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Asymptotic lower bounds for the L2 norms of solutions of initial-boundary
value problems associated with the equation of the title are derived for a
simple case in which the eguation fails to exhibit strict hyperbolicity. It
is shown that in such cases it can be expected that thce norm of a solution
will be bounded away from zero as t - +eo even as the demping factor vy

becomes infinitely large.
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Initial boundary value procblems associated with damped, first order
quasilinear cystems of the form
(s) wt(x,t) - vx(x,t) =0

Vt(x’t) - o(w(x,t))x + yw(x,t) =0 ,

Y >0 , arise in several areas of nonlinear continuum mechanics and, in
particluar, in the theory of chearing motions in nonlinear elastic solids
in the presence of linear damping as well as in the theory of shearing per-
turbations of steady shearing flows in a nonlinear viscoelastic fluid; this
latter case has recently been studied by Slemrcd [1], [2], at least in those
situations where the response of the fluid is such that (s) represcnis a
strictly hyperbolic system, i.e. that o'(g) >e¢ >0 , CeRl (actually,
the work in [1], {2} only requires for its validity that the nonlinearity
o satisfy ¢'(0) > 0 and that the initial data v(x,0), w(x,0) be suffi-
ciently small in an approrriate sense). By using a Riemann invariants argu-
ment Slemrod [1], [#] has been able to prove that in either of the situations
delineated above smooth solutions (i.e., solutions which are of class C1
in (x,t) jointly) must breakdown in finite time if the gradients of the
initial data functions are sufficiently large in magnitude; his work thus
compliments the earlier work of Nishida {3] who proved the global existence
of smooth solutions to initial-boundary value problems associated with (s)
under the assumptions that o'(O) >0 and that both the data functions and
their gradients are sufficiently small in magnitude. The results in [1]-[3]

no longer remain applicable if either ¢'(0) =~ 0 or if o'(0) >0,
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5'({) <0 for |G| sufficiently large, bul the initial data are not chosen i

mie

sufficiently small to guarantee that o'(w(x,t)) > 0 for as long as smooth
solutions of (s) exist; such cases would arise, for example, in the theory
of shearing perturbations of steady flows in a nonlinear viscoelactic {luid
if the fluid is of grade three, i.e. o(g) = o,C + 03C3 , and the material

response is such that either 0y =0, og #0 or o) >0 but o5 <0

It is well known that (at least in a simply connected domain of (x,t) :

space) the system (s) is eguivalent to (set w = 0o, Vo= ut) the damped,

quasilinear equation

(e) utt(x,t) * yu(x,t) - 'J(ux(x,t))x =0

s il e

and that if (v,w) is a sufficiently smooth solution of (s) then w(x,t)

satisfies
(&) wtt(x,t) + th(x,t) - c(w(x,t))xx =0

By working with (€) we have menaged [4] to show that, under appropriate
hypotheses on the initial data, smooth solutions of associated initial-
boundary value problems can not exist globally in time in the cascs o' (0) =0
or ¢'(f) <0 for |[g] sufficiently large; by a smooth solution of (&) in
{1 we mean, for example (in the case of associated homogeneous boundury data
w(0,t) = w(l,t}) =0, t >0) a function wecg((o,l)x[o,w)) such that

2
w*(o,')e Ll(O,m) n L“(o,m) , with analogous definilions in the case of

cither Neumann or mixed boundary conditions.

w




Decay to zero in the Lcv norm, as t — +® , for the unigue smocih
globally defined solution of initial boundary-value problews associuted with
(e) , in the strictly hyperbolic situation, has been establiched by Nishida
in [3] by using a variant of the L2 - energy method of Courant ~ Friedrichs -

Lewy [5). (Similiar arguments have been employed recently by Dafermos and |

Nohel [6], [7] to treat the asymptotic stability of solutions to some non-
linear integrodifferential ecuaticons arising in theories of nonlinear vicsco-
elastic response,which differ from the theory employed in [1], [2],and by wj
Slemrod [ 8] to prove the acympteotic stability of soluticns to a cystem

of quasilinear equations acsoeciated with nonlinear thermoelastic response).

As with the global existence and nonexistence theorems in [1]-{3] the
asymptotic stability resulis in [3], and the method used to establich them,
fail to apply in those situzations where either 6'(0) =0 or o'(f) <0
for |Cl sufficiently lerge (i.e., for ]Cl sufficiently largce, hyperbolicity
breaks down and (e¢) becomes, in essence, a quasilinear elliptic equation).

For linear elliptic equations of the form
(e) W, tya teau =05 vY>0,c¢ >0

it follows from abstract results of this author [ 9] that it is possible to
choose u(x,0) so large that as t - + = the L, norm of u on a finite
interval, say [0,1] , will be bounded away from zero even as the damping

factor y =+« . To be more precise, it follows from iLhe results of [ 9]

that for solutions of thke initial-boundary value problem
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utt + Yut + cuxx =0 , 0<x<1,t<o
(l.l) ua(o’t) =0 ’ ua(l:t) =0 ’ t >0

a - o, - B

u (x,0) = a u(x) , ut(x,O) =v(x) , 0<x<1

it is true that

. Q "e A -
lim lim “u (-, t)0" >Q Hu(-)”? o
(1.2) y-te tove L7(0,1) L' (0,1)
lim  lim I SIS TIN > of [SCTE
t-® Y -t® L7(0,1) L (0,1)
provided only that HEH 1 >0 .:41 that «a is chosen so as to satisfy
1 (0,1)
— ~|;)
3y axivl, /el
1°(0,1) 1 (0,1)

It is assumed, of course, that u(-), v(*) ¢ Hi(o,l)

It is the purpose of tais note to prove, using entirely elementary
arpuments, that solutions of (e) must behave, as t —=+e |, in a manner
analogous to those of (&) when we do not assume strict hyperbolicity. Oyr
results cover simple situations in which o'(({) <O ,b’CrRl ,s0 that (c¢)
models an essentially elliptic situation, but we conjecture that cimilar
results hold in the more delicate situation where o'(0) >0 bul o'({) < 0,
for |C| sufficiently large, with the initial data not chosen so small so
as to pgurantec that (e) remains hyperbolic for as lony as sufficiently smooth
solutions exist. To this end, consider (e) with u(x,t) repluced by J](x,t)
and ascociated initial and boundary dala of the type present in (1.1), i.c.,

consider the system

5“




)=

o)

a o
- = <
ug * Yu c(ux)x 0,0<x<1,t>0
X
(1) So8) =0, F(1,t) =0
a - « — _ ‘
u (x,0) =au (x) , ut(x,O) =v(x) ; 0<x<1

Instead of the pirichlet conditions in (1.1%) we could work equally '

well with Neumann type boundary conditions di(o,t) = dz(l,t) =0 ,

t >0, 1f o(g) satisfies o(0) = 0, in addition to hypothesis (o) below;
in (1.1*) Yy>0, o >0 and we assume only that u(.), v(-) e Hi(o,l)
(for the Dirichlct conditions) and u(-), v(-) e Hl(O,l) with Gx(') ,
Vx(') € Hi(o,l) for the Neumann conditions. In both situations we assume

that |la()I >0 and that (u(+), v(-)) o #0 . Concerning
L°(0,1) L (0,1)

the nonlinearity o(-) we assumc that o:RY =R with o ¢ Cl(Rl) and

(o) Co(C) <0 , ferall CeRl

This hypothesis is satisfied, for example, for o(g) = 03C3 with o, <0

3
in which case ¢'(0) =0 , c'(¢) <0, \/CeRl and (e) becomes

?
b, -2 ° =
(14.) ug, + vy J]cglux u_ =0
N o= Y. TN CP RNt Coh da
Now, let H (t) = H(u )Y = (L) o , t >0, which is well-
L7 (0,1)
:,)
defined on solutions JY(‘,t)eL {0,1) of (1.1%) for all ¢t >0 . Cleurly ‘
, |
' (8) =2 G, W), and
L"(0,1)
w (6) = 2R, te ] (L), L)),
, L (0,1) 1. (0,1)
: e e ) ot «x
: = pﬂut AL ; -~ N (ut(.,t), u (.,t)) N
a 1 (0,1) L (0,1)

+

. o
L ﬁf‘(.,h), ~(ux "L))x

ﬂ)(o.l)




in view of (1.1%). Using the exprescion for H'u(t) we Lthen have

(1.5) (0 (L) - G, c'(“i(''t)))‘>1;°(o,1)

Tt S 1L
Rl A 17 (0,1)

But,

(Jl(‘,t), c(uZ(.,t))x) = fidj(x,t)c(ﬁz(x,t))xdx

1l

w (e t)o(u (x,8))1
rl &

ux(x,t)c(uz(x,t))dx

-

ol o4 )
- “Oux(x,t)o(ux(x,t))dx

>0 , t>0

in view of the boundary conditions and our hypothesis (o) [If we are

working wi%h the Neumann conditions then o(0) = 0 yieclds immediatlcly thot

o(di(o,t)) = o(ﬂi(l,t)) =0 , % >0] Thus, by (1.%) we have
" 1)
(1.6) H () 2avm' ((8) , £ >0

One integration of this equation yields

S (8) 2 Yo (0) + i, (0))

and a second integration then procduces the estimate

: -yt
(1.7) }h(t) > (3“'“}%)(0) + S}:%__J(H'a(o) + yn”(o))
LYt
i, (0) + L we (0)

N




or, if we reintroduce the &finition of W;(t) and rewrite @1(0), n'u(o)

in terms of the initial data

[ . "2 [T — ) vt
(1.8) (., 6) 17 5 > a ) + —df?-(u(.), V()Y , (1-e” Yt
L7(0,1) L (0,1) L (0,1)
Clearly, if (u(.), v(.)} 5 >0 then it follows from (1.¢) that for
1.7(0,1)
any fixed a >0, v >0
TR 2 2o P L B =y

(1.9) tin fu (L0, >c () + = @), v,

t —o L°(0,1) ¥ L7(0,1)

= Mo, ys u, v) >0

and that for any fixed o > 0

1im 2in WL > A",
(1.10) L= Yo L (0,1) L°(0,1)

lim din 1W0(,90)) > Pla(OHIE

IR AT L7(0,1) 17(0,1)
On the other »and, if <(u(.), V(-)) o < 0 then from (1.8) we obtain

1" (o,1)
. Q 1o 2u— 2 e - —_

(l'll) 1im “u (’t)il o) >a liu()“ o - T i(u()’ v(-)) o !

t e 17(0,1) 1 (0,1) L (0,1)

= o(¢, vs 4, V) >0

provided we choose

[ (.), v(.)) |
L (0,1)

o o > (2)
VO RGP,
L"(0,1)

In this case it follows thai for fixed vy ¢(0,«) we may choose « = «

Y




R ‘V 1 . Y
g0 large that “ ( t l > is beunded away irem zcro as t -t e

L7(0,1)

+
Clearly aY -0 as Y — + . On the other hand for arbitrary « >0
it follows at once from (1.11) that the limits in (1.10) arc valid even

when {(u(.), v(.)) o <0
L°(0,1)

Before summarizing the above results in a formal theorem it is worth
noting that slightly sharper estimztes can be obtained with only a little
more work. In order {to obtain such estimates we begin by computing directly

that for any B > 0
(1-22) (o) (e) - ()i (t) > 2, ()7, 4(t)
where

2 _ C
(1.13) 4, 4(8) = @ (.., dzt(.,t)>L2(o’l)

+1)HU (. t/H (0,1)

The estimat: (1.17) depends only on the form of qx and is independent of ihno
particular equation satisfied by éy(.,t) (e.g., sec Levine {10]) Substituting

in (1.13) from (1.1%) we then obtain

N o C',A.
(1.1k) & o(8) = (.8, c(ux("t))x>L2(o,1)

8]
[P

-3 5 H' (t) - (7 +41) |ut( b)) 1 (0,1)

3

However, by (1.5) it follows that




v a4 1 .. N v
gut(.,L)H o =5 ¥ O(L) o+ = U(t)

, (¢
- u (L), e(ul (L)LY L,
* * 17(0,1)

N o (o4
and, therefore, as <{(u (.,t), c(ux(.,t))x) \ >0 , Yt>0 ,
L°(0,1)
by virtue of hypothesis (c) and the boundary conditions,it fellows that i
(1-15) e L0, > - (e (v) i
L°(0,1) “ :
2B+l

_y(

5 ' (L)

Introducing the estimate (1.24) into (1.1h) we obtain asz a lower bound for

ﬂ&,ﬁ(t)

(1:16) 4 (1) > W), e (L),
Us 5 -\ b X L(A(O,l)
2R+

.
¢

- v(g)a' (8) - (

) Ifkl(t)

We now substitute from (1.17) into (1.12) (after first dropping the nonnega-

Y .
tive term (d:(.,t), o(d;(.,t))x) o ) and then rearrange terms and divide
L (0,1)

through by (F+l) so as tc obtain the differential inequality

lrd L] 1 -12 ~ o - H
(1.17) I, () - 2 w8 > - v H (W) (b)
A simple computation shows that (1.17) is equivalent to '

(1.18) [Hl/;(t)]" > -y [Hl/s(t)]'

A first integration of (1.1%) then yiclds the estimate




@]

| ST 0) 2 G (0) 4 (o))

while a second integration yields

) [ e_Yt o
(La9) w2 2 o) + BT

Rewriting (1.1G) using the definition of %1(t) we easlly obtain the ectimate

~ (o3 —
’ L°(0,1)
' (v) ()T o L7{(0,1) (1-¢)
L7(0,1)
from which, for arbitrary <« >0 and either (u(.), v(.)y, >0
2
L7(0,1)
or (u(.), v(.)) ., < O we get the obvious counter purts of (1.10).
17(0,1) _ _
Also from (1.20) we find that for (u(.), v(.)) 5 >0 and « >0
L7 (o,1)
arbitrary
~ - I} % 1 A
(121) lim Ma” (., t)Y > onu(. )] 5

t o L7 (0,1




.

| (), V()Y . |
L°(0,1)

O R

[a]
L°(0,1)

a
(1.22)  1im Ju Y(.,6)|] > o ||al.)] :
t —e 17(0,1) 2 el ”1?(0,1) '

[¢ul-), v(.)y . |
- & L (0.1)
()P '

L2(O,1)

= g(&& » Y; wWV) >0

for any vy e¢(0,9) . In other words for o, sufficiently large 'g'luCl"(-,t)'!‘, o
- 1°(0,1)

is bounded away from zero as t —+® . We summarize our results in the

following 1

Theorem Iet dx(x,t) denote a classical solution of (1.1%) where « >0 ,

vy > 0 and zssume that o: Rl - Rl is of class Cl and satisfies (o)

Then for arbitrary o ,v and arbitrary data u(.) , v(.) in H’(l)(O,l) 1

Huol'(.,t)H2 5 (respectively. “ua(.,t)H o ) satisfies the growth
L°€0,1) 1°(0,1)

estimate (1.8) (respectively, (1.20).). It thus follows that for data u(.) ,

g

v(.) such that (u(.) , v(.)) >0 the estimate (1.9) (respectively, (1.21)) 1

holds for any & >0 as t -+ while for (u(.) , v(.))< 0 and fixed

a )
ve(0,») it is possible to choose « = @, so large that |ju Y., 0l

LQ(O,l)

g A At At £ st L

a
(respectively, |lu Y(.,t)” ?( )) satisfies (1.11) (respectively, (1.22)) ]
L (0,1
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as t-+eo . As longas (.), v(.)Y#A0 , Hda(.,t)ug o satisfies
17(0,1)

(1.10) as both y-= , t == for any o >0 while (. ) 5
L°(0,1)

satisfies the obvious anazlogous results, for arbitrary « > 0 as both y-—e= ,
t == . Similar results hold if di(o,t) = dz(l,t) =0 and o(0) =0

There remains open the more interesting situation where, for example,
ao(g) = ch + c3C3 with c, >0, 03 <0 so that o'(g) <0 for |g|
sufficiently large. In this case (o) is satisfied not for all ( eRl i
but only for ¢( sRl with igi sufficiently. While we conjecture that
asymptotic lower bounds of the type described in the above Theorem still

hold in this situation as well we have not yet been able to produce a proof.

A more difficult problem would seem to be to find the most general hypotheses

e - el Nt YA B 10 3

relative to c(f) which would imply the kind of asymptotic behavior described

in the Theorem.
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