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ABSTRACT

Repeatable accuracy of hydrographic positioning was

examined in terms of the two-dimensional normal distribution

function which results in an elliptical error figure. The

error ellipse was discussed, and two methods for conversion

of elliptical errors to circular errors were given. These

methods are "circle of equivalent probability" and "root

mean square error" (drms). Using the drms error concept,

repeatable accuracy of ranging, azimuthal, and hyperbolic

systems was evaluated, and methods were developed to draw

repeatability contours for those systems.

A brief theoretical background was provided to explain

the method of least squares and discuss its application to

hydrographic survey positioning. For ranging, hyperbolic,

azimuthal, sextant angle, and Global Positioning System the

least squares observation equations were developed. Specific

examples were constructed to demonstrate the capabilities

of this data adjustment technique when applied to redundant

position observations.
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I. INTRODUCTION

Positioning of the survey vessel is equal in importance

with depth determination in the collection of hydrographic

survey data. Fundamental to an understanding of the accuracy

of position information is an analysis of the various errors
and their sources which must be either eliminated, compen-

sated for, or otherwise modeled. The result of this analysis

is that the reliability of position data can be evaluated

and used to estimate the overall accuracy of hydrographic

soundings.

Once these potential error sources are understood,

methods must be developed to quantify accuracy. Much

research has been conducted in this area in the past. One

purpose of this thesis is to collect and present useful

concepts of error theory which apply directly to hydrographic

survey. Simple graphical techniques were developed which

can be used to produce accuracy contours as a function of

the survey net geometry.

Conventional survey techniques rely on only two lines

of position (LOP) to determine a positioning fix. This

introduces the possibility of significant error.

In navigation, although inherently less accurate than

positioning due to the techniques and systems used to

determine the LOP's, three LOP's are required to produce a
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fix. Position is adjusted graphically by placing the fix

in the center of the triangle formed by the three inter-

secting LOP's. This concept of taking one redundant

observation can lead to significant improvement in hydro-

graphic survey positioning data. Mathematical adjustment

techniques such as the method of least squares may be used

to dete:-mine the best estimate of position.

Least square adjustments are commonly performed on land

survey data where redundant observations are easily made.

With the advent of new positioning systems and computer

technology, making redundant observations at sea is no

longer impractical. The second purpose of this thesis

is to explain the basic method of least squares, and to

formulate examples of the least squares adjustment pro-

cedure applied to specific types of hydrographic survey

systems. This data adjustment technique not only provides

the best estimate of position but also may be used to deter-

mine the absolute positioning accuracy associated with each

data point in a hydrographic survey.
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II. REPEATABLE ACCURACY OF HYDROGRAPHIC

SURVEY POSITIONS

A. TYPES OF ERRORS

It is impossible to make measurements of physical data

without making errors. These measurement errors may be

classified in the following manner.

1. Blunders

These are mistakes which result from misreading

instruments, transposing figures, faulty computations, etc.

They may be large and easily observed, or smaller and less

detectable, or very small and indistinguishable in the

data. Blunders are usually detected through comparing repeated

measurements, careful editing, and procedural checks in the

data collection process. Physical measurements will contain

a constant bias if these errors are not removed from the data

set.

2. Systematic Errors

Uncalibrated instruments or environmental factors,

such as temperature and humidity changes which affect the

performance of the measuring instruments, will induce system-

atic errors into the observations. The occurrence of this

type of error may result in a pattern which can be recognized

and mathematically modeled. The simplest pattern to model

would be some observable trend in the data of constant

magnitude and direction. Such a trend can easily be

12



subtracted from the observations to remove the systematic

error.

If numerous systematic errors exist, or the errors

are such that they cannot be accurately modeled, then their

effect on the data must be estimated by calibration. Cali-

bration is the process of comparing the measuring instrument

against a known standard. The difference between the observed

and known value may be used as an estimate of the total effect

of all systematic errors present. Thus, calibration provides

a "corrector" which must be applied to the data set. Examples

of important systematic errors in hydrographic survey position-

ing include instrument errors, errors in positioning control

points, and variations in the propagation velocity of electro-

magnetic energy.

3. Random Errors

These errors result from accidental and unknown

causes. Their effect cannot be removed from the observations

and, therefore, must be quantified statistically. Random

errors have certain characteristics which facilitate such an

approach. Positive and negative errors occur with equal

frequency, small errors are more probable than large errors,

and extremely large errors rarely occur.

The frequency distribution of random errors can be

modeled mathematically by the normal distribution function.

Assuming all measurement errors are independent and random,

13



thereby conforming to the normal distribution, measurement

accuracy can be specified statistically by defining a con-

fidence interval around the best estimate of the measured

value. Procedures for computing these intervals are reviewed

in Appendix A.

B. ACCURACY OF HYDROGRAPHIC POSITIONS

The achievable accuracy of a hydrographic survey

positioning system is best described by defining the follow-

ing terms: repeatability and predictability.

Repeatability is a measure of the accuracy with which

the positioning system permits the user to return to a

specific point on the surface of the earth defined in terms

of the lines of position generated by the system. Included

in repeatability are the effects of random errors, errors

due to net geometry, and errors resulting from the angle

of intersection for the two lines of position that establish

a fix. Repeatable accuracy is therefore a measure of the

relative accuracy of a positioning system. Unresolved biases

exist in hydrographic positions due to the presence of

systematic errors that have not been subtracted from the

data or compensated for as a result of calibration.

Predictability is the measure of accuracy with which the

system can define the location of the same point in terms

of geographic (or geodetic) coordinates rather than simply

the intersection of two lines of position. Thus, predictable

14



accuracy is an absolute accuracy. Using conventional hydro-

graphic survey techniques, predictability could be achieved

only if all systematic errors were removed from the data so

that only the effects of random errors, net geometry, and

intersection angle remain. For example, the lattice generated

by an electronic positioning system is distorted primarily as

a result of the variability in the propagation velocity of

electromagnetic energy. Ideally, if there was no distortion.

of the electronic lattice, then the accuracy of a position,

corrected for any remaining systematic errors, could be

quantified statistically in terms of predictable accuracy.

However, since these distortions exist, the effective velocity

of propagation would have to be accurately modeled through-

out the survey area. Then it would be possible to subtract

the effects of this systematic error and derive positions

in terms of predictable geographic coordinates. Research

is currently being conducted to quantify the parameters which

affect propagation velocity in order to model these values

for such application [Ref. 19].

A second method to achieve predictable accuracy is by

making redundant observations to establish hydrographic

survey positions. If three intersecting lines of position

are available instead of the usual two, the resulting fix

is overdetermined, and data adjustment techniques must be

applied. The method of least squares is most useful in
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adjusting such data. Through the application of least

squares adjustment techniques, the best estimate of position

is found and the positions predictable accuracy is resolved.

A complete discussion of this procedure is presented in

Section III.

C. REPEATABLE ACCURACY

In the determination of hydrographic positions, blunders

are eliminated by observing strict survey procedures, and

system calibration is performed in an attempt to remove system-

atic errors. Because some systematic errors still remain,

the accuracy of hydrographic positions must be stated in

terms of repeatability.

The modeling of random errors is done by using the two-

dimensional normal distribution function. When the normal

distribution is applied to the positional errors, the result-

ing error figure is an ellipse.

1. Elliptical Errors

Hydrographic positions are determined by the inter-

section of two lines of position (LOP). Because of the errors

in each LOP, the actual position may lie somewhere between

the error limits (shown as additional arcs either side of

LOP's in Figure II-1).

The intersection of the two LOP's, together with the

standard errors associated with each, is drawn to an expanded

scale in Figure 11-2. By applying the two-dimensional normal

16
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distribution to positional errors, it is seen that the contours

of equal probability density about such an intersection are

ellipses with their center at the intersection point.

For simplicity in the discussion, the following assump-

tions are made:

1. Only errors contributing to repeatable accuracy are
considered.

2. The random errors associated with each LOP are
assumed to be normally distributed.

3. The random errors in each LOP are assumed to be
independent, i.e., a change in the error of one
LOP has no effect upon the other.

4. The LOP's are assumed to be straight lines in the
small area in the immediate vicinity of their
intersection.

5. Errors of position are limited to the two- I

dimensional case.

As shown in Figure 11-2, the general case of the inter-

section of two LOP's at any angle and with different values

of errors associated with each LOP results in an elliptical

error figure.

It is readily seen from Figure 11-2 that the exact shape

of the error ellipse varies with the magnitudes of both of

the one-dimensional LOP errors, a1 and a2, as well as with

the angle of intersection, 0.

The values of the semi-major and semi-minor axes of the

error ellipse (using one a error) are given by the following

equations [Refs. 4 and 5].

19



Semi-major axis:

2 2.
r1op

Semi-minor axis:
1t

2SinI 2 PnL _ 2

Generally aI  a a2 = a, then equations (ll-la) and (Il-lb)

simplify to

or;_= _" an A . (11-2)
iSin (0/1)

After computing the semi-major and semi-minor axes, the

probability of the error ellipse is given by the distribution

function

P 72- (11-3)

where

(x and y are the errors in the direction of ax and ay

20



The solution of equation 11-3 with values of h for different

probabilities yields the results shown in Table I-1.

Probability (%) h

39.35 1.0000

SO.O0 1.1774

63.21 1.4142

90.00 2.1460

99.00 3.0349

99.78 3.S000

Table II-1: Values of constant h.

For example, for 39.35% probability the axes of the

ellipse are 1.00 a and 1.00 a ; for 50% probability the axes

are 1.1774 o and 1.1774 a Figure 11-3 shows the error

ellipses for different values of h.

The angle, 6, between the semi-major axis of the error

ellipse and the line of position which has smaller standard

error is given by [Ref. 5]

4+on 2 Sin 1 (11-4)
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where aI is the smaller standard error. In the case of

a, a a2' equation 11-4 simplifies to

The importance of the angle 6 is that it specifies the

orientation of the error ellipse according to the lines of

position.

2. Circular Error Approximations

In general, the use of the error ellipse is compli-

cated by the problem of axis orientation and the propagation

of elliptical errors. Therefore, in order to simplify

probability calculations and avoid the above problems, the

elliptical errors are approximated by circular errors which

are easier to use and understand. The accuracy of a hydro-

graphic position may then be stated in terms of a circle of

specified radius about the point.

Note that when the angle of intersection is a right

angle and the two errors are equal, the error ellipse becomes

a circle and is described by the circular normal distribution.

Generally, this is not the case, and elliptical errors must

be converted to circular errors. This is done by using either

the circle of equivalent probability or the root-mean-square

error concept.

a. Circle of Equivalent Probability

A circle of equivalent probability is obtained

utilizing an existing table for the two-dimensional normal

23
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distribution (Table 11-2). This table is used with the

two standard errors along the semi-major and semi-minor axes

of the error ellipse (Equations II-la, II-lb or 11-2). To

find the radius of equivalent probability, equations II-la,

II-lb or 11-2 must first be utilized to obtain the values of

ax and aY To enter the table the following ratios are needed:

a
c = - where a is the greater standard errorax X

and

K = Radius of circle of equivalent probabilityGreater standard error

where K is the conversion factor needed to solve for the

radius (R) of the circle of equivalent probability.

The table relates varying values of ellipticity

to the radius of circles of equivalent probability. Enter

the table with the computed values for c and K to determine

the probability for a circle of given radius, or alternately,

for a given value of probability, determine the radius of the

error circle.

EXAMPLE 1i-i: The two standard errors of a positioning

system estimated from field observations are a,- 2 a 6 meters.

To determine the probability of location within a circle of

10 m radius when the angle of intersection, 8, is 600,

equation 11-2 must be used to find ax and ay:
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Table 11-2: Circular error probabilities
CBowditch, 1977).
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0= - . 'I =4.9m.
{C-os Pl q2cos 6 0

Using the ratio, c- 4 _ .9 - 5 S and

roAis of c=iLe= 10 _ .2.

enter Table 11-2 with K = 1.2 and c = .58 - .6. The proba-

bility is found to be approximately 67%. (The value in the

table is .6714269.)

EXAMPLE II-2: For the system described in example H-1,

the radius of the error circle with 90% probability may be

determined.

First, entering Table II-2 with c = .6, for 90%

probability (the closest table value is .9019110), K is

found to be 1.8. The radius of the error circle is equal

to K times ax :

1.8 x 8.48 = 15.3 meters.
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Table 11-3 is more convenient for solving

problems such as in example 11-2 because the table is entered

by using values of c and probability, P, in order to solve

for the conversion factor, K. Note that the error circles

identifying the 50% probability area (circular error

probable, or CEP) and 90% area (circular map accuracy

standard, or CMAS) are the most frequently used probability

intervals.

For constant values of aI and a 2 circular error

probabilities vary as a function of the angle of intersection,

0, of the lines of position. To simplify the investigation of

geometrical effects, the common case of a, =2 - a will be

considered. Under this condition, the equations for a and ay

simplify to equation 11-2. Taking the ratio of these two

values, c is found to be C = 6-/1 ty on(.'/ . Using

the simplified equations, significant parameters of the error

ellipse have been listed in Table 11-4 as a function of the

intersection angle, a, for the 50% probability interval (CEP)

and in Table II-S, for the 90% probability interval. The

data shows that the radius of the error circle, R, increases as

the angle of intersection decreases. In the last columns,

the error factor is defined as

Error factor *R (at any intersection angle)
R (at a 90- )
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or a multiplier by which the error circle radius, R, at any

intersection angle may be computed from the radius of the error

circle at 8 " 900. For example, from Table 11-4 it is seen

that at a 500 intersection angle, R is 1.206 times greater

than the radius at 8 - 90*.

As seen in Tables 11-4 and I-S, the optimum

accuracy is obtained when the intersection angle, 0, is 900.

It can be said that the geometric dilution of precision (GDOP)

is minimum for a 900 intersection angle. Thus, the error

factor defined in Tables 11-4 and 11-5 is commonly known

as GDOP. Effects of geometric dilution are shown in Figure

11-4 for CEP and 90% probability interval (CMAS). Acceptable

intersection angles for LOP's used in fixing hydrographic

positions usually range between the limits of 300 and 1500.

As seen in Figure 11-4, the radius of the 900 probability

interval circle is increased by a factor of two near the

acceptable limits for hydrographic fix angles. Correspond-

ingly, positioning accuracy is decreased by a factor of two.

b. Root-Mean Square Error (drms)

The root-mean-square error, drms , is defined as

the square root of the sum of the squares of the error

components along the major and minor axes of the error ellipse.

To calculate the drms error, first equations II-la, lb or

11-2 are utilized to obtain the values of ax and ay. Then

the definition of drms is used,
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Figure 11-4: Geometric dilution
of precision for CEP and 90% probability
interval (Bowditch, 1977).

d.= (11-6)

where a a x is the semi-major axis of the error ellipse

and b a y is the semi-minor axis.

Alternately, formulas II-la and II-lb are sub-

stituted into the definition of drms error (equation N1-6)

and a more useful form of drms is obtained in terms of

a1 ' a and the angle of intersection, 0:

,-11 -7)

Figure HI-S illustrates the definition of drms error.
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Figure II-S: Illustration of root mean square error.

One drms is defined as the radius of the error circle

obtained using one ax and one ay as the semi-major and semi-

minor axes of the error ellipse. Two d 5s is defined as the

radius of the error circle obtained using two times the

ax and a y values.

The value of drms does not correspond to a fixed

probability interval for given values of a 1 and a2. It

corresponds to a fixed probability interval only when

900 and a 1 - a2 so that the resulting probability figure

is a circle. In the elliptical cases, the probability

associated with a fixed value of dr, varies as a function of
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the eccentricity of the error ellipse. This can easily be

seen with an example using Table 11-2.

First, consider ax = 15 m, ay 10 m

d,.gls of etls o" (tio--+rS=(~~ o --IBm ,

C= .66 onA r= - .

For c = .666 table values must be interpolated. Enter

Table 11-2 with c = .6 and c - .7 for K = 1.2. The correspond-

ing table values are found to be .6714269 and .6306168.

Thus the probability of 18 m drms is found to be 64.78%.

Secondly, consider ax  17 m, ay 6 m

C= I .353 on I(= i_8 1.059.

The interpolated probability from Table 11-2 is 67.4%.

As seen above for the two cases, drms errors are equal but

c values (eccentricity) are different. As a result the

corresponding probabilities are 64.78% and 67.4%.

Table 11-6 shows the variations in probability

associated with the values of 1 drms and 2 drms as a

function of eccentricity (ay/ax), and Figure 11-6 shows the

same information graphically for 1 drms error.
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Probability

0 .683 .954

.1 .682 A9SS

.2 .682 .9S7

.3 .676 .961

.4 .671 .966

.5 .662 .969

.6 .6S0 .973

.7 .641 .977

.8 .63S .980

.9 .632 .981

1.0 .632 .982

Table 11-6: Variations in probability as a function of
eccentricity (Bowditch, 1977).
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As seen in Table 11-6, the probability that the

position will be within the 1 drms error circle ranges from

68.3% when ay = 0.0 to 63.2% when ay = a x and two drms

ranges from 95.4% to 98.2%, respectively.

In Equation 11-7, the drms error was given

assuming the errors in each line of position are independent.

If the measurement of line of position #1 is related to

measurement of line of position #2, then there is correla-

tion between 01 and a2; e.g., al is dependent on 2or a

change in a1 produces a corresponding change in a In

this case, the equation for the root mean square position

error is given as

~ \/~,. ~ ~2oa 2 .os~(11-8)

where is the correlation coefficient between a1 and a2 .

Two different derivations of this equation are presented in

the following papers: Bigelow (1963) and Heinzen (1977)

[Refs. 2 and 10].

In summary, root mean square error is easy to

obtain mathematically, and it yields relative values of

accuracy which are normally understood. Therefore, in subse-

quent sections, drms will be used to explain the repeatable

accuracies of hydrographic positioning systems.
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D. REPEATABLE ACCURACY OF HYDROGRAPHIC POSITIONING SYSTEMS

1. Ranging Systems

In ranging systems, the lines of positions are drawn
as circles centered about each control station. The repeat-

ability of this type of system is a function of the inter-
section angle, 8, and the random errors associated with each

line of position.

The two ranges are independent of each other. There-
fore, the correlation coefficient, e, is zero, and drm s is

given by Equation 11-7 which is repeated here :

r-s 4. (111-9)
Sin V

Usually, the standard errors of the two shore stations are

equal. The system standard error, as, of a time measuring

positioning system is given as

a - 2 s

The system standard error, as, of a phase comparison
positioning system is computed as a fraction of the lane width
so that a1  a a2 - aw - as, where a is the standard error of
range in fractions of a lane (i.e., a - .1 lanes) and w is

lane width. Then Equation 11-9 reduces to
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irms (II-10)

where as is the system standard error.

As seen from the above formula, the drms is

smallest at a 900 intersection angle and becomes large as

8 approaches 00 or 1800.

2. Hyperbolic Systems

As in ranging systems, the repeatable accuracy of

hyperbolic systems is a function of intersection angle and

random errors. Because landwidth is not constant for hyper-

bolic systems, the change in lane width must also be quanti-

fied. As the user moves away from the base line between the

master and a slave unit, the lane becomes wider due to the

divergence of the hyperbolic LOP's [Ref. 8]. This divergence

is expressed as an expansion factor, E:

El- 1/sin (ei/2).,

where ei is the angle between the radius vectors from the

position at p to the master and the respective slave station

(Figure 11-7). Then the standard error of one line of

position at p is

T F =(a)
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S1
IM S2

Figure 11-7: A hyperbolic triad

where a is standard error in the base line in fractions of

a line, w is lane width and B expansion factor.

The hyperbolic LOP's bisect the angle between the

radius vectors from p to master station and the respective

slave station. Therefore, the angle of intersection, 8, is

+ (b)

Substituting equations (a) and (b) into 11-8, d r5 becomes

I I

2. 2/2
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In a triad (three-station net) one range is common to both

lines of position. Therefore, the correlation coefficient

is not zero. Bigelow (1963) [Ref. 2] assumes a value for

the correlation coefficient, e, of 0.33 while Swanson (1963)
[Ref. 14] gets L - 0.4. Since the determination of this

value is based on observations comprising a statistical
sample, the most conservative value of d may be obtained

rms

by using L - 0.4.

3. Azimuthal Systems

In an azimuthal system, whether it is optical or

electronic, the lines of position are radial vectors eminating

from each of the shore stations. The repeatability of such

systems is dependent upon the angular resolution of the

system, and the angle of intersection of the radial vectors.

The errors of position depend on:

(1) the distance, r, along the radial,

(2) the angular resolution, a, in degrees,

(3) the angle of intersection, 0.

The angular error may be expressed as an arc distance perpen-

dicular to the respective radial at p as

L = (a)

5f.296 1

where r is the distance along the radial,a is angular resolu-

tion, and 57.296 is conversion factor from degrees to radians.
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Figure 11-8: Azimuthal System Repeatabilityj

The two shore stations are independent; therefore, the corre-

lation coefficient, e, is zero.
Substituting Equation (a) into 11-7.

Applying the sine law to the triangle shown in Figure 11-8,J

it is seen that

Vn 9.4 Sine, ion C% 0
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where Sin (1800 - (8I + 02)]- Sin 8 - Sin (01 + ez) and

b - baseline distance. And Equation 11-12 may be written

as

q*n-%-tSne2 (11-13)

Bigelow (1963) (Ref. 2] approximates Equation 11-13 by

letting__________

Ir \r2.

Then Equation 11-13 reduces to

Arms J.i (11-14)

Equation 11-14 is the approximate form of Equation 11-13.

However, Equation 11-14 is easier to compute and the error

introduced is negligible. For a = .030, b = 8000 meters,

01 - 800, 6 2 3001comparing the, equations 11-13 and 11-14:

using 11-13

S (:o3(Booo)0 ( 4_-1n, Bo+ tSn30 --_S.2m

using 11-14

dr.ms =(-o3 (8ooo). .i,_ 5. 5
di r. 03) 0 (800
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it is seen that the difference between Equation 11-13 and

Equation 11-14 is negligible.

4. Sextant Angle Positions (Three Point Fixes)

The evaluation of repeatability for sextant angle

positions is difficult. The mathematics involved in the

computation are quite complex. Thus, repeatability of

sextant angle positions is more easily evaluated by a graphi-

cal analysis. For the development of an analytical solution,

see Heinzen (1977) [Ref. 10].

As will be seen in later sections, it is much easier

to derive the accuracy of sextant angle positions by applying

the method of least squares.

E. REPEATABILITY CONTOURS

Using the root mean square error concept, one can con-

struct a family of curves to display convenient values of

d rms in terms of the system geometry.

1. Ranging Systems

For ranging systems, the drms is given by

Equation II-10 as

rmsI-lO)

Note that the intersection angle, 0, is the only

controlling geometric factor of drms' Figure 11-9 shows an

example of suitable geometry for a ranging system. Mathemati-

cally, it can be proven that the intersection angle, B,
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is equal to the angle formed by radius vectors from p to

the slaves and also the angles S1OD and S2OD. The locus of

points having a constant drms and constant 0 describes a

circle of radius r - b/2 Sin 0 with the two shore stations

as points on the circle.

The distance, e, along the perpendicular bisector of

the line connecting two shore stations to the center of the

circle is

e (11-15)

(since, from Figure 11-9, tan a = ) where b is the distance

between shore stations S1 and S

Using Z as error (approximately 95% probability

interval),Equation II-10 may be written in the following

form
arms_

Writing Equation II-15 as

Figure II-10 was constructed to show the relationship of

drms/a s and e/b as a function of intersection angle, 0.

Using this graph, selected contours of constant drms may

be drawn as in Figure II-ll. First, plot the location
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Figure 11-9: Ranging system geometry.

of the two shore stations at a convenient scale. Draw a

perpendicular bisector to the line joining them. Using

Figure II-10 determine the values of e/b for the desired

d contours. From the known value of b, determine distance

e for each contour. Lay off distance e along the perpen-

dicular bisector to define the center, 0, of the desired

constant da circle. The radius of the selected contour

is the distance from the center, point 0, to the shore

stations.
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Example 11-3: A phase comparison range-range

positioning system has standard error au .01 w (lane width).

It operates at 2 Mhz frequency. The distance, b, between two

shore stations is 20,000 an.

Lane idth, v 300 000 7

a s w -7S5x .01- .7Sinm

For the 2 mn din r otu, d rs /as 2/.75S 2.66.

Enter Figure 11-10 with drs /as = 2.66 which intersect the

d lacurve at 850. Follow the SS line vertically to

100 _____

30 .3

20 .2

3 .~ ~ -. .03

2.0
100 200 300 4050O60*7080090
1700 160* 15001401300120011001000

Intersection angle, 0, in degrees

Figure II-10: For ranging systems, the graph of the
d rs / 3and c/b. (For enlarged igure,

see Appendix B.)
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the e/b curve. It intersects at e/b ..043. For this

specific pair where b = 20,000 m,

e - b (.043) = 860 m

Using the described technique, the 2m drms contour

can be drawn, and the result is shown in Figure II-ll.

Thus between the 2m d contour for 8 - 85' and the 2m d
rms rms

contour for 8 = 9S° , the drms error for the described system

will be < 2m. 9SS of the time.

Note that when the angle of intersection, 8 900,

drms error is minimum. Therefore, as a increases toward

1800 or decreases toward 0, d becomes larger. Because

the tangent of the angles greater than 901 is negative,

e values will be negative as well. Thus, the center of

the constant drms circles, for angles greater than 900,

will be on opposite side of the baseline. As shown in

Figure II-11, drms error increases as the baseline is approached.

Contours for drms values of 3, 4 and S meters may be constructed

by following the procedures outlined above.

2. Azimuthal Systems

For azimuthal systems, drm s error is given by

Equation 11-14 as

flems a-
01 %s-#.296 Skn S-fl /2.
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where a is the angular resolution, measured in degrees,

b is the distance between two azimuth stations and a is

the intersection angle of radial vectors which is defined by

the equation = 1800 - (e1 + 82) (Figure 11-8). As with

ranging systems, the intersection angle, 8, is the only

geometric factor contributing to drms . Constant error con-

tours are obtained in a similar fashion.

Writing the Equation 11-14 with 2a error (approximately

95% probability interval) as

drms

where a = angular resolution and b = baseline distance.
Since e/b - 1/(2 tan 8), a graph is drawn showing d rms/a'b

and e/b as a function of intersection angle, o (Figure 11-12).
Figure 11-12 provides a convenient means to obtain

the values of e distance for a selected drms if a and b

are known.

Example 11-4: The distance, b, between two azimuth

shore stations is 2,000 m. Angular resolution of the station

is a1 a 2 U .010.

For the 2 meters d rms contour

drms 2

a- .01 x 20"4
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Figure 11-12: For azimuthal systems, the graph of

(For enlarged figure, see Appendix B.)
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Enter Figure 11-12 with d rms/a.b - .1 which intersects

the drms /a'b curve at 44§ . Follow 44* line vertically to the

e/b curve, which intersects at e/b = .52. For this pair where

b = 2,000 m, e - 2,000 x .52 - 1040 m. Using the technique

as described for ranging systems the 2m drms error contour

may be drawn (Figure 11-13). Other contours are computed

in same manner.

Note that when 0 > 900 , the tangent value is negative

and the center of constant drms circle will be on the

opposite side of the baseline. For azimuthal systems, the

minimum drms error is found at 0 = 1090.

3. Hyperbolic Systems

The root mean square error for hyperbolic systems

is given by Equation II-11 as

2. 2

where a is the standard error along the baseline between the

master and respective slave station in fractions of a lane,

w is the lane width and a is the intersection angle which is

equal to
e 1+e6

S-1 2 (Figure 11-7).
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Figure 11-13: Repeatability contours of an azimuthal system.
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Equation II-1i is written with 2a error as

d~.r s 2 4 I ____

where the correlation coefficient, e, was taken as .4
[Ref. 14]. Figure 11-14 was produced to show the d law

rms
values as a function of the angle subtended by the two slave

stations, i.e., 28.

A parameter, p, defined as

91G -t 02 e,9 1

The parameter, p, is computed with the smaller of the two V
angles, al or a2' in the denominator. Thus when p - 2

the master station is positioned on the bisector of the angle

subtended by two slave stations, p = 3 places master station

on one of the two trisectors, and so on (Table 11-7).

Knowing the angle subtended by the two slave stations

at a particular point, Figure 11-14 may be used to develop

contours of constant drms* First determine the drms law ratio

for a selected drms . Enter Figure 11-14, for several values

of parameter p, and read the corresponding values of angle 2s.

Using the relation between 20 and 61 (e2) (Table 11-7), plot

these angles, 20 and 81 (82), on a conveniently scaled chart
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0. 50. 100. 150. 200. 250. 300.

20, in degrees
Figure 11-14: In hyperbolic systems, for several values of p,

drms/w curves.
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eore

2 (2a)/24

3 (28)/3

4 (2$)/4

5 (2B)/5

6 (20)/6

8 (2B)/8

9 (2B)/9

10 (28)/10

Table H1-7: Relation between 28 and eor e
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with a three arm protractor. Interpolating between the points,

draw the drms contour. The curve thus determined defines the

location of a selected drms contour for the specific conditions

of triad configuration.

Example 11-5: A hyperbolic system has standard

error, a, equal to .01 lanes along the base line. It

operates at a frequency of 2 Mhz. Triad configuration is

as seen in Figure 11-15 :

lane width, w = v 300 000 75 m

aw = 75 m x .01 = .75 m.

For the 4 m drms contour,drs/aw 4/.75 = 5.32. Enter

Figure 11-14 with d /aw - 5.32. For several values of p,rms

read the corresponding values of angle 20. Determine the

values of angles e1 or e2 according to Table 11-7. For the

4m contour, these values are shown in Table 11-8. Using a

three arm protractor, the points defining the 4m drms contour

may be plotted. The other contours are drawn in a similar

manner (Figure 11-15).

I
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Figure 11-IS: Repeatability contours of a hyperbolic system
(a a .01 lane width and f *2 u'hz)
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III. APPLICATION OF LEAST SQUARES TO

HYDROGRAPHIC SURVEY POSITIONS

A. THE PRINCIPLE OF LEAST SQUARES

Given a set of unknown parameters to be computed from

measured physical quantities such as distance or azimuth,

the least squares method provides a mathematical procedure

by which the best values for the unknown parameters may be

obtained.

Equations must be written to define the relationship

between the observed and the unknown parameters. If the

number of equations that can be written is equal to the number

of unknowns, then a unique solution may be computed.

However, no statement can be made about the accuracy of

the solution. In the least square method, the number of

equations must be greater than the number of unknowns.

As a result of this over-determined solution, the best values

for the unknown parameters are estimated.

This computational procedure is referred to as a least

squares adjustment. In application, corrections are com-

puted and applied to observed quantities and these quantities

are then said to be adjusted.

For a given set of equations, the fundamental condition

of the least square technique requires that the sum of the

squares of the residuals be minimized. A residual is defined
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as the difference between an oberved value of a quantity

and the arithmetical mean value of that quantity obtained

from a number of observations. If the arithmetical mean value

is stated by x. and observed value by xi, the residual, v,

is expressed as

v xf xi - " I-l

Suppose a set of observations were taken having residuals

vl, v2, v3 ....., vn. Then in equation form, the fundamental

condition of least squares is expressed as

~ (~L~ J&+ 2) +('J) +.. . .M(V=m um (111-2)
Lai

or in matrix form: vTv -minimum.

1. Weighted Observations

In general, some of the observed values may be more

precise, and, therefore, entitled to have greater influence

upon the result. Observations are assigned values called

weights corresponding to their quality or worth.

The assignment of weights to observed values is

largely a matter of judgment. For example, if one set of

measurements of a distance was made with four repetitions

and another was made with eight repetitions, the mean of the

second set of observations may be given twice the weight
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of the first set. Or, when measuring angles in azimuth angle

positions, the atmosphere may be so unsteady during one obser-

vation that the observer arbitrarily assigns a weight of

one half.

As a general rule, if a standard error, a, has been

computed for a set of observations, then weights are usually

estimated according to the equation

(111-3)

where wi is the weight of the ith observed quantity, oi
12

is the standard error of that observationland k2 is any

number which has the same value for all observations.

Equation 111-3 states that weights are inversely proportional

to the square of the standard error. Usually, the weight

corresponding to the least accurate measurement is assigned

a value of 1 (a unit weight). Then the value of k can be

found and the other weights computed accordingly.

For example, consider the standard error for two

observations where a1 - 3, and a2 = 1.S. Assigning w1 - 1

wa-- == 9

W'j- 94
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it is found that the second observation has a weight of 4 relative

to the first observation.

If measured values are to be weighted and used in a

least squares adjustment, then the condition is that the sum

of the weight times their corresponding squared residuals

must be minimized,

or in the matrix form, \JT'\V = Ynroimrnurn

2. Method of Least Squares Adjustment

In the "observation equations" method of least

squares adjustment, the observed quantities are related to

the desired unknown quantities through formulas or functions

which are called observation equations.

One observation equation is written for each measure-

ment, and it is assumed that observations are independent

of each other. In order to solve for the best value of each

unknown parameter, at least one redundant observation equation

must be written. That is, the number of observations must

be greater than the unknowns.

Observation equations may be linear or higher order

functions. Linear observation equations can be written in

general as follows:
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021-+61 *~ C2-L+ .*k2 OX2i

QOI y + n CnL Gin ~

where a's, b's, c's, etc. are coefficients of unknowns x, y,

z, etc. and the k's are constants.

Because the observations (Gl, G.. .G ) are not
2* * *n

free from random errorsV each G. must be corrected by a
1

residual value, v1, in order to obtain a mathematically

correct equation system. Thus,

+ +

Introducing a new notation Xa G- k1, 2 2 G2  k k2 0

etc., the following equation is obtained:
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011. +619 +cl-L

or in the matrix form, V =AX -L(1-8

This equation is called the observation equation or observa-

tion equation matrix, where

SA

I
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In the above matrices, the subscript n denotes the number of

observations and m denotes the number of unknowns.

For a group of equally weighted observations, recall

that the following condition must be enforced in order to

perform a least square adjustment:

4

or in the matrix form1

vTv - minimum.

Substituting the value for the V matrix from the observation

Equation 111-8 where V = AX - L,

and from matrix algebra, LT y
1

, = )CATL

then

A*A X-I ) L +L .
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The minimum of this function can be found by taking

the partial derivatives of the function with respect to each

unknown or with respect to the X matrix (which contains all

of the unknowns) and equating it to zero, i.e.:

"1 =2KAY, -2 L =o.

Dividing by 2, the following result is obtained:

A Y AL --- O. (M- 9

This is called the normal equation. In conventional notation,

the normal equation (111-9) becomes

loc] 'A + r-6:1,9 + Cocl + ..... ---C ] =0

NbO I I + 661Ec9 ..+o ...... _.tbit] =0

[Cal X + Ec.6]g +, Erc,]'z ..... CA -0
I II I
I I !

[no] 's., £n ,3s +Er cT'i + ........ Cnti3 -0,

where the symbol [ ] denotes the sum of the products, i.e.,

[aa] - ala 1 + a2a 2 + a3 a + anan, [bal bl a

+ b2a2 + bea 3 +. ..... + bnan.
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In Equation 111-9, A TA is the matrix of normal

equation coefficients of the unknowns. Multiplying Equation

111-9 by (ATA)"1 and reducing, the solution is obtained.

WA A ) Y L, - A 0

Equation II-10 is the basic least squares matrix equation

for equally weighted observations. The matrix X consist of

best values for the unknowns x, y, z, etc.

For a system of weighted observations the funda-

mental condition is

wcI NOLJ m'L rinmom,

or in the matrix form , mu.i= rIrinu.

The normal equation matrix is derived similarly to

the unweighted case.

A )(i-11)

or in conventional notation,
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-'4a] . E .+. ......... -. a1' =0
1-MC 'Nb, I

3)t + ., 1 ..... 1 0.

In Equation III-11 the matrices are identical to those of

the equally weighted equation, with the addition of the

matrix, W, which is a diagonal nxn matrix.

In detail, \N becomes

W1 0 0 0

i = o 0 0 IIl)!
0 W2 0 0(111-12)

0 0 V43  0

0 0 0 jL

where according to Equation 111-3,

The best values of unknowns are obtained by solving

Equation III-11 as
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#7 N/A \ L.

From the combination of Equations 111-8 and 111-9 or 111-8

and III-11,it is seen that

A t(' L) ATL_ =o0 or

Therefore,

ATV o0 cr A WNV - 0. (III-14)

Equation 111-14 can be used as a check on the computation.

Example III-11: As an elementary example illustrating

the method of least squares adjustment by the observation

equation method, consider the following equally weighted

observations:

I.'A, +a-,L. +1,3 =" 0

-W -. - --

'The numerical values of this example problem were taken
from Ref. 17, page 517.
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These four equations relate the three unknowns xl, x2 and

x to the observations.

By including residuals, the equations may be

rewritten as observation equations as follows:

I' -2. - %s = io '4

or in matrix form,

14 L =4 3  3) -- I -t

where

3 31 10 V

j-2. 3

-V -3 - -6 V4
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I
The normal equation is A1A Y, - AL =O;

2. 1. 1 -1 2 3 1. S5 12. -6
L. -2 3

3 IQ. -

2. i oL 10 52.

ML.= 3-21 -A . 29
3

1 3 -2 1 _, 25

55 .-.

- is -4 X, 29

And the solution is % (A$ A ' AJL ;

0219.59 -. o1fe7 .9oo B7'

(ATA)~.oi0 9 .o3113 .013562.3

•00"7 5 • 0156123 .074483
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o 21959 -016l1 oo -isTh 52.

~w -. 016181' .*1333 01o3s162.3 2.9

.007B75 .oasbll3 O-f I 4 32.
LO J J

x r = 1.916,x2 .119ado 2648

This computation was performed by requiring that

V V - minimum. Thus, when the best values are used in the

equation V - AX - L, the resulting minimized residuals can

be found. If the minimized residuals are applied to the

observations then the observations are said to be adjusted.

2. 3 L .9141 10 .2-3035
-23S -088S6

q,% ALL 1.91109 * 2 .51

-i -. 1 2.6649 -6 .5019 a
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.23035

'J/ .0 856

-. 053'f

L 5o"93J

Then adjusted observations are G 10.23035, G2  5.08856,

G3 = 2.9403 and G4  -5.49207.

Computational check: ATV must be equal to zero

according to Equation 111-14.

t.

2.1. T -. •.23o35 .000

AN=3 -2 1 -1 = .000

-- os9'f

L 3 -2 -L .soIS3 .000

According to the theory of probability, the

above values of x1 , x2 and x3 have the highest probability

of occurrence.

Example 111-2: Suppose the constant terms 10, 5,

3, and -6 of the observation equations of Example III-1

represent measurements having relative weights of 1, 2, 2,

and 3, respectively. Using weighted least squares, best

values for xl, x2 and x3 will be calculated.
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The observation equations in Example III-1 were

2-1,2 33 x .3 =5+q2

1I -t2k2 2*3 = t3

-)IX 1, - 3 -6t i

or in the matrix form,,

V AX L

where

2. 3 1. to

The normal equation for weighted observations is

AjWA)Y% =AN o,

where weight matrix WN is a diagonal matrix of weights as

follows:

~~ 00 0
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. .0 0 0 2 3 , 107- Is 14

AN4A" 3 -2 1 -1 0200 3 I s 9. -to
002 1 2

L -,L-.J 0 0 03 - i -43 -i0 3o

-1 3 0 0 0 to 90

PNN JL 3 0j 000 5 34
. . 2. 0 L

107 19 -11 90

*-"Lo 2 -10 34 =0

-17 -1o 30 K3  46

The solution is W= (M'A V- A\NL/L

.0113893 -. O11314 . 00374 90

-. oo1314 .os939 S OlStE, 34

.00 4 $ 01512 5L .040514- 46

1 37.01

2 I..1gI56

or I1 .. Oi , w== i.S, an& 1.= 2I..'a&.
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IL

Residuals are found using Equation 111-8:

2. 3 1 10 .s136

.92.01
i Z3 5•09 87= A - = .9856 -

S-2. 3 -.oo6s
2.+1 &6

- - -i -6 .37

Computational check: A'WV must be equal to

zero.

-0 0 0 -[ ". 513(, .o0S
PJWV= 3 -2 -1 0 .098 -

[0 020 -oi .000
-2 0 0 3 = .000

3. Higher Order Functions

The observation equations presented by Equation 111-8

are linear equations. If this relationship is nonlinear,

thus defined by a higher order function, then the observation

equations must be linearized in order to apply the least

square adjustment method.

Defining the general observation equation as

G - f(x, y), where f represents a non-linear function.

The function must be linearized by Taylor series expansion

or by some other method. The best values of x and y can be
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regarded as the sum of an approximate value xo, yo and a

small correction Ax, Ay. Therefore x = x o + Ax and

y = y0 + Ay and the above function is written in the following

form

G a f(x 0 + Ax, YO Ay).

Using Taylor series expansion the observation equations may

be linearized.

-yo - b O  ( I11 -14)

The higher order terms in the series are neglected and only

the zero and first order terms are maintained.

After linearization, the observation equations

become

?Yo
.Y (III-15)M.

* I

4n *~G~YtI + + & n G
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or in the matrix form, V = AX - L, where

F '

L4 A_ L=ntf %.

DI ]

The remainder of the least square procedure is the same as

indicated by Equations 111-9, 111-10 or 111-l, 111-13.

In the linearization process, the higher order terms

were neglected. For this assumption to be valid, Ax and

Ay should be small so that their products in the series

expansion approach zero (Ax - Ay = 0). This can be achieved

only if the values of xo and yo are very close to the values

of x and y. Therefore, xo and yo must be precomputed, or

the original assumed xo and yo must be improved by successive

iterations until the adjusted observations equal the measured

values.
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4. Equations for the Precision of Adjusted Quantities

After calculating the best values of the unknowns,

or X matrix, the V matrix~or the adjustments to the observations,

can be computed from the observation equation which is

V - AX - L, whether the observations are weighted or not.

Using the V matrix, the standard error of an obser-

vation of unit weight is given by the following equations

[Ref. 17]:

for unweighted observations,

v (III-16a)-- n-m vn-rn

for weighted observations,

--- L --= # j _... (III-16b)

V i-m V -m

where

oois the standard error of an observation which has unit

weight,.

n is the number of observations,

m is the number of unknowns.
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Standard errors of the best values for the unknowns are

then given by the following equation:

.9 (111-17)

where

ai  is the standard error of the ith adjusted quantity,

e.g., the quantity in the ith row of the X matrix,

Cy is the standard error of unit weight as found by

Equation III-16a or III-16b,

qi£ is an element of, for unweighted case, (ATA)-1

or, for weighted case, (ATWA)"1 matrix.

If the (ATA)l or (ATWA)-I matrices are written in detailed

form as

*- It A '' W ''  1%t 9'' 923Iq--
9 31. 911 933--

then the standard errors of the best values of the individual

adjusted quantities are:

801,
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CY2. = or> 22

Example 111-3: The standard errors of the best

values for xj, x 2 and x 3 in Example 111-1.

Standard error of unit weight for unweighted

observation is

n-rn

F 44

\1L 23035 .08,B56 -. 00597? .50793]

- cf93

T~o .31S__ 3

0,-0 V 3
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The standard errors of the best values are given by

Equation 111-17 as crz =9.

For unweighted observations, qi 's are the elements

of CATA)'I which was calculated in Example III-1.

.0fl859 _.O14I%2- .0078"+5

083233 .011.562-3

.0o0845 .0135b23 . O0+LI'33

-_ 6.5& =. 0 If.0 853 - .085,

_ 2. Cr s5s oas23 =- '.1,

In the (A TA)-I matrix, off diagonal terms are used

to find the covariances of unknowns. Covariance a1 2

is equal to

From covariances, the correlation coefficients of variables

are obtained. Correlation coefficient el, is given as
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The interpretation of the standard errors computed

above is that there is a 68% probability that the adjusted

values for xl, x2 and x3 are within ±.085, ±.163 and t.154

of their true values, respectively.

Example 111-4: The standard errors of xl, x2 and

x in Example 111-2.

The standard error of unit weight for weighted

observations is

o n-rn -

00 0 .5198
098-.0069 -34 -7-. Oo 31 j 0 09

0 2 0 -. 0o69

= .1. I4.
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The standard errors of best values are given as

0-0oV~T

For weighted observations, qj' are the elements of (A TWA) -l
which has been already calculated in Example 111-2.

0i 11 IR39 -.O8C)~ 003 f +

(XrATVJ D..O 81314 .0593,-95 '015I8sq

0o3-+4 .OIS1854 .0O05oSIJ

Lis Va-59(i-9 I . 2o54f
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B. APPLICATION OF LEAST SQUARES TO HYDROGRAPHIC

POSITIONING SYSTEMS

If redundant data are available, the least square adjust-

ment method may be used to compute the coordinates of hydro-

graphic survey positions. Observation equations may be

written for various types of survey methods. By expressing

these equations in matrix notation and using successive approxi-

mations of the unknowns, the best values for the coordinates

of survey positions may be determined. The predictable

accuracy of these best values may also be found. Thus,

redundant observations, coupled with mathematical data

adjustment techniques, produce a viable method of system

calibration for hydrographic survey data. This method of

calibration is referred to as auto calubration.

1. Azimuth Angle Positions

The working range of azimuthal systems is limited to

line of sight distances, i.e., 5-15 nautical miles, depending

upon the height of the observing instrument.

Because of this range limit, the Universal Transverse

Mercator (UTM), or other plane coordinate systems, may be used.

Let
y1' Y2' Y3 a Northings of the shore stations 1, 2 and 3,

respectively,

X1 , x2, x3 " Eastings of the shore stations 1, 2 and 3,

respectively,

P - The position of the survey vessel.
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Then, the azimuth (from north) of the survey vessel from

shore stations can be written in terms of coordinates as

A, w- 4.-.4 A p t.n' - , AP = Lon' gp-3
%P-VA %AP--W2. *JP- V3"

In these equations, 4P and y are the best estimate of the

survey vessel coordinates which are to be determined.

These equations are non-linear. Thus, in order to

form observation equations, they must be linearized.

Letting x . x + Ax and yp = Y + Aywhere x and Yare
P a y y0  Aywr and

the approximate coordinates of the vessel's position, and

using Taylor series expansion for linearization,

f( 9 t) + !L,6. + 2L A3 +......

where A (L,, ) o o

The partial derivatives are

~Lo *

The observation equations now may be written in the follow-

ing detailed form:
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Ile

Figure III-i. Azimuth angle positions.

goI.

V1  Aqp-Ato

'hp - -e

V3P -u P%3

where Aeand Alp laP) A 3p
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are the measured azimuths and e -57.2958, the conversion

factor from radians to degrees.

Having obtained the observation equation, the normal

equation may be formed and solved by following the procedures

outlined in Section II.A.

Using the computed values of Ax and Ay, new trial

point coordinates may be formed as follows:

=90 +A9.

The values are substituted in the observation equation for

the initial xo, YO coordinates. The least square solution

is iterated until the Ax and Ay values approach zero.

Example 111-5: Referring to Figure 111-2, the

coordinates of the shore stations are

Luces (#1) Mussel (#2) MB4 (#3)

x 4,055,042.7 m 4,053,453.2 m 4,053,917.2 m

y 595,794.5 m 597,967.8 m 603,425.2 m

The standard errors for the azimuth observations are a1 - .020,

- .0240 and a3 " .0180. The following angles were

measured:

p - Luces - Mussel - al - 50?164

p - Mussel - Luces - a2 - 99?360

p - MB4 - Mussel a - 47?865
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The least square method will be used to determine the best

values for the coordinates of the survey vessel.

Given: A 12 '120?180 Given: A21 0306?180

Measured: al 50!1l64 Measured: a 2 .99?360

A *p 76?016 A2 - 4S?S40

Given: A32 n 265?140

Measured: a 47!865

A 3 313?005

First, assume x.- 4,055,000

yo 600,000

The observation equation, V AX -L, is then

~-1-8 .013581 i.8

.0152O9 .0048O1+ 25.462.
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Using the standard errors of each station, a weight matrix

is formed:

o0

0 0

I..

Le ko9~ 0.024,09 then3

0=00

.0009974 -.0001092.S1f03



The solution, X (A TWA)'(A TWL), is then

109.72 st- 10t32. IllJ -
40= a3 It 4.o .

Now, the new trial point coordinates are found.

* 4o -4 s5,ooO +0213.B 1,OS6,2.31.8,

=9o -t,&. = 6001 000 +1144.0 60i, Lt4 ,0.

Using new trial point coordinates, solutions are repeated

until Ax and Ay vanish. Table III-1 shows the data for other

trial Ax and Ay values and the new trial point coordinates.

The best estimate of the coordinates for the survey

vessel is

XP= 4,056,302.9

y= 600,867.4

2. Sextant Angle Positions

In sextant angle positions, similar to the resection

problem in geodetic work, the measured quantities are the

included angles at the sounding vessel between the shore

stations as shown in Figure 111-3.
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Figure 111-3: Sextant Angle Positions

Plane coordinates are again used because of the

visual range limitation.

it can be seen from Figure 111-3 that

A p 2 - , , l

Ap3 -A2''

Ap4 - Ap 3 - 03;
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or in terms of the coordinates,

42.(' 4 -p *(

3- -P

X-3-3-Y P

Letting xP % x 0 + Ax and yp yo + Ay and linearizing with

Taylor series expansion,

where

S2. ~

9S



AD-AS96 383 NAVAL POSTGRADUATE SCNOXL MONTEREY CA F/6 8/10
ERROR ANALYSIS OF HYOROGRAPHIC POSITIONING AND TIE APPLICATION -- ETC(U)
SEP 80 A KAPLAN

UNCLASSIFIED2fIIIIIIIIIIIIlfflf

IIIIIIIIIIIIIIllflf
EEEEEEEEEEEIIE
IIEIIEIIEIII%



The observation equations may then be expressed as

- I SL.-- -

\ 0__ -- AO )

t- Y43.1 Sk L J -

where

e S7.2958 is the conversion factor from radians to

degrees,

A0 1 , A 04 are the computed azimuths of lines
02' A03'A0

01, 02, 03, 04 using trial point coordinates x., Yo.

Once establishing the observation equations, the

solution is found as

X = (ATA)-IATL

The process is repeated until Ax and Ay become very

small.

EXample 111-6: Referring to Figure 111-4, the,

coordinates of the shore station are
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Use

Figure 111-4: Determination of a position for sextant angle
fixes using least squares adjustment.
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MB4 (#1) Use (#2) Mussel (#3) Luces (#4)

x 4,053,917.2 4,051,216.9 4,053,453.2 4,055,042.7

603,425.2 600,372.0 597,967.8 595,794.5

Measured angles are

MB4 -p- Use = 49?927

Use-p- Mussel 38'.130,

Mussel p - Luces - 30.396.

The least square method will be used to determine

the best values for the coordinates of the survey vessel.

Let the first assumed position be x0 - 4,057,000 and ,= 599,000.

Using the first approximate position,

-i y1 YO
A O= tan 1 x

01 1  X0

A0 1 = 124.862, A0 2 - 165?712, A0 3  1 196'.235 and A0 4 = 238?591

are obtained.

The observation equation is

P. -. oo366 -oo834 &YA

00 -. 0o66P o049 .- 6,+

LV3 J -L--00 8683 .o069'i. J L j .i

and normal equation, ATAX - ATL - 0, is
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.00016o6 ,000015 .3-F

000002.5 . 0000o B--44

T -1 T
The solution, X = (ATA) ATL, is

Then, the new trial point coordinates are

x =x + Ax = 4,057,000 + (-47) 4,056,953,

y = yo + AY = 599,000 + 1793.1 600,793.1.

Using new trial point coordinates, the above steps are

repeated until Ax and AY values become vanishingly small.

For every trial AX and AY value, new trial points coordinates

are tabulated in Table 111-2.

The best values for the coordinates of the sounding

vessel are

= 4,056,512.3

yp 600,864.5
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3. Range-Range Positions

In range-range positioning, when the distances are

short (i.e., line of sight type equipment, less than 20

nautical miles), a plane coordinate system may be used. Let

Xl, x2 , x3  = Eastings of the shore stations #1, 2, 3

y1, y2 ' y3 = Northings of the shore stations #1, 2, 3

x = Basting of -he survey vessel

yp = Northing of the survey vessel

Then, the distance between the ith shore station and

the survey vessel, in plane coordinates, is

S Lp + 'i-N (-t

This function is non-linear and has to be linearized.

Introducing approximate coordinates (x0, y0 ) for xp and yP

then

x P x a= AXxp x0 x

YO a Y0 + AY.

Using Taylor series for linearization, the result becomes

S + 'of - - A, + 'bf h.4+....
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After linearization, the observation equation is

___-__ yo-yI/
sIk S.

- Sp.- Slo

S 2.0

L~y S3P - 5-1

L s:S-

or in the matrix form, V = AX -L

where:

SiP , Sip , S are the measured distances,

SIO , 1 20, S 30 are the computed distances using xO and Y..

In ranging systems, when the distances are long,

coordinate computations must be carried out on the appro-

priate ellipsoid using rigorous geodetic formulas. Let

0. NO = Computed geographical coordinates, latitude

and longitude, of the survey vessel,

X = Latitude and longitude of the ith shore station,

A. , Azimuth from ith shore station to approximated
10

position 0,

AM Azimuth from 0 to ith shore station,

S . Distance between 0 and ith shore station.
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Although the computed observations must utilize rigorous

geodetic solutions, the differential equations of the observa-

tions may be approximated using spherical trigonometry [Ref. 3]:

d~oL = sin f" E-ko Cos AoLA4 * - R cos N 8O

+ N.CosS nAL.(Xo- , 1,

where d@ anddX are in seconds of arc, dS in meters. Sin 1"
is the conversion factor from seconds to radians. R. and R.

are the radius of curvature in the plane of meridian at

point 0 and ith shore station, respectively, defined as

[Ref. 18]

p. = oW-e.')

where a is the semi major axis of the datum ellipsoid,

and e2 is the eccentricity of the datum ellipsoid.

N and N are the radius of curvature in the plane of prime

vertical at point 0 and at ith shore station, respectively,

defined as [Ref. 18]

N -

is the latitude of point 0 and 0cis the latitude of the ith shore

station.
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The partial derivatives of computed observations

with respect to parameters are

-O-Cn "R Cos AL.

bXo

Then, observation equation is

vI - RoCos A01  , RI Cos50,~ o S-o

_3Re Cos Ao3 V3 Cosch S AX 5

where Sol , S 03 are computed distances using inverse

distance and azimuth formulas (these formulas could be found

in any geodesy text); and SplY Sp29 Sp3 are measured distances

between point p and the respective shore station.

After forming the observation equation, the normal

equation is found and solved as in previous examples. This

process is repeated until AO and AX become smaller than the

resolution of the positioning system.

104

,iV



Example 111-7: Referring to Figure 111-5, the coordi-

nates of the shore stations are

Luces (#1) Mussel (#2) MB4 (#3)

x 4,055,042.7 4,053,453.2 4,053,917.2

y 595,794.5 597,967.8 603,425.2

Using the least squares procedure, best values of

coordinates of the vessel may be found. Let the first

assumed position xo = 4,056,000 m and yo = 598,000 m.

Measured distances are p - LUCES = 4350 m, p - MUSSEL = 4506 m,

and p - MB4 = 5267 m. For the first approximate position of

the vessel, the observation equation is written:

'1-.33\11 ,999 .,2_6 Av, o o

V2. = .353 9i- - 21 01.+

1 •. 1 *Is -. 333 J L-544-•3

Normal equation, AT AX - ATL - 0, is

[~~ 43~ 042 183 I;.8

.043 iL33I N 4 3
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And solution, X ( TA) - A TL, is

J .584  1L 4.

Then, new trial point coordinates are:

x = x + Ax = 4,056,000 + 2183.2 4,058,183.2

y = yo + Ay - 598,000 + 787.4 = 598,787.4

Using the new trial point coordinates, the above steps are

repeated until Ax and Ay values become smaller than the

system resolution. For every trial, the change in coordi-

nates and the coordinates of new trial points are tabulated

in Table 111-3.

The best values for the coordinates of the sounding

vessel are

Xp= 4,057,501.2

yp = 599,567.7

The standard errors in the northing and easting may

also be calculated:

L - or A c L La.* I4eric~co JML~eS OM SO.~

-. 1
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21.1

,I
Ii,1

-1.5

VTo -- 3 4_ 04

where qii's are the elements of (AT A) -I which has been

calculated as

64

II

~ O~ ~ = 4.0O4 +6'-~S ,

4. Hyperbolic Positioning Systems

Hyperbolic positioning systems measure the difference

in distance from a vessel to the two shore stations. In

Figure 111-6, station number 2 is the master station, and
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Figure 111-6: Determination of a position for hyperbolic
systems using least squares adjustment
method.
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numbers 1, 3 and 4 are slaves. Point p is the vessel's

position, and its coordinates are designated as *p and Ap.

Point 0 is the first approximate position, with 0 and X0

representing its coordinates.

The differential equations of the computed distances

to each station, S ., may be written as [Ref. 3]:

= Sn1"£-O CosNot. Rc ~cos At.o

+-NC Cos WirL A a NAo- 6NL')

where i represents the shore station number.

A. represents the azimuth from the ith shore station
10

to approximate position 0.

Re is the radius of curvature in the plane of

meridian at point 0 (as defined in Section B.3.).

Ni is the radius of curvature in the plane prime

vertical at the ith shore station (as defined in Section B.3.).

The partial derivatives of the function with respect

to and X are

Soc S i- A' Cos AoL ,
~00

-~~ S t'c S;A-
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The range difference between the distance from the

vessel to the master and the distance from the vessel to

the respective slave station is expressed in the equations

below.

-OS 2. Sipo..I" Re Cos. A*L -Cos tho'L
'boo 4~

bNo

Note that station number 2 is the master station, and

the range difference is stated in terms of the partial -

derivatives.

With this information, the observation equation is

written as:

J3 ( CCS 4 -CiZ@ AO R3COSO, A,*n

L( s?"- sPQ) 02o~- 5.'04
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where

AD,, A0 2,... are computed azimuths from approximate

position 0 to shore station 1, 2,,...

A10 , A20,... are computed azimuths from shore station

number 1, 2,... to approximate position 0.

(Sp2 - SpI) , (Sp2 - SP3) , ... are measured range

differences.

(S02 - SO1), (S02 - S ... are computed range

differences.

Sin 1" is conversion factor from second to radian.

After writing the observation equation, the normal

equation is solved and the best estimate of the coordinate

values is found as previously discussed.

The process is iterated until AO and AX become

smaller than the standard error of the specific hyperbolic

system being used.

5. Global Positioning System (GPS)

Global Positioning System fixes are obtained

utilizing the computed distances from the position of GSP

satellites to a GPS receiver. The receiver measures the

arrival of a timing pulse from every satellite within

acquisition range. The transmit time of each pulse is

encoded in the received signal. Thus, distance is computed

using the one way travel time between each satellite and the

receiver multiplied by the propagation velocity of electro-

magnetic energy. Three such satellite to receiver ranges
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may then be applied to solve for the coordinates of the

receiver.

Using three satellites to determine a fix results in

a unique solution for the position coordinates (x, y, z).

However, significant error may be induced due to drift in

the receiver clock. This additional unknown, receiver clock

bias (E), may be resolved by processing four satellite

ranges.

For position fixing at sea, it is likely that the

z coordinate may be input as a known value based on a given

antenna height above sea level. Thus, the number of unknowns

will be reduced to three. By using four or more satellites,

redundant observations are then available so that the data

can be adjusted by the method of least squares.

Introducing the following variables, observation

equations may be written in a. straightforward manner:

R1, R2, R3 ,... Measured distances from receiver

to satellites S, $2, $3s'

(xl' yI, zl), (x2, y2, z2), "'" * Known positions of

satellites Sl, $2, $3 ...

x, y, z = Unknown position of the observer,p.

E = Receiver clock bias (unknown).

Then, the basic equations are
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Rn E +

Here, the ranges R1, R 2  R 3, . R n include the actual

satellite to receiver distance plus some offset due to -

receiver clock error. In the above equations, the

satellite positions are known, and the four unknowns are the

user position (x, y, z) and user clock error.

Since the observation equations are non-linear, the

Taylor series must be applied to form equations suitable for

use with the method of least squares. Let

x-x X0+Ax ZZ 0 o+Az

y M y + AY E =E 0 +AE.

Using Taylor series,

R*Lp = Ea +t 4k'-L -9-L) OYC'y

where R ipis the distance between a satellite and the user

ip

position, p.
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Ri is the distance between a satellite and approxi-

mated user position.

Observation equations are written in the following

detailed matrix form:

nPi - -n
I

Rlp, R2p ..... are the measured distances,

R10 , R20 ..... are compu ted ranges from the formu la

From this matrix, the normal equation may be formed

and solved as previously discussed. The process is repeated

until the values of Ax, Ay, Az and AE approach zero.

116



Example 111-8: At 0800 Zulu,May 1, 1980, a satellite

fix was taken using a GPS receiver aboard USNS ACANIA in

Monterey Bay. The measured distances between the satellites

and the receiver were

Sp = 20,640,380.8 m

p 20,357,184.1 m

Sp3 23,287,346.8 m

S 21,699,908.4 mp4

SpS 25,416,133.6 m

The satellite coordinates were

S #1 S #2 $ #3

x= 6,097,294.4 x2  1,819,274.3 x3 = 9,268,094.7

" -4,364,543.9 y2 = -2,240,846.4 y3 = 13,290,138.0

z- 22,658,876.2 z2 - 23,721,192.7 z3 = 13,622,934.4

S #4 S #5

x4 = -8,198,461.9 x S  -21,419,309.7

y4 - -18,813,603.1 y5 = 12,865,351.8

z4 a 19,040,626.8 zS - 4,832,143.1

Applying the method of least squares to determine the

user position, first assume:
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x,= -2,640,000

O= -4,235,000

z= 3,960,000

E0 10,000.

For the first iteration, the observation equation

is written as

.7231 .0061I _.9055 51 -509.4

V2. -. 2M38 -. 0919 . T-O3 L - B910.4

V3 = _.-i+ .22 _HT.ih I - to %0.S

Vi. .25Sw 6-f .6946 L -3h2-0
6E

and the normal equation, ATAX - A TL = 0

1.039 .083 .6043 .. 5P4 a C3_6.9

.0193 . sia,  4.421 -. 849 &4 4o5.3

bo.43 -.04l. 2.. I, -3.109 A- Iso9gt

- .1594 _64k9 -3-019 .s.0 L L45 1.
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T -l TThe solution, X (A A)- A L, is

30140.9

- 2os.2
-%0940.9

New trial point coordinates are

= -2,636,959.1 z: 3,957,294.8

YO = -4,236,646.6 E = -840.9.

Using new trial point coordinates, the above steps

are repeated until Ax, Ay, Az and AE values become vanish-

ingly small. For other trials (iterations), the Ax, Ay, Az ,

and AE values and new trial points coordinates are tabulated

in Table 111-4.

The final user coordinates are

x = -2,636,937.1

y - -4,236,666.2

z - 3,957,250.8.

And receiver clock bias is E = -869.8 m.
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C. USE OF THE ERROR ELLIPSE IN ANALYZING THE ACCURACY
OF HYDROGRAPHIC POSITIONS

In the least square adjustment process, the positional

errors are found in the direction of the x and y (0 and X)

coordinate axes. These a and a values indicate the
x y

expected displacement of the fix in the direction of the

coordinate axes, but they do not necessarily define the maxi-

mum and minimum errors associated with the axes of error

ellipse (Figure 111-7].

Maximum and minimum standard errors are found by defining

the orientation of the error ellipse in terms of the x,y

coordinate system. Let the coordinate system defining the

semi-major and semi-minor axes of the error ellipse be u

and v as indicated in Figure 111-8.

The following relationship exists between the ellipse

(u and v) and the ground (x and y) coordinate system.

d = x Scne +_4 Cos e
(111-18)

In these transformation equations, the angle 6 is the

rotational angle between the y and u axes (measured clockwise

from y axis to the u axis).

The lengths of the semi-major and semi-minor axes are

given by:
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1~igUC itI7 Eror ellipses farmed at the determained

FiU~ 11-:Poitionls 
(. Thomson and D. E. Wells,

197 7).
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Figure 111-8: Error Ellipse.

Ov'. 'o a. .N (111-19)

In above equations, o, the standard error of unit weight,

is known from the least square adjustment of point p, quu and

qwv are given by':

'For detailed derivation of these equations see Ref. 16,
pages 181-183.
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2 (111-20)

994) + 9" C(.4 Cos1)

where qxx, q and q are the elements of the (AT A-
yy xT

(for unweighted observations) or (A TWA)-1 (for weighted

observations), i.e.,

9*1.
Equation 111-20 reaches its extreme value, and q~ is

maximum, when

L-Ckn~e__ (111-22)

Inserting Equation 111-22 into 111-20 and 111-21, and

defining D as.

94) 
(1-3
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q uu and qvv may be written as

9~ Um' ~ + 9~ D (111-24)

_ 2 (cI --b (III-2S)

and from Equation 111-19, the semi-major and semi-minor axes are

m Oo + q t a 9 +b (111-26)

I 9Yq -1 (111-27)

Using these expressions, the error ellipse can be con-

structed at any point whose coordinates were determined by

least square adjustment if the (ATiA) - or (ATWA)" matrixes

are known.

Example 111-9: In order to determine the error ellipse

parameters for the range-range example problem (example III-7),

recall that (ATA)"1 was determined as

.64

-.14 .+6
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and the standard error of unit weight was o - 4.04.

The semi-major and semi-minor axes of the error ellipse,

according to Equations 111-26 and 111-27, are found by first

solving Equation 111-23:

= I(q _q V + q ]

6 ( .-+6) +4 (-.14 J - 305.

ThenS

or 9%1 +9. +12

2. 12

Q - (4 0 4?(.6 t4-+.3 ) T =-V 'S3 4

6 99

The semi-major axis is 3.73 m, and semi-minor axis is 2.99 m.

According to Equation 111-22, the angle e is found:
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20 a 113."2

e - 56.6 which defines the orientation of the error

ellipse.

1. Some Characteristics of the Error Ellipse

A number of important properties of the error ellipse

can be obtained by analyzing the equations given in the previous

section. The existence of the error ellipse points out an

important fact that the accuracy of the location of a point

in question is not the same in every direction. An analysis

of equations 111-26 and 111-27 demonstrates that the formulas

for the semi-major and semi-minor axes are composed of two

parts: the standard error of unit weight, which defines the

scale of the error ellipse, and the elements of the (ATA)"I or

(ATWA)-I matrix, which define its shape.

To reduce the error ellipse into a circle, where the

accuracy of position is equal in every direction, the follow-

ing condition must be met:
a/b- l.

According to Equations 111-26 and 111-27 this is possible

only if D - 0:

S-_j ( 94 - 4( q 2 0o 4
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which means ti.

q qy and qy = 0,

and, according to Equation 111-17,

ax  aa Oy

Another important characteristic is that the sum of

the squares of the standard errors in x and y directions is

invariant to the rotation of the coordinate system, or

+ Ob%'L + a (T (111-28)

Equation 111-28 leads to the concept of root mean

square error, dms, as follows

drms = vCra + i =--- : + 07,=;2-+/a (111-29)

or, from Equations 111-26 and 111-27.

dr8s 0o T
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IV. CONCLUSION

Conventional survey systems will provide the primary means

of hydrographic positioning for several years to come.

Thus, the concepts of drms and the graphical approach to

developing error contours are very useful tools in survey

planning and execution.

Survey planners must exercise care in establishing the

position of navigation aids. The resultant net geometry

determines the accuracy, and thus the drms errorlof the fix

positions. Accuracy requirements for the collection of

hydrographic survey data greatly limit the size of the

effective survey area. Through careful planning, the

number of navigation aid shore stations can be minimized

while still meeting position accuracy requirements for the

survey.

Currently, more research is needed to determine the

environmental factors which govern variations in the propa-

gation velocity of electromagnetic energy. If this important

parameter could be more accurately modeled throughout the

survey area, the effects of systematic errors due to these

velocity variations could be greatly minimized.

As shown in this paper, methods exist today by which the

accuracy of survey positions can be greatly improved through

the use of redundant observations and data adjustment techniques.
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The method of least squares adjustment provides a best esti-

mate of position, plus the size and orientation of the error

ellipse associated with that position, for every point deter-

mined by the survey system. In addition, the error ellipse

quantifies the predictable accuracy (as shown in Figure 11-7)

of each position as compared to the repeatable accuracy

available from conventional survey methods.

The application of these techniques will become more

widespread when the Global Positioning System. is fully

operational. Observations of position from any number of

navigation and positioning systems (GPS, LORAN, hydro position-

ing systems, etc.) can be combined in a least square solution.

Observation equations may be written and weights can be

assigned as a function of accuracy for each system.

In preparation for these future improvements, hydrographers

must work to understand and implement the concepts discussed

in this paper. Data must be processed by computer. There-

fore, programs need to be written which can perform the

iterative least squares adjustment on the appropriate obser-

vation equations. Errors must be analyzed to assess the

improvement in accuracy resulting from redundant observations.

Additionally, standard hydrographic survey procedures need

to be reviewed to determine if more efficient methods may

be adopted when redundant observations and data adjustment

techniques are used. For example, the method of least

squares may be programmed into anboard computers so that
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data may be adjusted and evaluated in real time. Alternately,

redundant data may be collected and recorded for later pro-

cessing ashore.

The technology is available today to employ data adjust-

ment methods in hydrography. This technology must be

analyzed and adapted to match the systems and requirements

unique to hydrographic survey. -
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ANALYSIS OF RANDOM ERRORS

APPENDIX A

(The information given in this section was taken directly
from References 1 and 20.)

ONE DIMENSIONAL ERRORS

An error in a measurement is the difference between the

"true" value of a quantity and the measured or derived value.

The "true" value can never really be determined because of

instrument limitations and human fallibility. In determining

the value of a quantity, only one measurement may be necessary

when an approximate value is sufficient. If, on the other

hand, the quantity is important enough to require a more

precise value, repeated measurements are made. Variations

will exist between the values obtained from several measure-

ments. Applying the theory of the normal distribution to

these measurements, the "best" value for the quantity is the

mean or average of all the observed values. The differences

between the mean and the observed values are the apparent

errors or residuals which are used to derive a statement of

precision for the measuring process. When the residuals are

randomly distributed about the mean, the precision of the

measurement is expressed by a single term, the standard

error, which is commonly designated by the Greek letter "sigma"

(a). For a one dimensional normal distribution, this value

is computed by squaring all the residual errors (v), adding

the squared values, dividing by the number of errors less
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one (if n independent direct measurements are taken of the

same quantity, then the first measurement establishes a

value for the unknown and all additional measurements,

(n-i) in number, are redundant), and taking the square root:

where v. is the residual defined by the equation v. = x

x. : observed value

X : mean value

n : the number of observations.

The normal distribution itself is represented by the

function:

p _ I -

The normal distribution curve and the meaning of the standard

errors are illustrated in Figure A-i. The central vertical

axis, p(v), represents the probability of zero error with

positive errors plotted to the right and negative errors

to the left. The height of the curve above a particular

point on the horizontal axis is proportional to the probability

of an error of that amount.
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S3 c

~68 2 7%~

Figure Al: One dimensional Normal Distribution Curve

It can be observed from the normal distribution curve

that the total area under the curve is equal to unity. Also,

the area under the curve between any two values of v 1

and v 2 is equal to the probability of an error occurring

between these limits. So, to find the probability of an

error between v 1 and v 2, p(v) has to be integrated between

* 1 and Y 2. The area under the curve between the limits of

*1 - -a and Y 2-a +a is 68.271 of the total area under the

2i

curve. This means that there is 68.27% probability that

errors in any further measurements made under the same
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conditions will not exceed the standard error, a, with a

68.27% probability. The standard error does not indicate

the probability that an error of a certain size will occur; it

only indicates that 68.27% of the errors will fall within

the specified limits of plus or minus one sigma.

If other probability levels are desired, the appropriate

conversion factor may be found in Table Al. For example,

for 95% probability, a should be multiplied by a linear

error conversion factor of 2.

Linear error
Probability, % conversion factor

so .6745

68.27 1.000

90 1.6449

95 2.000

99.7 3.000

Table Al: Linear error conversion factors for several
probability levels.

TWO-DIMENSIONAL ERRORS

A two-dimensional error is the error in a quantity defined

by two random variables. For example, consider the position

of a point referred to x and y axes. Each observation of the

x and y coordinates may contain the errors vx and vy.
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If the errors are random and independent, each error has

a probability density distribution of

- Vs

"The probability of two events occurring simultaneously

is equal to the product of their individual probabilities"

[Ref. 1]. Applying this rule, the two-dimensional probability

density function becomes:

rearranging terms,

P (Jvy 2rrdX IT0,,Y

taking the logarithm,

2. 2.

For given values of p(vx, vy) [physical meaning of

p(Vx, vy) is that the probability that two random variablesYx

v and Vy take values in the interval ±vx and ±vy] the leftX y

side of equation is a constant, k2, then
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For several values of p(Y' Vy), a family of equal probability

density ellipses are formed with axes ka x and ko'y (Figure A2).

. ka, k =

k 1.414

k35

Figure A2: Equal probability density ellipses.

In general, when the two errors are correlated, i.e.,

a change in the one error has some effect upon the other, the P-

probability density function, p(vx, vy), becomes
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Then, the equation of constant probability density ellipses

(Figure A3) is

j ± v

where e= correlation coefficient of vx and v and is given byx vy

The probability density function integrated over a certain

region becomes the probability distribution function which

yields the probability that vx and vy will occur simultaneously

within that region, or:
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Figure A3: Constant probability density ellipse for
correlated errors.
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APPENDIX B

USEFUL GRAPHS FOR THE DETERMINATION OF REPEATABILITY CONTOURS

I__- I
so .,,

40 !I.4
30 .H, l 1 Is:

t2 0
20 "

no -a - -

U) - -- i_

6 .- - 06 o

S-- l -. 05 44
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Figure Al: For ranging systems, the graph of the d rsos

and e/b.
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