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ABSTRACT

Repeatable accuracy of hydrographic positioning was
examined in terms of the two-dimensional normal distribution
function which results in an elliptical error figure. The
error ellipse was discussed, and two methods for conversion
of elliptical errors to circular errors were given. These
methods are '"circle of equivalent probability" and '"root

mean square error'" (d ). Using the drms error concept,

TMS
repeatable accuracy of ranging, azimuthal, and hyperbolic
systems was evaluated, and methods were developed to draw
repeatability contours for those systems.

A brief theoretical background was provided to explain
the method of least squares and discuss its application to
hydrographic survey positioning. For ranging, hyperbolic,
azimuthal, sextant angle, and Global Positioning System the
least squares observation equations were developed. Specific

examples were constructed to demonstrate the capabilities

of this data adjustment technique when applied to redundant

position observations.
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I. INTRODUCTION

Positioning of the survey vessel is equal in importance
with depth determination in the collection of hydrographic
survey data. Fundamental to an understanding of the accuracy
of position information is an analysis of the various errors
and their sources which must be either eliminated, compen-
sated for, or otherwise modeled. The result of this analysis
is that the reiiability of position data can be évaluated
and used to estimate the overall accuracy of hydrographic
soundings.

Once these potential error sources are understood,
methods must be developed to quantify accuracy. Much
research has been conducted in this area in the past. One
purpose of this thesis is to collect and present useful
concepts of error theory which apply directly to hydrographic
survey. Simple graphical techniques were developed which
can be used to produce accuracy contours as a function of
the survey net geometry.

Conventional survey techniques rely on only two lines
of position (LOP) to determine a positioning fix. This
introduces the possibility of significant error,

In navigation, although inherently less accurate than

positioning due to the techniques and systems used to

determine the LOP's, three LOP's are required to produce a




oy

fix. Position is adjusted graphically by placing the fix
in the center of the triangle formed by the three inter-
secting LOP's. This concept of taking one redundant
observation can lead to significant improvement in hydro-
graphic survey positioning data. Mathematical adjustment
techniques such as the method of least squares may be used
to determine the best estimate of position.

Least square adjustments are commonly performed on land
survey data where redundant observations are easily made.
With the advent of new positioning systems and computer
tecinology, making redundant observations at sea is no
longer impractical. The second purpose of this thesis
is to explain the basic method of least squares, and to
formulate examples of the least squares adjustment pro-
cedure applied to specific types of hydrographic survey
systems. This data adjustment technique not only provides
the best estimate of position but also may be used to deter-
mine the absolute positioning accuracy associated with each

data point in a hydrographic survey.

11




II. REPEATABLE ACCURACY OF HYDROGRAPHIC
SURVEY POSITIONS

A. TYPES OF ERRORS

It is impossible to make measurements of physical data
without making errors. These measurement errors may be
classified in the following manner.

1. Blunders

These are mistakes which result from misreading

instruments, transposing figures, faulty computations, etc.
They may be large and easily observed, or smaller and less
detectable, or very small and indistinguishable in the
data. Blunders are usually detected through comparing repeated
measurements, careful editing, and procedural checks in the
data collection process. Physical measurements will contain
a constant bias if these errors are not removed from the data
set.

2. Systematic Errors

Uncalibrated instruments or environmental factors,
such as temperature and humidity changes which affect the
performance of the measuring instruments, will induce system-
atic errors into the observations. The occurrence of this
type of error may ;esult in a pattern which can be recognized

and mathematically modeled. The simplest pattern to model

would be some observable trend in the data of constant

magnitude and direction. Such a trend can easily be
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subtracted from the observations to remove the systematic
error.

If numerous systematic errors exist, or the errors
are such that they cannot be accurately modeled, then their
effect on the data must be estimated by calibration. Cali-
bration is the process of comparing the measuring instrument
against a known standard. The difference between the observed
and known value may be used as an estimate of the total effect
of all systematic errors present. Thus, calibration provides
a "corrector” which must be applied to the data set. Examples
of important systematic errors in hydrographic survey position-
ing include instrument errors, errors in positioning control
points, and variations in the propagation velocity of electro-
magnetic energy.

3. Random Errors

These errors result from accidental and unknown
causes. Their effect cannot be removed from the observations
and, therefore, must be quantified statistically. Random
errors have certain characteristics which facilitate such an
approach. Positive and negative errors occur with equal
frequency, small errors are more probable than large errors,
and extremely large errors rarely occur.

The frequency distribution of random errors can be
modeled mathematically by the normal distribution function.

Assuming all measurement errors are independent and random,

13
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thereby conforming to the normal distribution, measurement
accuracy can be specified statistically by defining a con-
fidence interval around the best estimate of the measured

value. Procedures for computing these intervals are reviewed

in Appendix A.

B. .ACCURACY OF HYDROGRAPHIC POSITIONS

The achievable accuracy of a hydrographic survey
positioning system is best described by defining the follow-
ing terms: repeatability and predictability.

Repeatability is a measure of the accuracy with which
the positioning system permits the user to return to a
specific point on the surface of the earth defined in terms
of the lines of position generated by the system. Included
in repeatability are the effects of random errors, errors
due to net geometry, and errors resulting from the angle
of intersection for the two lines of position that establish
a fix. Repeatable accuracy is therefore a measure of the
relative accuracy of a positioning system. Unresolved biases
exist in hydrographic positions due to the presence of
systematic errors that have not been subtracted from the
data or compensated for as a result of calibration.

Predictability is the measure of accuracy with which the
system can define the location of the same point in terms
of geographic (or geodetic) coordinates rather than simply

the intersection of two lines of position, Thus, predictable

14




accuracy is an absolute accuracy. Using conventional hydro-
graphic survey techniques, predictability could be achieved
only if all systematic errors were removed from the data so
that only the effects of random errors, net geometry, and
intersection angle remain. For example, the lattice generated
by an electronic positioning system is distorted primarily as
a result of the variability in the propagation velocity of
electromagnetic energy. Ideally, if there was no distortion.
of the electronic lattice, then the accuracy of a position,
corrected for any remaining systematic errors, could be
quantified statistically in terms of predictable accuracy.
However, since these distortions exist, the effective velocity
of propagation would have to be accurately modeled through-
out the survey area. Then it would be possible to subtract
the effects of this systematic error and derive positions

in terms of predictable geographic coordinates. Research

is currently being conducted to quantify the parameters which
affect propagation velocity in order to model these values

for such application [Ref. 19].

A second method to achieve predictable accuracy is by
making redundant observations to establish hydrographic
survey positions. If three intersecting lines of position
are available instead of the usual two, the fesulting fix
is overdetermined, and data adjustment techniques must be

applied. The method of least squares is most useful in




adjusting such data. Through the application of least
squares adjustment techniques, the best estimate of position
is found and the position's predictable accuracy is resolved.
A complete discussion of this procedure is presented in

Section III.

C. REPEATABLE ACCURACY

In the determination of hydragraphic positions, blunders
are eliminated by observing strict survey brocedures, and
system calibration is performed in an attempt to remove systém-
atic errors. Because some systematic errors still remain,
the accuracy of hydrographic positions must be stated in
terms of repeatability.

The modeling of random errors is done by using the two-
dimensional normal distribution function. When the normal
distribution is applied to the positional errors, the result-
ing error figure is an ellipse.

1. Elliptical Errors

Hydrographic positions are determined by the inter-
section of two lines of position (LOP). Because of the errors
in each LOP, the actual position may lie somewhere between
the error limits (shown as additional arcs either side of
LOP's in Figure II-1).

The intersection of the two LOP's, together with the

standard errors associated with each, is drawn to an expanded

scale in Figure II-2, By applying the two-dimensional normal
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distribution to positional errors, it is seen that the contours

of equal probability density about such an intersection are

ellipses with their center at the intersection point.

For simplicity in the discussion, the following assump- \

tions are made: ;

1. Only errors contributing to repeatable accuracy are
considered.

2. The random errors associated with each LOP are
assumed to be normally distributed.

3. The random errors in each LOP are assumed to be g
independent, i.e., a change in the error of one |
LOP has no effect upon the other,

4, The LOP's are assumed to be straight lines in the ?
small area in the immediate vicinity of their .
intersection. i ]

5. Errors of position are limited to the two-
dimensional case.

As shown in Figure II-2, the general case of the inter-
section of two LOP's at any angle and with different values
of errors associated with each LOP results in an elliptical
error figure.

It is readily seen from Figure II-2 that the exact shape
of the error ellipse varies with the magnitudes of both of
: the one-dimensional LOP errors, %1 and 0,, as well as with

the angle of intersection, B. .

; The values of the semi-major and semi-minor axes of the
error ellipse (using one ¢ error) are given by the following

[ | equations [Refs., 4 and 5].

19




Semi-major axis:

"

, 2 ] 2
0’,2 =4 [( o+ 6'32){- J(;'z+°_;)_(qslnzs) 6, 522. ] ;
2 Sin? B!

(I1-1a)

Semi-minor axis:

6‘3.—.2:. = [(o'.'ﬂ-a: ) - V(G.’-t—d‘f)"—(q sn2R)e6s } _ (II-1b)
n

Generally gy =0, =0, then equations (II-la) and (II-1b)
y simplify to

o3 o
Oy =S and Gy = (11-2)
* = s (v2) P T WBcos(72) .

After computing the semi-major and semi-minor axes, the

probability of the error ellipse is given by the distribution

function
h‘l
Ple,g)=1-¢€2 | (11-3)
where
2
W 2 +- 9
62 6y

(x and y are the errors in the direction of Oy and cy

20




The solution of equation II-3 with values of h for different

probabilities yields the results shown in Table II-1, |

e e ———— .

Probability (%) h
39.35 1.0000
, 50.00 1.1774 ;
i 63.21 1.4142 |
| 90.00 2.1460 }
99.00 3.0349 ¥
99.78 3.5000 '

Table II-1: Values of constant h.

For example, for 39.35% probability the axes of the

ellipse are 1.00 Oy and 1.00 ay; for 50% probability the axes
are 1,1774 L and 1.1774 oy. Figure II-3 shows the error
ellipses for different values of h,

The angle, 8, between the semi-major axis of the error
ellipse and the line of position which has smaller standard

error is given by [Ref. 5]

o Sin2 B (11-4)
6 Cos2 P +0,

+an2 © =
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where 01 is the smaller standard error. In the case of

91 = 9y equation II-4 simplifies to

-t (II-5)
;] 5 -

The importance of the angle 6 is that it specifies the
orientation of the error ellipse according to the lines of
position. ;

2. Circular Error Approximations

3
|
In general, the use of the error ellipse is compli- ‘i

cated by the problem of axis orientation and the propagation

of elliptical errors. Therefore, in order to simplify
probability calculations and avoid the above problems, the
elliptical errors are approximated by circular errors which
are easier to use and understand. The accuracy of a hydro-
graphic position may then be stated in terms of a circle of
specified radius about the point.

Note that when the angle of intersection is a right
angle and the two errors are equal, the error ellipse becomes
a circle and is described by the circular normal distribution.
Generally, this is not the case, and elliptical errors must
be converted to circular errors. This is done by using either
the circle of equivalent probability or the root-mean-square
error concept.

a. Circle of Equivalent Probability

A circle of equivalent probability is obtained

utilizing an existing table for the two-dimensional normal

23
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distribution (Table II-2). This table is used with the

two standard errors along the semi-major and semi-minor axes
of the error ellipse (Equations II-la, II-1b or II-2). To
find the radius of equivalent probability, equations II-la,

II-1b or II-2 must first be utilized to obtain the values of

Ty and °y' To enter the table the following ratios are needed:
c

c = EZ where Oy is the greater standard error
X

and

K = Radius of circle of equivalent probability
Greater standard error ’

where K is the conversion factor needed to solve for the
radius (R) of the circle of equivalent probability.

The table relates varying values of ellipticity
to the radius of circles of equivalent probability. Enter
the table with the computed values for ¢ and K to determine
the probability for a circle of given radius, or alternately,
for a given value of probability, determine the radius of the
error circle.

EXAMPLE II-1: The two standard errors of a positioning
system estimated from field observations are 9y "0, " 6 meters.
To determine the probability of location within a circle of

10 m radius when the angle of intersection, B8, is 60°,

equation II-2 must be used to find Iy and oy:

24
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Table II-2: Circular error probabilities
(Bowditch, 1977).
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.= S = 6 = = 8.4%m
YZ Sin B2 V2 Sin 60/p

)

= o = 6 =4.9m .
V2 Coes B2 \Z Cos -65?-0

Gy

Using the ratio, < = Cy — 4.3 =, S8 and
Sx 80""6

K = Lodivs of cirele _ 10 24,2 |
6x 8.48

enter Table II-2 with K = 1.2 and ¢ = .58 # .6. The proba-
bility is found to be approximately 67%. (The value in the
table is .6714269.)

EXAMPLE II-2: For the system described in example II-1,
the radius of the error circle with 90% probability may be
determined.

First, entering Table II-2 with ¢ = .6, for 90%
probability (the closest table value is .9019110), K is
found to be 1.8. The radius of the error circle is equal

to K times cx:

1.8 x 8.48 = 15.3 meters.
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Table II-3 is more convenient for solving
problems such as in ekample II-2 because the table is entered
by using values of ¢ and probability, P, in order to solve
for the conversion factor, K. Note that the error circles
identifying the 50% probability area (circular error
probable, or CEP) and 90% area (circular map accuracy
standard, or CMAS) are the most frequently used probability
intervals.

For constant values of 9y and Ty, circular error
probabilities vary as a function of the angle of intersection,
B, of the lines of position. To simplify the investigation of
geometrical effects, the common case of 0 =0, =0 will be
considered. Under this condition, the equations for o, and oy
simplify to equation II-2. Taking the ratio of these two
values, c¢ is found to be €= 6'5'/6-,‘ =‘\‘an(3/9.\ . Using
the simplified equations, significant parameters of the error
ellipse have been listed in Table II-4 as a function of the
intersection angle, B, for the 50% probability interval (CEP)

and in Table II-5, for the 90% probability interval. The

data shows that the radius of the error circle, R, increases as

the angle of intersection decreases. In the last columns,

the error factor is defined as

R (at any intersection angle)

Error factor = R (at B = 90°)
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Factors for conversion, K, of error ellipse
Bowditch, 1977).

to circle of equivalent probability (

Table II-3:
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or a multiplier by which the error circle radius, R, at any

intersection angle may he computed from the radius of the error

; circle at B = 90°. For example, from Table II-4 it is seen

|
|

that at a 50° intersection angle, R is 1.206 times greater }<
than the radius at 8 = 90°. |
i
}

As seen in Tables II-4 and II-5, the optimum

accuracy is obtained when the intersection angle, B, is 90°. :
It can be said that the geometric dilution of precision (GDOP) '
is minimum for a 90° intersection angle. Thus, the error h
factor defined in Tables II-4 and II-5 is commonly known 4
as GDOP. Effects of geometric dilution are shown in Figure

II-4 for CEP and 90% probability interval (CMAS). Acceptable i

intersection angles for LOP's used in fixing hydrographic 3
positions usually range between the limits of 30° and 150°.
As seen in Figure II-4, the radius of the 90° probability
interval circle is increased by a factor of two near the f
acceptable limits for hydrographic fix angles. Correspond-

ingly, positioning accuracy is decreased by a factor of two.

b. Root-Mean Square Error (drms)

The root-mean-square error, drms’ is defined as

the square root of the sum of the squares of the error

components along the major and minor axes of the error ellipse.
To calculate the drms error, first equations II-la, 1b or
II-2 are utilized to obtain the values of Ty and o_. Then

y
the definition of d .  is used, {

U P




40 -

0

-

B

8.

o

ek
b -
ol L L L L L
© 10 20 30 ¢ 50 € 7 90 90 00 HO 20 30 40 190 0 170

Angle of intersection

Figure II-4: Geometric dilution

of precision for CEP and 90% probability
interval (Bowditch, 1977).

uo".‘-b,' = VO':' + 6’3 , (11-6)

) drms =

where a = Oy is the semi-major axis of the error ellipse
and b = Oy is the semi-minor axis.

Alternately, formulas II-la and II-1b are sub-
stituted into the definition of drms error (equation II-6)
and a more useful form of drms is obtained in terms of

gy, Oy and the angle of intersection, B8:

,’6‘14_ o2 (II-7)

drms - Sinp

Figure II-5 illustrates the definition of drms error.




Figure II-5: Illustration of root mean square error,

One drms is defined as the radius of the error circle
obtained using one Ty and one oy as the semi-major and semi-
minor axes of the error ellipse. Two dons is defined as the

radius of the error circle obtained using two times the

O, and cy values,
The value of drms does not correspond to a fixed

probability interval for given values of oy and o,. It
corresponds to a fixed probability interval only when

g = 90° and g, = 9, so that the resulting probability figure
is a circle. In the elliptical cases, the probability

associated with a fixed value of drms varies as a function of
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the eccentricity of the error ellipse. This can easily be

seen with an example using Table II-2.

First, consider o, = 15 m, oy = 10 m,

drms = \,(\5\14- (\0)1 =18m

C= 9 =.666 and K= Codusefercoccile 18 _j o

Ox Sx \S

For ¢ = .666 table values must be interpolated. Enter

Table II-2 with ¢ = .6 and ¢ = .7 for K = 1.2. The correspond-

ing table values are found to be .6714269 and .6306168.
Thus the probability of 18 m dons is found to be 64.78%.

Secondly, consider Of = 17m, o, = 6 m

y

deens = \/(\‘-&)"4. (6\’" =18m
c = &3 =.353 and K:.‘%.:i.oss

The interpolated probability from Table II-2 is 67.4%.

As seen above for the two cases, d errors are equal but

rms
¢ values (eccentricity) are different. As a result the
corresponding probabilities are 64.78% and 67.4%.

Table II-6 shows the variations in probability
associated with the values of 1 drms'and 2 drms as a

function of eccentricity (oy/ox), and Figure II-6 shows the

same information graphically for 1 drms error,

34
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Table II-6:

Figure II-6:
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Probability
1 drms 2 drms
.683 .954
.682 .955
.682 .957
.676 .961
.671 .966
.662 .969
.650 .973
.641 977
.635 .980
.632 .981
.632 .982

Variations in probability as a function of

eccentricity (Bowditch, 1977).
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(Bowditch, 1977).
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As seen in Table II-6, the probability that the

position will be within the 1 drm error circle ranges from

s
68.3% when oy = 0.0 to 63.2% when oy = 0y and two drms
ranges from 95.4% to 98.2%, respectively.

In Equation II-7, the d.ns €rror was given
assuming the errors in each line of position are independent.
If the measurement of line of position #1 is related to
measurement of line of position #2, then there is correla-
tion between 9y and 9,5 €.8., 07 is dependent on 9,,0T a
change in oy produces a corresponding change in g,. In

this case, the equation for the root mean square position

error is given as

drms‘-‘- i \/o—‘z+ ca +9_eo',0'q,C.osﬁ s (I1-8)

Sin

where @ is the correlation coefficient between o, and o,.
Two different derivations of this equation are presented in
the following papers: Bigelow (1963) and Heinzen (1977)
[Refs. 2 and 10].

In summary, root mean square error is easy to
obtain mathematically, and it yields relative values of
accuracy which are normally understood. Therefore, in subse-

quent sections, d will be used to explain the repeatable

ms
accuracies of hydrographic positioning systems.

L




line of position.

REPEATABLE ACCURACY OF HYDROGRAPHIC POSITIONING SYSTEMS
Ranging Systems

In ranging systems, the lines of positions are drawn

as circles centered about each control station.
ability of this type of system is a function of the inter-

section angle, 8, and the random errors associated with each

The two ranges are independent of each other.
fore, the correlation coefficient, @, is zero, and drm

given by Equation II-7 which is repeated here :

2

The repeat-

S+

Usually, the standard errors of the two shore stations are

equal, The system standard error, o, of a time measuring

positioning system is given as

lane width.

The system standard error, c;, of a phase comparison
positioning system is computed as a fraction of the lane width
so that ol = 0, = oW = Te» where ¢ is the standard error of
range in fractions of a lane (i.e., 0 = .1 lanes) and w is

Then Equation II-9 reduces to

37




N2 o
Jems = ;:\_P:- , (II-10)

where g is the system standard error.

As seen from the above formula, the drms is
smallest at a 90° intersection angle and becomes large as
B8 approaches 0° or 180°.

2. Hyperbolic Systems

! As in ranging systems, the repeatable accuracy of
hyperbolic systems is a function of intersection angle and
random errors. Because landwidth is not constant for hyper-
bolic systems, the change in lane width must also be quanti-
fied. As the user moves away from the base line between the
master and a slave unit, the lane becomes wider due to the
divergence of the hyperbolic LOP's [Ref. 8]. This divergence

is expressed as an expansion factor, E:

E = 1/sin (8;/2),

where ei is the angle hetween the radius vectors from the
position at p to the master and the respective slave station

(Figure II-7). Then the standard error of one line of

position at p is ]

e cwk; = ¥ (a)
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Figure II-7: A hyperbolic triad

where o is standard error in the base line in fractions of
a line, w is lane width and E expansion factor.

The hyperbolic LOP's bisect the angle between the
radius vectors from P to master station and the respective

slave station. Therefore, the angle of intersection, B, is

B = ﬁs_;9= ' (b)

Substituting equations (a) and (b) into II-8, dons becomes

20 Cos (9;1'92/2)

d i S
Sm(u’-)vsm‘-e‘ Sin? 9 Sm Smg}

tms = (I1-11)
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In a triad (three-station net) one range is common to both

- is not zero. Bigelow (1963) [Ref. 2] assumes a value for

;
%
1
lines of position. Therefore, the correlation coefficient i
|
the correlation coefficient, @, of 0.33 while Swanson (1963) :

]
[Ref. 14] gets e = 0.4, Since the determination of this !‘
|
value is based on observations comprising a statistical }

sample, the most conservative v§1ug of drms may be obtained
=
14

by using @ = 0.4.

3. Azimuthal Systems

In an azimuthal system, whether it is optical or

electronic, the lines of position are radial vectors eminating

from each of the shore stations. The repeatability of such
systems is dependent upon the angular resolution of the
system, and the angle of intersection of the radial vectors.
The errors of position depend on:
(1) the distance, r, along the radial,
(2) the angular resolution, a, in degrees,
(3) the angle of intersection, B.
The angular error may be expressed as an arc distance perpen-

dicular to the respective radial at p as

oL = A% (a) .
5%.296 X

where r 1is the distance along the radial,q is angular resolu-

tion,and 57.296 is conversion factor from degrees to radians.
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Figure II-8: Azimuthal System Repeatability

The two shore stations are independent; therefore, the corre-

lation coefficient, @, is zero.

Substituting Equation (a) into II-7,

d‘.ms = 2 i - V!‘.’.@. \r'y . (I1-12)

53.296  sing

Applying the sine law to the triangle shown in Figure II-8,

it is seen that

“' -« —&— - h s
S\ ©a Sind, SinCieo ~(8,+02) ]

e —— e el

e comm——— e e




where Sin [180° - (8, + 6,)]= Sin 8 = Sin (8, + ez) and

1
b = baseline distance. And Equation II-12 may be written

as

\J

doe = &b _ 4 VSin*e, « Sin*ea . (11-13)
51.296  Sin*(8,+0,)

Bigelow (1963) [Ref. 2] approximates Equation II-13 by

letting ‘

r\_—.r,_-..—._____b
2.5 B/

Then Equation II-13 reduces to }

dens = —2:B L4 (11-14) E‘
\1'x5%.296 Sinf.Sin /2 ;

Equation II-14 is the approximate form of Equation II-13.
However, Equation II-14 is easier to compute and the error
introduced is negligible. For a = ,03°, b = 8000 meters,

= 80°, 6, = 30°, comparing the equations II-13 and II-14:
) 3

% 2

using II-13

_ (-0 (goo0) , 3 . Vsin*80° + Sin*30° =5S.2m

d
cms 57.296 Sia® (Re’+36) :

using II-14

3 — (-03Y(8000) i = S.5m

f'ms ’ |

V2 % 53.296 Sia 10° Sia 109 1




it is seen that the difference between Equation II-13 and
Equation II-14 is negligible.

4. Sextant Angle Positions (Three Point Fixes)

The evaluation of repeatability for sextant angle
positions is difficult. The mathematics involved in the
computation are quite complex. Thus, repeatability of

sextant angle positions is more easily evaluated by a graphi-

cal analysis. For the development of an analytical solution,

see Heinzen (1977) [Ref. 10].

As will be seen in later sections, it is much easier

to derive the accuracy of sextant angle positions by applying

the method of least squares.

E. REPEATABILITY CONTOURS

ey — e

Using the root mean square error concept, one can con-
struct a family of curves to display convenient values of
drms in terms of the system geometry.

1. Ranging Systems

For ranging systems, the drms is given by

Equation II-10 as

d _ N2 o (I1-10)
rns = "
Sin P
Note that the intersection angle, B, is the only &

controlling geometric factor of drms' Figure II-9 shows an
example of suitable geometry for a ranging system. Mathemati-

cally, it can be proven that the intersection angle, B8,
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'is equal to the angle formed by radius vectors from p to
the slaves and also the angles 510D and SZOD. The locus of
points having a constant drms and constant B describes a
circle of radius r = b/2 Sin 8 with the two shore stations
as points on the circle,

The distance, e, along the perpendicular bisector of

the line connecting two shore stations to the center of the

circle is

e = _b | II-15
Q.tunﬂ (I1I-15)

(since, from Figure II-9, tan B = ELEJ where b is the distance
e 79

between shore stations S1 and SZ'

Using 2 o, error (approximately 95% probability

interval), Equation II-10 may be written in the following

form

8ems _ 2N2'

LYY SinP )

Writing Equation II-15 as

e _ 1 }
- )
b Ltanp
Figure II-10 was constructed to show the relationship of ﬁ

drms/os and e/b as a function of intersection angle, 8.
Using this graph, selected contours of constant drms may

be drawn as in Figure II-11. First, plot the location

“ |
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Figure II-9: Ranging system geometry.

of the two shore stations at a convenient scale. Draw a
perpendicular bisector to the line joining them. Using
Figure II-10 determine the values of e/b for the desired

drms contours. From the known value of b, determine distance
e for each contour. Lay off distance e along the perpen-
dicular bisector to define the center, O, of the desired
constant d_,. circle. The radius of the selected contour

is the distance from the center, point O, to the shore

stations.
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Example II-3: A phase comparison range-range

positioning system has standard error o, " .01 w (lane width).
It operates at 2 Mhz frequency. The distance, b, between two : ?

shore stations is 20,000 m.

v 300,000

T T 2000 0 P

Lane width, w =
O, = ow = 78 x .01 = 7S m ,

For the 2 m drm contour, drms/os = 2/.75 = 2.66.

S

Enter Figure II-10 with 4, /d = 2.66 which intersect the

drms/as curve at 85°. Follow the 85° line vertically to g’

100 < 1 &
< R
.6 1
50 i 1
40 . T
30 \ .3 {
N N |
20 3 X .2
o ™ . Comy - % \
\m Ss b \
g 10 .1 2
- ) 3 )
o s 05 =)
[} L4 ° 7]
i SHA mSNuiR !
2 ] ! ! ! e .02
10° 20° 30° 40°50°60°70°80°90°
170° 160° 150°140°130°120°110°100°

Intersection angle, B8, in degrees B

Figure II1-10: For ranging systems, the graph of the
d ps/9s and e/b. (For enlarged figure,

see Appendix B.)
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the e/b curve. It intersects at e/b = .043. For this

specific pair where b = 20,000 m,
e =b (.043) = 860 m

Using the described technique, the 2m drms contour
can be drawn, and the result is shown in Figure II-11.
Thus between the 2m 4 contour for 8 = 85° and the 2m d_ .
contour for B = 95°, the drms error for the described system
will be < 2m., 95% of the time.

Note that when the angle of intersection, 8 = 90°,
d error is minimum. Therefore, as B increases toward

rms

180° or decreases toward 0°, dons becomes larger.

Because

the tangent of the angles greater than 90® is negative,

e values will be negative as well. Thus, the center of

the constant drms circles, for angles greater than 90°,

will be on opposite side of the baseline. As shown in

Figure II-11, drms

Contours for d.ns Values of 3, 4 and 5 meters may be constructed
by following the procedures outlined above.

2. Azimuthal Systems

For azimuthal systems, drms error is given by

Equation II-14 as

i
d, - a.b ’

™ T x5%.296  Sin pSin B/2

error increases as the baseline is approached.
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Figure II-11: Repeatability contours of a ranging pair. i




where a is the angular resolution, measured in degrees,
b is the distance between two azimuth stations and B is
the intersection angle of radial vectors which is defined by
the equation B = 180° - (61 + 62) (Figure II-8). As with
ranging systems, the intersection angle, 8, is the only
geometric factor contributing to drms' Constant error con-
tours are obtained in a similar fashion.

Writing the Equation II-14 with 2a error (approximately

95% probability interval) as

dems 2 i

akb T G296 Sinf+Sin B/

where a = angular resolution and b = baseline distance.
Since e/b = 1/(2 tan 8), a graph is drawn showing drms/a'b
and e/b as a function of intersection angle, g (Figure II-12).
Figure I1-12 provides a convenient means to obtain
the values of e distance for a selected drms if aand b
are known.
Example II-4: The distance, b, between two azimuth
shore stations is 2,000 m. Angular resolution of the station
is a; = a, = .01°.

For the 2 meters drms contour

drms - 2 = 1
a'b .0I x 2000 T
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Figure II-12: For azimuthal systems, the graph of ?.‘ES_ and ih
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(For enlarged figure, see Appendix B.) ‘
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Enter Figure II-12 with d___/a+b = .1 which intersects

Tms

the d ./a-b curve at 44°. Follow 44° line vertically to the

e/b curve, which intersects at e/b = .52. For this pair where

LGP

b=2,000m, e = 2,000 x .52 = 1040 m, Using the technique
as described for ranging systems,the 2m d_ . error contour

may be drawn (Figure II-13). Other contours are computed

in same manner.

Note that when B > 90°, the tangent value is negative

s e e e

and the center of constant drms circle will be on the

opposite side of the baseline., For azimuthal systems, the \

minimum d - error is found at B = 109°. e

3. Hyperbolic Systems

The root mean square error for hyperbolic systems L

is given by Equation II-11 as f;
M

-%

- OW i\ 1 2eCos ‘ 3

dems = 2 \/ + + 2€ ‘Be \ (II-11) a
nf Vsir®  si?® S-S 32 ,;

where ¢ is the standard error along the baseline between the
master and respective slave station in fractions of a lane,
w is the lane width and 8 is the intersection angle which is

equal to 1

g = L2t (Figure II-7).




Figure II-13: Repeatability contours of an azimuthal system,




Equation II-11 is written with 20 error as

drms _ _2 \/ L, & 2(wcess
oW SinB Vs sie? G2 s:n_ei:.sm%z.

e e

where the correlation coefficient, @, was taken as .4
[Ref. 14]. Figure II-14 was produced to show the drmslow

values as a function of the angle subtended by the two slave

e r—— o

stations, i.e., 28. ]

A parameter, p, defined as

9\‘1‘92 — Q-E or P= 6I+62 — Q.B
& B8, 82 Ba

P =

The parameter, p, is computed with the smaller of the two

angles, o or d,, in the denominator. Thus when p = 2
the master station is positioned on the bisector of the angle

subtended by two slave stations, p = 3 places master station

on one of the two trisectors, and so on (Table II-7).
Knowing the angle subtended by the two slave stations 1
at a particular point, Figure II-14 may be used to develop
contours of constant drms' First determine the drms/ow ratio
for a selected L S Enter Figure II-14, for several values !

of parameter p, and read the corresponding values of angle 2B8.

Using the relation between 28 and 8, (BZ) (Table II-7), plot

these angles, 28 and 9, (62), on a conveniently scaled chart
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P 6, or o,
2 (28)/2 E'
3 (28)/3 g
4 (28)/4 ;

5 (28)/5 i%
6 (28)/6
7 (28)/7 ?%
8 (28)/8 j
9 (28)/9 fj
10 (28)/10 |

l Table II-7: Relation between 28 and 61 or ez. F
f
{
i




with a three arm protractor. Interpolating between the points,

draw the drms contour. The curve thus determined defines the
location of a selected drms contour for the specific conditions
of triad configuration.

Example II-5: A hyperbolic system has standard
error, o, equal to .01 lanes along the base line. It
operates at a frequency of 2 Mhz. Triad configuration is

as seen in Figure II-15:

300,000

lane width, w = %’.fa o5 = /5 m

ow = 7S5 mx .01 = .75 m,

For the 4 m d_ contour,drms/ow = 4/.75 = 5.32. Enter
Figure II-14 with drms/ow = 5,32, For several values of p,
read the corresponding values of angle 28. Determine the
values of angles e1 or 62 according to Table II-7. For the
4m contour, these values are shown in Table II-8. Using a
three arm protractor, the points defining the 4m drms contour

may be plotted. The other contours are drawn in a similar

manner (Figure II-15).

£




Master

Figure II-15:

Repeatability contours of a hyperbolic system
(0 = .01 lane width and £ = 2 mhz)
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III. APPLICATION OF LEAST SQUARES TO

HYDROGRAPHIC SURVEY POSITIONS

A. THE PRINCIPLE OF LEAST SQUARES

Given a set of unknown parameters to be computed from
measured physical quantities such as distance or azimuth,
the least squares method provides a mathematical procedure
by which the best values for the unknown parameters may be
obtained. .

Equations must be written to define the relationship
between the observed and the unknown parameters. If the
number of equations that can be written is equal to the number
of unknowns, then a unique solution may be computed.

However, no statement can be made about the accuracy of

the solution. In the least square method, the number of
equations must be greater than the number of unknowns.

As a result of this over-determined solution, the best values
for the unknown parameters are estimated.

This computational procedure is referred to as a least
squares adjustment. In application, corrections are com-
puted and applied to observed quantities and these quantities
are then said to be adjusted.

For a given set of equations, the fundamental condition
of the least square technique requires that the sum of the

squares of the residuals be minimized. A residual is defined
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as the difference between an oberved value of a quantity

and the arithmetical mean value of that quantity obtained 1

from a number of observations., If the arithmetical mean value

is stated by fi and observed value by Xj» the residual, v, |

is expressed as :

v =XxX. -X,. (I1I-1) i

Suppose a set of observations were taken having residuals

Vis Vs Vgeeonn, Voo Then in equation form, the fundamental

condition of least squares is expressed as

e -y —y

IRV T, > V-4

(V(),.: (\4014- (Va)a.-.-(\la)i.;- .o ....(Vn\z = mintmum , (I1I-2)

g

or in matrix form: VTV = minimum, 1

1. Weighted Observations v

In general, some of the observed values may be more
precise, and, therefore, entitled to have greater influence
upon the result. Observations are assigned values called
weights corresponding to their quality or worth. ﬁ

The assignment of weights to observed values is
largely a matter of judgment. For example, if one set of
measurements of a distance was made with four repetitions
and another was made with eight repetitions, the mean of the

second set of observations may be given twice the weight
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of the first set. Or, when measuring angles in azimuth angle M
positions, the atmosphere may be so unsteady during one obser-
vation that the observer arbitrarily assigns a weight of

one half.

As a general rule, if a standard error, o, has been

e —————— e e

computed for a set of observations, then weights are usually

estimated according to the equation i'

wi = X (II11-3) 2
[ 2 ]
oL

where w, is the weight of the ith observed quantity, o;
is the standard error of that observation,and k2 is any .
number which has the same value for all observations.
Equation III-3 states that weights are inversely proportional
to the square of the standard error. Usually, the weight

corresponding to the least accurate measurement is assigned

a value of 1 (a unit weight). Then the value of k can be }
found and the other weights computed accordingly.
For example, consider the standard error for two

observations where o, = 3, and g, = 1.5. Assigning W, = 1, ]

-

1 =X , K=9

k] .




it is found that the second observation has a weight of 4 relative :

to the first observation.

If measured values are to be weighted and used in a

least squares adjustment, then the condition is that the sum

of the weight times their corresponding squared residuals

must be minimized,

)

2 o o
T wi Y =il wavt o WS = minimum (I11-4)
L=d

or in the matrix form, N WV = minimum |,

2. Method of Least Squares Adjustment

In the "observation equations' method of least
syuares adjustment, the observed quantities are related to
the desired unknown quantities through formulas or functions
which are called observation equations.

One observation equation is written for each measure-
ment, and it is assumed that observations are independent

of each other. In order to solve for the best value of each

unknown parameter, at least one redundant observation equation
must be written., That is, the number of observations must
be greater than the unknowns.

Observation equations may be linear or higher order ﬁA
functions. Linear observation equations can be written in

general as follows:




Qs +b,y +CaEr..... .. +Ka =&,

; ; (I1II-5)

where a's, b's, c's, etc. are coefficients of unknowns x, Yy,
z, etc. and the k's are constants.

Because the observations (Gl, GZ.....Gn) are not
free from random errors, each Gi must be corrected by a
residual value, Vis in order to obtain a mathematically

correct equation system. Thus,

o\* “’b\g + C—ll e ,._k‘ - 6| ‘\"V\

02 % +'b';3 +Crt v .- bk =G (IT1I-6)
P o

: . ' :

6nt + bny ‘f.c-nlf-___,_--__._‘k“ =6n-f.Vn .

Introducing a new notation 21 = G1 - kl’ 22 = G2 - kZ’

etc., the following equation is obtained:
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O* + by +CiZw.coio ]y =V
02x by +C92 #-cocaao-. -2 =v
:2 + ;aB ?17- + ‘?:_ :a. (111-7)
! ': ! Do
6“* + bhg +Cnl 1'----.__..4._.(.‘ =Vn )
or in the matrix form, V = AX - L (III-8)

This equation is called the observation equation or observa-

tion equation matrix, where




In the above matrices, the subscript n denotes the number of
observations and m denotes the number of unknowns.

For a group of equally weighted observations, recall
that the following condition must be enforced in order to

perform a least square adjustment:

2 2
'2 (VO = minimum

“ el i

or in the matrix form,

vy = minimum ., :

Substituting the value for the V matrix from the observation i:

Equation III-8 where V = AX - L,

NV = (AR=-L) (Ax -L)
‘ = LAY =T (A%R-L) C(AXY = XA ]
i =(KTA = ") (AR -L) (from motrix olgebra)

= RATAX = X'A'L - UAX L

|

l

E and from matrix algebra, L AX = X'A'L, ¥
i :
E then

!

| NIV = XTATAX -2 XAL +UL




The minimum of this function can be found by taking

the partial derivatives of the function with respect to each

unknown or with respect to the X matrix (which contains all

L e pmtre

|
|
|
?
{
i

of the unknowns) and equating it to zero, i.e.:

3 2NTN) = 2NAR-2NL =0.
2K

Dividing by 2, the following result is obtained:

NAX-AL =0. (m-9)

This is called the normal equation. In conventional notation,

the normal equation (III-9) becomes

loalx 4 Cably 4+ Caclz «...._._.Cafl =0
fbalx « [bbly ,Chelz ... .. -Lefl =0
{calx 4 Cebly yCeclz 4 coee _Ced] =0
]
fnalx + [nl\,lg +[n:c]1 *_--_-...-(n;l] =0,

where the symbol [ ] denotes the sum of the products, i.e.,

[aa] = aja; +*aja, +ajazto.....* aa., [ba] = bla1

F * by

+ be33 Ll t bnan.




e i G —

TA is the matrix of normal

In Equation III-9, A
equation coefficients of the unknowns. Multiplying Equation :

I11-9 by (ATA)"! and reducing, the solution is obtained.

ATAY (ATA) X - (A*A)-AA'\_ =0,

X = (AAY KL . (111-10) :

Equation III-10 is the basic least squares matrix equation 5
for equally weighted observations. The matrix X consist of 2
best values for the unknowns x, y, 2, etc.
For a system of weighted observations the funda- »

:

mental condition is

2 Y
Y wi (V) = minimum,
L=l

or in the matrix form , VWV = minimum.

The normal equation matrix is derived similarly to

the unweighted case.

ATNWAXK -AWL =0, (III-11) k;

or in conventional notation,




Cwaalx . Cwabl ... ........Cwalfl =¢

[wba]x+'twhk]+"”””H.ﬂ“_twbr]=o
! : !
| ; .
}

Cwnoldx , Cwnbl 4. ......._Cwnll=0.

In Equation III-11 the matrices are identical to those of
the equally weighted equation, with the addition of the
matrix,\x/, which is a diagonal nxn matrix.

In detail, \N becomes

W 0 0 O-1
o w, 0o o0
W = (I1I-12)
0O 0 W3 O
0 (o} 0 Wy,
et - )

where according to Equation III-3,

W W 'S
Wy = 2 = W3S e |\ Lale.- etc .
) a ? 3 2 J

G,_

The best values of unknowns are obtained by solving

Equation III-11 as
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N

X = {( AWAY P ATWL (I111-13)

From the combination of Equations III-8 and III-9 or III-8

and III-11,it is seen that
AT(N+L) - AL =0 of
AW (N+L)Y -A™WL =0.
Therefore,

AV =0 or AWV = 0. (I1I-14)

Equation III-14 can be used as a check on the computation.
Example III-1!: As an elementary example illustrating
the method of least squares adjustment by the observation

equation method, consider the following equally weighted

observations:

2w *3ka +R3 =10
‘N =2%2 +3x3 =5
Fai+he -2%3=3
- ~%a2 = X3 =6,

1The numerical values of this example problem were taken
from Ref. 17, page 517.

S
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These four equations relate the three unknowns X1» X, and

Xz to the observations.

By including residuals, the equations may be

rewritten as observation equations as follows:

2%, +3x2 +% =10 +V
X ~2%2 +3Xx3 =5+Va

Fr %2 - 2%X3 =3+\s

% =%2 = K3 ::—'6*'\14’

or in matrix form,




The normal equation is ATAX -A'L =03
_ - . . } .
2 L3 i 2 3 S5 \2 -8
A _ L2 3| }
ANA =13 2 1 4 P L ool = 2z 15 4
A\ 3 4 4 4 -1 -y -8 -4 IS
L 4L i . J,
2 4 ® _\i 0 S92
- ;
Ne =13 45 1 = |29
13 o 6 25 3;
L B L | J, ;
r o b r - '
SS 12 -8 -‘ ' 52 ji
i
AAX=-ATL =12 15 =4 xmli=1l29 | =0. } i
-2 4 15 X 25 :
. - L 3_J L .

-l 3
And the solution is b —.—.(A"A\ ,‘\TL; B

p— - n
|

.022859 _.ol6i8% .0078#4 8
-l
(ATA) =|-.0618F  .083233 .oBs623 h

. 00787 . 035623 ,o7ukB3 _4_




— —

=

-

.022859 ..0i6i8% » 0078 #49 5)
K= |-.01618% .083233 .0135623 29
«00F8¥5 .0135623 . O0F44 B3 25
- - - <
Y

2.66488

- -t -

Thus the best values for the unknown parameters Xy, X, and

Xy are X, = .9161, X, = 1.91109 and Xz = 2.66488.

This computation was performed by requiring that

VTV = minimum. Thus, when the best values are used in the
equation V = AX - L, the resulting minimized residuals can

be found. If the minimized residuals are applied to the

observations then the observations are said to be adjusted.

- - r- - r . - -
2 3 i} |.916) o ,23035
i 2 S ’
N=s AR=L = 3 1.9108 | - = 08856
T 1 3 -.059F
4 4 - 2.6649 -6 .50793
b - Ao - b - b -l s

: [P S A




r -

. 23035
-.053%

. 5033

Then adjusted observations are G1 = 10.23035, G2 = 5.08856,

G, = 2.9403 and G, = -5.49207. B
Computational check: ATV must be equal to zero }
according to Equation III-14. @
!a

[ 17 7 i i
2 L % 4 « 23035 »000 |

» 08856

Avsz=[3 2 1 U = |.000 “
--059%
i 3 2 .| +50333 .00 | :
5 4 L J o . y

According to the theory of probability, the .3

above values of Xys X and Xq have the highest probability !;
of occurrence. l*
Example III-2: Suppose the constant terms 10, 5,
3, and -6 of the observation equations of Example III-1
represent measurements having relative weights of 1, 2, 2,
and 3, respectively. Using weighted least squares, best

values for X1, X, and Xz will be calculated.
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The observation equations in Exémple IIT1-1 were

2w *3x2 + X3

ERY

- Ay

-2x2 + 3x3

4 Ra

- K2

or in the matrix form,

where
2 3 1
A = i 213
ks i -2
-1 -4 -1

1

-

X,

X3

L=

= 0+ WV,

= 5 +Va
—2%3 =3 +Vy
- A3 s-b‘l’Vq’

V=AX - L

3

10

The normal equation for weighted observations is

ATWAX -AWL =0,

where weight matrix W is a diagonal matrix of weights as

.

follows:

oo O
OO ™ o

o o o

woOo

Ve L

- € -y

o s abinoe Sk e




ond

ANWAR - ATWL = |19

The solution is

or *\1’-0 9101

10F 13

22

- -0

[ on3ess -.00813I4
K = |-.co%34 ,0591%#95
.003F4 . 0\151354
’. 97201 ]
X= [1.9856
b?..‘-HBé ‘

b -
"'1 X|
=-{0 K2
30 X3

s Xa2a=41.985¢

X = (ATWAY ' ARWL

1
. 00 3F4

. 015185

- |34 | =0.

.OHOSI#?J

and

90

be

90

34
kb

x3 = L.H66




B ks . I

Residuals are found using Equation III-8:

r 10 1 g 7

2 3 4 10 .5136

-9204
- _ i 23 S . 098%
V=AX-L = 198561 - =
L2 3 -.0069
_ 2.Hb6

- -, -. "6 . 31‘11’

- 1L | R 1.
Computational check: ATwVy must be equal to
2eTro,

rl L+ -1 r‘L 0 0o o F, 5|3é- —,oosq

A'WV._: 3 -2 1 -l 0O 2 0 © - 0983 =| . 000
©0 2 of [-.coe9| |~

L 3 2 -4 jo ©, 0 3| |.3%+#+%| |.o000

3. Higher Order Functions

| The observation equations presented by Equation III-8
are linear equations. If this relationship is nonlinear,
thus defined by a higher order function, then the observation
equations must be linearized in order to apply the least
square adjustment method. '

Defining the general observation equation as

G = f(x, y), where f represents a non-linear function.
The function must be linearized by Taylor series expansion

or by some other method. The best values of x and y can be




regarded as the sum of an approximate value Xgr Yq and a

small correction Ax, Ay. Therefore x = X, * Ox and

Y * Yo + Ay and the above function is written in the following

form

G = £(x, * &x, y, * Ay).

Using Taylor series expansion the observation equations may

be linearized.

G = of ?'F 1
£ (%o, ye) + _{;;Ax + _;Q:A3+H|9her otder terms . (111-14)

The higher order terms in the series are neglecte

the zero and first order terms are maintained.

d and only

After linearization, the observation equations

becone

D%e bao

2
i) N Yo

! '
1 ]
! |
' !
. )
]

Halnud o D lnw) py L £ (x
W o 790

77

Vo m MA,. + Mﬁg +’€;(*o,gg\—62
ks

Vi« = MA; .‘_M Ay +¥|(Y~o)9o\ - &,

(I111-15)
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"of x and y. Therefore, x

bi , 3 Ax .VI )
Mo Yo
Y\ = \lz
% W e V=1
A=l ' 2y \
! | N
.: ; G‘ -F\(xo.’q,\ -
?i , 8, L= GF"F:‘*OJE\O\
Do DY, ; ;
! ’ 1. G - fn (1o40)

The remainder of the least square procedure is the same as
indicated by Equations III-9, III-10 or III-11, III-13.

In the linearization process, the higher order terms
were neglected. For this assumption to be valid, Ax and
Ay should be small so that their products in the series
expansion approach zero. (Ax < Ay & 0). This can be achieved
only if the values of X, and Y, are very close to the values
o and Yo Must be precomputed, or
the original assumed X, and Yo Must be improved by successive

iterations until the adjusted observations equal the measured

values.
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4. Equations for the Precision of Adjusted Quantities }

After calculating the best values of the unknowns,
% or X matrix, the V mafrix,or the adjustments to the observations,
can be computed from the observation equation which is
V = AX - L, whether the observations are weighted or not.

Using the V matrix, the standard error of an obser-
vation of unit weight is given by the following equations
[Ref. 17]:

for unweighted observations,

— .
y R4 NTV | 3

-m )

for weighted observations,

Twivi VT\NV (III-16b)
“o-m ;

Co

where i-
Gois the standard error of an observation which has unit
weight,
n is the number of observations,

m is the number of unknowns.




C s e T . ———

Standard errors of the best values for the unknowns are

then given by the following equation:

Cr = Goﬁ?, (III-17)

where
q is the standard error of the ith adjusted quantity,

e.g., the quantity in the ith row of the X matrix,

b} is the standard error of unit weight as found by

o
Equation III-16a or III-16b,

q;; is an element of, for unweighted case, (ATA)'1
or, for weighted case, (ATWA)'1 matrix.

If the (ATA)°1 or (ATWA)'1 matrices are written in detailed

form as
i R
Qu Q2 Gz -~
(NAY or (FWAY " |1 B2 Jaao
- 193 Q2 933---
R 1,

then the standard errors of the best values of the individual

adjusted quantities are:

i
J
o
3

O

"“"‘:ﬂ‘




Oy, = Co \’sz \
O3 = Co\ Qa3 ,

Example III-3: The standard errors of the best
values for X1y X, and Xq in Example III-1.
Standard error of unit weight for unweighted

observation is

.23035 |
. 08856
~-.0059%
. 50793

N7V =1{. 23035 .08856 -.0053%F .,50793

VYV‘-'; 03‘3 Y

—
Op =MV = [2320 .55
f-m I
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The standard errors of the best values are given by

Equation III-17 as o =NQit -
For unweighted observatious,qi{s are the elements

of (ATA)™! which was calculated in Example III-1.

-

«022859 _.O0\6183F2 ,DO0F8%5

(A"A\": -.0618F . 083233 .,0i135623

L0085 ., 0135623 . 0F44B3

— k]

Oy, = ONqu = =.565V.022853 = .o0ss,
Oys = Oo\qon =565 V.083233 =.163,
0-*3 2 GOJq33 = -565 WO?‘I‘Q’B?) =-|5tf.

In the (ATA)'1 matrix, off diagonal terms are used

to find the covariances of unknowns. Covariance 012

On = Ob \/ql ,

is equal to

From covariances, the correlation coefficients of variables

are obtained. Correlation coefficient @12 is given as

eu - OO0

a0,

— e

) “.T_ﬁ" .




The interpretation of the standard errors computed

above is that there is a 68% probability that the adjusted
values for Xy X, and X, are within +.085, *.163 and *.154
of their true values, respectively.

Example III-4: The standard errors of Xy, X, and

X, in Example III-2.

3
The standard error of unit weight for weighted

observations is

[1 00 0] [.513¢

NTWV =].53 .098% -0063 .37F3%| [0 200] (038
0 0 2 0 -—~0069

000 3| (.3132

\ITWV = . FlUL R

o‘o -— erv = --H\H - 843
Th-m o =3 T '

A




The standard errors of best values are given as

CiL = 6o Vqit .

For weighted observations, qii's are the elements of (ATWA)'1

which has been already calculated in Example III-2,

«OI383% . 008\314 .003%4
(A"WA\“= --0081314 ., 05937135 .OI5I185Y
.00334 .o0'S1854 .040OSIY

ke < )

Oy, = o-O\Jq“' =.843\/.013839 =.0899,
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B. APPLICATION OF LEAST SQUARES TO HYDROGRAPHIC 1
POSITIONING SYSTEMS 1
If redundant data are available, the least square adjust- !
ment method may be used to compute the coordinates of hydro- ]
graphic survey positions. Observation equations may be
written for various types of survey methods. By expressing :

these equations in matrix notation and using successive approxi-

mations of the unknowns, the best values for the coordinates
of survey positions may be determined. The predictable
accuracy of these best values may also be found. Thus,
redundant observations, coupled with mathematical data ?
adjustment techniques, produce a viable method of system

calibration for hydrographic survey data. This method of

1. Azimuth Angle Positions

4

calibration is referred to as auto calubration. ‘3

The working range of azimuthal systems is limited to 1

line of sight distances, i.e., 5-15 nautical miles, depending "

upon the height of the observing instrument. VH

Because of this range 1imit, the Universal Transverse

Mercator (UTM), or other plane coordinate systems, may be used.
Let

Yo Yo» Y3 = Northings of the shore stations 1, 2 and 3, L

respectively,

Xy, Xy X5 ® Eastings of the shore stations 1, 2 and 3, ]

respectively,

P = The position of the survey vessel.




Then, the azimuth (from north) of the survey vessel from

shore stations can be written in terms of coordinates as

Ap =tan™ =8 | Azp=tea B2¥2 | Agp =ton' Jeo¥z
Lt Y Kp—ha *p- X3

*

In these equations, xp and yp are the best estimate of the

survey vessel coordinates which are to be determined.
These equations are non-linear. Thus, in order to

form observation equations, they must be linearized.

Letting x_ = X, + Ax and y

P o P o
the approximate coordinates of the vessel's position, and ]

* Yo + Ay,where x_ and Yo 2Te ?

using Taylor series expansion for linearization,

k]

f(ny) = £ (xo,40) + 2F Ay +:°.f_A3+~-----
Ore Yo

where f (re,40) = Ailo = tan™' Yo-Mi
Xo~ni

The partial derivatives are

= _ Yo-Wi DE _ Ro-wi
Mo sle : Mo o '

The observation equations now may be written in the follow-

ing detailed form:







B dand

v

are the measured azimuths, and @ = 57.2958, the conversion

factor from radians to degrees.

Having obtained the observation equation, the normal
equation may be formed and solved by following the procedures
outlined in Section II.A,.

Using the computed values of Ax and Ay, new trial

point coordinates may be formed as follows:

k= %o tAX,
Y = Yo +Ay. ;
i
The values are substituted in the observation equation for
the initial Xg» yo coordinates. The least square solution f
is iterated until the Ax and Ay values approach zero. ;
Example III-5: Referring to Figure III-2, the S
coordinates of the shore stations are [;
Luces (#1) Mussel (#2) MB4 (#3)
x 4,055,042.7 m 4,053,453.2 m 4,053,917.2 m ﬁ
y 595,794.5 m 597,967.8 m 603,425.2 m :
|
The standard errors for the azimuth observations are o = .02°, |
g, = .024° and o5 = .018°. The following angles were F
measured: ;]

P - Luces - Mussel = a; = 507164

P - Mussel - Luces = a, = 997360
P - MB4 - Mussel = a; = 472865

|
|
1
|




Figure III-2: Determination‘of a position for azimuthal
systems using the least square method.
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The least square method will be used to determine the best

values for the coordinates of the survey vessel.

Given: .A12 = 126°180 Given: A21 = 306°180
Measured: oy * 509164 Measured: a, = 992360
° = °
Alp = 761016 AZP 457540
s . = °
Given: ASZ 2657140

Measured: az = 47°865
= o
ASP 3137005
First, assume Xg * 4,055,000
Yo * 600,000

The observation equation, V = AX - L, is then

Vi T -.01362 -.000138 Ax -14.566

Va| =] -.00385 .01258% - | =%.183

Vs . 015208 .004BC* by 25.462
[ L 1L J L
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il
1
i
f Using the standard errors of each station, a weight matrix i
!

is formed:

Tl Bt M AL

-'e/a;'x. 0 0 ] !
2
W =1]0 K/ ©
R
O 0 k)é&}
L 4 .

Let k = 0.024, then

L4y 0 0
W=1| 0 i 0

| 0 60 138

Using the A, L and W matrices, the components of the ';
}:l
normal equation, ATwAx - ATwp - 0, are written }ﬂ
B 17 1 T . 1
. 0009974 -.000109% Ax | L1032 ‘
- =0, L
.-000109% .000215% LAB i <1232 L
i‘ 4
!




The solution, X = (ATWA) 1(aTWL), is then

1059.2 Si4.b 1.1032 123.8

X = -
Sib.b6  4bT9.4 .1232 n44. 0

Now, the new trial point coordinates are found.

Yato +A% = 4,055,000 +1231.8 = 4,056,231.8,

y=UYo +Ay = 600,000 +1l44.0 = 6041 144.0.

Using new trial point coordinates, solutions are repeated
until Ax and Ay vanish, Table III-1 shows the data for other
trial Ax and Ay values and the new trial point coordinates.

The best estimate of the coordinates for the survey

vessel 1is
xp= 4,056,302.9

Yp = 600,867.4

2. Sextant Angle Positions

In sextant angle positions, similar to the resection
problem in geodetic work, the measured quantities are the
included angles at the sounding vessel between the shore

stations as shown in Figure III-3.
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Figure III-3: Sextant Angle Positions

Plane coordinates are again used because of the

visual range limitation.

It can be seen ffom Figure III-3 that

Apz - Ap1 " %1
Aps - Ap2 = %2

Aps -~ Ap3 = %33
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or in terms of the coordinates,

ton 2478p  _ kan™! Y3-YP — o,
Ry—Kp R3-Xp

. - + - . .. .
Letting xp Xo Ax and yp yo + Ay and linearizing with

Taylor series expansion,

Fxy) = Flro,yo) + 2L A+ 28 Dy 4o
Dre e

where

?f = Y2-3 _ Y—%Ne

Yo 3o s
aFI = M- re _ .X-z—h
Yo 31 %o

9s

b ]
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The observation equations may then be expressed as

- -

2 ke

Sie . 30 St Ste

where
@ = 57.2958 is the conversion factor from radians to
degrees,
AOI’ AOZ’ A°3, A°4 are the computed azimuths of lines
01, 02, O3, 04 using trial point coordinates Xgs Yo
Once establishing the observation equations, the

solution is found as

1Ty

x = aTpy"
The process is repeated until Ax and Ay become very

small,
Example III-6: Referring to Figure III-4, the

coordinates of the shore station are

96

_ Ua-Ya _ Ui-Ye Yi-ro _ Xa-¥o - . -
v, ] o Ste S'e S0 A
X Ay~ (Agz-Aa)
Vi |zpldave_ ¥2¥e | Mo Ys-te - | #2=(Aes-Ax)
S3e Sze Slo Siq
Byl [A3-(Re, -Aol)
i V3 j Yu-yg _ Y3-ue , -ko _ hi-Ye




Figure III-4:

w

Determination of a position for sextant angle
fixes using least squares adjustment.
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MB4 (#1) Use (#2) Mussel (#3)

x  4,053,917.2 4,051,216.9 4,053,453.2
y 603,425.2 600,372.0 597,967.8

Measured angles are

MB4 - P - Use = 499927,
Use-p -~ Mussel = 38°130,
Mussel - P - Luces = 30.396.

The least square method will be used to determine
the best values for the coordinates of the survey vessel.

Let the first assumed position be x, = 4,057,000 and Yg = 599,000.

Using the first approximate position,

Y, - VY
-171 o
A = tan —
o1 X, Xo

A, = 1249862, A,, = 1652712, A

o1
are obtained.

02 03

The observation equation is

- b p -4 r~ by
Vi -.006366 . 003834 Ay
V3 -~00 8663 _.006342 i by

and normal equation, ATAX - ATL = 0, is

= 1962235 and A

Luces (#4)
4,055,042.7
595,794.5

o

[ 3.073
F. b0%

17,160

= L]
4 2387591

-

-




+ 0001606 ,0000025 A -.0030%

- =0. ?

. 0000025 .0000 3%} Ay . iSHY 1‘

|

!

The solution, X = (ATA)™! ATy, is f'i

(o | 62224 -mw -.0030% | _ | -4#.0 l
131 . b l40%. 6 < 157FH 1333.1 !

Then, the new trial point coordinates are
X = Xg * AX = 4,057,000 + (-47) = 4,056,953,
Y = Yo * AY = 599,000 + 1793.1 = 600,793.1.

Using new trial point coordinates, the above steps are
repeated until AX and AY values become vanishingly small.
For every trial AX and AY value, new trial points coordinates

are tabulated in Table III-2.

The best values for the coordinates of the sounding

vessel are
xP = 4,056,512.3,
= 600,864.5 .
Yp 0
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3. Range-Range Positions

In range-range positioning, when the distances are
short (i.e., line of sight type equipment, less than 20

nautical miles), a plane coordinate system may be used. Let

x, = Eastings of the shore stations #1, 2, 3

Yi» Yp» ¥5 = Northings of the shore stations #1, 2, 3

Easting of ~he survey vessel

4
)
(]

y Northing of the survey vessel

P
Then, the distance between the ith shore station and

the survey vessel, in plane coordinates, is

PR

sip = Vixp-x? + (yp-uiY, (£=1.2.3),

This function is non-linear and has to be linearized.

Introducing approximate coordinates (xo, yo) for xP and yp,

then
= = X
xp 'ﬁb AX
Yo = Yo * &7
Using Taylor series for linearization, the result becomes i\

Sip = § (Yo,Ye) +3§;‘A* + P%EH_ Mg bomoean
Q




After linearization, the observation equation is

oo remw o Ye-un ] _ )
r Sio S f_ ’-
Vl A . S\’ - S\o
Vo [ | teoxa Yomu2 — |S2p - S0
- Sa0 S20
V3 By 53p - Sip
L L o osemws || ] L )
S3go S13g ?

or in the matrix form, V = AX - L,
where :

Slp’ SZp’ S3p are the measured distances,

S S S are the computed distances using Xq and Yo*

20’ "30
In ranging systems, when the distances are long,

10°

coordinate computations must be carried out on the appro-

priate ellipsoid using rigorous geodetic formulas. Let

¢°, No = Computed geographical coordinates, latitude
and longitude, of the survey vessel,
o, A = Latitude and longitude of the ith shore station,
Aio = Azimuth from ith shore station to approximated
position O,
Aoi = Azimuth from @ to ith shore station,
Soi = Distance between O and ith shore station.
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Although the computed observations must utilize rigorous

N p—

geodetic solutions, the differential equations of the observa-

tions may be approximated using spherical trigonometry [Ref. 3]:

) g i

dSoL = Sin V" [-—Qo Cos AQLA@O—- R{_COS ALDA(I)L

+N(,Cos¢{,$\'nALa(c\>\°_a>\{,) ], :

where d¢ and 9* are in seconds of arc, dS in meters. Sin 1"
is the ‘conversion factor from seconds to radians. Ro and Ri
are the radius of curvature in the plane of meridian at
point @ and ith shore station, respectively, defined as

[Ref. 18] 3

R — ali-¢eY)

—_— k)
(l— e.“‘Sm“ ¢ )3 fa

where a is the semi major axis of the datum ellipsoid,

and e? is the eccentricity of the datum ellipsoid.

No and Ni are the radius of curvature in the plane of prime
vertical at point @ and at ith shore station, respectively,
defined as [Ref. 18]

N = a -
(\—e?sin"‘”h'

¢‘is the latitude of point O and ¢‘-_,is the latitude of the ith shore

station.
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The partial derivatives of computed observations

with respect to parameters are

DSel _ _ sini"RgCos Aol ,
2%

9%l _ ginl"Ni Cos @ SinAls.
d)Ne

Then, observation equation is

-VJ ._ RoCos Ao, , NiCos SinAie 1 -A ‘ Spt - Sen ]
¢
Va|= Sinl] — Ro Cos Aor , Ni Gsdz SinAse - |Sp2-Ser
v L—Qo Cos Aoz , N3 Cosdz Sin Pse AN Sp3 -%03
- L4 L -
where S S

01’ So2’ So3 2re computed distances using inverse

distance and azimuth formulas (these formulas could be found

in any geodesy text); and S S S are measured distances

pl’> “p2’ "p3
between point P and the respective shore station.
After forming the observation equation, the normal
equation is found and solved as in previous examples. This
process is repeated until A¢ and AXA become smaller than the

resolution of the positioning system,




Example III-7: Referring to Figure III-5, the coordi-

nates of the shore stations are

Luces (*1) Mussel (#2) MB4 (#3) i
X 4,055,042.7 4,053,453.2 4,053,917.2 |
y 595,794.5 597,967.8 603,425.2 |

Using the least squares procedure, best values of

coordinates of the vessel may be found. Let the first

assumed position x

o = 4,056,000 m and y_ = 598,000 m.

Measured distances are p - LUCES = 4350 m, p - MUSSEL = 4506 m,
and p - MB4 = 5267 m. For the first approximate position of

the vessel, the observation equation is written:

-VlW -.999 <0126 ] ] 1803.0 -
Ay

Val=| .393 9t - 12101}
by -

Lva- I .358 -9 117 i 5‘1H.3_ .

Normal equation, ATAX - ATL = 0, is
1.28% .04’ Ax 1334 .8 —0 L
. 043 1.3 Ay f4he .+

|
|
y
i
i
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Figure III-S:

e ———
% L

Determination of a position for range-range
systems using least squares adjustment.




And solution, X = (ATA) ™! ATL, is

Ax . F33 -.019 2834 .8 2183.10
X= b =
Ay -.C9 584 \que. 3 I8+

Then, new trial point coordinates are:
X = x4t Ax = 4,056,000 + 2183.2 = 4,058,183.2
Y =Yg * Ay = 598,000 + 787.4 = 598,787.4

Using the new trial point coordinates, the above steps are
repeated until Ax and Ay values become smaller than the
system resolution. For every trial, the change in coordi-
nates and the coordinates of new trial points are tabulated
in Table III-3,

The best values for the coordinates of the sounding
vessel are

= 4,057 1.2
xP , ,50

= 599,567.7
Yp >

The standard errors in the northing and easting may

also be calculated:

_ - 4 _
.930 .36t | 32 2.3 ]
-.8
V=.sip  .33% = 2% | =26
1
obgo 1333 -5 "l-5 .
- - —- J b - L~ <

V = AX —-L ( Gor A and L 3 Last tteraticn values ace useé),
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[2.3

NN = [2-7‘ 2.6 -1.5] 2.6 = l6.3',
~-.5

Co = NV = 16-3 = 4.04;

where q;;'s are the elements of (ATA)'1 which has been

calculated as

I

(o % "O'om -s==4¢0"f 4-6‘1' =3.23 ™,

Oy = O, \lng_ = 4.0k 141'6 =3.52m,

4. Hyperbolic Positioning Systems

Hyperbolic positioning systems measure the difference

in distance from a vessel to the two shore stations.

Figure III-6, station number 2 is the master station, and

i e bk T o i e

o




Figure III-6:

Determination of a position for hyperbolic
systems using least squares adjustment

method.
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numbers 1, 3 and 4 are slaves. Point p is the vessel's ¥
position, and its coordinates are designated as ¢p and Ap.
Point © is the first approximate position, with 0 and xo
representing its coordinates.

The differential equations of the computed distances

to each station, S may be written as [Ref, 3]:

0i’

G A e =

dsoi = Sin 1" T -Re Cos Aol 8P g - RiCos Agd bt

+NC Cos ¢ Sin Ao (&)\o— A}\L\j

where i represents the shore station number.

A;, represents the azimuth from the ith shore station

to approximate position 0.

) L e i i s

Rg is the radius of curvature in the plane of ]

meridian at point 0 (as defined in Section B.3.).

B e ek AR

N; is the radius of curvature in the plane prime

vertical at the ith shore station (as defined in Section B.3.).

R —

The partial derivatives of the function with respect

to ¢o and Ao are

B Set =_Sit\_.\.“Co.sAo(_, '
2% L

BSel. = Sial'C . Sic A
o °5¢LKLAw.
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The range difference between the distance from the

vessel to the master and the distance from the vessel to

the respective slave station is expressed in the equations

below.

Bse2 _ DSel_ _ sin \" Re (Cos Aol - Cos Ao’)-)
o b0

0502 _ dSol = Sin} N¢Cosi (SinAzo - SinAio)
2o dro

Note that station number 2 is the master station, and
the range difference is stated in terms of the partial
derivatives.

With this information, the observation equation is

written as:

Vi Ro ( Cos Aot —Cos Ao ), W Gos®, ( Sin A2e-Sin Aie)
Va | = Sinl! Re (Gos Po3 -Cos Aoz , Nu Costsz ( SinAze - Sin e
Ny Lao (Coshoy~Ceshoz , N3 Cos, (Sin Azo -Sin Ave

_1 ( %p;-Sp\) ~(%¢2- Se) ]

Ag
AN

-1 (sp2 = Sp3)-( Son - Se3)
L( Sp2 — spi)—(So2 - Sou)

k]
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where :

Ao1> fogr- -

position 0 to shore station 1, 2,...

A

are computed azimuths from approximate

Algs Agg--

number 1, 2,... to approximate position 0.

(s

are computed azimuths from shore station

p2 " spl)’ (Sp2 - Sps)’ .o are measured range
differences,

(s are computed range

02 ~ So1)» (Soz - Soz)s ---
differences.
Sin 1" is conversion factor from second to radian.

After writing the observation equation; the normal
equation is solved and the best estimate of the coordinate
values is found as previously discussed.

The process is iterated until A¢ and AN become
smaller than the standard error of the specific hyperbolic
system being used.

5. Global Positioning System (GPS)

Global Positioning System fixes are obtained
utilizing the computed distances from the position of GSP
satellites to a GPS receiver. The receiver measures the
arrival of a timing pulse from every satellite within

acquisition range. The transmit time of each pulse is

encoded in the received signal. Thus, distance is computed

using the one way travel time between each satellite and the

receiver multiplied by the propagation velocity of electro-

magnetic energy. Three such satellite to receiver ranges




- - mn a———

may then be applied to solve for the coordinates of the
receiver.

Using three satellites to determine a fix results in
a unique solution for the position coordinates (x, y, z).
However, significant error may be induced due to drift in
the receiver clock. This additional unknown, receiver clock
bias (E), may be resolved by processing four satellite
ranges.

For position fixing at sea, it is likely that the
z coordinate may be input as a known value based on a given
antenna height above sea level. Thus, the number of unknowns
will be reduced to three. By using four or more satellites,
redundant observations are then available so that the data
can be adjusted by the method of least squares.

Introducing the following variables, observation
equations may be written in a straightforward manner:
= Measured distances from receiver

R,, R,, R

12 722 73 0
to satellites Sl’ SZ’ 53,
(xq, Yi» zl), (xz, Ya» zz),... = Known positions of
satellites Sl’ SZ’ SS""
X, ¥, 2 = Unknown position of the observer,p.
E = Receiver clock bias (unknown).

Then, the basic equations are

Ri= E «+ »/H-m\tf(g-g‘)l*- (2-m)
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R = B + \f(ﬁ—h)n-t-(g'Sz?*( *"11\)-

Ry = E + \/(7\-‘1\3\9-‘*'(5‘33\ rlz-z."

i Ran = E + \/( - %n\‘l+ (g-ﬂnf-'l‘ (Z—?n\; .

Here, the ranges Rl’ Rz, R3, oo s Rn include the actual
satellite to receiver distance plus some offset due to
receiver clock error. In the above equations, the
satellite positions are known, and the four unknowns are the
user position (x, y, z) and user clock error.

Since the observation equations are non-linear, the
Taylor series must be applied to form equations suitable for
use with the method of least squares. Let

X = x° + AXx z =2z,  +t Az

Y = Yo * AY E=E_+ AE.

Using Taylor series,

RLP =Eo + \l\%o-'ki.\ldgo-':)i-)l-r("*o"zd} * "&‘_’:& Ax

D
Jo-si My 4 Ze=ZIi Ay +AE L
Rio Rio

where Rip is the distance between a satellite and the user

position, p.




Ri° is the distance between a satellite and approxi-

mated user position.
Observation equations are written in the following

detailed matrix form:

v Ro=%1  Yo—y ‘ o2 1 R\y—Q\o
Rie Rio R B
RO-%2  \Yo-\u - Dy
Va 9= 32 to-2a i R‘).P-—Qa.o
' | ! !
! ! ' ! A J
! { J !
f ! ) ; ’
Vn ho—Krn ' Yo -un , Zo—-En_ |\ AE an‘-ﬁno
- - - J - o b -J 3
where
Rlp’ R2P ..... are the measured distances,
RlO’ R2° .+... are computed ranges from the formula

Ric =Eo +\I(V~o-v~(,\q'+(9°-y;_)z1— (2o-2)" |

From this matrix, the normal equation may be formed

and solved as previously discussed. The process is repeated

until the values of Ax, Ay, Az and AE approach zero.
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Example III-8: At 0800 Zulu,May 1, 1980, a satellite
fix was taken using a GPS receiver aboard USNS ACANIA in
Monterey Bay. The measured distances between the satellites
and the receiver were

S

pl
Spy = 20,357,184.1 m
Sps = 23,287,346.8 m
S,y = 21,699,908.4 m

spS = 25,416,133.6 m

= 20,640,380.8 m

The satellite coordinates were

S #1 S #2 S #3
x, = 6,097,294.4 x, = 1,819,274.3 x5 = 9,268,094.7
y, = -4,364,543.9 y, = -2,240,846.4 yg = 13,290,138.0
z, = 22,658,876.2 z, = 23,721,192.7 3 = 13,622,934.4

S #4 S #5

st ———

Xy = -8,198,461.9 Xg = -21,419,309.7

Yg * -18,813,603.1 Yy = 12,865,351.8

Zy * 19,040,626.8 2 = 4,832,143.1

Applying the method of least squares to determine the

user position, first assume:

S Meaire ¢




o~ < tad
o
[} H ]

2]
[}

-2,640,000

-4,235,000
3,960,000

10,000.

For the first iteration, the observation equation

is written as

.V.T -_.QQ3\ .0061%
Va -+ 2198 -.09%9
Vi|=1|-.5m - 522
Ve L2560 , 615
Ns JHBS6 L6726
L 1 L

-.90ss |
-.9%03 L O
O 1T’ N I I N
_.e946 L | [z
AE
-.0343 |\ J

T

and the normal equation, ATAX - A'L=20,

[ 1.039 .0%83
.0183 l.4F8%

. 6043  -.042
-.\584  _.8449

.60U43 _.15BY
—-.04 — +BLH43
2. 14 3,109

-3.019 5.0

p P

-9509.4

- 88lo0.4

-934%2.0

-1349.8

- )
Av: P3'2.96.9 ]
Ay | ¥075.3
b2 B 28091.%F
AE| |-4su8.d
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The solution, X = (ATA) ™! ATL, is
(3040.9 ]

=lbltb.6

-2105.2
‘\08"’00 9

=<
1

New trial point coordinates are

X = -2,636,959.1 2g = 3,957,294.8

= -4,236,646.6 E_= -840.9.

Yo o

Using new trial point coordinates, the above steps
are repeated until Ax, Ay, Az and AE values become vanish-
ingly small. For other trials (iterations), the Ax, Ay, Az
and AE values and new trial points coordinates are tabulated
in Table III-4,

The final user coordinates are

X =-2,636,937.1

Yy = -4,236,666.2

z = 3,957,250.8.

And receiver clcck bias is E = -869.8 m.
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C. USE OF THE ERROR ELLIPSE IN ANALYZING THE ACCURACY
OF HYDROGRAPHIC POSITIONS

In the least square adjustment process, the positional
errors are found in the direction of the x and y (¢ and A) ,
coordinate axes. These Oy and oy values indicate the }5
expected displacement of the fix in the direction of the :
coordinate axes, but they do not necessarily define the maxi-
mum and minimum errors associated with the axes of error
ellipse (Figure III-7].

Maximum and minimum standard errors are found by defining
the orientation of the error ellipse in terms of the x,y
coordinate system. Let the coordinate system defining the

semi-major and semi-minor axes of the error ellipse be u

and v as indicated in Figure III-S§.

The following relationship exists between the ellipse

(u and v) and the ground (x and y) coordinate system. {

U=xSn6O +y Cos B

(III-18)
V= XCos® -y Sinb
A 1
In these transformation equations, the angle 6 is the
rotational angle between the y and u axes (measured clockwise &

from y axis to the u axis).

The lengths of the semi-major and semi-minor axes are

given by :




IV o

P

Figure 111-7: ErroT ellipses formed at the determined
positions (p. B. Thomson and D. E. Wells,

1877) .
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Figure III-8: Error Ellipse.

cu = ooV qug
Ov = Oo ‘Qw .

(111-19)

In above equatioms, o, the standard error of unit weight,
is known from the least square adjustment of point P, Qu and

q,, aTe given by?:

1For detailed derivation of these equations see Ref., 16,
pages 181-183. :
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=

Qus =% (9xx +Quy) +-;_-(Qn"993) Cos26 +QyySin 20

Qw =‘§.(q“+q“) +._‘2-(q*,_-q”) Cos 28 - qyySin 28,

are the elements of the (ATA)'1

1

where q and Q9

xx’ dyy y

(for unweighted observations) or (ATWA)" (for weighted

observations), i.e.,

Px Qwy

(TS T

(ATAY\ or (ATW'\Y‘ =

Equation III-20 reaches its extreme value, and Qu is

maximum, when

ot A g

* tan 20 :--Qﬁ.ﬂ_
qw'.chg )

Inserting Equation III-22 into III-20 and III-21, and

defining D as.

D = T (quy —quet'+ 4 (gt~ 1%
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(III-23)

(III-20)

(ITI-21)

e —— — e

4

(III-22)




Yu and 9y May be written as

Qu = & (9 + gy +D) (111-24)

Qv =T‘)_' (qu. +Quy -D ); (III-25)

and from Equation III-19, the semi-major and semi-minor axes are

Qq___\zo.oz(q»_‘_qw +b) (I1I1-26)
2 o
b =% Co (Qun +quy -0). (I1I-27)

Using these expressions, the error ellipse can be con-
structed at any point whose coordinates were determined by
least square adjustment if the (ATA)'1 or (ATWA)'1 matrixes
are known,

Example III-9: In order to determine the error ellipse
parameters for the range-range example problem (example III-7),

recall that (ATA)'1 was determined as

06“ “0“"'
Y .16

(AAY =




and the standard error of unit weight was Oy = 4,04,

The semi-major and semi-minor axes of the error ellipse,

according to Equations III-26 and III-27, are found by first

solving Equation III-23:

D=L (qyy-qg)+ "'(qu)m] "

a-‘a
D="C (.64—.16)Q+4(-.\l+31] = . 305.

| SO

Then,

o

R —

PRI U

Q

3 % (9xx +quy + D)

(4.04Y (. 64+.F6+.305) = 13.9

02 -

B =L (4oou) (.64 +.F6 - .305) =8.94

2
b ] 2¢39m. L

The semi-major axis is 3.73 m, and semi-minor axis is 2.99 m,

According to Equation III-22, the angle 6 is found: 1
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tan 20 = _ 29% = _ 2 (=-14)
Fun=Qy (- 64~.76)

20 = 113°%2
8 = 56°6 which defines the orientation of the error

ellipse.
1. Some Characteristics of the Error Ellipse

A number of important properties of the error ellipse
can be obtained by analyzing the equations given in the previous
section. The existence of the error ellipse points out an
important fact that the accuracy of the location of a point
in question is not the same in every direction. An analysis
of equations III-26 and III-27 demonstrates that the formulas
for the semi-major and semi-minor axes are composed of two
parts: the standard error of unit weight, which defines the
scale of the error ellipse, and the elements of the (ATA)’1 or
(ATWA)'l.matrix, which define its shape.

To reduce the error ellipse into a circle, where the
accuracy of position is equal in every direction, the follow-
ing condition must be met: |

a/b = 1,

According to Equations III-26 and III-27 this is possible

only if D= 0:

D =Ly -qyY + 4 (QuyY ]‘h =0,

———




which means ti :

Aex = dyy and q,, = 0,

and, according to Equation III-17,

Another important characteristic is that the sum
the squares of the standard errors in x and y directions

invariant to the rotation of the coordinate system, or

Ql+b1=0'&+0‘v°'=0':'+ d':',

| Equation III-28 leads to the concept of root mean

square error, d as follows :

rms’?

Cths ==VC73 *_ch :=\k’&-y€ﬂf:=\ﬁ31+k?1

or, from Equations III-26 and III-27,

drms = O \/C\M +Qu |

of

is

(III-28)

(I1I-29)

-— -
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IV. CONCLUSION

Conventional survey systems will provide the primary means
of hydrographic positioning for several years to come.

Thus, the concepts of drms and the graphical approach to
developing error contours are very useful tools in survey
planning and execution.

Survey planners must exercise care in establishing the
position of navigation aids. The resultant net geometry
determines the accuracy, and thus the drms error,of the fix
positions. Accuracy requirements for the collection of
hydrographic survey data greatly limit the size of the
effective survey area. Through careful planning, the
number of navigation aid shore stations can be minimized
while still meeting position accuracy requirements for the
survey.

Currently, more research is needed to determine the
environmental factors which govern variations in the propa-
gation velocity of electromagnetic energy. If this important
parameter could be more accurately modeled throughout the
survey afea, the effects of systematic errors due to these
velocity variations could be greatly minimized.

As shown in this paper, methods exist today by which the
accuracy of survey positions can be greatly improved through

the use of redundant observations and data adjustment techniques.

e




f The method of least squares adjustment provides a best esti-
mate of position, plus the size and orientation of the error
ellipse associated with that position, for every point deter-
mined by the survey system. In addition, the error ellipse
quantifies the predictable accuracy (as shown in Figure II-7)
of each position as compared to the repeatable accuracy
available from conventional survey methods.

The application of these techniques will become more

& widespread when the Global Positioning System is fully

operational. Observations of position from any number of

navigation and positioning systems (GPS, LORAN, hydro position-

j ing systems, etc.) can be combined in a least square solution.
Observation equations may be written and weights can be
assigned as a function of accuracy for each system.

In preparation for these future improvements, hydrographers
i must work to understand and implement the concepts discussed
E in this paper. Data must be processed by computer. There-
f fore, programs need to be written which can perform the
r

iterative least squares adjustment on the appropriate obser-

vation equations. Errors must be analyzed to assess the

——i el

improvement in accuracy resulting from redundant observations.
Additionally, standard hydrographic survey procedures need

g to be reviewed to determine if more efficient methods may

be adopted when redundant observations and data adjustment
techniques are used. For example, the method of least

squares may be programmed into onboard computers so that
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data may be adjusted and evaluated in real time. Alternately,
redundant data may be collected and recorded for later pro-
cessing ashore.

The technology is available today to employ data adjust-
ment methods in hydrography. This technology must be
analyzed and adapted to match the systems and requirements

unique to hydrographic survey.
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ANALYSIS OF RANDOM ERRORS

APPENDIX A

(The information given in this section was taken directly
from References 1 and 20.)

ONE DIMENSIONAL ERRORS

An error in a measurement is the difference between the
"true'" value of a quantity and the measured or derived value,
The "true' value can never really be determined because of
instrument limitations and human fallibility, In determining
the value of a quantity, only one measurement may be necessary
when an approximate value is sufficient. If, on the other
hand, the quantity is important enough to require a more
precise value, repeated measurements are made. Variations
will exist between the values obtained from several measure-
ments. Applying the theory of the normal distribution to
these measurements, the 'best" value for the quantity is the
mean or average of all the observed values. The differences
between the mean and the observed values are the apparent
errors or residuals which are used to derive a statement of
precision for the measuring process. When the residuals are
randomly distributed about the mean, the precision of the
measurement is expressed by a single term, the standard
error, which is commonly designated by the Greek létter "sigma"
(c). For a one dimensional normal distribution, this value
is computed by squaring all the residual errors (v), adding

the squared values, dividing by the number of errors less




one (if n independent direct measurements are taken of the
same quantity, then the first measurement establishes a
value for the unknown and all additional measurements,

(n-1) in number, are redundant), and taking the square root:

A

where V. is the residual defined by the equation V, = X, - X,
X; ¢ observed value
X : mean value

n : the number of observations.
The normal distribution itself is represented by the

function:

VQ.
(V) — .L e— —7'-;1.
P oV¥in

The normal distribution curve and the meaning of the standard |

errors are illustrated in Figure A-1. The central vertical 3

axis, p(v), represents the probability of zero error with
positive errors plotted to the right and negative errors

to the left. The height of the curve above a particular

1
]
}
point on the horizontal axis is proportional to the probability ii
of an error of that amount. i
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Figure Al: One dimensional Normal Distribution Curve tt

It can be observed from the normal distribution curve
that the total area under the curve is equal to unity. Also,
the area under the curve between any two values of v,
and Vz is equal to the probability of an error occurring
between these limits. So, to find the probability of an
error between Vl and Vz, p(v) has to be integrated between
Vl and Yz. The area under the curve between the limits of

Vl = .g and Vz-- +0 is 68.27% of the total area under the L4

curve. This means that there is 68.27% probability that

errors in any further measurements made under the same




conditions will not exceed the standard error, o, with a
68.27% probability. The standard error does not indicate
the probability that an error of a certain size will occur; it
only indicates that 68.27% of the errors will fall within
the specified limits of plus or minus one sigma,

If other probability levels are desired, the appropriate
conversion factor may be found in Table Al. For example,
for 95% probability, o should be multiplied by a linear

error conversion factor of 2.

Linear error

Probability, % conversion factor
50 .6745
68.27 1.000
90 1.6449
95 2.000
9.7 3,000

Table Al: Linear error conversion factors for several
probability levels.

TWO-DIMENSIONAL ERRORS

A two-dimensional error is the error in a quantity defined
by two random variables. For example, consider the position
of a point referred to x and y axes. Each observation of the

x and y coordinates may contain the errors Ve and vy.
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If the errors are random and independent, each error has

a probability density distribution of

v Vy
--—_Z l -
PV = L e 2% and Pplw) = e 2oy
6%“-2_“. O’,E

"The probability of two events occurring simultaneously
is equal to the product of their individual probabilities"
[Ref. 1]. Applying this rule, the two-dimensional probability

density function becomes:

P(V;,Vy) — e.-

rearranging terms,
__'_(__ =
Plvy,vy) 2woyoy = e 2V oy

taking the logarithm,

(-2Y nCp (v, W) 2T o, Gs]= V": + V;, )
ol Sy

For given values of p(v Vy) [physical meaning of

x’
p(vx, vy) is that the probability that two random variables

v and vy take values in the interval vV and tvy], the left
side of equation is a constant, kz, then
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k'l - \I: Ny
Ty Y .

For several values of p(V;, Vy), a family of equal probability

density ellipses are formed with axes kox and kcy (Figure A2).

@

Figure A2: Equal probability density ellipses.

In general, when the two errors are correlated, i.e.,
a change in the one error has some effect upon the other, the

probability density function, p(vx, v)',) , becomes

e ——

et e X Ut M At e -

e




2(ofoi-ay)\ o

1
2w ooz - Cwy

P(V$3V3) = <

Then, the equation of constant probability density ellipses

(Figure A3) is

kr —_ 1 iy - 2p Yy vy
(-¢*) | of Ox Oy Ly

where @ = correlation coefficient of v, and vy and is given by

= _Oxy
e Cx Oy

The probability density function integrated over a certain
region becomes the probability distribution function which

yields the probability that Ve and v& will occur simultaneously

within that region, or:

P (\h;,‘dg) ::JJ( F)CV;,‘JQ) CiV‘tAV3
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Figure A3:

Constant probability density ellipse for
correlated errors.
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APPENDIX B

USEFUL GRAPHS FOR THE DETERMINATION OF REPEATABILITY CONTOURS
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and e/b.

Values of e/b

Ve
WIEWR 277 NPT DU




10.

11.

12.

13.

LIST OF REFERENCES

ACIC Technical Report No. 96, Principles of Error
Theory and Cartographic Applications, by Greenwalt, C. R.
and Shultz, M. E., February 196¢.

Bigelow, H. W., Electronic Surveying: Accuracy of
Electronic Positioning Systems, A.S.C.E. Journal of the

Surveying and Mapping Division, Volume 89, No. SUSJ,
P. -70, Uctober 19635.

Bomford, G., Geodesy, Third Edition, The Clarendon Press,
Oxford, England, 1971.

Bowditch, N., American Practical Navigator, p. 1204-
1237, Defense Mapping Agency Hydrographic Center, 1977,

Burt, W. A. and others, Mathematical Considerations
Pertaining to the Accuracy of Position Location and
Navigation Systems, Part 1, Naval Warfare Research Center
Research Memorandum, NWRC-RM34, Stanford Research Institute,
Menlo Park, California, April 1966.

Hirvonen, R. A. Adjustment by Least Squares in Geodesy
and Photogrammetry, Frederic Ungar Publishing Co., I971.

Ingham, A. E., Hydrography for the Surveyor and Engineer,
Halsted Press, John Wiley and Sons, s PP. -

Launlo, S. H., Electronic Surveying and Navigation,
pp. 85-101, Wiley, 1976.

Mikhail, E. M., Observations and Least Squares, IEP, 1976.

Morris R. Heinzen, Hydrographic Surveys: Geodetic Control
Criteria, M.S. Thesis, Cornell University, December 1977,

Morris R. Heinzen, Hydrographic Surveys: Geodetic Error
Propagation, paper presented at American Congress on
urveying and Mapping, 39th Annual Meeting, March 18-24,
1979,

P. A. Cross, A Review of the Proposed Global Positioning
System, The Hydrographic Journal, No. 4, pp. 15-17,
April 1979.

Schoenrank, R. U., The Determination of Accuracy Lobes for
Electronic Positioning Systems, Lighthouse pp. 83-92,
March 1977.

142




14, Swanson, E. R., Geometric Dilution of Precision,
Navi%ation: Journal of the Institute of Navigation, V, 25,
o. 4, pp. - » Ninter 1978-79,

15. Swanson, E. R., Estimating the Accuracy of Navigation
Systems, Research Report , oan Diego, Calitornia,
U.S. Navy Electronics Laboratory, 24 October 1963.

16. Veress, S. A,, Adjustment by Least Squares, American
Congress on SurVeying and Mapping, Washington, D.C., 1974,

17. Wolf, P. R., Elements of Photogrammetry, pp. 501-517k !
McGraw-Hill, TI974. . ;

18. Clair E., Ewing and Michael M, Mitchell, Introduction to {
Geodesy, Elsevier, 1976. ‘
!

19. D. B. Thomson and D. E. Wells, Hydrographic Surveying I,
Lecture Note No. 45, Department Of Surveying Engineering, #
Canada.

20. ACIC Technical Report No. 28, User's Guide to Understand-
ing Chart and Geodetic Accuracies, by Greenwalt, C. K.,
September 1971,

Y

143

e




- ———

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
| Monterey, California 93940 i

3. Department Chairman, Code 68 1
Department of Oceanography
Naval Postgraduate School %
Monterey, California 93940 1

4. Department Chairman, Code 63 1 A
Department of Meteorology
Naval Potgraduate School
Monterey, California 93940

5. LCDR Dudley Leath, Code 68 Lf 20
Nepartment of Oceanography
Naval Postgraduate School .
Monterey, California 93940

6. Professor T. Jayachandran, Code 53 Jy 1
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

7. LT Ali Kaplan 2
Bostanci K8yii
G8nen/Balikesir/TURKEY

8. Deniz Kuvetleri Komutanligi 3
Personel Egitim Slbe Mirdiridgd
Ankara/TURKEY
9. Dz. Kuvvetleri Seyir ve Hidrografi Dairesi Bsk, 3 '

Cubuklu, Istanbul/TURKEY

10. Deniz Harp Okulu Kom 2
Heybeliada/Istanbul/TURKEY

11. Istanbul Teknik Universitesi 2
Taskisla, Istanbul
TURKEY




12.

13.

14.

15.

16.

17.

18.

19.

20.

Orta Dogu Teknik Universitesi
Ankara, TURKEY

Francisco Abreu
Instituto Hidrografico
Rua Das Trinas, 49
Lisbou-2

Portugal

John Rees

Defense Mapping Agency HTC
6500 Brookes Ln.
Washington, D.C., 20315

Ken Perrin

NOAA Ship Mt. Mitchell
439 W, Yoak St.

Norfolk, Virginia 23510

Don Dreves

NOAA Ship Davidson

FPO

Seattle, Washington 99798

Peny D. Dunn

CDR/U.S. Naval Oceanographic Office
NSTL Station

Bay St. Louis, Mississippi 39522

Luis Faria

Instituto Hidrografico
Rua Das Trinas, 49
Lisboa - 2

Portugal

LCDR Douglas A. Backes
Defense Mapping Agency HTC
6500 Brookes Lane
Washington, D.C. 20315

LCDR Donald D. Winter

SMC 1745

Naval Postgraduate School
Monterey, California 93940

LCDR John Chubb

Chief of Naval Operations, Code Op-952

Department of the Navy
Washington, D.C. 20350




22.

23.

24.

25.

26.

27.

28.

29.

30.

Director

Naval Oceanography Division

Navy Observatory

34th and Massachusetts Avenue, NW
Washington, D.C. 20390

Commander

Naval Oceanography Command

NSTL Station

Bay St. Louis, Mississippi 39529

Commanding Officer

Naval Oceanographic Office

NSTL Station

Bay St. Louis, Mississippi 39529

Director (Code PPH)

Defense Mapping Agency

Bldg 56, U.S. Naval Observatory
Washington, D.C. 20305

Director (Code HO)

Defense Mapping Agency Hydrographic
Topographic Center

6500 Brookes Lane

Washington, D.C. 20315

Director (Code TSD-MC)
Defense Mapping School
Ft. Belvoir, Virginia 22060

Director

National Ocean Survey (c)

National Oceanic and Atmospheric
Administration

Rockville, Maryland 20852

Chief, Program Planning and Liaison
(NC-2)

National Oceanic and Atmospheric
Administration

Rockville, Maryland 20852

Chief, Marine Surveys and Maps (C3)

National Oceanic and Atmospheric
Administration

Rockville, Maryland 20852




31.

32.

33.

34.

35.

36.

37.

Director

Pacific Marine Center - NOAA
1801 Fairview Avenue East
Seattle, Washington 98102

Director

Atlantic Marine Center - NOAA
439 West York Street

Norvolk, Virginia 23510

Chief, Ocean Services Division

National Oceanic and Atmospheric
Administration

8060 Thirteenth Street

Silver Springs, Maryland 20910

Commanding Officer
Oceanographic Unit One
USNS BOWDITCH (T-AGS21)
Fleet Post Office

New York, New York 09501

Commanding Officer

Oceanographic Unit Two

USNS DUTTON (T-AGS22)

Fleet Post Office

San Francisco, California 96601

Commanding Officer

Oceanographic Unit Three

USNS H. H. HESS (T-AGS38)

Fleet Post Office

San Francisco, California 96601

Commanding Officer
Oceanographic Unit Four
USNS CHAUVENET (T-AGS29)

FPO San Francisco, California 96601

147







