
AD-A096 413 NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF STATISTICS F/6 12/1
ROBUST ESTIMATION IN HETEROSCEDASTIC LINEAR MODELS.CU)

FEB al R J1 CARROLL, D RUPPERT AFOSR-60-0080

UNCLASSIFIED AFOSR-TR-81-219 NL



AFOSR-TR. -0 2 19 - , ,

ROBUST ESTI,1ATTON IN HETEROSCEDASTIC TNEAR MODELS

qcRaymond J. Carroll and David Puppert

/-
/

/ DTIC
ELECTES MAR 1/ 1981I0

D

' pno'8 to?, lmb11lo wloallse;
distribution unlialtG.-

AMS 19/0 subject classifications: Primary 62,105, Secondary 62035C=)

L.J Supported by the Air Force Office of Scientific Research under grant
J aand by the National Heart, Lung, and Blood Institute

Supported by Nationai Science Foundation Grant MCS72-01?40.

Weighted M-estimates, weighted least squares,
unknown variances, estmated weghts,
asymptotically norma 1

I~ 13, 1 . 9  2 16
., 1-, f 7i'l" "



2

Abstract We consider a heteroscedastic linear model in which the variances

are a parametric function of the mean responses --- and a parameter ,.

We propose robust estimates for the regression parameter and show that, as long

as a reasonable starting estimate of B is available, our estimates of 8 are

asymptotically equivalent to the natural estimate obtained with known variances.

A particular method for estimating S is proposed and shown by Monte-Carlo to

work quite well, especially in power and exponential models for the variances.

We also briefly discuss a "feedback" estimate of ..--
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1. Introduction. We consider the heteroscedstic linear model

Yi = Ti + ri = . ,

(11)Yi1 1

where {x.) are (I x p) design constants, g is a (p x 1) regression parr;eter,
1

{c.i) are independent and identically distributed with mean zero and unknown

symmetric distribution function F, and {<.; are scaling constants which express1

the possible heteroscedasticity. Our primary interest is estimation of and

inference about the unknown regression parameter ,.

Of course, one could ignore the {.i and use classical methods such as least

squares or M-cstimation (Huber (1977)), but such ustiri-tcs are not efficient.

In order to make more efficient inference about ,, it is necessary to get infor-

mation about the fa. In one approach to the problem, the {c.} are assumed

completely unknown, but replication is assumed feasible so that the {Y.} occur in1

groups of equal variance. Recent results in this direction are due to Fuller and

Rao (1978). Their rusul ts art cn, npl icated and the delicate calculations involved

seem to depend very heavily on an dssumption of Gaussian errors, i.e., F =

the standard mormil distribution function. Such a strong dependence on the

Gaussian errors is undesirable from the view of rubustness; the assumption of an

exact normal error distribution is not always tenablc and the resulting estimates

tend to be inefficient for distributions with heavier tails than the normal

distribition,. See Huher (1)77) for dta l ls and further references.

The second approdch to the estinlation problem for (1.1) avoids the repli-

cation asslumption by positing a known form for the error variance, i.e.,

(1 .2) X ,
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where 0 is (r x 1) vector of unknown cojefficients and H is smooth and known.

A model such as (1.2) is behind the tests for hoi.oscedasticity developed by

Anscombe f,1061), Bickel (197P) and Carroll and Ruppert (1981). Of course, in

many real prob, ems we suspect a hceteroscedastii ao'.l becuse the dispersion

of the residuals increases with the maghitude of the fitted values. Thus, it

has become quite common to simplify (1.2) by assuming that li is a function of

T i  or Tij, e.g.,

(1.3a) CFi  
=  4. ! C I~ i )0

(1.3b) oGi  o, i (Box and Hill (1974))

(1 .3c) Cyi  z Cexp"(-l i ) (B ic l (C 1)

(1.3d) Oi  = (1(1 + er* i2)' (Jobson and Fuller (1980,).

(See Dent and Hildreth (1977) for other models). Following these examples, we

will thus assume that for some knoon H,

(I.) oH ( ,o H( Vi,e =

Our resul ts ct h. ,ger,1era I i . to t mf n Kd I (1 .2) , hut the statem.ents of results

and as umpi tions then becomne extrenely coop licate.

Box and ill (1974) and Jolson and Fuller (lq,,O) both suggest a forll of

generl-'ze.d -,eigh!ed least sq-cites . One obtains, estimates of (C,?), constructs

estir-ted veights u.i and thln periurms ordiniry we i jhted least sqnc rrs. Their

methods are constructed from a normal error assurImtio, and their cfficiency depends

on this assurpt inn. The r,iaxiia:rrn li elihood est. ,a' s for C under the nor,,flity

asswi:i.,tion hv.: a quadratit: i : ii:nr;ce cuIrve and :;y h p rticularly. noi,-ro! ust..

As argus~ove 1,0~n .~ J!rrwnr ~. ~ C j~net the I;otion

th, t h t.ai, r, . u I , , , n : , tt, r , fr, :r .r:' .. 0 1, r:srpose

of th , ar . . i v '.' .prwo .. .
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Implicit in the work of Box and Hill (1974) and Jobson and Fuller (1980) i

the notion that this problem is '.1 adaptable (Bickel (1980), Wald lectures),

i.e., the generalized weighted least squres metriods are asymptotically equiv-

alent to the "optimal" weighted least squares estimate one would define if the

{oi were actually known up to a scale factor. Our second major aim is to show

that there is a wide class of (robust) estimates of -, which are t adaptable

for many distribution functions F and modets (1.4).

2. A class of weighted rohust estimates. Suppose we have estimates of

(0, ) which are N-consistent, i.e.,

N (O: o(!)
(2.1)

N" (Co Op(l).

The existence of such estimates is discussed in the next section. We form the

estimated ci
V

(2.2) i =  H(ti, ), ti = xi' o0

ir the rci} were known robustness co!,siderations discussed by Huber (1973,

1977', suggest a general class of weighted M-estimates formed by solving the

minimization problem in B

(2.3) 1c,.((Y i  - xi)/7i) = minimum

Here ,. is taken to be a convex function. If, for example, n(x) = x1/2 we get the

"optimal" weighted least squares estimate with knnwn weiqhts. In general, the

unknown snlution to (2.3) is denoted 3or t .

The class of estimates we suggest are very simply generated by substituting

Oil into (2.3). Taking derivatives, we suggest solving the equation
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N
(2.4) . (xii),4d(Yi  - x8)/oi  =o,

i=1

with solution 3. Throughout we take 11, to be an odd, continuous function. The

(non-robust) generalized weighted least squares estiriates suggested by Box and

Hill (1974) and Jobson and Fuller (1980) fall under the special case of (2.4)

when ' (x) = x; both propose possibilities for Po and i of (2.1). As suggested

by the literature, choosing , bounded should result in reasonably efficient and

robust estimates of R.

Define di xi/ i and assume that

N(2.5) SN = N'il did. - S (positive definite).

Then by formal Taylor series arguments the optimal robust weighted estimate aopt

which minimizes (2.4) satisfies

I-^N -1
(2.6) N 2(opt -) = N 2 E S" iq,( )/El(c) + op(1)

i=1

-- N(o, EF'S-1  (E-'1 )-2 ).

Our main result concerning adaptation is that when (2.1) holds and hence we

have a reasonable estimate of 3. then our estimate S is asymptotically equivalent

to the (unknown) ;opt. Formally, we have

Theorem 1. Assume (2.1), (2.5), (2.) and BI - B9 below. Then

(2.7) N (C - Popt) o,

so that

(2.8) N ") N(o, E,2 S 1(E,)- 2 )
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That is robust against outliers in the errors when ,k is bounded can be

seen by combining (2.6) - (2.7). The resulting influence curve is strikingly

similar to the unweighted case in homoscedastic models.

In stating assumptions and proofs we simplify (1.4) to

(2.9) u. = exp(h(T ,

where h is a function from R to pr . The model (2.9) includes models (1.3a) -

(1.3c), but it is not strictly necessary for the validity of our results. Our

reason for considering only (2.9) in the formal aspects of this section is to avoid

making already cumbersome notation needlessly complicated. Generalizations to

the model (1.4) require that H(.,.) be smooth.

Here are the assumptions.

Bi ' odd, F symmetric ,el', E,-O

B2. As r - o, s - o,

F:,lc 1 + r)(l + S))

rETI< + o(+r + ISj),

B3. There exists C. such that for all 6<1, as K
-- 9

F sup;!,,((, + I)(1 + )) - + r')(1 + sI l :

t r I,s s K, r r'! and Is s-IK

B4. As r, s -0,

2E + r)(I ')) - ))

B5. lrm sup(IxI ,(. )N+ h 0
N - i-

..
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86. sup(NIx 2 2B6 u ( ' ( 11xil + I h( i)jj )) 0
N i=I

87. The functions oi = H(Ti,e) are bounded away from zero.

B88. On an interval I containing all the 'ii}, h is Lipschitz

continuous. I may be infinite.

The proof is given in Appendix B. Conditions B1 - B6 are similar to those

used by Bickel (1975) in his study of one-step M-estimates in the homoscedastic

model. Condition 87 merely insures that we do not have infinite weights and

condition B8 assures us that when a. = H(Ti,a) = exp(h(Ti)6), the function H is

sufficiently smooth. Details verifying that (2.8) actually follows from (2.6) -

(2.7) and the assumptions of Theorem I are easy to fill in.

3. Estimation of 0. In the previous section we have shown that, except for

certain technical conditions, one can construct robust weighted estimates of as

lbng as one has available estimates of a and . which satisfy (2.1). Preliminary

estimates o satisfying (2.1) are readily available and include (under reasonable

assumptions) ordinary least squares estimates and ordinary M-estimates; details

of sufficient cobditions for this are available from the authors in the form of an

earlier version of this paper. Bounded influence regression estimates could also

be used; see e.g., Krasker and Welsch (1981). In this section we propose a class

of estimates of 0 which are robust and satisfy (2.1). There are of course many

possible ways to construct such eFtimates, but our method has the necessary

theoretical properties as well as encouraging small sample properties; see the

next section for details.

To motivate our estimates, suppose the ('il were known, the .i satisfy

(1.4) and the density of f is proportional to exp(-p:(x)), where 2 and n ' are

as in the previous section. This device is common in robustness studies; see



Huber (1977), Bickel and Doksum (19,31) and carroll (1980) for examples. In this

instance the log-likelihood for o is (tip tro a con~tant)

N N y
(3.1)Q(0 - x logll(i )- C( Y. - )/H(Ti ao))

Taking derivatives in *)suogge.t- ha ve Cllve

(3 ) 0 ko~) ii7H p

Because the torm in bah;in (3.?) is t!o) boundsiJ znd hence nol n eea

lead tO dan urboiuro, d inflm ncc:o functiot, 'or the vst iiit~d 0 and an ov oral 1 lack

of rohustnevss ii our est imo-iior piocedureC, we fol lo-w the comimon dcv ic- used ill

thle hyscatc ase by Hulot (1 9'7' ind Bickel and Doksum (19231) of replacing

X '(A) -I1 by a function -,& ), a!s w.ell as replacing -L by ti Xi 05~ thus leading

to estiiates obteiric.1 hy solv'ing

Probably the most coi,, in cho ice- of ;()in the hei:~scedastic' -as is that for

the o:la Ssical Proposal 2

This ~ ~ ~ ~ ~ ~ i cic of-. j.r :'j'U1c to our ostiwmitcs cf C, and thus mi "ht

rca so ta!1 y be pr-Ffrr ed in oor orohi cm 1o Y (y ) 1 I, just as i t iso in "fie homo-

SCeda"{ c Se; se alO Null 1! ;7, p. 3)0 for rrtiin p :a m 'poot

Of tV' r c. In th , n' I Hf 21 ;r~1( 9., we h,]ve

(3.4)G)' -
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We make the assumptions that .)is an even function with X(o)<o, \("~. In

the model (1.4), -is a free parameter defined so that

(3.5 Fx(Y 1 I o.

!n the rmode-l (1.3a) we have

'1c"' TI*=

I n rrany model s ( -,Uch a s I .3a, (Ib). and (c wi th o~ ) one

can show that solutions to the equation G, (9) =G o exist. But we have

been unable to show that the solutions are unique, altiough in all of our examples

inique solitions have beon obtained. More importantly, one may not wish to

consider all Possible values of-:, e.g., in models (1.3a) - (1.3c), one may

reasonably wish to restrict k)-"1.5. For these reasons, we suggest the following

procedure:

(3.6) minimize JGN~) ~ -~~ on the interval

SJ. If the solution is not unique, uL'nose that one

wi th smallIest

The solution to (3.6) is thus well-defined. In all of our examples when 41 is

unrestricted, the solutionIs to (3.3) and (3.6) have coincided. inl toe examples

in which we have restricted , (,3.6) has always had a inique solutioO even when

(3.3'V has not had a solution ir ',hc' rest icted spT)ace .

An appealing feature of the.e e,-)timates is that they arp natujral gencral-

izations of the classical Huhor Propo.al ." for the homoscedastic case.

Theor-m 2. Assume (2.5),(2.9), (7.5), B5 - R8. Further assume that

- 9')) 0 O(1). Then under C1 - C5 below, if esolves (3.6), then

pp



Here are Vie condition S

C1 c -E,' and i s rioncecre; fig on [o, )

C2 As r, s "for A(,)-o,

*EU r)(1 + s") = A(Js + o,'r! + ISD.

C3 Condition -[.3 hold's for

C4 Condition B4 holds for ~

C5 is 'he minimal eigenvalue of

'N N(N i=1

then 1 rn inf N

The proof is given in Appendix C. 7The conditions are hardly onerous, being

similar to those of Bickel (1,.75), ind w.ith onlv C-5 affected by the hetero-

sc-rdasticity. Further details of implementation are discussed in the next section.

One can also introduce redescending M-estimates by using,: redescending to

zero. No change is needed ir, Theoremn I, viiile an estimate fore0 can be obtained

by doing one or iwo steps of Newton-Raphson for (3.3) from any estimate satisfying

(2.1) Proofs are similar to t~ioso given in the appendicies.

4. A Monte-Carlo study. Bt:Cduse Tnieorem 1 is an asymptotic result, we per-

formed a small Monte-Carlo stud:, to assess the small sample properties of L. The

model was simple linear regressioni

In the study, the jCj. wore equall-y spiccd between -2 and +2, and we chose to

stuly the model (1 Da

~1 1+
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The experiments were each re(peated two hundred times under the following circum-

stances:

(a) N = 21, {F i} are standard normal, 7 = .25, ,-,o = 2, 6, = 1

(b) N = 41, Eci} are N(o,l) with probability p = .90 and N(o, Var = 9) with

p = .10, o = .25, o  = , = 2. The i, are said to have a contam-

inated normal distribution. Such distributions are often used in ro-

bustness studies.

We made two choices for &. First was (x) = x, which yields the usual

weighted least squares estimate 2 L' and the second was Huber's Y(x) = max

(- 2.0, min(x, 2.0)). This gives a version R of our robust weighted estimates.

In constructing oi we defined

(4.2) i(y) =  .,2(y) - .r2 (y)o(y)dy,

where 0(.) is the standard normal density function. This particular v(.) is in

standard use for Huber's Proposal 2 in homoscedastic models. The choice

X(y) y '(y) - 1 was not chosen because of unbounded influence functions leading

to robustness difficulties.

Both 3L and 3R were constructed as follows:

Step (i): Let P, be the unweighted Huber Proposal 2 estimate (e = o) with

X given by (4.2) and I(x) = max.,-2, Trin(x, 2)).

Step (ii): Solve (3.5) for (c,, , form inverse "weights" w: (I + Iti) 2  *

ti = xi . .

Step (iii): Solve a weighted Huber Proposal 2 by simultaneously solving (2.4)

for the desired function q and the part of (3.5) given by

(4.3) 7 - xi)/ w i) 0 .

The result is 'o-

Step (iv): Repeat steps (ii) and (iii) to obtain ti  = xi2o, 0, , F.

1
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The algorithm given here was c!,osen so as to reproduce Huber's Proposal 2

in the hoinosced.istic case o - o. Direct application of the results of Section 2

involves only solving (2.4) in Step (iii ,nd gave results essentially indis-

tinguisable :rom those reported hcre. In solving for (1, &) we used the sub-

routine ZXGSN of the 1MSL library.

in Table #1 we list part of the results of the study. The values listed are

ratios of mean square errors for estimating I in model (4.1), the ratio being

with respect to the "optimal" robust method one would use if wi = (I + !i i

were actually known, i.e., solve (2.4) and (4.3) simultanucusly with the known

weights. The study is fairly small but it does seem to indicate that our robust

weighted estimate will work in -,ituations in which heteroscedasticity is suspected.

It is important to note that our estimate has MSE never more ,nan 10% larger

than the unknown estimate fori;ied with thL correct weights, and seems to do better

than unw.ighted estimates when o a. Note also the robustness feature; the

efficiency of the weighted least square., est;mates (even the "optimal" one) depends

heavily on the normality assumption and is not very high in the contaminated case.

All of these results tend to support the applicability of Theorem 1.

We repeated the experiment but with the model

= -exp,,- i

The MSE results are reported in Tauie 2. These results seem to indicate that our

theory is applicable for a vat-iety of models for the (7.}

Statistical inference for is alsu possible. We use the following general-

ization of methods suggested by Huber (197?) for the homoscedastic case. Using

(2.8) of Theorem 1, we estimate the covariance of N2( - ) by

(,4.4) K E-! )s- / . -
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4here

- , N Zi,((Y i  - ci

K - I + (p + ?)( '

a; I Ir ,, s:i1,0ilrl/ to F.. In our Monte-Carlo experimeot we constructed

,:.)n-, 3, a ,a fr tKe ,opo param, eter i in (4.1 , using (4.4) and t-

:rr'a -ins with - - r N - 4 degrees of freedom. The intended coverage

Pro i', wa -; in r,, ol, t.- cascs did the achieved coverage probability

fa " ei ).1 9? , ;-d in the majority of the cases it was at least 9 .

.J aso attempted *o ,ol.. e eqiuations (2.4) and (3.4) simultaneously using

tne IM.L rouTine ZSYSTM. O)ur experience was much like that of Frochlich (1973)

in that the algorithm converged most of the time but not always. Dent and Hildreth

(1977) were able to show that the difficulties experienced by Froehlich could be

overcome by sophisticated optimization techniques. We suspect that the same holds

for our problem.

Toe particular method for estimating e (, ) outlined in Section 3 and

explored in thissection is recommended for models such as (1.3a) - (1.3c) which

satisfy (2.9). In model (1.3d) an alternative procedure is preferable, because

we car exploiL the relationship

i2 24- 2

Here one would obtain initial estimates of (_, '2) by (robust) regression tech-

niques, as along the lines o' Jobson and Fuler (1980), working with the squares

of the residuals from a pre-liminary fit. One would then do one-step of a Newton-

Raphson towards solving versions of (3.4) which are obtained by working with

(-t', 2 ) and followiig the line oF reasoning in (3.1) - (3.4). Monte-Carlo work

. ....... .......
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which will be reported elsewhere indicates that this technique can be quite

successful.

5. Feedback. In the case of normal errors, Jobso, and Fuller have suggested
using the information about in the terms i. H('i'.). This essentially reduces

to maximizing (3.1) jointly in (,, ). In a very nice res jlt they show that if

the error distribution i exatly normal and if (5.1) is exactly correct, then

improvement over the weighted least squares estimate can be achieved. It is clear

that such ftedbck procedures Avill be adversely affected by outliers or non-normal

error distributions, and it is not clear how to robustly modify th'em.

In cases where usinq feedback is comtemplated, a second form of robustness

must also be considered, i.e., robustness against misspecification of the function

H in (3.1). Carroll (1981, unpublished) has shown that as long as H is correctly
_!

specif'ed to order O(N 0), te asymptotic properties of the weighted estimates

((2.4), (3.5)) are the same as if 11 were correctly specified; in this sense our

weighted estimates are robust against small errors in specifying H. Carroll also

shows that such robustness i. riot the casu for feedback estimates. In fact, any

qain 'rom feedback can be more than ,Ffset by slight errors in specifying H.

Since our primar#, interest is in ? and c i = H(-i, 0) is at best an approximation,

we sugge , that feedback should not be automaticallv preferred in practical use.

6. An example. In Figire l we plot the out,mes of 113 observations of

Total Estprase -,Ci , and Radioimmunoassav -RIA -Yii , made availanle to us by Drs.

0. Horowitz and D. Prodd of the Niational Heart, Lung 3nd Blood institute. The

data are clearly heteroscedastic, so we tit the model (4.1) with variance model

(1.3a), estimation done as in the previoja section. The results are summarized

in Table 43. Since 9 appears to he fairly large, the results of the Monte-Carlo

indicate that weighting -hould K of roil benefit. The confidence limits on 9

bon



were obtained by bootstrapping (using 60 simulations). In the weighted cases

the standard errors for Bo and BI were obtained from (4.4), as well as by the

bootstrap. The weighted results are fairly close together. While our purpose

in presenting the numbers is merely illustrative, we note that the values of

e suggest that a logarithmic or square root transformation might stabilize the

variances (see Box and Hill (1974)). We also fit a quadratic model to the data

with little change.

,-.
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Pill ia of Nontc-cQrla -U f')I the J i f furelnt estiitors to the Monite-Cala

RMSE of the utllCil"l 1,01"i.,t est i IVU 0 with ],no-,%I weiglhts. Thlese >&I)' s Z11e for

estiatinp the slope in the rnd, I Y. = 6+ c. + Ce. whore j. satisfies

Samlple, Si ~ I yc2e N 4 1

6~~4 2~ 0 1)P=C
0 ' 1 0 K 2.

No n~1 1 -rr~Cant;Ilr n~ E. rro~rs

Yst-iucitol oi=00. 1.0 0 0.0 .5 0=1.0

Uhm'ighted1 ISI: .91) 1.10 1 .67 1 .24 1 .51 2.31

"Optiinaf" .~S, 98 .98 '98 1 .24 1 .19 1.18
Lnic, -rn weights

Oujr WL.SF, csi 1 .14 1 .13 1.11l 1 .29 1 .25 1 .26
mated lweights

rolust (':,tit.tc 1 .00 1 .18 1 .66 1 .00 1 .21 1 .79

Our veiplhtc I
robi: .L e~ti- 1 1.14 1 .13, 1.10 1 .03 1 .04 1 .07
mate, ettiinuted
wei ht s



TAble 02

Patio of Ante-Carlo \Nl ifor the differunt estimators to the Monte-Carlo

NISE of tlhe ''opItimal'' rJ~wst cstimatec i trh lcioi-n iweights. These SI are for

estimating the slope inl the m1OeL0 Y. 4- hee stife

j ex~(: 1.

SampleI SizeC N -'I1 Sample Size N = 41

1. 30 = 4(c

NorinI i)-ronrs ColrinateU hrr-1ors

.s t inator . 2 L ~.25

tinweightod LI
.9i 1.31 1.24 2.55

"Opiml" ' 98.9 1.24 1.19
known we it !.s.98

Czzr 1QLST,
estimate 1sit 1.15 1 .13 1.28 1.26

Unweightc'a robust
et-tixnate 1 .00 1 .31 1.00 1.85

(YIr weighted
robust est imate,;
esti;,,ited! weigis 1.14 1.13 1.03 1.05



lable v3

Results of the analysis on the data for Figure #1,

I A StadrdflC Standard
Method EorLrror 9 Confidence Limit

Untwei ghted T -6.3( 2U. () lo.73 .9
least squiares

Ouir weightod i-19.22 IA. 17i .9 os(.4,.9)
least 5(jiiiareS

Unweigh,70j -0.54 17.4 16.07 .8

uir iweightoW -216.99 11.8 17.7-19 8 (.7,1.1)
robust
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A A A
f"L, following general theorem will be ued when studying &; and .

hleore :! A. I. Let gi, ki , and \(: (i gi,,, k and ..\( , i ,N) be sequences

of positive consztats such '+.it

_1

(iA.) 2 lini(stup k. + X.k + N -(h,i.Y" = I+
No i<N 1 1

and

(A.2) Sul) 1, 4 lg*+ 2 . C1
. i=l

Let :. bu a function from R " to R satisfving:

(A.5') Fi (Fl,0,) = 0 for all i,

k I)

A.4) 1im sup ILIsupj p(, rs -vK r,>f 1  s k and

i - rV , ' !s - s', : k}

for some CO ,ind all 0 i L- 1 and all i,

(A.5) S(LITr,s) _ :.( . , ,F) - ..(,j'ir" = c/jr + sl)

(A.6) I im sup gi E. ( = 0
-.,s 0 i-: N ' ' •)

21 (3)and lim .;up g 2::- 1 ( Lot , , and Cc be functions from

1 1:
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.,(_ ( ) - !\(O)) o (1)

for cach fi: d A, and thrIt ti ., re exi-;ts K dejenl( 1,, upon Il but not' 6 such that,

for zllU 0 ' - 1 and ill N,

(\. 13) E sup{ K N ) " ,, - , 10K - A*M} ) < K5

Since for a,y A,, we can cover a hal1 of radius , 1n R'1 with a finite nutm ber of

halls of 1-Z!1u; -S, (A.11), (A. i?) a;id (A.13) piov. that, for each 0 < 6 < 1,

N
IiHa p( sup 'U_ ,0 - N Y AU ,1 ()l)z ":6) = 1

which provc.s the the2orciI.

To prove (A. 1), no tt by (A. 3)

N
N Y E (-t . li-.(w)

1N N 1

N
= Nx , 11>4 (e. , (A), (>,1 - ¢i i (3 A)

i=1_ i '- ' 1 -

';e n,xt have 1y (A.1), (..7) ml (A.8) that for all large N,

(\.14) i + ,-*()(,) , I f

an1 al so 1).) (- .5 , (\.7[. I (7.

(I .) o0 1)C

j f I

i'l



NN
+N N z

Blv (A. 1) (A. ) aind (A. S) , thc las:t telin on the Rfl& is o (1)l. ~ (A. 2)

(A. 9) and the Caiachy- :uw.ar:: iicquali tv ,, the scnd term is bot&.'et- by

so that (.11) hc,1 ds. Then0, ganUS iM, A. 4) have that foi- N large,

2Var(W\A U C
NN-
-12

(2N 1) ~ ~Sup 'i Fy , ,) A m

N
op , I-i 1 1 .1 ( I-1 3

Thei e-cond term Con the M~iS is o(I 1Y 0.) -m). it -,lSO follows from

(A.6) - (A.S8) that

sup gi L(; K. , :i ) - *.C

Threor,(A. 12) is p!-oved hY applying (A. 2) and (A. 9). Finally, by (A.14)

the UIS of (.13) is less than01 or eua! to



NL

,..L N , (1)~ (2)(,)

2Y- J l i ; li 'u i(ci -( , uf (_)

2i4). ( 1)( ' , ,..)(t.) : < M, I X ILI , 

I A - A-' < M,

X ;i{ .( ' . .. _2  ,':: ) (A) -C A*)):
+- N- - - -

ilt I , I i/SI~ M, liA_ - A"j -M5}

By (A. %, (,,.3), (A.9) and the (Cauchy)-Schwar: ineiiquality, the first teni: does

not excecH,

X.

sup( (gik))(,' C C" .I
N i--1

By (A. 2), (A.4) and (A.9) , the second te m does not exceed

2 N I0
1h o E W (AN13 'k,(1 is 1.K) - o(i)

i1

Thei~' Eru ,(A.13) s yn fjd.

-h--
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_r of of Inh c L For d] a11 R ', in Lr I A = (A_],A_2' _3)

define

L. (:.) N - 1

N 0

-( I1-h

. 0',)( =  e pt-L . . .. , + (. (0), h.(/)fO . 1

and

" (A) = da "0
ct j(I ± Q

Let::ie thc Irc N:e.sI

_i N = ( , ,- r

Ul .: =" X *  I [U - C ( A i)) (1- ,t :"§ i[ )] ((1 i  + cJ **) (A))
- i= 1 1 1 ii I --

Note that (2.) .a be ora::it M 0,

: (B.12) Sup -b ,j A"L 0 (,
'A I I M

LettiN g . 1, ki  = N "(l + :11-J + fl,( , ( i(

di  , zi 'Knd ",;j) =  .(:) ' , tK c 8O it iOnls rtf iTheorem A. 1 are inl id Ly

(2. 5) and. tL -1 :, so for all Mx ;.0

(1.2) I u .... ~ v C2 I = 0 ('

I _

.i')'UAlp I vr i



U (0) 0) (0
p

In proving the Theorem, we will riot assurem that , actually solves (2.4), but

rather that the .h. of (2.4) cvaluateJ nL is less than twice it's infimum

over all C:. Ho.evejr, 7s seen in Huber '].r77), (2.4) will have a unique solution

if l., is monotone. Frcm the last cquation, w, have

-1
A * ... (A(, )S) - UN(0)  0 01 (1) ,

so that 1 (R.2), IJ (A';:) o (1). Conie!lt i' ly, 1y (B.1),P i

1 I A

A -A

N~ eeji 5)),, tz o

By (2. 1), ({ -<>) 0) (N , ;o ., > mod onrly di h t

A
(B.4) 0-) = ( (N - )

to coriclto from (B.1) and (B.2) that (2.7) holds. But b~y (B.3), (B.4) holds

if f'r c :Ch 11 > 0 1. 0 and 1 , the? cxists M satisfying

(13.5) 1( illf in [ n > 2 c

Now (B..5) f, ios .fvor (B.2) in a inamincr quite imilar to JureOwi';PS (1977)

proof oF her I .::m;, 5.2.
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Proof of heorem 2. For in Rp , A in R and A = ( iA2, define

h.(A) h + xi A N- 2)1- = h irl

(~1) (,) = e 1p{_h. ( _' N + (h (0) h.(2))} 1

1 1 - 1 - I"

(C.~ ~7(4 N JA (see'(.)

and

(C.3) '. (A) = . ) - lI - 1- 1--

Tien let \(,y,:) = \((x - :,1 y)) mid define the process

N (1) ) ) + c(2)
(x0  = :-  1' r (A) (A)) (h( +

N - iK[ - -

Note that 3.6) can be Titten as

N -j (A A
, Nm(z-) = minimum

However, by (3.5), Cl and (lcebshev's inequality,

(C.4) \.(o) = (1)
p

so that

AAWN(N 0- ),, " -) = O ()

We can therefore prove (3.7) bv showing that for each M1 > 0, 0 and > 0,

there exists NI2 > 0 such that



(C.5) P inf{I (I m M1  A' >-2J- -
,N

We will prove (C.5) by modii ing the proof of Jureckov 's (1977) Le1na 5.2. We

first appIV 'Ileorem \.1 ',ith z. h. () , gi A(X) , and

k. = .,-h(i)- x + I. , . Then

SU Nv' - 0U) A A(X N N I)( I o) (lj)N N p

By a Taylor series expmsion,

-I =A -N~ h .i).'. (h()-hW'; o(,,. : + ( i(0) hi(:.),::+ o (.N :
1 11 - - - - p

Thus, hv CS setting

- , NN T:

GC.(A) NN Y (h.(0) h

we obtain

(C.6) sup W (A) -W(O) -. ',X)IA + C o /p1

Now fix > 0, M1 > 0, Q > 0. Use C.3 to choose - such that

IN K(0) > Y/ rl;

Define

s = up su I (N
N I!A _I -

Then D < (QN depends only on D e) )efine NLt, . . ,/. - - D] = Q.



Using C5 and (C.6), find N such that X " /2 and

Pf sup ;!N (A) - (0) A(X)H_ 2  GN.(A) < y/2}
IA _, I mid I 1_ I -l<2

1 - 2 (N ;- NO )

If 2 - , I md N > N0 , then with probability at least
!- 21-1 p 1

t. IV(A) M2 IV (0)1 I+ A; Ha, A(X) MD- M2y/2

[A(X)), ,\I2/2 " ] - L, = Q%2 •

Since X is nondecreasing on [0,-) by Cl, A2 W(Ai , 
2 s) is a nondecreasing

function of s. Thus, !A 211 - M2 implies

121,! >- I2NV~,I221_2! 1

' (IA) lr )( I, ,2 1  N1
-2-N22 -A 2 1 -L 2'( "1 I &,  2I

. 9 II, Q

Thus,

P( inf -

2 21

which with the Cauchy-Schwar- inequality proves (3.2). 0

II
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20. variances. A particular iiethod (ir cs;t i!,ti 11( is rropow~d and sho .;

by Monte-Carlo Lo work quiu vic wr eTc.-cially in 1, wer and iexpoir~nti al

models for the variainces . We al ,o rief ly discuss a 'feedbacl.' estkiL.-te

o f 0.
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