AD=A096 399 PURDUE UNXV LAFAYETTE IN SCHOOL OF ELECTRICAL ENGINEERING F/6 9/2
PROPERTIES OF THE AUGMENTED DATA MANIPULATOR NETWORK IN A SIMD —=ETC(U)
OEC 80 6 B ADAMS» H J SIEGEL AFOSR-7B-35B!
UNCLASSIF!ED TR-EE 80-51 AFOSR=TR=81-0203

Vo2
"?gs«w

EREEREENEEEE




AFOSR-TR- 81-0208 . y @ ' "’\{‘A

)]
c:PROPEHHES(“”HMBAUGMENTED
DATA MANIPULATOR NETWORK
IN AN SIMD ENVIRONMENT

e \EVEL

ADAO0963

. Bﬁmrmuﬁﬁ

-~

ec,,g
i
&

T
o>

Purdue University

School of Electrical Engineering \C
West Lafayette, Indiana 47907 ©, E

This work was supported by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under grant number AFOSR-78-3581.

hlnn"d for publ g
o b ¢ re} ease ;

tion llnl t d

91 3 16 048

Mw%m




-

-

Unclassified

SECURITY CLASSIFICATION OF THiS PAGE (HWhen Date Entared)

READ INSTRUCTIONS

REPORTDOCUMENTKHONPAGE

BEFORE COMPLETING FORM

1

RECIPIENT'S CAYALOSG NUMHER

&H

REPORT, NUMBER .

Q,AFdSR,TR“ . - g 2213 v - GOVY ACCESSION NO.

T DYReE tamfSubiiile) 15 41*?["7&;

Properties of the Augmented Data Manipulator
Network in an SIMD Environment g

TYPF ~¢ REPORT & PERICD COVFRED

9 nterim Fe PT!;

e

7.

6 PEREORMING ORG. REPORT N UM
AUTHOR(®)

5. C ACT OR GRANT NUMBER, 3
George B. fAdamsy 11| /:f "A%ﬁgh 78-35 %l
Howard Jay/S|egel v

9.

10 PROGRAM ELEMENT PRNIFCT
AREA & ﬂQQK T NUMDARE

W 11,
61102F  23p4/A2 |

PERFORMING ORGANIZATION NAME AND ADDRESS
School of Electrical Engineering
Purdue University

West Lafayette, IN 47907

/@ 244

TASK

1. CONTROLLING OFF{CE NAME AND ADDRESS —~J2 REPORY DaveE

United States Air Force, Air Force Office of /Il e clilingE-2089

Scientific Research, Building 410, Boliing AFB, T wowBER OF PAGES
Washington, DC 20332 105

14 MONITORING AGENCY NAME & ADDRESS(If different {rom Contralling Offrce) 15

SECURITY 2L ASS (of this repopr

Unclassified

TS DE

W Th-EF 5-51

DECL A
SCHEDULE

6 DISTRIBUTION STATEMENT (nf this Report)

LPpresad fan v fo ralange ;
dinterro

Gelvunino4g.

ASSIFICATISN DOANGRAGIN

-

——

7 DISTRIBUTION STATEMENT (of the abstract entered In Biock 20, if different fram Report)

18 SUPPLEMENTARY NOTFS

>

9 XEY WORDS (Continue on reversa aide (f necessary and Identily by hirck number)
augmented data manipulator,
systems, interconnection network, parallel processing, PASM, permutation
network, SIMD machine

O ABSTRACT (Continue on raveram arde if nacassanry and (dentify by block number)

Please see reverse side.

computer architecture, dynamically reconfiqurable

_—

;! 0D 2%, 1473

Unclasstflc

2940199 rclass

SFCumTv ‘_LA,S\NCAT!'\N r‘r EEITN Y N2

TWien s

/

— . ——— e e

A Foarare

{

v

r§n;

-—

kadd

B i

.

71’

v
¢

2

|
f
N




Unclassified
SECURITY ~LASSIFICATION OF THIS PAGE(When Date Entered)

%

The demand for computers with ever greater throughput coupled with
the decreased costs accompanying advances in semiconductor technology
has created a great deal of interest in parallel processing systems.
Single instruction stream - multiple data stream (SIMD) machines and
multiple instruction stream - multiple data stream (MIMD) machines are
two types of parallel processing system architectures. PASM is a parti~
tionable SIMD/MIMD parallel processor, intended to operate in either
mode of parallelism, being developed at Purdue University. The inter-
connection network chosen for this system will greatly influence its
performance. The Generalized Cube and the Augmented Data Manipulator
(ADM) are two networks being considered for use in PASM. This work s
primarily concerned with the capabilities of the ADM network in SIMD
mode .

RS

R

The number of data permutations passable by the ADM network is ex-
plored. > First the number of permutations performable by any stage is
counted. Using partitioning properties of the network and combinatoriat
mathematics, this result is extended to permutations performable by the ;
| entire network. For N = 8 an exact count of the number of performable i
permutations 1is given. For N > 8, upper and lower bounds are given.
Comparison with the Generalized Cube network is made.

‘?P'itr !

“Routing tag schemes are described for both the Generalized Cube and
ADM networks. The number of data permutations passable by the ADM net-
work using positive dominant or negative dominant permutation routing
tags is counted. The number of permutations passable using natural per-
h. mutation routing tags 1s bounded.

m; Algorithms for determining permutation passability in the ADM net-
work wusing three related types of routing tags for distributed netwark
control are presented. Correctness proofs are given and algorithm com-
plexity determined.

k2

e e s e e e e R & e T b i

To further investigate ADM network capabilities in SIMD mode, group
theory 1is wused to derive additional properties. It is shown that the
ADM network cannot pass all even permutations when N 2 8.4\\\ : 1

1
> 5 - i
i
|

Unclassificd

rWhan ["ara | rered)

QECURITY CLASSIFICATION GF THIG PALE




PROPERTIES OF THE AUGMENTED DATA

MANIPULATOR NETWORK IN AN SIMD ENVIRONMENT

George B. Adams 111l

Howard Jay Siegel

School of Electrical Engineering

Purdue University

West Lafayette, Indiana 47907

Purdue University
TR-EE 80-51

December, 1980

This work was supported by the Air Force Office of Scientific Research, '

Air Force Systems Command, USAF, under grant number AFOSR-78-3581.

TrElG RECTLARCH (AFSC)

A R ETTIEER
B NN

~onnd is

Ll =12 (7b).




ACKNOWLEDGEMENTS

The authors wish to thank the following people for their comments
on the c¢ontents of this work: Professor Leah J. Siegel, Professor Philip
H. Swain, Professor Carl H. Smith, and Robert J. McMillen. The authors
also thank Mellanie Boes for typing the manuscript. This was supported
by the Air Force Office of Scientific Research, Air Force Systems Com-
mand, USAF, under grant number AFOSR-78-3581.

This report is based on the Master's Thesis of George 8. Adams III.

Portions of this work have appeared in the following:

S. D. Smith, H. J. Siegel, R. J. McMillen, and G. B. Adams III, "Use of
the augmented data manipulator multistage network for SIMD machines,”

1980 International Conference on Parallel Processing, Aug. 1930, pp.

75-78.

R. J. McMillen, G. B. Adams III, and H. J. Siegel, "Permuting with the

augmented data manipulator network,"” Eighteenth Annual Allerton

Conference on Communication, Control, and Computing, Oct. 1980, to ap-

pear in the proceedings.




TABLE OF CONTENTS

LIST OF TABLES . . & & & ¢ o 4 ¢ o & = o o« o o o = »

LIST OF FIGURES . & ¢ v & ¢ o o o o o o o = « o = &«

LIST OF ALGORITHMS . . . . . v & ¢ v & & ¢ o o o »

ABSTRACT

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

INTRODUCTION . . & & ¢ o ¢ ¢ & o o o = &
MODEL OF SIMD MACHINES . . . . . . . « .
OVERVIEW OF PASM , . . . . ¢« ¢ & ¢ &« =« &
NETWORK DEFINITIONS . . . . . & & . o . &
COUNTING GENERALIZED CUBE PERMUTATIONS .

COUNTING AUGMENTED DATA MANIPULATOR
PERMUTATIONS . ¢ v & ¢ v ¢ ¢ & o o & o &

6.1 Introduction v « o ¢ o o« o « o o o &
6.2 Stage Permutations . « « « « « 2 «
6.3 Network Permutations « « o« « o« « « &
6.4 Tightness and Asymptotic Behavior of
the BoundS « ¢ o o o o « 2 s o s = &
6.5 ConcluSionS . & « o « = o = 2 « & «

GENERALIZED CUBE PERFORMANCE WITH ROUTING
TAGS & & v i e e h e e e e e e e e e s

7.1 Introduction .« « o v ¢ ¢ =« o o o « «
7.2 Routing Tag Operation . . . . . . .
7.3 Conclusions . ¢ v o ¢ o « o = o o &

AUGMENTED DATA MANIPULATOR PERFORMANCE
WITH ROUTING TAGS . . . . . o v « o v &« &

8.1 Introduction v « v v ¢ o =« o o & o »
8.2 Routing Tag Schemes . . . « . « « &

Page

vi
viii

ix

10
20
28

30
30
33
42
52
56

57

60

60
60




v !

8.3 The Number of Permutations Passable
Using Positive or Negative Dominant
TAGS 2 ¢ o o o ¢« o s v o o s 5 « 5 o = o o = 63
8. ConClUSioNS « v v v v o o o o o o o o o o = 70 =

CHAPTER 9 ALGORITHMS FOR DETERMINING PERMUTATION f
PASSABILITY ON THE AUGMENTED DATA &

MANIPULATOR & v @ v o v o v s v o o o o o o o o - 7
9.1 Introduction . v ¢ ¢ & « + o ¢ o o & & o o &« 71
9.2 The Algorithms . ¢« & &« ¢« v ¢« « o « o = o o &« 71
9.3 ConcluSioNS .« v v o « o =« e o o o o« o « « 82

CHAPTER 10 FURTHER PROPERTIES OF THE AUGMENTED

DATA MANIPULATOR NETWORK ., . & ¢« ¢ o « ¢ o & o o 83
10.1 Introduction . . & v &+ 4 ¢« o « o o o & » « 83 k
10.2 Definitions and Notation « « v = « o « & & 83
10.3 Theoretical Results . . o« ¢ o« o« « =« & o « 85
10.4 Conclusions . v v v ¢« ¢ « 2 ¢ « a & s o » 88
CHAPTER 11 CONCLUSIONS & @ v v o o o o o « © « o o o« o « « 89 '

LIST OF REFERENCES = o v o o o o o o o o o o « = o o = = o » 92 .




LIST OF TABLES

Table Page
6.1 PL(NJ and PU(N) are the lower and upper bounds

on the number of permutations performable by

an N-input ADM network, respectively. S(N) is

gt o

the spread of the bounds calculated as i

[PU(N)-PL(N)]/PL(N). Cube (N) is the number of

permutations performable by an N-input

Generalized Cube network, given by 2Nn/2 e s o s s o & 55




LIST OF FIGURES

Figure Page
2.1 A PE-to-PE model of an SIMD machine . . . « » « o &« « . 6
2.2 A processor-to-memory model of an SIMD machine . . . . 8
3.1 Block diagram overview of PASM ., . . . . ¢ o &« . ¢ o & 12
3.2 PASM Parallel Computation Unit . . & &« ¢ ¢ ¢ ¢« ¢ « & « 14
3.3 PASM Micro Controllers . . . ¢ 4o ¢ o ¢ o o o o« ¢ s o & 16

3.4 Organization of the PASM Memory Storage System
for N = 32 and @ = 4, where "MSU" is Memory
Storage Unit, "MC" is Micro Controller, and
"PCU" is Parallel Computation Unit . « &« « o o & o + & 18

4.1 The Generalized Cube network for N = 8. The
straight and exchange connections of the
jnterchange box are ShOWN . « o o« o & « 2 ¢ = o s o = « 21

4,2 The augmented data manipulator (ADM) network for
N = 8. Straight connections are shown by the _.
dotted line; PM2 1, by the solid lines and PM2 1,
by the dashed Lines . ¢« o ¢ o ¢ & ¢« o o o o o s « = o & 23

4.3 1Interchange box settings for performing a cyclic
shift of +3 moduto 8 in the Generalized Cube . . . . . 26

4.4 One possible ADM network setting for performing
a cyclic shift of +3 modulo 8 . . . ¢ ¢ ¢« ¢« ¢« ¢« &« & o . 2’

6.1 Example of a network setting for N = 8 which
does not correspond to an overall permutation . . . . . 3

6.2 Example of two distinct network settings for
N = 8 which correspond to the same overall
PErmMUtAtioON & « v & « « o o o o & 8 = = 6 o 2 s = = s . 32




6.3

6.4

6.5

6.6

6.7

6.8

8.1

a) Straight connections, b) Regular exchange,
c) Irregular exchange . . . &+ ¢ v & o o « « &

A stage 0 permutation and its characteristic
binary number for N =8 . . . . . . . ¢ ¢ . . .

Configuration implied by two adjacent 1s in the
characteristic binary number. This is not a
permutation « ¢« 4 4 ¢ 4 e ¢ 4 s 4 v e e 8 s e .

The first step in the conceptual process of
partitioning an ADM network for N = 8 into two
independent subnetworks joined at stage 0.

Each cell that interfaces stage 1 and 0 is
shown divided into an output cell from stage 1
and an input cell tostage 0 . . .. .. . ..

Cells from stages 2 and 1 of an ADM network

for N = 8 rearranged into the two independent
subnetworks, each with N/2 inputs. € and O
designate even and odd subnetwork, respectively
Illustration of the four stage 0 permutations
for N = 8 which connect all even subnetwork
outputs to odd network outputs, and odd
subnetwork outputs to even network outputs.
They are (a) all regular exchanges, (b) all
irregular exchanges, (c) all +20, and (d) all

-20. Even and odd source subnetworks are

indicated by E and 0, respectively . . . . . .

An overall permutation for N = 8 using no
wraparound connections that is not performable
using natural routing tags . . « « « « & o = &

35

37

39

43

45

46

69

i




Algorithm

viii

LIST OF ALGORITHMS

9.1 Procedure PASSABILITY . & & ¢ & ¢ ¢ ¢ o o o o o o o & =

9.2 Version of REQUEST

Page
72

75

IR WP e




A ——— . — .
-II I' PR it

ix

ABSTRACT

The demand for computers with ever greater throughput coupled with
the decreased costs accompanying advances in semiconductor technology
has created a great deal of interest 1in parallel processing systems.
Single dnstruction stream = multiple data stream (SIMD) machines and
multiple instruction stream — multiple data stream (MIMD) machines are
two types of parallel processing system architectures. PASM is a parti-
tionable SIMD/MIMD parallel processor, intended to operate in either
mode of parallelism, being developed at Purdue University. The inter-
connection network chosen for this system will greatly influence its
performance. The Generalized Cube and the Augmented Data Manipulator
(ADM) are two networks being considered for use in PASM. This work is
primarily concerned with the capabilities of the ADM network in SIMD
mode.

The number of data permutations passable by the ADM network is ex-
plored. First the number of permutations performable by any stage is
counted. Using partitioning properties of the network and combinatorial
mathematics, this result is extended to permutations performable by the
entire network. For N = 8 an exact count of the number of performable
permutations is given. For N > B8, upper and lower bounds are given.
Comparison with the Generalized Cube network is made.

Routing tag schemes are described for both the Generalized Cube and

ADM networks. The number of data permutations passable by the ADM net-




work using pdsitive dominant or negative dominant permutation routing
tags is counted. The number of permutations passable using natural per-
mutation routing tags is bounded.

Algorithms for determining permutation passability in the ADM net-

work using three related types of routing tags for distributed network

M T P I T S T L T

control are presented. Correctness proofs are given and algorithm com-
plexity determined.
To further investigate ADM network capabilities in SIMD mode, group

theory is wused to derive additional properties. It is shown that the

ADM network cannot pass all even permutations when N > 8.




CHAPTER 1

INTRODUCTION

Throughput has been, and remains, a major Limiting factor of the
scope of data processing tasks performed by computer systems. Many
tasks of current interest such as machine vision, image processing, se-
ismic exploration, air traffic control, and aerodynamic simulation could
greatly benefit from performance that is in excess of current computer
systems.

Historically, computer system designers have attempted to meet the
demand for increased throughput by building new generations of machines
which, most often, differed from their predecessors only 1in circuit
switching speed. System architccture remained reasonably similar to the
basic von Neumann machine. To continue the significant gains made over
the vyears wusing this approach will require further major reductions in
circuit switching times. Indeed, circuits using the Josephson effect
promise to make picosecond switching times practical in the not too dis-
tant future. But, there is an ultimate limit to the switching speed of
a given circuit, determined by the propagation speed of electromagnetic
waves: the speed of Llight. So alternate methods of improving
throughput are of interest.

Throughput is not directly dependent on the circuit switching
speed. Uttimately, throughput is maximized on a given system when any

task takes only one idinstruction cycle to execute. To achieve a

s L i




reduction in the number of system instruction cycles, new machine organ-

izations and algorithm structures may be used.

In tandem with the improvements in circuit switching speeds, signi-
ficant circuit cost reductions have been realized. The reduced cost of

hardware has made large scale parallel processing systems feasible.

Such architectures are suited for problems that can be decomposed into
independent subtasks. Simultaneous execution of these subtasks allows a
reduction 1in the number of system instruction cycles needed to perfora
the task. ALl of the problems listed previously as being computational-
ly intensive could benefit from parallel processing systems.

One type of parallel architecture is the single instruction stream
- multiple data stream (SIMD) system. Such machines typfcaLLy consist
of N processors, N memories, an interconnection network, and a control
unit. The control unit broadcasts instructions to all processing ele-
ments, and all active processors execute the same instruction simultane-
ously. This is the single instruction stream. Each processor executes
these instructions on data stored in a memory with which it is associat-
ed. This provides the multiple data stream. The interconnection net-
work serves to provide interprocessor communication.

A second type of parallel processor system is the multiple instruc-
tion stream - multiple data stream (MIMD) machine. Again there are typ-
ically N processors, N memories, and an interconnection network. Howev=-
er, processors execute instructions from their own memories, thus pro-
viding multiple instruction streams.

The interconnection network chosen for a4 parallel processing system

will greatly influence the performance of the machine. Many questions




3

about the capabitities of interconnection networks remain unanswered.

This is especially true for the SIMD system environment where the inter- :
connection network will often be called upon to transfer information

among all N processors simultaneously, that is, to perform data permuta-

tions. Poor performance in passing needed permutations could render a

particular interconnection network unsuitable for use in an SIMD system

by causing a serious degradation in processor utilization.

PASM, a partitionable SIMD/MIMD parallel processor, is a reconfi-
gurable multimicroprocessor system under development at Purdue Universi-
ty. It is designed to operate in either mode of parallelism. Two in-
terconnection networks are being considered for use in PASM: the Gen-
eralized Cube and the Augmented Data Manipulator (ADM). The Generalized
Cube has been studied. Various properties of the ADM have been axamined
but further investigation is needed. This work is concerned with the
capabilities of the ADM network in SIMD mode. Increased knowtedge of
ADM network performance will altow a more informed choice of an inter-
connection network for PASM,

The general model of SIMD parallel processing systems to be used
throughout this work 1is described in Chapter 2. Chapter 3 contains a
brief overview of PASM. In Chapter 4, the two networks are formally de-
fined. The setting of the networks to perform permutations is dis-
cussed. Chapter 5 presents the argument for counting the number of dis-
tinct permutations passable by the Generalized Cube network, for LlLater
comparison with the ADM network.

Chapter 6 investigates one parameter of ADM network performance -

the number of passable permutations. This development involves both




properties of network topology and combinatorial mathematical tech-
niques. First, the number of permutations performable by a network
stage is counted. Then, using network partitioning, the arguments are
extended to provide upper and lower bounds on the number of data permu-
tations passable by the ADM network. An exact count is given for the
case N = 8. Finally, the asymptotic behavior of the bounds is analyzed
and a comparison with the number of Generalized Cube performable permu-
tations is made.

The use of routing tags for distributed network control s dis-
cussed in Chapter 7. Routing tag schemes for the Generalized Cube are
The permuting capability of the network is not at all Limited by the
routing tag control.

Chapter 8 reviews two families of routing tags for the ADM network.
A count of the number of permutations passable using positive dominant
or negative dominant permutation routing tags is given. The number of
permutations passable using natural permutation routing tags is bounded.

Algorithms are developed in Chapter 9 to determine the passability
of an arbitrary permutation by the ADM network under distributed controt
by any of three related routing tags. The correctness of the algorithm
is proven,

Further ADM network properties, derived using group theory, are
presented in Chapter 10. The permutations passable by the ADM are addi-

tionally characterized as a result.




I

CHAPTER 2

MODEL OF SIMD MACHINES

The acronym SIMD stands for single instruction stream - nultiple

data stream (FL). Typically, an SIMD machine is a computer system con-
sisting of a control unit, N processors, N memory modules, and an

interconnection network. The control unit broadcasts instructions to

all of the processors, and all active processors execute the same in-
struction at the same time. Thus, there is a single instruction stream.
Each active processor executes the instruction on data in its own asso-
ciated memory module. Thus, there is a multiple data stream. The in-
terconnection network, sometimes referred to 4s an alignment or

permutation network, provides a communication facility for the proces-

sors and memory modules.

One way to model the physical structure of an SIMD machine is shown
in  Figure 2.1. As indicated, there are N processing elements (PEs),
where each PE consists of a processor with its own memory. The PEs re-
ceijve their instructions from the controt unit. Communication anong the
PEs is accomplished through the use of the interconnection network.
This structure is called the PE~-to~PE approach. The Iltiac IV (BOU] is
an example of this configuration.

Because each processor has direct access to its local memory module
and relatively poorer access to any other memory module, tasks requiring

transfers of Llarge blocks of data between PEs should be dvoided.




CONTROL UNIT

PE, PE, PE, vee PEL,
PROCESSOR | PROCESSOR, PROCESSOR, | | ... |[PROCESSOR,
MEMORY | MEMORY MEMORY, ||... ||MEMORY, |

INTERCONNECTION NETWORK

Figure 2.1 A PE-to~PE model of an SIMD machine.

B o

i
I
i




Rather, algorithms involving a data base which can be partitioned into
largely noninteracting segments are most suited to this structure. Com-
munication between PEs can be supported by a unidirectional interconnec-
tion network since each PE has access to a network input and output.

A second way to model an SIMD machine is shown in Figure 2.2. This

is the processor-to-memory approach. In general, there may be P proces-

sors connected to M memories through the interconnection network in this
approach, The figure shows the case where there are N processors and N
memories. The BSP [JE] is an SIMD machine with this structure.

In this case transfer of large blocks of data from processor to
processor is easily accomplished by using the intercunnection network to
change the memory module linked to a given processor. One disadvdantdge
of this architecture 1is that each instruction or data fetch wust pass
through the network. Another is that two processors can only comauni-
cate through a shared memory module.

For the processor-to-memory structure, processors must be able to
perform memory read and write operations through the interconnection
network. If the processors and memories hdave fixed access to the inter-
connection network, then it must support bidirectional communication, A
unidirectional interconnection network can be used if provision is made
to allow either processors or memories to be attached to both network
inputs and outputs.

Further information about SIMD machine structures is contained in
{st1. Variations on the PE~to~PE and processor-to~memory darchitectures

are discussed in [BAJ and [LA]. A mathematical model of §SIMD machines

is presented in [SI51].




CONTROL UNIT

liROCESSOR PROCESSOR PROCESSOR oo PROCESSORN_

0 1 2 1

INTERCONNECTION NETWORK

MEMORYo MEMORY] MEMORY2 MEMORYN_l

Figure 2.2 A processor-to-memory model of an SIMD machine. ; '




The model of SIMD machines to be wused in this and subsequent

chapters, is the PE-to-PE model [SI5]. Each PE is assigned a unique ad-

dress from 0 to N-1, represented in binary as pn_1pn_2...p1po. The

results

however.

obtained .

for

the

ADM network will be valid for either model,

ey




10

CHAPTER 3

OVERVIEW OF PASM

There are several types of parallel processing systems. An  SIMD
(single instruction stream - wmultiple data stream) machine typically
consists of a set of N processors, N memories, an interconnection net-
work, and a control unit (e.g. Illiac IV). The control unit orvadcasts
instructions to the processors and all active (“turned on'") processors
execute the same instruction at the same time. Each processor executes
instructions using data taken from a memory with which only it i3 asso-
ciated. The interconnection network allows interprocessor communica-
tion. An MIMD (multiple instruction stream - multiple data stream)
machine usuatly consists of N processors and N memories, where edch pro-
cessor can follow an independent instruction stream fe.g. C.mnnp). As
with SIMD architectures, there is a multiple data stream and an inter=-

connection network. A partitionable SIMD/MIMD system is a parallel pro-

cessing system which can be structured as two or more independent SIMD
and/or MIMD machines. In this chapter, the basic organization of PASM,
a partitionable SIMD/MIMD system being des gned at Purdue University for
image processing and pattern recognition, is briefly overviewed.

SIMD machines can be used for '"local' processing of segments of im-
ages in parallel. For example, the image can be segmented, and each
processor assigned a segment. Then, following the same set of instruc-

tions, such tasks as line thinning, threshold dependent operations, and

Saai




11

gap filling can be done in parallel for all segments of the image simul-
taneously. Also in SIMD mode, matrix arithmetic used for such tasks as
statistical pattern recognition can be done efficiently. MIMD machines
can be used to perform different 'global" pattern recognition tasks in
parallel, using multiple copies of the 1image or one or more shared

copies. For example, in cases where the goal is to locdate two or more

distinct objects in an image, each object can be assigned a processor or

set of processors to search for it. An SIMD/MIMD application might in-
volve using the same set of microprocessors for preprocessing an 1imndge
in SIMD mode and then doing a pattern recognition task in MIMD mode.

PASM is a special purpose, dynamically reconfigurable, Llarge-scale
multimicroprocessor system. Due to the low cost of microprocessors,
computer system designers have been considering various multimicrocom=
puter architectures. PASM was the first multimicroprocessor system in
the literature to combine the following features: (1) it can be parti-
tioned to operate as many independent SIMD and/or MIMD machines of vary-
ing sizes; and (2) a variety of problems in image processing and pattern
recognition will be used to guide the design choices.

Figure 3.1 is a block diagram of the basic components of PASM. The

System Control Unit (SCU) is a conventional machine, such as a PDP-11,

and is responsible for the overall coordination of the activities of the
other components of PASM. By carefully choosing which tasks should be

assigned to the SCU and which should be assigned to other system com-

ponents (such as the Memory Management System), the SCU can work effec-

tively and not become a bottleneck.

A ]
k—‘l sstalisnbntuotstannilit,



12
MEMORY SYSTEM CONTROL
STORAGE & MCONTROL ™™™ cropace
SYSTEM UNIT
MEMORY PARALLEL MICRO
MANAGE - L= COMPUTAT 1ONKC > “ONTROL-
MENT UNIT LERS
SYSTEM

Figure 3.1

Block diagram overview of PASM,




13

The Parallel Computation Unit (PCU) contains N = 2" processors, N

memory modules, and an interconnection network. The PCU processors are

microprogrammable microprocessors that perform the actual SIMD and MIMD

computations. The PCU memory modules are used by the PCU processors for
data storage in SIMD mode and both data and instruction storage in MIMD
mode. A memory module is connected to each processor to form a proces-
sor - memory pair called a processing element (PE) as shown 1in Figure
3.2. A pair of memory units is used for each memory module. This
double-buffering scheme allows data to be moved between one memory unit
and secondary storage (the Memory Storage System) while the processor

operates on data in the other memory unit.

The interconnection network provides a means of communication among

the PCU PEs. Two different 1interconnection networks dre being con-
sidered for PASM: the Generalized Cube and the ADM. Both consist of
n = LogZN stages of switches and are controlled by routing tags. Both

can be partitioned into independent subnetworks if all of the PEs in a4

partition of size P = 2P have the same value in the low order n-p bit
positions of their addresses. Studies are currently being conducted to
choose which of these networks to implement in PASM. This work is a
part of that effort.

The Micro Controllers (MCs) are a set of @ = 29 microprogrammable

microprocessors, numbered (addressed) from O to @-1, which act as the
control units for the PCU processors in SIMD mode and orchestrate the
activities of the PCU processors in MIMD mode. Each MC is attached to a4 '
memory module (a pair of memory units so that memory loading and compu-

tations can be overlapped). Control Storage contains the programs for




14

r——"=-"=""=7—7==777

[ PROCESSING ELEMENT 0 I'

y MEM. OA Micro- | |
< PrROC. 0
o |
2 2
>l PROCESSING ELEMENT 1 1k
=l | 3
) MEM. 1A MICRO- || &

=

§f MEM. 18 > PROC. 1 | &
- 4 l o
3 o -
> [ ] l ot
|| PROCESSING ELEMENT N-1 =
i)
STIMemn. N-) A M1CRO |

I PROC.

I MEM. N-1 B N-1 |

| [ I

| INTERCONNECT ION NETWORK I

. - - - _ _ - _—_— —_ - J

Figure 3.2 PASM Parallel Computation Unit.




15

the MCs.

Each MC controls N/Q PCU processors. The physical addresses of the
N/Q PEs connected to an MC, shown in Figure 3.3, have as their low-order
g bits the physical address of the MC, so that the network can be parti-
tioned. Possible wvalues for N and Q are 1024 and 16, respectively. A
virtual SIMD machine (partition) of size RN/Q@, R = 27 and 1<r<g, is
obtained by Lloading R MC memory modules with the same instructions
simultaneously. In SIMD mode, the R MCs are synchronized and each MC
fetches instructions from its memory module, executing the control flow
instructions (e.g. branches) and broadcasting the data processing in-
structions to its PCU PEs. Similarly, a virtual MIMD machine of size
RN/Q is obtained by combining the efforts of the PCU processors of R
MCs. In both cases, the physical addresses of these MCs wmust have the
same low-order g-r bits so that all of the PCU PEs in the partition have
the same low-order g-r physical address bits.

In each partition, the PCU PEs are assigned Llogical addresses.

Given a virtual machine of size RN/Q, the PEs have logical numbers, 0 to
(RN/@)-1, (the high-order r+n~-q bits of the physical number). Similar-
ly, the MCs are assigned logical numbers from 0 to R-1 (for R > 1, the
high-order r bits of its physical number). The PASM Language compilers
and operating system wWwill be used to convert from logical to physical
addresses, so a system user will deal only with logical addresses.

The Memory Management System controls the loading and unloading of

the PCU memory modules. It employs a set of cooperating dedicated mi-

croprocessors. The Memory Storage System provides secondary storage for

these files. Multiple devices are wused to allow parallel data

)




16
FROM SYSTEM CONTROL UNIT
AND CONTROL STORAGE
PROC. 0\1
MC MEN,
PROC . MC oOn
| MICRO- _<:
PROC. N-Q//’ PROC. O MC MEM.
PROC. ! N o8 Me
MEMORY
PROC. Qi+)e—, - M?cgo Tg MEM. o
MICRO- SWITCH
ofproc. 1 MC MEM.
PROC. N-Q+l—1" 18
[ 4
[ ]
PROC. Q-1 < .
N
PROC. 2Q-1 —+ MC MC MEM.
o] MICRO- Q-1 A
ef PROC. Q1 MC MEM.
0-1 B
PROC. N-1 —T 2

Figure 3.3 PASM Micro Controllers.



17

transfers.
The Memory Storage System will consist of N/Q independent Memory

Storage units, numbered from 0 to (N/Q)-1. Each Memory Storage unit is

connected to @ PCU memory units. For 0 < i < N/Q, Memory Stordge unit i
is connected to those memory modules whose physical addresses are of the
form (Q*i)+k, 0 < k < @. Thus, Memory Storage unit i is connected to
the ith processor/memory module pair of each MC as shown in Figure 3.4.
Since the PE memories are double-buffered, while one job is being pro-

cessed, results from the previous job can be stored and the next may be

loaded.

The two main advantages of this approach for a partition of size
N/Q are that (1) all of the memory modules can be loaded in parallel and
(2) the data is directly available no matter which partition (MC group)
is chosen. This 1is done by storing in Memory Storage unit i the data
for a task which is to be loaded into the ith logical memory module of
the virtual machine of size N/@, 0 < i < N/Q. Thus, no matter which MC
group of N/Q processors is chosen, the data from the ith Memory Storage
unit can be loaded into the ith Llogical memory module of the virtual
machine, for all i, 0 < i < N/Q, simultaneously, i.e., in one parallel
block transfer. This same approach can be taken if only (N/Q)/Zd dis-
tinct Memory Storage units are available, 0 < d < n-1, using Zd parallel
block loads will be required instead of just one. In general, a4 task
needing RN/@ processors, 1 < R < @, logically numbered 0 to (RN/Q)-1,
will require R parallel block loads if the data for the memory module

whose high-order n-q logical address bits equal i is loaded into Memory

Storage unit i, This 1is true no matter which group of R MCs (which




——y

18
PCU PE#
r‘" 0 MC O
MU ) MC 1
0 | MC 2
4 3 MC 3
r‘ 4
MSU — 5
| || 6
— 7
B
MSu — 9
2
— {0
— N
[ ]
*
]
28
MSU E 29
7
30
31

Figire 3,4 Organization of the PASM Memory Storage System for N = 32
and Q@ = 4, where '"MSU" is Memory Storage Unit, "MC" is Micro

Controller, and "PCU" is Parallel Computation Unit.




19

agree in their Low-order g-r address bits) is chosen. If only (N/Q)/Zd

distinct Memory Storage units are available, 0 < d < n-q, then r#2Y
parallel block loads will be required instead of just R.

A set of microprocessors is dedicated to performing the Memory
Management System tasks 1in a distributed fashion, i.e., one processor
handles Memory Storage System bus control, one handles the scheduling
tasks, etc. This distributed processing approach is chosen in order to
provide the Memory Management System with a large amount of processing
power at low cost and high speed (due to the parallelism possible).

This overview of PASM, a large scale partitionable SIMD/MIMD mul-
timicroprocessor system for image processing and pattern recognition,
has been provided as background material for the following chapters.
For additional information about various aspects of PA3M see: organiza-
tion [SI13,SMS1,SSKMS], instruction set [SM1], masking schemes for ena-
bling and disabling PEs [SI1,512,5MS1,SSKMS], interconnection networks
CMs,S11,514,515,516,551,552,5SMA], operating system [SSMMS], programming

Language [MSS11, and memory management system [SKW,SSKMS], and examples

of use [SI7,FSS,MSS2,SMS2,SSE].




20

iAPTER 4

NETWORK DEFINITIONS

In the SIMD environment it is useful to describe the interconnec-

tion network as a set of interconnection functions, where each is a per-

mutation (bijection) on the set of PE addresses [SI1]. wWhen intercon-
nection function f is applied, network input i is connected to network
output f(i) for all i, 0 < i < N, simultaneously. That is, saying that
the interconnection function maps the source address S to the destina-
tion address D is equivalent to saying the interconnection function
causes data sent on the input line with address S to be routed to the
output Lline with address 0.

The physical structure of an interconnection network can be

described by several parameters. A Link or connection carries messages

or data in the network between other network elements. A switching
element selects the Llink or Links over which mnessages or data will be
sent through the network. A set of Llinks connecting a network input, or
source, to a network output, or destination, is called a route.

The Generalized Cube network [551]1 1is shown in Figure 4.1 for

N = 8, where N 1is the number of inputs to the network. It is an

n LogzN stage network where each stage implements one of the cube in-

terconnection functions [S51). The n cube functions are defined by




! 21
!
1
0 0 0 0 0 0 0
[
1
I 2 0 ’
N 3 Y ‘
P I T
U 1> °F
T 6 §]
T i
Stage 2 1 0 £
-
EXCHANGE STRAIGHT
1
Figure 4.1 The Generalized Cube network for N = 8, The straight and i'

exchange connections of the interchange box are shown.




- ~~ww-m-uH-'-Il-..l-luu-m-u-—u".-_-'-.--'f_>

22
cubei(pn_1...p0) = Paote-Pie1PiPi1-+-Pg

for 0 < i < n. The switching elements of this network are called inter-
change boxes. For performing permutations there are two legitimate
states of an interchange box: (1) straight - input i to output i, input
j to output j; and (2) exchange = input i to output j, input j to output
i. In each stage of this network the pair of inputs to an interchange
box is selected so that cubei maps one to the other, and vice versa.
when an interchange box in stage i is set to exchange, the data items
input to that intarchange box are transferred as specified by the cubei
interconnection function. When set to straight, data items input dre
transferred according to the identity function, i.e. identity

Since each interchange box is individually

(p ...po) =P _qePye

n-1 n-1

controlled, each stage i will perform the cubei interconnection function
on some subset of the data items depending on the settings of the inter-
change boxes.

There is a class of cube-type networks of which the Generalized
Cube 1is representative., By combining the results of [SI14,SS1,WF1,WF2]
it can be seen that all of the following networks adare topologically
equivalent: Generalized Cube [SS1], the STARAN flip network [B8Al, the
omega network (LAJ, and the indirect binary n-cube network (PEJ]. (The
SW-banyan (S=F=2) is defined as a graph [GL] and has the same topology
as a multistage cube [WF2].) For this reason the Generalized Cube can be
used as a standard for comparing cube-type networks with other intercon-

nection networks.

The augmented datd manipulator (ADM) network is shown in Figure 4.2

for N = 8. It is an N input, n stage network based on the PMZI (plus-




23

N 3 u

P l T
P

U 5

T 6 ’

STAGE 2 ] 0

Figure 4.2 The augmented data manipulator (ADM) network for N = 8.
Straight connections are shown by the dotted lLine; PM2 by

+i”
the solid lines; and PM2_., by the dashed lines. !




24

minus 21 interconnection functions [SI1]. Each of the n stages con-
sists of N switch cells. There is also an (n+1)-st column of network

output cells. The PM2I functions are defined by

PM2,.(§) = j + 2' modulo N

and
PM2_.(5) = j - 2' modulo N

(h=1) = PMZ_(n_1). Each cell

of the ADM can receive none, one, two, or three of the signals straight,

for 0 < j <N, 0 <i<n. Note that PMZ+

PM2+i’ and PMZ_i {S11,S16]. Corresponding to Figure 4.2, the signal
"PMZ*i" means use the solid Lline connection; "PMZ_i,“ the dashed line
connection; and "straight,'" the dotted line connection. Stages of the
network are numbered from n-1 to 0. The data output from cell j at
stage i becomes the data input to cell k at stage i~1 where k ¢ {j-Zi
modulo N, j, j+21 modulo N}. Each cell is controlled independently of
any other cell.

The ADM network is based on Feng's data manipulator [FEJ. The data
manipulator is also based on the PM2I functions and consists of n+1
columns of N cells. There are again three connections from an input
cell j at stage i, namely PM2+i’ PM2_i, and straight, where 0 < j <N
and 0 < i < n. ALL but the last column are controlled by a pair of sig-

i i
nals selected from a group of six, U$ (PM2_.), D$ (PM2,.), and

i
H$ (straight) control those input cells at stdage i whose ith address bit
2 2 2
is 0. The signals Us (PMZ_i), 05 (PM2,.), and Hy (straight) control

those cells whose ith address bit is 1. Thus, the ADM is a data

- i i it




25

manipulator network with individual cell control.

In an SIMD environment, the network configuration established in
the Generalized Cube or ADM network would depend on the permutation of
network inputs to outputs desired. As an example, for the permutation
which maps any input x to (x+3) modulo N, 0 < x < N, the settings for
both networks, when N = 8, are shown in Figures 4.3 and 4.4. Not all
permutations of N items can be performed by these networks in one pass
through the network. However, the permutation capability of the ADM

network is Kknown to be a superset of that of the Generalized Cube

{sI4,5511.




26

0 0 0 0 0 0 0 i
| | ) 2 ] 1
|
f I 2 ] ! 2 2 0
N3 5 3 3 3 U
P 4 2 4 4 h T
U 5 6 6 5 EX
T 6 3 5 6 6 U
7 7 7 7 7 7 7 T
Stage 2 1 0

Figure 4.3 Interchange box settings for performing a cyclic shift of +3
modulo 8 in the Generalized Cube.




27

— o
— (=]
/ o
-— o

L
i,

STAGE 2

Figure 4.4 One possible ADM network setting for
shift of +3 modulo 8.

W R e ——

performing & cyclic




28

CHAPTER 5

COUNTING GENERALIZED CUBE PERMUTATIONS

The N-input Generalized Cube network has Nn/2 interchange boxes.
For permuting data, each interchange box can be individually set to one
of two states, either straight or exchange (see Figure &4.1). Thus,

2 .. . .
/ different ways to set the Nn/2 interchange boxes. It is

there are an
clear from the structure of the network that every possible setting witl
result in a one to one mapping of inputs to outputs, i.e. a peramutation,
since each interchange box performs one to one connections.

The following theorem dis needed to show that a one-to-one

correspondence exists between network settings and permutations for the

Generalized Cube.

Theorem 5.1: There is one and only one route between any source and des-

tination for the Generalized Cube network.

Proof: Consider an arbitrary source, S = (sn-1°"50)' and a destination,

b = (dn_1...d0). for a route connecting S to D to axist, the cubei in-
terconnection functions, 0 < i < n, which are implemented by the physi-
cal network hardware must be able to map S to D. In each stage of the
network there is exactly one interchange box with an input Llauelled by
some given address. Thus S can be mapped to D if first in stage n-1 the

interchange box with S as an input is set to straight if Sp-q = or

n=-1

set to exchange if Sn~1 # dn-1' The straight connection maps

i s b




29

(sn_1...so) to (sn_1...so) = (dn_1sn_2...so). The exchange connection
performs cube_ _, mapping (sn-1"'50) to (sn_1...so) = (dn-15n-2"'50)‘
This procedure can be repeated for stage n-2, setting the interchange
box with (dn_1sn_2...so) as an input to the correct stdate to map

(d .ee5,) to (d dn-an-3"'SO)'

n-15n-2 0 n-1

The procedure can be continued for stages n-3 through 0 wapping an
arbitrary source to any destination. The procedure is deterministic and
there is only one valid choice of interchange box state for each stage,

so there is only one route between a source and destination.

]

Now consider two distinct network settings. There must be at Lleast
one interchange box which is set straight in one of the settings, and
exchange in the other. Pick a source, S, which is mapped to its desti-
nation, D, through this particular interchange box for one of the set-
tings. There 1is only one path through the network between any
source/destination pair. Thus, using the other setting does not allow S
to map to D, giving a distinct permutation. A permutation is said to be
passable by an interconnection network if the physical network structure
(i.e., interchange boxes, for the Generalized Cube) allows the connec-
tions to be made. Therefore, each distinct setting results in a dis-

Nn/2 permutations passable by the

tinct permutation giving a total of 2
Generalized Cube (and its equivalents [SS11).
This permutation count for the Generalized Cube network is rela-

tively straightforward. It is included here for lLater comparison to the

number of permutations performable by the ADM network.




30

CHAPTER 6

COUNTING AUGMENTED DATA MANIPULATOR PERMUTATIONS

6.1 Introduction

Unlike the case of the Generalized Cube network, the question of
the number of distinct permutations passable by the ADM network does not
yield to a straightforward consideration of all possible network states.
There are two reasons for this difficulty. One is the fact %hat in the
ADM, unlike the Generalized Cube, an arbitrary network setting ..nay not
result 1in a permutation of network inputs to outputs. Figure 6.1 shows
an example of this. When the two routes of two different
saource/destination pairs have any Links in common a collision i; said to
exist. Data passing through the network can be lost in this situdation.
In Figure 6.1 each cell is performing an allowable switch setting. How-
ever, in stage 1 both cells 1 and & connect to cell 1 and in stage O
cetl 5 connects to both cells 4 and 5. If the network setting is f,
then f(1) = f(4) =1 and f(5) = 4 or 5. Clearly, f is not 4 pernuta-
tion. The second reason is that for certain permutations more than one
valid network setting exists. Figure 6.2 shows two settings which are
equivalent. In each case the same permutation of network inputs to out-
puts is performed, that is 0 to 3, 1 to 6, 2 to 5, 3 to 2, 4to 7,5 to

4, 6 to 1, and 7 to O.

For the remainder of the discussion, ADM network performable permu-

tations are referred to as overall permutations. Configurations of




3

0 0 \\\\\\\\l////,/’ 0 0

1 1 1 1 0 |
I 2 2 2 2 u
N 3 3 3 3 T
P 4 4 / 4 4 P
v 5 5 5 5 u
T 6 6 6 6 T

7 7 7 7

STAGE 2 1 0

Figure 6.1 Example of a network setting for N =8 which does not
correspond to an overall permutation.




32

o

1 ! 1 1 |
\ u
| 2 2 2 2
N \ / \ T
p 3 ><>< 3 3\3 p
A
u h/ \hvh\ U
° > S\S T
. /\
° ° 6\6
i ! i N\\\\\‘\~\~\~\ :
STAGE 2 1 0 a
b c
0 0 0 0
1 1 1 1 0
L 2 2 2 2 |V
N >
N 3 3 .3 3
\/ P
P
A
: /\ u\/l. ’
U
5 5 5 5 |y
6 6 6><6
7 7 NG /// 7 7
b c
STAGE 2 ] 0
Figure 6.2 Example of two distinct network settings for N = 8 which

correspond to the same overall permutation.




33

stage j of the network, for 0 < j < n, which are permutations of stage j
inputs to outputs are called stage j permutations.

The approach to counting the number of overall permutations will be
first to determine what type of network settings give a permutation of
inputs to outputs. Next, the number of stage 0 permutations is counted
and the result generalized to any stage. Finally, using partitioning
theory and the results concerning network stages, the network is treated
as two subnetworks connected to stage 0, and upper and lower bounds on

the number of data permutations performable by the entire ADM network

are established.

6.2 Stage Permutations

Before the number of overall permutations performable by the ADM
network can be counted, the two difficulties described in the previous
section must be addressed. The following answers the first difficulty,
that of determining which type of network settings correspond to permu-

tations.

Lemma 6.1: An ADM network configuration is an overall permutation if and

only if it consists of stage i permutations for all i, 0 < i < n.

Proof: Assume a given network configuration is an overall permutation.
For this to be true there can be no conflict of data at any cell in the
network, i.e., no cell can receive data from more than one cell in the
previous stage, Because each stage hdas the same number of cells, no

cell can fail to receive data, without conflict or Loss of data in that

stage. Thus, 1if the network configuration is an overall permutation

then each stage i configuration must be a permutation for all i,




34

0<i<n.

Assume that each stage i configuration is a permutation for all i,
0<ic<n. Because of this constraint on the stage configurations, no
conflict can exist in the network. This implies that the network confi-

guration is an overall permutation.

0]

This lemma, while obvious, is presented because it establishes the c¢ri-
teria for permutation passability in the ADM network network, which is
central to the development that follows. A permutation is passable by
the ADM network if and only if a set of N routes exist which perform the
desired mapping without conflict.

To deal with the second difficulty, that of generating overall per-
mutations with more than one network setting, a divide and conquer ap-
proach will be used., This will Limit the need to check for setting
redundancy to stage 0 of the network. First, the configurations of
stage 0 are investigated.

Stage 0 is the only stage which can affect the low order bit of a
source address, cdusing mapping to a destindtion with 4 low order bit
that is either the same or different from that of the source. Let
S = (sn_1sn_2...s1so) be a4 source, and D = (dn_1dn_2...d1d0) its desti-
nation. A connection in stage 0 that does not affect the low order bit
of the destination address, i.e., g = dD’ is called 4 straight
connection. A connection that changes the low order bit, Sg = Eb, is
called an exchange. This is shown in Figure 6.3. A regular exchange is
between stage 0 cells (pn_1...p10) and (pn_1...p10 + 20) modulo N. An

irregular  exchange is between stage 0 cells P,-q---040) and




35
0 2 0
1 2 ]
2 X 2
STAGE 0 ; NETWORK
INPUTS 3 OUTPUTS
4 2 4
S Pty = |
6 6
7 2 7
STAGE 0

fFigure 6.3 a) Straight
exchange.

connections, b) Regular

exchange, c¢) Irregular




36

(pn_1...p10 - 20) modulo N. Because a permutation is one to one, any
possible stage 0 permutation, except the aLL.+20 or all -20 configura=-
tions, consists of straight and/or exchange connections only (i.e.,

0

every +2° or -20 connection is part of an exchange) [SI61. The all +20

and all -20 connections form permutations because every cell uses +20 or
every one uses -20 (modulo N arithmetic).
Consider the stage 0 permutations other than the all +20 or all

0 . .
-2 . They can be represented by an N-bit binary number, called the

characteristic binary number. A binary digit is associated with each

adjacent pair of cells, including a digit for the wrap-around pairing of
the cells labeled 0 and N-1. 1If the adjacent pair of cells together
form an exchange connection, the characteristic binary digit is 1. 1If
not, the digit is O. An exampte of this assignment is shown in Figure
6.4.

In order to use the characteristic binary numbers for counting
stage 0 permutations, two kinds of digit adjacency are distinguished.
When the first and last bits of the characteristic binary numbers are
not considered adjacent it is linear adjacency. When the first and last

bits are considered adjacent it is circular adjacency.

Lemma 6.2: Every stage 0 permutation, except the settings all +20 or alt

0 . Col .
~2 , has a unique characteristic binary number with no circularly adja-

cent bits that are both 1s.




37
N
0 0
—0
1 1 i
—0
2 2
STAGE 0 >< - NETWORK
INPUTS 3 3 OUTPUTS e
—0
4 4
—0
5 5
—1
6 6
—0
7 7
—0
STAGE O :
CHARACTERISTIC 5
BINARY

NUMBER

A e e =~

binary number

Figure 6.4 A stage 0 permutation and its characteristic
for N = 3.




Proof: Every stage 0 permutation, except the all +20 and all —20 confi-
gurations, can be formed from straight and exchange connections [S16],
1f the characteristic binary number of a configuration has circularly

adjacent 1s, then there is a cell involved in two exchanges such that
p p caeP.P~ * P P cssP. P +20) modulo N
n=1"n=-2 170 n=-1"n-2 170
and
p p * (p __.p p —20) modulo N
Pn-1Pn-2--+P1Pg n-1Pn-2--"P1Pp

This is shown in Figure 6.5. This mapping is not one-to-one, hence the ;
configuration is not a permutation. If the associated binary number has
no circularly adjacent 1s, then every stage 0 input can be involved in 1
at most one exchange. Since every input 1is involved in either a4 ]
straight or an exchange connection, the configuration will be one-to- |

one, and hence a permutation.

{1

The characteristic binary numbers of stage 0 permutations can be

L

used to count the number of these permutations. Lemmas 6.3 and 6.4 are

based upon [0S].

Lemma 6.3: The number of N-bit binary numbers with no linearly adjacent

1s is found using the recursive relationship

LIN) = LIN=1) + L(N-2) '

where L(2) =3, L(3) =5, and N > &,




STAGE 0
INPUTS

39

STAGE 0

NETWORK
OUTPUTS

Figure 6.5 Configuration implied by two adjacent 1s in the characteris-
This is not a permutation,

tic binary number.




40

Proof: If an N-bit number ends in a 0, then it will have no linearly ad-

jacent 1s if 1t has no linearly adjacent 1s in the first N-1 bits. The

number of all such N-bit numbers is L(N-1). If an N-bit number ends in

1, then the immediately preceding bit must be a 0 if the number is to

have no linearly adjacent 1s. Also, the first N-2 bits of the number

must have no linearly adjacent 1s. The number of all such N-pit numbers

is LIN-2). Thus, L(N) = L(N-1) + L(N-2). }
The initial conditions may be derived by noting that L(2) =3

(i.,e.: 00,01,10) and L(3) =5 (i.,e.: 000,100,010,001,101). i
{1

Lemma 6.4: The number of N-bit binary numbers with no circularly adja-

cent 1s is

CIN) = LIN) ~ L(N-4)

where N > 8.

Proof: L(N) exceeds C(N) by the number of N-bit numbers with no Linearly
adjacent 1s which do have circularly adjacent 1s. These numbers are atl

of the form

10 a2y ... -4 01

where the number a4a5...a is a binary number with no Llinearly adja-

N-4
cent 1s. There are L(N-4) such numbers. Thus, C(N) = LIN) = L(N-4).
0]




41

Theorem 6.1: For an N-input ADM network, the number of stage 0 permuta-

tions is

PO(N) = C(N) + 2

where N > 8. Also, Py(2) =2 and Pp(4) = 9.

Proof: By Lemma 6.2, PO(N) will be equal to the number of characteristic
binary numbers with no circularly adjacent 1s, plus the two cases all
+20 and all —20. PO(Z) can be counted by direct enumeration. PO(4) can
be counted either by direct enumeration or by noting that
€4) = L&) - 1, the "-1" being for the case 1001.

£

The method used to count the number of stage 0 permutations can be

applied to any stage of the ADM network.

Theorem 6.2: For an N-input ADM network, the number of stage i permuta-
tions is

i2!
P.(N) = P, (N/2)
i 0

where N > 2, and 0 < i < n,

Proof: To count the number of ways in which stage i can permute data,
consider the set of cells § = {j,j+2i,j+2*2i,...j+(2n-i-1)*2i} for a
fixed j, 0 < j < Zi. In stage i an arbitrary cell, k, can be mapped to
any of {(k-2') modulo N, k, (k+2') modulo N}. That is, if k ¢ s, for
any fixed j, 0<j< 21, then (k-Zi) modulo N €S and

(k+2') modulo N € S. Since successive elements of S differ by Zi, this

L}
mapping of k 1is completely analogous to that of k mapping to




42

{(k'-Zo) modulo N, k', (kl+20) modulo N} where k' € S' =
(0,1,...,2n-1—1}. This second mapping is that of stage 0 in an ADM net-
work with 2""i inputs. Thus the cells of S can perform PO(Zn-1) =
PO(N/Zi) permutations. There are 2i possible values of j, each defining
a set 50 such that s3I sk =@ for k # j and 0 < j,k < 2'. That is, the

2' sets are disjoint, so the permutations performable on the cells of sJ

are independent of those performable on Sk, for k#3j. Thus

.
P.(N) = P _(N/2Y)
i 0

L3

6.3 Network Permutations

The remaining obstacle to counting the number of distinct ADM per-
formable overall permutations is determining what class of permutations
have more than one network setting. If the network is small this task
can be avoided. Ffor an ADM network where N = 4, the number of perform-

able permutations can be counted by direct enumeration.

Lemma 6.5: For N = 4, the ADM network can perform all possible N! = 24

permutations.

Proof: By direct enumeration (see [$S831).

0]

For N > 4, direct enumeration is not a practical alternative for
counting the number of overall permutations. Consider conceptually
separating stage 0 from the rest of the network. This is shown in Fig~

ure 6.6, Stages n-1 through 1 can be partitioned into two independent

subnetworks, each with N/2 inputs [S16,551]. ALl the odd-numbered cells

P,

ada




|
N
P
T
STAGE
Figure 6.6

43

m N
’:>>\\\\>
000000000000/“ o
1 0
U
2
T
3 P
4 U
T
5
6
-
%o':coa- 7
—
n m
2 1 0

The first step in the conceptual process of partitioning an
ADM network for N =8 into two independent subnetworks
joined at stage 0. Each cell that interfaces stage 1 and O
i3 shown divided into an output cell from stage 1 and an in-
put cell to stage 0.




4--u--l-l'llllllll.l..--ln-n--u.,...."'-....,.“.,.lff -
44

in stages n-1 through 1 will constitute one of the subnetworks. This is

the odd subnetwork. AllL the even-numbered cells in stages n-1 through 1

constitute the other subnetwork, the even subnetwork. The relationship

of these two subnetworks to the final stage of the N-input ADM network,

stage 0, is shown in Figure 6.7.

The partitioning described connects the outputs of the even subnet- 1
work to all even-numbered inputs of stage 0. The outputs of the odd
subnetwork are connected to the odd-numbered inputs of stage O. Parti-

tioning the ADM network allows an N-input network to be treated ds two
N/2-input independent ADM networks combined at stage 0 of the N-input

network.

Lemma 6.6: The four stage 0 permutations all regular exchanges, all ir-

regular exchanges, all +20, and all -20 connect all even subnetwork out-
puts to odd numbered network outputs and all odd subnetwork outputs to
even numbered network outputs. Furthermore, no other stage 0 permuta-

tion does this.

Proof: The four named permutations each connect all even subnetwork out-
puts to odd network outputs and all odd subnetwork outputs to even net-
work outputs because each forces d0 = Eb for all source/destination
pairs. This is shown in Figure 6.8 for N = 8. A permutation not of the
named set must have a straight connection. If an output, D, is connect-

ed to a straight stage O link, then d0 = sy Thus, the four named stage '

0 permutations are the only ones with this property.

0]




45
-~ ]
| EVEN SUBNETWORK |
STAGE 2 STAGE | |
| a b ' e f
| 1
| {o 0 0 E i 0 £ 0 |
: 2 2 2 e Ll D 0 | ‘
I : 4 4 booE N2 E 2 0
N | |6 6 6 E 3 0 3 U
| a
P ' c~ _d 4 E 4 T
v | | ] IR FAVE 0 5 b
|
T l 3 3 3 0 6 13 6 U
[ 5 5 0 //L// 7 0 7 T
: 7 7 7 0 l f e
| d < : STAGE 0
| STAGE 2 STAGE 1 |
| 0DD SUBNETWORK |
| |
P i

Figure 6.7 Cells from stages 2 and 1 of an ADM network for N = 8 rear- '
ranged into the two independent subnetworks, each with N/2
inputs. E and O designate even and odd subnetwork, respec-
tively.




Figure 6.8

46

0 0 0 E O><00

-
o

o wm w
o W w
o m m
m [=) (=]
o wr w
o i

o m

STAGE 0 STAGE 0
(a) (b)

[=]
o

/ //////
N

5
6 6 |o 3 6 6|0
7 7 {¢€ 0 7 7]E
a ]
STAGE 0 STAGE 0
(e) (d)

Illustration of the four stage O permutations for N = 8
which connect all even subnetwork outputs to odd network
outputs, and odd subnetwork outputs to even network outputs.
They are (a) all regular exchanges, (b) all irregular ex-

changes, (c) all +20, and (d) alt -20. Even and odd source

subnetworks are indicated by E and O, respectively.



47

Consider an arbitrary destination, D, of an N-input ADM network.
The source for the data arriving at D may have been either the even sub-

network or the odd subnetwork (see Figure 6.7) depending on the stage 0

configuration, Call the subnetwork which is the source of D the source

subnatwork.

Lemma 6.7: Consider the set of all stage O permutations except all regu-

Lar exchanges, all irregular exchanges, all +20, and all ~20. For each
of these permutations the set of pairings of source subnetwork with net-

work output is unique.

Proof: Proof by contradiction. Assume that two distinct stage 0 permu-
tations of this set both Link the same source subnetwork to a given net-
work output, and that this is true for any network output. That is, the
two permutations have identical sets of pairings. A permutation of the
named set must have a straight connection. If an output, D, is connect-
ed to a straight stage 0 link, then d0 = SD' If it is connected to an
exchange, then d0 = Eb, and the source subnetwork differs from the pre-
vious case. Thus all straight connections of one permutation must be
duplicated in the other, and vice versa, if the source subnetworks are
to be the same for each output.

A circularly adjacent pair of Os in a characteristic binary number
corresponds to a straight connection. Specifying all straight connec-
tions thus specifies all circularly adjacent Os in the characteristic
binary numbers of both permutations. The remaining bits of the numbers

must contain no circularly adjacent Os. Recall that no circularly adja-

cent 1s may appear since this is a permutation. Thus, the first and




48

Ltast bits of any contiguous unspecified bit positions must be 1s and the
interior bits must alternate 1s and Os. Single unspecified bit posi-

tions must become 1s. Each unspecified bit position is thus assigned a4
unique value. Therefore, both numbers are identical. The permutations

cannot be distinct.

0]

Let P(N) be the number of distinct overall permutations performable
by an N-input ADM network. And let PU(N) and PL(N) be upper and lower

bounds on P(N), respectively.

Theorem 6.3: A lower bound on the number of distinct overall permuta-

tions performable by the N-input ADM network is
- 2 -
PL(N) = PL(N/Z) * EPO(N) 3]

where PL(A) = P(4) = 24; N > 8.

Proof: As a result of Lemma 6.1 only configurations which are permuta-
tions at every stage need be considered in the following. The number of
permutations performable by one of the two independent subnetworks which
can be formed by partitioning the ADM s, by definition, at least
PL(N/Z). Call the permutations available at the inputs of stage 0 the

input permutations. Because the two subnetworks of the partition are

independent, the number of distinct input permutations is at Lleast
2
PL(NIZ) .
Now, consider an arbitrary overall permutation. Assume that the

stage 0 permutation is fixed. Any change in the input permutation will

result in a change 1in the overall permutation, This 1is because




L ‘9

(a*c = bec) implies a = b where a, b, and ¢ are permutations and * is
composition. Assume the input permutation and the stage 0 permutation

are both allowed to change. Let the stage 0 permutation be restricted

so that only one of the permutations all regular exchanges, all irregu~
Lar exchanges, all +20, or all -20 is allowed; there are PO(N)-S of
these. As a consequence of Lemma 6.6 and Lemma 6.7, any change in the
stage 0 permutation will cause at least one output address to be mapped
from a different subnetwork. But because the two subnetworks are in-
dependent, no change of the input permutation can result in the mapping
of a source of one subnetwork to the output of the other. The resulting
overall permutation cannot be the same as the original no matter how
stage 0 and the subnetworks are manipulated.

Thus, no overall permutation can be duplicated by changing the in-

put permutation and/or changing the stage 0 permutation {(provided the ,
stage 0 permutation is not one of the three excluded). Hence, each com-

position of input permutation with allowable stage 0 permutation (i.e.,

not one of the three excluded) results in a unique overatl permutation.
So, the number of input permutations is multiplied by the number of ﬂ
stage 0 permutations, minus the three special cases, to yield the lower
bound given on the number of performable overall permutations.

The boundary condition was stated in Lemma 6.5.




S : mw!uuu!llIl!ll'llIlllF'“""'Faﬂﬂlll!l!'-"ﬂ"r47

50

Theorem 6.4: An upper bound on the number of distinct overall permuta-

tions performable by the N-input ADM network is

2

* P_(N)

PU(N) 0

PU(N/Z)

where Pu(k) = P(4) = 24 and N > 8.

|v

Proof: Assuming that the composition of any input permutation with any

stage 0 permutation (including all regutar exchanges, all irregular ex-
changes, all +20, and all —20) yields a unique overall periutation,

gives the above resutt.
{1

For an ADM network with N = 8, an exact count of the number of per-

formable permutations can be derived.

Theorem 6.5: P(8) = P(4)° # [P, (8)-31.

Proof: From Lemma 6.6 and Lemma 6.7 the stage 0 permutations all regular

exchanges, all irregular exchanges, all +20, and all -20 are the only
stage 0 permutations which share a common set of pairings of source sub-
network with network output. Consider a particular overall permutation
involving a stage 0 permutation selected from this set of four. The
same overall permutation can be maintained after changing stage 0 to
another of the given set of four stage O permutations if the input per-
mutation can be suitably modified. for example, Figure 6.2 shows 4
given overall permutation in the upper network which uses the all *20

setting in stage 0. The {ower network shows stage 0 set to all regular

exchanges and the necessary changes in the settings of stages 2 and 1




51

made so that the same overall permutation is performed. The changes 1in
stages 2 and 1 settings accomplish the needed input permutation modifi-
cation. Since the choice of source subnetwork remains unchanged for all
outputs after resetting stage 0, the necessary changes in the input per-
mutation will occur only within the two independent stage 0 subnetworks.
For N = 8 these subnetworks are themselves 4-input ADM networks which
can perform any permutation of four items (Lemma 6.5). Therefore, any
needed modification of the input permutation can be performed. So, the
overall permutations performable using any member of the given set of
four stage 0 permutations will be exactly the same as those performable
using any of the three other stage 0 permutations. Thus P(N) is equal

to the lower bound given in Theorem 6.3.

0l

Because the ADM network with N = 8 cannot perform all N! = 40,320
permutations (P(8) = 24,496), the mathod of Theorem 6.5 does not extend

directly to larger values of N.

Corollary 6.1: The number of distinct permutations performable by the

N-input ADM is bounded by

2 2

PL(N/Z) * [PO(N)-3] < PIN) < PU(NIZ) * PO(N)

where N > 8. Also

PL(B) = PU(B) = P(8) = 26,496.




52

Proof: This corollary follows from Theorems 6.3, 6.4, and 6.5. P(N) is

strictly Lless than PU(N) because there exist overall permutations for
which multiple distinct input permutation and stage 0 permutation compo-
sitions result in the same overall permutation. For example an overall
permutation of input i to output (i+1) modulo N, 0 < i < N, can be done

0

with stage 0 set to all +27, all -20, or all regular exchanges.

(1]

6.4 Tightness and Asymptotic Behavior of the Bounds

The suitability of the bounds given in Corollary 6.1 as a measure
of ADM network performance will depend on how tight the bounds are for
various values of N, or network size. The less the difference between
the upper and lower bounds the more useful they are as an indicator of
ADM network performance. The tightness of the bounds stated in Corol-
lary 6.1 can be calculated as a function of the number of inputs to the

network. Define the spread of the bounds, S(N), to be

PU(N) - PL(N)
PL(N)

S(N) =

Using this formula and the results of Corollary 6.1 and Theoremn 6.5,
Table 6.1 is calculated. The numper of permutations performable by the
Generalized Cube network (see Chapter 5) is included in Table 6.1 for
comparison.

Let x = P (Ng) and x+4 = P (Ny), where Ny = 2' for i ¢ €0,1,2,...2.

Then for an ADM network with N0 inputs the spread is




53

)

PU(ND) - PL(NO

S(N.)
0 Py (No)

= (x+a) - x
x

Now the values of the lower and upper bounds for the next power of two

larger ADM  network are respectively x2 * [PO(Z*NO) - 3} and

2 . . .
(x+A) * PO(Z*NO). Using the approximation PO(NO) = PO(NO) 3 the

spread is then

2 2
(x+a)  * PD(Z*NO) - X *PO(Z*NO)

2
X~ * PO(Z*NO)

S(2*N )

(x+A)2 - x2

x
Since P0(32) = 4,870,849 this is a good approximation for N0 > 3e. For
an arbitrarily Large ADM network the spread, using the approximation, is

in general

where N = 21*N0, and i € {0,1,2,...}. As network size increases without

Limit

T L .

.




54

Lim S(N)
N+m

Lim S(N)

21*N +o

0
= Lim S(N)

1+

= Lim
i+ 2

C = Lim
s 2"

Thus the bound becomes a less precise measure of the capability of an
ADM network as network size increases. However, as shown in Table 6.1,
the value of S(N) is small for networks for considerable size. So, for
practical values of N, the bounds given in Corollary 6.1 give a useful
approximation of the number of ADM network performable overall permuta-

tions.




55

Table 6.1 PL(N) and PU(N) are the Lower and upper bounds on the number

|Z

16
32
64
128
256

512
1024

2048

of permutations

respectively.

S(N) is the spread of the bounds

performable by an

N-input ADM network,

calculated

as [PU(N)-PL(N)]/PL(N). Cube (N) is the number of permuta-

tions performable by an N-input Generalized Cube network,

given by 2 .

PL(N)

2
26,496
1.55x1012
1.17x10%"
3.24x107°
5.90x10" '
1.01x109%
1.22x10°%°
1.50x10197

2.27x104128

Py(Nd

24

26,496

1.55x10'2

1.17x1031

3.26x10"°

s.97x107 77

1.13x10409

1.28x1072°

1.64x101 737

2.70x104128

1.36x107°

2.74x107>

5.45x107>

1.09x1072

2.20x10°%

4.44x1072
9.09x1072

1.90x107"

cube N
16
4096
4.29x107

1.21x10%%

6.28x10°7

7.27x1013%

1.80x10308

3. 74x108%3

1.88x101°%

6.34x102°83




56

6.5 Conclusions
The type of interconnection network chosen for an SIMD machine will
have far reaching consequences for the ultimate system performance or
lack of it. Comparison of various candidate interconnection networks
can involve many factors such as cost, partitionability, etc.
i This chapter has considered the number of permutations performable
| by the ADM network. For the ADM network, counting the number of per-
formable permutations is made difficult by the fact that the network has
settings which do not yield a permutation. Also, the network has multi-
ple settings for certain passable permutations.

A method was given for counting the number of stage 1 configura-
tions which are permutations, for any size ADM network, 0 < i < n. Us-
jng partitioning theory in a divide and conquer approach led to an upper
and Llower bound on the number of distinct overall permutations which an
ADM network can perform. To assess the characteristics of the bounds
their tightness and asymptotic behavior was investigated. For the spe-
cial case N = 8, an exact count of the number of distinct overall permu-

tations performable was proven. Finally, a comparison of the number of

distinct permutations performable by the ADM and Generalized Cube net-

works was made.




57

CHAPTER 7

GENERALIZED CUBE PERFORMANCE WITH ROUTING TAGS

7.1 Introduction

Another measure of the utility of a particular interconnection net-
work is 1its ability to operate without centralized control. For SIMD
machines with a lLarge number of processing elements, centralized control
of the interconnection network may cause that component of the system to
become a bottleneck.

One wéy to distribute control of the interconnection network among
the N PEs js to use routing tags. Each PE first computes a routing tag
for the data item it will send through the network. Then at each
switching cell, Logic circuits, capable of using the information of the
routing tag to control the cell setting, select an appropriate path so
the data item will reach the desired destination. With this scheme the
overhead time needed to establish network settings is independent of
network size. Therefore, an important consideration when comparing the
relative merits of various interconnection networks is the nature and
capabilities of the routing tags compatible with each design.

This chapter considers the operation of the Generalized Cube net-
work using routing tags. A representative tag scheme is chosen and net-
work performance studied. The results obtained are used for comparison

with the ADM network.

il I 2 et . e




58

7.2 Routing Tag Operation

There is only one route between any source and destination in the
Generalized Cube network (see Theorem 5.1). Consider a routing tag
scheme for the network which correctly specifies the one route for any
source/destination pair. Such a routing tag scheme will generate the
correct set of N routes for any permutation which is passable by the
Generalized Cube. Thus, the full permuting capabilities of the network
are available with such routing tags.

Several routing tag schemes exist which give the correct route for

any source/destination pair. One possibility is to generate a tag, T,

according to T = (tn_1...t0) S ®D [MCM]. The tag is interpreted in

0 then the interchange box with the input

the following way. If ti
(dn-1"'di+1si"'so) is set to straight. This is the interchange box in
stage i through which S is mapped to D (see Theorem 5.1). If ti =1,
the interchange box is set to exchange. For example if S = 0101 and
D = 1001 then T = 1100 and the interchange box settings are exchange,
exchange, straight, and straight.

This routing tag scheme uses easily computed tags of n bits. Be-
cause the exclusive-or operation is commutative, the tap mapping D to S
is the same as that for S to D. This allows handshaking to be performed
easily, if desired.

Other routing tag schemes are possible. In [LA], a 2n bit routing
tag consisting of the n-bit source and destination addresses is

described which is also suitable for use with the Generalized Cube net-

work. With these tags a processing element receiving data can compare

its address with that given in the tag to detect network errors. Anoth-

PV A N VP S




59

er scheme allowing certain kinds of broadcasting is presented in

CMCM,WE].

7.3 Conclusions
The Generalized Cube network is well suited for distributed control

using routing tags. Any routing tag scheme which can specify the route

between any source/destination pair allows unrestricted use of the per-

muting capabilities of the network.




60

CHAPTER 8

AUGMENTED DATA MANIPULATOR PERFORMANCE WITH ROUTING TAGS

8.1 Introduction

The importance of distributed network control was discussed in Sec-
tion 7.1. In this chapter various routing tag schemes for controlling
the ADM network are reviewed. These schemes were presented in
[MS,SSMA].

One family of routing tags discussed does not allow unrestricted
operation of the ADM network. However, these tags have the compelling
characteristic of easy compatibility. Thus, more precise knowledge of
the performance of these tags in an SIMD environment will aid in

evaluating their feasibility, as well as that of the ADM network.

8.2 Routing Tag Schemes

The routing tag schemes discussed in this chapter are defined in
[mMs]. To characterize an arbitrary path in the ADM network a full
routigg Egg_is required. A full routing tag requires 2n bits and is of
the form F = (on-1f2n-2"'f1f0)' It can be defined such that the even
nunbered bits represent the magnitude of the route to be taken within a
particular stage and the odd numbered bits represent the sign. That is,
if fZi = 0, the straight Link in stage i is used regardless of the value

of faisqs  If foo = 1and fo. 0 =0, the +2' link is used. If f,. =1

2i
and f2i+1 = 1, the -2 Link is used. Control of the ADM network is




61

distributed by constructing each cell with sufficient Logic to examine
bits f21.+1 and f2i of a routing tag and make the appropriate Link selec-
tion. For example, with N = 16, and if the source is 5 and the destina-
tion is 12, one possible value for F is 10001110. The route taken is
+23, straight, -21, +20. The use of full routing tags allows the ADM to
perform any passable permutation. However, no function or algorithm of
reasonable complexity is known which will give a set of N non-
conflicting tags for all permutation passable by the ADM network. So,
less flexible, but easily computed, routing tag schemes have been
developed.

If all the sign bits in a full routing tag are the same, the infor-
mation contained in those bits can be represented by one bit which is
the sign bit for the whole tag. An n+1 bit routing tag, T, can be
formed by computing the signed magnitude difference between the destina-
tion, D, and the source, S, such that T = (tntn_1...t1t0) =
b -5 = (dn_ eeed ) = (s _...5.). The sign bit is t. where t = 0 in-

1 0 n-1 0
dicates positive and tn = 1 indicates negative. Bits tn_1...t0 equal
the magnitude or absolute value of D-S. If all N routing tags for a
permutation are calculated in this way, then the permutation is said to

be routed using natural permutation routing tags [SM2]). A natural rout-

ing tag consisting of only straight or +21-type connections is said to

be positive dominant. A routing tag with only straight or -ZI—type con-

nections is negative dominant. A given natural routing tag must be ei-

ther positive or negative dominant.

To execute this scheme bits t, and t. are examined to determine the

{ink to be used at stage i. If t, = 0, the straight Llink is used re-




62

gardtess of the value of t, If ti =1 and tn = 0, the +2i link is
used, and if t. = 1 and tn =1, the -2 link is used. With N = 16, and
if the source and destination are again 5 and 12, respectively, then
T = 12-5 = 00111. The route taken is straight, +22, +2', +20.

Clearly, for any arbitrary source/destination pair there exists a
corresponding natural routing tag and a tag-specified connection path
through the ADM network. Also, natural tags are easily computed. These
properties indicate that natural routing tags may be suitable for con-
trol of the ADM network in an MIMD environment [MS].

In [MS] it is also shown that a natural routing tag and its two's
complement are equivalent in that they both route the same source to the
same destination. Letting T' be the two's complement of T, then from
the previous example T' = 11001, 1Input S is stitl connected to output
12 but the route taken is —23, straight, straight, -20.

As a consequence of its definition, any natural routing tag must be
either positive or negative dominant (this is determined by the value of
tn)' The two's complement of any tag must have the opposite of the sign
bit of the original unless T is zero, in which case T' = T. However,
the all zero tag is both positive and negative dominant. Thus a posi-
tive dominant routing tag and a negative dominant routing tag must exist
for any source/destination pair. So positive dominant and negative dom-
inant routing tags can be used in an MIMD environment.

In an SIMD environment, however, the desirable characteristics of a

routing tag scheme are more restrictive. For good utility routing tags

should, in addition to requiring minimal computation for their genera-

tion, enable passage of needed overall permutations. That is, ideally,




63

N non-conflicting paths should be specified when a network performable
permutation is needed. If all N tags are calculated as natural routing
tags, then the permutation is said to be routed using natural

permutation routing tags. A permutation 1is said to be routed using

positive dominant permutation routing tags if those tags that are nega-

tive dominant in the set of natural permutation routing tags are con-

verted to positive dominant. Negative dominant permutation routing tags
are defined correspondingly.

For most cases the ADM network provides two or more distinct routes
between a source and its destination. Only when a source and destina-
tion have the same address is there only one route (for a proof of this
see Lemma 10.1). The n+1 bit routing tag scheme described above can
specify at most two distinct routes between a source/destination pair -
one positive dominant and one negative dominant. If more routes exist

they cannot be exploited with this scheme. However, thc ease of gen-

erating these tags may make them useful in many instances, despite their

limitations.

8.3 The Number of Permutations Passable Using Positive or Negative
~ T Tominant Tags

In Chapter 6 partitioning theory was applied to the ADM network at
stage 0 to give two independent subnetworks on stages n-1 through 1 (see
Figures 6.6 and 6.7). That is the output cells of these subnetworks are
stage 1 output cells. The subnetworks so created have the structure of
N/2-input ADM networks. Because of this each of the subnetworks may in
turn be partitioned in the same manner as the whole network. This can

be seen as partitioning the entire network at stage 1. Two independent




i e v a———

64

subnetworks will be created on stages n-1 through 2 from each of the
subnetworks on stages n-1 through 1. This gives four independent sub-
networks whose output cells are stage 2 output cells and which each have
the structure of an N/4-input ADM network.

This process may be repeated until N/2 independent subnetworks
whose output cells are stage n=1 output cells are generated. These sub-
networks have the structure of a 2-input ADM network. At each stage i
there are Zi independent subnetworks created by this process. Summing

over all stages gives the total number of subnetworks generated as

n-1 . n
0 [1-2
r 2 =2 *(‘1""2__
i=0
= 2"
= N-1.

Note that by including the term for i = 0 in the summation, the entire
network has been considered a subnetwork of itself.

Since each subnetwork has the structure of an ADM network then it
has the equivalent of a stage 0. This stage O will consist of all stage
i input and output cells and their straight, PM2+i, and PMZ_i links con-

tained in a given subnetwork which is created by the partitioning pro-

cess at stage i. This set of cells and links is called the subnetwork

stage 0.

The number of overall permutations passable by the ADM network us-

ing positive dominant permutation routing tags can now be counted.




65

Theorem 8.1: The ADM network can pass ZN-1 distinct overall permutations

using positive dominant permutation routing tags.

Proof: Consider stage 0 of the entire network. Any exchange connection

0 links. The -20 Link cannot be used by

involves the use of +20 and -2
positive dominant tags, so no exchanges can be performed in stage 0 when
positive dominant tags are used. For the same reason, the all -20 set-

he all straight and all #20

V)

ting cannot be performed. This Leaves only

[ad

settings, which can be performed with positive dominant tags.

For each of the subnetworks the same reasoning applies. The sub-
network stage 0 for each subnetwork may be set only to all straight or
atl +2i. However, each subnetwork stage 0 may be set independently be-
cause the subnetworks are independent (this includes stage 0 of the en-
tire network). Since there are N-1 subnetworks there are ZN-1 distinct
settings of the entire network.

Since the setting of each subnetwork stage 0 is a permutation, the
setting for the entire network performs a permutation. Consider again
stage 0 of the entire network. The all straight and all +20 settings do
not have the same pairings of source subnetwork with network outputs
(see Lemmas 6.6 and 6.7). The concept of source subnetwork can be ex-
tended naturally to each of the subnetworks created by the partitioning
process by recalling that any subnetwork has the structure of an ADM
network with the appropriate number of inputs. So in an analogous
manner, the all straight and all +2i settings on each subnetwork stage 0

will not have the same pairings of source subnetwork with subnetwork

outputs.




66

Thus, any chdange in a subnetwork stage 0 setting will cause at
least one subnetwork output cell to be mapped from a different source
subnetwork. The source subnetworks for a given subnetwork are indepen-
dent. So changing a subnetwork stage 0 setting must give a different
permutation. Thus the ZN-'1 settings correspond to ZN.1 distinct pass-

able overall permutations.

[

Corollary 8.1: The ADM can pass ZN_1 distinct overall permutations using

negative dominant permutation routing tags.

Proof: The proof is the same as for Theorem 8.1 except that the possible

subnetwork stage 0 settings are all straight or att -2,

]

When natural permutation routing tags are used additional permuta-
tions can be performed on the ADM network. The perfect shuffle is an
example of one such permutation [MASJ.

The number of permutation performable using natural tags can be
bounded by considering the following. Some of the PMZ+i links of stage
i of the ADM network connect a stage i input cell j to a stage i output

cell k where j > k. Also there are PMZ_i Links which connect L to m

where L < m. These type connections are called wraparound connections.

In Figure 4.2 these Links are the ones drawn in two parts indicated by

Letters.




67

Lemma 8.1: ADM network wraparound connections are not used when the net-

work is controlled using natural routing tags.

Proof: By definition, a natural routing tag, T, is computed as T = D-§,

where S and D represent the source and destination addresses, respec-
tively. If S <D, then T > 0 and the route which will be used is posi-
tive dominant. This means that at any stage i in the network data rout-
ed from S to D will pass

Ls with addresses Ai such that

S <A, <D, for 0 < i < n. WhenS >D, Ai is such that § > Ai > b, for

0 < i < n. Thus no wraparound connections are used.

(]

The number of overall permutations performable without wusing the
wraparound connections can be counted. Let PH(N) be the number of per-

mutations performable by an N-input ADM network without using wraparound

connections.

Theorem 8.2: Without using wraparound connections the number of distinct

overall permutations the ADM network can perform is

- 2
PyCN) = PU(N/Z) * L(N-1)

where PH(Z) = 2.

Proof: The stage 0 permutations all irregular exchanges, all +20, and

0 . . .
all -2° cannot be performed without using wraparound connections. Also,
without wraparound all stage O permutations can be represented by a
characteristic binary number which need not include a bit to represent

the connections possible between cetls 0 and N-1. Further, any




68

characteristic binary number with no L(inearly adjacent 1s will
correspond to a unique stage 0 permutation. Deleting the bit for wra-
paround connections gives an N-1 bit characteristic binary number of
which L(N-1) have no linearly adjacent 1s. There are two independent
source subnetworks for stage 0. Each must not use any wraparound con-
nections if the entire network is not to use any. Since each subnetwork
has the structure of an N/2-input ADM network, each can perform PZ(N/Z)
permutations without using any wraparound connections. Thus, the number
2

of input permutations is PN(NIZ) - Because the allowable stage 0 permu-

tations each have different pairings of source subnetworks with network

outputs, P,(N) = PH(NIZ)Z * L(N-1).

The value for PN(Z) is found by direct enumeration.

]

Let PNat(N) be the number of permutations performable by an N-input

ADM network using natural permutation routing tags.

Theorem 8.3: The number of permutations performable by the N-input ADM

network using natural permutation routing tags is bounded by

2

PNat(N/Z) <P at(N) < PH(N)

N

where PNat(Z) = 2.

Proof: By Lemma 8.1, natural routing tags do not use wraparound connec-
tions. Thus, by Thearem 8.2, PNat f.Pu(N)' The inequality is strictly
Lless than because there are permutations passable without using any wra-

paround connections but which cannot be done using natural routing tag

routes. Figure 8.1 shows an example of this.




69
(
|
0 0 0 0
i : x 1] o |
" N A<
P 3 3/\3 3o
" x. b 4 'R BN
5 5 5 5 .'
T U
6 6 6 6 :
T j
7 7 7 7
STAGE 2 ] 0

Figure 8.1 An overall permutation for N = 8 using no wraparound connec-
tions that is not performable using natural routing tags.




70

The Llower bound can be achieved by setting stage 0 to all straight.
There are then PNat(N/Z)2 input permutations using only natural permuta-
tion routing tags. However, other settings for stage 0 may be possible
depending on the input permutation. If stages n-1 through 1 are edch
set to all straight, then any stage 0 setting not using wraparound con-
nections would give a network setting which consisted of natural routes.
By Lemma 6.7, any two stage 0 settings not using the wraparound connec-
tions (i.e., not all irregular exchanges, all +2i, or st -Zi) will have
different pairings of source subnetworks with network outputs. Thus

changing the stage 0 setting will give a distinct overall permutation.

2 . .
So PNat(N/Z) js strictly Less than PNat(N)'

0]

8.4 Conclusions

Routing tags for the ADM n:twork were discussed. Full routing tags
allow any route to be specified. Natural, positive dominant, and nega-
tive dominant permutation routing tags, while unable to specify arbi-
trary routes, are more easily computed than full tags, in general.

The number of overall permutations passable by positive and nega-
tive dominan: tags was proven. The number of overall permutations pass~

able using natural tags was bounded.




71

CHAPTER 9

ALGORITHMS FOR DETERMINING PERMUTATION PASSABILITY
ON THE AUGMENTED DATA MANIPULATOR

9.1 Introduction

Chapter 8 discussed some of the Limitations of natural, positive
dominant, and negative dominant permutation routing tags. A count of
the number of permutations passable using either positive or negative
dominant tags was given, and the number performable using natural permu-
tation routing tags was bounded. However, these results do not identify
the overall permutations passable using these tags. The next section
presents an algorithm which can be used to determine if a given arbi-
trary overall permutation is passable using natural, positive dominant,

or negative dominant permutation routing tags.

9.2 The Algorithms

The procedure to check the passability of a given overall permuta-
tion wusing any one of the routing tag schemes discussed in Section 8.2
is given in Algorithm 9.1. In the procedure, the variable dest is an
N-element vector where dest(j) is the destination associated with source
j, for 0 < j < N. The notation Xi is used to denote bit i of X.

To understand the operation of the algorithm, first recdall that
only stage O can affect the Least significant bit of a source address.
If sg = d0 then stage 0 must be set to the straight (ink at the output

cell with the destination address. 1If Sg ¢ d0 then stage 0 must be set




72 k

-

procedure PASSABILITY(dest,N);

2 passable = true;

3 while passable = true do

4 for i = 0 step 1 until LogZN-Z do

5 check = 0; /*check is an N-element vector*/
6 for j = 0 step 1 until N-1 do

7 if dest(j), # iy

8 then REQUEST;

9 if check(dest(j)) =0

10 then check(dest(j)) = 1;
1 else passable = false;

12 if passable = false then stop;

Algorithm 9.1 Procedure PASSABILITY




r

73

to a PM2I~-type link at that cell.

Because natural routing tags specify a single specific path from a
source to its destination, at each stage of the network there is only
one cell through which a data item can pass. The N routing tags of the
type selected must require that each data item pass through a distinct
cell at each stage, if a permutation is to be pdassable using these tags.
This 1is the criteria used by the algorithm to decide passability (see
Lemma 6.1).

Before proceeding with the analysis of the algorithm it 1is useful
to define two terms. Switching cells which select the connections to be
used in stage i are called stage i input cells. Cells which are Llinked

to by stage i input cells are stage i output cells. Note that stage i+l

output cells are stage i input cells.

The algorithm begins by comparing bits s0 and d0 of a source, j,
and its destination, dest(j), where 0 < j < N. If s0 = d0 a straight
connection must be used to Llink a stage 0 input cell to the stage 0 out-
put cell whose address is that of the destination. The address of the
stage 0 input cell is then dest(j). A straight Link in stage 0 1s
selected by retaining the current dest(j) vdalue as the updated dest(j).
This is because the data item must pass through the stage 0 input cell
specified by the updated value of dest(j),

1f ) # d. then a PM2I-type connection must be used to Link a4 stage

0
0 input cell to the correct output cell. 1In this case the address of

the stage 0 input cell will be either (dest(j) + 2%) module N or

(dest(j) - 20) modulo N, where the -Zo and +20 links dre used, respec-

tively.




74

Positive dominant routing tags can only use the +2i links of the
PM21~type connections. Negative dominant routing tags can only use the
-2i links. So, updating dest(j) to the two possible stage 0 input cell
address values serves to specify the +20 or -2D link. Updeting dest(j)
proceeds according to the instruction of REQUEST, three variations of
which are \isted in Algorithm 9.2. A different version of REQUEST ex-
ists for each type of tag that may be desired.

Consider the version for positive dominant permutation routing
tags. When Sy # d0 the value of dest(j) is replaced by (dest(j) - 20)
modulo N which specifies the +20 link. Again, the data item must pass
through the stage 0 input cell specified by the updated vatue of
dest(j).

After each dest(j) is updated, the N-element vector, check, which
was initialized to all zeros, is used to indicate which stage 1 output
cell (same as stage 0 input cell) has been selected by the new dest(j).
The element check(dest(j)) is examined to see if it is a zero. If so,
it 15 set to 1 to indicate that a data item will pass through this par-
ticular stage 1 output cell. If, however the element of check has dl-
ready been set to 1 this indicates a conflict of data items and the
given permutation is not passable using positive dominant permutdtion
routing tags. The logic variable, passable, is set to false in this
circumstance, and the algorithm terminates.

If bits o and d0 have been compdred for each source/destination
pair, and each dest(j) has been updated without conflict, then the check
vector is reinitialized and the procedure begins anew for stage 1. This

time bits 4 and d1 of each source/updated-destination pair are compared




For positive dominant routing tags, REQUEST is:

o Y S+

dest (j) = (dest(j>-2') modulo N

For negative dominant routing tags, REQUEST is:

dest(j) = (dest(j)+21) modulo N

For natural routing tags, REQUEST is:

(dest(jd)-2') modulo N ‘

if (dest(j)=j) > 0 then dest(j)
(dest (j)+21) modulo N

else dest(j)

Algorithm 9,2: Versions of REQUEST.




to determine the connections to use in stage 1. Since the setting of

stage 0 has been established at this point, only stage 1 can have any

affect on these bits.

———

The procedure is repeated for successive stages until either a con-
flict is detected, in which case the permutation is not passable and the }

algorithm terminates, or the connections in stage n-2 were found to be i

conflict free, implying the permutation is passabte.
Stage n-1 need not be checked. To see why stage n-1 need not be }g
]
checked, consider the case where the permutation under test is conflict

free in stages O through n-2.

Since an overall permutation is being tested, if it is passable the

stage n-1 configuration must be a stage n-1 permutation, as 4 conse-

ﬂa
quence of Lemma 6.1. Recalled from Chapter 4 that i
PHZ*(n_1) = PHZ_(n_1). That is each cell, A, can only be mapped to it-

self or As2"! modulo N = A-Zn-1 modulo N. So, 4 stage n-1 configura-

tion s a stage n-1 permutation if and only if either the identity per-~

. . . -1
mutdtion or an exchange is performed on each pair of cells, A and A#Zn

modulo N, for 0 < A < N/2. The identity permutation can be performed on {
any of the pairs of cells using routing tags of either dominance. The
exchange permutation can be performed on any of the pairs of cells using
positive dominant tags because A maps to A«»Z"u1 modulo N via o +2"'1
Link and the +2"1 Link from cell A+2™ ' modulo N will map that cell to

-1

-1
(A+2"") + 2™ modulo N = A+N modulo N = A, completing the exchenge.

Note that negative dominant tags can perform these two permutations on

any of the pairs of cells as well,




7

Connections in stage n-1 which are not stage n-1 permutations are
not needed if the permutation under test is conflict free though stage
n~2. There are two non-permutation settings possible on a pair of cells
A and A+2n..1 modulo N in stage n-1 which involve a single Link from each
cell. One connects A and A+2n-1 modulo N to stage n-1 output cell A;
N-1

the other connects the two cells to A+2 modulo N. If the algorithm

checked stage n-1 it would specify one of these two connections only if
1

dest(A) = dest(A+2"™ ' modulo N), which cannot occur when there is no

conflict through stage n-2. Settings involving none, two, or three
Links from either A or A+2n—1 modulo N in stage n-1 are not needed be-
cause positive dominant routing tags (as well as negative dominant rout-
ing tags) define a single route from a source to destination.

Connections not performable by stage n-1, for example, A maps to
stage n-1 output cell B where B # A or A+2nm1 modulo N, are also not
needed to complete the network setting. After checking stage n-2, the
a' gorithm will have updated the original values of dest(A) so that bits
0 through n-2 of A and dest(A) are the same. Thus, either A = dest(A)
or they differ by 2"-1. In either case, existing Links in stage n~1 can
perform the connection. Thus only a stage n-1 configuration which is a4
permutation will be required. Since the needed stage n1 permutation
can always be performed, that stage need not be checked.

The algorithm can be shown to give a correct result by demonstrat-
ing that it imitates the subtraction performed to calculate a routing

tag. Expanding on the notation where Xi denotes bit i of X, let ‘i/j'

for i > j represent bits i through j, inclusive, of X, and lLet xi/j 2 0




78

for i < j. First consider the case where positive dominant permutation

routing tags are desired.

Theorem 9.1: Let D be a particular destination, S its source, and (1)

be the revised value of "dest(j)" after the inner lLoop of the algorithm
s ops (1) — /n_
has been successfully completed i times. Then R _o . = (D $i-1/00n-1/i7

where 0 < i < n=2.
Proof: Let i = 0. Then

(1))
Rn=1/0

On-1/0 ; by definition, initially
dest(j) = D (for S = j)

® =0, 40

= (D - 3—1/0)n-1/0 ; because S.40 F 0

The remainder of the proof is by induction on i.

Basis step: Let i = 1.

Case 1: S0 = 00. In this case the algorithm does not change R(O).
R;1:/1 = R:Q:/1 ; because S5 = Dy the test in

line 7 of Algorithm 9.1 is false,
s0 REQUEST is not executed

®\-1/1

* (0 = 59,07 n-1/1

Case 2: S, # 0g. In this case the algorithm for use with positive dom-




inant tags subtracts 20 from .

i ) o -, .
Subcase (a): S0 =0, Rg DO =
M - @ _ 0
Rn-171 = Roz970 = 20011
PR} 0_ .0
=R 4102700
R0
=R -1

= Ph-1/1

= ® = S50 n-1/1

. (1))
Subcase (b): S0 =1, RO

(1))

M .
n=-1/0

n-1/1 = (R

= ®n170 ~ 5070111

® = Sg/07n-1/1

I 4

; because R:Q:/O =D.-1/0 @nd
Sg # Dg the test in Lline 7

of Algorithm 9.1 is true,
so REQUEST is executed

0

since Ro

since So =1

TN TP




S o

80

Induction step: Assume Rﬁ:;/i = (b - si-1/0)n-1/i'
= Rgl) In this case the algorithm does not change R(T).

Case 1: Si

G+ (D ) W .
n=1/i41 = Rn-17491 ; because S, = R;'’ the test in
line 7 of Algorithm 9.1 is false,

s0 REQUEST is not executed

© = S5.9/07 1741

)
Ry~ = @ = Si9074

; since Si =

© = S507m17in
no borrow can propagate
into the i+1 bit position

Case 2: S‘i # R§1) In this case the algorithm for use with positive

dominant tags subtracts 2' from R(‘).

Subcase (a): Si =0, jo) =1,
(i+1) N & D) i . i)
n=17i+1 = Rnc17i = 2 0017441 ; because S, # Ry the test
in Line 7 of Algorithm 9.1
is true, so REQUEST is
executed
_ (1) i i Lo (i) _
=R _q/i41 * 2 2 d=1/i+1 ; since Ri =1

2D
= Roe17441

=0 =350 n-17441

——————— R




= (D ; since Si =0

= 55707 n-1/i+1

R4

Subcase (b): S, =1, ;

= 0'

G+ (D i
Ra=17i41 = ®ncays = 200444
_ _ _ 5
=0 =S 000175 T 2 17441
= (b - si/O)n-1/i)n—1/i+1 ; since Si =1
=@ = Si0n-1/41 -
£l
Let |T| denote the magnitude of T. For positive dominant routing
tags: [T} = Ip-S| = 0-S where D > S, and when D <S, |T| = the two's
complement of |D-S| = the two's complement of (S-D) = N-(S-D) = N+(D-S).
Thus, T, = (D-Si-1/0)1' = S;- Hence, T. = (D-S. ., ), ® s,. From
G _ o L o (D)
Theorem 9.1, R, (0-S;_ 4,075+ Therefore, T. =R, ® s,. so T,

and R:” ® S,i are equivalent criteria. Wwhen R:” O] 81. = (, that is,

when Rgi) and si are the same, the algorithm selects the straight con-
nection in stage i1 as does the routing tag. When Ri(i) and Si differ,
the algorithm selects the +2i connection, as would the routing tag,
since in this case Ti = 1. Thus the algorithm faithfully simulates the
operation of the positive dominant permutation routing tags.

1f negative dominant permutation routing tags are to be used, a

similar argument shows that the algorithm, with the appropridte version

of REQUEST, simulates this situation accurately. For natural permuta-

P
b
¥
¥
f




82

tion routing tags, REQUEST includes a check for positive dominance by

determining if dest(j) - j is positive, i.e. greater than zero. If so,
dest(j) is updated using the positive dominant PM2I connection. If not,
dest(j) is revised wusing the negative dominant PM2I Link. ALL other
operations are as in the previous two cases.

Correct operation with natural routing tags is assured because the
revised elements of the dest vector retain the positive dominant versus
negative dominant information. This is so because if S is routed to D '
using the natural tag, and Ai is the stage i output cell that the speci-
fied path maps to in stage i, then § f-Ai <D when D >S5, and S 3-Ai-3 D
when D < S, for 0 < i < n. So the dominance of the natural routing tag
generated by S and D can be determined from S and any of the Ai'

The time complexity of the algorithm is O(N LogzN), in all cases.

The space complexity is O(N), in particular, two N-element vectors.

9.3 Conclusions

Several routing tag schemes for the ADM in an SIMD environment were
reviewed in this chapter. Full routing tags, which allow unrestricted
use of the capabilities of the ADM network, were described and the dif-
ficulty of generating such tags was noted. Natural, positive dominant,
and negative dominant permutation routing tags, which are easily comput-
ed, were defined. &5

An algorithm, in three versions, was given to determine the passa-

bility of an arbitrary overall permutation using any of these three

types of more easily computed tags. Algorithm operation was described

and the computed determination of permutation passability shown to be

correct.




B

CHAPTER 10

FURTHER PROPERTIES OF THE AUGMENTED DATA MANIPULATOR NETWORK J
|

10.1 Introduction
This chapter continues the development of ADM network properties.
Group theory [MCC]), an area of abstract algebra, is used to prove the
theorems which are presented. The results obtained further characterize

the permuting ability of the ADM network.

10.2 Dpefinitions and Notation

The results to be presented make use of the following terminology
and notation from group theory. For some permutation f, f-1 is the
inverse of f, that is if f maps (connects) a source S to a destination
D, then f-1 maps D to S. This holds for all source/destination pairs of

f.

A permutation, f, on the set of PE addresses, {0,1,...,N=-1}, can be

represented in Cauchy notation as

0 1 - N-1
f(@ fA) ... fIN-1)

where the top Line is the source and the bottom line is the destination

to which f maps the source.
The permutation f can be represented as a product of cycles, where

the cycle

;
'
i
!
i
i




AD=-A096 399 PURDUE UNIV LAFAYETTE IN SCHOOL OF ELECTRICAL ENGINEERING F/6 9/2

' PROPERYIES OF THE AUGMENTED DATA MANIPULATOR NETWORK IN A SIMD ~-ETC(U)
DEC 80 6 B ADAMS» H J SIEGEL AFOSR-76-35B
UNCLASS!FIED TR-EE 80-51 AFOSR-TR=-81-0203

“‘34&19:




84
Ug 39 3 === dyq 3

means f(jD) = j1, f(j1) = j2' aesys f(jx_1 = jx, and f(jx) = jo. The
physical interpretation of this cycle is that network input j0 is con~
nected to network output j1, input j1 is connected to output jz, cees
input jx_1 is connected to output jx’ and input jx is connected to out-
put jo. The Length of this cycle is x+1; it is called an x+1 cycle. A

transposition is a cycle of Llength two. For example, if f is written in

Cauchy notation as

01234567
12304576
then it can be written as the product of the four cycles:

D 123DWUISIGT .

A permutation is even or odd depending on whether it can be ex-
pressed as a product of an odd or even number of transpositions, respec~
tively. For example, the permutation represented as (0 1 2) can be
written as (1 2)(0 2), where the product is formed from right to left,
as is the customary notation. Alternately, a k-cycle can be shown to be
even or odd as k is odd or even.

An element of a cycle is any network address contained in the ¢y~
cle. Two cycles are disjoint if they have no elements in common. The
cycles (0 1 6) and (7 3) are disjoint, for example. Any permutation can
be written as & unique product of disjoint cycles. This is the disjoint

cycle decomposition of the permutation.




85

10.3 Theoretical Results

This section considers further properties of the ADM network.

Lemma 10.1: Any 1-cycle in an overall permutation must be routed using

the straight connection on every stage.

Proof: Proof by contradiction. Assume a PM2I Llink is used in stage 0.
This must give a mapping to a destination which differs from the source
in bit 0 since only stage 0 can affect this bit. So the straight con-
nection must be used in stage 0. Using a PM2I link in stage 1 must give
a mapping to a destination differing from the source in bit 1, because
only stage 1 can affect bit 1 once stage 0 is fixed. Continuing this
chain of reasoning shows each stage must use the straight Llink.

a1

th

In [SI6] it is shown that in the i stage of the ADM network,

0 <i<n, the transfer of data from the stage i input cell j can be
represented by only one of five possible cycles. The cycles are (j),
(G et jeasat jezedl L. jen-2ly, (gen-21 Ll je3el jeaei je2i ),
1§ j+21), or (j j-Zi) where all arithmetic is modulo N, 0 < j < N.  The
first of these is a 1-cycle. The network can perform any 1-cycle at any
stage. The next two can be found to be Zn'i cycles. These specific

zn-i Zn-i

cycles are called network implemented -cycles since they are

directly implemented by stage i. The last two cycles listed are tran-

spositions. These are called network implemented transpositions. Col-

lectively, the cycles which can be directly implemented by a stage are

referred to as network implemented.




86

The relationship between ADM network structure and the cycle decom-
position of a permutation 1is considered in the following theorem and

corollary.

Theorem 10.1: In the ADM network all cycles of Length greater than one ;
which are part of the unique disjoint cycle decomposition of a passable
overall permutation, must be expressible in terms of a product of net-
work implemented transpositions and/or Zn—i-cycles with elements limited I

to those of the cycles of length greater than one.

Proof: From Lemma 10.1, the network must be set to straight at each
stage i cell with the same address as any 1-cycles in the overall permu- /
tation. Thus, the element of any 1-cycle cannot appear as an elLement in

any n-cycle, for n > 1, of the passable overall permutation.

L]

Corollary 10.1: An overall permutation consisting of a single transposi-

tion 1is passable by the ADM network if and only if it is a network im-
plemented transposition, i.e., of the form (j jiZ1 modulo N), where

0<j<Nand 0O <i<n.

Proof: From Theorem 10.1, only the network implemented cycles whose ele-
ments are the same as those of the given single transposition can be ,
used to pass the permutation. That is, if more than two cells use
PM2I-type Llinks then N-2 routes of only straight Links cannot exist.

Thus, if an overall permutation consisting of a single transposition is

passable then that transposition is network implemented.




87

If an overall permutation consists of a single transposition which
is network implemented then, clearly, it is passable.

£l

SN is the permutation group for N elements. That is SN is the set
of all permutations of N elements. AN is the alternating group on N ob-

jects and consists of all even permutations of the N items.

Theorem 10.2: The ADM network cannot perform all 3-cycles in one pass

for N > 8.

Proof: Consider the 3~cycle (0 1 6). To be passable it must decompose
into network implemented cycles with etements in the set {0,1,6) (see
Theorem 10.1). The network implemented cycles must be of Llength three
or shorter since there are only three allowable elements. So only net-
work implemented transpositions may be used.

The possible transpositions with elements in the set {0,1,6)} are
0 1), (O 6), and (1 6). Network implemented transpositions dare of the
form (j jtZi mocdulo N), so (1 8) is not implemented for any N. The cy-
cle (0 6) is implemented only when N = 8, When N = 8, 0-21 modulo 8 =

6, so (0 6) is implemented. For N < 8, (0 6) has an element, 6, outside

the range of source addresses, 0 to N~1. For N > 8 (i.e., n > 3), 042"

modulo N # 6, for 0 < i < n, and

o — i a




88
0-2' moduto N = 2" - 2
n-1 i-1
- z: zk - :: 2k
k=0 k=0
n-1 .
k |
= Z 2 3
=i e
46 :

Thus for N > 8, (0 1 6) clearly cannot be performed since only (0 1) can
be performed of the three possible transpositions on the set {0,1,62.
fFor N = 8, the transpositions (0 1) and (0 6) can be performed. Howev-
er, (0 6) is performed in stage 1 and (0 1) in stage 0 only. So the
network can only implement the product <0 1)(0 6) and not (0 6X(0 1) !]
since stage order is fixed. But (D 1)(D 6> = (0 6 1) # (0 1 6). The ;?

ADM cannot, then, pass all 3-cycles.

€]

Theorem 10.3: For N > 8 the ADM network does not pass AN‘

Proof: From Theorem 10.2 the ADM does not pass all 3-cycles for N > 8.

AN contains all even permutations of N elements and a 3-cycle is an even
permutation. Thus the ADM does not pass every element of AN'

Q]

10.4 Conclusions

This chapter presented further properties of the ADM network in an

SIMD environment. The results which were stated aid in characterizing

the family of permutations passable by the ADM.




89

CHAPTER 11

CONCLUS IONS

This work is a study of various aspects of the ADM network which
influence its suitability for use in SIMD parallel processing systems.
The first aspect considered was the number of permutations passable by
the ADM network. Next a routing tag .."eme that has been developed for
distributed control of the ADM network was described so that its perfor-
mance 1in an SIMD environment can be investigated. Then algorithms for
determining permutation passability wusing these routing tays were
presented and analyzed. Finally, some additional theoretical results
were developed.

SIMD machine models were described in Chapter 2 to provide a back-
ground 1in which to evaluate the ADM network. The role of the intercon-
nection network in SIMD machines was outlined for two system architec-
tures. Some basic requirements and Limitations for each structure were
noted.

Chapter 3 introduced PASM, a partitionable SIMD/MIMD multimicropro-
cessor system. Unique features of PASM include being 1) dynamically
reconfigurable; 2) able to operate in either SIMD or MIMD mode of
parallelism; and 3) able to be partitioned into machines of different
sizes, each of which may operate in SIMD or MIMD mode. Two interconnec-

tion networks are being considered for use in PASM: the Generalized

Cube and the ADM. The Generalized Cube network is better understood




90

than the ADM network. Increased knowledge of ADM properties will allow
a more informed decision on the interconnection network for PASM, and
other parallel processing systems, to be made.

The Generalized Cube and ADM networks were formally defined in
Chapter 4. The Generalized Cube was noted to be representative of a
class of cube-~type networks, including the STARAN flip, the omega, the
indirect binary n-cube, and the SW-banyan (S=F=2) networks. The ADM was
shown to be derived from the data manipulator.

The number of distinct permutations passable by the Generalized
Cube was given in Chapter 5. The procedure used to obtain this result
relies on the one~to-one correspondence between permutations and legiti-
mate network settings. Both the count of permutations and this one-to-
one correspondence were used later for comparative purposes.

Chapter 6 considered the number of permutations performable by the
ADM network. A method was given for counting the number of settings
which are permutations for any stage. Using partitioning theory and
combinatorial mathematics, upper and lower bounds were established on
the number of overall permutations which an ADM network can perform. To
assess the characteristics of the bounds their tightness and asymptotic
behavior was studied. For an ADM network with eight inputs, an exact
count of the number of passable overall permutations was proven. Llast-
Ly, the number of ADM passable permutations was compared with that of
the Generalized Cube.

The use of routing tags for distributed control of interconnection

networks was introduced in Chapter 7. The permuting ability of the Gen-

eral ized Cube when used with routing tags was discussed. The results




91

obtained were used for comparison with the ADM network.
\

In Chapter 8 several routing tag schemes which allow distributed
control of the ADM network were reviewed. The number of permutations
performable using either positive dominant or negative dominant permuta-
tion routing tags was counted.

Chapter 9 presented an algorithm which can determine if an arbi-
trary overall permutation 1is passable using either natural, positive
dominant, or negative dominant permutation routing tags. Correct opera-
tion of the algorithm was demonstrated and its complexity stated.

Further properties of the ADM network can be derived using group
theory. The results which were presented in Chapter 10 aid in charac-
terizing the family of permutations passable by the ADM network.

Choosing the interconnection network for a parallel processing sys-
tem such as PASM is an important and difficult design task for the sys-
tem architect. A satisfactory compromise among many interconnection
network parameters including, among others, permuting capability and
performance with distributed control, must be reached. Analyses such as

those presented here are necessary 1in order to evaluate the cost-

effectiveness of the ADM as an SIMD interconnection network.




CBA]

L8Oyl

LFE]

CFL]

CFss]

L6L]

fJE]

LLA]

CLE]

MAS]

tmMccl

92

LIST OF REFERENCES

K. E. Batcher, “The flip network in STARAN," 1976 International
Conference on Parallel Processing, Aug. 1976, pp. 65-71.

W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Ran-
dall, A. H. Sameh, and D. L. Slotnick, "The Illiac IV system,"
Proceedings of the IEEE, Vol. 60, pp. 369-388, Apr. 1972.

T. Feng, 'Data manipulating functions 1in parallel processors
and their implementations," IEEE Transactions on Computers,
Vol. C-23, Mar. 1974, pp. 309-318.

M. J. Flynn, "Very high—speed computing systems,'” Proceedings
of the IEEE, Vol. 54, Dec. 1966, pp. 1901-1909.

A. E. Feather, L. J. Siegel, and H. J. Siegel, "Image correla-
tion using parallel processing,” Fifth International Conference
on Pattern Recognition, Dec. 1980, pp. 503-507.

G. R. Goke and G. J. Lipovski, "Banyan networks for partition-
ing multiprocessor systems,' First Annual Symposium on Computer
Architecture, Dec. 1973, pp. 21-28.

C. Jensen, '"Taking another approach to supercomputing,"
Datamation, Vol. 24, Feb. 1978, pp. 159-172.

D. Lawrie, "Access and alignment of data in an array proces-
sor," 1EEE Transactions on Computers, Vol. C-24, Dec. 1975, pp.

1145-1755.

J. Lenfant, "Parallel permutations of data: a Benes network
control algorithm for frequently used permutations,"” IEEE
Transactions on Computers, Vol. C=27, July 1978, pp. 637-647.

R. J. McMillen, G. B. Adams 111, and H. J. Siegel, '"Permuting
with the augmented data manipulator network," Eighteenth Annual
Allerton Conterence on Communication, Control, and Computing,
Oct. 1980, to appear in the proceedings.

N. H. McCoy, Introduction to Modern Algebra (3rd edition), Bos~-
ton: Allyn and Bacon, 1975.




[McMl

CmMs]

[Mss1]

[Mss2]

Los1

LPE]

Cs111

€s12]

€s13]

£s14]

Cs151]

[S16]

93

R. J. McMillen and H. J. Siegel, Interconnection Networks and

Operating System Considerations for PASM - A Reconfigurable

Multimicroprocessor System, School of Electrical Engineering,
Purdue University, Technical Report TR-EE 80-15, June 1980, 177

PP.

R. J. McMillen and H. J. Siegel, "MIMD machine communications
using the augmented data manipulator network," Seventh Annual

Symposium on Computer Architecture, May 1980, pp. 51-58.

P. T. Mueller, Jr., L. J. Siegel, and H. J. Siegel, "A parallel
language for image and speech processing,' Fourth International
Computer Software and Applications Conference (COMPSAC '80),
Oct. 1980, pp. 476-483.

P. T. Mueller, Jr., L. J. Siegel, and H. J. Siegel, "Parallel
algorithms for the two-dimensional FFT,"” Fifth International
Conference on Pattern Recognition, Dec. 1980, pp. 497-502.

M. J. 0'Donnellt and C. H. Smith, "A combinatorial problem con-
cerning processor interconnection networks,'" Department of Com-
puter Sciences, Purdue Unjversity, Technical Report CSD TR-352,
Nov. 1980, 5 pp.

M. C. Pease, "The indirect binary n-cube microprocessor array,"”
IEEE Transactions on Computers, Vol. (=26, May 1977, pp.
458-473,

H. J. Siegel, "Analysis techniques for SIMD machine intercon-
nection networks and the effect of processor address masks,”
IEEE Transactions on Computers, Vol. (€-26, Feb. 1977, pp.
153_131 o

H. J. Siegel, "Controlling the active/inactive status of SIMD
machine processors,” 1977 International Conference on Parallel

Processing, Aug. 1977, p. 183.

H. J. Siegel, "Preliminary design of a versatile parallel image
processing system,” Third Biennial Conference on Computing in
Indiana, Apr. 1978, pp. 11-25.

H. J. Siegel, "Interconnection networks for SIMD machines,"”
Computer, Vol. 12, June 1979, pp. 57-65.

H. J. Siegel, "A model of SIMD machines and a comparison of
various interconnection networks,"” IEEE Transactions on
Computers, Vol. C~28, Dec. 1979, pp. 907-917.

H. J. Siegel, "The theory underlying the partitioning of permu-
tation networks,"” IEEE Transactions on Computers, Vol. C-29,
Sep. 1980, pp. 791-807.




eyt -

[s17]

[SKw]

CsM1]

£sM2]

CsMs1]

Csms2]

£ss1]

£ss2]

£ss3]

CsSSE]

CSSKMS]

94

L. J. Siegel, "Image processing on a partitionable SIMD
machine," Workshop on New Computer Architectures and Image
Processing, June 1980, to appear.

H. J. Siegel, F. Kemmerer, and M. Washburn, "Parallel memory
system for a partitionable SIMD/MIMD machine,” 1979
International Conference on Parallel Processing, Aug. 1979, pp.
212-221.

H. J. Siegel and P, T. Mueller, Jr., "The organization and
language design of microprocessors for an SIMD/MIMD system,'
Second Rocky Mountain Symposium on Microcomputers, Aug. 1978,
pp. 311-340.

H. J. Siegel and R. J. McMillen, "The use of the augmented data
manipulator in PASM," Fourteenth Annual Hawaii International
Conference on System Scienca2s, to appear, Jan. 1981.

H. J. Siegel, P. T, Mueller, Jr., and H. E. Smalley, Jr., '"Con-
trol of a partitionable multimicroprocessor system,” 1978
International Conference on Parallel Processing, Aug. 1978, pp.
9-17.

L. J. Siegel, P. T. Mueller, Jr., and H. J. Siegel, "FFT algo-
rithms for SIMD machines," Seventeenth Allerton Conference on
Communications, Control, and Computing, Oct. 1979, pp.
1006-1015.

H. J. Siegel and S. D. Smith, "Study of multistage SIMD inter-

connection networks,”" Fifth Annual Symposium on Computer
Architecture, Apr. 1978, pp. 223-229.

S. D. Smith and H, J. Siegel, '"Recirculating, pipelined, and
multistage SIMD interconnection networks,’ 1978 International
Conference on Parallel Processing, Aug. 1978, pp. 206-214.

S. D. Smith and H. J. Siegel, Design and Analysis of
Interconnection Networks for Partitionable Parallel Processing
Systems, School of Electrical Engineering, Purdue University,
Technical Report TR-EE 79-39, Aug. 1979, 274 pp.

P. H. Swain, H. J. Siegel, and J. El-Achkar, “Multiprocessor
implementation of pattern recognition: a general approach,"
Fifth International Conference on Pattern Recognition, Dec.
1980, pp. 309-317.

H. J. Siegel, L. J. Siegel, F. Kemmerer, P. T. Mueller, Jr., H.
E. Smalley, Jr., and S. D. Smith, PASM: A Partitionable
Multimicrocomputer SIMD/MIMD System for 1Image Processing and
Pattern Recognition, School of Electrical Engineering, Purdue
University, Technical Report TR-EE 79-40, Aug. 1979, 69 pp.

e




CSSMA]

{SSMMS]

[sT]

LwEl

CwF11

CwF2l

95

S. D. Smith, H. J. Siegel, R. J. McMillen, and G. B. Adams IlI,
"yse of the augmented data manipulator multistage network for
SIMD machines,” 1980 International Conference on Parallel

Processing, Aug. 1980, pp. 75-78.

H. J. Siegel, L. J. Siegel, R. J. McMillen, P. T. Mueller, Jr.,
and S. D. Smith, "An SIMD/MIMD multimicroprocessor system for
image processing and pattern recognition,” 1979 1EEE Computer
Society Conference on Pattern Recognition and Image Processing,
Aug. 1979, pp. 214-224,

H. S. Stone, "Parallel Computers,"” in Introduction to Computer
Architecture, Science Research Associates, Inc., Chicago, 1975,
pp. 318-374.

K. Y. Wen, Interprocessor Connections - Capabilities,
Exploitation, and Effectiveness, Doctoral Thesis, Department of
Computer Science, University of Illinois, Report UIUCDCS-
R-76-830, Oct. 1976.

C. Wu and T. Feng, "Fault diagnosis for a class of multistage
interconnection networks," 1979 International Conference on
Parallel Processing, Aug. 1979, pp. 269-278.

C. Wu and T. Feng, “On a class of multistage interconnection
networks,"” IEEE Transactions on Computers, Vol. C-29, Aug.
1980, pp. 696-702.







