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ABSTRACT D
Textures in single-band images are often characterized by

statistics of the joint distributions of pairs of gray levels
for pairs of pixels in given relative positions, or by statis-
tics of absolute gray level differences for such pairs of pixels.
Joint distributions of pairs of spectral vectors in multiband
images are cumbersome, since for k bands they are 2k-dimensional;
but absolute difference distributions are less so--e.g., for two
bands they are only two-dimensional. This paper discusses the
possibility of using statistics of absolute difference distri-
butions for characterizing textures in multiband images, with
emphasis on the two-band case.
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1. Introduction

Many diiferentL types o 1eatuie:; have been wsed lor texture,

analysis and classi[ication; see III lor a recent review.

Essentially all of this work has dealt with single-band images

rather than with color or multispectral images. When texture

analysis is used for multispectral imagery, it is applied to a

single band (possibly a composite of the original bands, or an

"eigenband" resulting from a Karhunen-Lobve transformation),

and if desired, the results are treated as an additional "texture

band"; but texture features are not commonly, if ever, measured

for multiband data directly. The purpose of this paper is to

introduce a class of texture features that are defined for

multiband imagery, and that are computationally quite tractable

in the two-band case.

The particular class of texture features which we will

generalize to the multiband case are statistical features derived

from pairs of pixels in given relative positions. For single-

band images, the joint distribution of the gray levels of such

a pair of pixels can be represented by a "co-occurrence matrix"

which tabulates how often each possible pair of gray levels

occurs in the image in the given relative position, and we can

define texture features by computing various statistics from

such matrices (e.g., moment of inertia about the main diagonal,

entropy, etc.). This concept generalizes immediately to multi-

band images, but is computationally cumbersome; even in the two-

band case, the joint distribution of pairs of 2-vectors in a

given relative position requires a four-dimensional matrix for

its representation, which is expensive in storage space unless



the values in the bands are very coarsely quantized. (It might

be possible, in principle, to use sparse matrix techniques to

handle high-dimensional co-occurrence matrices; but we shall

not pursue this possibility here.)

An alternative to using joint distributions of pairs of

pixel gray levels in given relative positions is to use only

the distribution of absolute differences of such pairs of gray

levels. It was seen in [2] that for some texture classification

tasks, features based on such distributions are just as effective

as features derived from joint gray level distributions. In the

single-band case, an absolute difference distribution is rep-

resented by a (one-dimensional) histogram of the absolute dif-

ferences, and we can define texture features by computing various

statistics from such histograms -e.g., their means, variances,

entropies, etc. In the two-band case, it would be represented

by a two-dimensional scatter plot showing how often each (dif-

ference in band i, difference in band 2) pair occurs for pixel

pairs in the given relative position. Thus for small numbers of

bands (two, especially), texture analysis based on absolute

difference statistics is computationally quite tractable.

Section 2 of this paper defines a class of multiband texture

features based on absolute difference statistics, and Section 3

gives examples of results obtained when these features are com-

puted for some simple two-band textures.



2. Features

2.1 Single-based features

Let us first briefly review the definitions of co-occurence

matrices and absolute difference histograms for single-band

images. Let 6L(Lx,Ly) be a relative position vector, and let

the gray levels of the given images be 0,1,...,m-l. The

thco-occurence matrix M is an m-by-m matrix whose (i,j) element

is the number of pairs of pixels in relative position 6 that have

the pair of gray levels (i,j). For a uniformly textured image

having a given gray level probabilit_ density, concentration of

high values near the main diagonal of M6 suggests that the tex-

ture is composed of uniform patches that are large relative to

tI6 (implying that two gray levels 6 apart tend to be similar).

Thus the moment of inertia of M6 about its main diagonal is a

measure of the "busyness" of the texture relative to 1-1. This

is one simple example of how statistics computed form M6 , for

various 6's, can provide information about the nature of the

texture.

Similarly, the difference histogram D6 is an m-vector whose

k th element is the number of pairs of pixels in relative position

6 that have absolute gray level difference k. Note that if we

sum M6 along lines parallel to its main diagonal, we obtain a

difference histogram, but for signed rather than absolute dif-

ferences; to obtain D6, we need only make M6 symmetric by adding

pairs of elements symmetric with respect to the main diagonal,

and then summing the upper triangle of M6 along lines parallel

to the diagonal. Thus the moment of inertia of D around the

origin (k=0) is the same as the moment of inertia of M around

the main diagonal, indicating that D 's too can be used as a source

6 it



of texture features.

Co-occurence matrices and difference histo(Irams are commonly

computed for images whose gray level probability densiLies have

been standardized, e.g., by Wistoqram flatteninq. If this were

not done, contrast effects would be confused with coarseness

effects; if we increase the contrast of an image, its M entries

are spread outward from the main diagonal, and its D entries

from the origin.

2.2 Multiband features

The values of the pixels in a b-band image are b-vectors of

the form (Zl ... ,Zb), 0rZ hm-l, lzh-b. Thus the b-band analog

of a co-occurence matrix M6 is a 2b-dimensional m by m...by m

arra whse ' , ~ thwhose (i.,...,i2b) element is the number of pairs of

pixels in relative position 6 that have the pair of b-vectors

((il .... nb),(ib+l.... ,i2b)) as values. Evidently, even for small

values of m and b, such an M6 is cumbersome to work with, e.g.,

for m=8 and b=2, it has m2b=84=2 12=4096 elements, and this

number grows rapidly with both m and b.

The situation is somewhat more manageable if we work with

difference histograms rather than co-occurence matrices. A

b-band difference histogram D 6 is a b-dimensional m by m...by m

array whose (kl,...,kb)th element is the number of pairs of

pixels in relative position 6 that have the b-vector of absolute

differences kil ...,kb ) in bands l,...,b, respectively. The

size of D for small vlaues of b is quite manageable; e.g., for

m=8 and b=2 it has only mb=64 elements.

Some insight into the possible forms of multiband scatter

plots (again, for simplicity we assume b=2) can be obtained by



considering two simple hypothetical examples:

1) Suppose that the texture is composed of small patches
on a background, where the patches and the backqt'ound
have a greater reflectivity difference in one band
than in the other. For a given 6, smaller than the
average patch size or spacing, the difference histo-
gram in each band is a mixture of within-patch and
within-background differences (presumably near 0) and
patch-background differences (larger). In this case
the two-dimensional D, scatter plot should consist of
a cluster near (0,0) nd a cluster near (d ,d ), where
d and d2 are the expected patch-background differences
iA the two bands.

I 2) Suppose that the texture arises from an undulating sur-
face in which slope differences give rise to intensity
differences in the image, and the change in intensity
as a function of slope is different for the two bands.
A given displacement 6 corresponds to a given expected
slope difference, hence to a pair of expected intensity
differences in the two bands.

Note that in both of these cases, the differences in the two

bands are quite correlated.

What types of statistics would it be useful to measure for

b-band M.'s and D6 's? (We shall assume, for convenience, that

the probability densities of values have been standardized,

e.g., by histogram flattening of each band.) Evidently, the

spread of values relative to the main diagonal or origin is still

relevant, but we should be able to analyze it in greater detail,

since it has more degrees of freedom. For simplicity, let us

consider only D6 's and only the two-band case. In this case D

is a two-dimensional array whose (i,j) element is the number of

pairs of pixels in relative position 6 that have absolute dif-

ference i in the first band and j in the second band. We can make

the following qualitative observations about such an array:

l



a) The spread of values away from the origin is a
measure of texture "busyness", since high values
far from the origin imply frequent occurrence of
high absolute differences in one or both bands.

b) The spread of values away from the main diagonal
(as measured, e.g., by the moment of inertia of
D about the diagonal) is a measure of relative
t~xture "busyness" in the two bands; high values
far from the diagonal imply many cases where one
absolute difference is quite different from the
other.

c) The asymmetry of the values relative to the main
diagonal (as measured, e.g., by the slope of the
principal axis of D relative to the diagonal
direction) indicateg which of the two bands is
"busyer".

Analogous remarks can be made about the b-band case for b 2.

Evidently, measures such as (b-c) can only be obtained from

a two-band scatter plot such as D6; they could not be derived

by analyzing the two bands separately, since they measure the

correlatedness of the absolute difference values between the

bands. Thus it is clear that texture features based on two-band

D 6's can provide information about the texture not available

from single-band texture features. This means that in principle,

there exist pairs of two-band textures that can be discriminated

easily when features based on two-band D6 's are used, but that

are hard to discriminate based on single-band features. Of course,

this does not imply that such pairs of textures will be very

common; it may be difficult to find such examples.



3. Examples

The following examples are based on a class of synthetic

single-band textures derived from stationary random field

models having given types of neighbor dependence [3]. Three

examples of textures generated by such models are shown in

Figure 1.

Artificial two-band textures were created from these

single-band textures as follows: let T be a given single-band

texture, and let T. be the two-band texture whose bands are T
1and T shifted by the amount 6.. The smaller 6.ij (relative to

the neighborhood used in defining T), the more these two bands

should be correlated. Thus if we consider a set of two-band

textures Ti having 16. l's of various sizes, we should obtain

rather different two-band scatter plots D6 when 181 is small.

Figure 2 shows examples of the D6 plots obtained for the

synthetic textures in Figure 1, using 6i=(i,0), 62=(2,0),

63=(4,0), and 6=(l,O). We see that the scatter plots are in-

deed rather different for the different 6. 's. To quantify
-1

this difference, Table 1 shows the values of two statistics

measured for these scatter plots: the sum of the squares of

the values ("ASM") and the moment of inertia about the 450

diagonal ("CON") [1,2].



4. Concluding remarks

Two-band texture features have the potential of providing

textural information that is not available from single-band

features. Unfortunately, it is hard to find real examples of

texture pairs which are discriminable on the basis of two-band

features and not on the basis of single-band features; we have

therefore shown only synthetic examples here. But if other

investigators experiment with two-band features, cases should

eventually be discovered in which the potential power of the

two-band approach is realized.

L ,
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Relative
Tex~ure displadement AgM3  O

of "bands" X10

(a) 1 4.0 530

2 4.4 532

4 4.6 458

(b) 1 2.1 103

2 2.4 64

4 2.2 75

(c) 1 1.1 123

2 1.0 295

4 1.0 198

Table 1. ASM and CON statistics for the D, plots in
Figure 2.



(a)

(b)

(c)

Figure 1. Three textures generated by stationary random
field models [3].

(a)

(b)

(c)

Figure 2. D. plots for two-band textures derived from the
textures in Figure 1; one "band" is cyclically
shifted relative to the other by 1, 2 or 4 pixels
to produce the plots in the left, center, and right
columns, respectively.
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images are often characterized by statistics of the joint dis-
tributions of pairs of gray levels for pairs of pixels in given
relative positions, or by statistics of absolute gray level
differences for such pairs of pixels. Joint distributions of
pairs of spectral vectors in multiband images are cumbersome,
since for k bands they are 2k-dimensional; but absolute differ-
ence distributions are less so -e.g., for two bands they are only

00 1473 am-no" of IwI s is OSOOLWSt UNCLASSIFIED

SICURITY ".AS ICATION Of Tul PWAO (ln A!W . Sruso)

.. . .. .. . A ... ., ,n .. . . . - . .. '" . . ll-.. . .. I -



UNCLASS IFIZED
SRC TV CL.AS IPlGATION Oil TWi PAGCKIWIWS Oa Aneren.)

two-dimensional. This paper discusses the possibility of
using statistics of absolute difference distributions for
characterizing textures in multiband images, with emphasis
on the two-band case.-
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