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Abstract We consider a heteroscedastic linear model in which the variances
are a parametric function of the mean responses {xlT-rrrT—rﬁ} and a parameter 8,

We propose robust estimates for the regression parameter 8 and show that, as long
SR -
as a reasonable starting estimate of 8 is available, our estimates of 8 are

asymptotically equivalent to the natural estimate obtained with known variances.
LA

A particular method for estimating & is proposed and shown by Monte-Carlo to

work quite well, especially in power and exponential models for the variances.

P 4
We also briefly discuss a "feedback" estimate of 3. « -
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Introduction. We consider the heteroscedastic linecar model

(1_1) Yi = Ti + (7‘.r1., T'i = X]-Ea i=1, ..., N,

wherc {Xi} are (1 x p) design constants, B is a {p x 1) regression parameter,
{ei} are independent and identically distributed with mean zero and unknown
symmetric distribution function F, and {cil are scaling constants which express
the possible heteroscedasticity. OQOur primary interest is estimation of and
inference about the unknown regression parameter 8.

Of course, one could igrore the {ci} and use classical methods such as least
squares or M-estimation (Huber (1977)), but such ectimates are not efficient,
In order to make more efficient inference about £, it is necessary to get infor-
mation about the {oi}. In one approach to the problem, the {Ci} are assumed
completely unknown, but replication is assumed feasible so that the {Yi} occur in
groups of equal variance. Recent results in this direction are due to Fuller and
Rao (1978). Their results arc complicated and the delicate calculations involved
seem to depend very heavily on an sssumption of Gaussian errors, i.e.,, F = ¢,
the standard ﬁormg] distribution function. Such a strong dependcence on the
Gaussian errors i; undesirable from the view of rubustness; the assumption of an
exact normal error distribution is not always lenablc and the resulting estimates
tend to be incfficient for distributions with heavicr tails than the normal
distritition., Sece Hubter (1977) for details and further references,

The second approdch to the estimation problem far (1.1) avoids the repli-

cation assumption by positing a known form for the error variance, i.e.,

(1.2) op = Hix., B, 0),

ey




where ¢ is {r x 1) vector of unknown ceefficients and H is smooth and known.

A model such as (1.2) is behind the tests for howoscedasticity developed by
Anscombe 71961), Bickel [1972) and Carroll and Ruppert (1981). Of course, in
many rcal probiems we suspect a heteroscedastiv ﬁodc] because the dispersion
of the residuals increases with the magnitude of the fitted values. Thus, it
has become quite common to simplify (1.2) by assuming that o is a functicn of

T, Or lTil’ e.q.,

i

(1.3a) o; = o(1 + ftiI)O

(1.3b) o; = UlTilo (Box and Hill (1974))
(1.3¢) oy = ccxp(oii) (Bickel (1¢78))

(1.3d) o, = o(1 + o1, 2) (Jobson and Fuller (1980)).

(Sec Dent and tildreth (1977) for other models). Following these examples, we

will thus assume that for sone known H,

(1.4) 0 = olelrin04) = Hln = (eaud),

Our rosuits can be generalized to the moded (1.2), but the statenents of results

1
i

and assumptions then become extremely complicated.
Box and Hill (1974) and Jobson and Tuller (1920) both suggest a form of
gereralized weighted least squares. One obtaine ectimates of (g,2), constructs

~
estirated weights oy and then perivrms ordinary weighted Teast squeres. Their

methods are constructed from a normal error assumntion and their efficiency depends

on this assumption. The maximem litelihood estiratcs for ¢ under the norcality
assuniption hove a quadratic iuituence curve and wuy be particularly non-rolust.

As arguoed above, the rocont Viioratare demanstrales some aLceplonee Lo the notion

that c.timatore chould Le vota b oeyiines O artures from novealite, O pantpose

of thiv articl~ i~ to ]H'UV'; e oot ol sich roba b ot imiates.,




Implicit in the work of Box and Hill (1974) and Jobson and Fuller (1980) i~ !_
the notion that this problem is fsi} adaptable (Bickel (1980), Wald lectures), g‘
i.e., the generalized weighted least squires methods are asymptotically equiv-

alent to the "optimal" weightad least squares estimate one would define if the

{Oi} were actually known up to a scale factor. Our second major aim is to show

that there is a wide class of (robust) estvimates of r which are {oi} adaptable

for many distribution functions f and medeis (1.4).

2. A class of weighted rohust estimates. Suppo:e we have estimates of 1

- x, . -
(p, #) which are N%-consistent, i.e.,

=
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The existence of such estimates is discussed in the next section. We form the
estimated 05t

A ~ ~

(22) T H(t'i’ O), t'i = x180.

it the foi},Were known robustness considerations discussed by Huber (1973,
1977 suggest a general class of weighted M-estimates formed by solving the

minimization problem in B W

(2.3) So((Yy - x5¢)/75) = minimum

Here . is taken to be a convex function. 1f, for example, o(x) = %3/2 we get the
"optimal" weighted least cquares estimate with known weights. In general, the

unknown snlution to (2.3) is denoted éopt'
The class of estimates we suggest are very simply generated by substituting

{61} into (2.3). Taking derivatives, we suggest solving the equation




(x;/60(Y; - x;8)/0;) = o,
1

(2.4)

Hn =z

j

with solution 3. Throughout we take ) to be an odd, continuous function. The
(non-robust) generalized weighted Teast squares estimates suggested by Box and
Hill (1974) and Jobson and Fuller (1980) fall under the special case of (2.4)
when b(x) = x; both propose possibilities for éo and 6 of (2.1). As suggested
by the literature, choosing ' bounded should result in reasonably efficient and
robust estimates of B.

Define d; = xj/¢; and assume that
N

Z did; > S (positive definite).

-yl
2.5 Sy = Nb
(2.5) N IR

Then by formal Taylor series arguments the optimal robust weighted estimate Bopt

which minimizes (2.4) satisfies

(2.6) N¥(a

.
1
Our main result concerning adaptation is that when (2.1) holds and hence we

have a reasonable estimate of 2. then our estimate 5 is asymptotically equivalent

to the (unknown) éopt‘ Formally, we have
Theorem 1. Assume (2.1), (2.5), (2.4%) and B1 - BS below. Then

(2,7) N%(é - éopt) R 01

so that

LMo, 25 ge)?y,

Wao - g)
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That é is robust against outliers in the errors when | is bounded can be
seen by combining (2.6) - (2.7). The resulting influence curve is strikingly
similar to the unweighted case in homoscedastic models,

In stating assumptions and proofs we simplify (1.4) to

£2.9) o, = exp(h(Ti)ﬂ),

where h is a function from R to R". The mndel (2.9) includes models (1.3a) -
(1.3c), but it is not strictly necessary for the validity of our results. Our
reason for considering only (2.9) in the formal aspects of this section is *2 avoid
making already cumbersome notation needlessly complicated. Generalizations to

the model (1.4) require that H(-,*) be smooth,

Here are the assumptions.

Bl. P odd, F symmetric, UCEwZ(.I)cﬁ, [
B2. As r ~ o0, s+ o0,
Ev((cl +r)(1 + s))
= rEu” +olir] + |s]),
B3. - Trere exists C  such that for all &<l, as K » =
1
s ~
Eosupin((e, + (1 +s)) - 2oy + v N1 +s7))]: X
et eti Tl stk e - e and s 87K,
¢ /
Ca’
g4 As r, s -0,
2

BS. 1im sup(l[xif, $ n(z )IINTe= o
N 2l

PR O




gL =y o

8
N e 2
B6. sup(N" ¥ (fx;117 + [Tn(e)1]7) <o
N i=
87. The functions o; = H(ri,e) are bounded away from zero. f
|
8s8. On an interval I containing all the {1;}, h is Lipschitz ;

continuous. I may be infinite.

The proof is given in Appendix B. Conditions Bl - B6 are similar to those

used by Bickel (1975) in his study of one-step M-estimates in the homoscedastic

model. Condition B7 merely insures that we do not have infinite weights and
condition B8 assures us that when Oi = H(Ti,a) = exp(h(ri)e), the function H is
sufficiently smooth. Details verifying that (2.8) actually follows from (2.6) -

(2.7) and the assumptions of Theorem 1 are easy to fill in.

3. Estimation of 0. In the previous section we have shown that, except for

certain technical conditions, one can construct robust weighted estimates of B as
Tong as one has available estimates of § and £ which satisfy (2.1). Preliminary
estimates éo satisfying (2.1) are readily available and include (under reasonable
assumptions) ordinary least squares estimates and ordinary M-estimates; details
of sufficient cohéitions fo; this are available from the authors in the form of an
earlier versicn of this paper. Bounded influence regression estimates could also
be used; see e.g., Krasker and Welsch (1981). 1In this section we propose a class
of estimates of & which are robust and satisfy (2.1). There are of course many
possible ways to construct such estimates, but our method has the necessery
theoretical properties as well as encouraging small sample properties; see the
next section for details.

To motivate our estimates, suppose the {t;1 were known, the ‘c.} satisfy

1

(1.4) and the density of f is proportional to exp(-¢(x)), where ~ and »” = y are

as in the previous section. This device is common in robustness studies; see




Huber (1977), Bickel and Doksum (1931) and varroll (1980) for examples. In this P

instance the log-likelihood for 6 is (up to a conctant)

N N ’ |
(3.1) p(a) = - ¥ dogh(ii.e) - o ol{Yy - vy)/Hrye)) :
il il i
)
Taking derivatives in 9 suogests that we solve |
Ly
N 5 /(" - t\: ,'\‘, -t l
(3:2) RIRTIRIR L O A 1 H{t,,0)/H{t

g W) 1f;1\ ' \Hl ! (s ) / Hit. o)/ O ( byt /H{ S |

3

Because the torm in brachkets in {3.2) is rot boundod and hence vould in gencral 1

lead to an urbounrded influcnce function Tor the estimated 0 and an overall lack
of robustness i our estimatior procedure, we follow the common deovice used in
the howssncdastic case by Huter (1977) and Bickel and Dolsum (1931) of replacing
xv{a) = 1 by a function x(+), as well as replacing 15 by t; = xifo, thus leading

to estimates obtained by selving
Y g

N "

Probably Lthe most corron choice of 3 () in the homoscedastic rase is that for

the zlacsical Proposal

x(y) - ff(y) - PO () T exp (w72 )X .

This choicn of ~{.) aives toue’od 3nluer e to our estimates ¢f £, and thus might
X ;o J

reascnally be preforred in our problem to yo(y) - 1, just as it is in the homo-
scedact i case; see also Hubeo 115770 po 33) for ¢ortain optivality properties

of this choice,  In the cage o0 the cpecial madel {2.6Y, we have i
! . / o //‘(-- Y TP A
\3.4) G” 6) B 1\|1 - bi i i )h(t|“. i

’
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We make the assumptions that - {.) is an even function with x(o)<o, x{(»)>0. In

the model (1.4}, v is a free parameter dofined so that

(3.5) Ex((Y, = - )/ ) =o0.

By = ‘,' ‘10(%'\) wi-) o= 7 ' l\' T.
I \1 * rl)
In many models {such as (1.2a}, (1.%b), and (1.7c) with . -0) cne

i
can show that solutions to the equation Gw(%) = GN(U;E*) = 0 exist. But we have

been unable to show that the solutions are unique, altnough in all cf our examples
unique solitions have been cbtained. More importantly, one may not wish to

consider all possible values of ++, e.g., in models {1.3a) - {1.3c), cne may

reasonably wish to restrict [01.1.5. For these reasons, we suggest the following

procedure:

(3.6) minimize [;GN(H)!f = 11Gy{~,=4) || on the interval
W,.J. If the solution is not unique, <"oose that one {

with smallest {ff ii-
* 1

1

!
I
The solution to (3.5) is thus weli-defined, 1In all of our examples when g is

urrestricted, the snolutions to (3.3) and (3.6) have coincided. In tne examples
in which we have restricted ', (3.6) has always had a unique solution even when .
(3.3 has not had a soluticn in the restricted space.

An appealing feature of the.e estimates is that they are natural gencral-

jzations of the classical Huber Propo.al ? for the homoscedastic case.

Theorem 2. Assume (2.5),(2.9), (2.5}, BS - B8. Further assume that |
1. ~

N* By -~ 2) = Op(l). Then under C1 - (5 below, if 3 solves (3.6), then

-

(3.7) A= 0 (),
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Here are the conditions:

2]
Cl ¢ By v, and v is nondecreasing on fo, ).

€2 As r, 5 -~ for A(.)> 0, i

E((ep + rX(1 +s3) = ALUs +olir] + [si).

€3 Condition B3 holds for
ca Condition B4 holds for <.
€5 [T %y is the minimal eigenvalue of
-1N T
Hy = N2 h{eg) ' h{cos),
N i=] ! ‘
ther 1im inf My = o

The proof is given in Appendix C. Th2 conditions are hardly onerous, being
similar to those of Bickel (1775), and with only C5 affected by the hetero-
scedasticity.  Further details of implementation are discussed in tie next section.

Ore rcan also introduce redescending M-estimates by using  redescending to
zero. No change is needed in Theorem 1, while an estimate for ® can be obtained

by doing one or two steps of Newton-Raphson for (2.3) from any estimate satisfying

(2.1)  Proofs are similar to those given in the appendicies.

4. A Monte-Carlo study. Because Theorem 1 is an asymptotic result, we per-

formed a small Monte-Carlo stud. to assess the small sample properties of é. The

model was simple linear regrecsion
(41) Y. = = + ,C. + ., = 1, + 3...

In the study, the Cj- were equally spiced between -2 and +2, and we chose to

study the model (1.3a) »




The experiments were each repeated two hundred times under the following circum-

12

stances:

=2’Bl=1

(a) N = 21, {ei} are standard normal, ¢ = .25, &

(b} N = 41, fei} are N(o,1) with probability p = .90 and N(o, Var = 9) with

P

n
—
(@
Q

n
[aS]
[$2]
1o%

1}

~
w
—
"

2. The {ei} are said to have a contam-
inated normal distribution. Such distributions are often used in ro-

bustness studies.

We made two choices for . First was ¥(x) = x, which yields the usual

weighted least squares estimate EL’ and the second was Huber's y(x) = max
(- 2.0, min(x, 2.0)). This gives a version ER of our robust weighted estimates. !

In constructing 7; we defined

(4.2) viv) = 2 (y) - m2y)g(y)dy,

"

where 8(-) is the standard normal density function. This particular v{.) is in
standard use for Huber's Proposal 2 in homoscedastic models. The choice

X(y) = yily) - 1 was not chosen because of unbounded influence functions leading

to robustness difficulties.
Both §L and éR ware constructed as follows: 4
Step (i):  Let £, be the unweighted Huber Proposal 2 estimate (¢ = o) with
% given by (4.2) and +(x) = max{-2, min(x, 2)).

Step (ii): Solve {3.5) for (r;*, e*) form inverse "weights" w]? = (1 + |til)29*,

t. = x.2,.
i jx

i

Step (iii): Solve a weighted Huber Proposal 2 by simultaneously solving (2.4)
for the desirad function ¢ and the part of (3.5) given by

(4.3) St - xgm)/owg) = o,

The result is GO.

~ EN

Step (iv): Repeat steps (ii) and (ii1) to obtain t, = x;8_,0, =, 8.
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The algorithm given here was closen so as to reproduce Huber's Proposal 2
in the homoscedastic case ¢ = o. Direct application of the resulis of Section 2
involves only solving (2.4) in Step [iii} und gave results essentially indis-
tinguisable i-om those reported here. [In solving for {7, G) we used the sub-
routine ZXGSN of the IMSL library,

In Table 1 we list part of the results of the study. The values listed are
ratios of mean square errors for estimating ¢1 in model (4.1}, the ratio being
with respect to the "optimal" rouust method one would use if w; = (1 + [14])8
ware actually known, i.e., solve (2.4) and (4.3) simultanucusly with the known
weights. The study is fairly small but it does seem to indicate that our robust
weighted estimate will work in <ituations in which heteroscedasticity is suspected.

it is important to note that our estimate has MSE never more inan 10% larger
than the unknown estimate furmed with the correct weights, and seems to do better
than unweighted estimates when = # o. Note also the robustness feature; the
efficizncy of the weighted least squares estimates (even the “"optimal" one) depends
heaviiy cn the normality assumption and is not very high in the contaminated case.

A1l of these results tend to support the applicability of Theoren 1.

We repeated the experiment hbut with the model

. - - [ L
T3 OT TEXPUty Ty

The MSE results are reported in Tabie 2. These results seem to indicate that our
theory is applicable for a variety of models for the {:i}.
Statistical inference for  is alsc possible. We use the following general-

ization of methods suggested by Huber (1372) for the homoscedastic case. Using

~

1.
{2.8) of Theorem 1, we estimate the covariance of N?(R - £) by

VANV AN N\ ) ,
(4.4) K(E'ﬁ")S-l(E':“)— . |
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where

AN T .

S0 =N Ty ~(‘(‘- - Yi:)/\.])
K=1+ (p+2)(1 )/ ()
//f\A S D
N SR
\ A,

ar1 § 7 ¢ decorned similarly to £, In our Monte-Carlo experiment we constructed
Dantigecc s rt e Lats far the lope parameter gy in (4.17, using (£.4) and t-
repcapta; . roints with oo - r = N - 4 degrees of freedom. The intended coverage

procani ity was 357 an none ot Lan cases did the achieved coverage probability
fall bel»r 92 , and ip the majority of the cases it was at least 9¥7.

. also attempted 1o sol.e equations (2.4) and (3.4) simultaneously using
tne IMSL routine ZSYSTM. (Our experience was much like that of Frochlich (1973)
in that the algorithm converged most of the time but not always. Dent and Hildreth
(1977) were ahle to show that the difficulties experienced by Froehlich could be
overcome by sophisticated aptimization techniques. We suspect that the same holds
for our problem.

Tne particular method for estimating g = (-, o*) outlined in Section 3 and
explored in thi;ggection is recommeﬁded for models such as {1.3a) - (1.3c) which

satisfy (2.9). 1In model (1.3d) an alternative procedure is preferable, because

we car exploit the relationship

Here one would obtain initial estimates of (ul, %:) by (robust) regression tech-
niques, as along the lines o Jobson and Fuller (1980), working with the squares
of the residuals from a preliminary fit. One would then do one-step of a Newton-
Raphson towards solving versions of (3.4) which are obtained by working with

(11, 1) and following the line of reasoning in (3.1) - (3.4). Monte-Carlo work

St g




'lIlllllll"""""""""“"""""""""llll"'""'“"""""f""'“**
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which will be reported elsewhere indicates that this technique can he quite
successful,

5. Feedback. In the case of normal errors. Jobson and Fuller have suggested

1

; using the information about £ in the terms o, = H(vi.w). This essentially reduces
to maximizing (3.1) jointly in (2, 2). In a very nice result they snow that if
the error distribution is exactly normal and if (5.1) is exactly correct, then
improvement over the weighted least squares estimate can be achieved. It 1< clear
that such feedbeck procedures will be adversely affected by cutliers or non-normal

error distributions, and it is not clear how to robustly modify them.

In cases where usina feedback is comtemplated, a second form of robustness

must also he ~onsidered, i.e., robustness against misspecification of the function
H in (3.1). carroll {1981, unpublished) has shown that as long as H is correctly
specified to order O(N-u), the asymptotic properties of the weighted estimates
((2.4), (3.5)) are the same as if H were correctly specified; in this sense our

weighted estimates are robust against small errors in specifying H. Carroll also

shows that such robustness i« not the case for feedhack estimates. In fact, any

qain ‘rom feedback can be more than uifset by slight errors in specifying H,
Since our primary interest is in - and S H(zi, ) is at best an approximation,

we suggest that feedback should not he automatically preferred in practical use.

6. An example. In Figqure 21 we plot the outcomes of 113 observations of
Total Esterase iC;} and Radioimmunoassay -RIA -Y.:, made available to us by Ors.
D. Horowitz and O. Proud of the National Heart, Lung and Blood Institute. The
data are clearly heteroscedastic, sn we tit the model (4,1) with variance model
(1.3a), estimation done as in the previous section. The results are summarized

in Table 43, Since 8 appears to be fairly large, the results of the Monte-Carlo

indicate that weighting should bho of real benefit. The confidence l1imits on 3

e g e e s
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i? were obtained by bootstrapping (using 60 simulations). In the weighted cases

the standard errors for 8¢ and By were obtained from (4.4), as well as by tne {‘

bootstrap. The weighted results are fairly close together. While our purpose
in presenting the numbers is merely illustrative, we note that the values of

8 suggest that a logarithmic or square root transformation might stabilize the

variances (see Box and Hill {1974)). We also fit a quadratic model to the data

with 1ittle change.
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Table #1

Riatio of Monte-Carlo M5 for the different estimators to the Monte-Carlo
MSE of the "optimal" vrobust estimate with known weights. These MSE's are for
estimating the slope 1 the model \& = BU + E]Ci *oe, where e satisfies

{1.3a).

Sample Sice N = 2} Sample Size N = {1

= 7 b = ' s = 4 N ~ 2
By = 2.0, iy = 1.0 fq = 4.0, £ = 2.0

Normwal Iryoes Contaminated Errors

Fstimato 6= 0.0 b= .5 9 o= 1, 0 =20.0 9= .8

Unweighted LS .98 8 . .51

“Optimal® WLSE,
kneown weights

Our WLSE, csti-
mated weights

Uniceightad

robust vstiwntc‘ 1.
Our weighted
robust esti-
mate, estinated)
weights

e —————— e
eaa N
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Table #2
Ratio of Monte-Carlo MSE for the different estimators to the Monte-Carlo
MSE of the 'optimal' robust cstimate with known weights., These MSL': are for ;
estimating the slope in the model Y, = &£, + RTTERRIT where o, satisfies éﬁ
} = ate Yy, ) ) g
S exp(_ltl‘) %
Sample Si1ze N = 21 Sample Size N = 41 3ﬁ
i = ? 2 = = & o = 7 ]
£y = 2.0, 8, = 1.0 SN 1.0, 5, = 2.0 z
Noriil frrors Contaminated Lrrors ,'
o I T T T T "
Lstimator 4= 00 o= .25 | ¢ = 0.0 - = ,25 .
T L i ]
Unweighted LSE E . .
Lnwelg ! o T .24 2.55 B
"Optimal' WISE, |
known weiglts .98 -9 l V.24 1.19 }i
1
Cur WLSE, ] | !
estimated weights 1.15 1.13 | 1.28 1.26 i
| E
Unweighted robust ( :
estimate | 1.00 1.3 | 1.00 1.85 i
f
(ur weighted | r
robust estimate,. ;
: 1.14 . 1.3 | 1.03 1.05

estimated weights




Table =3

Results of the analysis on the data tor Figure #1,

sk
Cuonfidence Limit

robust

LA Standard . Standard N
Method g 30 Error S] Lrror 2
g . 1 o T
i Unweighted L-6.30 20.0 16,73 .9
least squares }
Qur weighted | -19.22 1 17.32 .9 .08
least squares t
Unweighted | -6.5d 174 16.67 8
robust '
t
Qur weightod ; -26.99 11.3 17,753 R .85
[
!

(.4,.9)

(.7,1.1)
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APPENDIX A
- - . . A A
‘he following general theorem will be used when studying Ea 8 and

j>

theoren A1, Let g; ki, and  A(:, 1Y (= gy }\i.\" and  A(¢,1,N)) be sequences

of posttive constants such that

L

_lv . . -
{A 1) limisup k. + }\;,gi + N T AN =0 d
N igN B .
|
and i
N, s,
(A2 sup( < gt N g I OIEN
(AL2) \1\}1\(‘1;1 }\L 4 1}gl + gll\' C1
Let ° be a functien from R to R] satisfving ]
E
(A3 F.‘t-.l(r,l,(),()) = U for all i,
ALY lim sup }5{5111)l¢.1(:_1,r,.<) - rril-..l,r',s'ﬂ: vl by, lst st 2 % oand
k0
! } - e < STy e g Ly
r -1y, is , k7: < 08
for some €, and all v < % -1 and all i,
1.5) ; b e ros e Y = e vl
(A5 sup g; L(ui(cl,l,>] - .i(nl,t,l) - Ao, = ot + sy, !
12N L
(A.6 li 2 ;
.6 m s B e r,s) - gL (s )T o=
Ly S gy B =y (e, 0,007 = 0

. 2.2 ) {2
and lim sup g.” Fo%(c,,0,0) <~ ot o7, al”
N joN ] ! 1

3) o 1
T and 9(1 be functions from i ]
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(A, 100 sap Moo, NtV A D e,

and




(A12) U0 = U@ - B - 1)) = o (1)

ainaiibh

for cach fix-d &, and that tlere exists K depending upen M but not” & such that,

for a1l 0 < & <1 and all N, ' =

(A.13) E supl]|U(8) - ["\"'":i)”: Plall = My JUsi] <M, e - A%]] = M8Y < K& . ;

. . . . m . ..
Since for any 5, we can cover a hall of radius X in R° with a finite aumber of

balls of redius §, (A.11), (A.12) and (A.13) prove that, for each 0 < § < 1,

4
.»\{'f,i)u.kl)(i\}z.;[ < RE) =1,
1 1 ==

[

lim p( sup  [JUL2) - UL0) - N
o 1 . N N -
AN llél |::l\! 1

which proves the theoren.

To prove (A.11 not» that by (A3
1 ’ ) ’

E(U L) - U(0))
-t o 1 2V, .. 3) .
= N F(d. (e ,Ctj( )(_[-\) ,a£ (».”_ﬁ\\ - ¢] (91,0,0\\(:l+ Q_(l)ké)) ]
We next have by (AL1), (A7) ant (A.8) that {or all large N,

(\.14) g+ g(i‘))(i'\.)i{ <2

|

I,

and also b (AN, (A7) and (A3,

) o : . .
}[’( i !('"E] (‘;) “'( ‘7’) - ‘;'i(.‘:iy\lio)) = ‘\L“;l)(lil)t_lJ + OKSI]\




\ : N ;
e ‘ R oy bd,L e . :
J'!-([Ij\?\;f_) - U‘\v‘_(,‘)) = N —’ \»(‘-’l)“»’-il (;i):i * OWN § gikill-‘-—'ill
i=1 i=1 \
b
L :
IETR (1 2) |
eNTT ac o et on |
L (RS B P
i=] |
b
I
By (ALY, (A7) and (AL8), the last term on the RS is of(l). By (A.2), ‘ ;
(A.9) and the Cauchyv-Sohears inequality, the sccond term is bounded by
|
T2
0[.; ;’i]\lj = o(1)
i=1
1
. . . : , 1
so that (A.11) holds. ‘Then, again using (A, 14}, we have that for N large, )
bolar(ig(a) - U0 ;
¥ 3
N .
-1 0% 20 2 -2 L (L) 12) i
< (2N 2 g-l!z§ -L|! 'SIp 8y HE )(é},fti (A))
=1 1N
2 el N . (3) .. 2
S (e, 0,007 ELINTT Y A (20,0000 ()
11 < 1 -1 '
1=1 1

The cecond term on the RIS 15 o(l) by (L.6)-(A.8). It also follows from
v '
(A.6)-(A.8) that

S S © DR D Sl - e .

?Up_ gl ]:(v-l('—i ,‘ii (»_:.' "»'i \_:)) 1( 1’(’,- ' 0(»1.' ]

1<N >
Therefere, (\.12) is proved by applyving (A.2) and (A.9). Firallv, by (A.14) 4

the RS of (A.13) is less than or ecqual to




a7 T x e s e, oM@, o @)
i=
A ,afl)(gf\ uf:’(r\)| et <M, (et ] e,

-4 ’ 2 7
+ N o 2 }: f‘lll){(‘;f] ({] i :13\1) (_Ll_{*) , Cti('“’) (/_:-_':) ) (g(.’)

i=] !

Hall =™ Tisst]l s M, e - a#]] < M3},

By (A.2), (A.8), (A.9) and the Cauchy-Schwarz incquality, the first term doces

not excead

,
FNNC LA = C L8
(g;KiC, " = Gy b

Y
i

sup(
N o1

1

By (A.2), (A.4) and (A.9), the sccond term does not exceced

2. % N2 . |
&M Cy N .fl gk ]];_JJ,) = o(1) .
i= '

Therefore, (A.l%)'js verified, 0
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! Proof of Theoren 1. For ~] anud
define
(., i~ .
u. (&) = N T. .o
1 (—) i
(A = h(t., o v 2L
h{ N }(Il 13
! h) = (“\1)(7}11(3'_‘) A
and
(O 2y
(t. (A) = (]~(X.( ) (1‘)]
11 -
Define the rrocens
.. N

Ugi7) = NF 1'2'] ol -

Note that (2.4) fan be rewritten
"l

. 3,00 DA '

(B.1) U U {i-b) N ) ON

_1.
Letting g, =1, k, = N “(L + Hid

o= 2., and Ak
dl i’ ! \!’1)

(2.5) and L1 -2, so for all M=

|| Uy (4)

- Uy
N

I!L ; if.’:l‘"

Novr by Chebshey!

APPINDIX B

A

\v'!l ; | " -
NOf) o+ (hi(-@ h. (a))0 -1

(t;l)(f\)/"u +

s

" 2D §]
(™) = 0

| | , [ Sy
A e Yy, o

1 ]

0,

(2
N
1

(A + «

i eTes) T

- A(‘,’)!%;\lll = 0]‘(11

~
b}

theoren, BI md B

1]

(

i

v(fey - A+ 8)),

)

A(r) = byt the conditions of Theorem ALl are implicd by

L




In proving the Theorenm,
rather that the 1.h.s,

over all . However, ¢

A% = - (A)S)

so that by (B,2), U(A*)

A -
By (2.1}, (4-4) = OP(N

(B.4) (’f\%-m = op(;\"

to conclulde from (B.1)

if for cach 1y > OFJC e

(B.S) P( inf
§ =M
H,‘:lH-NZ

Now (B.5Y) 1. ilows from

proof of her Puouma 5.2,

, L A oA L
(R_S) ”\('\‘ (h_’z) 2 N.(t’-o) ’ N (
X}

U (0 = 0,01

we will not assume that £ actually solves (2.4), but

of (2.8) evaluated ot B is less than twice it's infimum

s ceen in Huber {1977), (2.4) will have a unique solution

if v is monotone. From the last equation, we have

-1, . L
Uy(0) = 0,1,

= op(]). Consequently - by (K1),

1
), so we need only estahlish that

!1)

and (B.2) that (2.7) holds. But by (B.3), (B.4) holds

0 and My, there cxists M, satisfying

inf ‘ HUN(Q.)]! >n) >1-¢.
IESIEERT

- . . . . v - -
(5.2) in a manner quite «imilar to Jureckovid's (1977)




APPENDIX C

Proof of Theorem 2. Tor %, in Rp, A, in Rq, and . = (él,éz), define

1 2

-1
N

hi () = hiry + x,8 ,

1

c.1) 151) (&)

eapi-h, (8)4, N (h;(0) - h, ()8} - 1,

. N |
(.2 Ly = N A (see (2.9)
1 = i=1
and ‘
|
(%)

(C.3) ) = h ) - )

i ;

Then let o(x,y,2) = M(x - zj(l + y)) and detine thc process

1
) = N Dy @ anmey o)
N = ' = I T T 1 i =7
Note that (3.6) can be written as
LW, ~I\1’li(£ -2) \'I;(ﬁ-r?’))fvl = minimum
' Nr un — g 4 [ s | . lm .
1
However, by (3.5), Cl and Chebyshev's inequality,
i'
(C.4) N,.(0) = Op(l) "
so that i
WL(NEE -0) , NE(B-a)) = 0 (1
Wy, C (OL),A. (5-2)) = 1)() ].
We can thercfore prove (3.7) by showing that for each Ml >0, =>0 and Q > 0, ,
there exists M, > 0 such that i
H




}
‘ (C.5) l‘[inf'{Hh'N(i}{;: i[._ft]H <M, Héz'l =M >Qlzl - €. f
‘ |
!
We will prove (C.5) by moditving the proof of Jureckovd's (1977) Lemma 5.2, We
'i first applv Theorem \,1 with . = h.(0), g. = 1, A(»,1) = A(X), and
! S i P i
: Ny J [ e
ki = N rhir) s Hxi‘H + |fdif,). Itien
g, N (1) é
sup |]‘.\'\,(é) - Wo(0) - AQON © 7 h( .)01i Wil = oy)(l)
HaftsM - ' =1t x
By a Tavior series expansion, ;!
(‘(1)(/() = _\-"Bz } (r )“ + (h (OJ - } (-]‘]_, + 0 (\7—12) l
R A R i) T e T Ol
Thus, by C5 setting '1
E
;N : -
Vo= N2 -~} I¢]
Gy(d) = N z h(t;) (hy(0) hy (A)A
1=1
we obtain
(C.6) l!?u;')\;,\ll [L\,‘N(ﬁ) - “,\'(O“' - ,»\L.\')Héz + (1‘\,(_,@_)3. = op(l;
Piea] 1=t
Now fix ¢ > 0, .\Il >0, Q>0, Use (C.3) to choose v such that i
PO = v/2) < /2. r
Define
D= sup su RIS TS A 5
N gl Y '
4

Then D < ~ (6y, depends only on ;“1). Define M, by [MY¥)2 _M,/2 - v - D] = Q.




r. - :

Using C5 and (C.6), find NO such that )‘;‘ ) /2 and

N
bt sup 1, (8) - ¥,(0) - ACQHA, - Gu(8) ]| < v/2}
Ha = and [l len N7 N PN
21-:/2 (N2 Ny .
It ia,l =M, |lélll < M, and N = Ny, then with probability at least
1 - ¢,

T
£ (8) = My WG] ]+ &) HA, ACX) - M, D - M, Y72

2 [ACON My/2 - v - DIM, = QY .

Since X is nondecreasing on [0,«) by C1, _A_Zw\.(él, A, s) 1is a nondecreasing

function of s. Thus, ilézll > M, implies

[\

a [ _1
Lo W(B) 2 8, W (8, My, a1

-1 .. -1
(M) 0,8, AL 17 we(a M8, 118,117

Al 2 Hé)llQ .
b 2
Thus,
‘»‘-\'\(.’)
P inf ———‘I—T'!—— 2 Q) =21 -¢,
ilélHSMl tlé‘_
iL\ZH:MZ

which with the Cauchy-Schwarz inequality proves (3.2). a
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