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ABSTRACT
D

Textures in single-band images are often characterized by
statistics of the joint distributions of pairs of gray levels
for pairs of pixels in given relative positions, or by statis-
tics of absolute gray level differences for such pairs of pixels.
Joint distributions of pairs of spectral vectors in multiband
images are cumbersome, since for k bands they are 2k-dimensional;
but absolute difference distributions are less so--e.g., for two
bands they are only two-dimensional. This paper discusses the
possibility of using statistics of absolute difference distri-
butions for characterizing textures in multiband images, with
emphasis on the two-band case.
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1. Introduction

Many ditferent types ol features have been used tor texture
analysis and classification; sce |1] for a recent review.
Essentially all of this work has dealt with single-band images
rather than with color or multispectral images. When texture
analysis is used for multispectral imagery, it is applied to a
single band (possibly a composite of the original bands, or an
"eigenband" resulting from a Karhunen-Loéve transformation),
and if desired, the results are treated as an additional "texture
band"; but texture features are not commonly, if ever, measured
for multiband data directly. The purpose of this paper is to
introduce a class of texture features that are defined for
multiband imagery, and that are computationally quite tractable
in the two-band case. |

The particular class of texture features which we will
generalize to the multiband case are statistical features derived
from pairs of pixels in given relative positions. For single-
band images, the joint distribution of the gray levels of such
a pair of pixels can be represented by a "co-occurrence matrix"
which tabulates how often each possible pair of gray levels
occurs in the image in the given relative position, and we can
define texture features by computing various statistics from
such matrices (e.g., moment of inertia about the main diagonal,
entropy, etc.). This concept generalizes immediately to multi-
band images, but is computationally cumbersome; even in the two-
band case, the joint distribution of pairs of 2-vectors in a

given relative position requires a four-dimensional matrix for

its representation, which is expensive in storage space unless




the values in the bands arc very coarscly quantized. (It might

be possible, in principle, to use sparse matrix techniques to
handle high-~dimensional co-occurrence matrices; but we shall
not pursue this possibility here.)

An alternative to using joint distributions of pairs of
pixel gray levels in given relative positions is to use only
the distribution of absolute differences of such pairs of gray
levels. 1t was seen in [2] that for some texture classification
tasks, features based on such distributions are just as effective
as features derived from joint gray level distributions. 1In the
single-band case, an absolute difference distribution is rep-
resented by a (one-dimensional) histogram of the absolute dif-
ferences, and we can define texture features by computing various
statistics from such histograms -e.g., their means, variances,
entropies, etc. In the two-band case, it would be represented
by a two-dimensional scatter plot showing how often each (dif-
ference in band 1, difference in band 2) pair occurs for pixel
pairs in the given relative position. Thus for small numbers of
bands (two, especially), texture analysis based on absolute
difference statistics is computationally quite tractable.

Section 2 of this paper defines a class of multiband texture
features based on absolute difference statistics, and Section 3

gives examples of results obtained when these features are com-~

puted for some simple two-band textures.

L

5




2. Features

2.1 8ingle-based features

Let us first briefly review the definitions of co-occurence
matrices and absolute difference histograms for single-band
images. Let 6=(Ax,Ay) be a relative position vector, and let

the gray levels of the given images be 0,1,...,m-1. The

co-occurence matrix Md is an m-by-m matrix whose (i,j)th element
is the number of pairs of pixels in relative position § that have
the pair of gray levels (i,j). For a uniformly textured image
having a given gray level probabilit_ density, concentration of
high values near the main diagonal of MG suggests that the tex-
ture is composed of uniform patches that are large relative to
ts| (implying that two gray levels § apart tend to be similar).
Thus the moment of inertia of M6 about its main diagonal is a
measure of the "busyness" of the texture relative to (§|. This
is one simple example of how statistics computed form M&’ for
various §'s, can provide information about the nature of the
texture.

Similarly, the difference histogram Dy is an m-vector whose

kth element is the number of pairs of pixels in relative position
6 that have absolute gray level difference k. Note that if we
sum Mé along lines parallel to its main diagonal, we obtain a
difference histogram, but for signed rather than absolute dif-

ferences; to obtain DG' we need only make M, symmetric by adding

§
pairs of elements symmetric with respect to the main diagonal,
and then summing the upper triangle of M6 along lines parallel
to the diagonal. Thus the moment of inertia of DG around the

origin (k=0) is the same as the moment of inertia of M6 around

the main diagonal, indicating that Dd‘s too can be used as a source
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of texture features.

Co~occurence matrices and difference histograms are commonly
computed for images whose gray lcevel probability densitices have
been standardized, e.g., by histogram [lattening. If this were
not done, contrast effects would be confused with coarsencss
effects; if we increase the contrast of an image, its MG entries
are spread outward from the main diagonal, and its D(5 entries

from the origin,

2.2 Multiband features

The values of the pixels in a b-~band image are b-vectors of
the form (Zl,...,Zb), Othsm—l, 1shsb. Thus the b-band analog
of a co-occurence matrix M6 is a 2b~-dimensional m by m...by m
array whose (il,...,izb)th element is the number of pairs of

pixels in relative position § that have the pair of b-vectors

((11,...4b),(1b+l,...,12b)) as values. Evidently, even for small
values of m and b, such an M6 is cumbersome to work with, e.g.,
2b 4 .12

for m=8 and b=2, it has m” =8 =2""=4096 elements, and this
number grows rapidly with both m and b.

The situation is somewhat more manageable if we work with
difference histograms rather than co-occurence matrices. A
b-band difference histogram Dé is a b-dimensional m by m...by m
array whose (kl,...,kb)th element is the number of pairs of
pixels in relative position ¢ that have the b-vector of absolute
differences (kl,...,kb) in bands 1,...,b, respectively. The
size of D6 for small vlaues of b is quite manageable; e.g., for
m=8 and b=2 it has only mb=64 elements.

Some insight into the possible forms of multiband scatter

plots (again, for simplicity we assume b=2) can be obtained by




considering two simple hypothetical examples:

1) Supposc that the texture is composed of small patches
on a background, where the patches and the background
have a greater reflectivity difference in onc band
than in the other. For a given ¢, smaller than the
average patch size or spacing, the difference histo-
gram in each band is a mixture of within-patch and
within-background differences (presumably near 0) and
patch-background differences (larger). In this case
the two-dimensional D, scatter plot should consist of
a cluster near (0,0) gnd a cluster near (d.,d,), where
d. and d, are the expected patch—backgroun& dgfferences
i% the twWwo bands.

2) Suppose that the texture arises from an undulating sur-
' face in which slope differences give rise to intensity
differences in the image, and the change in intensity
as a function of slope is different for the two bands.
A given displacement § corresponds to a given expected
slope difference, hence to a pair of expccted intensity
i differences in the two bands.
Note that in both of these cases, the differences in the two
bands are quite correlated.
What types of statistics would it be useful to measure for
b-band Md's and D6'S? (We shall assume, for convenience, that
the probability densities of values have been standardized,

e€.g., by histogram flattening of each band.) Evidently, the

spread of values relative to the main diagonal or origin is still

relevant, but we should be able to analyze it in greater detail,
since 1t has more degrees of freedom. For simplicity, let us ]
consider only Dé's and only the two-band case. 1In this case DG
is a two-dimensional array whose (i,j) element is the number of !

pairs of pixels in relative position § that have absolute dif-

ference i in the first band and j in the second band. We can make

the following qualitative observations about such an array:




a) The spread of values away from the origin is a
measure of texture "busyness", since high values
far from the origin imply frequent occurrecnce of
high absolute differences in one or both bands.

b) The spread of values away from the main diagonal
(as measured, e.g., by the moment of inertia of
D, about the diagonal) is a measure of relative
texture "busyness" in the two bands; high values
far from the diagonal imply many cases where one
absolute difference is quite different from the
other.

c) The asymmetry of the values relative to the main
diagonal (as measured, e.g., by the slope of the
principal axis of D, relative to the diagonal
direction) indicateg which of the two bands is
"busyer".

Analogous remarks can be made about the b-band case for b>2.

Evidently, measures such as (b-c) can only be obtained from

a two-band scatter plot such as D they could not be derived

5
by analyzing the two bands separately, since they measure the
correlatedness of the absclute difference values between the
bands. Thus it is clear that texture features based on two-band
Dd's can provide information about the texture not available
from single-band texture features. This means that in principle,
there exist pairs of two-band textures that can be discriminated
easily when features based on two-band Dé's are used, but that

are hard to discriminate based on single-band features. Of course, 1

this does not imply that such pairs of textures will be very ;!

common; it may be difficult to find such examples.




3. Examples

The following examples are based on a class of synthetic

single-band textures derived from stationary random field
models having given types of neighbor dependence [3]. Three
examples of textures generated by such models are shown in
Figure 1.

Artificial two-band textures were created from these
single-band textures as follows: let T be a given single-band
texture, and let Ti be the two-band texture whose bands are T
and T shifted by the amount 8.. The smaller Igil (relative to
the neighborhood used in defining T), the more these two bands
should be correlated. Thus if we consider a set of two-band
textures Ti having |§i|'s of various sizes, we should obtain

rather different two-band scatter plots D, when |3| is small.

8
Figure 2 shows examples of the D6 plots obtained for the
synthetic textutres in Figure 1, using §l=(1,0), §2=(2,0),
§3=(4,0), and §=(1,0). We see that the scatter plots are in-
deed rather different for the different gi's. To quantify
this difference, Table 1 shows the values of two statistics
measured for these scatter plots: the sum of the squares of

the values ("ASM") and the moment of inertia about the 45°

diagonal ("CON") [1,2].




4. Concluding remarks

Two-band texture features have the potential of providing
textural information that is not available from single-band
features. Unfortunately, it is hard to find real examples of
texture pairs which are discriminable on the basis of two-band
features and not on the basis of single-band features; we have
therefore shown only synthetic examples here. But if other
investigators experiment with two-band features, cases should
eventually be discovered in which the potential power of the

two-band approach is realized.
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Relative

Texture ‘displadement ASM, con
of "bands" x10
; (a) 1 4.0 530
2 4.4 532
4 4.6 458
i (b) 1 2.1 103
2 2.4 64
4 2.2 75
(c) 1 1.1 123
2 1.0 295
. 4 1.0 198

Table 1. ASM and CON statistics for the D6 plots in
Figure 2.




(a)

(b)

(c)

Figure 1. Three textures generated by stationary random
field models [3].

(a)

(b)

A

(e)

Figure 2. Dé plots for two-band textures derived from the
textures in Figure 1l; one "band" is cyclically
shifted relative to the other by 1, 2 or 4 pixels
to produce the plots in the left, center, and right
columns, respectively.
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