome ana (b)) the very low critical
tevels [<.025 tor 5 aspects] involveds 1Indeea, the single
exception among the location comparisons (Al = AT = p7 on
COMPUTER JOB STEPS\MODULE COMPILATIONS\NIDENTICAL) is readily
exdlained as a direct consequence of the fact that all teams
maje essentially similar usage (or nonuse, in this case,
since icentical compilations were not uncommon) of the on-
line storage capability (for saving relocatable modules and
thus avoiding identical recompilations). This was expected
stnce all teams had been provided witn identical storage
cacabpility, but without any training or urging to use it.
The conclusions on location comparisons within this class
are interpreted as demonstrating that
employment of the disciplined methodology by a
programming team reduces the average costs, both
machine and human, of software development, relative to
toth individual programmers and programming teams not
employing the methodologye.
Examination of the raw data scores themselves indicates the
magnitude of this reduction to be on the order of 2 to 1
(teeey SC%A) Oor betters

with respect to cdispersion comparisons within this
class, the evidence generally failed to make any

distinctions amony the groups [AI = AT = DT on 7 out of 9

asoectsl. These null conclusions in dispersion comparisons
are interpreted as demonstrating that
variability of software development costs, especially
machine costsy, is relatively insensitive to programming
team size and degree of methodological discipline.
The two excegctions on individual process aspects deserve
mertion. The COMPUTER JOB STEPS\MISCELLANEOUS aspect showed

a BT = DT < Al dispersion distinction among the groups,

reflecting the varijanility (as expected) of individual

Lre e e

i ——r

CHAPTYER VII1I

projrammers relative to orogramming teams in the area of
tuilcing on-line tools to indgirectly support software
development (eosgey Stanit-alone mocdule drivers, one-shot
auxiliary computations, table generators, unanticipated
dedujyging stubs, etce.)s The MAX UNIQUE COMPILATIONS F.A.0.
MIDULE aspect showed a DT < Al = AT dispersion distinction
amon; the 2roups at an extremely tow critical level [<.,C0S53],
reflecting the Lower variation (increased oredictability) of
the Jisciplined teams relative to the ac hoc teams ang
individuals in terms of "worst case"” compilation costs for
any one module. The additional Al < AT distinction for this
comngarison is attributaple to the fact that several teams 1in
aroup AT built monotithic single-module systems, yielaing

rather inftflated raw scores for this aspecte.

Class lI: Errcors (Program Changes)

within Class II (the process aspect PROGRAM CHANGES),
there is strong evidence of an important difference among
the groups, again in favor of the disciplined methodology,
witn respect to average number of errors encountered Juring
imolementation. Chapter V contains a detailed explanation
of now program chanyes are counted. This aspect directly
reflects the amount of textual revision to the source code
during (postdesign) development. Claiming that textual
revisions are generally necessitated by errors encounterecd
while pbuilding, testing, and debugging software, ingependent
research [Dunsmore and Gannon 77) has demonstratec a high
(rank order) correlation between total program changes (as
counted automatically according to a specific algorithm) and
total error occurrences (as tabulated manually from
exhaustive scrutiny of source code and test results) curing
software implementation. This aspect is thus a reasonable
measure of the relative number of programming errors

enccuntered outside of design work. Assuming that each

TABLE 6

VEBPIIVIIVIIIIVIIISISISPIVIIVISIIS 4444 AL R X XX I XA X2 A R A R S R R X X R R R X R PR Y Y
“ ¢
q

(XX A R A S R R A R R R NS RSN NN X} VYIIOUIIIUISIIITIUSUIIUSIITIPIVISSIITIIIOIITNLS

. m e ’vcm JIUIpu0as iy
SUOLIRY U »

qe 04)) SUOESNIIU0)Y AjIPUIIY)E

SV IIUIIVININIIIISIIIVISIOY (2 A2 XX R R R A R R AR RN R A A R N E RN Y P R YN N]
! : 2 = -l | SIINVNI NVYE90Ud)
SOSIVRIPR IS I UIPISIVIVIVSIITRY SOV IUPIIISIUSIOIITIVIUIIIITVIISNICISOGEIREY

1380 H IO} NO | K UIOU:_O

193434432 Uosjse0w02 iel UoS| Jeduod 133ds¢e bujwwesbosd

uoysI30sEp 1e30)

SIVSIIISVIIINIVISIIOISIIVIISOISEYTSY .Q.QCG.CQOCCCOGCCGCCCCCccCCCIO.CCIOCCCOCOOCCOI'.cc...c.

(Sa0URY) w8 iBOsq) $10113 S[] SSE|) JOj SUGINIIUC) 2°9 ajqey

9 3lavi

CHAPTER VIII

textual revision involves an expengiture of programmer
effort (eegey planning the revision, on~line editing of
source code), this aspect incirectly reflects the Level of

hunan effort devoteu to implementation.

with respect to tocation comparison, the strength of
the evidence supporting 3 difference among the groups is
basec on thke very low critical Level [<.,0CS] for the
DT < Al = AT outcome. The additional trend toward Al < AT
is much less pronounced in the datae. The interpretation is
that
the disciplined methodology effectively reduced the
average number of errors encountered during software
implementation,
This was expected since the methodology purposely emphasizes
the criticality of the design phase and subjects the
software design {(code) to thorough reading and review prior
to coding (key=in or testing), enhancing error detection and

correction prior to implementation (testing).

with respect to disoersion comparisony, no distinction
among the groups was apparent, with the interpretation that

variability in the number of errors encountered auring

implementation was essentially uniform across all three

programming environments considered.

Class 1II: Gross Size

within Class II11 (product aspects dealing with the
arass size of the software at varijous hierapchical leyels),
there is evidence of certain consistent differences among
the groups with respect to both average size and variability
of size. As a classy these aspects directly reflect the
nunber of objects and the average number of component

(sub)objects per object, according to the hierarcnical

TABLE 6

SISV VIIRIITIVIIIISIIINGSE
PPV IIBIIIEIITININITIIINNIOS

tuoylepiualayy

PUPISEISIIPISIIIISIIIIIRIIES
.

: 3
mama > 1Y = 1y
SI¥Y = 10 > 1y
H = =
- llllllmlllln M -
90L°0 m 10 > 1y = v
: = =
221°0 : 10 > 1v = v
H = =z
llillillmllllﬂlillﬂlllo
: =z =
H =z =
: = £
: =z Y
lllllillmllliﬂl‘||“|0ll
$20°0 : Lv > Iy = 10
H 3 =
SISV IVIV eIV IINIISILY
KLY] H Jwo)dno
193334232 UosSjseduod
uosaadsyp

PIOFIIISIIPIVYOIVIBIISIIEINIIGY

Ct.tdt‘d.c.cc.ccct..“..
‘g : 14 v > Iy
“ mw».m : i n fv = 30
XA R A A A A N T T Y Ny
jogqess 9 au« C4A PIIEIY
P pIxe)ds Gupnmoys (¢ 2}

P L L L T ey

. E] =
H = =
¥ o6lL°0 m iv > 10 > 1Iv
m = =
421°0 % 10 = 1¥ > v
. t 3 E 3
uem.m 230 = 1V > IV
690°0 19 = 1V > Iv
PYSupuRy Jip unlo |-|nll
L0 10 = 1v¥v >» Iv¥

Iv > 10 =)1V

L0

(Z A2 A 22 A R R A A R R A N R E R N PR RN YN RR NN R R N 'Y

(A A4 XA A R A A A A A R R R R R AR RN RN N RN RN Y S X 0

vy 0“‘03‘00'&55°Uv
€] w0Jj)) SUOYEN)IU0D aAgjeusdy e
....‘.....C.‘..““..."..“‘.“....'.'.I..C'...‘C'.C'..'....'..
:] = SNINOL
INIWILVLS ¥Id SNINOLE I9VYYIAY
SINIWILVLS
SINIDY
I
¥3LInvilvd
TVEBOTINON \ SINNG) 3403S I1OVINVA ViVO
WAoo \ SINNO) 3403S 319vINVA vive
SIV18YINVYA viva
Twviey
¥31INV BV
ININD3S ¥3d SITNQVINVA TVEOTI1INON FOVHIAY
ANIN92S 434 Mh2uluuthnwwwuuwwm

16 = 1v > Iv

.
.
e
.
H
-
H
-
:
-
1
-
H
-
H
-
H

E 3 E d
= =
= -
234 XE) (344334001
1aAay ¢ e jino
18243443 UOS|sedw0)
uoy jel0Yy

TVYIOSPIBIPISIOSIPSITEFIOIBIISSY

37000w 834 S3TBVINVA TVBOTI9 39VNIAY
37N00M ¥3d SINIWIIS 39VHIAV
S3Vnqom

139%0se bujswesvosn

(2 AR 2R AN R R A A A R X A R A R A A R R R R R A NS N AN N]

23S $5049 Il $SP)) 40} SUOIENIUO) §°9 2}1qQe}

9 378vVL

Y N

CHAPTER VIII

orsanization (imposed by the programming language) of
software 1nto objects such as modules, segments, Jata

variavles, lLines, statements, and tokens.

with respect to (ocation comparisons within this class,
the non-null conclusions [7 out of 17 aspects] are neorly
unanimous [5 out of 7)) in the Al < AT = DT outcome, The
inter,retation is that individuals tend to produce software
which is smaller (in certain ways) on the average than that
proouced by teams. It is unclear whether such spareness of
exoression, primarily in segments, global variables, ana
formal parameters, 1s advantajeous Or note. The two non-null
exceptions to this Al < AT = DT trend deserve mention, since
the one iS Onty nominally exceptional and actually
susportive of the tendency upon closer inspection, while the
other indicates a size aspect in which the disciplineg
methodology enabled programming teams to break out ot the
pattern of distinction from individual programmers. The
AT = pT < Al outcome on AVERAGE STATEMENTS PER SEGMENT is a
sirple conseguence of the outcome for the number of
STATEMENTS [AI = AT = DT] and the outcome for the numoer of
SESMENTS (Al < AT = DT] and it still fits the overall
pattern of Al # AT = DT on Llocation difterences on size
assectse On the LINES aspect, the 0T = Al < AT distinction
breaks the pattern since DT is associated with Al and not
with AT. Since the number of statements was roughly the
sane tor all three groups, this difference must be due
mainly to the stylistic manner of arranging the source code
(which was free-format with respect to line boundaries), to
the amount of documentation comments within the source code,
and to the number of Lines taken up in data variable

declarationse.

with respect to dispersion comparisons within this

classy, the few aspects which Jo indicate any aistinction

11¢%

CHAPTER VIII

amang the groups [S5S out ot 17 aspects] seem to concur on the
A] = AT < DT ocutcomes This pattern, which associates
increased variation in certain size aspects with the
disciplined methodology, is somewhat surprising and tacks an
intuitive exolanation in terms of the experimental
tr2atments. The exception DT = Al < AT on AVERAGE SEGVENTS
PER vODULE s really an exaggeration due to the fact of
several AT teams implementing monolithic single-module
systems, as mentioned above. The exception AT < DT = Al on
STATTMENTS s only a very slight trena, reflecting the fact
that the AT products rather consistently contained the

larjest numbers of statements.

Une ogverall observation for Class Il is that while
certain distinctions did consistently appear (especially for
location put also for dispersion comparisons) at the migdle
tevels ot the hierarchical scale (segments, data variables,
lines, ana statements), no cistinctions appeared at either
the highest (modules) or (owest (tokens) Llevels of size.

The null conclusions for size in modules and average module
size seem attributable to the fact that particular
programming tasks or application domains often have standard
designs at the topmost conceptual Levels which strongly
influence the organization of software systems at this
highest level of gross size. In this case, the symbol-
tasle/scanning/parsing/code~generation gesign is extremely
conmon for languagze translation problems (i.e.y compilers),
rejaroless ot the particular parsing technique or symgol
tasle organization employed, and the mogules of nearly every
system in the study directly reflected this common design.
The null conclusions for size in tokens ¥s interpretatle in
vies of Halstead”s sottware science concepts [Hatsteaa 771,
accoroing to which the program length N is predictaole
$rom the number of basic input-cutput pdarameters nz* ang

the language level A . Since the functional specification,

CHAPTER VIII

arolication area, and implementation language were all fixed

in this study, Doth nz* and X should be constant for

each of tne software systems, implying virtually constant
crosram lengths N « gince program length N can be

rezarcgea 3s roughly equivalent to the numpber of tokens in a

program, the study”s cata seem to support the software

science concepts in this instance. |

Class IV: Coptrgl-Construytt Siructure

e

within Class IV (proguct aspects deatling with the
scfteare”s organization accorgding to StatementSy CONSTrucCtSy !
T
and control structures), there are only a few distinctions }
i

maje Detween the Jroupse.

with respect to location comparisonsy the few [5 out of f
24] aspects that showedg 3any gistinction at all were
unanimous in concluging DT = Al < AT, Essentially, tnree
particular issues were involvede The STATEMENT TYPE COUNTS\
IFy STATEMENT TYPE PERCENTAGES\IF, and DECISIONS aspects are
att related to the frequency of programmer-coded gecisions
in the software product. Their common outcome DT = Al < AT
is interpreted as demonstrating an important area in «hich
the ¢isciplined methodology causes a programming team to
behave Like an individual programmer. The number of
decisions has been commonly acceoted, and even formalized
(“cCave ?76), as a measure of program complexity since more
decisions create more paths through the code. Thus, the
disciglined methodology effectively reduced the average]
conplexity from what it otherwise would have been. The
STATEMENT TYPE COUNTS\RETURN aspect indicates a difference
between the ad hoc teams and the other two groupse. Since
the {XIT and RETURN statements are restricted forms of
GoTOsy this difference seems to hint at another area in

which the disciplined methodology improves conceptual

127

e 1t o v B oS g e . - ————

soNy yreBVERY PTSOEIIENIITINIIINIIVYVY ssVvePrPEISY sevVIISITIOEINBELD
149 —

149

PSOBIPIVIOVIIVISISETSY (A A2 X X2 (A2 22 2 XA X4 CUIFPIIVPIUBESISITIVIIIBIOIOINIIIYS

L g
1oquis 3 Unu C4A PIVICILPUL IIUIPUOASINIO0))
[

n:o..-.:o.u—." pane)ds Ouynoys (¢ 21QR] wWOJj) SUOESNIIUCD IAjJeUII] e

CSEIUSIIDIVIPIIEIIISIEISIIIIIRIISIIR CITPBEVIIFIUISIIIFOSIIYY L 344
= = H = = IS
= = 3 = = JISNIUININON
: ot : . s $1Iv) NOTLINNG
= = 9¥L°0 : v > IV = 14 SNOTSI)30 .
= = : = = TIAIT ONTLSIN INIWILVIS 39VN3IAY
Ve 1v > v = 10 : = = N NN]
: PoL SEIHT S
= = : =
w : : : 2 * __fw.wo:. S
@ = = : = = 1Ix)
< Do I 1
(> = = 90L°0 : AV > IV = 10 4
= = . = = =3
: 2 SIVVINIIYIL 3dh) INIWILVILS
1¥v > 1v > i@ 2 1Y > IV = 20
= = S iv > Iv =« 314
LYy = Iv > 44 : * =
1¥ = Iv > 10 : = =
2 = H E 3 =
= = H * =
= = 3] =
= s ¥20°0 ¢ iv > Iy = 10
= = : =]
m 2 SLINNO) 341 EINIWILVLS
s61L°0C Iv = 14 > 1V H = = SINIWILVLS
FIVSSOIGVIIIIIIIOIIINIIGY (X XN YA R A R N Y A A X S R A A R A Y R N Y A R Y N Y Y R N R T Y Y]
IELED] : Jw03 N0 1382 : Jmo3)no
1234133423 woOsSjIRCEO) LEIRYR LS :ou-~n00u 133dse Ougewesbold _
ucyssaosip uogjjesro
SOPUVOIIIVISINIIIIOIGIVIISUIIDIY LA R L XY] seseV ey sePPONINS PSPV ISV NIIIIOIIIOINISIEY _

21N31INIIS JINIISUOI-10STUD) *Af SER)) JO) SUOYISN|IV0) a0 I Qe

9 31Ev)

LRI

CHAPTER VIII

control over program structure. The STATEMENT TYPE CCUNTSN
(PIOCICALLVINTRINSIC aspect also indicates a slight trend in
the area of the frequency 0of input-outout operations, which
seems interpretable only as a result of stylistic

ditferences.

with respect to disoersion comparisons, only two
carticular issues were involvede The STATEMENT TYPE COUNTS\H
RETUR!, ano STATEMENT TYPE PERCENTAGE\RETURN aspects both
indicated a strong DT = A] < AT difference, suggestiny that
the frequency of these restricted GOTOs is an area in which
the disciplined methodology reduces variability, causing a
programming team to behave more like an individual
cragrammer, The STATEMENT TYPE COUNTS\(PROC)CALL and
STATEMENT TYPE COUNTS\V(PROC)CALLANONINTRINSIC aspects both
showea a DT < Al = AT distinction among the groupsy which is

dealt with more appropriately within Class V11 below.

In summary of Class IV, the interpretation is that the
functional component of control-construct organization is
largely unaffected by team size and methodological
discipline, probably due to the overriding effect of
croject/task uniformity/commonality. However, two facets of
the control component that were influenced were the
frequency of decisions (especially 1F statements) and the
trequency of restricted 50T7T0s (especially RETURN
statements), For these aspects, the disciolined methodology
seems to have altered the size of the program”s control
structure (and reduced its complexity) from that of a team”s

proguct to that of an individual”s producte.

Class Vv: paga Variaple QOrganizatign

within Class V (product aspects dealing with data

variasoles and their organization within the software), there

121

TABLE 6

e Sinats i

PP EPIILI VI ISIIIIVIIIGNIIEIIEY
: =

= =
= =
B =2
oty > [= (4
z z
= =
= =z
= =
254°0 = 1Y > 1Y
260°0 > 1v = 1V
§S0°0 > 1lv = 1V
$20°0 > LY = IV
. =
= z
120°%0 = Iv > 14
=z =
= =
= =
= =
§20°0 > Av = IV
= E 3
610°0 = 1Y > 1V
= 2
y0L° G > 1y = 1V
: =z =
H 2 =z
H =z =
H = »
H = =
: = =
: = =
: = =
z 2
14 > 1v = |V
E 3 =
*svssesevssves
W0 1IN0
J€341¢443: UOS|ieOWO)D
LIS FELEFY]

y2i°0

cmmaecn-

0Ly

ust*u

L21*0

191°0

40 08 00 00 20 so 00

183434432

¢V yvysvssVIIY

= =
14 = v > 1¥
t =
t 3 =
E 3 =
3 =
= =
E] t]
> 10 = }v¥
k J =
= E]
= 1¥ > 1V
= =
z z
= =
= =
= 3
t] =
= t 3
E J =
= =
z =
= 2
= t 3
t 3 =
= v > IV
= =
= =
10 = vy > 1V
E 3 =
k 3 E J
= -
= t]
- =
= =
19 = v > 1Iv

10 = (v > IV
[ey
2903300

EOu*..ﬂlOo

uojiero

SPFOUPIIVOIVS PP IVIUP TIPSR ISTIVIETVIIRSIIITIIIVISEY

uojlPTyuUEBIQ I1QRICA € jeg

9 3avi

e gr—— ——

T Y T Y T R P YY YRRy Y]
w301
[ZVSCIR 1L
AN3WI3IS ¥3d SINOVIHVA TVAOTIINON I9VHIAY
9314100WNN
Q31i]100M
LMLININON
ANIND
3ING0N 834 SIVAVINVA Iva0T19 IIVNIAY
vion
FJININIS TN

)

-
axox
O Jx
£ oVa

-]
-
Qm O

DEr QL =S ik od
2
Q
z

W e O

- em emed W O

- QOO W

,OXRMOww =D
»OTTOX-OKEK «
XL DWED=ODX >

inld
Tvaop19
2 S3I9VINIINIY 340IS INAVvINVA vivae
w0
IININIINY
n

azxox
-
z
o
x

Q
-
e O™
W W o
=z
[-]
z

o
"
-3 -3 L0 I P

»OXZRXRO XK
EE DWE D=OD >

N3
WE019
$ S1INNO)Y 34008 3VaVINVA vive

e L R el e T T L TR T T

S3vavisva vive

VOSSP CIIBRIOTPIUIBIBITTUITIIITIIVIIOVOIUTOIIEDS

. 1%3dse Bujweesbosd

CA SSE)) 20} SUORSNYIUG)

VST IIVIBVICSUIUTIOIPINIIITRIIOIDIIVEITOIIEGTSY

$°9 3qny

121a

L S,

CRAPTER VII]

ars several distinctions among the groups, with an overall
trend for both the location and dispersion comparisonse.
~ata variable organization was, however, not emphasized in
the disciplined methodologyy, nor in the academic course
which the participants iv grgoup 0T were taking. with
rescect to location comparisuns, Ll ascects showing any
distinction at all were unanimous in c¢oncluding

Al # AT = DTe The trend for indivicuals to differ from
teams, regardless of the disciplinegd methodology, appears
not only for the total rnumber of data variaoles declarec,
hut also for data variables at each scope level (global,
parameter, Local) in one fashion or another. The difference
regaraing formal parameters is especially prominent, since
it shows up for their raw count fregquency, their normalized
osercentage treguency, and their average frequency oer
natural enclosure (segment)., With respect to dispersion
conparisons, the apparent overall trend for aspects which
show a distinction is toward the Al = AT < DT outcome. No
particular interpretation in view of the experimental
treatments seems appropriate. Exceptions to this trend
apoeareag for both the raw count and percentacge of call-by-
reference paramenters (both Al < AT = DT), as well as two

other aspectse

Class VI: Packaging dtructure

snithin Class V1 (product aspects dealing with
mogiularity in terms ot the packaging structure), there are
essentially no distinctions among the groups, except for two
location comparison issues. Most of the aspects in this
class are also members of Class 111, Gross Size, but are
(re)considered here to focus attention upon the packa,ing
characteristics of modularity (i.e., how the source code t5§
divided into modules and seyments, what type of segments,

etcede The disciplined methcdology did not explicitly

-
-

1¢

TABLE 6

l.“CCIC'CCCCC.CIC.CC'..CCC.I...CCCCCCCCCCC..CCI=C'C..IC.C.CC.1¢...CCCCCC..C...C"

=
v > Iy =z 14

Jwo3}ino
43! UOS|ie0w0)d
uoysidasip

CIGSSSPITIIIVTIVIVINVIVITNIVITIIITITITEINSOITTUOPITPIPIIIVITIVICICITUISOIINTIOIISTIBINIITIITIORIUSTSITY

2iNYINILS bupbeydeg *JA SSe)) 40) SUOESN)IU0)

s vsvVIIIIOISTIIIS

"L
024°0

.o
1382)
1834249

19 u
1v v

3 v Iv

10 = v

PSSOV PIVITEOIUICIIIIVII IOV IVIVIVIIDOISIBIVIIVNIITIISIBIISIIISITRTY

Je031no
3¢ uosiIedwod
:o-.ouo-

9 3vavi

122a

[X3
w)
¥3L3nvy
INFWIIS ¥3d _S2TIVIYVA TvHOIONON 39
ININ9IS ¥3d SINIWILVIS 39
340033084 \ SIIVINIINIJL 3dAL UN
NOTLINNS \ SIIVINIINIL 3dAL IN
340037084 \ SINNO) 3dAL LN

NOILINNS \ SINNOD 3dALl IN

SININDIS

L T R e el LT TP PP ey

IINAON ¥3d SITAVINVA 1vA0T9 I9VUIAY
31nA08 434 SINIUTIS I9vEIAY

$3ITINgow

(3
01
vd
YU3IA
v¥IA
IN93
3493
Iu93
Iu93

BOOD ! wws
ANV | KX

Jl203e BujeweisbBorq

9°9 3lqe)

CHAPTER VIII

include (nor did group 0T°s course work cover) concepts of
modularization or criteria for evaluating good mogularity;
hence, no particular distinctions among the g3roups were

exdected in this area (Classes VI and VII).

aith respect to location comparisons, the Al < AT = DT
outcome for the SEGMENTS aspects, along with the companion
outcome AT = DT < Al for the AVERAGE STATEMENTS PER SEGMENT
asoect (as explained under Class 1il above), indicates one
area of packaging that is apparently sensitive to team size,
Individual programmers built the system with fewer, but
targer (on the average), segments than either the ad hoc
teams or the disciplined teamse. The Al < AT = DT outcome
for the AVERAGE NONGLOBAL VARIABLES PER SEGMENT\PARAMETER
aspect indicates that average “calling sequence”™ length,
curiously enough, is another area of packaging sensitive to
team size. With respect to dispersion comparisons, there
really were no differences, since the single non-null
outcome for AVERAGE SEGMENTS PER MODULE is actually a fluke
(raw scores for AT are exaggerated by the severatl monotithic
systems) as explained abovee The overatl interpretation for
this class is that

modularity, in the sense of packaging code into

segments and modules, is essentially unaffected by team

size or methodological discipline, except for a

tendency by individual programmers toward fewer, lLonger

segments than programming teamse.

Class VIl: Invocation Qrganization

Wwithin Class VII (product aspects dealing with
mojularity in terms of the invocation structure), there are
t4o distinction trends for location comparisons, but no
clear pattern for the dispersion comparison conclusions.,

This class consists of raw counts and average—-per-segment

JOVYIAY 40} UOQLIPIAIIQQE UE S} °*IAY

(A X XXX 22 S22 S R R SR RS R AN N R RN RE R A RS R R RN SN RN FR TR RS RN R R YRR R RSN R NN RS S R RN SN RN Y 0 3
© 340 i IV » 10 > 1 0 i gy > 10 = 4y NoliaNng
. H = > =
i il : * H mz.m : T 3 1d: »c ININ93S (43VTvI) ¥3Id m..o:cﬁ».: ‘9ay h
~ : : s ! = a IISNIULNT o
;q 3 = = 691°0 ¢ Iv > 19 = gv :mz“:z_:oa
< $90°0 2 AV = [v > 10 H s = u“m.. yiNg .
— : = 4 : = = JISNINANINON
: = =z 3 2 s 34933004 4
H P = H s s JISNTNINE ,
s = = : ® = u:.:.:.w..o.. :
: = * : x . NOILIND} !
: - = 3 = . ANIN9IS (INIVIVI) u3d SNOTLVIOANT °9AV [
L - R R R R R R R - e e bl B b T TR T R R R TR RN 2 R T T T gy 1
: = = £%0°0 3 1v > tv = 149 IPSNIUEINT i
LS0°0 = IV > 14 = v t a = yisulSiu] RO !
: = = £24°0 2 1v > v = 10 IISNTULNT !
omw.m S 1y = IV > 19 : 2 s JISNINLNINGN :
280°0 : 1Y = Iv > 14 : = = u.:ouwo:
H « = b4 = = JESNTINLIN
: 2 z H E = JISNINININON
: = = s = = NOTLINA
020°J0 : IV > 10 = AV : ~ : SNOT1VIOANT
[Z 2 A 22 A A A R R R N R I Y N T R N Y R N N Y R R N NS N R R R TR RN N R RN RSN TR Y N A
1383) H w0 N0 | ELX D] H 2803110
1932434438 uos| Jedwo)d 102434432 uosj Jeasod 1J220as¢e a.:llnsocnn
uogsiaasyp co.-oou .
PR YN Y R R I RN RS A R R R N N R R N R I A R R T A A A R R N N R Y N N RN R R N P Y N PR N R Y YN NN RN

UOLITZIURDJI(0 UOJITICAUL *I[A SSE)) 40} SUOESAIIUG) 2°9 a)qe}

9 3vaviy

CHAPTER VIII

freguencies for invocations (procedure (CALL statements or
tunction references in expressions) and is considered
sedarately from the previous class since modularity involves
not only the manner in which the system is packaged, out
also the frequency with 4hich the pieces might be invoked,
fFor the raw count frequencies of calls to intrinsic
procegures and intrinsic routines, the trend is for the
individtuals and disciplined teams to exhibit fewer calls
than the ad hoc teams. These intrinsic procedures are
almost exclusively the input-ocutput operations of the
languayge, while the intrinsic functions are mainly data type
conversion routines. The second trend for location
comparisons occurs for two aspects (a third aspect 1is
actually redundant) related to the average frequency of
calls to programmer~defined routines, in which the
individuals display higher average frequency than either
tyoe of team. This seems coupled with group Al”s preference
for fewer but larger routines, as noted above, With respect
to gispersion comparisons, several distinctions appear
witnin this classy but no overall interpretation is reagily
apoarent (except for a consistent reflection of a DT < Al
difference, with AY falling in between, lLeaning one side or

the other).

Class VIII: Ipter-Seamepnt Commynigagign yia Parameters

within Class VIII (oroduct aspects dealing with inter-
seyment communication via formal parameters), there are only
a few distinctions among the groupse With respect to
location comparisons, the total frequency of parameters and
the average frequency of parameters per segment both show a
difference. The interpretation is that

the individual programmers tena to incorporate less

inter-segment communication via parameters, on tne

average, than either the ac hoc or the disciplined

124

TABLE 6

904°0

(XX XX AR
19A3)
IISIYES

' uoyss

PP ST ISIBIVIISIOIOIIIIENGY

JOVUIAY 40 UOLIREAIIGQE UR S} °*IAY

(22X X2 XA 2 A R A R A R R X 2 A R R R A S R RN N0)

= M IINIYI4
s = INVA
: $3I9v NIJNId 3dAL IOVSSVJ NIt IWVEV
1@ = v > v ¥31IWVuvd
P ANIWDIS ¥3d SINBYINVA IVEOIINON °9AY
. = IINIYILIY
2 . INTVA
2 10 = v > 1V ¥3iduvavd
s I IYEOTINONASLNNOD 34025 ITAVINVA vive
ccccc-ctccccccccuccotctccccCCC.COCCICCCCICCCCCCOCCCCCCCc...cccc.....GO.CC..
03)no I ELX I IR Je03}no
uosjieowod 183434428 uosj 10080 13308e Czallluoo-n
on-wv :o-aouo-
SUBVISPEIIOIBITOVEIVIISL (AL R NS RN R R A A A R RN RS R A R ER RN YY)

Si3l3eeied CIA U0 JEIJUNENO)

9 3avy

CTITA SSe@)) 20} SUOESMIIVO) g*9 d)qe;

124a

CHAPTER VII1

programming teams.
with respect to dispersion comparisons, in adaition to the
difference in the raw count of parameters referred to in
Class v, there is a strong difference in the variability of
the number of call-by-reference parameters, also apparent in
the percentages~by-type~of parameter aspects. The
interpretation is that

the individual programmers were more consistent as a

group in their use (in this case, avoidance) of

reference parameters than either type of programming

team,

Class Ix: Jnter-Segment (ommunicatign via Glopal Yaciables

within Class IX (product aspects dealing with inter-
segment communication via glooal variables), there are
several differences among the groups, including two which
indicate the peneficial influence of the disciplined
methodology. This class is composed of aspects dealing with
absolute frequency of globals, average freguency of globals
oer module, segment-global usage pairs (frequency of access
paths from segments to globals), and segment-global-segment
data bindings (frequency of communication paths between
segments via global variables).

#ith respect to location comparisons, there is tne
A] < AT = DT gistinction in sheer numbers of globals,
oarticularly globals which are modified during execution, as
noted in Class V. HOowever, «hen averaged per module, there
apoears to be no distinction in the frequency of globals.
The A] € AT = pT difference in the number ot possible
seament-global access paths makes sense as the result of
grouo Al having both fewer segments and fewer globals. ALl
three groups had essentially similar average levels of

actual segment-global access paths, but several differences]

cocvmmne concsencocsvenlccscvana erserccovcoveme | ccrerrnrmrcrrccrccccrcvr s v v r e cc e e

e

WNN

¥$4°0 1

: ff1-8

covcelovncenana

<
"
-
-
-
<

k)

-

<<
(A A A NN
-

- T-]

| okt

L L 9

AuiNg
CININSISH

[A AN NENR NN

*AN3I¥3I4° 13N dlvd 39YSA (O

931
(]
a3l
q
v

L
o«
o oy
«xo

a3
Q3

HUBHNVVERIANDOREN DN UNN

VHEHNAVYVAVHREANROUHE AN
IR NN NN NN]

o> 10> 1y | 22100

10 = 1v > v S¥lvd 39vSN 3171818804 (O

=
Iv = 14 > ¥
=

a
-1 .:
125a

o
-
e mten WO een mem WIO = Wwew

COrLOOm| J LOFrLwOO™mIiJ warwd
MOE=MOWR | U =OEX=OWK | O mMOER=O

Win W OID W W DID Ww wWe

A¥AINI
Sulvd 39vSn T¥NLly (IWADT9*IN3INOIS)
= = a3 4100WNA
= = a3fsleom
a = ANININON
s = AYLIN]
= - IINA0W ¥3Id SITBYINVA TIvEOT9 ISVU3IAY
= = 031 21q0uNR
19 = 1v > Iv e3T4100K
s

TABLE 6

crcmccae- cnccecone

-
o
]

k3
LY > Iv
=

AULING
1y IVE0T9 \ SINNG) 340IS 3IVEVINVA vivd

PISPIIITTINIOIVIITIVISIVITIVIVSIPIIIBIOIVIOISISS

224°0
(XX XXX]
1983)

1q
seo

LR
(X 3

BavHUUNUNWNNN
-
-

v

ver

-e
-«

t
H
t
:
:
t
9
$

3

-]
Qe a
L& 2.1
- e

122411422 uOsS|Iedw0)d] uosjiededd 123dse Bujwweas80i0
uoys230s}p uog1e20
SUITPCUBIINIVIVOICIISIVISIPIVIIOITIN PIISVIPQUIICIIINOIVIIIIIOUIIIONIVISIOIETIIITIISIIILS

S21QejieA 1¥QO19 EJA uOjleIjUNEEN) ¢x] SSe)) 20 SUOISNIIVO) 4°9 I\1qe,

? 3lavy

e o A o ame. s Sina, ey

TABLE 6

_m 3it:g
GELRR

Sessvseey

| s

>
=

t 3
E 4

1250

2442 A 2 2 A AL A A AT X I 2 R I R Y R N R T Y KR RO Ny

°°!
Y] " u‘

N
L
(=1~}

(22222 AR R R R 2 A A R X R A R R N R A R R Y R R R R R N N R Y Y Y Y R R R e

A pIledypu) 22U3PpuadsIiiod
e1'aat? —u:o-nnuuewu.ou.

I9vIN3IB3IJ IATLYIIY 40 uogIesAIIQqe U S) °*IN3II¥IJ®TIN

CC'CCCCIC.C.CCCC..C..COCC.CC‘IC.IIC.CCCC.‘CCC'.ICCCCCCCCC.C.CCI."ICC.CCC (A3 22 X2)

19YINIINI4 IALAVIIN

[A2 N]
400 a4 sa s
[N A4
[N NN]

SONIANIB VIVD (1N3WD3S* VA0

s ——

CHAPTER VIII

acsear in the relative percentage (actual-to-possible ratio)
catejorye. These three instances of AT < DT = Al aifferences
{indicate that the degree of "globality" for global variables
was higher for the jndividuals and the disciplined teams
than for the ad hoc teams. Finmally, another AT # DT = Al
difference appears tor the frequency of possible segment-

gloval-segment Jata opindings, indicating a positive effect

of the aisciplined methodology in reducing the possiblie data
coupling among segments. It may be noted that these lLast
tud categories of aspects, segment-global usage relative
percentages and segment-global-segment aata bindingss also
reflect upon the gquality of modularization, since gooa
modutarity should promote the degree of *“globality"™ for
globals and minimize the data coupling among segments. The
interpretation here is that

certain aspects of inter-segment communication viga

gslobals seems to be positively influenced, on the

averagey by the disciptined methcdology.

with respect to dispersion comparisons, there is a
diversity of differences in this classy without any unifying

interpretation in terms of the experimental treatments.

Miscellanegqus

The cyclomatic complexity and software science metrics,
whdse results have not been integrated into the two
interpretive frameworks Jiscussed apove, gefinitely merit

sone interpretation.

On location comparisons, the results for cyclomatic
tonglexity measures exhibited a common underlying trend,
nanely, €T < AT < 81, In tact, the non-null outcomes were
usually either AT = DT < Al or else DT < Al = AT. This says

that either the teams were gifferentiated from the

CHAPTER VI1I

indivicduals or else the disciplined methodology was
differentiated from the ad hoc approach, depending on the
particular variation ot cyclomatic complexity involveu,
This corresponds well with the intuition that team
oragranming alone shoula force a general reduction of
cyclomatic complexity for individual routines, and that use
ot the disciplined methodology within team programming
shoulu promote this etfect even further. The observea
results for the cyclomatic ccmplexity metrics seem to

display this kind of behavior.

The generally weaker differentiation (i.eey larger
critical levels) observed for the cyclomatic complexity
ascects relative to other aspects considered in the stugy is
auite understandable in tight of the fact that atl 19
systems were coded in a structured-programming language
which greatly restricts potential control flow patterns. «we
would expect cyclomatic complexity metrics to be more usefuyl
in the context ot unrestrictive programming languages such

As Fortran,

The results for software science quantities are
sonewhat disappointing: surprisingly few distinctions among
the Jroups were obtainede On location comparisons, only the
vdocavulary ang estimatecd Length metrics (the lLatter is a
function solely of the former) yielded non-null conclusions,
Their Al < AT = DT outcome corresponds to that obtained for
the number ot segments and gata variables, both of which
conrtribute heagvily to the number of "operator/operands."

The overall interpretation here is that the software science
metrics appear to be insensitive to differences in how
software is developed. Mvaybe these measures, with their
actuaridl nature, are sensitive only to gross factors in

softeare adevelopment (e.3+y project, application area,

imd>lementation Languaye), all of which were held constant in

CHAPTER VIII

e

this experimente.

CHAPTER 11X

Ixe JUMYARY AND CONCLUSIQNSZ

A practical methodology was designed and developed for
exserimentally and guantitatively investigating software
jdevelopment phenomena. It was employed to compare three

narticular software development environments and to evaluate

kiramng

the relative impact of a particular disciplined methodology
(made up of so-called modern programming practices), The
exoeriments were successful in measuring differences among
orogramming environments and the results support the claim
that cisciplined methodology effectively improves botn the

praocess and product of software development.,

One way to substantiate the claim for improved process
is to measure the eftectiveness of the partijcular
prosramming methodology via the number of bugs initially in
the system (f.es.y, in the initial source code) and the amount
of effort required to remove theme. (This criteria has been
suzjested independently by Professor M. Shooman of
Polytechnic Institute of New York [Shooman 73].) Altnough
neither of these measures was directly computed, they are
each closely associated with one of the process aspects
consicgered in the study: PROGRAM CHANGES and COMPUTER JOB
STEPS\ESSENTIAL, respectively. The location comparison

statistical conclustons for both these aspects affirmed

DT < Al = AT outcomes at very low (<.01) significance
tevels, indicating that on the average the disciplined teams
measured Lower than either the ad hoc individuals or the ad
hoc teams which botn measured about the same. Thus, the
evidence collected in this study strongly confirms the
effectiveness of the disciplined methodology in building

reliaole software efficiently.

The second clainsy that the product of a aisciplined

CHAPTER 1IxX

team should closely resenble that of a4 single individual
since the gisciplined methodoloyy assures a semblance of
concepgtual inteyrity within a programming team, was
partially substantiatea. In many procduct aspects the
products developed using the aisciplinea methodology were
either similar to or tended toward the products developed by
the indivicdualse. In no case did any of the measures show
the Jisciplined teams” products to ce worse than those
developed by the ad hoc teams. It is felt that the
suoerticiality of most of the product measures was chiefly
responsible for the lack of stronger support for this second
claim, The need for product measures with increased
sensitivity to critical characteristics of software is wvery

clear,

The results of these experiments will be used to guide
further experiments and will act as a basis for analysis of
software development products and processes in the Software
Engineering Laboratory at NASA”s Goddaro Space Flight Center
[3asili et al. 77]. The intention is to pursue this type of

emdoirical research, especially extending the study to more

sodhisticated and promising software metricse.

APPENDIX 1

: H : i ¢ SIYVINIIYIS 3daL INTWIIS
n*0) :0°Si :0°gl 32°th |ycer “3ang308d
8°y ip*C tl*§ 22°¢ g£os ! NOTLINNJ
: : : : SINMOY 341 ANIW93S L)
9oL 366 b2l Ji4cuy ¢ SIn3w9as| o an
ZEBZE.ZEEXETaTTTRX=Z E2TBRXX ZEE EIEEEENSEENEIEIIIRNEETESERESSETTISRESEESSS
9°¢ fien f2°g £°y s31naoul « ot)
(AR XA X CPSUVSBUSPUIIUVIISISUFIFIFIES X X R R R RN R E R R R E R R E A R R R A N Y N NS RN A R A A N R R F RN N RN RSN R N NTY)

$123dse 3INPOId Lseluiw)pn)

L3 S POVSIEIBIY $ Sy ssvsvvssyesvy e (13333332 A2 AR AR R R R AR AR RN RY] I BASE LALAA R34
! 8°90% (0°S<yh 36°282 1h°6S1L s2%228 3d 131 s33avnd wvadonal)
L) SISO FIPESINBISEINICLISOIIISIIVINESY VISP OINEVIIIOIUI S I TPIBIINIOITITITIIITIVITIIISOIBRIIVIIROSERN

INCG ANY ¥04 40 uOjleAdsIqQQe Ue S} °*0°y°*4
WMWiKy 203 WO IQIADIQQE UE S} °*X¥N

PIBSGIOEIIPIIVIIISIINVES PSSP IPVIISITNRY VOUPOGIIOIVEOIIESINIISY OGS PIVIVUIIIVIOITOIIIGRIIS
6°6 :0°8¢ no-mn : um-mM 24°9¢ $ FINAON °0°v° 4 SNOILVIIZNO) INDIND XYW %)
82% 125°¢9 igfly @ 1096 :l6°82 ic 300K u3d SNOTIVII4WO0D 3INBINA IovuIAY
2°92 Iyc8 Ltte d $2°064 3£°¢S1 1YE5l IvIANISS] . (9)
ST NEY I DL & : Tycy gy 9 SNOINVIVIISTw (<)
Syl igeig g°gy i igi2g 1013 igi09 NOTIN)IXI WYEIONC . "
§:9, (4 idugg .82 4 44 WIiaN3el
9u4t iduy s : 1N I H RN {1 e NN .
2061 68y (Y 3¢+9¢) :¢°204 :5°2¢ NOTLVIIJWO) 3VNA0M .)
$eg2 :2°%@ 3l°06 16§22 1€ 59l :0°ISt $411S @0r ¥Iindwod} ()
PP PUSVISITROICIOINIBENS XX AN Y Y} GOUU OOV O VU PV TGV INOITISOTIIPINIIIORIPETNETETITIVS

S1330%88 $337040 AJeludeipns

POUSCOUIVIVIIVEPIIITPIIDIINOSVINISIEIVISIOVINIIRYIS GPOVSIVPSISPrTNUIPOITIITIIVIUIPIVSCIVIISIOITINTINIIIGS
H 1 : : & q }H H 1 4 []
anwmolllt|MIlol|mmn‘clrwmul thlolllcmM|I|||M||lllummuo $1230se Jujwwe,to,oa
SUOJICAIP pavpUR]S S$INjeA Urae

SR VSSSUTP SIS IVIPOIIPTIVIITISISEV IS STESCOUTPPUTIT VIO TPOPTIVIOPRPIP R IPRPPIPIPPI PO IPOITIVISIPIBIIIUIIBRIUISETTSY

‘payiesun Jie $3330Se Asojeiojdud S)radse Ls0)0Wsy 4u0d

1400 S3S4IINSE YL Al 2330wy) ul sIjou 4,01%uT KD IY) O) 43,35 $H2QENU PIT|SIYIUIIRD YL *@°N
*313308¢ DUIBEEJIN0I] YIey SO VuUIE)22aYS su. ul ou:w.-no $3J038 ned ¢l O uvojrdyaasap

1®341553008 2 41danS SUO)IEIAIP PIEPUR]S DUR SIN)eA urRJIa JlderS In0JD.y3Isa-Yiyjita Nue SANCIB-)P-S502)Y

§3700% Reg 5 UBTIB]IIEIY VESTIEFIRIT 1 mypuaday

b} x1QONIddY

131

.

APPENDIY %

APPENDIX 1

N LOUN BN | =AMV N ORI ANA L = O 0 DU ONTUFTO HNONTEI NI
L B NN Y] o ® 90 0o s 0t AN NOE I A HEH o ¢ ¢ sl sgl N oo 0 60 s 00 o)
sol sUN NI OETNENOMO Y 0 080 000 0] SH™ U ONTOEND -unv-o#r\oan
NN PR R) N ———) mN@ooMF.Nu %O HMNE 7™ 4RO NN e oo g oy |
v} wHew ke [} (] O (] no ")
] " " 1] 1) " " " L] "]
$0.00 600000 00 €6 66 00 10 $4 89 10 00 20 LN P 95 08 CE 59 54 S5 SEIT s PO SE 60 40 €5 50 70 06 PSSO EF SU0E B0 0u SORC B0 B4 5 E0 B4 S0 00 00 0O
(e a K- XK -N 1 N COONTONOC ¢ PN F QPG | Ol O U REIT PN M HRAD TN O |
@I Il oW o) ® 808 00000 TEIOONDINUME U 50 *H sl o0 s 00 0o e
e st SHO WO L loaalalal- Trd Ty] ® 0 0e0 0 st SHMHDUMDBDNIN e HTM DO F Moo |
NN IS RO Nt e VoM ANCOCOR A | NE SR ™ BN RO REFmMNENO ™o |
- e umnn)] [) Now " e L] (]
) L] L] ‘]
. .
e L] L]] "N "~
r2v g [] " (] [] 10 W S| © 8 BN eI)N * 0 ¢ s 0 s 0]
. WG ROt POV Oo o | e e ssa e et SHNNHONWVNDOOUN o NN OO Ovo=w ¢
e wMIHMNE e O | OMODOMONIFT |)1 SEMHION e MO th-o-l
~Ney " e | 1] HO® u heo M
[I}] [TR I] [L] l
suse #0 8 5500 00 £ S S0 0L 06 5000 0 51 95 0 00 €0 96 GBI E0 1o SE e S0 bs Se e om 00 S5 0040 69 SUse 08 ou T4V 48 U4 P4 s ve 00 0 Bu 4o
e NOUODI MOVOOVINARO I MOVWW=er IO 1 O I # W™ QN o= OV N 00O
N " [Y] 08 s e vl ONUWMNOIINDIMHUHON 4 0 8)f AN ¢ 5 ¢ o s o090
.o MO HOl MM TOTDON ® 8 sen s sse) CUNUTHTOMEN & Hal 3 OMO T WM |
e] o | o vwne |l MO0 NN L M)N T2 0O BNy ™ =it
— N R]] o [] W »]
] ")] - n » 1)
" L] LK- N SO O g | P OOOMO 720 OH TPl OO HOVE Pl =00 |
"o [] " ool S0 e 0 0o 0 el QOENOWwNMGD @l ® % oy aF N % 2 ¢ a0 s 00}
.o] At OANMNC OO ne | ® %800 0000 ELHOOKRN s D CEQO VO™ §
(ol -] " L2} SO0 N momni O UM NN NN B P NN O v |
L e] " LA] N ey A e N
" L]) o L}]
. .- LIX 1)
L b L XN NUOU\HMOOHNGG\MV\W
- o) w on of O O 6 o NN S 8t s s o
L " ON| NN QMU P & 6P QIO N PO |
(-2~} NP~ M HO PR NN OWN NG P Nagp O NG |
L - NONOI -0 o~ e ~Ne N
LK 3]] L] L1 ol " ‘
seve 8 68 68 00 66 56 S840 26 67 2650 00 66 90 50 96 16 CE 2P ea Ul 46 CE A B 48 9 05 14 58 8 40 60 20 508D €8 49 1000 68 95 S008 06 5800 o0 oe
wwn ~un PRI | ARA RO AV | M KON 0N MK GOV NP EOMRAM Nanan |
[-3 N o} e e s 0 00} swmcnmuauou e S o ol Pl ¢ s 0 0s s s}
(K3 O Ny ONOP= W . 00O ® e s0s 0 000 oM N ONCNINK A & HNO NNAP OO |
CQIOENIDI OO N OOMNI OPQNQOONOOION N QU P Py HOON P DG TN |
g 11O ~ [4 1 tdNNBe-i we new N~ Nt
o~] '] " " [N " 1

6 80 00 0000 00 60 TP UOEN 0 FT Ly Es €0 40 60 04 4V S5 LU Es 25 20 84 08 80 45 0P ST 4E S5 TS DO B2 004s 40 49 FOBD sa 43 SRes 40 SO VS EN 08

SQ INNANNOI O ONMOQOM I VODCOOO™C | Pl O H A BTVDQ i Ny ¥ D BLXDO OO ¢
-) On o0 o} €e% 00000l MAWMETIOOGO ICNON 04 © ¢ o 6P il ® 6 ¢ 0¢ s 0060
so) SUMNDI WVMDOWVNDr O | Sotse e ol 2NN ONOWNAND » HOQONNAODN "WID |
PN IR NIOT O N MNMEOYO! MNEEOE™O0 | N OUFIDONQQQU\“NQOMQQ“‘OI
-—g ™M NOl N N 1 M= e [Rl Ea T K4] L Lol Lol N N
[X o8 I] J LI R 1) [T a3 |]
LI T | [} t W & L] "]
[T T] [} [SR R R] " " 1
. » ' [T » » 1
L) [] [} ‘) " L] " L] H 1]
[|] I w0 " L]]
[] " 1 [} XN] [] '
L] []) t ' H>n " “ [} ¥
[] "]] + [X1} “] L]]
[I S |] 1 MM M [} []
[} L] [} 1) L] " " " L] 3
" W] 1=nde ["]
" ") ' 1ZnZ0 “ " 1] (]
. W Ve I Wwet o H o N [}
we ok 1 (B T L] u oz]
-’ L]] v [N N " L] -l]
0 & tw (L L I] []]
an a 19 1VANZN w o wH '
o [I B (X 3]) [[]]
Ln w0 (e =" 0 " «n)
L) 'z twnre o " o=y]
[™ AL L] " e '
wid Wz tw 1 Hdt W [" :
an L .2 ~ ' - [X u “ - N - - '
" [I - - g — [l K] [Y] - - '
[N 1] " [(X9 w tZuEN 0 N [l [t
[N d,) [] Zw) T Wl N W W " T Zww |
1ZTw " W —— W — EUEN HO= N NN seom e
w4 -y PO BN N WNMH NS W ZH - L]
wiEs ® 3> ot LR - AN HLdTZWUN Wk [t I ok T VN
o 1 On " - <P - o« B l€nn L Lo 1] MHUNZ Brux X =sonrs |
[L) e s -k] (XT3 1 b=y [VY. 7.1 OHBOmMTOImExWN |
LR 1] o | = LY 4 F S N.J AEEZIANBAIVE =Py A T-1 % 4 _¥-v 4 1 % ¥l
[d N " sZI w WOZ&I X wORX ¢ [d HENZZ N N QRWO ZZrm)
et bt Nt mdt=d SRR u.n-oz-:n R RO NO=EN N iod o P =i (E |
ZO IV KEg I X Ve oy -1 X Vrmes i OHOUm STl NN [z-1
DE I KN W) W =T Y Wl Wi eaEx O, "R E S RVEL 2-F 4 B £ 4 TWEY [3 oz
- PN e) ety D &) =B [AN IY LI TRV 2 7 Ry 3 I.7"9 [ey
Wi ZVgt < | < I WHWWE X [IV \
(R LI _NE NN 3 [ol I DU wndD NO» N]
IlKNJh i [] (X 4K S N-1 K LR X & T}]
e e saa e . LR RX] « s e « LR}

~ LX) e Xale o T X

[l d [d-d O OO

B oo oo X2 X X
Ll - - -~ -~ - -~ -~ - o~ e Ay -~ e e ne e emm
- 4 O Oy o ey QA A MM Do (hem MY Wy MY
- - - e NNy - NN AN NN NN N N R NN
- - - - Al A d - - - - - -y W P WP NP et P

132

APPENDLIX 1

APPENDIX 1

! OO ORI NS IO (NN I NN | M D0)
) 0 00 0 8 800 06088 8) MNEEAMMNOANNFEFVIDY | 000N |
1 O 0D Ot DTN O | MR E R R R E N N
"~ NN NN | O OO0 DOOINON | W OO §
[I - - N Newwe | :
[}) ¢
4% 60 2500 4000 00 12 9 5o 55 6005 65 % SO0 a6 BT SEGF S0 By SS AT 0e S0 45 90 BE 00 90 5 S0 US §0 45 90 00 40 S0 40 20 00 40 08
OORENIRRHN | RGrE M| MO T - 00O Q | INNOMOTENDVWWIEQ —QWQ I
R NPONOO | N o} 2008 0 8000000 0] DMNTOODONIVEEOMNDO | Me=rro |
DR R I RN N} sqmmoo-tw~l°°onl P s e 000 0sessons] o000l
COrOreQLO | OMen ™ ”~e e MO A OOUVWVING G | O=AOO ¢
‘ " []] - - o - [}
]]])]]
S5 G0 N0 00 00 58 43 PO S 20 00 SO PH U0 OU 90 08 04U U4 GO U0 U8 04 SO SE 4 LSS GV IS IV QGRS SS DO SO S SD OV 55 S0 20 PR B S0 8U 0 94 56 50 §0 SV 50 B
WO I ROl | OO0 NDMMNE=0OM | MOOOM ORI SN | MM §
OFT SN I @R ¢ ¢ 00003000000 s 3| OONWOIPTMNOONO™D | TNONG §
e es s s 00} o0 on] O P OO NI Coem | s e o0 st soat0e0e) oo ool
nﬂﬂo—PQNO:NOﬂINC [ot o ’: OOQPO“ﬂﬂMONBNK:n’QnO:
L o4 [] (] Ll od

O NN AN | A)
G FOO NN | AN N
svsese0 sl o5l
[~ =T = dol J-TR Lol o]
i o= ¥

L}

] L] (]]] [}
09 SU B0 00 00 G0 4 I P8 QORI 4o €0 FR 0N 00 B) 9000 40 P 08 B0 40 O B0 00 90 08 00 24 50 49 T8 90 GO TS 5 55 $¢ 08 04 44 #0 Fa st 02
VI>P It Nl M) OQOTNNENNINO Ve B VO o= 03 QUM WO O FIN | OWVNF Do |
VO OO0 | O | ®e %06 s 90000080) OFOEOOEMNOOwrer | P OMPM |
Pe s sdcosan, v eumi QOOTrOIOOOI NG} e os o0 epee s san) o0 sl

ANNEOme ONO | veme N | e N o= N | N'-ONOOV\QNNNQ-O 0 Ov—-—nh]
V -]] —e e = |- '
' l]]]]
O ONMOOMNIS | Ol O | VMmO O™ | OAO™ OO0 =OMMO | O30
[VT e L - S WK - N | ® 8 8608 0000 a0t sl MNOFNOOICRESNEMED | F FOvemwm |
"0 8 0080 v o] v N noOCO rOWNCrnweweo N e 869 et v e 06000 e c e s 0y
PNt O™ | OO | @™ PNENEONeEe) OOOC O ¢]
P = ae| | e N NN | -]

] "] [’
SP W B0 00 2900 00 00 P8 3a 00 05 00 P9 00 g B8 04 % P00 40 K0 T B 90 PO UL B 48 B4 o PO Be 20 R4 00 00 P9 B2 B0 20 S 06 90 56 84 g0 S5 30 P 00 PR 00
NOWEPND | NONE A | N NONOMNO0 | N N NN | NP |
AP OPDNID0 | -9 | s ser s sssseses el MNCPREAENOOTOD | OCCOC)
s 00800 e s WM NOWEAKDONN DO | s o0 e s ceveccav ool g a)
Py O o= Vo= | WOl wm Ne= N ONN M YO ENDNAARNAONA | O O |
ey - N N ONN M e e |

] [} 1
PO0P 00 RS ER 08 20 05 P9 00 80 00 G000 20 2098 g0 S0 0408 S0 AL ORI 20 AT FE S0 RD PO SR 00 SN DN GO 60 B4 00 80 20 EP S0 40 00 58 50 06 0 25 SV S0 0
N QMNP CWWN | AP~ A ¢ [~ Y~] NV DN NI = ony ¢ V4
mownm.p\&‘ o e Es S g e et e}l BN VMNP) Vgt |
se o000 s N | &M OON NN L) | s 0000000 s 000 008] el
mNQ”P” l VDN OI N - N e M| ﬂ‘h”o‘niﬁow"l [L gt]
1] ~N o» 1]] " N Qe 9 1]

] [| 1

e 90 06 B 48 S8 00 80 o0 Be & .. a0 89 83 40 & L]

=t N O R NGO | © ~ mcwocwpm—

WO OO DA . [o500 0000 et ONfaMONKOE § OO™N |
se o ens o0 ~ WA O S00 OE) OO OV e e® sesesesvncssel nesse)
W Qg v Qo | - -

O N) = -

'
-y
NN naomoxooﬂnou I A= OO0)
] ~
)

"
"
"
(] "
' L]
[] "] []]
i L]) 1
[ol [) [] [} [}]
= [n) [] []
ad [4 "] t 1
L9 b L)] [] fw
W [4 L]] [[)
~ 19 “ [] 19
" " w " ta
(K L] [} " o
-~ : u 1o 'z
w0 b~ ") ta]
= (-] L] [[N ot I
- [] [[] x W
) ol " [ad " w 1a
- [] " (X d I w [)
< | < L) 1z (X4 [K]
- (K™ " [¢ w) w
hd [(d " (X} (39 []
[} Ld L4] [N
« & . W (X3
- 1w " tw (-} - 10. - -] [l
& w - 1a L] e - [- 10 [- w e
- -] " 19 Qs O o W O™ QO o 1=
» »n " (3 L] 1w Wie We o z 1w e wWe o z >
E Rw Bww 1 2 1N m— wmen) X W e et W X W
O men mmem 1O “uwni - wO0m WWE |V -OFrwOfm WNE o
- NN = oW O X O P Dt ~OEROue D e
Lt ot X AR L RN QK = OF ™o il adtn | o DEF-QE ™ Jwades | @
AR T AT omvrs | EZEN DID FPOTZOXZwOAECWLIID »OZEVIWwOLECWISI IO »
WO MEDAREN | WO LI € AXXDWED=OIEIAL I € TEDWUXDI™OIKXIEC | 4 &
O BrOErr-Z | O™OH v | ™) x - £-1 3 A Rl 1 g = agoa WIWD -
PrOZWOTE™ | PDPrwh X IR (-} O -BR L ¥ 4 o O wix (-N] »x
BB B vt | BN €) X DWW z £Dva FIE I 1T z £I9a -l wacE
- (-] X | =BOH > I>0O F 130 E 4 1A=
=2 [4 oxX 11 1 o 1 o o teZXO
- -9) cwmlN KIXO 2 1 .17 z IlXwE
(] (XY " - § - (X]
» > [2L (X3 “>»
< Il Taia e ‘g
L] . . . - -
-~ -
o o>
o -
SNG S FR IS - pn~ [alal X X W YV Y T Y Y ¥ T L alalal -~ S~ N Ay

Lated ol oal o AN X o
W AT NN Y e
W P P P W

I M RN A AN GO Al AR VA AV VIO O LA TATA)
S MUPEY WY AN A YN AN YR WY) Y O))) Y SR PRy ory Ay
WP WS W WP R wh PP NPt WD NP NP P WP P b W P WP NP P - -

(32

133

ey

APPENDIX 1

«
NNE G O HMNM INO0O = IX | N D P OO | N PO OO0V «

1 ey N s

P MeOIND
NN MY S s e s e o] S a0 ts e s el MIMANOEPNTIRNG (] ® e a0 e
eo on s S NND OeNCOMONN | NWADMNOOWVIED | & 0 6 0 0 ¢ 3 ¢ 08 1 N
NG NN NI OO TEF) N OO | OO OO N e L
LN a1 2]] [I gV aVERERS L TV TV R g o ot o - e t
L] “ [} 1 - ¢
#0006 65008090 06 S00E 0 €6 08 05 0 F0 0 #T E0 £ 90 §a 90 230 0¢ 00 4T 020 S8 60 00 29 08 B0 SR G0 g e sues 00 be sans ne
COO N MM UG CTTR NG | Pl VN | QO OMONe e I NNOWo
: M YT R MY e e s S e | S8 s S e S jINMNENTOMADS t o 2 000
E. o9 o N * S HONT NOVOP™ LN | OO NS INDO| ® 0 000 0 v 0 o 1 NN
K PN E NN IR QO™ | KRR O N O NO []
1 LG T] 1 000 NI wr(e ¢
L) “))
B @090 90 5008 00 20 50 $200 4 0000 18 2800 20 20 26 06 10 PE T8 e 7P S0 40 800 06 06 B0 28 00 05 S0 S0 ve soev oo ou anve as
P NOI N OO HWO NG NON | O QNI O | NN O DNe t Craono
PfNT N TN %e 58358 53 0) 500689500 0 ¢} TNMNPMNMNOOOs [] o« e 0o
ae on S U T FN | IO OVNCOC) ¢ s 0 0 0 0 0 5 09 1 e=e-Ccnc
' ONNWVIIL T HFWAWN N M 1 COMY= = MOV WA | e P Pe O P OO O & [}
]
]

o se
M O ¥
O D 8
e e oy

O™
NN o6 6600 ool do0 o8 e e 2t NOONNROTD
S SHOMNFEAT OO | VDIQOOVVNNGOL 8 ¢ & 00 ¢ 83 0g

ARAROARRACARRANDONARRSARSRARAROREARIARAGS

AN NN EFRN N NN RN | OO MOO M0 | O 01000 D0« .
BN N NN | e - .
" [}]] Ad
e ————
4 P ON =ONNOIONOOMT | ITMNOE™OOIC IO e ODMe e [T aT g LX)
3 NN NPl 60 ¢ s 00 @ gaf| 200 s 988 s s|iMaOMOYe] e a 0o o
oe oy s S HMINANOOO ONe- | JORAEVNE OO L ® o ¢ ¢t o0 0 s as | Owmhw
WPl OMINOO OONMN I OO0 Mt | N OWNO N NNG 1N
- N N -) DN A0 | NN SR e "~
]
CM@ N N Ae NN NCON N0 | MW O CMP W | OMAO a0 60 N ¢ 1 e IO
RPN N ee s 0e e ool S e0 0 as e s 0)CNMNON NG ' s s 0o
X oo on o SN MNTEDMO P | VEANANAMNMNEO | * ¢ 5 0 8 0 8 08 I O '
N COWH O OO0 & | CONTNOOEA | OMNPE VW MO RS 1w
3 - =) erwy GANON™me = - o o~
J

) * v
N gD O O § AT AN PP W -
95 5 000 s)N GNDNDS

134

"
-
")
v e
BN | OO RN Ol | 5 05 s v o0 s e Q =
O N - WD RN T | ORI e “w a
L - =8 O - Feer= My W N e AN e 8
[] . -
- B8 00 3 4P 0T NG GS ES LU DR 20 4020 00 20 A BT 0n F6,00 00 00 S TV IN SR IV SU DO 49 20 00 UO S0 8 00 S0 Q@ -~ -
W NED ROV DIIPT QNS ¢ 78O QPN | Pl O AN NS w o
= O WN ®EOH 0o cv 06 sess) 60 0 0s b oiDONTEOODNE 3 e
- oo oy ¢ CHMNA FTIVNEON | DONODCIIN| & ¢ 5 s 00 00 b
o WNEN T HTNN QON e | NOQ N OO0 | NIOOO O N [[~
= N e Re= - DN WO | NN NN N 9 -
] " L]] . -« Q
a -
a " " 1 [- 2 - [
< - " [' e - '™ > '
t 4 " " ' tZ -« - - L]
- " " [[%) - -3 -~ (]
x [" 1« [- w (])
[T » e 1 - & - a -)
w un Hea [(™) . © 1]
. " [] o= |8 o - w £ '
"o ne] [- > . o
[3 He na [Vd . - - e 1 [
w [Lol " [C] g - - v = [] wAD W
Y X " 1< tax . < o« §oe 2«
ww no ‘v] . - .] -l o
] " n< [} tx - - « 12z <w
- e [T] ¢ o - « « 10 >>>
-l L3 [R=] [(X3 o L3 (X <
[--] L1 n [=) Ia . W - g — -
< L] o [N] - Yo L IRLER 4 dZ
- »w L X 4 [P w - «<- - [) —— sy
[3 [1-3 H [4l 1o [3 «»lx Oox O
< L R ad L1 o lx L wc LR 3 .o
> [Lot "W [~ tn « >0 emi> .
" [ta (] . K= . x| €O sl
- »w “]] - - W
< o L) o o Vo~ a -} [X o) Q -} - -n G dtn N raes
[} [X3 N ad - [1 - w Vd - - - Qe S LI Al
3 © ne nE o o 1l Om o I ©m O e w3 e L iw WEXZZ
- (X% ND W Whe OI0 We We QID wWw We O [OIE V<«
WE I WIC mem mem W) C mem oo WIO mee wwm We [-43) it -1
Zw N0 UNd warwod™|d «OrwOOmid waredd~we 33 - L4
O W ZNY =mMOX=OWw | VO =QE™MO W O mMOE—Ouwes =g o I
X 2w N1X Wl » OEFROEmm| ¢ OLE=OLmmi * OQLE-QEm~~me w@ L el Ll il a2l
L D NUUNEE =P QOQEROZwO | = O 202wl I raOZZTOEZwaA: L] O 160N ss o
WRLNEDWIZEEDWUE DO | EREDWEDI~O I ZxEDWEDOe =g 21 1~ o1~
UL A LD ® OK | we z OE) Wi z - >0 «eEIX
RXXEONERXWNEZ (=] oXTI1 X2 o (- 3% &] Q [~ 4] [L E-N)
[IS T + X 4371 = LD 1 Ow z Z23 10w E 4 £De wwn cJdiwv
- " " W 1w « o= s
> "< N [[K] - £ LR N
< na L4 |- (B4 . L ILJ . w
- @ ce————————
c=
-« Sw
-
na
-
[-Y
X Mgy LN S PN P P gy NN P P S P NPT, T S, Gy PP P P * e L) Ll el ale Y}
M Q0 DM AVAANWA IVWNNMANAR (IR ATRA N AN S ¢ NOReaxS O
YY) VR WY PN NNV WYY AN YU A)) ey)) Y > < BT RT2
- -y - - - P Pt P P P L 4- 4 - - e

APPENDIX 1

APPENDIX 1

(] TNONMN QDN D MNP Q O™ NNV OMPe N NEEP™F O faPule
[oo 8 %000 s ol oo e ® 0o 0ol e e 6 Poes o 9 gl oo v N e e O

VWO | v | PO eNE I | O O Orennl O e 0 ONND ¢
] L [) Lg] (] " N =N e NOrwN
]

] [} LI 0, " [g
])] L] L}
SO 00 PO LI NG 00 PO S5 00 VS 00 2000 SE GO VR GE 90 0808 00 SP 0RO 00 SR PR 0O ER DI NC AL 05 P00 S0 00 28 40 90 R 00 45 ¥4 B0 04 00 BE B 0 S0 02 00
MO oI OMNg | OMIDAD O FWIN NGO § OO PNRET TN NDRO 8 NI
EEEEEEIEERY] "seoossneee sl o ® MW H
NN == NN 8 P | NWNQE T NN N NP P60 o H
” ~ ~ [

WOON T O
s PP 0000 090
O e N s |
[,]

o ut 0o e tr e

.o o0 0 o e 000 ae o9 el Se o 0908 oty LI I B R B A A Y] s e DNl e o o0
WO | AR NN OEQNTNTE PON | O Owmmmm NN Y MM ol D @
~ + m 1 m

-

[] » e gy Aeane
]]

WRVWNO | N EOMMGERE N QOO MR | TR OMNMICOWN I OOOVNON OMO T
eevsael e es o e e 0ol se o s 800 08w DR N 'Y | e o0 . o o
COore0 i ONMINEMNTONAT I OMNNVOTTUATOIN T OeuNMOYMGC0 # IEC s VA »
: © —: - - P= [a] § PeOEAMNN N

- - -

NN DNV | OTMNONN OO §

s6 s s one Bowy s o000 o0 ol
OMAM DV D0 O DN |
© -}

~ P -y
a8 0 0 a0 000l o o oemgp i
TN GAROOOMN S OO o b
m el BEOEn N

" -
L] L]

[)
* e 0800 0 0 0f
NPWE 00 QON- 7= Nan |
o - ey | - - ey
- " -

-

. e . .
WENTODOLOING O ERNIVME N OMOOH NN
*® 88 e ea sy " ® 8 o809 89 ey % ¢ 0 ae v ol [N L -1 o o oF
ALNAPNDQOCMN | MMM O g ONMNERARDE NN ol NS o
- - - w —— | -

] w H eQnemng G0
L 1 - [] - L} NN N NNON
1) ’ L] " "
'] " o “
] [} [} “
] [) LN))
[} [] » o "
) [) ax "
] (] " v “
(] [) na L]
1] [X 3 L]
$ [["
. Wow w owil w o W W W oW W WwWed [}
W D WD DRI WOWOWOWLY WDWII W DWO ¥ L]
x SKXJLO XD DXDLIXD x| PEDLDKLDK N « N e
[} -l O) O o B i ¢ - o o & X } © o € O O LIEE W = L]
- 3L {7 7 VT 4 o« U o Wl § - KW el s LT
[o4 TPI2IOIIPIO 3 b RN b2 22 > XN -
< € €« K« g™ < € « «i« € €« « «» N
- - e e |- - = e | - = = = N [1
= g T B ST 4 FdBudL TS X BB dBadZadtl ™= [X
L 3 . ey e S ey § - [.3 L E 3 (71 L
> ORXOXO KO) X CXOLOKOK | > DEXOKO KO N W ONE
Qo -0-) < ArQed - ool <N -
w t>» b [XC B - ¢
VO Wi e s | QW WM wWW | VvV Ok e b w « EhQ -2
€ Crhlddddaddddt W el dddddad | € e Yl ddd e d NN T N O e
[V) momems | N 1w » e OF wiw zx
O Arpetmmepe s | f Admpejupmin puimis | D A o W X W e
© WIBPFTZEZI VW WIZZEZTXITZZTIO UZIZITXTITNE O WHT -t
- PEELE LKL T UL KLEC LKL | J g LL LN D E GNwm -
1 DDV Dt 1 wDDIDAIDI I I +«JJJDSIDINO -~ nmEx o
QAN T IIT) O MMIIIFTIIIO | OJINTOTTITTAION . DhWwWIWE W
waD W (] NP BwWdIRNL =
G b= AW PY PO DO | (X bl PUWNAPP= G0 D00~ | 08 4=l DO N i DOM=mN DITCW
BOWNEe 03020)IROMN 66000 2000 (0.OWN %208 s0 0 elmEIDEENEIWRCEN
[] %h.OOOOOOQO: %'-.QO&QOOO : %—.00@@000: z2
W
- 10 [X -] NEw
[1w [T
))) " w
] [} [] -
]] L) [

PRSI, SNSRI PN PUTN FNTNIY S PG, PN S, GG, TN RIS, SN SIS PN NN TN PN P
DR VAT N O ODWRBO VDA N P WO D0 @ BN "= AN NN
LA RLA LS L LA 84 A0 R LA E ELL L LA Slidiit bbbttt
W W WE WA W W W W WP B OO D b P DA P D -~

NOO +WOOs
gN-lN s e

S0 90 600008 00 60 00 09 39 S84000 G0 44 08 40 S0 N0 00 @

O
oe o
VON I
[= B}
~ 1
-]]

OCO®A. N
35 o e e o
OOOMwy @
Orryv=mm
(] o

. ~

)
]
t
[}
'
]

NN O O
Qs nm s ea
- e
(=0 g - T L]
Q Lol |
. - -

2450 900068 4o P8 G0 20 40 S80I 0 Se Rt se Y SO R

=0~ N
Qoo o o

]
+

e DNt
M ooy & o8
”=N00 N e
QN0 smrve
(=] - 3
. Ll -

-
OO«
& ¢ NN e el
W s g
OSneQ 2N e

OO s OO«
OOK 00«
O ey <
. -~ e
*s b ssesttcncea
NGO NND «
moe 000 ¢ sa
MO sMEWN &
[= L - T
Qe <

. " e
- Ve 00 G0 CE D 45 FE B ED 3¢ V0208V 24 250200 08 40 00 @
N~ | OMDNON | = OMNinte= e
» Mo el e e el Qe Ve e
-~ MG MOl MO JNND e
- O 1| OOOWA ™t OMON runae
z N | QN QY] DN 4
-) . [} . Lol |
&
a [) -
< [) + .
[]) -
[] L
[}] «
)] a
] [] «
2 1 -
]] *
] 4 -
(] t -
[]] .
)] .
. [1} [} -
[] [-
1 [X -
o (X~} -
- x (-4 -~ .
T - w - Wi -
w W £ tw X -
= Ix D= WK D6 we
2 1 LW Kl d LDW XS
© 1 ZTw O> MmIZTw Owd me
WAIOD DPw = IOD Duww =
Ditmwr o4 1mw» wal -
WOy QI™ Y dX as
DI LW WK U e
2 1dED=I = 1 dE DD e
WO I DLW & | D Wk -
Vwilwg~ZOcl Ive~ZwdxXe
e | D wWIO ™| dD IO me
["SY AN {-1T ¥ F PN N F-YT N _TUF Ve
EAE I WE ™ORN I WE =OOLwuNe
Swmi AOGLJWWI! AaoAMIWNSE
b= b=} e .
QBWVIN (4 «
P |- "~ -
]] -
[}] -
1] -
- ”~
[J -
o o
-~ SN Y e Beanlealeolaley e el latal
DO I =ODI00C = V00D DID
I A BWAAVANYY NV AARNNA A
- - - Wy

nds

APPENDIX 1

3
.
L4
c
o
-
-
L]
c
-
[
-
-
-
"
-
°
-
-
-
c
@
€
™
-
L)
-
c
@
&
v

hours.,

n

Values for SOFINARE SCIENCE QUANTITIESN,, VEFFORT are ofven in lhouS{

HeBe

of
Values for SOFTWARE SCIENCE QUANTITIES\eoo\ESTINATED TINE are given

=rvres

i
!
I
!
;
i

136]

ol ad

REFERENCES

Petergnges

fsaker 72] F.T. Bakere Chief programmer team management of
production programming. 13" Systems dournal, vol. 11,
noe 1 (1972), ppe 55-73.

[zaker 751 ¢.T, Baker. Structured progyramming in a
production programming environment. JEEE Iramsactions
on Software Engineering, vole 1, noe 2 (June 1975), pp.
cbl1-252.

[33sili & Baker 771 V.R, Basili and F.T, Baker, Tutorial

of Structured Programminge IEEE Catalog No.
7SCH1049-6, Tutorial from the Eleventh IEEE Computer
society Conference (COMPCON 7S Fall), revised 1977,

f33sili % Refter 75] V.Re Basili and R.We Reiter, Jr.
lnvestigating software cdevelopment approachese.
Technical Report TR-688, Department of Computer
Science, University of “aryland, August, 1973,

[33sili & PReiter 79a)] Ve.R. pasili and ReWe Reiter, Jr.
tvaluating automatable measures of software
cgevelopment. Proceedings of the 1EEE/Poly Workshop on
ayantitative Software Models ftor Reliability,
Comptexity, and Cost (Qctober 1979), Kiameshia Lake,
New York,

(3asili % Reiter 79b] V.Re. Basili and R.We Reiter, Jr. An
investigation of humnan factors in software develooment,

tomputer “ajgaziney vols 12, nos 12 (December 197%), pp.

o
[

1=
(3asili
controlled experiment quantitatively comparing software

W (N

Reiter 87)] V.R, sasili and R,W, Reiter, Jr, A

geve lopment approaches. to be published in JEEE
Iransactions on 3oftware Engineering, 1980,
[33sili % Turner 75)] V.Re basili and Aeds Turner.
Iterative enhancement: a3 practical technigue for
software Jdevelooment. IEEE Trapsactions op 30ftasare
Enjineerings vole 1, no. & (pDecember 1975), po.

STy ETATTRRISTT T T T T

ST T T avwe—m ¢

REFERENCES

375=3%6.

(Basili 2 Turner 75] V.R. Basili and A.J, Turner, S1MPL-T,
4 Structured Programming Language. Geneva, Illinois:
Falaain House, 1676,

[(3agili R Zelkowitz 731 Ve.R. fasili and Mey. Zelkowitze,

Analyzing medium—scale software development. €tE
Catalog No. 72CH1317-7C, Proceedings of the Thira ;v
international Conference on Software Enqgineering (May .
197%8), Atlanta, Georgia, pp. 116-123,

(5asiti 2 Zelkowitz 791 ve.Re. Rasili angd M.V. Zelkowitze
measuring software development characteristics in the
local enyironment. (ompyters & Strugtures, vol. 1Q
(1979), ppe 39=43,

[33sili et ale 77] veR. Basili, Meve Zelkowitz, F.Ee.
McGarry, ReW. Reitery, Jrey, WefFe Truszkowski, and D.Lo.
weisse The software engineering laboratory. Technical \
Report TR=535, Department of Computer Science,
University of Maryland, May, 1977.

(Belacy % Lehman 76)] L.A. Belady and .M, Lehman, A model

|
of large program development. IBM Systems Joyrnal, !
vole 15, noe 3 (1975), pp. 225-251. ’
Cyerye 73] C. Bernge. Graphs and Hyperiyraphse. amsterdam, ,
The Netherlands: North-Holland, 1973.
(érooks 75] F.P. 2%rooksy Jr. The Mythigcal Man-“onth.
Reading, “assachusetts: Addison-wesley, 1975,
CCamobell % Stanley 631 0.T, Campbell and J.Ce Stanley. |

xgerimental and Quasi-txperimeontal Designs for

wr

rnegearche Reprinted trom Handbook of Research on .

Teachingy edited by NeL+. Gages Chicago, Illinois: Rang P
McNally, 1963,

[Conover 771 w.J. Conover. Practical Nonparametricg
3tatisticgse New York, “ew YOork h Ley 3% Sons,
1771.

Cturtis et al. 79) 3, Curtis, S.3. Sheppard, P, Milliman,

Mme.A, GOrst, and T. LOove. Measuring the psychological

138

REFERENCES

complexity of software maintenance tasks with Halstead
and McCabe metricse JEEE Iransactions on joftware
gngineerina, vol. Sy noe 2 (March 1979), ppe 95-104.

(oantly Dijkstra % Hoare 72) O0.~J. Dahl, Eswe Dijkstra, and
CeAeRs Hoare. Structuyred Programming. New YOrk, New
York: Academic Pressy, 1G72.

(Daley ?7])] E.B. Datey. Management of software development.,.
1EEE Transagtions on Sgoftware Enainegerings vol. 3, no.

;- ; 3 (May 1977), ppe. 229-242.

' (Cunsmore 78] HeEe Dunsmore. The influence of programming
factors on programming complexity. Phe.De Dissertation.
vepartment of Computer Science, University ot Maryland,
July, 1078, avajtable as Technical Report TR=-677.

Cbunsmore % Gannon 77] He.E. Dunsmore and J.0. Gannon.

txperimental investigation of programming complexity.
Proceedings of the ACM/NBS Sixteenth Annual Technical
Symposium: Svystems and Software (June 1977),
washington, D.Caey po. 117-125,

LElshoft 70a) J..L. Elshoff. Measuring commercial PL/?
programs using Halstead”s criteriaes ACY SIGPLAN
Ngticesy vols 11, nos 5 (™ay 1976), ppe 38-46.

CElshoff 74b) J.te. Elshoff. An analysis of some commercial

gnh3ineering, vole. 2y nNnoo 2 (June 1976), pps 113-12C.
[(Fagaen 75] ™,E, Fagan. Design and code inspections to

reduce errors in program development. I3M Systems

Journaly vole. 15, noe 3 (1976), pp. 182-211.

(Fitzsimmons & Love 78] A, Fitzsimmons and T. Love,

A
review and evaluation of software science. (Computing
Sucyeys» vot. 19, no. 1 (*arch 1978), pp. 3-18.

{(Gannon 751 J.Ds Gannon. Language design to enhance
programming reliabilitys PhesDese Thesises Department of
Computer Sciencey uUniversity of Toronto, January, 1975.
available as Technical Report (SRG=47.

(Gannon 77) J.D. Gannone An experimental evaluation of

139

4 REFERENCES

uata type convantions. Commynigcations ¢f the ACM, vol.
i : 2 no. & C(Auqust 1277), ppe S54=595.
(Gannon % Horning ?5) J.D. Gannon and J.J. Horning.
Language desian for programming reliabilitye. JEEE
Iransactions on software Engineering, vole 1, no. ¢
(June 1975), ppe. 179-191.
{Gilo 77 7T. Gilbes Software Yetrics. Cambridge,

Massachusetts: Winthrop, 1977,

[Gardon 79) R.D. Gordone A qualitative justification for a

measure of program clarity. 1EEE Iransacgtionsg on

121-1

(5reen 77] T.R.G. Green, Conditional program statements

Softyare Engineering, vole 5, noe ¢ (March 1579}, pp.
28

and their comprehensibility to professional
programmers. Journal of Occupatignal Psychology, wvol.
53 (1377), pp. 53-139.

(Halstead 771 M. Halstead. Elements of Software Science.
New Yorky, New York: glsevier, 1977,

THughes 79] Je.we Hughes. A formalization anag explication
of the “ichael Jackson method of program design.
software--Practice and ELxperiencey vol. 9y no. 3 (March
1379), op. 191-202.

CJackson 751 “.A. Jackson. Principles of Program Design.
Newd York, New York: Acacdemic Press, 1975,

(Kirk 53] R.E. Kirke Experimental Design: Progegdures
the Jehayioral Sciences. oelmont, California:
waasworth, 1953.

[(Kautn 71] D.Ee. Knuth. An empirical study of FORTRAN
programs. Software--Practice and gxperience, vol. 1,
no. 2 (April=-June 1971), pp. 105-1133,

(Linqery Milils & witt 73] ReCs Lingery, HedDe Mmills, and R.1.
witt, Structured Progrgmming: Theory 2o¢ Pragctice.
Readingy assachusetts: Addison-wWwesley, 1979,

[Love 2 Rowman 75] LeTe Love and AeBe dOwmans. An

independent test of the theory of software physicse

REFERENCES

ACM SIGPLAN Notigesy vol. 11, nos 11 (November 1576),
ppe 42-49.,

(¥cCdoe 763 TeJ. Mclabe. A complexity measure, IEEE
Transactigns on 3oftware Engingering, vol. 2y no. &
(necember 1976), pp. 302-320.

(4ills 721 H.De Millses Mathematical foundations for
structured programming. FSC 72-6012, 18M Corporation,
Gaithersburg, Maryland, Feobruary, 1972.

{Mills 73] He.De Millse The complexity of programs. in
Program JYest Methods, ecited by We.C. Metzel, pp.
225-238. Englewood ClLiffs, New Jersey: Prentice~Hall,
1973,

ITMills 763 H.,De Mills. Software development. IEEE
Irapsactions on Software Engineering, vole 2y no. 4
(December 1976), ppe 265-273,

[1yers 75] G.J. Myers. Reliable Software through Composite
Designs New York, New York: Petrocelli/Charter, 1975.

Tdyers 77) Go.Jeo Myerse. An extension to the cyclomatic
measure of program complexity. ACM SIGPLAN Notices,
vole. 12, no. 10 (QOctober 1977), ppe. 61-64.,

Thyers 781 G.Js Myerss A controlled experiment in program
testing and code walkthroughs/inspections.
¢ommunications of the ACM, vole 21, noe. 9 (September
1978), pp. 760-768.

(vemenyi et al. 77 P. Vemenyi, Se.K. Dixon, N.Bs White,
Jrey and M.(L. Heastrom. Statistics from Scratch. San
franciscoy California: Holden-pay, 1977.

[Cildehoett 771 R.Rs Oldehoeftes A coOntrast between language

level measures. 1EEE Trans

ansactions on Software
6 ¢

tngineerings vole 3, no. November 1977), ppD.

476-478.
{dstle % Mensing 75] B. Ostle and Re.Ww. Mensing. Statistics
in Researchy Thiro Edition. Ames, lowa: Iowa Stat

university °ress, 1275,

{Putnam 78] Le.He Putname A yeneral empirical solution to

REFERENCES

the macro software sizing and estimation proolem, JEEE

Trapsagtigns op Seftware Engineeringy vole &, no. &
(July 157°), pp. 301-316.

| (Reiter 77] Re.de Reitery Jr. gmpirical investigation of
computer program development 3pproaches and computer
programming metrics, PheDe Dissertatione Department
of Computer Science, University of Maryland, Decemoer,
1379.

L : fShecpara et al. 79} S.3. Sheppard, 8, Curtis, P. Milliman,
and T. Love. Modern coding practices ano programmer
cerformance. Compuyter “agazine, vol. 12, no. 12
(pecember 197%9), ppe &41-49,

(Shneiderman 76) B2. shneiderman. Exploratory experiments

4 in programmer behavior. JInternation jJournal of
1976), pp. 123-143.

(shneiderman 30] B. Shneiderman. Software Psycholog

Buman Factors in Computer and Informatign sSystex
Cambridgey, Massachusetts: winthrop, 1987,

L
Se

fShneiderman et al. 77?] B. Shneiderman, R. Mayer, D. McKay,
and P. Heller. Experimental investigations of the
utility of detailed flowcharts in progragmming.
Communications of the ACM, vol. 20, no. o tJune 1977),
Ppes 373-381.

fSshooman 78] M, Shooman, Private communication, in
conjunction with a colloguium (on Software Reliapility
Moaels) given at the Department of Computer Sciencey

vniversity of Maryland, October, 1978.

(Siejel 561 s. Siegel. Nonparametric Statistics: for the
genavipgral Sciepcess New York, New York: McGraw-Hill,

1956,

[sime, Green 8 Guest 73] M,E, Sime, T,R.,G, Green, and D.Jd.
Guests, Psychological evaluation of two conditional
constructs usea in computer languages. Internatignal

Joyrnal of Yan-vachine Stugies, vole 5, nos 1 (January

142

REFERENCES

1373), pp. 135-113.

[Simon ¢9] #H.A. Simon. The architecture of complexity. in
The Sciepces of the Artificialy po. 84-118. Camuridge,
“assachusetts: MIT Press, 1969,

{Stevens 45] S.S5. Stevenss On the theory of scales of
measurement. Scienge, vole 103 (1946), ppe 677-68%C.

{(Stevens, “yers % (onstantine 743 Ww.P. Stevens, GeJs. "yers,
and L.Le Constantines Structured Jdesign. Ip¥ Systems
ggggggi. vole 13y noe 2 (1974), pp. 115-139,

(Tukey £9] JeWwe Tukey. Analyzing data: sanctification or
uetective work? American Pgygchologist, vol. 24, no. 2
(February 196%9), ppe 83-91,

{Turner 761 A.ds Turnery Jr. Iterative enhancement: a
gractical technique for software developments PheDe
Dissertarion, Department of Computer Science,
university of Maryland, May, 1976,

Caalston & Felix 77) C(C.Ee. walston and C.P. Felix. A method
of programming measurement and estimation. 1BM jystems
Journaly vole 16, noe 1 (1977), ppe. 54-73.

(ueinberg 7.5 G.M. Wweinberg. The Psycnology of Computer
Programminge. New York, New York: Van Nostrand
Reinhold, 1771,

Capissman 74a) L."s weissman. Psychological comglexity of
computer programs: an experimental methodologye. ACM
SIGPLAN Noticesy vole 9, noe 6 (June 1974), pp. 25-3¢.

feaeissman 74b] Le.M. Weissman. A methodology for studying
the psychological complexity of computer programs.
Phepe Thesise. Department 0of Computer Science,
university of Toronto, August, 1974, avattable as
Technical Report CSRG-37.

Tairth 71] N, wirth, Program development by StepwiSe
refinement. (ommunications of the ALM, vol. 14y no. &
(april 1971)' PDe 221"227.

CURRICULUM VITAE

“ame: Kobert William Reiter, Jre.

Fermanent address: Y00 Jamieson Road,
Lutherville, Maryland 212%3.

Pegree and date to be conferred: PheDey December, 1979,

tate ot pirth: June 7, 195(C.

"Lace of birth: daltimore, MYaryland.

cseconuary education: tLoyola High School, Towson, Maryland,
June, 1963 .

Collegiate Institutions Dates Degree Date of Degree

“Yassachusetts Institute

of Technology 1968=-72 SeBe June, 1972.
University of Murylang 1972-76 M.Se May, 1976,
University of Maryland 1976-79 PheDo December, 1979,

“ajor: Computer Science.

Prafessional guclications:

VeRe Basili, YoVe Zelkowitz,y, FeEs McGarry, R.W. Reiter,
Jrey woFs Truszkowski, and DelLs Weisse.

Tre software engineering tatoratory.

Technical Report TR=-535, Department of Computer
Science, University ot Maryland, May, 1977,

VeRe Basili and R.Wwe Reiter, Jr.

Investigating sottware deve[opment approaches.

Yechnical Report TR-6BE, Department of Computer
Science, University of Maryland, August, 1978,

VeRoe Bagili and ReWe REiter' Jre

tvaluating automatable measures of software
develooment., .

rroceedings of the [EEE/Poly workshop on Quantitative
cottware Models for Reliaoility, Complexity, anu
Cost (I1EEE Catalog No. #), Kiameshia Lake, NY
(October 1979), pp. 4~t,

V.R. Basili and R.W. Reiter, Jr.

An investigation of human factors in software
development.

Computer Magazine, vol. 12, no. 12 (December 1979), pp.
21-38.

V.R. Basili and R.W. Reiter, Jr.

A controlled experiment quantitatively comparing
software development approaches.

(to be published in IEEE Transactions on Software
Engineering, 1980)

Professional positions held:

1970-1973 (Summers only) -- Programmer/Analyst
Information Systems Department, Baltimore Gas &
Electric Company, Baltimore, Maryland 21203.

1972-1976 -~ Graduate Teaching Assistant
Department of Computer Science, University of Maryland,
College Park, Maryland 20742.

1976-1979 -- Graduate Research Assistant
Department of Computer Science, University of Maryland,
College Park, Maryland 20742.

1979~ -- Faculty Research Assistant
Department of Computer Science, University of Maryland,
College Park, Maryland 20742.

e

