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Abstract

Asymptotic lower bounds for the L 2 norms of solutions of initial-boundary

value problems associated with the equation of the title are derived for a

simple case in which the equation fails to exhibit strict hyperbolicity. It

is shown that in such cases it can be expected that the norm of a solution

will be bounded away from zero as t -+ o even as the damping factor y

becomes infinitely large.
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Initial boundary value problems associated with damped, first order

quasilinear systems of the form

W((x,t ) - V (X,t) = 0

vt(x,t) - C(W(x,t))x + yV(Xt) = 0

Y > 0 , arise in several areas of' nonlinear continuum mechanics and, in

particluar, in the theory of shearing motions in nonlinear elastic solids

in the presence of linear damping as well as in the theory of shearing per-

turbations of steady shearing flows in a nonlinear viscoelastic fluid; this

latter case has recently been studied by Slemrod [], [2], at least in those

situations where the response of the fluid is such that (s) represents a

strictly hyperbolic system, i.e. that c'(c) > e > 0 , CCRI (actually,

the work in 1l], [2] only requires for its validity that the nonlinearity

a satisfy G'(O) > 0 and that the initial data v(x,O), w(x,O) be suffi-

ciently small in an approrriate sense). By using a Riemann invariants argu-

ment Slemrod [l], [2] has been able to prove that in either of the situations

delineated above smooth solutions (i.e., solutions which are of class C1

in (x,t) jointly) must breakdown in finite time if the gradients of the

initial data functions are sufficiently large in magnitude; his work thus

compliments the earlier work of Nishida [3] who proved the global existence

of smooth solutions to initial-boundary value problems associated with (s)

under the assumptions that o'(0) > 0 and that both the data functions and

their gradients are sufficiently small in magnitude. The results in [ -t 3]

no longer remain applicable if either a' (0) 0 or if o' (O) > 0
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o'(C) < 0 for IC! sufficiently large, but the initial data are not chosen

sufficiently small to guarantee that a' (w(Xt)) > 0 for as long a: sooth

solutions of (s) exist; such cases would arise, for example, in the th,ory

of shearing perturbations of steady flows in a nonlinear viscoela.tic fluid

if the fluid is of grade three, i.e. o(C) = a1 C + a3C3 , and the material

response is such that either a= 0 , o3 0 or I > 0 but a < 0

It is well known that (at least in a simply connected domain of (x,t)

space) the system (s) is equivalent to (set w = , v the danpd,

quasilinear equation

(e) utt(xt) + yut(x,t) - s(ux(x,t)), = 0

and that if (v,w) is a sufficiently smooth solution of (s) then w(x,t)

satisfies

(e wtt(x,t) + v~t(x,t) - C(w(x,t))xx = 0

By working with (C) we have managed [h] to show that, under appropriate

hypotheses on the initial data, smooth solutions of associated initial-

boundary value problems can not exist globally in time in the cases 0' (0) -0

or a'(C) < 0 for IC. sufficiently large; by a smooth solution of (e) in

[ ] we mean, for example (in the case of associated homogeneous boundary data

w(O,t) = w(l,t) = 0 , t > 0) a function weCQ((O,l)x[O,-)) ,uch that

w(O,')e LI(o,-) n L'(O,.) , with analogous definitions in the cae ofx

either Neumann or mixed boundary conditions.



Decay to zero in the L norm, as t + , for the unique smoctl

globally defined solution of initial boundary-value problems associatud with

(e) , in the strictly hyperbolic situation, has been established by Nishida

2in [3] by using a variant of the L- energy method of Courant - Friedrichs -

Lewy [5]. (Similiar arguments have been employed recently by Dafermos and

Nohel [6], [7] to treat the asymptotic stability of solutions to some non-

linear integrodifferential equations arising in theories of nonlinear visco-

elastic response,which differ from the theory employed in [1], [P],and by

Slemrod [8] to prove the asymptotic stability of solutions to a system

of quasilinear equations associated with nonlinear thermoelastic response).

As with the global existence and nonexistence theorem:: in [1]-[3] the

asymptotic stability results in [3], and the method u.ted to establish them,

fail to apply in those situations where either a' (0) -: 0 or a'( ) < 0

for C sufficiently large (i.e., for ICI sufficiently large, hyperbolicity

breaks down and (c) becomes, in essence, a quasilinear elliptic equation).

For linear elliptic equations of the form

(c) utt + Yut + cu xx= 0 ; 7 > 0 , c > 0

it follows from abstract results of this author [9] that it is pof'sjI.ib to

choose u(x,O) so large that as t - + - the L,, norm of u on a finite

interval, say [0,1] , will be bounded away from zero even as the damping

factor y - To be more precise, it follows from the re-sults of [ ')

that for solutions of the initial-boundary value problem



u t + Yu C + cu = 0 , 0< x < , t < 0
xx - -x

u(X0 0=0 , ua(l,t) 0 ,t > 0

UO (x,O) =a -U(X) , u?(x,O) 7
V(x) ,0 < x <1

it is true that

lir lir INC( " t)! L > a 11u( o
(1.2) Y -+ t -+c i- (o,±) (

lirn li I'(', t)ii _
t -M Y -+QO1-01 1'(,1

provided only that 1uu > 0 - 'i that a is chosen so as to satisfy
H1 (O,!)

(1.3) a > F ;! !iTI

L-(0,1) 1 1Z(o,)

It is assuimed, of course, that u('), v() C 110(0,1)

It is the purpose of this note to prove, using entirely elementary

arguments, that solutions of (e) must behavc, as t -+- , in a manner

analocous to those of (4.) when we do not assume strict hyperbolicity. Our

results cover simple situations in which a' (C) < 0 , VCCR ,so that (c)

models an essentially elliptic situation, but we conjecture that similar

results hold in the more delicate situation where a' (0) > 0 but j' (C) < O.

for J C sufficiently large, with the initial data not chosen so rrmal] so

as to gurantee that (e) rema"ins hy-perbolic for as lons as sufficientl.y rmooth

solutions exist. To this und, consider (e) with u(x,t) r, ;laced by u"(x,t)

and associated initial and boundary data of tht, type prs.'tit in () . ,

consider the system



t -0 0 < x < 1 t > 0
+ yu+ t a(u") =0,

U C
u (O't) = 0 , u'(,t) 0

uC (x,) = Qn (x) , ut(x,0) LV(x) 0 < x <

Instead of the Dirichlet conditions in (1.1-) we could work equally

well with Neumann type boundary conditions ux(O,t) = u(l,t) = 0

t > 0 , if c(C) satisfies a(0) = 0 , in addition to hypothesis (o) below;

in (1.1*) y > 0 , aL > 0 and we assumie only that u(.), v(-) c Jo(0,i)

(for the Dirichlet conditions) and U(-), v(') e H (0,1) with (.) ,

Vx(" ) e i1o(O,1) for the Neumann conditions. In both situations we assume

that u(.)!LO > 0 and that (u('), v(.))2( , 0 Concerning

the nonlinearity a(-) we assunic that o:R I f R1 with a e C1 (RI ) and

(a) Co(C) < 0 , for all CR

This hypothesis is satisfied, for example, for a(c) = C3C3 with a3 < 0

in which case c'(0) = 0 , C'(C) < 0 , vCER1  and (c) becomes

(l.) utt + yt + 3 Icxu 2 x U 0

Now, let • = (r(.,t)) , t > 0 , which is well-
22

defined on solutions u (,t)cI, (0,I) of (i.i ) for all t >0 C]ar'y

H' rX(t )  / 2 ,ut(. , ) , (.,t)) ,a lid
L' (0,i1)

if" (t) P r! (.t l ;  u(U , ) (.t)>0 L' (0,J) t (o , )

I (o,1) L' (o,)

+ ((( X

_ X



ill view of (I 1B) Usn:the eri.io for WO, ) etenhv

x x L (0,I)

":,Ut t)L (0,)

But,

xU,-,) 7(((, x t)r(( xx

U o x x

- o -nu(x,t)c(u (x,t)1x

0 oxtc x

> 0 , t> 0

in view of the boundary coniditions and our hypotihesi:; (0) .[if We are

working with the Neumann conditions then o(O) 0 yiel(1r3 immediatcly tht

C~~~ ~ ~ ,u t0 ) (G(,t > 0) Thus, by (1.'-) we have

One integration of this equation yields

--T~ i > e 't(Ii (j0) + Y1())

and a second integration then produces the estimiate

(17) H~(t) > 1 (0) + (H' ~ O)

i(o) + (1e ,-
Y



or, if we reintroduce tl!ed firltion of I.(t) amd rewrite J X(O), i' (O)

in terms of the initial data

(lt) lu~t,)l M1: u.i + (u(.) (. (l-e - t

L2 (0,1) u L' (0, 1) (0, 1)

Clearly, if (u(.), >(.)) , >0 then it follows from (1 ) that forL- (0, 1)

any fixed a > 0 , y>0

(19) lira llu C, t)u 2  >02u(.l 2 + () v.)2
t -cc L L(,!)- (0,i1)

Y; u, v) >0

and that for any fixed c. > 0

lira li, - uc( .(,t)L (, > 1-( -) 2(1.1'0) t - " - c L (Ol) ( ,1

lira lira !!U¢(.,c)jI 2 > u21{()f2
-Y c t 0 'L (0,1) V (0 I(O1)

On the other hand, if (u(.), v(.)) ,, < 0 then from (1.8) we obtain
L' (0,1)

P 11-

(1.11) lim 1ug '.. t ) !1  (,l -OP )I2o) <() -v(.)) I01

V; U, 7) > 0

provided we choose

1 L(0,I)

In this case it follows that for fixe.d y c:(O"c) we mly choose (X (,



so larC e that ku v( t),(?,.L, is bI utjnld=t awly !rc l% Z e o as t -. +

+

Clearly UY - 0 as e? . On the other hand for arbitrary CY > 0

it follows at once from (1.11) that the limits in (1.10) are valid even
when (u(.), v(.))2 < 0

Before s-marizing the above results in a formal theorem it is worth

noting that slightly sharper estimates can be obtained with only a little

more work. In order to obtain such estimates we begin by computing directly

that for any > 0

(1.12) IHa(t)Wa(t) - (h+)&2 (t) > 2(t)-, (t

where

(1-13) ,up(t) =u(.t), ut(.,t)>2Ol

ct43 - (2 +l)flu<("t)l 2 ( 0
, I )

The estimate (1.12) depends only on the form of 16 and is independent of the

particular equation satisfied by u'(.,t) (e.g., see Levine [l0]) Substituting

in (1.13) from (1..lK) we then obtain

(l.) , (u(.,t), C(ux(.,t))x)2

- Hot Mt(.,t1o y (. it (Ol)

However, by (i.5) it follows that



-l0-

-1:t.,) (O'l-t)x)}(O 
l

and, therefore, as (u (.,t), 7(u'(.,t)) >O , V t > 0
... L(0,1)

by virtue of hypothesis (c) and the boundary conditions,it follow0 that

(1.15) -(2f+1) "l' t)! j2 > - ( !)I '"(t)
L2(0,1) -

'Y--7- )11 M(t
2 (

Introducing the estimate (1.1,) into (l.ih) we obtain as a lower bound for

> , (2'( tl) "

- y(f+1) H' (t) - P-f41 ) " 1(t)

We now substitute from (1.!") into (1.1) (after first dropping the nonnega-

tivw term (u (.,t), C(u 0 (.,t)) ) ) and then rearrange term:, and divide
L' (0,1)

through by (f+i) so as to obtain the differential inequality

(117) 1 ) t H' P H(t) > - ' Y~ tH( t

A simple computation showc that (1.17) is equivalent to

l/P of f o/
(I1 .].",) [if (0t) > - - (t)],

A first integration of (i.i) then yields the estimate



d t U 0(I (0) + ', (0))

while a second integration yicelds

(1-15) H > fl/ 2 Q > l-e)I/' 0

Rewriting (1.1(.) using the def'inition of H Lt eesl banteetmt

(1.20) 11 CL(.,) HI2 ( 11>2(0, 1)

(00,1)

from which, for arbitrary G-. > 0 and either u(> ,~) 2( >

or (u(-), v(-)) <0 we get the obvious counter parts of (1.10).

Also from (.0 we find that for (u(.) V(- > >0 andC >0

arbitrary

(1n) ln I!u >.,) oC )! lL(l

t - ,U . 11 (0, 1)

}(Cy; _U, 7V) > 0

while for (u(.), v(.)) < 0 and
(0, 1)



-1? -

-L L(0,1)

LO,i)

ei (o, 1)

a
(1.22) liri Iju (.,t)l >t -L( - ") )

<u(.), (.) (0, 1

'u(.")il2 2(0,1)

XCX Yc,, ; u ',) > 0

for any y e(O,) In other words for a sufficiently large lu'(.,tYI

L (0,l)

is bounded away from zero as t-+ We summarize our results in the

following

Theorem Let u (x,t) denote a classical solution of (1.1) where a > 0
R1 _ 11

y > 0 and assume that o: R R is of class C and satisfies (c)

Then for arbitrary a, v and arbitrary data u(.) , V(.) in H'(0,1)

ulu(.,t)II22 (respectively. "u(.,t) 2 ( I  satisfies the growth
L2(0,I) (rsetvl.L 2(0,1)

estimate (1.8) (respectively, (1.20).). It thus follows that for data u(.)

v(.) such that (u(.) , v(.)) > 0 the estimate (1.9) (respectively, (1.21))

holds for any a > 0 as t-=+m while for (u(.) , v(.))< 0 and fixeda

v(0,) it is possible to choose =a V so large that flu Y(.,t)l , 2 (

C1

(respectively, flu "(.,t)12 (0,1) satisfies (1.11) (respectively, (1.22))



-13 -

as t -+," As long as (u(.) , 7(.)) , 0 , llu-(.,t)112  satisfiesL2 (O,i)

(i.i0) as both 7-y , t -= for any ae > 0 while iuP(.,t)iL2 (Ol)

satisfies the obvious analogous results, for arbitrary (Y > 0 as both y ,

t Similar results hold if Ua(O,t) = U(l,t) = 0 and o(O) = 0

There remains open the more interesting situation where, for example,

a W) = C1C + a 3 with c1  > 0 , 3  < 0 so that '(C) < 0 for CI

sufficiently large. In this case (a) is satisfied not for all C e R 1

but only for CE R1 with I d, sufficiently. While we conjecture that

asymptotic lower bounds of the type described in the above Theorem still

hold in this situation as well we have not yet been able to produce a proof.

A more difficult problem would seem to be to find the most general hypotheses

relative to c(C) which would imply the kind of asymptotic behavior described

in the Theorem.
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