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INTRODUCTION

This Chapter presents a very idiosyncratic view of

multivariate analysis and reflects what the author has

found useful in his statistical practice. It stresses

exploration, virtually ignores tests of significance, and

emphasizes a particular graphical technique developed by

the author -- biplot display. The author hopes that the

Chapter will help its readers towards a better grasp of

the structure of multivariate data and the fundamentals of

multivariate analysis. He hopes that, despite the Chapter's

personal bias, it will also help readers who will wish to

pursue multivariate analysis in its more classical form, for

which references are given in this literature.
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1. ONE BATCH OF MULTIVARIATE DATA AND THEIR

DESCRIPTIVE STATISTICS

1.1. A Multivariate data matrix

The essence of multivariability is that several variables

are observed on each unit. Thus, if the units are days, one

might observe maximum and minimum temperatures on each day,

as well as precipitation and surface biometric pressure at

6 a.m., 12 noon, 6 p.m. and midnight; these would be

7-variate observations. It is convenient to think of the

data as a matrix Z(nxm) in which row z'i (i=l,...,n)

contains the m-variate observations for unit i -- out of

n units -- and each column z(v) (v=l,...,m) contains all

n units' observations on the v-th variable and zi, v is

unit i's observation on variable v. Thus, in this example,

element z2, 3 would be the total precipitation on day 2,

z' would be the seven variate observations on day 2 and- 2

z (3) the n days' observations on the third variable -- total

precipitation.

We adopt the convention of denoting a matrix by

a Latin capital letter and any of its elements by the

corresponding lower case letter with two indices, which

indicate, respectively, the row and column in which the

element is located. We denote both rows and columns

of the matrix by the lower case letter underlined and with

a single index: if the index is in parentheses, a column

is denoted; if no parentheses are shown, a row is indicated.
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For a detailed illustration, consider the data of

Table 1: mean monthly temperatures for 20 stations during

6 months of the year 1951. Here, n=20, m=6, and z

is the third station's mean January temperature, whereas

z is the first station's mean May temperature. The
1,3

location of the 20 stations is shown on the map of Figure 1.

A first glance at the data matrix like this is apt

to be somewhat confusing. Some idea of the general

pattern can be obtained from the means and standard

deviations -- shown at the bottom of Table 1. The

temperature averages are seen to be much the same in all

the six months (evidently because the stations are spread

on both sides of the equator). However, there is

considerable variation from station to station, as evidenced

by the large standard deviations: these are around 50

(i.e., 5 degrees centigrade) for each month, though a bit

less for March and May.
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TABLE 1

Mean Monthly Temperatures at Certain American Stations, 1951

(10 x centigrade)

Station (See Fig 1) v 1 2 3 4 5 6

i JAN MAR "lAY JUL SEP NOV

1 260 251 224 196 215 240
2 259 268 249 226 275 268
3 325 226 193 16,1 184 234
4 204 188 149 129 157 205
5 192 172 156 147 145 172
6 269 275 254 233 247 263
7 273 278 263 260 273 277
8 255 256 253 250 267 271
9 248 251 247 242 254 260

10 259 256 259 236 268 261
11 124 136 132 130 136 127
12 241 240 216 191 186 191
13 247 256 253 252 266 265
14 261 281 277 250 276 278
15 263 269 271 271 269 268
16 242 249 273 284 280 270
17 192 218 266 278 273 215
18 198 204 237 278 284 254
19 132 174 238 283 272 146
20 68 125 228 298 255 106

Means 225.60 228.65 231.90 230.00 239.10 228.55

Standard Deviations 59.08 45.93 41.56 51.42 48.04 52.10
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1.2. Summary statistics for the variables' configuration

The common statistics for the batch of n units are i

readily obtained from matrix Z. Thus, the means Z(l) ... z(M)

of all m variables are arrayed in vector

z' = (1/n) 1'Z, 1.1)
-n

where 1 is a vector of n ones. Deviations from each

variable's mean are given in matrix

Y= z - ( 1.2)-n

which has typical element

,V ,v - (v) (1.3)

The means for the temperature illustration were noted

in Table 1, and the deviations yv from the means are shown

in Table 2. Thus, Y1,3 = 7.9 = 224.0- 231.9 = z1, 3 - z(3)"

From these one may compute the variance matrix (often

referred to as the variance- covariancc matrix)

S I Yy , (1.4)n

the standard deviations

s = s vv (v=l,...,m), (1.5)

and, defininc, the diagonal matrix with elements dV,V = sV

as Ds, the correlation-matrix

R = D - 1SD-1 (1.6)s s

whose elements are the correlations rv,v , between variables.

For the temperature illustration, the standard deviations

were shown in Table 1, and the variance and correlation

matrices are given in Tables 3 and 4, respectively.
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TABLE 2

Deviations from Monthly Means - Data of Table 1

v 1 2 3 4 5 6
JAN MAR MAY JUL SEP NOV

1 34.4 22.35 -7.9 -34 -24.1 11.45
2 33.4 39.35 17.1 -4 35.9 39.45
3 99.4 -2.65 -38.9 -64 -55.1 5.45
4 -21.6 -40.65 -82.9 -101 -82.1 -23.55
5 -33.6 -56.65 -75.9 -83 -94.1 -56.55
6 43.4 46.35 22.1 3 7.9 34.45
7 47.4 49.35 31.1 30 33.9 48.45
8 29.4 27.35 21.1 20 27.9 42.45
9 22.4 22.35 15.1 12 14.9 31.45

10 33.4 27.35 27.1 6 28.9 32.45
11 -101.6 -92.65 -99.9 -100 -103.1 -101.55
12 15.4 11.35 -15.9 -39 -53.1 -37.55
13 21.4 27.35 21.1 22 26.9 36.45
14 35.4 52.35 45.1 20 36.9 49.45
15 37.4 40.35 39.1 41 29.9 39.45
16 16.4 20.35 41.1 54 40.9 41.45
17 -33.6 -10.65 34.1 48 33.9 -13.55
18 -27.6 -24.65 5.1 48 44.9 25.43
19 -93.6 -54.65 6.1 53 32.9 -82.55
20 -157.6 -103.65 -3.9 68 15.9 -122.55

,,, _
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TABLE 3

Variance Matrix of Mean Temperatures - Data of Table 1

v' 1 2 3 4 5 6
v _ JAN MAR MAY JUL SEP NOV

1 JAN 3490.7 2376.4 895.86 -277.15 463.09 2635.4
2 MAR 2376.4 2109.5 1324.7 612.2 1117.8 2221.4
3 MAY 895.86 1324.7 1726.8 1843.3 1873.6 1388.2
4 JUL -277.15 612.2 1843.3 2644.5 2300.4 714.15
5 SEP 463.09 1117.8 1873.6 2300.4 2307.5 1338.1
6 NOV 2635.4 2221.4 1388.2 714.15 1338.1 2714.1

TABLE 4

Correlation Matrix of Mean Temperatures -

Data of Table 1

--------------------------------------------------- ------- 7---I I ----I -----
v' 1 2 3 I 4 5 6

v JAN MAR MY JUL SEP NOV

1 JAN 1 0.87573 0.36489 -0.091219 0.16317 0.8562
2 MAR 0.87573 1 0.69405 0.2592 0.50664 0.92836
3 MAY 0.36489 0.69405 1 0.86259 0.93859 0.64123
4 JUL -0.091219 0.2592 0.86259 1 0.93124 0.26656
5 SEP 0.16317 0.50664 0.93859 0.93124 1 0.53471
6 NOV 0.8562 0.92836 0.64123 0.26656 0.53471 1

----------- --- --- --- - -- --- ---
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The configuration of correlations in an (mxm) matrix

R may not be easy to grasp at first, especially if m is 10

or more. In the present illustration with m=6, one may begin

to study Table 4 by concentrating on the highest correlations.

One notices two distinct sheaves of months: November, January

and March are highly intercorrelated and so are, even more

strongly, May, July and September. The correlations between

months not belonging to the same sheaf (or season) are seen

to be much lower.

Such a perusal of correlations is not always easy,

especially if the variables do not group neatly into

highly inter-correlated sheaves. It is sometimes helpful

also to consider the inverse of the variance matrix, i.e.,

= (I Y'Y)-1 ' (1.7)

because its elements sv 'v ' have the following interpretation

in terms of the multiple regression coefficients of the v-th

variable on all other variables. Take the v-th row of S 1

divide each off-diagonal element by the diagonal element and

change sign - then

byvV = sv'v/vv (1.8)

is the coefficient of variable v' in the regression for

variable v. Furthermore, using diagonal terms from both S and S -

=- (s sV'v)-l (1.9)

gives the multiple correlation of variable v on all m-l

other variables.

For the temperature illustration, the inverse S

and the multiple correlation and regression coefficients are



1/9

given in Tables 5 and 6, respectively. Each month's

temperature is seen to be pretty highly correlated with

the temperatures of all other months. And of course the

multiple correlations are all higher than the correlations

with individual variables, that is,

rv > vv' (v' 3 v). (1.10)

It is interesting to see the pattern of regression coefficients:

Each month's coefficients with adjacent months are positive

but with months about half a year away (2 or 3 variables

away in the circular order ... 123456123...) the coefficients

are negative. This makes good sense in terms of consistent

seasonal patterns.
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1.3. Distances in the units' scatter

The above statistics describe the configuration of the

variables (monthly temperatures) for the entire batch of units --

no attention being paid to the individual units (stations).

If one is interested in the individual units, their

similarities and differences, one needs a decription of

the scatter of the units. For this purpose one would

calculate the units' metric

U (nxn) - YS

which can be interpreted in terms of standardized distances as

follows: The diagonal elements of U

u = ,! S-1

= (zi - z)VS- 1 - Z) (1.12)

are squares of standardized distances of units i from the

centroid, i.e., from the multivariate mean of the batch.

The tetrad differences

d =(u - u.

di,e , ,e e,i e,e

(Y i  Ye ) S ' S-Ye
= - (i -e

= zi - e) 'S-(zi - e) , (1.13)

are squares of standardized distances between units i and

e. Such distances should be understood as measuring

statistical differences simultaneously on all m variables. They

are equal to zero if and only if the units compared have equal

observations on all variables, and they increase when the

differences in any one or more variable becomes larger.
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The matrix of standardized distances/,d between eachi,e

pair of stations on the six month's temperature data is

given in Table 7. All distances are positive except the

"self-distances" in the diagonal which are identically

zero; the matrix is symmetric, that is, the i-to-e distance

Vai, e equals the e-to-i distance de,i" Small distances,

such as d8, 9 = 0.6, indicate that stations 8 and 9

have very similar mean monthly temperatures; whereas

large distances, such as d2,3 =,5.3, show that very

considerable differences in mean monthly temperatures exist

between stations 2 and 3. (The reader can verify this from

Table 1.)

It is difficult to inspect a table of distances of

this magnitude (not tc speak of distance matrices for

a hundred or more units). We shall therefore require

methods of disentangling the pattern of distances of a

scatter of units and of making some sense of such a distance

matrix -- these will be discussed below in Section 4.

I"

1 ,
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1.4. Some further remarks on standardized statistical distances

To understand the u and d statistics it is well to

begin by considering standardized difference between units

i and e on one particular variable. Thus on the v-th

variable alone the distance would be

/die(v) = lYi,v - Ye,vI/VSv,v (1.14)

Similarly, for the linear combination of variables (LCV)

with coefficients a = (al,...,am) ' the standardized

difference would be

di,e(a) a i - !Ia' /Va'Sa , (1.15)

since the variance of that LCV is a'Sa. A generalized

i-to-e distance, for all variables and LCVs together, can

then reasonably be defined as the maximum of all such LCVs'

differences. But it can be proved that this maximum

satisfies

max

al, ... am ie(a) i,e (1.16)

so that the proposed generalized i-to-e distance of (1.13) can be

regarded as a maximum difference over all variables and

LCVs.

A similar explanation can be given for the structure

of the standardized distance /ui i to the centroid.
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1.5. What are the units and what are the variables?

Statistics textbooks usually treat only the description

of the variables' configurations and ignore that of the

units' scatter. This is presumably because statisticians

have mostly been concerned with random samples in which the

individual units are of no interest in themselves. In

practical data analysis, however, the units are often of

real interest and their description is as relevant as that

of the variables. Indeed, it is not always obvious which

of the classifications of data one wants to regard as units

and which as variables. In the example mentioned above,

time has appeared as a variable - but in a series of

successive ocs-i o' :vn stations or measurements it

might appear as a unit.

In any particular application, the decision of what to

regard as units and what as variables will determine what will

be weighted equ1ly and what will be standardized. In the

analyses discussed above, the treatment of the rows and

columns of data matrix Z is asymmetrical - columns are

correlated with equal weight attached to each row (station);

rows are compared by distances standardized with respect to the

different variables (months).
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2. THE GEOMETRY AND DISPLAY OF A BATCH OF

MULTIVARIATE DATA

2.1. The configuration of variables

We begin by considering the configuration of a batch,

in terms of its means, standard deviations and correlations.

We take it that the reader knows how to interpret each one

of these measures, but that he may be bewildered by the

magnitude of a correlation (or variance) matrix and may

need guidance to make any sense of the, say, ( 20 190

correlations from a 20-variate data batch. We will, there-

fore, provide a method of representing such a configuration

and show an example of interpreting it. For brevity, we will

illustrate this on six-variate data.

Geometry is most useful in grasping the structure and

patterns of multivariate data. One may think of the m

variables as m vectors emanating from one center -- the

centroid of the data -- such that (i) the length of each

vector is proportional to the standard deviation of the

corresponding variable, and (ii) the cosine of the angle

between any two vectors is the correlation between the

corresponding two variables. In fact, it follows from (1.4)

and (1.5) that

fy-(v) -n s v V (2.1)

and from (1.6) that

cos (.(v) ' Y(v')) = rvv' (2.2)

c's (-(V) Y-(V, v'v
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Long vectors thus correspond to high variability, short

ones to low variability; tight sheaves of vectors correspond

to highly correlated variables; vectors at right angles

to one another to uncorrelated variables; and vectors in

opposite directions to negatively correlated variables.

Ii

~l
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2.2. Approximation of the variables' configuration in the plane

Geometric conceptualization in hyper-space may not

be to everyone's taste, but an approximate representation

in the plane, or in 3D, is often quite useful in revealing

many of the features of a configuration. To illustrate,

consider the variances of Table 3 and the approximate repre-

sentation of their configuration by the arrows of Figure 2 --

This display is called a biplot. The method of approximation

will be discussed later -- subsection 2.3, below. Suffice

it to say now that the goodness of fit of this planar display

is 96.7% for the temperature illustration, so that little

of interest could have been lost by reducing this con-

figuration to the plane. (The dots on Figure 2 represent

the stations -- more about that later -- subsection 2.6)

((Figure 2 about here))

The configuration of the arrows in the biplot of Figure

2 is particularly simple. The length of the arrows are

pretty similar, indicating similar variabilities of all months;

but March and May arrows are the shortest, since the standard

deviations on these months are least -- see Table 1. All

arrows are within the quadrant formed by those for January

and July. The angle separating the latter two arrows is

close to 900: this indicates virtually zero correlation

between these two months (Table 4 shows this correlation to

be -.09, which is indeed negligible). In between these two

'I
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Figure 2: Biplot of Temperature Data (Table 1-)
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are all other months, with smaller angles, indicating positive

correlation. One may describe the entire configuration roughly

by two sheaves of arrows: a Fall-Winter sheaf of arrows

separated by small angles, i.e., highly correlated (with

March and November being particularly highly correlated),

and a Spring-Summer sheaf with slightly greater angles, i.e.,

less highly correlated. This despription will be noted to

accord completely with that obtained from Table 4, above.

The practical usefulness of the biplot is more evident

when the number of variables is larger. In that case it

is much easier to see patterns and sheaves on the biplot

than by inspection of the matrix of correlations. It is

a matter of not seeing the wood (configuration) for the

trees (correlations) because there are so many of the latter.

An important function of multivariate data analysis is to

provide such simple descriptive tools to allow the

investigator to make sense out of the mass of correlations

and other data spewed out by modern computers.

I

I _- . . .. . ... ... !
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2.3. Computation of planar approximations

The method of obtaining the planar approximation of

the variables' configuration is to solve

= 2Y'Y2qa (2.3)

2 2 adterascae
for the largest two eigenvalues A > 2 and their associated

eigenvectors j1 1q 2 (normalized to length one). One then

forms matrix

H= ( (2.4)

(mx2) 112I

whose rows h 1 . .. h' are plotted as arrows emanating from
MT

a common origin. This method is equivalent to least squares

fitting and its goodness of fit can be gauged by coefficient

(4) 4 4[2] 1 l 1 2 ) t  Y '  ' )

= 1 - IIY'Y - HH'I! 2/IyY 2. (2.5)

It provides the approximations

apx vn s (2.6)

and

cos (hv,h *) apx r , (2.7)

corresponding to (2.1) and (2.2), above.

Ii
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2.4. ADcroximation of the units' scatter in the plane

The foregoing calculations are equivalent to those of

the first two principal components, a fact which will be

commented on later, and they also lead to a useful represen-

tation of the units in terms of their statistical scatter.

One forms

F 2= -l Xlq) (2.8)

(m,2) 1  2

and computes matrix

G (nx2 ) =Y F (2.9)

whose rows ;i ..... are plotted as points. The distances

between the plotted points then provide an approximate

representation of the standardized statistical distances

between the corresponding units, that is,

apx
I i - i I / i,eH'n- (2.10)

as well as
apx

IIlgiIn : V i~i (2.11)

The coefficients obtained by performing these calcula-

tions on the temperature data are shown in Table 8.

The interpretation of such a g-scatter is obvious.

Distant points represent units which are statistically

dissimilar; points close together represent statistically

similar units; clusters of points represent groups of
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TABLE 8

Biplot (and Bimcdel) Coordinates For Tem.erature Data

hi 198.05 -169. 37 -29.23 ..0010 -. 0017 -.0056
-1 -1

h; 190.76 -62.32 -16.19 f2 .0010 -. 0006 -.0031

h 162.02 85.17 -25.32 .0008 .0009 -.0049

h 128.44 188.45 -13.20 .0007 .0019 -.0025

h 163.86 135.40 17.81 fA .0009 .0014 .0034

h 215.63 -68.44 54.51 f6 .0011 -.0007 0 04

2

g" .0206 -. 1865 -. 1004 A, = 437.841 x 1 = 191704
2

g; .1605 -. 0533 .1526 x2 = 313.613 A 2 = 98353

g -. 0167 -. 4055 -. 3292 A3 = 72.247 32 = 5220

-.2971 -.2990 .3781

a! -.3549 -. 2212 .0300

.1572 -.0923 -.1148

.2279 -. 0155 -.0235

.1604 -.0025 .1362

.1143 -.0180 .0810

.1498 -.0227 .0190

3i, -.5509 -.1157 .1811

l2 -.1000 -. 1692 -.5192

.1459 .0179 .1099913

31 4  .2273 -. 0004 .0124

.15 2092 .0362 -. 1138

i6 .1897 .1254 .0817

.0294 .2422 -. 0913

S.8 .0504 .2036 .5040

-. 1752 .4054 -. 2196

ZO -. 3480 .5711 -. 1744
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statistically similar units; sets of points ordered across

the plot represent units differing in a systematic sequence,

etc.

Each station i is represented by its appropriate g

vector on the biplot of Figure 2. Note that different

scales can be used for the g's and the h's -- though for

each of them its horizontal and vertical scales must be

the same.

Figure 2 shows that the scatter of g points mimics to some

extent the geographical spread of the stations -- see map in

Figure 1. Thus, the Northernmost stations appear on top of

the biplot with a clear diagonal trend associated with

latitude. Stations on or near the Northern coast of South

America form a tight cluster (high degree of statistical

similarity) whilst stations farther south and west in South

America trail out towards the lower left of the biplot. If

we split the stations into four geographically contiguous

groups, we should expect greater homogeneity of temperature

profiles within each group and considerable inter-group

differences. Table 10 groups the inter-station distances of

Table 7 accordingly and this confirms that the biplot cluster-

ing does produce relatively homogeneous groups.

Clearly, geographical proximity is associated with

similarity in annual temperature profiles. But this

association is not perfect, as witness to the fact that the

west coast stations Ii and 12 are more similar to southern

stations 1,3,4,5 than to stations 9 and 15 which are closer

by. K

%j
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TABLE 10

Median Distances Within and Between Groups

From To Grpuro Stations
Group I III1 IV

I3.3 1 3.6 14.1 4.3 1,3,4,5,11,12

II 3.6 2.4 3.0 13.8 2,6,7,8,9,10,13,14,15

111 4.1 13.0 12.0 1 1.9 16,17,18

IV 4.3 3.8 1.9 :2.8 19,20

________ 

:
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2.5. Plotting of extra data points

The biplot has been constructed to display a data matrix

Z about its centroid Z', that is, it represents z' at its

origin and displays deviations Y. At times one may wish to

display further data points that were not fitted in obtain-

ing the biplot. Thus, one may have an additional unit with

m-variate observations z1. This will be centered as deviation-O
=0 -z' and its biplot coordinates calculated as

g-- 6F (2.12a)

or

( (-z')F (2.12b)

To illustrate, one might consider a hypothetical

station whose temperatures for each month were exactly

one standard deviation above the mean, i.e.,

z = (284.68, 274.58, 273.46, 281.42, 287.14, 280.65).-o

Calculation of (2.12) yields biplot coordinates g'

(.2748, .0379). Such a point would appear in the biplot --

Figure 2 -- slightly to the right of g1 5 " Indeed, the

temperatures for station 15 are similar but slightly

smaller than those of this hypothetical station.
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2.6. Joint variables and units approximation -- the biplot

The biplot (Gabriel, 1971) displays both the configura-

tion of the months (variables - columns of data matrix Z)

and the scatter of stations (units - rows of Z). Because

it displays them jointly it is called a biplot -- and this

simultaneous representation allows more insight into the

data than could be obtained from the separate inspections

of variables (subsection 2.3) and of rows (subsection 2.4)

which have been illustrated above.

The biplot displays the actual deviations yi = z. - zi,v i,v (v)

by inner products

Yi,v aPX SEihv (2.13)

with goodness of fit

(2) 2 2
X(2) = (X2+X 2 )/tr(Y'Y)
[2

= 1 - JIY-GH ' 2/11YI1 (2.14)

In other words, the deviation for station i on variable v

can be visualized as the length of hv times the length of

the projection of 2i (considered as a vector from the
origin) onto h -- the sign of the lengths' product being

-v

positive or negative acc.zding to whether gi's projection

onto hv is in the same or opposite direction to hv itself.

Clearly, then, a station i whose gi is far out in the

direction of (opposite to) the vector h of a variable
-v

v has large positive (negative) deviat-o. i,v* When the

gil Sare less far out in the h direction (or opposite!v

it) the deviations are smaller.

----- ~ .".- -- -!
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Figure 3 displays the January arrow hi and the station

1 and station 20 points g1 and 920 of the biplot of Figure 2.

It also shows the orthogonal projection of these two points

onto the line through h1. The projection of g, is seen to be

of length 0.132 in the direction of h -- whose length is

256. Hence the biplot approximation of yll = 34.4 is

hl = .132 x 256 = 33.8. Similarly, the projection of

-20 onto the line through hl is of length 0.623 in the direction

opposite h Hence the biplot approximation of Y2 0 ,1 = -157.6

is 30hI = -.625 x 256 = -160 (the minus sign being attached

because the projection is opposite the vector projected

upon).

This relation between 9, points and hv arrows is useful

in interpreting the scatter of j points. Thus,one

may identify the variables (months) on which a cluster of

units (stations) is particularly large or small.

As an example, we note the northernmost stations in Figure 2

to be aligned in a direction opposite the Fall-Winter

sheaf. Evidently, the farther north the station, the lower

its Fall-Winter temperatures. (This is :z~i-" 2

by inspecting the last four or five rows of Table 2.) On

the other hand, the difference between the second and third

clusters of stations is associated with the dir:ti..of

the Spring-Summer temperatures: the nortn coast stations

have higher Spring-Summer temperatures than the western and

southern South American stations. (Again, Table 2 confirms

this pattern.'
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At this stage it is well to realize that one can

inspect the biplot also for linear combinations of variables

beyond the actual variables of the data displayed. One

may do this by vector addition of h arrows. Thus, for

example, a March plus May sum would be represented by the

vector h2 + 3 which is readily constructed on the biplot -- the

dashed line on Figure 4 -- and found to be roughly horizontal.

Also, a Spring-Summer sum (h3 + h + h5) -- dashed and

dotted line on Figure 4 -- slants up at roughly 450 whereas

a Spring-Summer versus Fall-Winter difference (h3 + h4 + h5 )

(h + h + h) -- dashed and double dotted line on Figure 4 --

is pretty close to vertical.

The importance of such combinations of variables is

great. For example, we note the northern hemisphere

station points to be mostly above the biplot origin and

the southern hemisphere station points to be below. This

vertical difference evidently is one of Spring-Summer

versus Fall-Winter temperatures -- the very well known

fact that maximum temperatures in the Northern(Southern)

hemisphere are in the Spring-Summer(Fall-Winter) . Similarly,

the north coastal South American station points are farthest

to the right of the biplot, indicating that average

temperatures are highest in that region -- again a well-known

fact.

These features of the biplot are of considerable

importance for data analysis. They allow one to go beyond
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separate descriptions of variables and of units and actually

account for units' clusters and patterns in terms of the

variables that determine them.

Finally, it will be noted that the signed length

of the projection of any unit's gi vector onto any

variable's h vector direction approximates 1//n- times the-v

standardized (mean zero, variance one) observation on that

variable, i.e.,

sih_/I1h 1 a (z Z ,' s (2.15)

i (V) V (2.15

-- this is evident from approximations (2.6) and (2.13) of

sv and yi,v' respectively. Clearly, the same holds for

any linear combination of variables when projections are made onto

the appropriate vector combination of h's.

To illustrate, the centroid to 120 vector has been
projected onto h 3+4+,-!-2-,) in Figure 4. The length of

the projection is .62 whereas the length of the vector

projected upon is 690. Thus the biplot approximation of

the standardized Spring-Summer versus Fall-Winter

difference for station 20 is v-20 x .62 = 2.77 -- this is

an extreme observation as is evident from the biplot and

the actual difference 463.8 (as measured from the centroid)

is approximated on the biplot by .62 x 690 = 428.

. . . . . . ..9'1 I.. . . ... . . . . . . . : , < . 'a '£ . . . "11 I I . . . I t ..
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2.7. Joint approximation in three dimensions - the bimodel

The biplot displays the r.nk 2 least squares approxi-

mation of Y by GH'. One could similarly obtain a rank 3

approximation by solving (2.3) and (2.8) also for a=3

and adding a further column to H, to F and to G -- the

resulting bimodel could be constructed in three-space since

each 5i and h v now has three coordinates. Higher dimensional

approximations can also be calculated by solving (2.3) and

(2.8) for further a's, but these cannot be constructed

physically.

It is, however, feasible to inspect the three or

higher dimensional approximations by displaying various

projections on a CRT. Facilities exist on some computer

installations that allow rotation of the higher dimensional

approximation so one gets successive two dimensional views

from different angles. This may be quite useful in

revealing features of data that are not apparent from

the original planar approximation.

As an illustration, consider again the h configuration

in Figure 2. The annual cycle is represented by an upward

movement from hi through h2 and h3 to h4 and then a pretty

similar downward movement from h4 through h5 andh, to

hl. This suggested that there might be something like

an elliptical orbit of the h's in three-space. Indeed, if

one replots the h arrows along the second principal

axis and an axis at 450 to the third and fourth principal

axes (found by trial and error) are does find such an orbit --
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Figure S. True, the extra axis displayed in Figure 5 accounts

for very little of the data's variability, but there is

something satisfying to have a model which displays an

annual cycle rather than a mere two season clustering.

Whether or not such a model is appropriate and worthwhile

for the data used here, it illustrates the possibilities

of using the higher dimensional bimodels for further inspection

of data.
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3. DATA ANALYSIS OF THE VARIABLES' CONFIGURATION

3.1. Purposes of data analysis

Data analysis aims at systematizing and summarizing

data by noting regularities, tracing patterns, fitting

models, etc. When the configuration of a set of variables

is described by its variance matrix, a data analysis will

attempt to elicit the salient features of variability and

inter-correlation of the variables. Display of h-vectors

in a biplot, or in a higher dimensional bimodel, allows

visual inspection of the configuration and may suggest

grouping of highly correlated subsets of variables whose

h-vectors form tight sheaves. It may also indicate regular

patterns such as the elliptical orbit associated with the

annual cycle of temperatures illustrated above (Section Z7).

Such indications of regularity, whether suggested by visual

inspection or otherwise, may lead to formulation of a

"model" or systematic description of the set of variables.

1.I
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3.2. Variables' sheaves and clustering algorithms

The most common concept used for such descriptions is

that of a "typical variable." When the variables group

naturally into subsets such that there is high correlation

between variables within subsets and much lower correlation

from subset to subset, then one naturally thinks of a

"typical" variable for each subset. Geometrically, when the

h-vectors separate into several tight sheaves, one may well

describe each sheaf by a typical, or average, h-arrow going

through the center of the sheaf. Thus, in the temperature

example in Section 2.2 above, the months' configuration

seemed to cluster into a Fall-Winter sheaf and a Spring-

Summer sheaf, and one could think of a typical variable for

each.

Where there are too many variables for easy direct or

graphical inspection, one may try to check for sheaves by

some method of cluster analysis. If the variables do form

separate tight sheaves, this will be revealed by any clustering

algorithm. However, in many cases there are no tight and

well separated sheaves and application of clustering tech-

niques does not yield meaningful results.

Unfortunately, clustering algorithms - of which there

are many, and quite a few are available within standard

statistical computer packages - always produce some output.

When no clear sheaves exist in the configuration, different

algorithms will yield different clusterings, none of which
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are particularly meaningful. In such cases one would do better

not to use algorithms to force "clustering" -- they should be

used only to check if clustering actually exists and then

reveal the existing clusters. A good practical rule may be

to use a number of alternative "clustering algorithms": any

"clusters" that are not revealed by most of the algorithms must

be considered suspect - they are likely to be artifacts.

. . . . . . .



3/4

3.3. Principal components

When variables do not readily group into distinct

sheaves one may define "typical" variables, or LCV's, in

a different sense, one more akin to averaging. Thus, the

"most typical" LCV is often taken to be that which has the

highest average correlations, or squared correlations,

with the observed variables. This is obviously an attractive

descriptive property - such a "most typical" LCV is by

definition highly correlated with the variables it typifies.

If one wishes to describe the variables' configuration

by more than one "typical" LCV one may consider the residuals

from regressing each variable on the first "most typical"

LCV. Again, one may seek the LCV most highly correlated

with the residual parts of the variables - this will be the

"second most typical" LCV and will be found to be uncorrelated

with the first.

One may continue in this way, again taking residuals

and obtaining a "third most typical LCV," etc.

The logic of looking at these successive residuals is

not straightforward. Only the first of the "typical" LCV's

is directly related to the original variables. For all the

others it is not at all obvious if they can be considered

"typical" of the original variables.

When the criterion of "most typical" is that of maximum

average squared covariance for any normalized LCV (i.e., an
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2
LCV E(c) = C normalized so that Z = 1 ) the

resulting "typical variables" are referred to as principal

components. Thus, the first principal component (PC1 for

short) is the vector

ZvCvY(v) = (3.i)

which satisfies

max {Zv  ' Yc) 2

c ('(v) _ cc = i)

= max{IIY'Yc I: c'c = i}. (3.2)
c

But this is satisfied by solution c = q, of equations (2.3).

Hence PC1 is given as

Yl= XIQl  '(3)

which isthe first column of G (2.8),

The next solution of (2.3), i.e., q2' similarly

yields PC2 as

Yq2 = 22 ' (3.4)

the second column of G.

These two PC's are uncorrelated for

1-1i-2'2 = qiY-Y2 = S]i.2 (3.5)

But these eigenvectors are known to be orthogonal unless

Al ' X2"

! ,
- - I i lll . . ...] . . . .. .. .[ -- - ln l ll I~l" "... .. . .. '- "; " ' .... .. I ... ...... " .... - " " ' .. .. ' A" .
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In general, PCa is the LCV with observations vector

X a obtained by the solution of (2.3) with the c-th largest

root X

Another property of the PC's is that PC has the largest

variance of all normalized LCV's, i.e.,

IIYaI n= 2 /n_ /n = Al/n (3.6)

Similarly, amongst all LCV's uncorrelated with PC1 , it is

PC2 which has the largest variance

lYa 2I2 /n 2n = X/n (3.7)

and so on for other PC's. Another property of PC's is that the

first two provide the principal axes of the biplot - PC1

is along the horizontal axis, PC2 along the vertical -

and the remaining PC's are along the other principal axes

of the bimodel and higher order approximations. This last

property is due to the fact that PC's have simple least

squares properties (which were discovered by Householder and

Young in 1938). In particular, the plane that best approxi-

mates the configuration is that going through the first two

principal axes. In other words, the best fitting two dimen-

sional approximation of Y is

Y[2] A 1 I + A2 2 2  , (3.8)

I.
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which is a function of PC1 and PC2 only. It is because of

this least squares property that these two principal axes

were chosen to serve as horizontal and vertical axes of

the biplot.

The generalization of these remarks to a 3-D or higher

order approximations is obvious.

The relation of the PC's to coordinates of the biplot

is simply that the i-th unit's observation on PC is
a

= .gi'a  (3.9)

For the first two PC's this follows from (2.9) and (3.3), (3.4).

Table 11 gives the six principal coordinates for the twenty

stations of the temperature data of Table 1. It is not obvious

what interpretation one might want to put on these coordinates

as such, though plotting the first three -- scaled by X1, X2

and )3, respectively, was found useful in inspection of the

bimodel.

-. -.
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Table 11

Principal Component Scores

Xlpl i  X 2P2,i x3P3, i  X4P4,i x 5P5,i 6P6,i

1 9.0 -58.5 -7.3 -7.5 -0.2 0.2

2 70.3 -16.7 11.0 -10.6 -19.0 -2.0

3 -7.3 -127.2 -23.8 41.5 -7.2 1.7

4 -130.1 -93.8 27.3 -4.4 -0.7 -1.0

5 -155.4 -69.4 2.2 2.6 8.5 1.4

6 68.8 -29.0 -8.3 -11.0 3.5 -2.0

7 99.8 -4.9 -1.7 -1.4 2.1 -7.3

8 70.2 -0.8 9.8 2.4 1.0 -0.9

9 50.0 -5.7 5.8 -0.6 3.7 -0.4

10 65.6 -7.1 1.4 -2.1 -10.4 7.3

11 -241.2 -36.3 13.1 -12.3 -0.8 0.9

12 -43.8 -53.1 -37.5 -14.0 5.0 -3.2

13 63.9 5.6 7.9 -1.7 2.0 -2.5

14 99.5 -0.1 0.9 -17.0 -1.7 5.7

15 91.6 11.3 -8.2 0.5 9.7 -1.9

16 83.1 39.3 5.9 7.6 11.4 3.5

17 12.9 76.0 -6.6 -1.4 1.5 7.7

18 22.08 63.9 36.4 21.4 2.3 -3.1

19 -76.7 127.1 -15.9 2.3 -12.8 -5.1

20 -152.3 179.1 -12.6 5.9 2.1 1.0
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3.4. Principal component analysis

None of these mathematical properties make it clear

why the PCs should be particularly interesting for an under-

standing of the variables' configuration. Clearly, PC1

makes intuitive sense as an "average" or typical variable,

or as the LCV with maximal variability. But what of PC2,

PC3, etc.? They do not seem to have clear intuitive de-

scriptive appeal. Their least squares property makes them

useful for building approximations in the plane - the biplot -,

in 3-D - the bimodel -, etc., but that does not make'them

interesting individually. In the temperature example, the

interesting "typical" LCVs seemed to be going at 450 and

-450 rather than at 00 and 90* to the horizontal. The

fact that the PC's and principal axes are useful for plot-

ting does not necessarily make them useful for interpreta-

tion. One usually does better by relating the g-points

to the h's of the original variables rather than to the

axes for the PC's.

A great many applications of PC analysis have been

made through the years. As a method of approximation in

lower dimensional space, this is fine, but as an inter-

pretative device its popularity is surprising. What the

method does is to express the original variables in terms

of PCs in the form

Z(v)= Xllll,v + 222,v (3.10)
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- as follows by taking a column of equation (3.8). In

view of (3.3), (3.4), it is clear that the method also allows

the PC's to be expressed in terms of the variables as

p = EvY)q v . (3.11)

(Note that the weights in both linear combinations are the

q's obtained by solving (2.3): they are therefore referred

to as loadings.) But does this provide any insight? Does

(3.10) "explain" the variables by the PC's or does (3.11)

"explain" the PC's by the variables? Or do we expect, by

circular reasoning, to have both "explanations"?

At best, consideration of the loadings q gives some

insight into which variables are correlated with what others

(similar loadings on the first few PCs). What is

puzzling are the attempts of many users of PC's to "reify"

these mathematical constructs and ascribe "inherent,"

"underlying" or "explanatory" content to them. It is not

evident how any such content follows from the mathematical

definition of PC's and one may suspect that much of

what has been published as PC analyses may have obscured

rather than illuminated the configuration of the original

variables which should have been studied.

The loadinas of the monthly temperatures in the six

PC's are shown in Table 12. The uniformly high PC1

loadings for all months, show PC1 to be some average annual

II
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TABLE 12

Temperature Data - PC Loadings qi,.

Variable PC

1 2 3 4 5 6

1 .452 -. 540 -. 405 -.561 -. 158 -.005

MAR 2 .436 -.199 -. 224 +.700 .028 -.479

MAY 3 .370 .272 -. 350 +.258 .088 .770

JUL 4 .293 .601 -.182 -. 349 .505 -. 377

SEP 5 .374 .432 .247 -.073 -. 772 -.107

NOV 6 .492 -. 218 .754 -.034 .339 .156

.I-

_____________________
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temperature factor which puts more emphasis on Fall-Winter --

as is evident from the biplot in which all months' h-arrows

point left, partly above and partly below the horizontal

direction, but the Fall-Winter h's are closer to horizontal

than the Spring-Summer h's. The PC2 loadings are positive

for Spring-Summer, negative for Fall-Winter, and thus indicate

a seasonal component -- again, this was evident from the

biplot configuration. Loadings on PC3, PC4, PC5 and PC6

are not so easily interpretable -- though the joint consid-

eration of PC2, PC3 and PC4 in a bistructure could be inter-

preted and modelled in terms of an annual cycle. Nothing

is revealed by consideration of these axes that was not

seen by inspection of the h's themselves. The h-configura-

tion is much more simply described by two sheaves, one for

each half-year, than by two axes, one a weighted annual

average, the other a weighted contrast.

This example illustrates the shortcomings of PC

analysis in considering each principal axis separately

and the advantage of seeing the overall picture in a biplot

or bimodel. It also illustrates the limitations of using

orthogonal axes fitted by least squares -- these do not

necessarily provide the most readily interpretable references.
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3.5. Some further comments on principal components

PC's depend on the scale of measurement of the original

variables. This dependence is obvious from the definitions

which depend on covariances, variances and least squares

fits. Much has been written on this dependence and how

it limits the usefulness of PC analysis. All this seems

beside the point: There is no real reason to consider PC

analysis as a method for revealing the "underlying" structure

or to regard PC's as "intrinsic" variables and hence there

it also does not matter that these "structures" and "intrinsic

variables" are not scale independent.

Finally, PC's are often reified by reference to other

variables extraneous to the original set. In the temperature

illustration, it was not difficult to label PC1 and PC2,

though no simple interpretation was evident for other PC's.

Another illustration is a recent study of rainfall where

PC4 was noted to have a clear time trend associated with

the spread of irrigation. It was therefore suggested that

PC4 was an "irrigation factor" and the possibility of

using it as such a variable was considered. Direct use

of the irrigation data -- with which PC4 had been found to

be correlated -- would have been simpler and more straight-

forward and would not have required PC analysis at all.

This was a pretty typical example of the "use" of PC's

and the rationale of many other uses of PC analysis is

equally puzzling.

I.!
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To summarize, this author's view is that PCs are

unlikely to have explanatory value in themselves. The

most physically meaningful LCVs will not usually happen LO

lie along the principal axes of the configuration. This

author sees the main usefulness of PCs as a tool to provide

least squares approximations to data matrices and variables'

configurations and he would direct the scientific attention

of investigators to what the approximation tells them about

the original variables, and not to what it shows about the

PCs. The investigator must have included his variables

because he wants to know something about them, so let him

discuss them instead of substituting mathematical artifacts.
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3.6. The rank or dimension of a configuration

When a number m of variables are observed on more than m

units, the configuration may be completely in a sub-space of

m-1, m-2 or fewer dimensions, but this is very unusual.

It indicates exact linear relations between the variables,

even though these variables must be affected by random

variability and measurement error. When such things are

actually observed, one usually finds that the original set

of variables includes some repetitions of observations or

sums, or averages, of other variables which are also included.

It is rare and surprising to find such exact dependence

otherwise. A set of m variables observed on n (>m) units

almost invariably generates a configuration in m-space that

cannot fit exactly into any lower dimensional subspace. It

may well be approximated in a lower space, and perhaps even

very closely approximated, but it is very unlikely to fit

exactly.

This suggests that the question of dimensionality

rarely relates to the true configuration of variables but

usually makes sense only in the context of approximation.

"Hypotheses" of reduced dimensionality are, in this author's

opinion, rank nonsense. and the techniques of statistical

significance are only rarely relevant to problems of

dimensionality. "Tests of significance" of PC's will therefore

not be discussed here. If the hypothesis that a 6-variate
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configuration is in a plane is physically incredible, it

makes no sense to test it for significance, i.e., to test

the nullity of PC3, PC4 , etc. Hypotheses testing makes

sense only if the hypotheses can be given credence.

This issue of dimensionality should correctly be

addressed as one of approximation and not of hypothesis

testing. The biplot plane fitted the 6-variable temperature

data to a goodness of fit of 0.967 and the 3-D bimodel had

a 0.985 fit. That may well justify ignoring the remaining

dimensions to all intents and purposes even if one is

.-:ertain that there is some variability along those axes.

There is no question of "testing" whether the data are

in a plane or in 3-D; the practical issue is simply that

the fraction of real variation that lies outside the plane

or 3-D is negligible and need not be considered in inter-

preting the data - even though it is not assumed to be

strictly null.
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3.7. The factor analytic model

Factor analysts postulate a model in which each variable

can be written in the form

(v) f +e (3.12)
Cv = 1 E ,v -

as the sum of a linear combination of a few, say r, "factor"

variablesf(1 ),f( 2 ),... fwith "loadings" 1~ and errors e(v)

specific to each variable and uncorrelated either with the

factors or with one another.

When the rank r is sufficiehtly large compared to m,

this model has an exact solution. In fact it then usually

has infinitely many solutions. However, factor analysts

usually postulate r to be quite small relative to m (so as

to obtain parsimony in description), and then the model

is most unlikely to fit exactly. A satisfactory fit may at

times be obtained if the data are considered as a random

sample from a population in which the e's are uncorrelated

between themselves and with the f's.

What factor analysts do in practice is to approximate

the data by a model of type (3.12) with rank as low as

will allow a reasonable fit. When the purpose of a factor

analysis is avowedly approximative the criteria for the

method would be goodness of fit and parsimony. If we

compare an approximation by model (3.12) with a PC approx-

imation of the same rank, it is clear that the factor analytic

model is very much less parsimonious in that it requires the
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e terms to be uncorrelated. The fit of its Z f 2 part is

necessarily worse than that of the first r PCs because the

latter are required only to give the least squares fit.

However, one variant of Factor Analysis sets out

directly to approximate the correlations. Unlike PC analysis

it does not approximate the data matrix Y, nor does it

approximate the diagonal elements of R as these are known to

equal unity. This particular variant of factor analysis --

called MINRES -- is justified directly in terms of optimal

approximation of the correlations - the off-diagonal elements

of R.

As in the case of principal components, one has to ask

whether the model as such makes physical sense so that the

factors are "intrinsic" variables, or whether it serves as a

mere vehicle of parsimonious approximation. Our answer to the

first question should be similar to the one we have given for

PC analysis: We see no a priori reason to think the "factors"

fitted in model (3.12) are any more "real" than the PCs.

The factor analytic model is no more plausible than the

hypothesis of lower dimensionality which we discussed in

connection with PC analysis. However, its saving grace is

that it is so flexibly defined as to allow considerable

manipulation which can on occasion be used to advantage.

-- .. ... ...i _ ..... ., . . ... ., - , . :, . ,. \ 2 I i.,, .
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Thus, for given rank r, model (3.12) becomes

Y - E = F L, (3.13)

with obvious definitions for matrices E, F, and L, and the

flexibility of this representation is that not only E is

not uniquely determined, but F and L can be changed into

F* = F Q (3.14)

and

L* = Q L (3.15)

by any non-singular rxr matrix Q. Factor analysts spend

much ingenuity in rotating their original F, L solution

into a solution F*, L* that "makes sense" so that the

resulting f* "factors" have some reality and are useful

in interpreting data.

In some cases these rotations are chosen so as to

yield factors correlated with extraneous variables or other

information available to the investigator. It is difficult

to see what "explanatory" 'unction such a procedure has.

The investigator had the "explanation" or extraneous variable

anyway, and he could have correlated the original variables

with it. Why bother to use factor analysis? Why not just

take the multiple regression of the extraneous variable on

the Y (v)'s as the "factor"?

Some methods of rotation such as varimax and other

computerized techniques are built so as to make individual

f*'s as closely representative of sheaves of variables as

a.
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possible. That brings us back to the subject of applying

clustering techniques to variables' configurations, an

approach whose careful use may well yield important data

analytic insight.

Again, it is difficult to see what the role of the factor

analytic model is in all this. If one seeks correlation

with extraneous information one can best do it directly,

on the data rather than on the "factor solution." If one

wants to organize the variables into sheaves, it is not

obvious that one had best start from a set of fitted loadings -

but it may be legitimate to do so. It is essential to

understand that in all these applications there seems no

essential role to the "factor analytic model." This model

has neither reality nor much usefulness, except under certain

circumstances, as an approximating device.

Our view of factor analysis differs sharply from that

of most practitioners of these techniques who talk about their

model as though it had inherent reality. Even when they use

a clearly approximative technique such as MINRES they try

to reify the resulting factors. Indeed, the MINRES solution

would sometimes involve imaginary numbers (Gabriel, 1978)

but factor analysts shy away from such an optimal approximation

because they believe in the "reality" of their factors.

I.
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4. ANALYZING THE SCATTER OF THE UNITS

4.1. A batch of units and its scatter

The units whose observations make up the rows of data

matrix Z usually have identities of their own -- "labels"

as the sampling theorists call them -- and these identities

may be relevant to the analysis of the data. Some relations

between units may be given a priori and it may be of interest

to study if and how they are associated with statistical

similarity of the corresponding rows of Z. A priori group-

ings of the units in terms of information, extraneous to

data matrix Z, could be related to the statistical scatter

and to similarities of the corresponding zi 's. Data analysis

is often concerned as much with the units as with the vari-

ables. In our example it is certainly as legitimate, and

interesting, to study the scatter of stations as it is to

study the variance configuration of months.

In modern statistics books this subject is hardly

dealt with at all, and the idea of between units distance

barely receives mention. This is because the fashion has

been to deal exclusively with inference based on random

samples from a population or distribution. And in that

context the units of observation lose their individuality

and become mere replications in a sampling process.

~~.
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This sampling approach is undoubtedly appropriate

in many experimental situations and in situations like

industrial quality control where repeat observations are

carried out regularly. But it is not appropriate to the

study of batches of units with well defined identities

and labels. Ignoring the information associated with

these identities may stultify the analysis of such data.

In this section we consider, therefore, methods of

analyzing the units' scatter and we choose to do so in terms

of standardized distances Vdi.i between pairs of units

(1.13) and /ui,i between units and the centroid (1.12).

We will find it convenient to consider the scatter also

in terms of the biplot approximations Ii-i'l I and II i -

(2.10) and (2.11) - of the above distances.

.J
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4.2. Use of extraneous information on the units

When extraneous information is available, i.e., in-

formation on unit i other than the observation z.', this-1

information may be correlated with the observations. When

the units fall into a number of categories, one may check

whether these categories are associated with the statistical

scatter of points. Do the categories form distinct group-

ings in m-space and/or on the biplot? Is there much or

little overlap between categories?

A simple device is to mark the units of each category

by a different mark, or color, on the biplot and see if the

categories do separate. Figure 6 shows the g-points of the

temperatures biplot (Figure 2) classified according to

whether they are North or South of the equator. A clear

separation is evident, showing that the temperature profiles

of Northern hemisphere stations differ from those in the

Southern hemisphere. The former are at the top of the

biplot, the latter at the bottom. Recalling that the

vertical direction on the biplot was a contrast between

Spring-Summer and Fall-Winter (Section 2.5, above) one sees

that the Northern versus Southern hemisphere groupings

reflect the difference in the season in which their maximum

temperatures occur.

When the extraneous information is not categorical but

rather of a continuously variable character, the methods of
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Figure 6: Biplot of Temperature Data With Indication of

Hemisphere of Station (N Northern; 0= Within
2 Degrees of Equator; C Southern)
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analysis are less obvious. A good idea is to record the

extraneous measurements on the g points of the biplot and

see if they show some regularity in the plane. Thus, in

the temperature example we have marked the altitude on each

g-point in Figure 7 and we see at once that the distribution

on the biplot shows much regularity.

The leftmost g-points are those of stations at high elevations -

evidently there is some right to left trend in altitude. As

this trend is in direction opposite to the general direction

of the h-arrows for months' temperatures, one would conclude

(again unsurprisingly) that temperatures are rather lower

at higher elevations.

Perhaps some additional comments on this example

would further illustrate uses of the biplot. The North-South

differences of Figure 6 and the altitude differences of

Figure 7 account for a great deal of the variability of the

stations. However, a number of stations do not quite fit the

pattern, especially stations 2 and 10 which are much farther to

the right of the biplot than one would expect from their

altitudes. Checking their locations on Figure 2 one sees these

stations to be far inland on the South American continent.

Evidently, in addition to altitude and to Northern versus

Southern latitude, distance inland also plays a role in

determining temperatures.

This illustration shows how the biplot can be used to check

hunches about relationships to extraneous variables and how
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Figure 7: Biplot Of Temperature Data With Indication of

Altitude of Stati.ons

1.200

UL

1.2
El'

£818 6

1.22 4 7o

1.226

I I8



4/7

inspection of the biplot may suggest new things to look for. Of

course, these are subjective impressions and their effective use

depends very much on the ideas the investigator may be able

to generate. The biplot will help him; it will not provide an

objective substitute for his intuition.

A.
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4.3. Clustering of units

Some groupings of units may be evident from the inter-

unit distances themselves, rather than from extraneous

information. Such data-dependent groups will be referred

to as clusters, and methods of defining such croupings will

be referred to as clustering algorithms: They differ

from those used for locating sheaves of variables in that

they relate to units rather than to variables and that the

criterion for clustering is small inter-unit distances,

whereas the criterion for forming sheaves was high inter-

correlation of variables.

Many methods of clustering are available. A very

simple one uses single linkage. To begin with, one clusters

the nearest two points together. At the second stage one

considers the next smallest distance: If it is between one

of the first two points and a third point one clusters all

three points together; if it is between two other points,

one forms a second cluster of those two points. At each

successive stage one considers the smallest of the distances

betweeen points which are not already in the same

cluster. The points separated by this least distance are

then linked together, and with them any other points clustered

previously to either of them. Thus, at a particular stage

units 8 and 15 have least distance 0.28, and in previous

stages unit 8 had been clustered with units 2, 6, 9, 10 and

13 whereas unit 15 had been clustered with units 7 and 14,

then the new cluster consists of units 2, 6, 7, 8, 9, 10,

13, 14 and 15.
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One may thus proceed step by step up to the largest

distance between points, at which stage all units become

a single cluster. In practice one will presumably want to

stop the clustering process before that, either when the

number of clusters is small enough or when the remaining

distances are too large.

The entire clustering process can be displayed by a

dendogram which is an inverted tree-like structure with a

vertical scale corresponding to distance. This dendogram

has a single stem on top at the height of the largest

distance, when all units are clustered together. At the

bottom of the dendogram, below the height of the least

distance, it has n separate branches, one for each unit.

In between, at the height of each distance, it has as

many branches as there are clusters at that distance.

Below that height the branch further branches and sub-

branches until the individual units' branches are reached.

The nearest neighbor dendogram for the 20 stations

of the temperatures example -- corresponding to the

standardized biplot distances in Table 9 -- is given in

Figure 8.
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Figure 8: Temperature data - single linkage dendograi

of biplot distances
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(For convenience, the order of the points has been re-

arranged to correspond as closely as possible to that of

the biplot -- in practical application this is of course

not possible since the "true" order is not known.)

It will be seen that the dendogram of Figure 8 repro-

duces only some of the clusters evident from the biplot

g-point scatter of Figure 2. Thus if we divide the points

into four clusters by lopping off the branches between

heights 1.0 and 1.1, one cluster -is of stations 4, 5 and

11, two are of the single. stations 19 and 20, and one of the

remaining fifteen stations. This is not very satisfactory

because the last cluster is too large and spread out: The

largest intra-cluster distance is 2.9 between stations 8 and

17. Such an elongated "cluster" is obtained because there is a

"chain" of points at relatively small (below 1.0) distances

from point 3 to point 17, i.e., 3 to 1 (.99), 1 to 6 (.74),

6 to 15 (.62), 15 to 16 (.41) and 16 to 17 (.89).
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An alternative clustering criterion which would avoid

such "elongated" clusters uses the complete linkage and

clusters a set of units together, at distance d and above,

only if all units within the set are within d0 of one

another. The corresponding dendogram for the temperature

data is shown in Figure 9. It is seen to differ from Figure

8 not only in that it shows less clustering for each given

distance, but also in that it results in somewhat different

clusters.

Thus, to obtain four distinct clusters, one would lop

off the branches at d0 = 2 and the resulting clusters would

be 5, 4, 11 (as before); 19, 20 (which had been separated

before); 1, 3, 12 and the remaining twelve stations (these

last two clusters formed a single cluster by the previous

method). The separation of that elongated cltter into

two tighter clusters seems more satisfactory.

• .. . . . ... - ... .I ,
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Figure 9: Temperature data - complete linkage dendogram

of biplot distances
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In addition to these two clustering criteria, there are

many others in the literature with algorithms and computer

programs to carry them out. Each of the methods is supposedly

"objective," but the choice of a method is a subjective

matter, and each investigator must make sure he is using a

method whose criterion is meaningful to him and appropriate

to his purposes.

When the units cluster "naturally" into distinct tight

groups, pretty much all clustering algorithms will reproduce

that pattern. Often, however, the scatter does not reveal

such obviously distinct clusters and their different

algorithms will output different "clusters." In such

cases one would be justified in using some "objective"

method only if one were really satisfied with the relevance

of its criterion. Otherwise, analysis into "clusters" becomes

a game, especially if one tried out a variety of algorithms

and then picked out one of them. Indeed, the multiplicity

of available algorithms pretty much guarantees that any

random scatter shall "cluster" nicely by some one of the

many criteria. The investigator should be cautioned to

inspect the clustering criterion carefully before he commits

his data to an "objective" analysis into clusters.

The virtue of objectivity in data analysis is not

obvious. A subjective approach which allows some capable

researchers to obtain insights is certainly preferable to an

objective method which usually fails to reveal anything worth-

while to any investigator. One should not carry democracy too

LSM..-
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far. In the analysis of scatters of units (as well as that

of configurations of variables), the capable investigator will

usually approach his data with a great deal of prior knowledge,

hunches and hypotheses about patterns and relationships. He

will do well to be guided by them and direct his analysis

accordingly. If he wishes to cluster his data, he should not

do so "objectively," merely on the basis of distance (or correlations)

but should allow the interplay of observation with prior hypothesis.

Specifically, if unit U1 is about as distant from unit U2 as from

unit U3, the investigator would do well to group it with the

unit with whom he has a priori reason to expect it to be more

closely related.

Clustering algorithms are popular not only because they

are "objective" (after subjective choice of the algorithm)

but because they can deal with large scatters (or

configurations) and have been programmed. It is very difficult

to inspect large data matrices by eye, though use of prior

ideas about possible patterns may be of great help. (See

for example Guttman's use of linear and circular dependence

patterns -- the simplex and radex (Guttman, 1954) --

for meaningful inspection of correlation matrices.)
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4.4. Outliers

Distances di are standardized by definition,

(Section 1.3, above). As a result, the scatter of points

in m-space is spherically symmetric, and its approximation

on the biplot is essentially circular. Unlike the well-

known elliptic forms of variability of row variables, their

standardized representation is circular.

In studying the form of the distribution, therefore, we

should not look for asymmetry -- which has been eliminated

by standardization -- but rather for other features such as

clumping or clustering of points, special patterns, as-

sociations with external variables, outliers, etc.

To begin with, note that the sum of squares of standardized

distances is fixed by standardization. Thus,

n
E ui m (4.1)

i=1

so that the average of the squared distances from the

centroid is

u = m/n. (4.2)

Also, by the triangular inequality for distances one

obtains

di'i, < Vu i i + Vuii ,  . (4.3)

For the biplot approximations these correpsond to

~- -. -,-
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zillill 2 = m, (4.4)

and

11gi-ye11 I ill + IHell (4.5)

If the scatter is roughly evenly distributed

within radius unity, there is little to be said. If, however,

one notes isolated points in one direction, with the remaining

's tightly bunched in the opposite direction, one should

inspect the outlying points carefully for measurement or

recording errors or perhaps for not belonging to the

population under study. If so, one might do well to omit

such units from analysis and concentrate on the units that

have a reasonable statistical scatter. This would, of

course, mean recalculating the principal axes and g and h

vectors after omission of the outliers.

A reasonable criterion for multivariate outliers is

the distance Vui i from the centroid. One does well

to look at the distribution of these n distances and see

if it indicates some clearly outlying units. Tests of

significance are available for the multi-normal case

(Gnanadesikan, 1977) but we feel that these should be used

with great caution unless one really has good reason to

believe that the data came from such a distribution.
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It often happens that one finds one or more "outliers"

but checks do not reveal any reason why those observations

should be unusual. So one does not know whether these are

extreme values which do occur sometimes, though rarely,

in the given observational situation, or whether these are

erroneous records which do not belong with the batch under

study. One is in a quandary as to whether to "reject" such

outliers or not. Not to reject means including observations

that manifestly do not fit the statistical distribution of

the majority and vitiates the assumptions underlying most

statistical procedures. To reject exposes one to risks of

biasing the statistical analysis if the outliers were

extremes from the same distribution as the rest of the

observations. An honest rule would be always to report at

least the number of rejected outliers and preferably their

entire observations, but not to include them in the main

statistical analysis. Such rules and considerations apply

as much to multivariate as to univariate data.

......
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4.5. The distribution of points in the g scatter

Some idea of the distribution of the batch over the

variables may be obtained from considering the scatter of

2-points on the biplot. A more or less regular unimodal

distribution should result in a reasonably symmetrical

biplot scatter with a concentration of points about the

centroid and gradual tapering off density towards the edges.

Some other distributions obviously have different

biplot scatters. A common case is that of multivariate J-

shaped distributions which have a mode near zero for all

variables and a density which decreases for higher values

of each variable. Such distributions will produce biplots

of the type illustrated in Figure 10 -- essentially a

quadrant of points with a high concentration at the vertex

and along the edges and with h-arrows pointing in the

direction opposite to the vertex. The vertex represents

the zero point of all variables, the edges the zeroes

of particular variables.

To check such distributions it is useful to project

individual numerical vectors, as in particular the zero

vector, onto the biplotscatter. For the zero = .,

the projection is

0' = -z'F' (4.6)

as in (2.12). The rough location of the zero vector is

indicated on Figure 10 and confirms the supposition that

these data are of a multivariate J-shaped distribution.

.1.
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When the a-scatter does not show any special pattern

one must consider the distribution to be essentially random.

It is not that regularities may not exist, but that they

are not evident from the scatter. We know of no way of

"testing" for normality, and would rather tend to use

the normal model by default, as a viable model in case

nothing contrary emerges from biplot inspection.

In effect, the biplot may provide a more sensitive

check of multivariate normality than the commonly available

tests of significance which concentrate on each individual

variable rather than on a plane as the biplot does. But,

as of now we have no way of using the biplot plane for a

test of significance on the shape of distribution.

Another intriguing issue is whether the biplot might

be suggestive of a transformation to normality. All we

can say at this time is that strongly skewed distributions

should show up in a biplot looking like that of Figure 10.

Hence, the appearance of such a scatter might be suggestive

of a transformation by square roots, logarithms or similar

functions. This subject needs further examination.

Iwo
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5. JOINT ANALYSIS OF VARIABLES AND UNITS - MODELLING

5.1. Importance of joint display in the biplot

The biplot jointly displays the configuration of the

variables (columns of the data matrix) and the standardized

scatter of the units (rows of the data matrix). In doing

both these things simultaneously, it differs from many

other displays, which concentrate on one feature to the

exclusion of the other. Multidimensional scaling models

either the correlation matrix of the variables or a distance

matrix for the units, but not both. It is not usually

feasible to bring in the variables into the multidimensional

scaling of units, or vice versa. (See, however, Gabriel,

1978). As a result, the analysis and interpretation provided

by such scaling is more limited than that provided by biplot

representation. Multidimensional scales may have more

flexible fitting algorithms and are not restricted by the

geometry of least squares, but they are more limited in

what they display.

Some of the uses of the biplot in interpreting units'

clusters in terms of variables have been discussed above.

Analogously, correlations can sometimes be explained in

terms of the scatter of units -- in particular, sometimes

a single outlier in a particular direction can account for

an increased correlation of the variables displayed in its

direction. This is illustrated by the two parts of Figure 11.
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Figure lla shows the biplot of a 5-observation 2-variate

matrix: the low correlation (r=0.20) is evident in the

close to right angle (780) between the two h vectors. The

scatter of points, however, shows to be fairly separate

from 21' g2' q4 and g5 -- evidently an outlier. Removal

of the third point leads to a new configuration, biplotted

in Figure llb, and demonstrating a much higher correlation

(r=.94) as evident from the 200 angle between h and h
1-2



n 5/3

211

Fig.~~~~~~I ZGb Th Ktatrrmvlo h ule



5/4

5.2. Diagnosing models by means of the biplot

Approximate functional fits of the data matrix may at

times be identified by inspection of the biplot. Thus,

if Z is approximately additive, i.e., if

z. = + a. +b + e. (5.1)

iV 1 V ItV

for

= iv zi.v/nm (5.2)

and some al ,...,an' bl,.. .b n a d small e's, then the

biplot of Z -- or of ((z. - z)) -- will have the1,V

following simple form: The 3-markers will be close to

one straight line, the h-markers close to another such

line and these two lines will be at 90* to each other.

Conversely, when the biplot markers display such a pattern,

additivity can be inferred.

What is more, if some row markers are on one line and

some column markers are on another line which is at 90° to

the first, then one can infer that additivity holds for

the sub-matrix of the corresponding rows and columns. For

an illustration, consider the artificial air pollution data

of Table 13 which is biplotted in Figure 12. It is immediately

evident that the heads of the h arrows for the four

years are very close to collinear and that the 2-point for six

of the stations are close to another line, pretty much at 900

to the h-arrowhead line -- only the g-point for station F is
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TABLE 13

An Air Pollution Index at Seven Localities 1960-75 (Artificial Data)

Station 1960 1965 1970 1975

A 100 102 105 110

B 98 99 104 108 r

C 107 110 112 116

D 98 100 103 106

E 86 90 91 95

F 103 100 94 89

G ill ill 115 119
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Figure 12 Biplot of Ficticious Air Pollution Data
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far away from this line. One may therefore safely diagnose

an additive model for the 6 x 4 table obtained by omitting

station F. Inspection of the Table will show that this is indeed

appropriate.

This diagnostic method extends to some other models as

well (Bradu and Gabriel, 1977). In particular, if the

two above lines intersect at an angle other than 900, then a

Tukey degree-of-freedom-for-non-additivity model holds,

i.e.,

z z + a + b + Xa.b + e. (5.3)
1' v I v i'v(53

for some A.

This diagnostic use of the biplot may be quite impor-

tant since statisticians do not in general have adequate

tools for such diagnosis. Statistics textbooks generally

give methods of estimating parameters and testing fit of

a~ven models, but do not usually provide techniques of

choosing a model.

Biplot diagnosis of models rests on the matrix decomposition

Y apx GH' (5.4)

The rows of the latter two matrices are displayed in the

biplot where visual inspection may lead to diagnoses of

simple geometric descriptions. When these descriptions

are formulated algebraically they can be entered into (5.4)

and may be translated into a model for the data matrix

itself.
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5.3. An example of modelling by means of the biplot

As an example of the biplot's usefulness in modelling,

consider the case where the vertices of the h-arrows are

close to an ellipse. Writing p_ for the center of the ellipse,

a and $ for unit vectors along its principal axes, this means

that there exists 6v for each v, such that

hv =_+ a cos ev + O sinO v  (5.4)

Matrix H therefore becomes

H' = (C,) os e ... cos ev ... cos e M (5.5)

sin 1 .., sin v ... sin e
v r/

and the data matrix is approximated by

/ l 1K.. •

Y apx G(,a,) ... cos 0v (5.6)

sin e v

v

Thus, the i-th row is approximated by

! apx (gjp, gl-, gjp) Cos Gv (5.7)

sin e

/
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Writing
Yi

sin . -

cos .i 2
1 +

and

iK , (5.8a)

i i= , (5.8b)

I = (5.8c)

These approximations become

Yi'v apx ni + yi sinev + 6i cosev ,(5.9)

or, defining

i i-. (5.10)

and 4i = arc tan (yi/ 6 i) (5.11)

they become Yiv a px ni + Ti. cos(e-i)" (5.12)
1 V 2.

Thus, observation of the elliptical form of the

h-configuration has led to diagnosing a harmonic model

for the data matrix with constant and amplitude depending

on the rows and phase on the columns. An example where
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such a model was appropriate was given in Section 2.6

where the elliptical configuration of the months' arrows

was found. Those annual temperature data could therefore

be fitted by a harmonic model with constants and amplitudes

depending on the station and the phase depending on the

month (Gabriel and Tsianco, 1980).

Let it be stressed that the function of the biplot,

or bimodel, is merely to suggest a suitable model, not

to provide estimates of its parameters. Once a model

such as (5.1), (5.3) or (5.11) is suggested, standard

estimation techniques should be reverted to, such as

least squares or its robust counterparts. (We will not

discuss the fitting of the harmonic model here-- see,

however, Gabriel and Tsianco, 1980).

ILL
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6. COMPARING SEVERAL BATCHES OF OBSERVATIONS

6.1. Joint inspection of the two batches' scatters

Observations coming from several different sources,

or populations, need different methodology and analysis

than single batches of multivariate data. For each single

batch of data, one may be concerned with description and

analysis of the configuration of variables and of the scatter

of units and with consideration of distributions, outliers,

models, and other summarizations. This, of course, may

also be of interest when several batches of data are

available, but the new aspect that appears at this stage

is that of comparing batches. Problems now arise with the

search for, and identification of, characteristics on which

the batches differ, with the measurement of "distances"

between batches, with the appraisal of the significance

or possible randomness of observed differences and with the

classification of additional units as being similar to one

or another of the batches according to these units' multi-

variate observations.

One may begin with the most straightforward case of

two batches. In comparing two batches one generally ignores

the individuality of the units and regards them as mere

members of one batch or the other. Since each batch is

regarded as a sample from some population or distribution

the units lose their identities and become mere replicate

observations.

. ....
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In comparing two samples, and in using them for testing

population differences, one considers the within sample,

inter-unit differences, mainly as providing estimates of

random variation, or "noise," against which to judge inter-

sample differences (averaged over units). Thus, in a

comparison of 1977 winter storms with 1978 winter storms,

the individual storms of each year are averaged for the main

comparison, and the variability from storm to storm within

each year serves as a yardstick against which one may measure

the averages' comparison. A study of the special features

of individual storms of either season would be part of each

batch's analysis, not part of the batch-to-batch comparison.

As an example, consider the data in Table 14 relating to

26 storms occurring in the summer of 1973. Pielke and

Biondini (1977) treated these as two batches of storms, 13

with geostrophic wind speed above 3m/sec and 13 with slower

geostrophic wind speed. In comparing these two batches,

the individual storms are averaged for comparison, and the

storm to storm variation within each batch provides estimates

of random variability. A study of the special features of

each batch's individual storms is not a main part of the

batch-to-batch comparison. Table 15 gives the five-variate

means of each batch and the variance-covariance estimates

from each batch.

'I0
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TABLE 14

Summer 1973 Storms

Wind D
Date R Speed Direction T S P

July 3 49.61 4m sec 900 .019 5.99 432

July 4 172.83 2m sec- 1  700 .032 5.98 453
-i

July 5 20.72 2m sec 2250 .054 5.77 371
July 6 59.93 4m sec 2700 .032 10.77 515

July 7 26.12 3m sec 1350 .048 11.58 494

July 15 75.48 3m sec -  1000 .082 8.41 336

July 16 51.71 5m sec -  1700 .068 14.14 267
-I

July 17 56.33 6m sec 1000 .042 10.57 477

July 18 23.66 5m sec 1000 .081 13.36 326
-I

July 20 62.95 3m sec 1350 .076 12.70 357

July 23 31.13 6m sec 1200 .048 9.35 539

July 24 17.09 10m sec 1  900 .096 10.44 404

July 25 14.61 6m sec 850 .081 3.64 356
-1

July 26 37.29 2.5msec 1100 .074 11.57 304
-1

July 27 84.05 im sec 1800 .047 11.04 316
-1

July 28 77.22 im sec 1700 .039 9.22 329

July 29 108.71 0 1800 .053 12.97 295

July 31 93.88 6m sec 1  1800 .120 16.59 280
-1

Aug 1 38.66 im sec 1800 .116 15.53 252
Aug 2 75.61 3m sec -1  1900 .113 12.54 242

Aug 6 79.98 4m sec 1  1000 .070 15.53 317

Aug 10 127.04 3m sec 1  1400 .028 4.46 564
-1

Aug 11 24.85 4m sec 1350 .058 9.59 401

Aug 12 17.66 8m sec - 1 900 .081 15.85 427

Aug 13 33.15 7m sec - 1 1000 .043 9.19 338
-1

Aug 14 97.53 3m sec 1350 .050 7.80 532

Fast: surface geostrophic wind speed > 3m/sec; slow: other

R: rainfall 20 log

D: surface level geostrophic wind direction

T: gradient of equivalent potential temperature

S: difference between saturation equivalent potential temperature
and equivalent potential temperature

P: depth of convective instability
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TABLE 15

Means and Variances-Covariances of Storm Data (Transformed)*

Fast Geostrophic Wind (Speed > 3m/sec) - 13 storms

R D T S P

Means 215.10 125.38 248.03 111.55 294.82

St. Devs. 35.17 51.12 54.96 37.03 31.43

Variances - Covariances R 1237.06 910.08 -405.95 540.62 -194.38

(Correlations below D .506 2613.31 -327.15 470.87 139.69

diagonal) T -.210 -.116 3020.83 1032.91 -999.24

S .415 .249 .40811370.91 -459.90

P -.176 .087 -.579 -.3951 987.61

Slow Geostrophic Wind (Speed 3m/sec) - 13 storms

R D T S P

Means 251.09 150.00 244.35 99.67 287.04

St. Devs. 36.05 40.76 52.47 31.85 38.27

Variances - Covariances R 1299.37 -603.74 -719.94 -330.53 296.38

(Correlations below D -.41111661.54 499.50 321.12 -649.04

diagonal) T -.381 .234[2752.82 1183.67 -1472.29

S -.288 .247 .708]1014.57 -855.09

P .215 -.416 -.733 -.701 1646.74

*Transformations: R 60ZnR; D D; T O 1000/T; S 1OS; P 15VP.

-Ar
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Note that the means and variances in Table 15 do not

relate directly to the variables in the form computed by Pielke

and Biondini -- Table 14 -- but to various transforms of

these. A preliminary check by means of probability plots showed

three of the variables to have very skew distributions,

especially the first one. Transformation by a

fractional power was therefore indicated. After some trial

and error, transformations were chosen which produced reasonably

symmetric distributions. (The constants by which the variables

are multiplied were chosen so as to approximately equalize

the variances -- this is important for biplotting: if the

biplot were fitted to non-standardized variables, the method

of least squares would produce a good fit for the variables

of large magnitude and all but ignore the variables of smaller

magnitude.)

Such preliminary inspection and transformation of

variables is quite important. Without it one might apply

least squares methods to variables which are highly skewed and

for which these methods would be quite unsuitable.

One way of representing two batches of multivariate

observations is by regarding them as distinct scatters

of units in the same space of variables. An approximating

display -- GH' biplot -- may be constructed for the matrix

of both batches' multivariate observation and the I-points

of the two batches may be distinguished on the biplot by

some special marks or colors. The summer 1973 storms are

biplotted accordingly in Figure 13 -- again using the data

transformed as noted in Table 15.
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Figure 13: Biplot of Storm Data (Table 14)
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It is immediately evident from this biplot that the

scatters of the two types of storm differ. The most obvious

difference is that the 5-points for "fast" storms are mostly higher

up on the biplot than the g-points for the "slow" storms. The

vertical direction is that of the two variables: R-rainfall and D-wind

direction. Evidently slow storms have more rainfall and

higher angle of wind direction than fast storms. The

two superimposed batch scatters are examined for differences in

distributions. If the two scatters are completely disjoint, one

may be sure of clear between-sample difference. If there is

some overlap, the distinction is less obvious and may need

testing for significance -- more about that later. At this

stage, one does well to inspect the shape of the two scatters

as well as their approximate location. If the centroids differ,

this indicates a difference in mean level of some variables;

the particular variables can be identified by considering

the vector from one of the centroids to the other and projecting

it onto the h-arrows to look for long intercepts. If the

extent or shape of the two scatters differs, this indicates

different variability; the particular variables on

which the variability differs are indicated by identifying the

h-arrows in the directicn of differing scatter.

An aid in inspecting and comparing the scatter of

samples of points is the construction of concentration ellipses.

For a batch of m units whose biplot g-points coordinates are

i=l,...m, the concentration ellipse is defined as the

locus of

+ ai cose + a2 sine 0 < e < 2r (6.1)
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with center at point

m
= (1/m) Z i (6.2)i=l1i2

and ai and S2 being obtained as followsz Calculate matrix
11 i ili2ig2-2 -

i gilI2 i gilg2 91 9192

V E Z 2 - g1  -2 , (6.3)
V=lgi g2 g92  g2

solve

Va = 2 2 (v=l, 2 ) (6.4)

2 -2

for the maximum and minimum eigen-values X and X 2  respectively,

and set

= v 1,2) . (6.5)

The center of the ellipse -- and the centroid of the

batch of n gi points -- is at 2' and the maximum and minimum

diameters are, respectively, of lengths 2A1 and 2X2 and in directions

ai and _2 from the centroid.

The concentration ellipses for storms of each type

are drawn onto the biplot in Figure 14. They clearly show the

vertical displacement of the two samples, confirming the impression

gained from inspection of the I-points themselves. They also

indicate no horizontal displacement, confirming that the

two types of storms do not differ appreciably on variables

T, 9, and P. (The correctness of these graphical impressions

can be verified from the means in Table 15.)
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Figure 14: Biplot of Storms With Identification of Fast (1)
and Slow (2) Storms and Concentration Ellipses
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6.2. Comparison of two batches' configurations

In addition to this comparison of centroids, one may use

the shape of the concentration ellipses to compare the variance

and correlation configurations of the two batches. In Figure 14

the ellipse for the slow storms is considerably squatter

and slightly wider than that of the fast storms. Recalling the

relation of scatters to correlations, one may infer that the

T, S and P correlations would not differ much between the

batches, but that the correlations of R and D with each other and

with T, S and P might differ. The biplot suggests that the

R, D correlation is higher for fast storms than for slow ones --

and that indeed is the most striking difference between the

two correlation matrices in Table 15. It also suggests that

both R and D's correlations with T, P and 3 are smaller in

magnitude for fast storms than for slow storms, though the

signs remain the same. This does not clearly reflect the

actual correlations in Table 14. Evidently, comparison of ellipses

can be used to indicate the existence of differences in variances

and correlations, but it is difficult to use it to infer what the

actual differences in configuration are.

A more sensitive display of differences in the configurations

of two batches may be obtained by biplotting each batch separately

and superimposing their h-configurations (the 2 scatters

are of no interest in this context). These h-plots (Corsten

and Gabriel, 1976) allow more detailed comparisons. Thus,

for the two batches of 1973 storms, the two h-configurations are

superimposed in Figure 15. Note that with a slight rotation
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Figure 15: H-plots of Fast Storms (above) and Slow Storms (below)
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four of the five pairs of h-vectors can be made to overlap
pretty well. The obvious exception is the h R vector which is

in almost opposite direction in the two configurations-- its

correlations with the other variables must be of virtually

opposite signs in the two batches. This agrees pretty well

with Table 15.

We recapitulate the i-thods of comparing batches of

multivariable data. To begin with, one should check the

batch scatters to see whether they a:e reasonably elliptic in

character. If there seem to be few outliers, long tails

and/or strong concentration at one edge or corner (likely

to be the zero point of the variables if the measurements are

all non-negative) then the data should be readjusted in a

manner similar to single batch data with such properties. If

the variability seems to be systematically longer for the

batch with larger means, transformations may be called for. A

comparison of log (standard deviations) against log (mean) may

show a fixed slope for some of the variables -- these variables'

observations are likely to be more regularly scattered, i.e.,

have more equal variabilities, if they are re-expressed as

(variable) -slope= (re-expressed
variable)

Such re-expression is a rough and ready method and the

exponent should in general be rounded to the nearest 1/2.

(Note that for a slope around 1, (.)lslope is to be read as

log(.)). (Tukey, 1977, Chapters 3 and 4).
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6.3. Comparison of three or more batches

When multivariate observations occur in several batches,

or have been a priori classified into several categories,

one may wish to compare these several sets of observations.

Essentially, such comparisons of three or more batches are

analogous to the comparison of two batches as described

above. There are essentially two approaches to such com-

parisons: 1(l) comparing the several batches configurations

of variables without reference to the location of the scatters,

or, (2) comparing the several batches' unit-scatters against

the background of one configuration of variables. These two

approaches correspond to univariate comparisons of scale

and location.

For comparisons (1) of configurations one would need

separate variance-covariance configurations to be obtained and

displayed for each batch. Thus, the h-configuration of each

batch would be obtained from its GH'-biplot. These configurations

might then be displayed alongside one another and compared

visually. If the number of variables is not very small, such

visual comparisons may be quite difficult. Section 6.2 illustrated

a comparison of two batches' 4-variate configurations. Consider how

much more difficult the comparison of six batches would be if 10-

variate configurations were displayed for each. Unfortunately

we cannot suggest a simpler way of making such comparisons.

They are complex and perhaps cannot be further simplified.

... SJ
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For location comparisons (2) one might begin by pooling

all batches to obtain an overall estimate of the variables'

configuration, i.e., the h-configuration in the GH'-biplot

of all the data. One would then compare the batches by

classifying the j-points according to the batches whose

units they represent. And again, as in Section 6.1, one

might summarize the scatter of each batch by a concentration

ellipse. The comparison of batch scatters is then conveniently

done by inspecting the locations and shapes of the different

ellipses as in Section 6.1.

An alternative approach to location comparisons is to compare

only the multivariate means of the several batches. A suitable

metric for such comparisons is that of the "within batches" sums

of squares of products (its use assumes that the variance-

covariance configuration of the different batches are much the same).

Thus, a biplot of the means of the several batches would show

which batches differ from what other batches and on what variables

these differences are evident.

Such an approach is analogous to MANOVA (multivariate

analysis of variance). An application to meteorology has been

studied in the context of the Israeli rainfall stimulation

experiment (Gabriel, 1972).

,, -
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6.4. Classification of new data into given categories --

Discriminant analysis

A common situation requires the classification of a

new unit into one of several populations from which it

might have originated. Thus, storms may be of a number

of synoptic types and radar observations may be available

for batches of earlier storms of each type. A new storm

now occurs and one is asked to use its radar observations

in order to allocate it to one synoptic type. Statistically,

one would want to classify the new storm into the type

whose batch's radar observations match the new storm's

observations most closely. That essentially is the problem

statisticians refer to as "discrimination" and the techniques

they use go under the name of discriminant analysis. The

subject is too large to explore here: Instead we refer

the reader to Miller's (1964) monograph, written for meteo-

rologists, to Lachenbruch's (1975) volume on discriminant

analysis and to Gabriel and Pun's (1978) description of

and program for two category discrimination by logistic

techniques.
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6.5 An Example - Different Techniques for Comparing Batches

To evaluate the three different ways of comparing several

batches of multivariate data, we will study an example in some

detail. We use historical data of annual precipitation in

Illinois to simulate a weather modification situation. Suppose

a "cloud seeding" operation had taken place in the years 1955 -

1960 in the Southern Illinois area, and that another such operation

had been carried out during 1970-78 in the Northeastern part of

Illinois. Also, suppose that no cloud seeding was carried out in

Illinois at any other time or place. Central Illinois precipitation

could, therefore, serve as concomitant observations to indicate

"natural" precipitation; it would not have been "seeded" in

either period. (The quotes are used since the. data relate to

simulated "operations", not to real ones).

To evaluate the effect of both "operations" it may be

proposed to use 50 years' data, 1929-78, for the following five

stations: Dubuque and Moline to represent Northeastern Illinois,

"seeded" in Period IV -- 1970-78; St. Louis to represent

Southern Illinois, "seeded" in Period II -- 1955-60; Peoria and

Springfield to represent Central Illinois -- never "seeded".

These 50 years also provide two "unseeded" periods for

comparison, i.e., I - 1929-1954 and III - 1961-1969, as set out

in Table 16 The corresponding data for annual precipitation are

shown in Table 17 Note that these are actual precipitation

data except that in the "operational" years each "target" station's

precipitation was augmented to simulate effects of "seeding".

We are using simulated data for illustration because that

allows us to anticipate the findings and then see how, and to what
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Table 16 Areas and Periods of "Operations" and Comparisons

Southern Northeastern Central
Period No. of Years Illinois Illinois Illinois

"Target" "Target" Control
(St. Louis) (Dubuque, (Peoria,

Moline) Springfield)

I. 1929-54 26 Unseeded Unseeded Unseeded

II. 1955-60 6 "Seeded" Unseeded Unseeded

III. 1961-69 9 Unseeded Unseeded Unseeded

IV. 1970-78 9 Unseeded "Seeded" Unseeded

Total 50
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Table 17 Annual Precipitation at 5 Illinois Stations 1929-78

DUB MOL PEO SPR STL

",7 2C. :,C C4.7l( ,.(,( V ! .6 4(7' ?
22. .r( j('10 2,. Y' 2 .2 3 2( 6 ". 2! ,

3] 29.5 9 -1.-90 7.75( " 2(1]0 37 0
32 25.'..70 34.9 3.,' 0 32. C50 38. 01
., 28.700 2L. ,16 :4. (7( 36.470 "4 .770
34 ]4.5Cu ,6. 050 30.4J6 2'5.660 29. 1,0
35 32.550 35.5,-0 40. 15( 41.220 39.360
?6 26.77( '0.0 Q0 ^0.910 2F. )20 26. 140
.7 31.770 30.960 29-190 24.630 35.870

38 47.>,30 43.750 42.620 36.980 41.220
'9 29.90 28.50C 28.270 33.C5G 40.150
40 ".900 25.200 24.160 22.980 25. 00
41 32.500' 36 .940 42. 1.90 44 . 720 12. 126;

42 35.570 32. S 0 37.860 4"_".360 45.1404
43 31.920 32.160 22.810 32.'60 33.600
44 42.500 38.930 35.130 33.280 32.510
45 38.78 33.840 36.120 43.40C 49.320
46 32.510 3E.320 38.E90 39.910 57.120
47 42.280 35.630 39.170 36.406 35.780
4e -3.350 34.350 30.130 30.860 42.260
49 31.510 34.3500 32.330 37. 520 45.760
50 -,2. 330 32. >80 27.300 32.050 37.30
51 45.010 48.600 37.230 39.510 36.7C
52 27.260 2E.640 35.420 .0.390 25.67C
53 34.950 26.470 28. ';0 22.980 2C .590
5L 38.210 38.860 41.960 26.670 27.(,10
55 2b.C70 26.090 2 .990 34.150 40.729
56 24.080 2G.200 25.626 31.210 44.759
57 38.S20 32.920 '..990 41.97C 61.30S
5, 26.070 24.450 31.450 30.560 46.594
5 54.360 42.100 30.630 35. 0 36.803
b(. 43.2b0 39 .45C- 37.630 38.910 41.-14

61 63. 9C 45.900 29.450 37 .91 41.2C'
62 42.770 331.56 24.820 20.62C 34.610
63 35.440 30. 70 25.66C 2;.890 28.626
64 Z6.140 35 .f70 28.950 31 . 20 32.160
,5 61.420 49.590 46.260 39 .CS0 28.260
6t 39.220 77.660 33.140 30.700 32.340
67 52. 70 42.360 35.95C 26.-10 41.300
68 39.900 31.350 :".89C 31.670 2.490
6u 33.700 41.790 ".700 34. S0 42.720
70 47.J01 b7.236 44.720 23,.5C 36.200
71 48.217 49.S72 26.3,C 27.620 7.'.730
72 51.714 66.645 26. 230 32. 0!) 33. 740
7: 51.420 7:.2b8 50.21- 44.290 39.e20
74 50.154 6U. 879 42.510 40 .820 36.6-0
75 42.263 "'27.635 41.220 27.660 4C.210
76 2.654 32.461 31.230 25.7C0 22.460
77 50.739 54.54b 38.410 42.710 43.410
78 40.300 40.651 32.090 31.F30 37.710

NOTE: These are actual precipitation data as obtained from the
Illinois State Water Survey, except for the 1955-60 figures for
St. Louis and the 1970-78 figures for Dubuque and Moline which
are equal to 130% of the recorded natural precipitation.
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extent, the analyses recover the simulated "effects". Thus, we

should expect that during "operations" the precipitation at target

stations would be higher and more variable.

We begin by examining the entire data set, irrespective of

batches, i.e., operational or other years. Means, standard

deviations, covariances and correlations are shown in Table 18,

and the co-ordinates for the GH'-biplot are given in Table 19 --

the biplot having been fitted to residuals from the 5-variate centroid,

This biplot is displayed in Figure 16

Mean precipitation -- Table 18 -- is pretty uniform over the

five Illinois stations -- perhaps a little lower in the center.

Variability changes more strikingly, the standard deviations being

appreciably lesser in Central Illinois. Correlations reflect the

geographical location, the highest correlations being found for

adjacent stations, i.e., Dubuque with Moline, Moline with Dubuque

and to a lesser extent with Peoria, Peoria with Springfield and

St. Louis with Springfield. Generally, correlation tapers off

with distance between stations -- thus the St. Louis correlations

with Dubuque and Moline are very low.

The biplot -- Figure 16 -- reflects this configuration of

variation and covariation (since this GH'-biplot is mean-centered

it conveys no information on means). The h-arrow for the Central

Illinois stations are shorter (less variability) than those for

the stations in North and South Illinois. The order of the

arrowheads reflects the geographical location of the five stations

and so the angles subtended at the centroid are smaller for nearby

stations and larger for far-away stations: Thus, the cosines

decrease with distance, reflecting the decrease of correlations
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Table 18 Measure of Location and Dispersion of the Entire Data Set

Station

Dubuque Moline Peoria Springfield St. Louis

Means 38.111 37.897 35.043 34.503 37.507

Standard Deviation 9.626 10.805 6.013 5.474 8.203

Cs 77.643 24.937 18.916 1.022
.7465 39.215 26.563 5.620

.4308 .6036 22.878 13.405

.3590 .4491 .6951 27.287

.0129 .0634 .2717 .
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Table 19 GH'-biplot Co-ordinates for Entire Set

al gi2 i gil gi2 i gil g12

1929 -.083 -.193 1946 .014 -.338 1963 -.114 .154

30 -. 182 .232 7 .023 .003 4 -.058 .095

1 -.085 -.068 8 -.070 -. 058 5 .259 .161

2 -. 104 -.046 9 -.051 -. 163 6 -.014 .097

3 -.124 -.034 50 -.068 -.032 7 .130 -. 007

4 -.048 .099 1 .133 .020 8 -.046 .077

5 -.017 -.114 2 -.149 .118 9 .005 -.095

6 -.158 .137 3 -.158 .271 70 .300 .057

7 -.102 -.007 4 .000 .156 1 .101 .178

8 +.129 -.048 5 -.154 -.094 2 .235 .156

9 -. 106 -. 094 6 -. 234 -. 145 3 .397 -.020

40 -.185 .226 7 .017 -.389 4 .269 .035

1 -. 001 -. 042 8 -.173 -. 195 5 .051 -.067

2 -.014 -.193 9 .115 .078 6 -. 127 .211

3 -.092 .032 60 .064 -.070 7 .227 -.064

4 .029 .071 1 .230 .020 8 .019 .031

5 .012 -. 237 2 -.042 .098

jh h
il j2

DUB 59.235 +14.807 x1 100.50

MOL 71.587 + 8.645 x2 63.22

PEO 29.079 -12.736 Ex2 16798.25

SPR 22.569 -24.452 Goodness of Fit 0.8392

ST.L. 10.577 -54.246
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Figure 16: GH'-biplot Of 50 Years' Illinois Rainfall (g-points

Identified by Years; h-ar rows by Stetion)-
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with distance. This biplot is therefore seen to provide a simple

display of both the pattern of variation and the configuration of

the correlations.

We next turn to the scatter of g-points in Figure 16,

which displays the distribution of the 50 years about their

5-variate mean. This is a pretty evenly spread scatter -- no

obvious outliers are evident, except perhaps 1957 at the bottom

of the biplot. This shows unusually high precipitation in 1957

at St. Louis. (Note that this was a year in which St. Louis

was a "seeding target"!). Indeed, on closer examination, we

note 4 out of the 6 years "seeded" at St. Louis tQ have-g-points

pretty far out in the direction of the h-arrows for' that station.

Also, we see that 6 out of the 9 years of Northeast Illinois

"seeding"have g-points far out in the biplot direction of the

Dubuque and Moline h-arrows. This is suggestive of "seeding

effects".

The distinction between the four periods may be accentuated

by suppressing the dates on the biplot and substituting the number

of the period, i.e., 1, 2, 3 or 4, at each g-point. This is done in

Figure 17. This display emphasizes the predominance of g-points

of periods II and IV in the directions of the h-arrows for,

respectively, St. Louis and Dubuque/Moline.

Figure 18 is another version of this same GH'-biplot in

which the individual years' g-points have been replaced by

concentration ellipses for each of the periods. Now the

comparisons are much easier to grasp. The average level of Period II

precipitation is seen to be highest on the St. Louis target and

that of Period IV on the Dubuque and Moline targets. The two

unseeded periods, I and III, have fairly similar ellipses which
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Figure 17: GH'-biplot of Illinois Rainfall (g-poifltS identified

by Period)
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Figure 18: GH'-biplot of Illinois Rainfall With Concentration
Ellipses for Periods
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are not particularly high at any one of the stations.

Also note the different shapes of the ellipses, indicating

differences in variability. The elongation of the Period IV

ellipse along hDUB and hMOL suggests that the variance in North-

eastern Illinois and the correlation between the stations must

have been higher in the period when it was the "seeding target".

Similarly, the ellipse for Period II is somewhat elongated along

the direction of h That indicates that when St. Louis was-STL
being "seeded" its variability was rather high.

Inspection of the GH' biplot of the entire data set has

revealed differences in location ad well as in variability and

correlations. In most analyses this is likely to be the single

most useful display. However, we will also illustrate the other

two displays: The set of batch h-plots which is designed

specifically fur comparisons of variability and correlation; and

the MANOVA biplot which displays comparisons of means standardized

for within batch variability.

For the comparison of periods, Table 20 gives the means,

standard deviations, covariances and correlations and Table 21

the co-ordinates for the h-plots of all periods. The four

periods' h-plots are shown together in Figure 19.

The h-plots for the four periods -- Figure 19 -- look

rather different at first glance, as do the standard deviations

and correlations in Table 21. This is mostly due to the random

variability between such ..... : t : It is well known

that correlations based on samples of as few as 6 and 9 observations

fluctuate wildly. Indeed, the comparison of Periods I and III

which were both "unseeded" shows how large random variability
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Table 20 Measures of Location and Dispersion of Four Periods of Year

Stations

Means DUB MOL PEO SPR ST.L

I. 1929-54 33.558 33.957 35.116 34.253 36.135

II. 1955-60 35.793 30.868 32.052 35.463 45.585

III. 1961-69 45.002 38.830 33.758 33.431 34.967

IV. 1970-78 45.919 53.033 38.112 35.657 36.123

(above (below
Standard Deviations (diagonal), Covariances diagonal), Correlations diagonal)

Period I 5.886 19.998 9.298 8.738 4.234

.679 5.000 15.158 15.019 16.554

.309 .593 5.115 19.073 21.562

.250 .506 .628 5.934 35.309

.083 .380 .484 .683 8.708

Period II 11.854 100.791 25.574 32.601 -25.972

.973 1 8.739 { 24.873 26.371 -18.066

.474 .626 4.550 16.728 15.964

.620 .680 .829 4.435 15.637

-.253 -.238 .405 .407 8.671

Period III 11.361 57.407 62.972 34.954 8.756

.779 6.487 41.067 22.489 12.777

.768 .877 7.215 1 23.575 2.621

.842 .949 .895 3.652 j 8.416

.135 .344 .063 .403 5.721

Period IV 6.999 81.964 23.608 29.373 26.095

.840 13.946 70.461 60.135 32.450

.453 .678 7.451 43.173 21.676

.632 .649 .872 6.645 30.404

. .. .. .. 656 . .410 .512 .805 5.682

k I
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Table 21 h-plot Co-ordinates for the Four Periods

Station

Period I DUB MOL PEO SPR STL

h 10.9 17.0 18.5 25.4 39.2 A1 = 54.1

hj2 24.9 15.9 5.6 - 0.5 -16.1 A 2 = 34.1

Goodness of Fit = .8236

Period II

hjl 26.3 19.4 5.5 6.4 - 5.3 A1 = 34.2

hj2- 0.1 - 0.9 - 6.6 - 6.5 -18.4 A2 = 20.7

Goodness of Fit = .9596

Period III

h 30.9 16.7 18.3 9.8 3.5 A1 = 40.9

hj2 3.8 - 4.1 1.6 - 2.4 -15.5 A2 = 16.7

Goodness of Fit = .9072

Period IV

hjl 17.2 38.2 16.6 15.2 9.6 A1 = 48.5

hj2 2.7 9.5 - 9.4 -10.6 - 9.4 2 = 19.6

Goodness of Fit .9120

'-

.....................
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really is: Note the Dubuque-Springfield correlation being 0.250

in Period I versus 0.842 in Period III! This illustration should

serve as a warning against drawing far reaching conclusions about

variability and correlation on the basis of small data sets.

Despite the smallness of the samples, there is some consistency

in the four h-plots of Figure 1.9. The geographical gradient from

Northeastern through Central to Southern Illinois is shown consistently

in all periods except III in which there is one inversion in the

geographical order -- between Moline and Peoria. The orientation

of the geographical gradient changes from period to period, but

the gradient persists, illustrating that some general patterns

may be revealed even from small samples of data.

It is difficult to find the expected "effects of seeding" in

these displays. "Target" variability was expected to increase

during "seeding" -- the Moline h-arrow is unusually long in

Period IV. But the Dubuque h-arrow is rather short in Period IV

and the St. Louis h-arrow is not particularly long in Period II.

Nor does the angle between h and h seem unusually low in
=DUB 1:140L

Period IV -- as it should have been if "seeding" had increased

correlation between "target" stations. Indeed, if we check back

to Table 20 we note that these "expected effects" did not

occur. It is not h-plot display that obscured them, but the

magnitude of random fluctuations in small samples.
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Table 22 Estimate of "Error" Variance Based on Two Periods
Without Operations

STATIONS

Stations DUB MOL PEO SPR STL

DUB 7.585 29.067 22.310 15.094 5.330

MOL .692 5.541 21.439 16.830 15.638

PEO .516 .679 5.696 20.165 16.970

SPR .364 .555 .647 5.469 28.789

STL .087 .349 .368 .651 8.086

NOTE: Covariances above diagonal, standard deviations in
diagonal, correlations below diagonal

*
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Finally, we turn to the comparison of means -- shown above in

Table 20 -- as standardized by random variation and covariance

That is the multivariate analysis of variance (MANOVA) approach.

Standardization is effected by weighting with the inverse of an

estimated variance-covariance. The usual estimate is the "within"

matrix of variances and covariances. (In this example it would be

estimated by pooling the bottom four panels of Table 20 with

weights 25, 5 and 8, respectively to a total of 46 degrees of

freedom for error), but in the present instance we prefer to

pool only the two "unseeded" periods so as to avoid possible

contamination of the estimate by "seeding" effect. Thus, we

pooled panels I and III of Table 20 with weights 25 and 8, respectively,

yielding 33 error degrees of freedom -- Table 22.

The MANOVA calculations are shown in Table 23 and the corres-

ponding JK'-biplot of the four period means at the five stations is

displayed in Figure 20. Each period mean is surrounded by a

"comparison circle" which gives an idea of the random variability

of each of those period means. (The method of calculation of the

radiuses of these circles is shown in Table 23; for a discussion of the

rationale of these methods see Gabriel, 1972). The interpretation

of these circles is simple. Any two periods whose circles intersect

do not differ more than expected by chance; any two periods whose

circles are disjoint differ significantly, i.e., more than expected

by chance. In this application chance variability is read as 95% of

random variability overall; thus a 5% chance -- level of significance --

is allowed of finding significance on some pair of periods that does

not really differ. (Other levels could be chosen, e.g., for a 1%
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Table 23 Calculations for MANOVA and JKI-biplot of Means

X: Batch Means

DUB MOL PEO SPR ST.L

1 33.558 33.957 35.116 34.253 36.135
11 35.793 30.868 32.052 35.463 45.585

111 45.002 38.830 33.758 33.431 34.967
IV 45.919 53.033 38.112 35.657 36.123

S =Inverse of'Error Variances

DUB MOL PEO SPR ST.L

D .036 037 -.032 422 -.004 803 -.004 409 .008 005
M -.032 422 .092 402 -.029 702 -.007 462 -.008 463
p - .004 803 -.029 702 .072 456 -.032 675 .003 077
5 -.004 409 -.007 462 -.032 675 .089 663 - .028 855
L .008 005 -.008 463 .003 077 -.028 855 .028 573

N =Diagonal Matrix of Sample Sizes

-I IT III IV
ni 26 6 9 9

DUB MOL PEO SPR ST.L

DUB -1.475 78 102.070 99 -46.893 78 -16.250 12 -8.097 50
MOL' -35.447 94 188.119 76 -57.863 27 -21.508 86 -23.885 08
PEOI -13.071 80 39.692 80 -6.663 76 -2.790 28 -7.861 94
SPR j -2.942 10 9.749 88 -2.943 06 -1.247 80 0.224 44
ST~LI 10.422_75 -31.365 39 1.239 63 .365 76 13-901 73

First Two Eigenvectors

DUB MOL PEO SPR ST.L

_l -2.42 -4.16 -0.84 -0.19 0.72

K2-4.62 -0.81 1.26 0.06 -1.71

Column Markers: k D k Mk k k

(These eigenvectors are standardized so that w 1 l =- w 12 W 1,s

wS -1w 2 0).
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= X -' Row Markers

I: jl- = (.822, .597)

II: j'= (1.990, -1.002)

III: =(-.087, -1.108)

IV: j'= (-3.615, 0.051)

0: Critical Value 0 = 0.420 330/(1-0) =23.892

This is the upper 5% point of the maximum characteristic root
distribution for 5 variables, 4 samples and 33 d.f for error
Heck, 1960).

Radius of Comparison Circle ;7(330/(10)2n1 .679 1.411 1.152 1.152
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Figure 20: JK'-biplot of Period Means of Illinois 
Rainfall

(With 5% Comparison Circles)
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level the circles would be larger -- because a larger 9 would be

read from Heck's charts -- and fewer differences found significant.

That would be a safer, but less revealing, strategy).

The comparison circle significance tests on Figure 20 show

Period IV's means to differ significantly from the other three

periods' means. Periods I and III barely differ, and Period II

does not quite differ significantly from either of these.

The scatter of the four period means -- j-points -- can be

related to the configuration of the five station measurements --

h-arrows. It is evident from Figure 20 that Period IV had

large means in Northeastern Illinois, especially in

Moline and less so at Dubuque. This confirms the "effect of seeding"

in that area in Period IV, though the difference between Moline and

Dubuque is unexpected. The small, and non-significant, difference

between Period II and the "unseeded" Periods I and III is mostly

in the direction of kSTL' indicating higher precipitation at St.

Louis in that period -- which is as it should be since that was

where "seeding" was carried out. The other small, though significant,

difference is between the two unseeded periods, I and III; it is not

quite clear what this is due to and it may well be a "Type I error",

i.e., a falsely significant finding when no true difference exists.

It is evident that much the same gei~eral picture -.;z Z -t -

from the comparison of means on the MANOVA JK'-biplot of Figure 20

and from the comparison of scatters (ellipses of concentration) in

the GH'-biplot of Figure 18. Indeed, both these biplots are

projections of the data matrix, with the four batches of points and

five columns, onto different two-dimensional planes. The GH'-biplot

describes the entire variability of the data, whereas the JK'-biplot

shows only the scatter of means. The latter therefore emphasizes

the differences between the periods rather than what they have in
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common. To the extent that the latter configuration is different from

the former, it is because of this different emphasis.

It must be remarked that the approximate significance tests

illustrated in Figure 20 are valid only to the extent that the required

assumptions are satisfied. These are (1) multi-normal distribution of

precipitation in the five stations, (2) equal variances-covariances,

(3) independence of observations. For annual precipitation data

(1) may be a reasonable annrim:'ztion . (2) would probably hold

pretty well unless seeding effects were large. Whether successive

annual precipitation amounts are independent is more doubtful --

though a recent study (Gabriel and Petrondas, in preparation) suggests

that assumption (3) is not seriously wrong. If it were not tenable,

then it would be wrong to regard the four periods as random samples

and the significance tests would be quite invalid. That is a crucial

point in many meteorological applications; it is often doubtful

whether successive observations can be considered independent and

thus the application of significance test is suspect. The emphasis

in this chapter was therefore on exploratory data analysis rather

than on significance testing of hypotheses -- that seems to be of

more use in meteorological research.
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7. ON TESTS OF SIGNIFICANCE

7.1. The logic of significance testing

A test of significance provides a decision on whether

to regard an observed phenomenon as "random" or real. In

other words, could the phenomenon have arisen in a manner

analogous to the outcome of a game of chance, or does it

reflect a real pattern2 The issue of randomness versus

real effects is often of great importance: Are there

real periodicities in precipitation, trends in temperature,

etc., and could the claimed effect of cloud seeding programs

be merely due to chance? The use of significance tests to

resolve these questions is, however, not as straightforward

as might be thought. A few words on this topic are in

place.

Significance tests are designed to disentangle real

from random effects. They do so by checking whether the

observations seem "non-random" in the direction in which

real effects are a priori thought likely to occur. Thus,

when a cloud seeding experiment is designed, the hypothesis

of no effect is to be tested against that of augmented

precipitation subsequent to seeding. When this expected

effect is precisely defined in terms of location of precip-

itation, time, method of measurement, etc., a significance

test can properly be applied.
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Significance tests are of more doubtful validity when

they are applied to "effects" which were first observed

during the experiment itself. For example, the Swiss

Grossversuch III was designed to reduce hail but observa-

tion of increased rainfall led to significance testing of

augmented precipitation. It is a common occurrence that

apparent effects are first observed in a particular area

or at a particular time, e.g., after some change in seed-

ing protocol, and then these particular "effects" are

tested for significance. The validity of such testing is

often in doubt because it does not take into account the

fact that the one most striking phenomenon observed on

the data was singled out for testing. A multiplicity of

other phenomena were not tested because they did not happen

to occur in such a striking form on those particular data.

Significance tests are not usually designed to accomodate

such selection of effects for testing. When it is done,

the multiplicity of possible choices dilutes the significance

and leads to spuriously "significant" results.

When non-experimental data are tested for significance,

one should have even greater concern for the validity of

inferences. Why was a particular phenomenon chosen for

testing? Surely because it was observed to be remarkable.

If so, the results of significance tests are strongly

biased in favor of deciding on non-randomness. Tests

would be valid only if carried out on new data sets,

independent of those which suggested the phenomenon.
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A convenient terminology is that distinguishing

confirmatory from exploratory analyses (Tukey, 1977).

The latter are essentially inductive, sifting through

data for leads, patterns, suggestions and ideas. The

former are of a more deductive and rigidly defined char-

acter -- they follow a protocol laid out in advance for

the confirmation or refutation of a particular issue --

as in the prior hypothesis on precipitation to be confirmed

or rejected by a cloud seeding experiment (Gabriel, 1980).

No doubt there is much more exploration than confirma-

tion in scientific work, especially in non-laboratory situa-

tions. And these are common in meteorology. Application

of significance tests in exploratory analyses cannot be

regarded as a rigorous, well defined procedure: At best

it serves to give vague indications of the relative roles

of randomness and real effects.
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7.2. The exploratory nature of multivariate analysis

Multivariate analysis, be definition, deals with a

multiplicity of measures, none of which has been identified

as the unique or principal bearer of the information sought.

If a problem were closely defined and circumscribed, a single

variable or function of variables would have been likely to

emerge as the measure most relevant to the problem at hand.

The analysis then would have lost its multivariate character.

The simultaneous study of several variables thus implies that

the subject is not narrowly focused and a definite hypothesis

about the phenomena under study has not yet emerged. Hence

multivariate analyses are unlikely to be confirmatory.

Conversely, a confirmatory study is most likely to be

univariate; the topic to be tested has been formulated precisely

and allows confirmation. Exploratory studies are often multi-

variate, and allow the investigator to search for effects among

a multiplicity of variables.
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7.3. Significance tests in multivariate analysis

We have argued that multivariate analysis is mostly

exploratory, and that exploratory studies do not in general

depend much on significance tests. Hence the role of

significance testing in multivariate analysis is likely to

be minimal. This chapter has therefore not stressed

topics of significance testing. Readers who still wish

to apply tests of significance to multivariate data are

referred to Morrison's (1976) excellent elementary text and

to Essenwanger's (1976) more advanced volume. They will

find tests for the types of comparisons discussed in Section 6

as well as for other types of multivariate analyses of data

from Gaussian distributions. For a description of methods

which are more robust against non-normality, readers are

referred to Gnanadesikan (1977). The present author hopes that

the convenience of a single summary or significance level will

not deter his readers from exploring their data. He also hopes

that the present chapter may help his readers to look at their

data and discover what they have to tell.

-, - . - I.
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