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\ Abstract

This paper proposes the use of VLSI technology to perform relational database operations
directly in hardware. It is shown that relational computations, such as intersection,
remove-duplicates, union, join, and division, tan all be pipelined elegantly and efficiently on
networks of processors having an array structure. These (systolic) processor arrays are
readily and cost-effectively implementable with present technology, due to the extreme

simplicity of their processars, and the high regularity of their interconnection structures. ﬁ
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SECTION 1 INTROOUCT ION ' H

l. Introduction

LS! technology allows tens of thousands of devices to fit on a single chip; VLSI technology
promises an increase of this number by at feast one or two orders of magnitude in the next
decade. This paper proposes one method of exploiting this technology advance: the
construction of special-purpose VLSI chips for relational database operations. These
special-purpose chips are to be attached to a conventional host computer, or used as o
component in a larger special-purpose system, such as a database machine. (We suggest one

————

such database machine at the end of this paper.)

In [5] a structure éalled a systolic arrayl is proposed for implementation in VLSL These

arrays of processors have the following desirable properties:

- —————

i. They can be designed and implemented with only a few different types of simple
cells.

2. The array’s data and control flow is simple and regular, so that cells can be
connected by a network with local and regular interconnections. Long distance P

or irregular communication is not needed.

3. The array uses extensive pipelining and multiprocessing. Typically, several data '
streams move at constant velocily, over fixed paths in the network, interacting .u,i
where they meet. In this fashion, a large proportion of the processors in the i;y

" array can be kept active, so that the array can sustain a high rate of data flow. o

VLS! designs based on systolic arrays tend to be simple (a consequence of property 1),
modular (property 2) and of high performance (property 3) -~ for more discussion of the
atiractiveness of the systolic array approach, see {3]. In the present paper we illustrate the

use of systolic arrays in performing relational database operations.

In section 2 we give details concerning the notion of systolic arrays, and present some -

concepts and notation for discussing relational database operations. In section 3, we describe

the basic building block of several of our systolic arrays: a systolic processor array to

compare two tuples. Section 4 includes a detailed systolic example: an array to rapidly

perform the intersection {or difference) operation on two relations. In section 5 we use an
array identical to the intersection/ditference array, to remove duplicates from acollection of

s ialods.

17he word "syslalo” wae borrowed from physiologists, who use it to refer to the rhythmically recurrent
contractions of the heart, which puise blood through the body. For a sysiclic array, the action of a cell or processor is . 4

snalégous to that of the hoart. Each cell rogularly pumps data in and out (parforming some short computation before

esch "contraction™), so thal & regular tlow of dala is kept up in the nelwork Many sysiolic arrays have been designed
recently, and are surveyed in (7}
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tuples, and to perform the operations of union and projection on relations. In sections 6 and
7 we detail relational operations (join and division) that are substantially different from the
intersection-like operations, but still fend themselves to simple implementation with systolic
arrays. Section 8 remarks on some implementation and performance aspects of the systolic
arrays proposed in this paper. Section 9 discusses the architectural issues of an integrated
system capable of using many types of systolic arrays. -

-

-




SECTION 2 SYSTOLIC ARRAYS AND RELATIONAL DATABASE CONSIDERATIONS 3

2. Systolic Arrays and Relational Database Considerations

2.1 Systolic Arrays

Regular geometric structures are typically used in systolic arrays. For the present paper

we use predominantly orthogonally and linearly connected arrays of processors (both of
which are shown in figure 2-1), although hexagonally connected arrays as in [5] would work

as well in many instances.

11

l
(a) (b)

ngura 2-1: Orthogonally and linearly connected processor arrays.

We find that these arrays facilitate many relational database operations by allowing swift
interaction among the tuples of two relations, with a set of temporary resuits also traveling
through the array. Typically, the relations move top-to-bottom and bottom-to-top, and the
temporary results move left-to-right. All of the data in the array moves synchronously. As a
piece of data passes through a processor, it may have some computation performed on it;
then it is passed on to the next processor. The final results of the array are sent out a side

ot the array.

2.2 Processors

In figure 2-2 we show the prototype for the processor used in the orthogonally or linearly
connected systolic structure. The processor has three inpul lines and three output lines. For
each "pulse” of the systolic array, inputs come in on the input lines, and outputs leave the
processor on the output lines. In the intervening time, all of the work (computation) of the
processor is performed -- the processor computes some simple transformation on the data

which it has just received, in preparation for shipping it out at the next pulse. VLSI arrays




4 SYSTOLIC ARRAYS AND RELATIONAL DATABASE CONSIDERATIONS SECTION 2

[+ It

dnb et

~» —

Ly

ORE ' .
(a) (b) ;

Figure 2-2: Orthogonal and linear processor prototypes. ‘

are greatly simplified if most processors in the array are identical. This is the case for the
arrays presented in this paper. Given the orthogonally or linearly connected array structure, '
and the processor prototype described here, it is the algorithm actually executed by each

processor that determines the function of the array. Therefore, to define a systolic array to R
perform a specific relational operation, we specify the algorithm for the processors in a
systolic array. The sections below consist of such specifications and an explanation of how
they actually produce the desired result.

2.3 Representation of Relations i

In the following discussion, we assume some familiarity with the basics of relational
database theory (see, for example, [1, 2]). A relation is a set of tuples. Each tuple consists
of an ordered sequence of elements. It is these elements that are fed through our systolic

arrays. The tuples in a relation, however, are not necessarily ordered in any particular 1
fashion. 1

In a relation, an element can be of any data type: an integer, a boolean value, a string, etc. ﬁ
We wish to give all of these a uniform representation, in order to simplify the design of

systolic arrays to process relations. The assumption we make is a common one in the
implementation of relational database systems. We assume that the elements from any
particular column in a relation are selected only from one underlying domain. Each member of

the domain is uniquely and reversably encoded into an integer. These integer encodings are u
the form in which the elements are stored in the relations, and the list of encodings is stored
separately. Whenever necessary, the integers are decoded into the appropriate value;
however, encoding and decoding are usually only necessary for input or output: that is, for
use by humans. Most relational operations are logically the same whether they operate on
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integers or, say, strings or calendar dates. Since -~ for our purposes -- integer operations
are more convenicnt, we assume that relations are stored as tuples of integers (and we are

not concerned wilh encoding and decoding).

2.4 Uninn-Compatibility

Certain relational operations such as union and intersectian can only be performed
betwecn relations that are union-compatible. Two relations are zaid to be union-compatible
if the following two conditions hold:

- They have the same number of columns (and thus tuples from the two relations
have the same number of entries).

- Corresponding columns from the two relations have entries drawn from the same
underlying domain.
This definition is an attempt lo capture the informal notion that a tuple from one relation
could legally be a member of the other relation, in that the respective columns of the two

relations are defined on the same domains.

2.5 Multi-relations

A multi-relation is an extension of the concept of a rclation in which duplicate tuples are
allowed. (This is by analogy with the term "multi-set," since a relation can be viewed as a
set of tuples.}) This is a notion that we will find useful later in the paper. Multi-relations are
usually generated as the intermediate resulls of relational operations. For example, suppose
we remove a few columns from a relation (which is the projection operation). The
intermediate construct we obtain before we remove duplicate tuples to produce the new

(result) relation is a muiti-refation.

2.6 Notation

We briefly summarize the notation used in the remainder of the paper. Relations and
multi-relations are denoted by capital letters: A, B, C. Tuples that are members of these are
denoted by subscripted lower-case letters. The ith tuple of A is denoted by a;, Or by a,€A, if

““we wish to indicate membership. In turn, elements in tuples are double-subscripted: Q) is

¢
letter n is usually used to denote the number of tuples in a relation (the cardinality of the

the kth element of a; and the whole tuple can be exhibited as a; = <a; 1/8; 2r1Bim> The

relation, since a relation is a set): |A| = n. The letter m usually designates the number of

elements in a tuple in the relation in question.

[NUO R R

.-




8 SYSTOLIC ARRAYS AND RELATIONAL DATABASE CONSIDERATIONS SECTION 2

Letter T represents a boolean matrix that contains results of logical operations. The
(i,/)-th entry of T, t‘-_j, is usually used lo denole the result of a comparison between the ith
tuple of a relation and the jth tuple of another. Where we wish to display the formation of
initial final
t‘- j and 't j

t‘-j over time, we use the notation t{‘, for the result after the kth time step;
denote specific instances (the first ‘and the last) of t:‘, {(When no confusion will thereby

result, we use the same notation t, ;. to refer to t* for a;ay k.) Finally, the notation t; is used
tJ t) i

to designate the result of some logical operation on ail of the members of the ith row of T,
for example, the OR or AND of t;;, for all k.

- -




SECTICN 3 ASUAYS FOR TUPLE COMPARICON 7
3. Mrrays for Tunle Comparison

In several of the relational operations described below, it is necessary to test for equality
between a pair of tuples, one from each of tvo relations. (Two tuples, a;¢A and b/(B, whare
A and B are union-compatible relations or multi-relalions, are said to be equal if and only if
element QL equals element bjk for 1 € k € m) For example, in the intercection operation,
the intersection of two relations, say A and B, consists of those tuples which are in both A
and B. Forming this infersection, then, requires many tests for equality between tuples, o (A
and be. In this section, we first describe a lincar sy<iolic array of processors capshle of
performing one such comparison. We then combine many copies of this basic structure to

form a two-dimensional systolic array that can pipeline many tuple comparisons.

3.1 Linear Conmparison Array for Performing One Tuple Comparison

W vt
LN
T
T

Figure 3-1: Tuple comparison array.

A tuple comparison can be done by the linear array of processors in Figure 3-1. A single
processor from the array is shown in more detail in Figure 3-2. One can see that the
processor array in Figure 3-1 is able to compute the AND of the comparison resuits from all

of the individual element comparisons. More precisely, al each step the kth processor (from
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Figure 3-2: Individual comparison processor,

the left) in the array compares the two elements a;; and bjk- and outputs on its output line
tOUT the AND of this comparison result with the input to the processor on input line tiy
(which is the output of the (k-1)st processor). Thus, if the input to the left-most processor is
the value TRUE, then, by induction, after m time steps the output at the right-most processor
of the processor array will be a bit indicating whether the two tuples are equal. That is, this
output will be TRUE if gnd only if all of the comparisons of individual etements produced
TRUE. (Notice also that if the initial input is FALSE, then the output at the right side of the
array is guaranteed to be false. Surprisingly, this fact will be useful in later sections of the
paper.)

To make this all work, all of the data must be in the right place at the right time. This is
why the inputs to the individual processors are "staggered” (as shown by the "slanted” input
tuples in figure 3-1) so that elements a; and bjk arrive at the kth processor and are
compared at the kth time step. Also at that time the AND of the results of previous
comparisons arrives at the same processor, so that it can be ANDed with the new comparison
result at the processor.

We summarize the function of the linear comparison array shown in figure 3-1. This array
compares two tuples (presumably one from each of two relations), and forms the result of the
comparison by propagating intermediate versions of that resuit to the right through the
array. By staggering entries from the tuples one can assure that the output from the
right-most processor of the array will be the result of the equality test on the two tuples.

R b

i
|
I
| 3
|
|
}
|
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R,2 Twio-Liiaansional Comparison Array for Pipclining Many Tuple Compocicuns

)

H

Figure 3-3: Two-dimensional (orthogonal) comparison array.

We concatenate, vertically, several of the linear comparison arrays described above, to
form a 2-dimensional processor array, as shown in Figure 3-3. This orthogonally connected,
2-dimensional processor array can perform many tuple comparisons in parallel. To
accomplish this, we feed the relations A and B info the array, from the top and bottom,

respectively.

- We feed the relations at times such that the clements of any given tuple, say a;
are "staggered,” so that the element a;, enlers thc array one time step before
the element e, , .y This has the effect of staggering the inputs to each of the
component linear arrays, so that it will perform exactly as the single linear array
described above.

- We pipeline tuples in each relation through the orthogonal processor array, in
such a way that each tuple is two steps behind the tuple that prcceeded it into
the array. This assures that any particular pair of tuples a;¢(A and b «B will

" eventually cross each other. More specifically, first a; will meet bj., in the
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left-most processor of some row in the processor array. These two elements
will be compared, and the result of this comparison will be ANDed with the initial
input to that row of processors (TRUE for our present purposes). At the next
time step, as the tuples ripple through the array, element a; 5 will meet b,

the processor lo the right, in the same row. They will be compared there,’ and
the result of the comparison will be ANDed with the output from the first
processor to produce the output of the second processor. Processing continues
in this fashion, and the intermediate booiean result of the ANDs propagates to
the right through that particular row of processors, until -- as discussed above
-~ the right-most processor outputs a boolean value that indicates whether tuple

a; equals tuple b ;

In Figure 3-4, the t; represent intermediate values for the resuits of comparing tuples a;
with tuples b (Note that in the figure, the initial value for tg 3 is just about to enter the
processor array.)

3.3 Matrix Notation

For convenience in discussion, we express the results produced by a comparison array in
the form of a matrix T. The elements of the matrix are defined as follows:

| TRUE it {2484 TRUE, and a;c=b ji for all Lsksm,

; |
¢ | FALSE otherwise,

We see that it is these t ; that are produced at the right-most column of the array described

in Section 3.2

In the following sections, we add additional processors which manipulate these t, s after
they leave the comparison array. These manipulations will be shown to produce the

equivalent of relational operations.

o vy ot
S e o

s
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4. Arrays for Intersection -- A Detailed Example

In the preceding seciian, we saw how we could use a systolic comparison array to quickly
do pairwise comparisons on sets of tuples. The results of these comparisons (t‘-j) are sent
out from the right side of the array. By examining a particular relational operation, namely
intersection, in some detail, we illustrate how these individual resuits are combined in
applicatiuns,

4.1 The Intersection Operation

Consider the operation of finding the intersection of two union-compatible relations
C=AnB

The relation C consists of those tuples that are in both relation A and relation B. This is
exactly the same as finding those tuples in A which are also in B. Thus we need only examine
the tuples in A for membership in B. This is the basis for our “intersection array.” We
compare each tuple a;CA pairwise with each tuple b I(B’ For each a; if a; matches some b J
then a; is a member of the intersection. This is where the comparison array described in the
preceeding section comes in handy.

4,2 The Intersection Array

The intersection array for performing the intersection operation consists of a
(two-dimensional) comparison array on the left and a (linear) accumulation array on the right
(see figure 4-1). The comparison array performs comparisons between tuples in A and tuples
in B, to produce the matrix T, whereas the accumulation array accumulates t‘-j to form:

t; = ORlstn 'i.j' (4.1)
One can easily see that a tuple a;¢A is a member of the intersection, ie. a; matches some
be. if and only if t; is true,

Figure 4-1 illustrates how the intersection array computes the intersection of two 3 x 3
relations. Processors in the accumulation array are called accumulation processors; their
function is as follows. At each time step, an accumulation processor takes its left input (some
t; j from the comparison array), OR’s that with the top input (some t;), and passes on the
result as its output (the updated !,) lo the processor below. More specifically, a t‘- is formed
in the sccumulation array in the following manner. First ti,l reaches an accumulation
processor frcm the comparison array on the left. At the next time step, this value is sent to
the accumulation processor below. During the same time step, ti.,z is sent into that

accumulation processor from the left, and is ORed with t“. Similarly, at the next time step,
the result of this OR is sent down one processor, and is ORed with t; 3» which is just arriving

[pepe—

PO

™
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Figure 4-1: Intersection array, consisting of two modules:
{2-dim) comparison array on the left, and (1-dim) accumulation array on the right.

- from the left. In an implementation, the first accumulation processor can be identical in
function to the others, provided we initialize the value moving down through the accumulation
array as FALSE (ie, t::m‘tial = FALSE; in the figure, tg is about to enter the array with its
initial value). This value is successively ORed with all of the t;,, for all k, and when it leaves
the bottom of the accumulation array, it takes on the value t,, specified in equation (4.1). This
t, designates whether a; is a member of the intersection C, and it is then a simple matter to
use the t;’s to generate C from A.

At any time step, accumulation processors that aren’t busy (i.e. that have no t‘-j coming in
from the left) simply pass on the t; that they have. It takes less than the length of the

. -
el SR A

e e




14 ARRAYS FOR INTERSECTION -- A DETAILED EXAMPLE SECTION 4

accumulation array to produce a t;, but different t; are produced in different sub-arrays.

4.3 Remark

We have illustrated the use of the so-called accumulation array at the right of the
comparison array to implement a desired relational operation, namely, the intersection
operation. In general, as shown in the rest of the paper, only simple changes in the
accumulation array or in the input data are required to alter the output of the array to
produce other useful functions. The main “hardware” -- the comparison array -- is
sufficiently general that it need not be changed at all.

As an illustration, we see that after a slight modification the intersection array can be used
to perform the difference operation on two rclations, The difference, C, of two
union-compatible relations A and B, denoted C = A - B, consists of those tuples that are
members of A, but are not members of B. When we compute the intersection with the
intersection array, we notice that t; is TRUE for any tuple a; that is in both A and B (ie,
A n B). We can also see that t; is FALSE for any a; that was in A, but nrot in B, which is
precisely the condition for a; being in the difference. Therefore, to form A - B, we can use
the intersection array, with the modification that the tuples in the resulting relation
correspond to those t.’s which are FALSE, instead of TRUE. (Alternatively, we could just put

an inverter on the output line of the accumulation array.)

2 il i R,
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5. Arrays for Removal of Duplicate Tuples ;

The operalion remeve-duplicates transforms a multi-relation (defined in section 2.9), A, into ;
a relation, A’, which contains all of the tuples in A, except that no tuple is duplicated in A" '
The sysfolic array used for intersection in the last seclion can alco be used for the operation )
remove-duplicates. Instead of comparing relation A to relation B, we compare refation A to }
itself, by feeding it into both the top and boltom of the array. (Note that A is 1
union-compatible with itself.) By doing <o, we produce a matrix, T, whose elements are:

| TRUE it 1200l TRUE, and agy=a  for all 1zkem,

i

ij . !
| FALSE otherwise, i i

i

Our strategy for climinating duplicate tuples from A is to remove all tuples that are
preceeded by another tuple that equals it. For example if tuples ag, a;q, and ay3 are all
equal, then in producing A", we wish 1o remove a;g and a,3 from A, leaving ag in A’ (not [ v

necessarily as aj because, for example, a3 might equal ay) In our matrix notation, the
problem is then that of removing any tuple a,, where there exists a tu-=TRUE, for j<i. This is
equivalent to saying that we wish to remove any tuple corresponding to a row in the matrix T
which contains a "TRUE" in the lower triangle (left of the main diagonal). We could find the
appropriate a; by ORing across each row of T, as far as (but not including) the main diagonal.
Alternatively, we could set the main diagonal and the upper triangie all to FALSE, and then
take the OR across the whole row. This secand scheme is what we will do.

For those t,; on the main diagonal and in the upper triangle (i), we set tﬁ?in“l to FALSE.
This implies that t,-'j will be FALSE tor i<}, since the comparison array works by ANDing each
individual comparison result with the current vatue of k‘-j. The accumulation processors in the
remove-duplicates array ac! identically fo those in the intersection array. They form the OR
of each row of the matrix T. To produce A’, we eliminate from A any row where the resulting
t; is TRUE, and keep the rest. (This is the opposite of the intersection operation, where we
keep those rows with TRUE t)).

dur remove-duplicates array can be used to implement the following relational operations:

Union

——

The union C = A u B of two union-compalible relations, A and B, is the relation containing
all tuples in either A or B, without duplicates. It is straightforward to form A U B by applying
the remove-duplicates operalion 1o the concatenalion A+B of A and B:

C = remove-duplicates(A + B).
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In practice, this means that we first form the concatenation of A and B as we retrieve them.
We then put the concatenation through both sides of the remove-duplicates array, and what
comes out is a bit-string, indicating which tuples of the concatenation should be in the union.

Projection

The projection operation is similarly easy, with our remove-duplicates operation. We speak
of the projection of a relation A over a column, or list of columns, f. (Usually, fis of the form
“first column, second column, fitth column,” or "name column, salary column, children column.”)
The projection is produced by first finding for each tuple a;(A, the corresponding (smailer)
tuple a; p which contains only those columns from a, that have been specified in f - this can
be done conveniently during the time when the original tuples are retrieved from storage.
The set A, ~- a multi-relation in general -- of the resulting smaller tuples is then transformed
into a relation by removing duplicate tuples. This is precisely the function performed by our
remove-duplicates array. (Duplicates may occur in Af since we are taking the projection of a
relation which may contain tuples that differ only in columns that are not in f£)

S il ik et — e - e e
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5. Arrays for loin

6.1 The Join Qpcration

We illustrate the join operation by describing a special case: the join over a single column.
The more gencral case is sketched later in this section. The join, C, of two relations, A and B,
over columns Cpy and Cg, respectively, is written C=A J{CA'CB} B. The join, C, is the set of
tuples, ¢y, such that ¢) = a; 1CaCal bl' where “‘vCA = bj'CB' for a,(A and be. (For the join
to be well-defined, columns Cp" aild Cg must be drawn from the same underlying domain.)

!CA,C"}
exception that only one of a‘-‘CA and bj'CB is included in the concatenation.2

The operator "| is defincd to be the concatenation of its two arguments, with the

Intuitively, we check all pairs of tuples, a; and b/-, taken from relation A and B,
respectively. Where they malch in the columns specified by Cp and Cg, we concatenate the
two tuples. After removing one of the two matching columns (to eliminate redundancy), we
add the concatenation to the join, relation C,

6.2 The Join Array

We can formulate the results of a join again in terms of a matrix. Let the matrix T be

defined as
\ : TRUE if a;c A = b j'CB
v . | FALSE otherwise.
That is, ti.j is true if and only if o; and bj match in the specified columns.

If we have the matrix T, it is straightforward to generate the relation C. For each t‘-j that
has the value TRUE (and for only those 'U)' we simply retrieve a; and bj, and concatenate
them, removing the redundant column. The size of the join, |Cl, might be as large as the
product |A|IB|. (This happens in the degencrate case where all tuples in A match all tuples in
8 in the specified columns.) However, for most applications the number of TRUE t‘-j‘s inTis
far less than this product. Therefore, we can usually generate C fast, provided we can

':’p‘roduce T quickly. A fast way of producing T is the concern of this section,

Consider the linear array of processors in figure 6-1. We use this array to produce the

zAd\uNy, suthors differ as to whether the redundant column appears in the join. For example, Dale {2] includes it,
but Codd's originel psper [1] omite il.

Il

i
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31
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232 tia
81
—> '
NENT
1
. Figure 6-1: Join array.

matrix T. The column Cp of relation A (column 3 in the example in the picture) is input to the
processor array from its top, and moves down. Similarly, the column CB of B (column 1 in the L
example) is sent through the array from bottom to top. As the two columns "pass through”
each other, each a"CA will meet each bj.CB' (We send the columns through the array in such

a way that each element follows its predecessor after two time steps so that all pairs of
e,C A and b JC meet.) When a;C A meets b j'CB' a simple comparison suffices to determine
the value of t‘-j. These tij are collected at the right of the array. (In the figure, the t‘-,- are
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shown coming out from the array.) Unlike come of the operations discurced earlier, here we
are interested in the tij individually, and do not perform further accuraulation operations on
them,

6.3 General Case

6.3.1 Join Over More Thzn One Column

In the general case, Cp and Cg specify more than ore column. Their specifications are
constrained in the following way:

- the number of columns specificd by Cy must be the same as that specified by
Cgs and

- the respective columns in the specifications must be based on the same
underlying domains (up to a permutation, which can casily be handled).

Given this, ¢i (= q} bj) ¢ C only if 2Cp = b/.'CB' which means that tuple a; must match

{Cﬂicﬁ}

tuple bj in all of the coluimns specified by Cy and Cg. The concatenation operator "I{C c }"
AR

is defined analogously: the concalenation includes only one copy of the columns over'\i:rthh

A and B are being joined.

The corresponding modification fo the processor array in figure 6-1 is simple. Instead of
having one column of processors in the array, we have several columns: one for each
relational column over which A and B are to be joined. Each processor column is responsible
for comparing a; and bj in some particular column pair, and the result tU is propagated to the
right, In essentially the same way as in the intersection array. When they reach the right
side of the processor array, the t‘-j’s are used directly, without an intervening accumulation
array.

6.3.2 Non-Equi-Join

The join operation we have been considering so far in this seclion is usually referred to as
the equi-join, since the join is performed on tuples for which the values in columns CA equal

-- those in columns Cg. This notion can be generalized to allow any sort of binary comparison

{e.g. <, >, elc.) to be done between the relevant columns of the two tuples.

The processor array to perform such an operation is easy to construct. For
greater-than-join, say, processors in the array would simply perform that comparison
between CA and CB' The particular operation lo be performed might be encoded in a few
bits, and passed along with the a;; and ‘ij- Or, it might be preloaded into the array of
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processors. This illustrates that some degree of programability can often be provided to a
processor array at the expense of additional logic.
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7. Nrrays {or Bivision

Division is an operation between two relations (the dividend and the divisor) which
produces another relation (the quotient) as ifs result.  The notation "C = A ?{(‘ACB} B"

means that C is the result of dividing A by B over the columns CA of A and CB of B.

We show how to perform the division operation by a processor array for a restricted case
of division: A is a binary relation and B is a unary relation. Further, C4 and Cg specify only

single columns. The extension from this to the gencral case is straightforward (as in the

preceding section on the join),

Let the dividend A have columns Ay and A and let the divisor B have column By, and let
A, and B be defined on the same underlying domain (which makes their elements
comparable). Then the divide operation C = A T A8 B produces a quotient C, having
column Cl defined on the same domain as Aj; a value r will appear in Cl if and only if the
pair (z,y) appears in A for cvery value y appearing in 8y {2]. An example of the division

operation is shown in figure 7-1.

A | Ay Az B {8y CiCy
i |a : 2 - i
i 1 a
L b c k
i|b d
i {¢
Il
k| a
i d

NE
c
k| d

Figure 7-1: Example of relational division

Our systolic array for performing relational division consists of two modules: a dividend
- array and a divisor array. Figure 7-2 illustrates how the division array works on the
..‘dexample given in figure 7-1. The left-hand column of the two columns of processors in the
dividend array stores (distinct) elements appearing in column Aj, one element to a processor.
(These elements -- {i, j, k} for this example -- can be identified by the remove-duplicates
array.) Similarly, elemenlts appearing in the divisor B are preloaded into each row of
processars in the divisor array. In the figure, circled elemenis represent those elements
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DIVIDEND ARRAY DIVISOR ARRAY

r 1
' '
) ) a 1 )
! A A ! '
' ) 1
1 1 '
[} t Ej ) [}
t @ > l\a \@ \C S, t
' k a g = L !
v A :
1 1 ]
1 1 1
t 1 [2 C '
Pl P P P P
' ] ' '
Foe—f e ¢---| ------------------------- +

(elements in Al) .

(elements in Ao)

Figure 7~2: Division array (in operation).

which are stored at processors.

The dividend array computes for each element x» appearing in A; the set of y such that
(z,yXA. It works as follows. We take each pair (z,y)A, and pass it into the dividend array
from the bottom; the z into the left column and y into the right column. At each time step,
the z will be in the same processor as some preloaded element x, and the y will be following

one step behind'it, in the column to the right. We compare z to z, and if they match, we

P
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culput a TRUE from the right cide of the procescor; otherwise, we produce a FALSE. This

toolean value t arrives at the proceccor in the right column, just as the associated y arrives

ST AT

there. If t is true, then y is output from the right side of the processor. Otherwise, some

null value is output. ‘

Thus for cach x appearing in Ay, the non-null values, output from the dividend array at the
row whose left processor has z stored, are those y's such that (z,y)(A. We see that if these i
¥'s include all the elements in By, then z belorgs to Cy. This is checked by the

corresponding row of procescors, in the divicor array, which takes the y's as inputs. More
precisely, each processor of the row checks if the element it is storing matches any of the
¥'s passing from left to right along the row. If every processor of the row finds at least one

such match {which is checked by doing an AND across the row after the dividend passes
through the array), then the y's contain a, b, ¢, and d, and thus z belongs to Cl‘ This is the
essential idea behind the division array. One can aiready sce that the division array provides
1 the same kind of rapid computations {using simple and regular structures) as other arrays

discussed earlier.

——

{
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8. Remarks on Implementation and Performance

During the past year, we have designed prototypes of several special-purpose chips at

" CMU. These include a pattern-match chip [3], an image-processing chip [6], and a tree
processor for database applications [9]. The pattern-match chip can be viewed as a
scaled-down version of the comparison array in Section 3. (This chip has been fabricated,

tested, and found to work.) The following commeris and projections are based partly on our
experience with the pattern-match chip.

In some of the schemes presented in this paper, it is the case that only haif of the
processors in a systolic array are busy at any one time. This inefficiency can be avoided in
the following impiementation: rather than marching two refations against each other along
the systolic array, we let only one relation move while the other remains fixed. Also, for v
simplicity, we have so far assumed that processors in systolic arrays operate on words. In
implementation, each word processor can be partitioned into bit processors to achieve
modularity at the bit-level. A transformation of a design from word-level to bit-level is
demonstrated in [3] In general, many variations on the systolic arrays suggested are

m—
TS o

possible. All of these are equivalent, and differ only in implementation details.

Below, we give figures for a reasonable array size for implementation. While such an

array would be large enbugh far many applications, it- is also possible to use the array to

solve problems that will not fit entirely on it. This calls for the technique of decomposing
problems. The technique is best illustrated by a simple example. In the intersection problem,
consider fhe matrix, T, of results, For a large problem, one can simply partition this matrix
into sub-problems small enough to fit on the array; each of these sub-problems wouid
generate a piece of the matrix.

Intersection is one of the most computationally demanding relational operations, since it
requires full tuple comparisons between all possible pairs of tuples. We examine the speed. 1
with which systolic arrays can perform intersection.

We make the following assumptions cancerning the size of a typical relation:

- A tuple is of size 1500 bits (or about 200 characters). . r

- A relation is of size 109 tuples.

The following (conservative) estimates are typical of results that have been achieved with B
present NMOS technology: 1

- A bit-comparator, the fundamental workhorse unit of our arrays, is about
2404 x 150p in area. The comparison is performed (very conservatively!) in
about 350ns, including time for on-chip and off-chip data transfer.
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- With present technology, chips are abeat 60004 x 60004 in area. Division gives
us about 1000 bit-comparators per chip. (Motice that this calculation is realistic
only if the design is repetlitively regular, which is the case for our systolic
arrays.) We can assume that none of the comparators on a chip incurs delay due
to pin limitations; since the time for a comparison is large relative to off-chip
transfer time (<30ns), we can multiplex about 10 bits on a pin during a single

comparison,

B (T practical to construct devices involving a few thousand chips. We assume
1000 chips. This gives us the capability of performing 108 comparisons in
parallel.
Based on these assumptlions, we can make the following performance predictions for
intersection. The intersection requires a fotal of 1.5 x 10! bit comparisons, since we need
1500 bit-comparisons for each of the (104)2 tuple comparisons, The time to perform
intersection, therefore, is:
(15 x 10! lcompariSOns) x (350ns / 106comparisons).
which is about S0ms. We believe that this estimale is extremely conservative, even with
existing technology. If we assume instead, for example, 200ns/comparison, and 3000 chips,

we derive a figure of about 10ms.

The processing speed obtainable from these systolic arrays can keep up with the data rate
achievable with the fast mass storage devices available in present technology. For example,
a moving-head disk rotates al sbout 3600 r.p.m, or about once every 17ms. Assume that we
can read an entire cylinder in one revolution, as in some of the proposed database machines
(for a survey of these machines, see [4]). This is a rate of about 500,000 bytes in 17ms. In
a comparable period of time, our systolic array can process (for example, can intersect) two

relations, each of about 2 million byles.

Tam-—

—————————
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9. Remarks on the Organization of an Integrated Systolic System

Systolic arrays introduced in preceeding seclions are capable of rapid processing of
individual relational database operations. To process all of the operations required in a single
transaction or a set of transactions, an integrated system conlaining several systolic arrays is
needed. Many strategies are possible for the interconnection of the systolic devices. To
decide which interconneclion strategy to choose, one must consider the system requirements:

- High capacity for data transfer. As described in the last section, it is feasible
that a systolic array may process hundreds of thousands of bytes per

millisecond.

- Flexibility and generality. The execution order of systolic devices varies greatly
from one transaction to anolher transaction. Relations may have to be
decomposed to fit the (fixed) sizes of systolic arrays. Results from subrelations
must be stored outside the systolic arrays before they are finally combined.

One organization that seems to malch the sysiem requirements is the crossbar switch
interconnection depicted in Figure 9-1. Typically, the system works as follows. Initially, the
relevant relations are read from disks into memories. (Disks with “logic-per-track”
capabilities [8] can of course be incorporated into the system, so that some simple queries
never have to be processed outside the disks.) Then the crossbar switch is configured so
that the relevant memories are connected to the systolic array that will perform the first
operation of the transaction in question, The data is pipelined from.the memories through the
switch and through the processor array. The output of the array is pipelined back into
another memory. This is repeated for each relational operation in the transaction. Due to
the crossbar structure, several operations may be run concurrently. The final results are
eventually returned to the disk (or a user’s terminal, or printer, etc.) from the memory in

which they reside.

In the future, we plan to perform a detailed analysis of the crossbar scheme and a
comparison of this schame with other alternative structures. For example, Song [9] has
suggested the use of a tree machine for database applications. The !'eaf nodes of the tree
machine are responsible for data storage, and for a limited amount of processing of the data.
The tree structure itself is used to broadcast instructions and data, and to combine results of
low-ievel computations on the data. This same tree machine is capable of performing all
dstabsse operations, A detailed comparison of these and other database machine structures
is needed in order to understand their relative merits,

-
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Figure 9-1: Systolic database system using crossbar switch.
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